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ABSTRACT

Charts of surface pressures, Mach number, and Reynolds number
distributions over spherically blunted cones in an ideal gas {(y = 1.4}
are presented in the ranges M_ = 8 to 30 and cone half-angles 4. = 0
to 20 deg., The pressure data are correlated with Cp/'2«9c2 against

1
Xe = (x/dp) [602 / ek} /“:} and compared with a previous empirical correla-
tion of experimental data. The difference in numerical results and
empirical correlation of surface pressures is attributed to the viscous-
induced pressure increment in the experimental data,
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SECTION |
INTRODUCTION

For various aerodynamic investigations, inviscid solutions for
spherically blunted cones are needed. The lack of extensive exact solu-
tions encouraged the authors to compute ideal gas (y = 1.4} flow fields
over spherically blunted cones for a Mach number range from 8 to 30
and a range of cone half-angles, 6., from 0 to 20 deg,

The Russian data of Chushkin and Shulishnina (Ref. 1) in the Mach
number range, M_, from 3 to 10 and infinity for 6. = 0, 3, 5, 10, 20,
30, and 40 deg were presented in tabular and graphical form by FElleit
(Ref. 2). Unfortunately, the scales of some of the plots in Ref. 2 are
such that reading the values accurately is difficult. Moreover, only the
pressure coefficient, C,;, and wall-to-lstagnation pressure ratio, p./p,",
were presented.

The present report gives p,/p,> M, and Re/He_ as functions of sur-
face distance, s/RO, for spherically blunted cones. In addition, the
parameter C ’29C against X¢ = (x/d )[Bcz/ (ek)]’5 is also presented. The
parameter C #24,° was proposed by Griffith and Lewis (Ref 3} who
modified Cheng s (Ref. 4) correlation parameter p_/p, Mw Ye 0,° in order
to obtain better correlation of experimental data over a range of Mach
and Reynolds numbers {see Ref, 3). The correlation variable X was pro-
posed by Cheng and was found to correlate the experimental data well. A
comparison of the correlated ideal gas calculations with the empirical
correlation of experimental data by Griffith and Lewis is also presented
herein,

SECTION Il
CALCULATION PROCEDURE

The spherically blunted cone solutions were obtained with an IBM 7094
program similar to the one developed by Lomax and Inouye (Ref. 5) and
Inouye, Rakich, and L.omax {Ref. 6) at NASA Ames Research Center. A
method similar to the Ames procedure noted above was recently developed
by Christensen (Ref. 7) and includes attached and laminar separated
boundary layers in addition to ideal and equilibrium gas inviscid outer flow.

All of the ideal gas flow field results in the present report were
obtained for spherically blunted cones at sea-level conditions. Since the
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flow field calculations considered only an ideal gas, the choice of free-
stream conditions is arbitrary. The Reynolds number is affected,
however, through the choice of viscosity law and (free-stream} refer-
ence conditions.

The machine program for the blunt body solution was chained to
the program for the characteristics solution such that only the free-
stream conditions, sphere-cone geometry, and a few initial guesses
were specified (see, e.g., Refs, 6 and 7). For the results reported
herein, the surface pressure distribution along the body was of primary
importance. Machine cards were punched from these data, and a sep-
arate program was written to compute p,/p,", M, Re/Re_, and Cp/2601.
The calculations were terminated when the surface pressure had reached
the inviscid sharp cone value, Although the blunt and sharp cone sur-
face pressures approached the same limit far downstream from the nose
or apex, the blunt cone surface temperature, density, and velocity, of
course, were affected by the normal shock stagnation pressure loss,

For convenience and comparison with the blunt cone results, the
surface conditions for sharp cones of the same cone half-angle and free-
stream conditions were computed and are presented herein., The pro-
cedure used was similar to that described by Sims (Ref. 8), and com-
parisons with his results showed good agreement.

SECTION Il
RESULTS AND DISCUSSION

The inviscid, ideal gas (y = 1.4) surface pressure distributions over
spherically blunted cones in the ranges fc = 0 to 20 deg and M_ = 8 to 30
are shown in Fig. 1. For convenience the data are shown for fixed cone
half-angle and variable M_ and vice versa. The sharp cone asymptotic
limits are alsc shown. As noted earlier, the blunt cone solutions were
terminated when the surface pressure had clearly reached the asymptotic
limit. For small 4. and large M_, this required perhaps a few hundred
nose radii, The results shown in Fig. 1 were only plotted to S/R, = 150
to permit the largest practical scale for reading and graphical interpola-
tion.

A comparison with the data of Chushkin and Shulishnina at M = 10
as given by Fllett (Ref. 2) is shown in Fig, 2. The agreement is good
except for the last point on the hemisphere-cylinder. Since no other data
were given in Ref. 2 between S/R, = 36, 17 and 68. 17, the cause for this
disagreement is unknown. In general, however, it can be seen that the
agreement is good, and the present results can be considered as an exten-
gion of those of Chushkin and Shulishnina {(Ref. 1}.



AEDC-TR-66-121

It is well known that the approximate Newtonian and Newtonian/
Prandtl-Meyer theories are useful in predicting the pressure distribu-
tion over spheres at high Mach numbers. Figure 3 shows a comparison
of these approximate theories with the present blunt body solutions at
M, = 8 and 30. The fact that the inviscid blunt body solutions lie below
the approximate theories by as much as 10 percent can be significant
when comparing experimental data with the approximate theories. That
is, good agreement between experimental data and the approximate
theories does not necessarily imply the absence of viscous effects on the
blunt body pressure distribution, The point is made here to caution
potential users of these data against expecting too great an accuracy
from the use of inviscid solutions and approximate theories.

The surface Mach number distributions are shown in Fig, 4. The
inviscid sharp cone solutions are shown in Fig. 4a for convenience.
The data given in Fig. 4 might be useful, for example, in estimating
conditions at the ""edge'’ of the boundary layer in boundary-layer separa-
tion and transition studies. As with the other data presented, the plots
were made such that graphical interpolations of the data could be made.
Also as in the plots of surface pressure distributions, the effects of
M. and 8. on the nose-dominated region is clearly evident from Fig. 4.

A plot of surface-to-free-stream Reynolds number ratio, Re/Re,,
is given in Fig. 5 where Sutherland's viscosity law was used. The
sharp cone results are shown in Fig. 5a, and the blunt cone results at
discrete M, are given in Figs. 5b to h. As for the surface Mach
number, these results might be useful in some perfect gas boundary-
layer studies,

The correlation parameter C,/26." against X¢ = (x/dn) l-ﬁcz/’ (ek)"]
is shown in Fig. 6. The present numerical results are compared with
the previous empirical correlation results of Griffith and Lewis
{Ref. 3). Presentation in this way clearly shows the large difference
between the inviscid surface pressure and the correlation of experimental
data over a rather wide range of conditions (see Ref. 3). Excluding the
M, = 8 and 6, = 20-deg curve, the minimum pressure for the remaining
data shown was 2correla’ced within a bandwidth of 13 percent. If Gc’ is
replaced by sin f¢, the bandwidth is increased to about 20 percent. The
results shown here thus add to the validity of the correlation parameter
used by Griffith and Lewis and clearly show a substantial difference
which is attributed to a viscous-induced pressure increment in the previous
empirical data. An uncertainty remains as to the 'real gas effects” on
the experimentally measured surface pressures; however, this effect is
believed small for the range of experimental data considered in Ref, 3.
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SECTION IV
CONCLUDING REMARKS

Ideal gas (y = 1.4)surface pressure, Mach number, and Reynolds
number distributions for spherically blunted cones have been computed
in the ranges M_ = 8 to 30 and 8, = 0 to 20 deg. Comparisons with
earlier calculations over a more limited range of cenditions indicated
good agreement. Comparisons with approximate theories indicated
differences in surface pressures over a sphere as large as 10 percent.
Also comparisons with empirical correlations of experimental surface
pressure distributions clearly indicated a difference which was attrib-
uted to the viscous-induced pressure increment. Finally, the present
numerical results are plotted to scales that would permit graphical
interpolations of the data to be made.
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