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ABSTRACT 

Charts of surface pressures.   Mach number,  and Reynolds number 
distributions over spherically blunted cones in an ideal gas (y = 1.4) 
are presented in the ranges MB = 8 to 30 and cone half-angles Sc =   0 
to 20 deg.    The pressure data are correlated with   Cp/2 0e   against 

Xc = (x/dn)  L#c
2/(fk)  J  an^ compared with a previous empirical correla- 

tion of experimental data.    The difference in numerical results and 
empirical correlation of surface pressures is attributed to the viscous- 
induced pressure increment in the experimental data. 

in 
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Cp Pressure coefficient,   2(p - px) / pM yh\9 
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Re Reynolds number 

S/R0 Dimension!.ess surface distance measured from forward 
stagnation point 

Xc Cheng's axial correlation parameter,   (x/dn)   [öcV (ekpj 

x Axial distance from forward stagnation point 

y Ratio of specific heats 

€ Normal shock density ratio,   (y - 1) /<y + 1) 

dc Cone half-angle 

SUBSCRIPTS 

o' Normal shock (pitot) stagnation conditions 

w At the (inviscid) wall or surface 

OB Free-stream conditions 
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SECTION I 
INTRODUCTION 

For various aerodynamic investigations,  inviscid solutions for 
spherically blunted cones are needed.    The lack of extensive exact solu- 
tions encouraged the authors to compute ideal gas   < v = 1.4}   flow fields 
over spherically blunted cones for a Mach number range from 8 to 30 
and a range of cone half-angles, Bc, from 0 to 20  deg. 

The Russian data of Chushkin and Shulishnina (Ref.   1) in the Mach 
number range,   MK,   from 3 to 10 and infinity for    9C -    0,  3,   5,   10,  20, 
30,  and 40 deg were presented in tabular and graphical form by Ellett 
(Ref.   2).    Unfortunately,  the scales of some of the plots in Ref.   2 are 
such that reading the values accurately is difficult.    Moreover,  only the 
pressure coefficient, Cp ,  and wall-to-stagnation pressure ratio,   pw/pa'. 
were presented. 

The present report gives pw.'p0', Mw, and   Re/Re^ as functions of sur- 
face distance,   S/R0.   for spherically blunted cones.    In addition,  the 
parameter Cp/2i9c'  against Xc = (x/d„)[0c

a / (dOl/j is also presented.    The 
parameter Cp/2 0c

2 was proposed by Griffith and Lewis (Ref.   3) who 
modified Cheng's (Ref.  4) correlation parameter p^./p^M«   y«, 0c

l   in order 
to obtain better correlation of experimental data over a range of Mach 
and Reynolds numbers (see Ref.  3).    The correlation variable Xc was pro- 
posed by Cheng and was found to correlate the experimental data well.   A 
comparison of the correlated ideal gas calculations with the empirical 
correlation of experimental data by Griffith and Lewis is also presented 
herein. 

SECTION II 
CALCULATION PROCEDURE 

The spherically blunted cone solutions were obtained with an IBM 7094 
program similar to the one developed by Lomax and Inouye (Ref.   5) and 
Inouye,   Rakich,   and Lomax (Ref.   6) at NASA Ames Research Center.    A 
method similar to the Ames procedure noted above was recently developed 
by Christensen (Ref.   7) and includes attached and laminar separated 
boundary layers in addition to ideal and equilibrium gas inviscid outer flow. 

All of the ideal gas flow field results in the present report were 
obtained for spherically blunted cones at sea-level conditions.    Since the 
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flow field calculations considered only an ideal gas, the choice of free- 
stream conditions is arbitrary.    The Reynolds number is affected, 
however,  through the choice of viscosity law and (free-stream) refer- 
ence conditions. 

The machine program for the blunt body solution was chained to 
the program for the characteristics solution such that only the free- 
stream conditions,  sphere-cone geometry,  and a few initial guesses 
were specified {see,   e.g. ,   Refs.   6 and 7).    For the results reported 
herein,  the surface pressure distribution along the body was of primary 
importance.    Machine cards were punched from these data,  and a sep- 
arate program was written to compute  p,v/p„',Mw, Re/Re,,,, and C /2$c

2. 
The calculations were terminated when the surface pressure had reached 
the inviscid sharp cone value.    Although the blunt and sharp cone sur- 
face pressures approached the same limit far downstream from the nose 
or apex, the blunt cone surface temperature,  density, and velocity,  of 
course,  were affected by the normal shock stagnation pressure loss. 

For convenience and comparison with the blunt cone results,  the 
surface conditions for sharp cones of the same cone half-angle and free- 
stream conditions were computed and are presented herein.    The pro- 
cedure used was similar to that described by Sims (Ref.   8),  and com- 
parisons with his results showed good agreement. 

SECTION III 
RESULTS AND DISCUSSION 

The inviscid,  ideal gas (y = 1.4) surface pressure distributions over 
spherically blunted cones in the ranges 0C =  0 to 20 deg and Mw = 8 to 3 0 
are shown in Fig.  1.    For convenience the data are shown for fixed cone 
half-angle and variable  MM and vice versa.    The sharp cone asymptotic 
limits are also shown.    As noted earlier,  the blunt cone solutions were 
terminated when the surface pressure had clearly reached the asymptotic 
limit.    For small  gc and large MM, this required perhaps a few hundred 
nose radii.    The results shown in Fig.   1 were only plotted to S/R0 =   150 
to permit the largest practical scale for reading and graphical interpola- 
tion. 

A comparison with the data of Chushkin and Shulishnina at Mw =  10 
as given by Ellett (Ref.  2) is shown in Fig.  2.    The agreement is good 
except for the last point on the hemisphere-cylinder.    Since no other data 
were given in Ref.  2 between S/R0 = 36. 17 and 68. 17,  the cause for this 
disagreement is unknown.    In general,  however,  it can be seen that the 
agreement is good, and the present results can be considered as an exten- 
sion of those of Chushkin and Shulishnina (Ref.   1). 
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It is well known that the approximate Newtonian and Newtonian/ 
Prandtl-Meyer theories are useful in predicting the pressure distribu- 
tion over spheres at high Mach numbers.    Figure 3 shows a comparison 
of these approximate theories with the present blunt body solutions at 
M^ =   8 and 30.    The fact that the inviscid blunt body solutions lie below 
the approximate theories by as much as 10 percent can be significant 
when comparing experimental data with the approximate theories.    That 
is,  good agreement between experimental data and the approximate 
theories does not necessarily imply the absence of viscous effects on the 
blunt body pressure distribution.    The point is made here to caution 
potential users of these data against expecting too great an accuracy 
from the use of inviscid solutions and approximate theories. 

The surface Mach number distributions are shown in Fig.  4.    The 
inviscid sharp cone solutions are shown in Fig.  4a for convenience. 
The data given in Fig. 4 might be useful,  for example,  in estimating 
conditions at the "edge" of the boundary layer in boundary-layer separa- 
tion and transition studies.    As with the other data presented,  the plots 
were made such that graphical interpolations of the data could be made. 
Also as in the plots of surface pressure distributions,  the effects of 
MK and dc on the nose-dominated region is clearly evident from Fig.  4. 

A plot of surface-to-free-stream Reynolds number ratio,   Re/Re^,, 
is given in Fig.   5 where Sutherland's viscosity law was used.    The 
sharp cone results are shown in Fig.   5a,   and the blunt cone results at 
discrete   MM  are given in Figs.   5b to h.    As for the surface Mach 
number,  these results might be useful in some perfect gas boundary- 
layer studies. 

The correlation parameter Cp/2#c
2 against Xc = (x/dn)   [8^ I {&) j 

is shown in Fig.  6.    The present numerical results are compared with 
the previous empirical correlation results of Griffith and Lewis 
(Ref.   3).    Presentation in this way clearly shows the large difference 
between the inviscid surface pressure and the correlation of experimental 
data over a rather wide range of conditions (see Ref.  3).    Excluding the 
MM =   8 and 0C = 20-deg curve,  the minimum pressure for the remaining 
data shown was correlated within a bandwidth of 13 percent.    If  0C    is 
replaced by   sin   0C, the bandwidth is increased to about 20 percent.    The 
results shown here thus add to the validity of the correlation parameter 
used by Griffith and Lewis and clearly show a substantial difference 
which is attributed to a viscous-induced pressure increment in the previous 
empirical data.    An uncertainty remains as to the "real gas effects" on 
the experimentally measured surface pressures; however,  this effect is 
believed small for the range of experimental data considered in Ref.   3. 
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SECTION IV 
CONCLUDING REMARKS 

Ideal gas (y = 1.4) surface pressure,  Mach number,  and Reynolds 
number distributions for spherically blunted cones have been computed 
in the ranges MM = 8 to 30 and 0C = 0 to 20  deg.    Comparisons with 
earlier calculations over a more limited range of conditions indicated 
good agreement.    Comparisons with approximate theories indicated 
differences in surface pressures over a sphere as large as 10 percent. 
Also comparisons with empirical correlations of experimental surface 
pressure distributions clearly indicated a difference which was attrib- 
uted to the viscous-induced pressure increment.    Finally,  the present 
numerical results are plotted to scales that would permit graphical 
interpolations of the data to be made. 
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