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ANALYSIS OF EDGE NOTC•ES IN A SEMI-INFINITE REGION

ABSTRACT

A procedure for solving the plane elastic problem for edge notches in a
semi-infinite rcgion is presented. A modification of the conventional
Muskhelishvili technique is made by utilizing a mapping function which
describes both the physical region and its reflection with respect to the
straight edges. An effective power se~rles development in the parameter plane

is then described and illustrated by the numerical solution for semi-elliptical
notches in a semi-infinite sheet in tension at infinity parallel to the edge.
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INTRODUCTION

Edge notches in a semi-infinite region identify a familiar problem class
in plane elasticity. The difficulty of finding a fepresentation of the solu-
tion which allows a systematic consideration of boundary conditions on both
the straight line and notch sections of the geometry is a challenging matter.
Several particular geometries have been successfully analyzed by a variety of
rather ingenious methods. Perhaps the most familiar is the original Maunsell 1

solution for the problem of a semicircular notch in a semi-infinite plate in
tension parallel to the edge. Later, Ling 2 discovered an integral represen-
tation for this problem as well as a class of problems corresponding to
circular notches or mounds and straight boundaries. Edge cracks have been suc-
cessfully studied by several investigators, e.g., References 3 and 4. Estimates
of the maximum stress for edge notches have been made by approximating arguments
by Neuber.
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For general notch shapes a more uniform approach would be desirable. One
could, for example, consider the mapping technique of Muskhelishvili 6 as such
an approach. However, several practical difficulties arise in the application
of this technique to this problem class. Frequently the exact mapping function
contains branch point singularities necessary for the description of the junc-
tions of the notch and the straight line boundaries. Effective use of the
exact mapping function in such cases is limited, as the problem ceases to he
one of linear relationship. The alternative of polynomial approximation of the
exact mapping function can be used, but frequently a suitably accurate poly-
nomial representation is awkward to find. A good example of this difficulty
is shown in the recent work of Mitchell 7 in his solution for a semicircular
notch.

In this paper a power series technique is presented which appears to pro-
vide an effective and fairly uniform approach to single edge notches in a semi-
infinite region. Initially, Muskhelishvili's reflection argument is used to
translate the problem into one of finding a suitable analytic stress function
defined exterior to the closed region bounded by the notch and its reflection
with respect to the real axis. A departure from the conventional mapping
approach is then made by introducing a mapping function defined on the unit
circle and its exterior to describe both the given physical region and its re-
flection with respect to the real axis. A power series representation in the
parameter plane is a natural consequence of this formulation. Furthermore, in
many practical problems, the explicit occurrence of the branch point singular-
ities in the mapping function referred to above is eliminated. Finally, the
structure of the solution can be predicted in a fairly systematic manner by
utilizing most of the consequences of the unmodified Muskhelishvili theory.

INITIAL FORMULATION OF THE PROBLEM

It will be assumed that the material occupies the notched lower half-plane
S- defined in the z-plane, Figure 1. The boundary of the notch C- will be
assumed to be an arbitrary continuous curve, and the straight edges are assumed
to lie on the real axis, y-0.
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Figure I. SINGLE EDGE NOTCH IN A SEMI-INFINITE REGION

In the initial stage of the formulation, the reflection argument of
Muskhelishvili 6 will be utilized. The essential details of this argument
will be briefly summarized in this paragraph. The stress components in carte-
sian coordinates can be expressed in terms of two analytic functions 0(z) and
Y(z) in the following manner:

0 + c0 - 2 [0(z) + 0(z)) (1)
y x

0- Y + 2ir-'y . 2[10'(z) + O(z)], (2)

where primes denote differentiation and bars denote complex conjugates.

In the present problem, the region of definition of O(z) and Y(z) is S-.
On the other hand, using the extension principle of Muskhelisihvili, the defi-
nition of O(z) can be extended into S÷ by defining

0(z) - 0(z) - z'(z) . •(z) for ,,s÷, (3)

where

Z(z) f ' ). (4)

The stress function T(z) can now be expressed in terms of the extended defini-
tion of 0(z) as

z(z) O(z) -(z) - zO'(z) for zeS'. (5)
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For simplicity of presentation, self-equilibrating load systems acting on
the boundary of the notch will be considered at this time. Actually, this is
a minor restriction since loading at infinity or along the straight edges can
be handled directly for the unnotched half-plane in terms.of elementary func-
tions and Cauchy integrals, e.g., Reference 6. By considering the superposition
of solutions, it is clear that the problem difficulty rests in solving the
cases of self-equilibrating load systems acting on the notch boundary. For
self-equilibrating load systems,

V(z) and '/(z) - 0(1/z 2 ) for large Izi. (6)

Thus, from (3) it is evident that -(z) is analytic in both S- and S+.

The character of 0(z) on the straight edges of the boundary is clear from

01 - irxy = 0(z) - 0(Z) + (z-i--)0'(z). (7)

If the straight sections along the real axis are considered as load-free, then,
since z-- 0 on the real axis,

'(x) - 0+(x) = 0, (on the straight boundary). (8)

The notation 0-(x) and 0+(x) denotes the value of 0(z) as z-.x through S- and
S', respectively. From (8) and the previous discussion, O(z) can now be
considered as an analytic function in the region of the plane exterior to the
contour C=C-+ C+ where C+ is the reflection of C- with respect to the real
axis, Figure 1.

Finally, the boundary conditions on C- must be considered. For the pres-
ent purpose, we assume that the normal and tangential stress components, N
and T, are prescribed on C-. Then, if a denotes the angle between the x-axis
and the outward normal,

N - iT - 0(z) + 0(z) - e 2 ia[(C-z)V'(z) - C(z) - 0(z)] for zeC-. (9)

A POWER SERIES FORMULATION OF THE PROBLEM

For a. power series representation, it is obviously desirable to deal with
a parametric region consisting of a circle and its exterior (or interior).
Therefore, consider an auxiliary complex plane, the c-plane, such that the
unit circle ý =o-=eie and its exterior are mapped into C and its exterior,
respectively, by the analytic function

z - cc(•. (10)

A departure from the conventional mapping approach is made here since both the
physical region and its reflected image are described by the auxiliary plane.
The stress functions 0(z) and I(z) can be considered as analytic functions of
the parameter 7 since z and ý are related by the analytic function (10). The
necessity of introducing considerable new notation can be avoided by
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designating 0(z)=4[w( )] as o( , etc., which leads to such relationships as
0'( z) =0')/'( ) , etc. Due to the symmetry of C with respect to the x-axis,
-(z)j--.) in the notation described.

The boundary condition (9) can now be expressed as a function of Cr. Due
to the symmetry of C, the range 0_8<77 will be considered as corresponding to
C+ and the range 7r.0<.27Tr, corresponding to C-. The applied load can be con-
sidered as a function of oa, i.e.,

N - iT g(o,), ._<••2i. (11)

Thus,

0(0o) + YTM - e2ia{[_COFOT - 60(0-)]t (oicv() -(1 =(o - *(oi

7<0< 277 (12)

where

e 2ia= a r2a()/j(T). (13)

On the unit circle itself, it is possible to encounter singularities in
0(ý) either by load distribution or as a result of geometric irregularities
in the notch shape. For severe types of singularities, e.g., poles occurring
at crack roots, logarithmic singularities corresponding to point loads, etc.,
it is generally possible to anticipate and introduce the proper structure as
a separate part of the representation. The remaining arguments will, there-
fore, be confined to the cases of nonsevere boundary singularities, i.e.,

O0

ct A C ", > (14)
=2 n ~~

with at least conditional convergence assumed on the unit circle r.

DETERMINATION OF THE SERIES COEFFICIENTS

The analyticity of 0(ý) permits the expression of the coefficients in
terms of the well-known integrals

2niA~ = f$1i'•)d•/•n, n - 2, 3, ... (15)

or

27r

2TAn .r 0'- n (o-)d6, n = 2, 3, .(16)

0

in addition,
277

o 1 0'no()de, n - 1, 0, -1, -2, ... , (17)
0
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but if the solution exists in the hypothesized form, the conditions (17) can

be considered as redundant.

If the function F(o') is defined as

F(o) = O(U) -0(a) = 0, O5<7<

= OM e 2 [77g- . CO-) - OW] - CO-)

+[w(o-) . ca4o-)] $'(o-/w(o-) ,<e<2,,, (18)

then the boundary conditions of the present problem are equivalent to

F(o-) = 0, 0<0<2Y. (19)

The Fourier criteria for the vanishing of F(or) is thus

Zwr 21

f O1'F(O-)dO f o-nF(o-)do 0, n = 0, ±1, ±2, ... (20)
0 IT

If we denote by Fj,

27
Fj= f o-JF(No)d, j = 0, ±1, ±2, ... (21)

IT

it is evident that computationally (16) and (17) are equivalent to

F. 0, j - 2, 3, 4, ... (22)

F1 =0, j = 1, 0, -1, -2, ... (23)

respectively. For an infinite system, the redundancy of (17) implies the
redundancy of (23).

A reasonable plan of solution conceptually is to introduce the series

(14) into the set of conditions (22). This leads to an infinite set of linear

equations in the unknowns An, which can be solved by successive truncations

of the system. Early numerical solutions indicated, however, that the rate

of convergence of this truncation procedure was too slow to be practical. The

difficulty shows up numerically in a lack of dominance of the principal diag-

onal of the coefficient matrix.

Conceptually, the difficulty can be traced to the series truncation.

Let OA(C) be defined as a truncation of (14),

M+1

h = W A C'n. (24)
n=2

In general, the corresponding function FA(cr) is a polynomial (or a rational

function) of o, involving both positive and negative powers of cr and (19)



cannot be identically satisfied by a choice of the M available coefficients
An. Furthermore, the Fourier conditions (23) which cannot be considered as
redundant for a truncated stress function are ignored in the plan described
above.

A combination of two procedures was found to be the most effective com-
putational plan. For the leading coefficients, the system

F. = 0, j = 0, ±1, ±2, ... , ±P (25)

was solved for several values of P with M = 2P + 1. A rather dramatic improve-
ment in convergence of the leading coefficients was -found by this plan. In
the illustrative problems, the first twenty coefficients were found with re-
liable accuracy with values of P<20. On the other hand, a critical system
size is reached where the higher ordered coefficients begin a rapid growth in
inaccuracy and the determinant of the coefficient matrix becomes very small.
This can be anticipated due to the redundancy in the limit of P + 2 of the
equations in (25).

The procedure used to calculate the higher order coefficients consisted
of solving the set of conditions

-f {F(o)} 2 d9 - 0, i - 2, 3, ... , M + 1. (26)• 0

This set of conditions corresponds to the requirement that (19) be satisfied
for a finite set of coefficients in the least square sense. The system (26)
eliminates the previous stability difficulties for larger systems and can be
compactly expressed as a suitable linear combination of the elements F..
Although (26) could be used to determine the entire set of coefficients, the
leading coefficients converge somewhat more slowly than in (25), and the max-
imum system size is reduced by using a combination of the two procedures.

SEMICIRCULAR EDGE NOTCH

The simplest illustration of the preceding analysis is provided by
Maunsell's problem, i.e., a semicircular notch in a semi-infinite plate in
tension, T, parallel to the edge, Figure 2. The radius of the semicircle will
be chosen as the unit length, and polar coordinates (r,e) are introduced in the
manner shown. Fcr illustrative purposes, the mapping notation will be retained,
thus,

z = cv(•) = c. (27)

The stress functions will be denoted by 0i(1) and 'V(C) where

o(•) = T/4 + t(C) =T/4 + T 7- A '-n
n= 2 n

=I(C) -T/2 + v(•). (28)

6
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Figure 2. SEMICIRCULAR EDGE NOTCH

Since the particular solution in (28) corresponds to or, T everywhere, it is
clear that the determination of 0(t) and W(•) is a problem type with the
properties assumed in the previous analysis. Furthermore, since a - 77 +

g(o) = -T/2 (1+o- 2 ). (29)

From symmetry considerations, the series coefficients in (28) can be written
in the form

A2k = B2k, k = 1, 2, 3,

A2 k.l= iC 2 k-1, k = 2, 3, 4, (30)

where B2 k and C2 k.1 are real.

Corresponding to (18),

F(0) = 0,7

= + C(O--) _+ a2[p(o) +

+ (T/2) (l+a2), -<0<(2-u. (31)

7



Thus,

OD

Fo 77B2 -8 Y C2 k.l/(2k-3)(2k+l) + /2
k=2

F, 0

02

F2 = 8 k22 C2 k. /(2k-3)(2k-1) + 7/2

F2 j = 277(1-j)B 2 j + (2j-1)7r B2 j. 2

+8kZ 2 8 2k (2k-1)(2j-l)/[(2k-2j) 2 _1][2k-2j-3] j - 2, 3, (32)

00
-iF2 j I =-( 2j-l)C2j - 1-27(j-l)C2 .3-16 2 B2k( 2J- 3 )(j-l)/[(2j.-3) 2 -4k 2] [2k-2j+l]k= 1

4(j-l)/(2j-1)(2j-3), j = 2, 3,

F_2j-= B2j+2-8 1 C2k.l( 2 j+l)(2k-l)/[(2k+2j) -1][2k-2j-3], j = 1, 2,
k=2

"-iF'2j+l= -C2j+1 +16 2 B2kj(2j+l)/[(2k+2j) 2 "1] [2k-2j-1] -4j/(4j2-1),

k=1
I = 1, 2,..

The conditions corresponding to (26) can be conveniently expressed in
terms of Fn. Since,

S•f{F()} 2 de = 2 " F(o-) ýF(-) do = 0, (33)
.1 7?r 7T

we find from the even and odd coefficients, respectively,

(2-2j)F.2j + (2j+l) F. 2 j. 2  + F 2 j. 2  = 0, j = 1, 2, ... , M

(2j-l)F. 21 - 21 F 1 21 + F 2 .3  0, j 2, 3, ... , M + 1. (34)

The first twenty coefficients were found to five decimal place accuracy
by using (25) for several values of P < 20. The higher order coefficients
were then calculated by solving the system (34) for several values of M.
Forty of the higher order coefficients were obtained to five decimal place
accuracy with th6 use of systems in which M<50. The comparatively rapid decay
of the coefficients is shown in Table I.

Due to some recent controversy as to the accuracy of Ling's2 numerical
results, e.g., Reference 7, the stress at the notch root, 0 = -7T/2, was
calculated. In terms of the present formulation,

8



Table 1. STRESS FUNCTION COEFFICIENIS FOR
SEMICIRCULAR EDGE NOTCH

k B2k C2k 41 k B2k C2k _ 1

1 .0.79248 -0.66283 11 -,.00 147 -0.00074

2 40.65206 +0.33908 12 -0.99110 -0.009170

3 -0.04406 +0.05755 13 -0.00084 -0.0006.5

4 -0.02325 +0.01765 14 -0.00065 -0. oo0.59
5 .0.01358 +0.00616 15 -0.00 51 .0.00053
6 -0.00850 +0.09 199 16 -0.00040 .0. (90047,

7 -0.00561 +0.A0032 17 .0.00032 -0.00042
8 .0.00385 -0.00138 18 -0.0C025 -0.00"38
9 -0.00272 -0.00066 19 -0.00020 -0.00034

[1 -0.00198 -0.00074 20 -0.00016 -0.00930

0 (0 -7-/2) = T (1-4 [ (C 2 k+l-B 2  (35)
k= I2k)(-1

Using the coefficients in Table I, •X/'T = 3.0656 at the notch root. Allowing
for round-off in the present data, it would be reasonable to estimate that
x/T = 3.065 1 0.001 which can be compared with Ling's result, -X/T=3.065.

Estimates of the accuracy of the solution at the free corner, e =0, were
made from the data of Table I and additional higher order Bk coefficients
not recorded here. Excellent agreement was found which further indicates that
reliable peak stresses at notch roots can be obtained by this procedure, par-
ticularly since series convergence would be expected to be more rapid at such
points.

SEMI-ELLIPTIC NOTCH IN A SEMI-INFINITE SHEET

A final illustration of the analysis is provided by a semi-elliptic notch
in a semi-infinite sheet in tension at infinity parallel to the edge, Figure
3. Only an approximation of this problem has been previously available.
Again, the straight edges of the sheet are assumed to lie on the real axis,
y a 0.

An appropriate fcrm of the mapping function is

z = w( ) = c-B" 1, 0<VB<1. (36)

the ratio of the axes of the ellipse, X u alb, is clcarl.,

,X ( l-B)/( 1.+B). (37)

For illustrative purpo.fes• the analysis was carried out in terms of the
stress function O(c) and ot,(.4. where

9(38)
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Figure 3. SEMI-ILLIPTIC EDGE NOTCH

The preceding arguments carry through in a straightforward manner and the
boundary condition can be written as

-cx) €(o- = '(ai •(o-) + W(o-)'- -F •

-aw'(o) Ico(o) gCoi)dc, rt<0<2w. (39)
-1

If €1(0) denotes the required stress function, then

-= (T/4)(•-B") + *(•) (40)

where

11+1= T2 an'+. (41)
n=2 n

The pievious argument was applied to the function wo'(Oi€(O). Again from
symmetry,

a2k = 4k, k = 1, 2,.

a 2k-1 = ic2k-I, k = 2, 3, (42)

10



Since

g(crý -(T/2)[D+ o-2 '()/w(1] , (43)

it follows that in the boundary condition (39),

f 1o'((o)g-) d T 7 -(T/2)( I +B)(o- -'o . (44)
-1

Thu s,

2~7r---
f. = If {oW'(0-) -wa)(0-) + €(0"o [a(o1) -

7 T

-w (o-) (T/2)(I +B)(o-o')}do, j 0, ±I, ±2, ... (45)

The least square conditions similar to (26) can then be written as

[2 +B-2(1+ B)j] fl-2j [2j(l +B) - 1 f-2j-1

" f2j- - Bf 2 j- 3  - j, = 1, 2,

[2(l+B)j - (l+2B)] f 2 2 j - [2(1+B)j - (2+3B)] f-2j

"- f2j-2 -Bf 2 j- 4  = 0, j = 2, 3, ... (46)

The numerical analysis was then carried out for several values of B in
the manner previously outlined. For brevity, only the peak notch stresses for
various values of X =a/b wil! be presented. In terms of the present formulation,

0rmax = Orx( =i)= T{I+ 4 Y [(1- 2 k)b 2k+2kc 2 k+ I] (_1)k/(I.B)}. (47)
k=1

Comparison with the conventional approximation to this problem was made by
calculating

Q = 0-max/O-*max, (48)

where ar* is the corresponding peak stress for an elliptical hole in an infi-
nite sheet with a corresponding uniaxial tension at infinity. The latter
solution is well known, e.g., Beference 8, and

o* = T(1 +2X-1) (49)

The results are shown in Table II where the limiting value of Q for K = 0 is
based on Koiter's result. 4 The results listed can be considered accurate to
within 0.1 of one percent. In the calculation of the coefficients on a
digital computer, it was found advisable to use double precision.

11
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Table II. MAXIMUM STRESSES FOR SEMI-ELLIPTIC NOTCHES

B \ max /T max/T Q

0.0 1.0000 3.065 3.000 1.022
0.1 0.8182 3.540 3.444 1.028
0.2 0.6667 4.136 4.000 1.034
0.3 0.5385 4.910 4.714 1.042
0.4 0.4286 5.948 5.667 1.050
0.5 0.3333 7.412 7.000 1.059

0.6 0.2500 9.625 9.000 1.069
0.7 0. 165 13.320 12.333 1.080
0.8 0.1111 By interpolation - 1.092

0.9 0.0526 By interpolation - 1.106

1.0 0.0000 Koiter's result - 1.1215
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