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"Matched" Polynomial Least-Squares Fitting 

and 

Application to Real-Time Ballistic Coefficient Estimation 

Summary 
3 

A form of least-squares "spline-function" fitting    is presented where, 

in essence,   a distinctly non-polynomial function defined over some gross inter- 

val is approximated by single polynomial expressions of degree    M   over each 

of contiguous sub-intervals with continuity conditions on the function up through 

the (M-l)' st derivative being imposed at the junction points (Fig.   1).     Weighted 

least-squares fitting to given observational (radar) data then leads to linear 

algebraic equations for the parameter estimates instead of non-linear equations 

requiring solution by iteration.     This technique leads to Eqs.   (4),   (8),   and (9) 

of the analysis section.    These relationships can be used for general weighted 

least-squares fitting of observational data where the "ordinary" polynomial 

approximation is not sufficiently accurate.    Application of these relationships 

to real-time    ß   estimation    appears promising and a procedure utilizing them 

is outlined in this paper. 

Introduction 

Standard least-squares polynomial fitting methods are easy to implement 

because the parameter estimates then satisfy linear algebraic equations which 

can be readily solved by standard matrix inversion techniques.    However,   long 

segments of re-entry trajectory are not generally well approximated by a single 

quadratic (or higher degree) polynomial expression.    This is basically the reason 

why numerical integration of the differential equations of the trajectory followed 

by an iteration procedure and the ensuing mathematical complications inherent 

in a "Maximum-likelihood" approach,   is frequently required in order to obtain high- 

-•'   Ref.   1 discusses an alternate real-time method. 



precision answers. With a view toward real-time applications, we there- 

fore attempt to circumvent these complications by finding a more accurate 

functional representation than a single polynomial over the gross interval. 

This is accomplished by subdividing the entire interval shown in 

Fig.   1 into equal sections,   assuming a different polynomial expression of 

degree M over each section,   and requiring the continuity of the function up 

through the (M-l)' st derivative at the intersection points T?,   Tv   . . . ,   T   , 

. . . ,   T     .    This "matched" polynomial approach will yield accuracies some- 

where intermediate between ordinary least-squares fitting and the optimum 

iterative maximum-likelihood technique,   and with considerably less compu- 

tation time.     We now derive the necessary relationships and outline a real- 
* 

time technique    that utilizes them. 

Analysis: 

In any region -- the J'th say --of Fig.   1,   a continuous differ entiable 

function "S(t)lf  can be approximated by an Mth degree polynomial viz 

M   4™] 

S(V =   r
n -V (ti- Tj>m for TJ s hs TJ+I        (1) 

m=0    m ! 

J =  1, 2,. . . ,p 

where   S.    is the value of the function S(t) at t = t.    in that region and 

S:      ,S:     i  S: ' ..,   are the values of S(t),   S(t),   and S(t) . . .   respectively 

at t =  Tj . 

The "optimum"  real-time technique we define to be "that technique 

which provides parameter estimates of 'SUFFICIENT* accuracy for the 

applications intended with a minimum of computation time and storage". 
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Fig.   1.    Subregions for which different M'th-degree polynomial 
expressions apply. 

A different M'th-degree polynomial of the type (1) applies over any region 

other than   J .    The data times   t.    need not be equally spaced in what follows; 

however,   it will be assumed that each region has an equal time span so that 

h = TT - TT   ,    is independent of   J . 

Continuity of   S(t)   up through the (M-l)' st derivative at the inter- 

section point   TT   of region   J   and   (J-l)    implies that 

,   ,       M    S<™>hm^ 
O      (U)     . y J-l  

J _ (m-^)I ji = 0,   1,   ...,   (M-l) (2) 



The recursion relationship (2) can be  shown to give 

J-l     v   ,m 
h Z      Z- 
k=l   m = l 

glM-^LglM^)^1     "ji^_   s  (M+nw)       y = l,   2,   ...,   M (3a) 
J 1 ,__,    , m!     k 

J = 2,   3,   . . . ,   p 

Without the constraining relationships (3),   there are (M + l) p   independent 

parameters to be determined in Eq.  (1) by the least-squares fitting of noisy 

S(t) data.    However,   the constraints (3) show that only S (°\   S '1',   . . . ,   S  (M), 

Si^',   . . . ,   S (^)   are independent parameters (M + p of them) to be de- c. p 
termined by the fitting.    S S   ',   sS   ',   . . . ,   S,'^"   '    are the initial conditions 

K at   t = T,  (corresponding to the initiation of a re-entry track) and the   S   (^-' 

K =  1,   2,   . . . ,   p   are the M'th derivatives of the track in each region. 

It can be shown by letting    v    successively equal 1,   2,   . . . ,   that Eq.   (3a) 

finally yields 

sjM-'Us"   [(Jk",1)h]   S<1
M"y+k>+i£ S    [(J-k)*-(J-k-l)^M>       (3b) 

v = 1,   2,   ...,   M 

J = 2,   3,   . . . ,   p 

In obtaining Eq.   (3b),   the following relationship was utilized: 

J-l   J-l J-l 
Z        Z      ...       Z      L6k  <k       6 <k . ..   6,     <k]s(M) 

k=l   k=l k   -1 n      n-1     n-1       n-2 Kl    * Jbk In n 

=   I    i, (J-k-l) (J-k-2) . . .  (J-k-n) 4M) 

k=l n> k 



where,   for example, 

< k 
6, 

(1   for   k    < 

0    otherwij 
■k1 < k 

Lse 

Equations (3b) give the explicit dependence of the dependent parameters 

j* ,   J - Z,   3,   . . . ,   p ; v =  1,   2,   . . . ,   M   upon the independent parameters. 

The (j1 th derivative of Eq.   ( 1) at t = t. can now be written 

g (M-p 

l 

k= 0 k- 1 

(he     )M_ML 

(J-k+e.T - i)M"ul + iil  S(M) (4) 
lJ f (M-u)!        5J 

^"«V»      J = 1-2' ■■•■p 

U = 0,   1,   . .. ,   M 

where the following relationship was noted: 

M-l        k   M-k . ...        .     , 

K—M> 

Notice that the only restrictions placed on the arbitrary function   S(t) 

were continuity and differentiability.    Equation (4) is the desired analytical 

expression for the u'th derivative where    \d » 0    corresponds to   S(t) itself. 

As is seen from Eq.   (4),   the function is represented over each of   p   con- 

tiguous segments by a different polynomial of the same degree    M   and con- 

tinuity conditions on   S(t)   up through the (M -  1)' st derivative are satisfied 

at all of the junction points. 

From Eq.   (4) we observe that 

M-i     ... [h(j-i+e;T)]k       M   j-i 

K— 1 



as(t.)     [hd-i+e.j)] 

"my"       M.8 

^J- 

öS 
U = 0,   1,   2,   ..., (M-l)      (5b) 

dS(t.) 

ÖS 
;M) M! 

K 
^,J9iJ  +   6K<J [»- Kteij' 

M 
- (j-K-i+e ,n\ 

J,  K = 1,   2,   ...,   p 

.5c) 

T     £ t   ^ T XJ        i J+l 

Consider the quantity {S(t.)  - S.' }   where   S.'    is given noisy experimental 

data at   t = t.    with variance    cr.    .    Physically,   this quantity represents the 

deviation of the data from the calculated function at time   t.    in region   J .     We 

therefore wish to minimize 

N. 
P J 

A = Z      £ 
J=l i=NJ-jL+l 

S(t.) - S. x r l 
0". 

i 

where   NT   is the total number of points up to the value    T_   ,   . 

Differentiating   A   partially with respect to   S ^    ,   S,'*', 

S^    ',   K =  1,   2,   . . . ,   p   and equating the results to zero gives 

NT P J 
E     Z 

J=l   i=N 
J-l 

+ 1 

iM- 

(6) 

e   (M-l) 

S<V"Si) [MJ-1+O.j)] 

—-J  ——   =0 

H = 0,   1,   ...,  (M -  1) 

(7a) 

P J 
2       2 

J=l   i=N 
J-l 

+ 1 

S(t.)-S. 

0". 
l 

±-  U     eM + 
M!      )   K, J   iJ 

+  «K<Jt
J-K + eiJ)M-(J-K+eiJ-1)M]i=° 

Where    "bZ-   T~ *
S
 
tne Kronecker delta. K, J 

K=l p (7b) 



Equations (7) represent (M + p) simultaneous linear algebraic equations 

for the (M + p) independent parameter values.    In matrix notation,   Eqs.   (7) 

become 

AX = B (8a) 

where   A   turns out to be symmetric and 

A  = 

11 

L21 

12 

lzz 

l,p+M 

2, p+M 

ap+M, 1       ap+M, 2 a p+M, p+M 

X = 

(0) 

s t1» 51. 
I 

e(M-l) 

s <M) 
1 ; 

S   (M) 
P 

B = 

p+M 

:8b) 

There remains only the determination of   a     Q    and   b      a.   ß =  1.   2.   . . . . 

(p+M) . 

Equations (7) and (5a) give 

u+K 

J     1     0". 

XM.+K 
H,K= 0, 1 . . . ,M-1    (9a) 

and  aK+l,n+l " Vl,K+l 

M+u 
S 2 

(j-i+e./ 

V+1,M+K     M! u!     T   . 2 
J   i cr. 

l 

•*,•£♦ 

4K<J   [(J-K+e.J)M-(j-K-i+e.J)M]j (9b) 

M = 0,1,   . . .,  M-l 

K= 1,   2,   . . .,  p 

and aM+K,n+l " Vt-l.M+K' 



M+K, M+L 

2M 

(M!) 
« KJ<J+ ««r [U-™^ - U-K-i+e^j 

t      eM+ i 
L,J   iJ        IXJ 

r(J-Iyf9;T)M - (J-L-l + e^)1^ 
iJ' iJ' ~z   <9c> 

K, L = 1,2, 

and aM+L, M+K     aM+K, M+L* 

Thus,   the entire   A   matrix is symmetricJ 

The elements of the   B   matrix are given by 
,n S* 

u+1 Hi 
S s  -*r (J-i+e.y 
J  i 

i 

, M S. 
bM+K " M!     . 2 

J    1    (T. 
1 

iJ' 

6      eM + 5 
K, J   iJ       K< J [«- 

M. = 0,1,   . 

,M 

M-l (9d) 

K+e   )    - (j-K-i+e 
i J 

K= 1,   2,   .   .   .,   p 

./*]} 
(9e) 

where in (9a)- (9e) it is understood that the summation limits on J are 1 to p 

and the limits on i are N       +1 to N  . 
J -1 J 

Equations (4),   (8),   and (9) are the relationships required for "matched" 

polynomial least-squares fitting of non-polynomial data by means of multiple 

M'th-degree polynomials in segments,   and constrained to satisfy continuity 

conditions through the (M-l) derivative. The parameter estimates via 

Eqs.   (8) are linear and the matrix elements are simple  summations of simple 

algebraic expressions  [Eqs.   (9) J. The   special case of ordinary least-squares 

polynomial fitting about t = T,  results by setting   p =  1    in Eqs.   (5a) and (9). 

It seems clear that computation time and storage should be nearly minimal 

and whether the technique has  sufficient accuracy compared to iterative 

maximum-likelihood estimation becomes the chief concern.    Adaptation to 

real-time    ß   estimation will now be discussed. 

'    Appendix I particularizes these formulas to the case of quadratic poly- 
nomials (M=2).     "Matched cubics" (M=3) are the smallest degree polynomials 
for which the second (and lower order) derivatives are continuous throughout 
the gross interval of interest.     Consequently,   use of M=3 in the above formulas 
seems particularly promising for the trajectory applications that follow. 

8 



From Newtonian dynamics 

S-f-pfo g=^ (10) 

where   S    is the second derivative of range,    p   the air weight density at time 

t ,    v   the missile velocity,    S the range rate,   and   ß   the ballistic coefficient. 

Physically,   g/ß   is the component of the drag force along the radar line of 

sight.    The   f   function contains components of acceleration along the line of 

sight due to angular rates,   gravity,   and earth rotation effects.    No Doppler 

data will be assumed in what follows.    (Inclusion of Doppler information will 

be discussed later. ) 

The   f   and   g   functions in Eq.   (10) contain no second derivatives.       The 

smooth range,   angle values,  their rates,   and   S     all at time   t   are to be de- 

termined from the radar data by means of Eqs.   (8) and (9).    For M = 2,   since 

S  has different constant values for each region,   Eq.   (10) solved for    ß ,   repre- 

sents a "staircase" ballistic coefficient history.    For M > 2,    S   is continuous 

and consequently,   ß is also.    The following outlines a real-time    ß   method. 

1. A few samples,   say "i  " ,   of radar metric data are ob- 

tained at a high re-entry altitude.    Times    T,,   J = 1,   2,   ... 

have been defined a priori   and for convenience it will be 

assumed that at least one radar sample will be obtained in 

each region (Fig.   1). 

2. Equations (8) and (9) with p =  1,   for example,   are solved 
•4.1.   c* ^ J       J  4.       .4.1. RANGE with   5.     representing the range radar data with <r.  = <r. , 

and i =  1,   2,   . . . ,   i    .    Thus,   we obtain the first estimate of S.   , 

S,,    S,   ...     .      Similarly,   Eqs.   (8) and (9),   with S.   representing 

the elevation data and then the azimuth data,   are solved to give 

the first estimates of E .,   E .,   E .   ...        and then A,   A,   A... 

In particular,   the absence of angle second derivatives makes this equation 

particularly suitable for calculating the ballistic coefficient because radar 

angle errors are ordinarily much more serious than range and Doppler errors. 



3. Equations (4) give   S.,   S.,   S.,   E.,   E.,   A.,   A.,   and Eq.   (10) can be 

solved for    ß (t.),   yielding the first estimate of    ß   in region  1 at t = t.. 

4. As the next set of one (or more) radar data samples are re- 

ceived,   giving a total of i? = i.   + Ai.   ,   two distinct cases arise: 

a) i      lies within the previous or p =  1 region above,   or 

b) i_   lies in the p ^ 2 region. 

For case (a) the changes in the matrix elements    Aa   ß   and    Ab    ,   a,   ß - 

1,   2,   . . . ,   (M + 1)    are calculated from Eqs.   (9) with p =  1    and the index 

i    ranging from   i     + 1,   i     .     It is important to notice that only the new data 

samples are included in these  summations and that the old summations need 

not be recalculated.    The new matrix elements,   "v + 1" ,   are given in terms 

of the old 'V    as 

a^ + 1>=a <"> + A.  „ 
aß aß aß 

b^ + 1> =b("> +Ab (11) a a a v      ' 

and the parameter estimates are updated via Eq.   (8a) 

X - A_1B       . (12) 

Equation (4) is then used to calculate S.,   S.,   S.,   E.,   E.,   A.,   A.,   and the new 

ß   value,     ß(t.)  ,   is calculated from Eq.   (10). 

For case (b),   assume for convenience that   i-,    lies in the second region 

p = 2 .    The changes in the matrix elements    Aa   ß   and    Ab    ,   a,   ß = 1, 2, . . . , 

(M + 2)    are calculated using only the new radar data and Eqs.   (9).    The sum- 

mation limits are p =  1 and i = i,   + 1,   N,    for the first region; and p = 2   and 

i = N,   + 1,   i?   for the second.    The new values of the matrix elements are 

calculated from Eq.   (11) and the updated parameter values from Eq.   (12). 

Then,   S.,   S.  . . . ,   ß(t.)    are calculated as for case (a) above.     We note,   how- 

ever,   that this case (b) not only updates all of the previous parameter estimates, 

but furnishes the first estimates for    ß   in region 2,   requiring,   however,   the 

inversion of a (M + 2) x (M + 2)    matrix instead of a (M + 1) x (M + 1) as in 

case (a). 

10 



5. Beyond steps (3) and (4),   continuation of the real-time 

calculation should be evident.    For practicality,   a limit on 

the largest size matrix to be inverted must be imposed.    Such 

a limit might in practice require some additional steps which 

need not concern us here. 

It was noted that the   A    and   B   matrices involve simple summations 

over the available data points,   and as more data points are obtained,   these 

summations need only be updated rather than recalculated.    The solution 

matrix   X   for the latest parameter estimates,   however,   do require recalcu- 

lation.    Attention is now focused on this calculation. 

Assume that   X*   '   has been determined and includes data points recently 

acquired in region J .    New data points are then acquired 

(a) entirely in the same region   J (as in case (a) 

above,   or 

(b) at least one of the new points falls in region 

(J + 1) (as in case (b) above) . 

Letting   A* ,   B ,   and   X*        '   denote the new   A,   B,   and X 

matrices respectively,   we have 

A(* + l) =A(") +(AA) 

B(* + l) =B(") +(AB) 

x(^ + l) = x(y) + (AX) i (13) 

The matrices with superscript   (v)   in Eqs.   (13) are known from previous 

calculation.    The   (AA)   and   (AB)   matrices defined by Eqs.   (11) are updated 

Eqs.   (9).    Thus,   only   AX   and conseq 

From Eqs.   (12) and (13) there follows 

using Eqs.   (9).    Thus,   only   AX   and consequently   X* are to be redetermined. 

AX = [A(l;+1)]"1[AB - (AA) X(^]       . (14) 

Equation (14) will apply for both cases (a) and (b) providing   X*      ,   for example, 

is defined as a (J + 1) + M   column vector with the last element identically 

zero for case (a) or identically the (J + 1 + M) independent variable if case (b); 

similarly  with the other matrices in Eq.   (14). 

11 



The new parameter estimates are thus determined from Eq.   ( 14) in 
(p) (v) 

terms of the old parameters    X        ,   the old   A    matrix   A        ,   and the changes 

in the    A   and   B   matrices.    Computation time and storage are clearly a 

minimum except possibly for the inversion of the   A* matrix that is re- 

quired with every acquisition of new data. 

Whan good Doppler data is available,  the same formulas and methods 

presented are used with the required changes in notation.    The   S(t) and   S(t) 

histories previously calculated from the range data are merely replaced by 

the values calculated from the Doppler information.    For    M = 2 ,   the    ß 

history calculated using Doppler information is clearly continuous. 

The    A^        matrix of Eq.   (14) grows by one row and one column when- 

ever data is acquired in a new region,   which restricts the number of regions 

that can be utilized in applications of this technique. 

HS:cm 

1Z 
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APPENDIX I 

For convenience,   we particularize the formulas derived in the text to 

matched quadratic polynomials and list the results here (M = 2) . 

Equation (4) of the text becomes 

s(t.) = Sj +h(j -1 + e   ) Sj 4 6iJ
2 s  +h

2 s (j -k-i+ e   >s (A-I> 
k=l 

J-l.. 
s(t.) - s. +h(e.TsT + s    s,) 

1 * ^   ^     k=l 

t.  - T 
eT =   *  u T_ ^t. ^ TTxl lj h J        l J + l 

J =  1,   2,   . . . ,   p 

The matrix elements in conjunction with Eqs.   (8a) and (8b) reduce to 

NT P J 
a.     =   E Z . /    2 

J = l    i=N,   ,+1        '    1 

a       =Z Sh(J -  1  + 6    )/cr 2 

J  i 

a22 =hzz z(j - i + e.j)2/^2 

a2+K, 1  = ^ ? ^ei
2
K + 6J>K(J-K4+9iJ)]/cri

2 

J   l 

K = 1,   2,   ...,   p 

a2+K,2=h3?S(J-1+eij)^eiK+6J>K<J-K4+^j)V^2 

A-l 



a2+K,2+L=h4^^^K+6J>K<J-K-i+9ij)J[-T^ei2lJ
+6J>L(J-L-i+eij']/,rii 

J   1 

K = 1,   2,   ...,   p     L = 1,   2,   ...  p 

aKL = aLK L"   K " *'   2'   " " " '   Z + P 

p J *        ? 
b    =   S        S S.  /<r. 

J=l   i=N     .+1   x       * 

b7 - h £ £  (J -  1  + e._) S/'Vo--2 
2 _ .    v ij'    I  '   I 

J l 

6 
:[ 

where 

b2+K=h2?^^eiK + 6J>K(J-K4+V]Si%2 <A"2) 

K =  1,   2,   ...,   p 

fl       for J > K [1      for J=K 
6J,K = | 

0       otherwise (  0       otherwise 

An alternative to standard formulas for performing numerical integration 
is obtained by integrating Eq.   (A-l).    The result is 

T 
p + 1 , 

S(t)dt^hp{Si+Sli|H)+^-   S[3(p-k + l)(p-k)+l]Sk} (A-3) 

P = 1,   2,   3,   ... 

Referring to Fig.   1,   S,    and   S     are the values of the integrand and its first 

derivative at   t = T,    and   S,      is the value of the second derivative    at 1 k 
T,      k = 1,   2,   . . . ,   p.    The formula becomes exact as   p -» °° ,  h -* 0 . 

A-2 



Integration of Eq.   (5a) followed by summation over J gives the more 

general quadrature formula 

TP+1 M~l ui XiT-LI P 

(' sfLUL   T c(k) (hp)     ■h      7 c(M) V J      S(t)dt"  Z      1 (k+D!    +(M+1)!   Z     k X 

T k=0 k=l 

|(p-k+l)M+1-(p-k,M+1}     p-l.   2  (A-4) 

The integrand S(t) can be evaluated at various points t.. The matrix 

elements of Eqs. (9a-9e) can be calculated, and the independent parameters 

appearing in the right-hand side of Eq.   (A-4) are obtained via Eq.   (12). 

A-3 
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