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ABSTRACT

The concepts and relations which form the theoretical
foundation of the statistical energy approach to vibration
analysis are delineated. The utility of this approach for
dealing with complex systems is discussed, and its range of
applicability is indicated.

The important properties of the modes of vibrating
systems are reviewed and used to exhibit relations between
modal responses and average responses of total systems. It
is demonstrated that under some conditions, which are often
approximated in actual systems, the average rate of flow of
energy from one mode to another is proportional to the dif-
ference in the modal energies. It is also shown that under
some conditions the average rate of flow of energy between
two sets of modes (representing groups of modes of two
coupled systems in a given frequency band) is proportional
to the difference in the set-average modal energies. Ex-
amples are presented which indicate how these relations
permit one to obtain approximate solutions to complex prob-
lems simply, on the basis of energy conservation considera-
tions.

Available extensions of the major concepts developed
in detail are mentioned, and references to the current
literature are given.
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INTRODUCTION

Recent years have seen a continuation and acceleration
of the trend toward higher performance vehicles, toward
increased propulsion system power, and toward more highly
sophisticated equipment and instrumentation. This trend
has brought with it a greater incidence of problems asso-
ciated with high frequency vibrations and has caused aero-
space engineers to concern themselves increasingly with
vibrations at frequencies considerably above the fundamental
structural resonances.

Classically, vibration engineers have focused their
attention on low-frequency oscillations, since the lowest
few vibration modes are generally the ones which are asso-
ciated with the greatest deflections, the highest stresses,
and gross structural failures. However, the rather complete
arsenal of analysis techniques which have been developed for
dealing with low-frequency vibration problems contains none
which can deal simply and effectively with most high-frequency
problems, such as those of importance in relation to sonically
induced fatigue, instrumentation performance, or noise trans-
mission.

Although the classical methods are valid in principle
at all frequencies, their use is in fact very often impractical
for high frequencies, particularly for randomly excited complex
structures. The classical approach consists of determining the
natural modes, of calculating the responses of these modes to a
specified excitation of interest, and of superposing these
responses to determine the total structural response. Contin-
uous structures have an infinite number of modes, but generally
only the lowest few of these are of importance in low frequency
vibrations, so that in these cases one needs to consider only
those few modes. At high frequencies, however, a frequency band
of interest usually encompasses the resonances of a large number
of modes, and one must consider the responses of all of these
modes in calculating the structural vibrations in that band.

Such classical multimodal analyses may require an
amount of computation which is so great that it exceeds
the capacities of some of today's largest computers. But, one
also encounters another, perhaps more significant, limitation
on the utility of such analyses. Since the shapes of the
higher modes are much more sensitive to details of the
structure than are those of the lower modes, one must be
able to describe the structural and material properties
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with greater precision in order to be able to perform
higher mode calculations meaningfully. The required
precision can generally be achieved only for fictitious
structures, in view of the manufacturing tolerances and
the variation in material properties one inevitably
encounters in realistic cases.

If one could perform a high-frequency multimodal
analysis meaningfully, one would still be faced with the
problem of interpreting the large mass of results that is
generated in such a set of calculations. These results
would be descriptions of the motions, within the frequency
band of interest, of a large number (ideally all) of the
points of the structure. In general, these motions will
be complex and different for different points, and one
will need to perform additional calculations, e.g. to
determine average values of various response properties,
in order to reduce the large amount of information to
tractable size.

The statistical energy analysis approach to structural
vibrations problems, pioneered by R. H. Lyon, P. W. Smith, Jr.,
and I. Dyer, was developed in response to the need for a
simple means for understanding and estimating significant
properties of multimodal vibrations of complex systems.
This approach was spawned by the realization that averaging
initially, and then carrying out calculations in terms of
average quantities, should lead to results much more readily
than the classical approach, which involves much initial
detailed calculation and subsequent averaging.

The statistical energy approach to some extent is
analogous to the "room acoustics" approach for dealing with
sound in architectural spaces. In the latter approach one
does not attempt to solve the acoustic wave equation in
detail for the complex spaces involved; ratherone analyzes
the average behavior of energy variables and interprets the
results in terms of averages of dynamic variables (e.g.,
pressures, velocities). In the statistical energy approach
one similarly does not concern oneself with a detailed
solution of the system equations of motion, but one analyzes
average energy distributions and relates those to average
response variables.

Although the term "statistical energy method" has come
into somewhat popular use at this writing, there really
exists no "method" consisting of a well-defined technique
leading to a guaranteed result (like the Rayleigh-Ritz or
the Holzer method: for example). There does exist an
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approach, which - like room acoustics - is one of a set of
tools, the intelligent use of which can give one approximate,
but simple and useful answers to problems which could not
otherwise be solved realistically.

The fundamentals of the statistical energy analysis
approach are scattered in the technical literature, generally
are couched in language which may discourage the non-specialist,
and in some cases have been only implied, and not spelled out
in detail. Consequently, this potentially highly useful
approach has not come to be used as widely as one may have
expected on the basis of its simplicity of application. It
is the purpose of this report to fill the apparent need for
a presentation of the fundamentals of the statirtical energy
analysis approach in easily accessible form, for an explana-
tion of its area of applicability, and for an illustration of
how these fundamentals may be used.

The first of the following sections reviews the concepts
and properties of modes of structural vibrations, and points
out some useful relations between modal response and total
average response properties. The second section derives the
basic relations that govern the exchange of energy between
two coupled modes. The third section generalizes this relation
to enable one to determine the flow of energy from one set of
modes, representing one structure or fluid system, to another
set of modes, representing another such system. The fourth
section relates some of the parameters introduced in the modal
analyses to more commonly employed, and more easily estimated
and measured system parameters. The fifth and final section
illustrates the application of the statistical energy approach
to a special class of problems.

The reader who does not have the inclination to wade
through the considerable amount of mathematical manipulation
which appears in this report should not be discouraged. He
should ignore all those details and concentrate on the results
and conclusions indicated in the "Summary and Conclusions"
subsections. The strong point of the statistical energy
approach, after all, is the simplicity with which the central
results can be stated and applied.
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MODES OF CONTINUOUS SYSTEMS

If an undamped linear elastic system vibrates in the
absence of external forces in such a way that all points in
the system move sinusoidally in time at the same frequency,
then the system is said to vibrate in a "natural mode" - or
"mode", for short. This type of vibration is a very special
member of the class of all possible types of free vibrations,
and possesses some useful properties, several of which are
reviewed in the present section.

The various points in an undamped system vibrating in
a natural mode generally oscillate at different amplitudes,
but are either completely in phase or out of phase with each
other. All points reach their maximum excursion (some in
the negative and some in the positive direction) at the same
instant, all points pass through their equilibrium positions
simultaneously, and all points reach any fraction of their
maximum excursions simultaneously. Thus, a natural mode
oscillation may be characterized by a spatial distribution
of deformations (e.g., by the distribution of deflections at
any suitable instant), multiplied by a sinusoid in time and
a constant which is indicative of the amplitudes.

The spatial distribution of deformations is called a
"mode shape". Functions describing a given mode shape may
differ from each other by a multiplicative constant, since
the definition of the mode shape is arbitrary to that degree.
However, once a mode shape function has been selected, the
constant by which one must multiply this function so that it
represents a given modal vibration is fully determined. This
latter constant is called "modal amplitude'; a specified modal
amplitude and mode shape function together define a unique
distribution of deformations.

The frequency at which a system in absence of external
forces vibrates with a given mode shape is called the "natural
frequency" corresponding to that mode. A continuous elastic
system can vibrate in an infinite number of different modes,
with an infinite number of corresponding natural frequencies.

The discussion of modes presented here is of necessity
limited in scope and rigor. A clearly written more complete
treatment may be found in Reference 1; a collection of Infor-
mation on the modal properties of simple systems is available
in Reference 2.
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Mode Shapes and Natural Frequencies

The linear partial differential equations that govern
the motions of undamped continuous elastic systems (such as
strings, membranes, shafts, beams and plates) in absence of
external forces may be written in the form

Su+Ku=O . (1)

Here K is a linear differential operator which involves only
the spatial coordinates and represents the stiffness charac-
teristics of the system, and p is a function of only the
coordinates and describes the mass distribution of the system.
The symbol u denotes the deflection of the system from equi-
librium as a function of time t and of the spatial coordinates,
and the dot atop a symbol indicates differentiation with
respect to time.

[For example, for a shaft in torsion u=u(x,t) denotes the
torsional angular deflection as a function of the position
along the shaft and of time. The corresponding operators
for Eq. (1) are

i= pJ, K =- KSG

where p denotes the material density, J the polar moment
of inertia of the cross-sectional area, Ks the torsional
constant of the crosssection, G the shear modulus of the
material. In the most general case all of these parameters
may be functiors of the coordinate x measured along the
length of the shaft.

Similarly, for a flat plate in flexure, u=u(x,y,t) denotes
the displacement of the plate normal to its midsurface,
as a function of coordinates x,y along that midsurface
and of time. Here

= Ps(X,y), K = V2(D V2 )

where p denotes plate mass per unit surface area, and D
represeRts the plate flexural rigidity, usually given as

Eh 3 /12(l-v 2 ) for homogeneous plates of thickness h, 2
Young's modulus E and Poisson's ratio v. The symbol V
represents the "Laplacian" operator; in the usual Cartesian

coodiats 2  32 2

coordinates V=32 + y2 In the most general isotropic

case, ps and D may both vary with x and y.]
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Natural modal vibrations are defined as free (unforced)
vibrations in which all points move in unison, sinusoidally
in time, at the same frequency. Such vibrations correspond
to solutions of Eq. (1) which are of the form'

u(x,y,t) = *(x,y) [B cos(wt + C)] , (2)

in which the spatial and time dependences are separated and
where B and C are constants. Substitution of Eq. (2) into (1)
yields the time-independent partial differential equation

-_2

K* c- = 0 (3)

which the function *(x,y) of the spatial coordinates must
satisfy.

One finds that solutions * of Eq. (3), which satisfy the
boundary (edge) conditions applicable in a given case and which
are not identically zero, exist only for certain values of the
frequency w. These values are called the natural frequencies,
and the corresponding solution functions *(x,y) are called the
mode shaDes of the system. To each n-dimensional system
n=-,2.,3) there correspond n-fold infinite sets of natural
frequencies and mode shapes. To each two-dimensional system
(plate, membrane) there correspond doubly infinite sets of
natural frequencies wjk and mode shapes *jk(x,y); J,k = l,2,.--
which satisfy Eq. (3)Jor

K*jk(x 'Y) - Jk [tJk(x,y) = 0 (4)

Orthogonality and Normalization of Mode Shapes

The mode shapes of systems whose edges are elastically
constrained against lateral and rotational deformation2 possess

'From here on the notation used is that for two-dimensional
systems. Expressions applicable to one- and three-dimensional
systems can be deduced by direct analogy. (Also, see Ref. 2.)

2 Zero and infinite values of constraint stiffness are permitted,
but in the general case the boundaries exert restoring forces
which are proportional to the deformations and/or restoring
moments which are proportional to the rotations. Infinite
lateral stiffness and zero rotational boundary stiffness
corresponds to the usual "simple support" conditions. The
case where both stiffnesses are infinite corresponds to clamped
edges; that where both are zero corresponds to free edges.
(p. 269, Ref. 1.)
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the useful property of "orthogonality". Mathematically,

this means that the mode shapes satisfy
I mjkfor J-J', k-k'

ff P(x,y) *jk(x,y) *j,k,(X,y) dAs = (5)

As  0 otherwise

where the integration is carried out over the entire elastic

system (here shown as over the entire area A. of a two-

dimensional system). In other words, if the integral of

Eq. (5) involves two different modes, then the result is

zero, but if it involves the same mode twice, then the

result is a finite number. This number has been denoted by

(my1k), where m denotes the total mass of the system, 
and

satisfies

iMfk ffi (x,y) *k(x,Y) dx dy (6)

As

in accordance with Eq. (5).

One may observe that multiplication of 4 by an arbitrary
constant does not affect Eq. (3) and that hence this equation

defines N(x,y) only within an arbitrary multiplicative constant.

Equation (6) therefore involves a similar arbitrariness. It

is generally useful for analysis purposes to "normalize" the

mode shapes *ik(x,y), - that is, to set down some more or less

arbitrary rul for determining the multiplicative constant to

be used in a given analysis. One commonly used rule (but by

no means the only one) requires YT -1 for all J and k, so that

mIlk in Eq. (6) reduces to the togal system mass m. If this

rule is used, then the mode shape functions satisfy

ff 4(x,y) 2 (x,y) dx dy = m =fflL(x,y) dx dy (7)

As  As

in addition to Eq. (4).
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[For example, for torsional vibrations of a uniform shaft
clamped at one end (x=O) and free at the other (x=L), one
finds

*j(x) =N-2 sin[(2j-l)rx/2L], = [(2J-l)r/2L],KsG/pJ.

For a uniform rectangular plate extending from x=O to x=a
and from y=O to y=b, and simply supported on all four
edges one finds

jjk(x,y) = 2 sin(jrx/a) sin(kvy/b)

wJ =r 2 (j2/a 2 +k 2 /b2 ),/j-sh "1

jk 7 S

Representation of Deformations in Terms of Modes

Any mathematically "well-behaved" system deflection
u(x,y,t) may be expressed as a sum

00 00

u(x,y,t) = X X Ujk(t) jk ( x y )  (8)

J=l k=l

involving the mode shapes 7P and "modal amplitude coefficients"
U4k(t), which depend only oAktime (Refs. 1,3). To evaluate these
c efficients one may proceed in a manner which is analogous to
that used to obtain a Fourier series expansion of a given func-
tion. If one multiplies both sides of Eq. (8) by i(x,y)*It,(x,y)
and integrates over the entire elastic system, then one flns in
view of the orthogonality relation (5) that only one of the
integrals of the sum will not vanish. (Namely, that for which
J=j' and k=k'.) With the normalization of Eq. (7) the value of
this non-zero integral is m, and thus one obtains the result

jk ffu(x,y,t) jk(x,y) 4(x,y) dx dy (9)

A

which permits one to determine the coefficient U (t) which
corresponds to the mode shape *jk(x,y) for a givA deformation
u(x,y,t).
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Modal Analysis of System Motions

The deflection of a viscously damped elastic system due
to the action of a distributed load p(x,y,t) is governed by a
differential equation of the form

1± i + 'Y ii + K u = p(x,y,t) (10)

where the various terms have the same meaning as in Eq. (1),
and y is an operator or function which involves only the
coordinates and which accounts for energy dissipation (viscous
damping) in the system.

In order to determine the equations that govern the
responses of the modes of the system one may substitute for
u(x,y,t) in Eq. (10) the series given iA Eq. (8). If one uses
Eq. (4) to replace the terms involving K by others involving p.,
one obtains

Z Z(~ jk + '13 k + '*L a'jk ~jk *jk(xJy) = P(x,y,lt). (11)
J=l k=l

Now one may again try to use the strategem that was employed
in the derivation of Eq. (9). Namely, one may multiply both
sides of Eq. (11) by *,,(x,y), integrate over the entire
system, and apply the gr nogonality condition. However, in
general the damping operator y and the mass distribution p
may not be related in any manner which permits one to apply
to the y terms the orthogonality condition of Eq. (5) which
involves p.

Fortunately, the special case where y= PL, with 1 a constant,
turns out to be a useful one, and may serve as a good approxima-
tion for many kinds of lightly damped systems. In this case the
previously discussed strategem does work. Its use in conjunction
with the normalization of Eq. (7) yields a result which one may
write as

m U jk + c t3jk + Kjk U jk = Fjk(t) , (12)

if one defines
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- 2
Kjk jmJk (13)

Fjk(t) ffp(x,y,t) *jk(X,y) dx dy.

As

For a given elastic system subject to a given loading,
the "modal mass" m, the "modal damping coefficient" c, and
the "modal stiffness" Kjk are constant, whereas the "modal
force" Fik is a function of time only. Equation (12), which
governs the modal coefficients Ulk, may be recognized to be
the same as the well-known equation that governs the displace-
ment of a linear single-degree-of-freedom system consisting of
a mass m, mounted on parallel arrangement of a spring (with
stiffness Kjk) and dashpot (with viscous damping coefficient c),
and subject to a force Fjk(t) which varies with time.

It is of interest to note that Eq. (12) applies for each
mode (i.e. for all values of J and k), but that the equation
for a given j and k does not involve terms in other values of
J and k. There is then no interaction between the modal motions,
and the modes are said to be "uncoupled". Such uncoupling.does
not occur in the most general case, in which orthogonality cannot
be applied to the damping terms involving y, and in which a sum-
mation involvIng all modes would appear in Eq. (12) instead of
the single c U k term. However, as mentioned previously, one
may usually ignore this damping coupling for lightly damped
systems.

Spatial Averages of Deformations; System Kinetic Energy

If one squares both sides of Eq. (8), multiplies the result
by ii, and integrates over the entire system, one obtains

ffu2(x,y,t) 4(x,y) dx dy =Z ff U jk Uj'k'*Jk*jtk'pdx dy

As  J=1 k=l J'=l k'=l As

=M U 2k(t)

j=1 k=l
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where the second form of the right-hand side follows from
orthogonality, Eq. (5), and from Eq. (7). The weighted
spatial average value of u2 , with the averaging done over
the entire system and with p being used as a weighting
function, is defined as

u 2(t) =[ff u2(x,y,t) P~(x,y) dx dyj.[ffp(x,y) dx dy]P

A s  A s

(15)

By comparing this expression with Eq. (14) and (7) one finds
that

_ _ CO

u 2(t U2 Uk(t) (16)jk
J=l k=l

and thus that the weighted mean square displacement is equal
to the sum of the squares of all the modal displacements
Ujk(t). For uniform systems, in which the mass distribution
i constant, the weighted mean-square displacement is equal to
the ordinary mean-square displacement, as may easily be verified
from Eq. (15); Eq. (16) then applies to the ordinary mean-square
displacement.

If one writes an expression like Eq. (14) in terms of the
velocity v(x,y,t) and the corresponding modal velocity coeffi-
cients Vgkl then the integral on the left-hand side of that
expressi n may be seen to represent twice the total kinetic
energy TT of the system. Thus, one may write

C o 00

TT(t) = ffv2(x,y,t) p dx dy =. iTjk(t) (17)

As  J=l k=l

where
Tm V2k(t) (8

Tjk(t) = j(
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denotes the kinetic energy associated with mode (J,k).
Equation (17) shows that the total kinetic energy is equal
to the sum of all of the modal kinetic energies, and also to
1m v2, where the weighted mean-square velocity v2 is defined

analogously to u2 in Eq. (15).

Expressions for the time- and space- averages may be
obtained of course, simply by averaging both sides of
Eqs. (16)-(18) with respect to time.

Summary and Conclusions

The definition of modes of elastic systems and the
properties of such modes have been reviewed in rather general
terms in the present section.

It has been indicated that any physically reasonable
displacement, velocity, etc., distribution can be represented
as a superposition of corresponding modal distributions.

Orthogonality of the modes, which applies for systems with
elastically constrained boundaries (and thus for all the usually
considered ideal cases and for most of those generally of prac-
tical interest), has been shown to lead to uncoupled equations
of motions for the individual modes, except where interaction
occurs due to damping.

The uncoupled modal equations of motion have been
demonstrated to be precisely of the same form as those for
independent single-degree-of-freedom mass-spring-dashpot
systems. Thus, by use of the concept of modes one may replace
the complex problem of determining the motions of a continuous
distributed elastic system by the much simpler problem of eval-
uating the motions of single-degree-of-freedom systems which
represent the modes of the elastic system. The motions of the
total system may then be obtained by superposition of all of the
modal motions, spatial averages of motion quantities may easily
be determined from the corresponding modal amplitude coefficients,
and the total kinetic energy of the system may be found simply by
adding all of the modal kinetic energies.
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POWER FLOW BETWEEN TWO MODES

In many practical problems involving the vibrations of
complex elastic systems, particularly where the excitations
and responses are random, one is more concerned with under-
standing the interactions of various parts of complex elastic
systems and with estimating average vibration levels, than
with obtaining more detailed information about the system
vibrations. One finds that energy analyses are particularly
useful in such cases. These analyses tend to be simple, since
they can make use of the easily applied concept of conservation
of energy. And, as evident from the previous section, if one
knows the kinetic energy of a system one knows its mean-square
velocity.

Before concerning oneself with the interaction of two
(or more) interconnected elastic systems, where each system
contains many modes, one may do well to develop an understanding
of the interaction of Just two modes. It is clear that in the
steady state the vibrational energy of a mode of a two-mode
system is affected by the power supplied to the mode from
external sources by the power dissipated by the mode, and also
by the power that the mode in question receives from (or supplies
to) the other mode. The directly supplied and the dissipated
powerscan generally be evaluated and related to modal parameters
and energies with relative ease. In order to make an energy
approach useful, however, one also needs expressions which relate
the mode-to-mode power flow to modal energies. It is the purpose
of the present section to develop such expressions.

It has been pointed out that a mode of an elastic system
behaves precisely like an ideal single-degree-of-freedom system
consisting of the modal mass mounted on a spring (having the
modal stiffness) and a dashpot (with the modal damping coeffi-
cient). Consequently, the energy transfer between two modes is
studied here by analyzing the corresponding behavior of two
coupled mass-spring-dashpot systems, as shown schematically in
Fig. 1. In order to facilitate the analysis, and since linear
systems are of primary interest, all of the present discussion
is restricted to linear coupling.

The concepts of impedance and admittance are reviewed in

the first of the following sections. Thereafter the restrictions
which the assumption of conservative coupling places on these

quantities are delineated. (Conservative coupling is coupling
which neither dissipates nor supplies energy, and thus is of
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primary interest where one wishes to study the energy flow
between systems.) Next are developed expressions for the
modal kinetic energies. Finally, it is demonstrated that
the time-average power flow between two modes is proportional
to the difference in the time-average modal kinetic energies
under some conditions which are often approximated in practice.

Admittances and Impedances

In order to maintain as much generality as possible, it
is useful initially to place no restriction on the coupling
element L of Fig. 1, except for requiring it to be linear.
This restriction implies that L can give rise only to linear
terms in the equations of motion so that response variables
(displacements, velocities, etc.J are proportional to excita-
tion variables (forces, rate of change of force, etc.),
regardless of any of the amplitudes involved.

The properties of linear systems subject to purely sinu-
soidal excitations may be studied conveniently by use of phasor
notation (Ref. 4). In this notation each sinusoidally varying
dynamic variable is represented by a complex quantity or "phasor",
and the actual time functions are obtained by taking the real
part of the product of the corresponding phasor and e- Cot, where
w denotes the radian frequency, t time, and i =4/--. Thus, for
example, if Vj is the phasor corresponding to the velocity V (t),
then

VM(t) = Re[V 6iwt] = Re[V ].cos wt + Im[V3 ]-sin wt (19)

In view of the linearity of the two-mass system of Fig. I
the velocity phasors of the two masses obey the relation

V =Y F + Y F
-1 11-=1 12 -2

(20)

V =Y F + Y FL2 21 +  22-2

where Fl and F denote phasors corresponding to the forces F
and F2= The quantities Yrs are called "admittances"; from

Eqs. (20) it is evident that Y 1 = yl/ if E2 = 0, Y1 2 = 11/112
ifF0,Y 2 1  V if = 0, etc.
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By solving Eqs. (20) for F1 and F one finds that one
may write

F =z 11 V + Z12 V2
(21)

F 2 = 21--V1 + Z22 V2

where

z11=Y 22/D Z22=Y11'/D 12=-Y 12/D, Z2 1=-Y 2 1 /D

(22)
DEYllY22 - Y12Y21

The Zrs quantities are called "impedances". From Eqs. (21)
one may observe that Zll=FI/Vl if V2=0, ZI 2=Z-_I 2 if VI=0, etc.
Alternately, by solving Eqs. (21)-For V1 and V2 one obtains
Eqs. (20) and finds that the admittances may be expressed in
terms of the impedances as

Y11=Z22/E, Y2 2 =ZII/E, YI2 =-Z 1 2/E, Y21=-Z21/E
(23)

EZ11 Z22-Z 12 21=1/D

The impedances and admittances in general are complex
quantities and functions of the frequency w. They depend in
general on the uncoupled system parameters, as well as on the
coupling element.

Implications of Conservative Coupling

In order to study the flow of energy between systems it
is useful to introduce the restriction of conservative coupling
in addition to that of linear coupling; that is, to postulate
coupling which neither dissipates nor supplies energy. Only
for such coupling is the energy leaving one of two coupled
systems equal to the energy reaching the other, and only for
such coupling can one speak unambiguously of energy flow from
one system to the other. The present section consequently is
concerned with the restrictions which are imposed on the various
admittances and impedances by the requirement that the coupling
be conservative.
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Conservation of energy demands that in the steady state
the total work done per cycle by the external forces be just
equal to the total energy dissipated per cycle. In view of
the well-known relations between power and forces and veloci-
ties in complex notation, as also summarized in Ref. 5, this
statement of energy conservation may be written as

Re[FV ] + 1 Re[FV] 1 1  2 Re[ZV + !I. I2 Re[Z

(24)

where the asterisk indicates the complex conjugate of the
quantity to which it is appended.

Si stitution for F and F from Eqs. (21), replacement
of IV 1y by VIVI, and eIiminatfon of terms common to both
sides of the resulting equation, permits one to reduce the
foregoing relation to

Re[Z 1 2 Y 2 V* + Z2 1 Y1 V2] = 0 . (25)

Since V2V* = (YlV) *, this result implies

(Re[Z 21] + Re[Z 1 2]) Re(VlV) -

(Im[Z 21 I - Im[Z 2 ) Im(V IE*) = 0. (26)

But this relation must hold for all V1 and V2, and thus for
all values of Re(VIV) and Im(VIV_).--Consequently the coeffi-
cients of these two quantities-in the foregoing expression
must vanish, and

Re[Z 2 1 ] = - Re[Z 1 2 ]

Im[Z 2 1 ] = im[Z 1 2] (27)

Conservative coupling thus implies that the "transfer
impedances" satisfy

12 = - ,121 = Iz 2 11 , (28)
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and in view of Eqs. (22) or (23), that the transfer admittances

obey

IY12 1 = IY211 (29)

Time-Average Modal Kinetic Energies

Since it is desired to develop relations which express the

power flow between modes in terms of the time-average modal
kinetic energies, it is of interest first to study these energies
from a rather general viewpoint.

Clearly, the time-average value of the kinetic energy T of
a mode J is given by

<T = 2V1()> (30)

where mj denotes the modal mass (or the mass of the system
of whicA J is a mode) and Vj the modal velocity, and where
the brackets <-..> indicate averaging with respect to time.
The time-average value of the square of the modal velocity
is also known as the mean-square modal velocity; it is inde-
pendent of time, in the steady state. The problem of deter-
mining the average kinetic energies thus corresponds to that
of finding the mean-square velocities, and these may be found
from the velocities per se.

If the velocity of mass 1 of Fig. 1 due to a unit impulse
force 6(t) acting on this mass is given by y11 (t), then the

velocity V1(t) due to a general force Fl(t) acting on mass 1
may be expressed as a convolution (Refs. 1,6):

VM(t) fYl(a) F1 (t-a) da (31)

Here a is a dummy time variable, which disappears after the
integration is performed and limits are substituted. Similarly,
if the velocity of mass 1 due to a unit impulse force acting on
mass 2 is given by y12 (t), then the velocity of mass 1 due to a
general force F2 (t) acting on mass 2 may be written as

Vl(t) =fY1 2 (p) F2 (t-P) dP (32)

where P is again a dummy variable.
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According to the superposition principle, the response
produced by a combination of excitations acting on a linear
system is equal to the sum of the responses due to the indi-
vidual excitations. Thus, the velocity Vl(t) of mass 1 due
to the combination of a force Fl(t) acting on mass 1 and a
force F2 (t) acting on mass 2 may be expressed as

00 a*

V1(t) fyl(aL) Fl(t-cI) dia +Jfy1 2 (P) F2(t-P) dP (33)

The mean-square value of V1 (t) is obtained by squaring
the foregoing equation and averaging over all time.3 If the
two integrals of Eq. (33) are denoted by Jll=Jll(t) and
J12=J1 2 (t), respectively, one may write

1 <( 11+J12)2  11 1 < J12> *(4

The mixed product term may be expressed as

011 J12> =ffY ll (a) Y1 2 (p) <Fl(t-a) F2 (t-p)> da d , (35)
-0 -00

where the averaging brackets have been placed only around those
quantities which involve the variable t, with respect to which
the averaging is to be performed. If F1 and F2 are uncorrelated,
that is if

00

f Fl(t-a) F2 (t-1) dt = 0 (36)

-03

for all a, P, then <Fl(t-) F2 (t-p)> = 0, and consequently
<ll Jl2> = 0

3In most cases one obtains an adequate approximation by
averaging over many periods of the lowest frequency contained
in Vi(t).
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The first term of Eq. (34) may be written analogously

to Eq. (35) as

00 00

<j 2 > =1f f yll (a) y ( F (t-a) F tP>dadO(7
11 11  1 F1 t-) d . ()

Here the term within the averaging brackets may be recognized
as the autocorrelation function R1 of Fl(t); this autocorrela-
tion function obeys the relation (Ref. 6, pp. 20, 32-34)

R1 (a-P) = <Fl(t-a) Fl(t-P)> = <Fl(t) Fl(t-a+P)> =

00

of Sl(.)eiG(a') d. (38)
-00

where S is defined as the mean square spectral density of the
stationary random force Fl(t) and is related to the autocorrela-
tion function as

00

Sl() =fR1 (T)e-ia dT (39)

The functions S (w) and RI(T) are a Fourier transform pair.
So also are the impulse response and frequency response functions
Yjk(t) and Yjk(a), which for all J,k, obey4

4It should be pointed out that several different valid Fourier
transform definitions may be used. These differ only in the
coefficients attached to the integrals, but all result in a
factor of 1/2w for a complete transformation cycle. E.g., some
authors use 1/4f2r in each transformation. Here 1/2v has been
used where the integrations are performed with respect to W
and unity where the integrations are performed with respect to T.

It is also important to note that Eqs. (38)-(40) involve both
positive and negative frequencies (and times), whereas only
positive frequencies have physical meaning. An experimentally
determined spectrum (involving only positive w) may be converted
to a spectrum corresponding to Eqs. (38) and (39) by halving
the measured spectrum at each w and plotting the result at both
positive and negative numerical values of w (Ref. 12, pp. 11,12).
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Yjk(t) YjfYjk(w)ea't dw Yjk(m) f yjk(T)e W dT
Yjk 2-C0 -@@j

(4o)-ccI

Yjk(a) = f Yjk(T)eiaf dT.
-CO

Substitution of Eq. (38) into (37) gives

<J12> f f yll(a) yll(P)Sl(c)e i w( a - ) dz da dP
-cc -cc -@

W -00 00

fJ Sl(w)[y yl(a) eiW da f y1 1 (P) e- i dPJ dw

-C -Cc -C

(141)

f zS(W) Y() ()d =fl(m)1yll(a)j2 dc.

Analogously one may write

00

<j2 U) I 12 da (42)
J 1 2> 2fs2(w2 1 2() dc

-00

where S 2(n) denotes the mean-square spectral density of the
force F2(t).

Substitution of the foregoing results into Eq. (34)
permits one to write the mean-square velocity <V2> of mass 1 as

<V> =f s(W)1Y1p)1 d +f 2 (a)I12 (43)
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and to set down by analogy the mean-square velocity of mass 2 as

C@ 0o

<V > =f1 ~IY 21 12 dw+ f S2 (w)IY 2 2 12 dO, (44)

Calculation of Net Power Flow Between Modes
by Superposition of Flows

In order to study the power flow (i.e., the rate of flow of
energy) from one mode to another it is convenient to consider
one force to act at a time, and then to add the power flows
obtained in the two cases to obtain the net power flow. Such
addition of power flows is permissible for statistically inde-
pendent forces F1 and F2 , as demonstrated below.

Since the system under consideration is linear, the force F
exerted on mass 1 by the coupling element (or by the mass on thec
coupling element) obeys

Wo W

Fc(t) =fhll(clo) F 1 (t-c O ) da o +f h1 2 (p O ) F2 (t-PO ) dP0  (45)
-@ -@

in analogy with Eq. (33). Here h,l and h represent impulse
response functions; h 1 (t) denote the Cactling force F (t)
resulting from a unit impulse of force acting on mass i, h12 (t)
similarly denotes the F(t) resulting from such an impulse
acting on mass 2, ao anS Po are dummy time variables.

The time-average power P12 supplied to the coupling element
may be obtained by multiplying the instantaneous force as given
by Eq. (45) by the instantaneous velocity as given by Eq. (33),
and averaging with respect to time. One obtains a result which
one may write

P12 = <Fc(t) Vl(t)> = Pl2a - P21b + AP (46)

where
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Pl a f f hll(ao) yll ( a ) <Fl(t-ao) Fl(t-a)> dao da

-wO -00

CO CO

P21b = -f f h1 2 (3o) Y1 2 (p) <F 2 (t-Po) F2 (t-P)> d 0 d13

-CO _CO

(47)

AP = ff hll(%l) Y12(p3) <Fl(t-a%) F2(t-P)> dao dP3
-00 -00

+_j_j l,(.)yll(a) <F2(t-po) 111 (t-a)> d00 dal

For conservative coupling, the time-average power flowing
into the coupling element from mode 1 at steady state is exactly
equal to the power flowing into mode 2, so that P12 of Eq. (46)
represents also the power flow from mode 1 to mode 2. If Fl(t)
and F2 (t) are uncorrelated, so as to satisfy Eq. (36), then the
time averages appearing in the integrands of the foregoing
expression for AP vanish and AP=O. Since P12 depends only on
the excitation Fl(t), it may be interpreted a the power flow
from mode 1 to mode 2 due to the action of F (t) by itself
(i.e., with F2=0). P21b may be similarly interpreted, except
that the minus sign included in its definition changes the
direction considered that of positive power flow; P2jb thus
represents the power flow from mode 2 to mode 1 due o the
action of F2 (t) by itself.

In view of the foregoing discussion one may thus write the
net time-average (steady-state) power flow from mode 1 to mode 2
as

P 12 m P 12a - P 21b (48)

where now P denotes the flow from mode 1 to mode 2 if only
mode 1 is eilted, P21b denotes the flow from mode 2 to mode 1
if only mode 2 is excited, and where the two excitations are
taken to be uncorrelated.
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One may calculate the power flow between modes directly
by carrying out the integrations indicated in Eqs. (47), as
Scharton has In essence done for a particular kind of coupling
(Ref. 7). However, one may retain a greater degree of gener-
ality and present a discussion which is relatively easily
understood by taking an approach based on Eq. (48) and on
energy balance arguments, as in the following paragraphs.

General Expression for Power Flow

If only a force F1 is present (that is, if F2=0), then
mass 2 is excited only-through the coupling element, and In
the steady state all of the power dissipated by the damping
of system 2 must be supplied to this system from system 1 via
the coupling element. An analogous statement applies if Fl=O
and F290. Let the time-average power flow from system J to
system k be denoted by PJk, and let the added subscript "a"
designate quantities corresponding to the F2=0 case, and
subscript "b" to the F -0 case. In view of2the previous
energy balance arguments and of Eqs. (43) and (44) one may
writes

Pl2a = c2<V2a> = c2 fSl() IY21 12 d
-00

0o (49)

P2lb = cl<V2> = c1 fS () ly 12 dw
CO

where S and S denote the mean square spectral densities of
the for;es F fnd F In view of Eqs. (48) and (49), the net
power flow f om sysem 1 to 2, when both external forces are
acting, obeys the equation

CO

P12 =f [c2 S1(0) - c1 S ()] IY1212 dw (50)
-00

5Note that cl = Re[Zll]for the system of Fig. 1, if the coupling
is conservative. In view of the definition of Zll, as indicated
following Eq. (22), Z]] is measured with V2=O; hence no (dissi-
pative) elements in system 2 can contribute terms to Zl]. Since
the coupling is conservative It cannot contribute real Terms to
Z11 . Analogously, c2 = Re[Z 2 2].
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Relation Between Power Flow and Kinetic Energies

If F1 and F2 are "white noise" forces, that is if
Sl(a ) = S1 and S2 (w) = S2 are constant (independent of
frequencyl, then one may introduce the notation

00

IJ ~f lyJk12 dw (51)
ljk Ijkl2 (1

-00

and rewrite Eqs. (33) and (34) as

<V2> =Sl Il + s2 I1
1 1 l l~ 2  12

(52)

<Vp2  S 1 121 + S2 122

and Eq. (50) as

P1 2 = 112 (c2S1 -C1S2 ) " (53)

By solving Eqs. (52) for S1 and S in terms of <V 2> and V2

and introducing the result into Eq. (5 ), one obtains n expres-

sion for the power flow P12 in terms of the mean square velocities.
By expressing the mean-square velocities < in terms of the
time-average kinetic energies <T > as indicated in Eq. (30),
one finds that one may then writes

P1 2 = 1 2 <T1> - 021<T2 (54)

where

21 12(M 122 + - 2)Ilj

1 112 1

11 22 12
(55)

21Ill + R 12)

Ill 122 12
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and where one has made use of the fact that 112=121 , as

implied by Eq. (29).

Power Flow for Weak Coupling

The two systems of Fig. 1 may be said to be weakly
coupled if the transfer admittance integrals 112=,1 have
values which are much smaller than those of the "se if-
admittance" integrals Ill and I, and if the transfer
impedances and admittances Z12 ,- 21 YI2, Y2 1 , do not

affect the values of Ill and 122 signHfican ly.

Then, substitution of the first of Eqs. (23) into
Eq. (51) yields

2 z 2 

ill =f jy11  do= z z 2 z2 z dw I zl 1-2 dc

(56)

fImJ(iW) + c 1 + k1(irl- dI =C
-00

Note that the approximations indicated in Eq. (56) apply
even if the transfer impedances and admittances are not
strictly negligible (as compared to the self terms) over
the entire frequency range, provided that the value of the
integral is not significantly affected by contributions
corresponding to transfer term values which are not negli-
gible. For example, if ZlLand/or Z22 are small compared
to Z12 and/or Z21 in certaTh frequency ranges (due to
resonances of masses 1 and/or 2), then the approximations
of Eq. (56) still hold, provided that these frequency
ranges are narrow enough.

By use of the previously stated requirement
11 << Ill, I,2 for loose coupling and of Eq. (56) one finds
tkit one may Pestate Eqs. (5141) and (55) as

2 = c1 21 r 1 CL2112

(57)

P12 = a(<T1> - <T2>)
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Power Flow for Stiffness and Gyroscopic Coupling

If the coupling element consists of an ideal stiffness
(represented by a spring constant k ) and an ideal gyroscopic
element6 (represented by a force/veTocity coefficient Cg), one
finds that

Z = ml(iW) + cI + (kl+kc)(ia)
- I

Z22 =m 2 (ia) + c 2 + (k 2+kc)(iw)-
(58)

Z1 2 = Cg - k(iw)
-I

Z - C - k(iu)-lZ21 g g

One may substitute these impedances into Eqs. (23) to find the
various corresponding admittances, and one may then evaluate
the integrals Ill, 122, 112 exactly (by use of the theorem of
residues, as summarized in Ref. 9, for example, or from the
tabulated expression given on p. 72 of Ref. 6). After substi-
tution of the results into Eqs. (55) and a considerable amount
of algebraic manipulation one finds that the two coefficients
02and 021 are here exactly equal, regardless of the magnitude
othe coupling, and are given by

k 2 a + c2 a
012 = 021 = c = 2 c k c

c mlm2 k c + (w_) 2  (59)

6A gyroscopic element is defined as one which produces a
negative force on mass 2 due to a positive velocity of
mass 1, if it results in a positive force on mass 1 due
to a positive velocity of mass 2. (See Ref. 8.) Note
that a viscous damping element results in forces of the
same sign on both masses due to positive velocities, and
that gyroscopic coupling is conservative since the Z and
21 of Eqs. (58) satisfy the requirement of Eq. (28).
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where

=c I1 c 2 =2(1 +2

Clk 2 + c2k1
a 2  + (6o)cml m2' 2 (E 1'2 +E2Q'I )

(k 1 +k)/mI 2 z (k2+kc)/m 2

Ei 2 m l"1  E 2 =_ 2 m2 2

The definitions of Eqs. (60) wtre chosen so that o represents
the natural frequency of the j mass (or mode) if'the other
mass is kept from moving, and so that E, denotes the ratio of
the damping coefficient cj to the criti4al damping coefficient
2 miW of the jr- mass.

The foregoing result is found to agree with that which
Scharton (Ref. 7) derived for pure spring coupling by calcu-
lating explicitly the power flow through the coupling element.
For small coupling the foregoing result also reduces to that
which was obtained by Lyon and Maidanik (Ref. 10) by means of
an explicit power flow calculation based on small coupling
approximations.

Finite Frequency Band Excitation

The previous discussion was based on force spectra S
and S that are assumed constant for all frequencies. Th
resulis obtained there similarly apply to power flow and
system energies involving the entire infinite frequency band.
However, a little reflection permits one to interpret these
results also for cases where only a finite frequency band is
of interest.

One may obtain expressions pertaining to only a finite
frequency band by replacing the infinite limits appearing in
the integrals of Eqs. (49)-(51) by the frequencies limiting
the band. Equations (52) -(55) then still apply, although the
various Ijk integrals that enter them now are different.
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The magnitude of the admittance Y(w) of a not too highly
damped single-degree-of-freedom system is much greater near
the system natural frequency (resonance) than at other fre-
quencies, so thatm he gatest contribution to the value of
the integral I = .IY(w)| dw is due to the frequency region
near the system r sonance. Consequently, the value of the
integral will be changed only slightly if the infinite limits
are replaced by finite ones, provided that the interval of
integration (i.e., the frequency band under consideration)
still encompasses the system resonance. (See, for example,
Ref. 11, or pp. 21ff, 29ff of Ref. 5.)

Similar reasoning applied to a two-degree-of-freedom
system (made up of two coupled single-degree-of-freedom
systems), which has two resonances leads one to conclude
that the results of Eqs. (56), (575, (59) and (60) also are
good approximations if the excitation frequency bands are
finite, but encompass both system resonances.

In view of the previously discussed predominance of the
responses near the resonances, the aforementioned results
may also be taken to be good approximations for cases where
the excitation spectra are not flat. All that is required
for these approximations to hold is that the excitation
spectra exhibit no violent peaks; i e no peaks that are of
the same order as the peaks in the lyI' curves.

Summary and Conclusions

It has been shown in this section that the steady-state
time-average power flow from one mode to another is propor-
tional to the difference between the time-average kinetic
energies of the two modes, provided that both

1) the coupling between the two modes is
- linear (giving rise to a linear differential equation),
- conservative (neither supplying nor extracting
mechanical energy), and

- light and/or purely spring-like and/or gyroscopic;

and

2) the forces acting on the two modes are uncorrelated
and have spectra that are relatively flat (as com-
pared to the system admittance spectra) within the
frequency band encompassed by the resonances of the
coupled system.
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Expressions which give the constant of proportionality
0 between power flow and kinetic energy difference in terms
o the characteristics of the modes and of the coupling
elements have been derived. These expressions are given in
Eqs. (57) and (59).

Since the square of the difference between the squares
of the modal resonance frequencies appears in the denominator
of Eq. (59), one may note that the proportionality constant 0.
decreases rapidly as the frequency difference increases. Thus,
the power flow between two modes whose resonance frequencies
are nearly the same will be much greater than the flow between
similar modes whose resonances are widely separated.

The relation between power flow and kinetic energies,
which has been established in this section, permits one to
analyze the average dynamic behavior of coupled modes rather
simply on the basis of energy balance considerations. For such
energy analyses it is convenient to visualize coupled modes as
shown in Fig. 2. There the modes are represented as storage
elements (containing kinetic energies <T > and <T2>), connected
by power flow P1 2, supplied with power iAputs A1 and A2 from
sources external to the system, and experiencing power losses
(dissipations) D1 and D2 , respectively.
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POWER FLOW BETWEEN TWO SETS OF MODES

As has been discussed earlier, one may analyze the

vibrations of an elastic system in terms of the vibrations

of the set of the modes of the system. The interaction

between two elastic systems may correspondingly be studied

by investigating the interaction between two sets of modes

which represent the two systems.

The modes of an ideal system vibrate independently of

each other, as has been pointed out previously, and the

modes of lightly damped realistic systems tend to behave

similarly. Hence, the present section deals with the power

flow between two sets of modes, where the members of each

set are not coupled to each other, but are coupled to all

members of the other set.

The problem discussed in the present section may be

visualized with the aid of Fig. 3, which schematically shows

two sets of modes, one designated by "a", the other by "13".

It is assumed that no power flow occurs between modes which

are members of the same set
7 , but that each mode of the a

set is coupled to each mode of the P set. It is desired to

determine the flow of energy from the a set to the P set in
terms of the previously studied mode-to-mode flows, under

conditions where each of the modes of each set may dissipate

energy and may be supplied with energy from outside the system

(as indicated in Fig. 3).

In particular, it is desired to determine under what

conditions one may obtain relations for the total net power

flow between two sets of modes in the form

P a = 0pT - o T (61)

in analogy to Eq. (5 4), which pertains to power flow between

two single modes. Here T. and T denote the set-averages of

the time-average modal kinetic energies, which are discussed

in more detail in the subsequent paragraphs. Moreover, one

desires to establish for coupled sets a power flow diagram

like Fig. 4, in analogy to the power flow diagram of Fig. 2,

which pertains to two coupled modes.

Throughout the following discussion it is assumed that

the power flow between each pair of coupled modes is propor-

tional to the difference between the time-average modal kinetic

energies, as indicated by the second of Eqs. (57). It is con-

venient for the present purposes to rewirte the aforementioned
expression as

7No power flow between these modes occurs either if these modes

are not coupled to each other, or if all of these modes contain

equal kinetic energies. See Eq. (57).
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PaJ,Pk = OaJ,Pk(TaJ - TPk) " (62)

Here P, de otes the power flow from the j th mode of the

set 6"Me k n mode of the P set, and T,j and T denote the

time-average kinetic energies of these two modes hue to

effectively white-noise excitation), in agreement with Eq. (57).

In Eq. (62) and subsequently the brackets previously used to

designate time-averages are omitted for the sake of economy 
of

notation; however, all kinetic energy and power flow quantities

appearing here and henceforth are intended to represent time-

average values.

Power Flow Between Mode Sets in Terms of Set-Average Energies

The total power flow P from mode set a to mode set 1

is the sum of all the indi Hual mode-to-mode power flows.

If set a contains N. modes and set P contains N, modes, then

one may express the set-to-set power flow as

Na Na
- PaJ,1k = 5 OJ,3(T -T k) (63)

J=l k=l j=l k=l

in view of Eq. (62).

The set-average modal kinetic energies TL and TP of the

two sets are defined as

NaN
S Ta T PT (64)

J=l k=l

If Eqs. (61) and (63) are to agree, then the relation

N a - cPN a N a T(5

z O ta,Pk(Taj (65)a CXj-_R 3
J=l k=l a J=l k=l
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must hold for all values of Ta. and TR,. Consequently the

set-to-set coupling factors mu t obe y?

Na N Na

o = [Na Z I Pa3,pk Tajj + [ Z Ta3j
J=1 k=l J=l

(66)

N N N

0 a=[N I Z'cOaj,fk T Ik] + [ f T PkI
J=1 k=l k=l

and the equivalent relations

J -- L (67)

a = NaNNlX Oj,fk Tak + Tk "

a =1kjk={Nf f(k k=l Pi

The latter expressions have an interesting interpretation.
The term within the large square brackets of the first of the
foregoing equations is the weighted average of the ,
coefficients (for a given value of k), with the modal Pk
energies Ta4 acting as weighting factors. The term within
the curved "brackets may be seen to be the average (over all
values of k) of the aforementioned weighted averages. Thus,
0 is N N times the average value of 0a4 (in the pre-
vifusly nicated sense); this implies tha'Re power flow
between mode sets is equal to the average mode-to-mode flow
times the number of mode pairs between which power flow occurs.
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Modal Energy-Independent Coupling Factors

If the set-to-set coupling factors ,Aand 0p depend
on the modal energies T and T kas in Eq9. (66) and (67),
then use of these facto in Eq k(61) does not simplify the
calculation of power flow between mode sets. However, in
some cases the coupling factors do turn out to be independent
of the energies Ta and T ', and then Eq. (61) does present
a convenient means for cauLating the set-to-set power flows.
Conditions under which the coupling factors tend to be inde-
pendent of the energies are explored in the present section.

Uniform Coupling

For the case where all of the mode-to-mode coupling
factors are equal, that is, where 0 = 0 for all j and k,
one finds that the set-to-set couplilt cpoeffdcients of Eqs. (66)
or (67) are independent of the modal kinetic energies and are
given by

a =(68)

One may observe, as also previously mentioned, that here the
set-to-set coupling coefficient Is N.N, times the mode-to-mode
coefficient, and that N is the nuMbIr of mode-to-mode paths
along which power can fNoX from members of one set to members
of the other.

Equation (57) indicates that the assumption of uniform
coupling may be useful under some often-encountered practical
circumstances. If all modes of set "a" are similar to each
other (i. e., have nearly the same resonance frequency and the
same amount of damping), if all modes of set "P ' are similar
to each other, and if all a modes are similarly coupled to all
P modes (i.e., if all mode-to-mode coupling is characterized by
the same kinds and magnitudes of coupling elements), then all
the mode-to-mode coupling factors will be the same. Thus,
Eq. (68) applies to mode sets that satisfy the foregoing
similarity criteria. Indeed, an essential step in the prac-
tical application of the statistical energy approach consists
of organizing the set of all modes of a system into subsets
within which all modes have similar characteristics, so that
relations like Eq. (68) can be applied to these subsets.
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Uniform Modal Energies

If all of the modal kinetic energies in set "a" are
equal, and if the same is true of set "13", so that one may
write Ta --T for all J and Teg--T,3 for all k, then Eqs. (66)
or (67) Are found to reduce

Na

Oap = Opa = X fcJ, Pk (69)

J=l k=l

This expression indicates that here the set-to-set coupling
factor is equal to the sum of the mode-to-mode factors for
all coupled mode pairs. (This sum clearly is equal to NN
times the average value of the mode-to-mode coupling facto9
between all "a" and "13" modes.)

In order to investigate the circumstances under which
the assumption of uniform modal energies is a realistic one,
one needs to study the general modal kinetic energy T Pk.
An expression for this energy may be obtained from a th
steady-state time-average energy balance relation for the k=
mode of set "13", which relation may be written as

Na

Ak + X Paj,13k = D13k (70)
J=l

or

Na
A1k+Z -2a(aT

A 3=k + XOj,3k(Taj-Tfk)= CPk m2 TPk • (71)

As indicated in Fig. 3, A k represents the power supplied to
the mode directly from external sources, D1,k denotes the power
dissipated by the mode (which depends on thu modal viscous
damping coefficient c and on the mean square velocity, and
thus on the modal kinfic energy TBy), and P, , denotes the
power supplied from the JLh- mode or the s"a o the mode
under consideration.

-34-



Solution of Eq. (71) for T Pk yields

NNa Na

TPk ( 3k + Z aj,Pk TaJ + m k Z (aj,13k (72)
J= J=l

which expresses the kinetic energy TPk of the single mode Pk

in terms of the modal and coupling parameters and of the

eneies T of all of the modes of the "a" set. One may use

Eq.rT72) tiJinvestigate under what conditions all of the "13"

modes possess approximately equal time-average kinetic energies.

If those terms of Eq. (72) which contain the coupling

factors are negligible compared to the others, then this

equation reduces to

TPk = APk mp/2 'k (73)

For negligible coupling the power input may be shown to be

given by
8

8lf coupling effects are negligible, then the power input is

equal to the power dissipation, or (omitting all subscripts

since only one system is being considered here)

A = D = c<V2> = cSI = rS/m

in view of Eqs. (52) and (56).

One may verify that one may obtain the same result by direct

calculation of the power input:

A - <F(t) V(t)> - f y(a) <F(t-a) F(t)> da
-00

Since the force autocorrelation function Rf(a) is related to

the spectrum S of a white noise force (Ref. 12) as

<F(t-a) F(t)> = Rf(a) = 2r Sa 5(a) I

where 6(a) is the delta or unit impulse function, the above

reduces to 00

A = 27rS f y(a) 5(a) da = rS [y(O+) + y(O-)I 7S/m

since y(O+) = 1/M, y(o-) = 0.
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APk = r S 1/m30, (74)

where SA denotes the spectral density of the force which
acts diUctly on the Ok mode. One may then rewrite Eq. (74) as

TOk = (r/2)(SPk/cPk) - (75)

This result indicates that in the presence of small coupling
the kinetic energies of all "P" modes will be equal if the
excitations are adjusted so that the ratio of modal force
spectral density to modal damping is the same for all modes.
As a special case, if all modes of the P set are equally
excited and equally damped, then they will have equal kinetic
energies.

Some other observations relevant to uniform distribution
of energies may be made from an analysis of indirectly excited
modes. If the modes of the "0" set are lightly damped and not
directly excited (A =0) then the net power flow to the jth
mode from all the mes of the "a" set must be very small,
and one may determine from Eq. (71) or Eq. (72) that

T Pk<=Z Xaj,kTaj) X ( Oaj, Ok) (76)
J=l J=1

Equation (76) shows TOk here to be a weighted average of
all of the Tai's (with the coupling coefficients Oa acting
as weighting ractors). One notes that the kinetic A&Igies
T of all of the "(3" modes will be equal if the sums appearing
iRkEq. (76) are independent of the index k, or if all of the
"a" modes have the same kinetic energy Ta . Thus, if the total
coupling to all "P" modes is uniform, andWor if the energy
distribution in the "a" set is uniform, then the energy
distribution in the indirectly excited "P" set will also be
uniform.

Equation (76) also implies that the distribution of
energies TPk in the indirectly excited "0" set will generally
be smoother than that of the energies TaI in the "a" set, if
the summations do not depend very strongly on the index k.
In other words, the TAk's will approach equality to each other
more closely than do the Taj's, provided that the coupling of
the "P" modes to all of the "a' modes is about the same for all
of the "13" modes.
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One may thus visualize the behavior of a cascade of
lightly damped mode sets, where only the first set is
directly excited, where each set is relatively loosely
coupled to its neighbors, and where the mode-to-mode
coupling for each pair of adjacent sets is more or less
uniform. (This does not imply that the mode-to-mode
coupling need have the same value for all set pairs.)
If the first set of such a cascade is excited so that an
arbitrary distribution of kinetic energies is produced in
it, then the second set will attain an energy distribution
which is more uniform than that in the first, in accordance
with the previous paragraph. Similarly, the energy distribu-
tion in the third set will then be more uniform than that In
the second, and so on.

Power Flow in the Ensemble Average

In practice one rarely deals with structures whose every
detail is precisely known. For example, manufacturing toler-
ances produce geometric differences, and variations in material
properties result In deviations from ideal homogeneity and
isotropy. Hence, one may expect to encounter some differences
in the properties and distributions of modes in nominally
identical structures, and thus in the responses of these
structures to the same excitation. In order to study the
behavior of "average" structures, one is led to consider the
power flow that may be expected to occur "on the average"
between two elastic systems, where each of the two is a member
of an ensemble, and where the members of each ensemble can
differ from each other to some degree.

Instead of dealing with only a single "a" set and a
single "0" set of modes (corresponding to a single a elastic
system and a single P elastic system), it is necessary here
to deal with collections or "ensembles" of such sets (corres-
ponding to ensembles of elastic systems). The problem to be
considered here consists of determining the ensemble average
of the time-average power flow between L and P mode sets, in
terms of the ensemble average of the time-average kinetic
energies.

Consider an "experiment", where one selects at random
from the ensembles one set of the type a and one of the type P,
subjects each of the selected pair of sets to a specified
excitation, and measures the time-average power flow and
kinetic energies. It is desired to express the average power
flow measured in a number of such experiments in a form
analogous to Eq. (61), as
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i "ff,3 (77)

where the bar denotes the average of the values obtained in
these experiments (i.e., the ensemble average) and the tilde ( )
is intended to differentiate the present coupling coefficients
from those of Eq. (61), which pertain to two fully defined mode
sets; i.e. to a single "experiment".

One may similarly modify Eqs. (62)-(66) to apply to ensemble
averages and to the coupling coefficients as defined by Eq. (77)
and arrive at expressions analogous to Eqs. (67). Noting that
one may interchange the order of summation and averaging (which
essentially is another summation), one obtains

N NaN a

Oa,3 = NaN{ T=L=
kJ=l (78)

Oa -NaN1 { L a T )

J=1k=lk=1

The average of the product of two quantities is not in
general equal to the product of the averages; one cannot in
general replace $ L T4 by (Vaj2-k)(Ta4 ), as one would like
to do in order to 1i?4 lir Eqs.(7g. However, the aforementioned
interchange of the averaging and multiplication processes is valid
for random variables that are statistically independent. This
means that 'aJ,6k Taj = ( j,pk)(T-j), provided that the probability

of obtaining any value of Tj in a given "experiment" is unaffected

by the value of oaj,Pk in that experiment, and vice versa.

The various modal kinetic energies which are produced by
a given excitation distribution do depend on the various mode-
to-mode coupling factors (as one can readily determine from any
energy balance analysis), and thus cannot be entirely statistic-
ally independent of the coupling. However, it is likely that a
given Taj will depend only very weakly on a single 0 J,3k'

particularly if many modes are present in the two sets; then
these two quantities may be very nearly independent. If the
excitation distribution may also vary from experiment to experi-
ment (e.g., in the relatively realistic case where the modal
excitations depend on the sample structure selected for an
"experiment") then statistical independence is even more likely.
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For statistically independent mode-to-mode coupling
coefficients and modal kinetic energies one may replace
czj,pk TaJ by ('J,pk) 0 T in the first of Eqs. (78) and

perform a similar replacement in the second of these equations.
If T.j is independent of the mode number j (that is, if all
modes of set a have the same kinetic energy in the ensemble
average) and if a similar statement holds about the P modes,
then one obtains from Eqs. (78) the simple result

Na
¢ = " @J,Sk(79)

J=l k=l

Equation (79), which is analogous to Eq. (69), indicates
that the coupling coefficients to be used in Eq. (77) are equal
to the sum of the ensemble average (or the ensemble average of
the sum) of the mode-to-mode coupling factors. Of course,
Eq. (79) applies only if the conditions used in its derivation
are met, that is, if the modal kinetic energies and mode-to-mode
coupling factors are statistically independent, and if the
ensemble average modal kinetic energies are independent of mode
number (constant within a type of set).

Summary and Conclusions

In this section it has been shown that the steady-state
time-average power flow from one set of modes to another is
proportional (or approximately proportional) to the difference
between the set-average modal kinetic energies of the two sets,
provided that both

1) the mode-to-mode coupling satisfies the conditions
discussed under the heading of "Power Flow Between
Two Modes", so that the power flows between modes
of the two sets may be taken as proportional to the
modal kinetic energy differences;

and

2) either a) the mode-to-mode coupling is (at least
approximately) the same for all mode pairs;

or b) all modes in a set have (at least approxi-
mately) equal time-average kinetic energies.
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Then the factor of proportionality; i.e., the coupling
factor, applicable to set-to-set power flow is equal to the
sum of all the mode-to-mode coupling factors (or to the
product of the number of mode pairs and of the average value
of all of the individual mode-to-mode coupling factors).

It has also been shown that the ensemble average of the
steady-state time average power flows from one set of an
ensemble to a set of another ensemble is proportional to the
difference between the ensemble average of the set average
modal kinetic energies of the two sets, - provided (1) that
the first of the previously listed conditions is satisfied,
(2) that the mode-to-mode coupling coefficients and modal
kinetic energies are statistically independent, and (3) that
the modal kinetic energies in the ensemble average are uni-
formly distributed within a set. The applicable coupling
factor then is the ensemble average of the sum (or the sum
of the ensemble average) of all the individual mode-to-mode
coupling factors.

The mode-to-mode coupling is essentially the same for
all mode pairs if all modes of the a set are similar to each
other, if all modes of the P set are similar to each other,
and if the same (or similar) physical mechanisms (e.g., the
same type of sound-to-structure coupling) couples all modes
of the a set to all modes of the P set.

All modes in a set have equal kinetic energies (i.e
"equipartition of energy" occurs among the modes of a set,
if

either a) the modes of the set are uniformly excited
and either weakly or uniformly coupled to
modes of other sets;

or b) the modes are lightly damped, not excited
directly, and uniformly coupled to a set of
modes within which all modes have nearly the
same energy.

In the special cases discussed in this section, and only
in these cases, the average response and dynamic interaction
of mode sets can be reduced to simple terms, represented
schematically in Fig. 4. The most important expressions
pertaining to these special cases are also summarized in
this figure. In analyzing the total interaction of two
systems by means of the statistical energy approach, one
must generally classify the modes of the two systems into
sets, such that the modes within each set are sufficiently
similar so as to satisfy the conditions which permit this
simple treatment of set interaction to be applied.
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LOSS FACTORS, RESISTANCES, AND MODAL DENSITIES

The foregoing development of the concepts of the
statistical energy method was presented in terms of power
flow coupling coefficients and in terms of the number of
modes in a set. These parameters are relatively unfamiliar,
and generally more difficult to estimate, calculate, or
measure than such more commonly used quantities as loss factors,
coupling resistances, and modal densities. It is the purpose
of the present section to present the relations between these
more common parameters and those used in the previous sections,
so that one may restate the previously derived results in terms
of the more familiar quantities.

The relations between these two sets of parameters are
simple, so that restatement of the previous results in terms
of the more common quantities involves only trivial algebraic
manipulations. Hence, no restated results are given here.
Some applications of the relations given in the present section
are illustrated in the subsequent one.

Loss Factors

The loss factor is classically defined on the basis of a
single-degree-of-freedom system oscillating sinusoidally at
resonance in the steady state. The definition of the loss
factor n may be stated as

EEd/ /rE , (80)

where E denotes the energy dissipated per cycle by the system
and E d9notes the "energy of vibration", which is equal essen-
tially to the total (kinetic plus potential) energy at any time
(and is nearly constant), to the time-wise maximum kinetic energy,
and also to the time-wise maximum potential energy of the system
(Refs. 13, 14).

One may express the loss factor In terms of the time-average
power D dissipated by the system, since D = E a /2w, where o
denotes the radian natural frequency of the s5st?m so that aw
represents the natural frequency In cycles/time. One obtainS

D D (81)
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where T denotes the time-average kinetic energy and T=E/2
holds for the postulated oscillations. Since for a simple
mass-spring-dashpot system D = c<v2> and T = <v 2>m/2, one
may readily verify that for such a system

C _._ c - 2 c , (82)

where c denotes the critical viscous damping coefficient of
the sysiem. Equation (82) involves the viscous damping
coefficient c, and hence applies only for damping of the
viscous type; Eq. (82) thus is less general than Eqs. (80)
and (81),which are not restricted to any particular type of
energy dissipation mechanism. Since the loss factor applies
for all damping mechanisms, it is generally preferable to
more restricted measures of damping.

A broadened interpretation of Eq. (81) is often used to
define (and measure) loss factors. In this interpretation
w_ is taken as the center frequency of a band encompassing
tHe system natural frequency, E is taken as the system energy
in that band, and D is taken as the power dissipated by or
(transferred away from) the system in the same band. This
interpretation is generally not needed for dealing with a
single-degree-of-freedom system, but is useful when one is
concerned with a collection of such systems, - i.e., with a
set of modes. For a set of modes, D of Eq. (81) is taken as
the total power dissipated by all modes and T as total kinetic
energy of all modes. For a set a containing N individual
modes, the total power dissipation DTa and totl time-average
kinetic energy TT are given by

DTa = Daj = 2wo 0 Taj

j=l J=l
(83)

N

TTa = Z Tj = Na Ta

J=l
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where 7j denotes the loss factor of the aj mode, as defined
by Eq. V81) and Ta denotes the set-average kinetic energy,
as in Eq. (64). The loss factor na of set a then obeys

Tia _! T L2oNaTa~o T2 o0 aa
(84)

Na  Na

=( laj Ta)+( Z Taj)
J=l J=l

where now w is defined as the center frequency of a band
which encompasses all modal resonances. The last form of
the above equation indicates that the set loss factor na is
a weighted average of the individual modal loss factor qaj,
with the modal kinetic energies Taj acting as weighting
factors.

Coupling Loss Factors

Mechanical energy may be lost from a given system not
only by being dissipated (i.e., being changed to thermal
energy), but also by being transferred to another system.
Energy conducted from a system is lost to it, Just like
energy dissipated by it. Hence, it is useful to define a
loss factor for energy conduction analogous to that for
energy dissipation.

It is convenient to define a coupling loss factor allJ3k
of mode aJ to describe the time-average power flow Pj,1k
from mode aJ to mode Ok in analogy to Eq. (81) by

PJ aj,k (85)
Taj,k 2 o T = 0

The condition T =0 is imposed in order to make this loss
factor independht of the modal kinetic energies. In view
of Eq. (62), one finds that the coupling loss factor is
related to the mode-to-mode coupling factor oaj,Pk as

aj,Pk ' Oaj,P 2 -o (86)
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Eq. (86) indicates that the same coupling loss factor applies
for power flow in either direction (that is, 9 Tj = Tk,)
for those various previously discussed cases U41ch k"J
the same coupling factor applies for power flow in either
direction (Oaj,Pk = %,aJT

One may also define an analogous loss factor to account
for power flow from one set of modes (a) to another (P). The
coupling loss factor %p of set a is defined as

, - N3 (87)Tp=

where a denotes the center frequency of a band which encompasses
all modRl resonances of both sets. In view of Eqs. (61) and (83),
one may rewrite the foregoing as

1  : 2 o Na Ta - 2 Na (88)

Here it is important to note that because of the appearance of
N in Eq. (88) the coupling loss factor 1, of set P (for power
fiow from P to a) is generally not the saf as the loss factor
na of set a (for power flow from a to P), even if the coupling
coefficients C0a = 0 are the same for both flow directions
(as in the prevouslFanalyzed cases). Instead, in view of
Eq. (88) and an expression analogous to it,

nap Na = 9pa Np = Oup/2 Co (89)

Loss and Coupling Resistances

In analogy to electrical circuits, jn which the time-
average power dissipation is given by <I->R , where I denotes
current and Re electrical resistance, one m8y define a mechanical
or acoustic resistance R of an elastic system so that the power
loss D from the system is given by

D = R <V2> . (90)
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For a viscously damped single-degree-of-freedom system the
resistance is equal to the viscous damping coefficient c,
of course. In view of Eq. (82) one may relate this resistance
to the loss factor n and obtain

R = c = n m a o  (91)

for a system of mass m and natural frequency co"

One may define a coupling resistance R, which describes
the power loss of a mode cj to a mode Pk anao6usly to Eq. (90)
by

0j ij,1k T _V (92)

~ci,1 13~kV3k>=o-

In view of Eqs. (85) and (30) one may determine that the coupling

resistance is related to the corresponding loss factor as

'aj,Pj = na,P i.j '0 • (93)

Since this expression is seen to involve the modal mass mc,
one observes that in general %& .# , although the%
corresponding two loss factors-y be ej&Iy

The loss resistance R applicable to a set a of modes
should describe the total power loss according to an equation
like Eq. (90). The choice of what one defines as the mean
square velocity is somewhat arbitrary; it turns out that in
dealing with a set of modes og an elastic system of mass %
it is convenient to choose <Va> = 2 TTO/%. Then one obtains

DTa %(94)

in view of Eq. (84). The above expression is analogous to
Eqs. (91) and (93), except that u% here represents a system
mass, rather than a modal mass.

9

9With the mode shape normalization indicated in Eq. (7), the
modal mass is the same as the system mass. But other normal-
izations may be used legitimately, and with those this equality
would not hold.
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By analogy to Eq. (94) one may define a coupling
resistance R, to account for the loss of power from a set
of modes a to a set of modes 1 as

=P,, m. (5
R 2TT

T =0

and determine by use of Eqs. (87) and (88) that

0,, m. 0,
Rf =2N (96)

Again, Rp and Rp are generally different, even if 0aj=.-

Modal Densities

One usually studies the interactions of elastic systems
on a band-by-band basis, by determining the power flow from
modes of one system which have their resonances in a given
frequency band to a set of modes of another system which have
their resonances in the same band. One may in general choose
any convenient bandwidth, and one may often wish to use
different bandwidths for different calculations. The number
of modes which fall within the various sets depends on the
bandwidths one chooses, so that it is useful to introduce
the concept of modal density, in terms of which the dependence
of some of the previous results on bandwidth can be stated
more explicitly.

In addition, it turns out that modal densities for many
systems can be estimated readily; thus, use of modal densities
increases the practical utility of the analysis method dis-
cussed in this report.

The modal density of an elastic system is defined as tile
average number of modes per unit frequency interval. If a
system exhibits N. modes whose resonances fall within a fre-
quency interval Aw, then the modal density of the system at
the center frequency w of the interval is defined as

n (w) = N;/Aw . (97)
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For most purposes it suffices to consider na(w) as given by
Eq. (97) to be a "smooth" function of frequency. Such smooth-
ness may be attained by restricting the applicability of
Eq. (97) to cases where the frequency interval of interest
encompasses several modes.10

The modal densities of systems may be determined from
their "frequency equations", i.e., from the equations which
give the system resonance frequencies as a function of the
system parameters. For simple systems these calculations may
be carried out without great difficulty, as illustrated in
Ref. 5.

Table I lists the modal densities of some uniform elastic
systems, as obtained from Ref. 5 and from calculations based
on Ref. 2. The expressions listed in the table apply strictly
only for frequencies which are considerably above the system
fundamental (by perhaps at least two octaves), where boundary
conditions have no important effects; however, these expressions
generally also provide reasonable estimates for the modal densi-
ties at frequencies only slightly above the fundamental.

The modal density of a composite system is approximately
equal to the sum of the modal densities of the component
systems. Thus, for example, the modal density of a plate with
attached beams is roughly equal to the modal density of the
plate by itself, plus the modal densities of all of the beams
by themselves. This additive property of modal densities has
not been validated analytically, but appears plausible on the
basis of some limited experimental evidence and the following
reasoning (Ref. 17).

10 0therwise, small changes in a might result in large stepwise
changes in na. For example, if Am is small, it might encom-
pass one or more resonances for one center frequency, but none
for another frequency near the previous one. The assumption
of smoothness generally introduces no important errors in
estimates of average responses in broad frequency bands.
(The errors due to this assumption usually are much smaller
than those introduced by other approximations and estimates
one usually must make in order to apply the statistical
energy approach to practical problems.) However, one may
need to concern oneself with the fluctuations in na in dealing
with more advanced problems concerning the deviations of
response from the broad-band average.
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Symbol Definitions for Table I

A cross-section area

As  surface area

Ca acoustic wave velocity

CA longitudinal wave velocity

cm membrane wave velocity

Cs string wave velocity

cT torsional wave velocity

D plate rigidity

E Young's modulus

G shear modulus

h thickness

I centroidal moment of inertia of A

J polar moment of inertia of A

K torsional constant of A

L length

S membrane tension force/unit edge length

T string tension force

V0  volume

x b  radius of gyration of A

mp radius of gyration of plate cross section

V Poisson's ratio

D frequency (radians/time)

p material density
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The number of modes in a lumped parameter system (e.g.,
one consisting of ideal springs, masses, and dashpots) is
equal to the number of degrees of freedom. If one inter-
connects two such systems, then the total number of degrees
of freedom of the composite system is equal (or very nearly
equal, depending on the manner of interconnection) to the
sum of the number of degrees of freedom of the individual
systems. Thus, the number of modes of the combined system
is equal to the sum of the numbers of modes of the two con-
stitutent systems.

However, some additional considerations are required,
since the modal resonances of the combined system generally
occur at different frequencies than the resonances of the
individual systems. If one interconnects two single-degree-
of-freedom systems having different resonant frequencies,
then one obtains a two-degree-of-freedom system which has one
resonance below the lower of the two individual system reso-
nances, and one which is above the higher of the individual
resonances. In other words, the interconnection in effect
shifts the resonances both upward and downward. If two multi-
modal systems are interconnected, it is likely that on the
average as many resonances are shifted into a fixed frequency
band as are shifted out of it, so that the total number of
modes in the band is unchanged by the interconnection process.
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SOME SPECIAL RESULTS FOR TWO COUPLED MODE SETS

For two coupled mode sets, where one of the sets is not
directly excited, use of the statistical energy method is
particularly fruitful and can lead to valuable qualitative
insights, as well as to quantitative results. The present
section summarizes general results applicable to the afore-
mentioned case, points out some conclusions one may draw
from them, and illustrates application of these results to
some special cases.

Vibrations of Indirectly Excited Mode Sets

Consider two coupled sets of modes, as represented
schematically in Fig. 4, and assume that A =O, - that is,
that no energy is supplied to mode set P e9cept via its
coupling to mode set a. In the steady state the total
power D dissipated by set P must be equal to the power P a
supplied to it from set a. If the modes of each set are
sufficiently "similar", in the sense indicated in the previous
chapter, so that one may validly use Eq. (61) with 0=a- to

describe Pap, then the energy balance for set ( requespghat

Oaf(Ta-Tt) = 2 w TN Tp , (98)

in view of Eq. (84). If one solves this expression for TA one
obtains a relation between the average modal kinetic energies
of the two sets which may be expressed as

T P (Oaf/2wo) T10a_(_9

Ta = (Oa/2% ) + TNp = pa + (99)

where Eq. (89) has been used to replace Oap by the coupling
loss factor 1  P.

"It should be noted that Eq. (99) involves %.., the loss factor

which pertains to energy flow from P to a, Whereas the actual
energy flow must be in the other direction if set P is not
directly excited.
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As indicated in the discussion pertaining to Eqs. (17)
and (18), the space- and time-average mean square velocity
<-> associated with N modes of an elastic system of mass<V > a
ma is related to the total kinetic energy TTa of these modes
as

T -NT _ -2> • (100)TT a aa 2 a a

If one uses this expression and an analogous one for set B
to eliminate the average modal energies Ta and T from
Eq. (99), one obtains the result

'V> N ma a = n( W . ma qPa (101)

<- 2> Na" m ° "Pa"'(3 mo npa+np

The last form of this expression is obtained by use of Eq. (97)
and is based on the assumption that the Na and N modes correspond
to the same frequency band Aw.

Equation (101) is a surprisingly simple and useful result,
which permits one to calculate the mean square velocity of the
indirectly excited elastic system from that of the directly
excited one if one knows the masses of the two systems, their
modal densities (e.g., from Table I) in the various frequency
bands of interest, and the coupling and dissipation loss factors.
A further simplification occurs for those cases where ) <<7,
since then Eq. (101) reduces to a relation which does nt ivolve
the loss factors. Applications of Eq. (101) to a beam coupled to
a plate and to two coupled plates, and related experimental
results showing generally good agreement with theoretical pre-
dictions, are presented in Ref. 18.

The grouping of the loss factor terms appearing in Eqs. (99)
and (101) permits one to make some observations concerning the
effectiveness of adding damping to indirectly excited systems.
If the damping of the 0 system is small initially, that is, if
lo<<"Pa, then added damping will reduce the system vibrations

<VP only if this added damping (or increase in T ) is significant
as compared to I. This observation may explain why the addition
of some damping P a structure (system P) excited by sound in an
acoustic space (system a) may have little effect on some compo-
nents of the structural vibrations.
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On the other hand, Eq. (101) indicates that the mean

square velocity of the indirectly excited system varies

approximately inversely with the loss factor qA in those

cases where n >>nI - Thus, added damping is epfective in

reducing vibrNtioRg of indirectly excited systems, provided

that the resulting dissipation loss factor exceeds the

coupling loss factor.

From Eq. (99) or (98) one may conclude that T PT if

>1 - That is, if the power dissipation of setP ?s

neligble, then so is the power flow from set a to set 0,

and the average kinetic energy T of the indirectly excited
set will approach that of the digectly excited set. Thus,

if T 1,, then the two mode sets will approach "modal

enerW eqtilibrium" or"modal energy equipartition".

Effect of Coupling on Vibrations of Directly Excited Mode 
Sets

The present discussion, like that of the previous section,

deals with two coupled sets of modes, whose interaction 
may be

visualized by means of the lower portion of Fig. 3. 
Here, as

in the previous section, no energy is assumed to be supplied 
to

set P from outside the system; i.e. A =O. However, unlike the

previous section, which focused on the indirectly excited set 
P,

the present section is concerned with the directly 
excited set a.

Conservation of energy requires that the time-average power

A,, supplied to set a in the steady state be equal to the total

power dissipated by both mode sets. As previously pointed out,

the power dissipated by set P must be equal to the power supplied

to it from set cL. Thus, one may write

Aa = 2oT6aNTa + ap(TaTp)
(102)

= 2woTa[iNa + TN( t

If one eliminates T by substituting Eq. (99), and if one intro-

duces the coupling Toss factors by use of Eq. (89), then one may

find that the foregoing results in
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a = i = a +% 
(103)2Q)oTaNa app T1 P + 71

The "apparent loss factor" % introduced in the fore-
app

going equation corresponds to the value of the dissipation loss
factor which one would ascribe to set a (on the basis of measure-
ments performed on set a) if one were not aware that this set is
coupled to set P. In order to determine the loss factor q. of
set a in absence of coupling, one would turn to Eq. (84) and
determine the values of the various parameters N., Ta, DT that
appear there. Since the directly supplied average power-Aa must
be equal to the total dissipated D (in absence of coupling to
other mode sets), one may replace D by Aa; then the ratio
appearing in Eq. (84) becomes precisely that which occurs on the
left-hand side of Eq. (103).

It is evident from Eq. (103) that the apparent loss factor
I app is never smaller than the actual dissipation loss factorapp.

Thus, if one is unaware that a system whose loss factor one is
measuring is coupled to another system, then one always obtains
a loss factor value which is too large. The error is insignifi-
cant, however, if the coupling is poor (N,, = 0) and/or if
the coupled set is relatively lossless (71<< ) Effects of
energy conduction on loss-factor measuremeits are discussed in
some more detail in Refs. 19 and 20.

From Eq. (103) one may also deduce that the response
<v2> = 2NcT,/%n to a given excitation A is not controlled by

the actual dissipation loss factor q. (as in the uncoupled case),
but rather by the apparent loss factor 1 . Thus, the coupled

app
indirectly excited system P increases the effective damping of
the directly excited system a; - a conclusion which is intuitively"obvious", since system P here serves to extract energy from
system a.

Interaction of Sound and Structures

Some of the previous results of this section are particularly
useful for estimating the sound produced in an acoustic volume due
to the vibration of a structure, or for predicting the structural
vibrations induced by a diffuse sound field.
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Consider the case where a structure S is directly excited

by random forces acting on it, and where these structural

vibrations produce noise in a room R in which the structure

is located. Here the structural modes in a frequency band of

interest correspond to a directly excited set a, the modes of

the acoustic space R correspond to the indirectly excited set P.

The total energy Ea in a diffuse acoustic field within

fluid volume Voin a fre uency band A is related to the mean

square acoustic pressure <p'> measured in the same frequency

band as (p. 95 of Ref. 5)

E= v 2> (204)
ER V > /Paca(i)

where pa denotes the density and c the sound velocity of the

fluid. This total energy is on thg average half potential and

half kinetic, hence the average total kinetic energy TTR is one

half of the total. The average modal kinetic energy TR may be

obtained by dividing TrP by n .Am, the number of modes in the

interval. With the moal dengity expression given in Table I(p.
4 8 )

for acoustic volumes, one thus finds the average kinetic energy

of an acoustic mode of a room to be given by

ER V 2 ca <_2 (

R 2 nR Pa W2

If one applies Eq. (100) to the structure under considera-

tion and replaces the number of modes NS by n *A according to

Eq. (97), then one finds that the average kingtic energy of a
structural mode is given by

m <V2> m<a 2>
2 (106)

s 2 n,-Aw 2 2 ns Aw

where 4FV> represents the mean square velocity and<2> 2<2>

the mean square acceleration of the structure measured in the
frequency band Aw with center frequency w.

Introduction of Eqs. (105) and (106) into Eq. (99), with
R taking the place of the indirectly excited system P and S
that of the directly excited system t, leads to the following
relation between the mean square values of the acoustic pressure
and the structural acceleration:
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_ Pa ms 'IRs

<a2> 2r 2c n TRS+71R (107)
s a s

In most cases the room-to-structure coupling loss factor T.
may be expected to be much smaller than the dissipation lon
factor of the room. With this inequality, and with

=ISR ns ns RSR (108)
7RS nR nR ms W

obtained from Eqs. (89), (97), (96), one finds that one may
rewrite Eq. (107) as

-2 2
-= Pa RSR RSR Pa ca_

<a s> 2w2 ca  W nRTR TR (19

where the last form is obtained by substituting for n the
appropriate expression from Table I. The structure-tR-room
coupling resistance R corresponds to the "radiation
resistance' which act on the structure; i.e. to the resistance
which governs the loss of energy by the structure due to acoustic
radiation from it.

One may also consider a situation in which an acoustic
volume R is directly excited by a noise source, and where the
resulting acoustic pressures cause an (indirectly excited)
structure to vibrate. Here the volume excites the structure;
i.e. the roles of the two systems here are interchanged from
the previously discussed case. Equations (lo4)-(106) still
apply, but now the structure S corresponds to the indirectly
excited set P and the room R to the indirectly excited set a.
Here, use of Eq. (99) yields a result which one may write

<as > =2 2 Ca n s
2W> - -a%L (110)

<p2> Pa ms

where
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T'SR RSR

and the last form of Eq. (iii) follows from Eq. (96).

The results given in Eqs. (109)-(111) first appeared in
Ref. 10. This reference also describes some experimental
results, which are in good agreement with theoretical
predictions.

A word of caution is required, however, concerning the
applicability of the results of this section. These results
are derived from Eqs. (98) and (99), which in turn are based
on the assumption that a simple power flow relation holds for
the two mode sets considered. Thus, Eqs. (109)-(ll) should
only be applied to cases where all structural modes in the
frequency band of interest are uniformly coupled to all room
modes in the band. If differently excited or differently
coupled modes occur in the band, one must divide them into
groups of like modes, and apply the foregoing results to each
group separately, of course using properly modified modal
density expressions, as needed. Differences in sound-structure
coupling and calculations taking these into account are dis-
cussed in Ref. 5.
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CONCLUDING REMARKS

It is hoped that this report will introduce the reader
to the basic concepts involved in the statistical energy
analysis of vibrating systems so that he may put this approach
to use with some confidence. It was endeavored to describe
the most important aspects of this analysis approach in
considerable detail, in order to give the reader an under-
standing of its range of validity. Of course, not all
aspects of available results pertinent to this approach
could be covered within the time and space allotted to this
report; the reader interested in particular topics may do
well to consult some of the references given here, as well
as some of the background information cited in these refer-
ences.

Although the results presented in this report are limited
to linear coupling, a study of nonlinearly coupled modes has
been published recently (Ref. 21). This study shows that the
net energy flow between nonlinearly coupled modes also occurs
in the direction of the energy gradient, and that no energy
flows if the modal energies are equal.

T'he present report has dealt essentially only with two
coupled modes, or with two coupled mode sets, but not with
more sets or modes in cascade. For loose coupling, extension
of the two-set results to multiset-systems can readily be
accomplished. Such extensions and applications of them appear
in Refs. 22-24, and a complete electric-circuit analogy for
energy flow in multiset-systems is developed in Ref. 25.
As yet unpublished calculations indicate that the power flow
between any two adjacent modes of three linearly coupled
modes in cascade is proportional to the modal energy difference,
even if the modes are well coupled; however, here the factors
of proportionality generally involve properties of all three
modes and thus differ from the two-coupled-mode case.

Calculations on the basis of the statistical energy
approach of variances and confidence limit4 in addition to
the commonly computed averages of the dynamic variables, are
presented in Ref. 18. Illustrations of applications of the
statistical energy approach and discussions of the problems
which have been studied by means of it appear in Refs. 17-19,
22-28.

At present the usefulness of the statistical energy
approach in predicting vibration responses under practical
circumstances is limited by the amount of information that is
available concerning coupling coefficients and loss factors.
Approximate determination of sound-to-structure coupling
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coefficients (or resistances) often is not very difficult,

as indicated in Ref. 5, but calculations of structure-to-

structure coupling coefficients may involve considerable

effort (e.g., see Ref. 18). A reasonable amount of infor-

mation on the dissipative loss factors of materials and

simple structures is available in the technical literature

(e.g., Ref. 13), but the loss factors of built-up structures

can still not be estimated with much confidence - although

some progress is being made (Ref. 29).

The statistical energy approach is a uniquely simple

and powerful tool for providing one with a qualitative

understanding of the most important aspects of the vibra-

tions of complex systems. When combined with other,

analytically or experimentally derived, information

concerning the energy transport and dissipation parameters

involved in a given case, this approach also permits one

to arrive readily at quantitative answers to complex

vibration problems.

-59-



REFERENCES

1. Kin N. Tong, Theory of Mechanical Vibration, John Wiley
and Sons, Inc., New York, 1960.

2. E. E. Ungar, "Mechanical Vibrations", Mechanical Design
and Systems Handbook, Ed. by H. A. Rothbart. McGraw-Hill
Book Company, Inc., New York, 1964.

3. B. Friedman, Principles and Techniques of Applied Mathe-
matics, John Wiley and Sons, Inc., New York, Chapt. 4,1956.

4. W. R. LePage and S. Seely, General Network Analysis,
McGraw-Hill Book Company, Inc., New York, Chapt. 1, 1952.

5. P. W. Smith, Jr., and R. H. Lyon, "Sound and Structural
Vibration", NASA CR-160 (March 1965).

6. S. H. Crandall and W. D. Mark, Random Vibration in
Mechanical Systems, Academic Press, New York, 1963.

7. T. D. Scharton, "Random Vibration of Coupled Oscillators
and Coupled Structures", Doctoral Thesis, Mass. Institute
of Technology, October 1965.

8. Lord Rayleigh, Theory of Sound, Dover Publications, New York,
Vol. I, p. 104, 1945.

9. P. Morse, Vibratioa and Sound, McGraw-Hill Book Company, Inc.,
New York, pp. 12-16, 1948.

10. R. H. Lyon, and G. Maidanik, "Power Flow Between Linearly
Coupled Oscillators", J. Acoust. Soc. Am. 34, 623-639
(May 1962).

11. S. H. Crandall, "Statistical Properties of Response to
Random Vibration", Ch. 4 of Random Vibration, Ed. byS. H. Crandall, The MIT Press, Cambridge, Mass., pp. 21-32,
1958.

12. D. C. Karnopp, "Basic Theory of Random Vibration", Ch. 1 of
Random Vibration, Volume 2, Ed. by S. H. Crandall, The MIT
Press, Cambridge, Mass., 1963.

-6o-



13. B. J. Lazan, "Energy Dissipation Mechanisms in Structures
with Particular Reference to Material Damping", Sec. I of
Structural Damping, Ed. by J. E. Ruzicka, Amer. Soc. Mech.
Engrs., New York, 1959.

14. E. E. Ungar and E. M. Kerwin, Jr., "Loss Factors of Visco-
elastic Systems in Terms of Energy Concepts", J. Acoust.
Soc. Am. 34, 954-957 (July 1962).

15. M. Heckl, "Vibrations of Point-Driven Cylindrical Shells",
J. Acoust. Soc. Am. 34, 1553-1557, October 1962.

16. V. V. Bolotin, "On the Density of the Distribution of
Natural Frequencies of Thin Elastic Shells", J. Appl.
Math. and Mech. 27, No. 2, 538-543 (Transl. from Soviet
Journal: Prikhadnaya Matematika y Mekhanika, 27, No. 2,
pp. 362-364, 1963.

17. G. Maidanik, "Response of Ribbed Panels to Reverberant
Acoustic Fields", J. Acoust. Soc. Am. 34, 809-826
(June 1962).

18. R. H. Lyon and E. Eichler, "Random Vibration of Connected
Structures", J. Acoust. Soc. Am. 36, 1344-1354, July 1964.

19. E. M. Kerwin, Jr., "Mechanisms and Measurement of Structural
Damping", Ship Silencing Symposium, Groton, Connecticut,
May 1963.

20. E. E. Ungar "Recommended Studies of Vibratory Energy
Dissipation and Conduction in Aerospace Structures
FDL TDR 64-111, Appendix C, (August 1964).

21. D. E. Newland, "Energy Sharing in the Random Vibration of
Non-linearly Coupled Modes", J. of Institute of Math. and
Its Applications 1, 189-207 (September 1965).

22. E. Eichler, "Thermal Circuit Approach to Vibrations in
Coupled Systems and the Noise Reduction of a Rectangular
Box', J. Acoust. Soc. Am. 3, 995-1007 (June 1965).

23. R. H. Lyon and T. D. Scharton, "Vibrational-Energy
Transmission in a Three-Element Structure", J. Acoust.
Soc. Am. 38, 253-261 (August 1965).

24. R. H. Lyon, "An Energy Method for Prediction of Noise and
Vibration Transmission", Shock, Vibr. and Assoc. Environ-
ments, Bull. No. 33, Pt. II, pp. 13-25 (1964).

-61-



25. D. U. Noiseux, R. H. Lyon, C. W. Dietrich, E. A. Starr,
"Dynamic Response, Energy Methods, and Test Correlation
of Flight Vehicle Equipments", AFFDL-TR 65-92, Vol. I,
Appendix III, (May 1965).

26. R. H. Lyon and G. Maidanik, "Statistical Methods in
Vibration Analysis", AIAA Journal 2, 1015-1024 (June 1964).

27. P. A. Franken and R. H. Lyon, "Estimation of Sound-Induced
Vibrations by Energy Methods, with Applications to the
Titan Missile", Shock, Vibration, and Associated Environ-
ments, Bull. No. 31, Part III, pp. 12-26, (1963).

28. I. Dyer, "Response of Space Vehicle Structures to Rocket
Engine Noise", Ch. 7 of Random Vibration, Vol. 2, Ed. by
S. H. Crandall, The MIT Fress, Cambridge, Mass., (1963).

29. E. E. Ungar, "Energy Dissipation at Structural Joints;
Mechanisms and Magnitudes", FDL-TDR-64-98, (August 1964).

-62-



MODE 1 MODE 2

COUPLING,L
ELEMENTV

FIG. 1 TWO COUPLED MODES

A IA 2

MODE 1 P' 2 2 (<T>-<T>) ODE 2

FIG. 2 POWER FLOW DIAGRAM FOR TWO COUPLED MODES
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FIG. 3 TWO COUPLED SETS OF MODES
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ATa ATo

MODE SET a P ap2Op(T) OD E

T Ta T TD

VDTa VDTO3

Aa = N aAa =TN asa/ma M

TTa = NaTa = <Va> ma/2 = Na<Va2> m/2 (17),(18)

Pa(3 = "aj3(Ta-T,3) (61), (68), (69), (79)

Oa3 = NaNJ3o = 2wo Nia6 = 10 Np)3 (68),(88)

See next page for definitions of symbols.
See pp. 39, 40 for summary of restrictions
under which the above relations apply.

FIG.4 POWER FLOW BETWEEN TWO SETS OF MODES
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SYMBOL DEFINITIONS FOR FIG. 4

The following abbreviations are used in this list of symbols:

t.a. time-average tot. total
s.a. set-average m.s.a. mode(s) of set a

Symbols Definitions

ATa t.a. tot. power supplied to all m.s.a.

DTa t.a. tot. power dissipated by all m.s.a.

TTa t.a. tot. kinetic energy of all m.s.a.

Aa s.a. of t.a. power supplied to single m.s.a.

D a  s.a. of t.a. power dissipated by single m.s.a.

Ta s.a. of t.a. kinetic energy of single m.s.a.

N a number of modes in set a

ma tot. mass of elastic system containing the m.s.a.

-2<Va> t.a. and space-average mean-square velocity(of elastic system containing set a) due to all m.s.a.

<V > t.a. and s.a. mean square velocity of single m.s.a.

Sa s.a. spectral density of forces acting on m.s.a.

Tia dissipation loss factor for set a

1ap loss factor pertaining to power flow from set a to set

11o center frequency of band containing all modal resonances
of both sets

0 ao set-to-set power flow coefficient

00 mode-to-mode power flow coefficient (averaged overboth sets)
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