MEMORANDUM

RM-4920-PR
AUGUST 1948

TO READ NATURAL TEXT
WITH COMPLEX FORMATS

- Patricia A. Graves, David G. Hays,
Martin Kay and Theodore W. Ziehe

)
O
g . COMPUTER ROUTINES
2

This research is sponsored by the United States Air Force under Project RAND—Con-
tract No. AF 19(638)-1700—monitored by the Directorate of Operational Requirements
and Development Plans. Deputy Chief of Staff. Research and Development. Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
" representing the official opinion or policy of the United States Air Force. T

DISTRIBUTION STATEMENT

Distribution of this decument is unlimited.

2 RA D&wm

1700 waIN 8T o sAN'l MONICA o CALIFORNIA « 98400

00508147 -

" e,

PREFACE

Use of the computer as a tool for managing files bfAtext
as a part of information systems for management or science -
or as part of linguistic reséarch - is more convenient if a’
standard format is m;intained internally., But for the con-
venience of input typists, the designer must be free to set
up keyboard arrangehents and special conventions aCCOrd;ng‘to
his requirements for each job. The present Memorandum des-
cribes programs facilitaﬁing the connection of an arbitrary
input scheme with either a standard internal storage scheme
or any arbitrary outﬁut scheme,

| The present Memorandum is intended for use by system de-
signers. The authors hope that it wili be useful to anyone
with ordinary text to process and a computer to do the pro-

cessing,

.

ey =

SUMMARY

This Memorandum describes a set of subroutines for the
IBM 7040/44 computers for reading textual material with come
plex formats and coding conventions--questionnaires, libravv

éatalog cards, etc.-=-from any external medium into the high- |

speed storc of the machine, Different kindspf‘informainn in |
the input are recognizcd by explicit markers, position on the H
line or page, or syntactic clues given by other items, Less
complex material requires only a portion of the sygtem. In-
formation may be recoded according to the user's conveﬁtinns
before being delivered to his program. The routines may he

called from either FORTRAN- or MAP-coded programs,

FOREWORD

The variety of tasks to which digital computers are
applied is rapidly increasing, and more and more of fhé
computer's time isAheing devoted to non-numerical work,

;much of which involves processing ordihary-language text
in one form or another. Research in linguisfics,‘ﬁaéhiﬁénf o
translation, énd'documentation can only proceed if large
files of text are availabhle. The Linguistics Project at
RAND, in collaboration with the Centre d'Etudes pour la
Traduction Automatique of the University of Grenoble, has,

over the past two years, developed a method of encoding'
linguistic data on magnetic tape so as to capture all the‘
information from the most complex printed page.* This for-
mat greatly facilitates the exchaﬁge of information,

The programs described in this Memorandum are intended

for reading texts in other formats so that they can then

wbe'processcd by Standard'programs'or“reéencddéd”éééafdihgI'"
. to the standard conventions,“‘It,ié expected that fhevteXt
 in 1ts original form will often be most unsuitable for
computer processing, having been produced W1th some quite

different purpose--automatic typesetting, library catalog

*

For a detailed description of the application of this
format to text, see Martin Kay and Theodore Ziehe, Natural
Language in Computer Form, The RAND Corporatlon, RM=43T0-PR,
February 1965,

-viii-

card preparation, etc.--in mind, and in these cases a
great deal of preliminary work will be required hefore the

material can be used, For this reason the programs deccrlbed

7here will sometimes seem cumbersome and unnecessarlly

comp11cated. However, every attempt has been made to divide
the work up among several autonomous routines, the whole

set of which will only rarely have to be used together.

.If the format is simple and the keys explicit, then the

largest and most sophisticated routines can be left out.
Conversely, if the format is complex and the distinctions
subtle, then the whole system will probablv”be required-

and the labor involved in spec1fy1ng the parameters for

_each process will be correspond1ng1y greater,

This Memorandum is divided into two parts, the‘first‘
of which is an introduction to the systém as a whole and
to the individual programs. Since the routines are intended
to carry out sophisticated processes on almost any kind

of textual material, the directions required from the user

~are very comprehensive and detailed., However, the amount

of programming experience required to use the routines is
actually very small,

The second part (Appéndix) is a detailed programmer's
guide, giving all the information necessary to use the
routines, The Appendix will only be intelligible to a

reader with some programming experience, but this need not

-ix-

be very extensive, These programs and any others developed

by the Linguistics Project at RAND are available to others

on request,

- APPENDIX

-xi-

CONTENTS

;

PREFACE0’.0.00.....‘."OOOOOOCOOOOOO00.'.0...‘0 ii“i

Section

10 INTRODUCTION ..0.0.0.Q.‘..'.'Q.!O...-O;.OQ..

1.
1.
1.

o THE
THE

L]

THE

THE
THE

N o %, T W ~N
.

THE

1. Sho_rtcomj-ngsi.......‘Q..‘..'.......
2. I)GSiderataO.........l.

3. Ovcrall DCSign ..oooooooooooooooooi_

LINE b!AKER ...l.‘......0‘.6.....'.....‘

pAGE blAKER"....0........“...............

FORMATTER'..."OOO..00."..0‘..00..;
pARSEROO...'.‘.O...Oll"'..;..."..

SELECTOR O.'....0‘00..00...‘..0.00..0.;‘

RECODER‘O.'..i..".‘...'...0.

® 0P 0005800 HS SO O S E O OSSO0 ONEE S OO OSSO OSEEBSPSEOSEEEDNS

7SUB{M.ARY . olro seses s o‘.o se0se000ss0essec00err00e e n'i'qwmy/v' e !

‘ FORE]‘:‘JRI' ..CO‘....‘....0...0...0‘0.400.....0’.‘.0...~Vii

- Y7y

20
30
38
60

63

89

COMPUTER ROUTINES TO READ NATURAL TEXT

WITH COMPLEX FORMATS

1. INTRODUCTION

In a typical computer job, a program is written first

"and then data are prepared for it in a form_thé machine can

"fééd1”'Thewdetaiiszbf fﬁéwdéta'féfﬁéfJQHbﬁwiﬁé”huhiéfé.Sgéii
be represented, where they will be placed on the card or
line, how program options are chosen--afe dictated by the
program., It is right that they should be hecause data are
‘most often prepared for a single program, and one forma; is
usually as convenient as another for the person preparing
the data, though not necessarily for the programmer, Sys-
tems programs provide a minimum of assistance in the form
of routines for converting numbers found at-a certain

place on a line to binary form. . .

| 1,1, Shértcomings - e

However, under some conditions, this way of doing

things is intolerable either because the data format

exists before the program or because the amount and com-

plexity of the data are such that the burden on the persons

preparing the data far outweighs that on the programmer,

Linguistic data are a case in point, Most of the raw

material used in linguistic, literary, and bihliographic

cémputing consists of text, The amount of material to

be processed is often large, and the tedium of keypunching

.2-

or typing ordinary ‘texts so as to preserve all the typo-
graphical distinctions of the original is often very

great, This leads to compromises and short cuts that

often entail more labor in the long run, for a single -

text -could often be profitably used in other processes

than that for which it was first prepared if sufficient

- information from the original had been preserved, Further-

more, text is now becoming widely available in a form .

acceptable to a computer from sources outside research

and computing, notabhly as a by-product of the.printing'

process itself. This will save the scholar tedious work
if he can convert the by-products intO»usahle‘form.

It is therefore wrong that linguistic computing

- should continue in the traditional pattern with a new data

format for each new job., There is a pressing need for a
standard computq# format for textual material and for
flexible methodsiof getting material from widely differing

sources into this format, . The most profitabhle direction

for linguistics computation to pursue is a method that
goes beyond the well-known '"format statements" of FORTRAN

and the like, The programs that we describe here, used

in various combinaticns, accept data in a wide vafiety of

formats, on diverse media, and leave the data in core

storage ready for whatever processing the user requires,

‘1.2, Desiderata

The person who prepares text for a computer is the
machine's eye, His task is to record in a series of
codes on a punched card, a role of paper tape, or in
whatever medium, everything of significance on the page.

This task includes not only encoding sequences of letters

and marking differences of type font and style, but also =~ 7

noting the position of each mark on the page. Positions
are critical for the proper interpretation of diacritics
and underlines and for the identification of titles, sub-
titles and footnotes, Page positions are equally important
for tabular material such as questionnaires, directories
and catalogs.

The best way to collect samples of text iS to eavesdfqp
on the process that actually pfoduces the page of print.
Fof example, it is easy to salvage the punched paper tapes
used by the pfinter,to drive his typesetting machines.
Ideally, nothing should be pfinted on the page that was
not expressly directed to its place by instructions on this
- tape, In real life, printer§ often correct the type after
it has been set and adjust the machines manually, leaving
no mark on the tape. The method therefore falls well short
of perfection, though it is certainly the most economical,
If we cannot eavesdrop, we must produce a replica of the

original and monitor our own process, We might, for example,

replicate with a typewriter and monitor with a tape punch,

The programs that interpret the final stream of codes

reconstruct from them everything of significance about the

page of print they represent. This is not necessarily straight

forward, There are often many ways in which the operator

- of the original machine could have gone about producing a

a given result on the hard copy, and we dare not suppose that
one.way is consistently preferred to the rest, Byilbpkjng‘m
at a typescript we cannoi tell whether the shift key was
pressed immediately after the period at the end of a sentence,
bétween the two spaces separating sentences, or imhediately
before the Eapital beginning the second scntenéé. We cannot
tell if the_shifi key was pressed and instantly released

~at any place in the documént. These are differences that

do not chénge the appearance of the final‘rcéult; they are
'therefore matters of no concern to the person at the key-
board. However, if there is a paper-tape punch connected to
the typewriter, the codes it punches are different in each

case, Consider the case of underlining., A typist may

"underlipemhofds‘éﬁé'Bywéné;wﬁééképééihéhf¥sawghe end of the
word‘each time, or she may backspace after every letter,

or she may underline only when she has finiéhed'everything
else on the line, or she may have no consistent policy, So,
the underline that goes with a letter can océnr‘before

or after it in the stream of codes and can be separated

from it by a large or small number of other codes that

affect quite different places on the line,

Our programs therefore begin by reconstructing, in
coded form, the sequence of characters thaf were produced
on the hard copy. »Since we wish to accept input from a
"number of different'machines (keypunches, typewriters, etc.),
our programs are capable of disenfangling information about
the appearance of the page from information about incidental
properties of the initial machine, A given machiné may re-
turn tﬁe carriége and advance the page with two control sig-
nals or with one; it may or may not have a tahulator control,
and so on, The programs use a formalized description of a
particular ﬁachine as a guide to the interpretation of the
input codes; the sequence of characters constructed by our
programs to represent a page will be the same no matter what
initial machine prepared the input,

A strategy of muck or little generality might be pro-
posed for describing a text-encoding machine to a computer
and having the computer use it to decode text, The programs
reported in the present Mcmorandﬁm are capable of develop-
ment ih various directions, but to understand them in their
present form the reader needs to be aware of some important’
limitations that we have accepted,

1. Each character is taken to occupy the same amount

of space on the line--there is no allowance for

proportional spacing.

1,3, Overall Design

-6~

2. The sysiem always assumes as much space to
be filled on a line as was in fact filled., This
means that there can be no means of deleting
a letter--for example, by overstriking with "X"--
that will cause the character to disapppear

- from the record. On the other hand, combina-
—-tions produced by overstriking are permitfed.

3. The basic unit of information is the printed line,
Once a "line feed" code has been issued, the
current line is accepted as it stands, and work
begins on the one below., Within a given line,
attention may be directed to different character
positions by the normal advance that accompanies
a character, and by tabs, backspaces and.carriage
returns, If future machines provide for rolling
the platen down as well as up by pressiﬁg keys,

they will require a modification to our system.>

‘The overall design of the system is shown in Fig, 1,
The magnetic tape image is disentangléd by the character
reader (characters may be pécked together in unhandy,'if not
irratioﬁal, ways on the tape); characters pass one by one

to the line maker., Operating in accordance with a formalized

description of the input machine, which the user supplies in
the form of a set of tables, the line maker assembles a single

line of text from the input stream, This routine also

Keyboard Input Device

Character |Reader
1 | .

Description of > . |
Input Device Line Mloker \

¥

Page Pommefer}————— Page M‘oker
.‘
Page Il.oyout}———’ Formaﬂ

5
(Biock Grommars

vi
C Requests >———. Selecf:or‘

i

Recoding Tables Recod#f

!
- * The user's program refers to the line moker! ‘directly only
~ when the page maker is not being used i

YAV

User's Prﬁgrom

i
, Porse?'

1 5 ‘ .
Fig.1—-The overall design of the system

o

3

-8-

converts characters from the input codc to a code established
by the person supplying the tables. The line maker is
described in Sec., 2.

The line maker serves as a subroutinc to a second

routine called a page maker (Sec, 3) whose function is simply

to collect batches of lines that will go through subscquent

~-steps together., The logical status of a line in a text

sometimes has to be defermined by reference to other lines.
In a certain’ﬁontext, a line immediately preceded or followed
by ‘a line of blanks must perhaps be treated in a special way,
or, if the information on the page is arranged in columns,
information of a certain kind is contributed by small parts
of different lines, Tﬁe context for operations of this kind‘
must all lie within what thé system knows as a page.k The
system recognizes a page by the line or sequence of lihes
that ends it or begins the following one; the user must
specify how thesc lines are to bé recognized, | -
... A routine called a formatter (Sec, 4) takes each page -
and does little or much, depending on the complexity of
the page layout, Its job is to identify areas on the page
that contain different kinds of information, An ordinary
page of prose requires almost no work of the formatter,
Text arranged in columns}ié easily handled provided it is
known how wide each column is. In more complicated examples,
a single column may contain several kinds of maierial, each

of which is either known to occupy a set number of lines,

or is dist;nguishable from its surroundings by more subtle
means, Part of a page 6r a column may be solid, whereas
anbther part may be divided into columns or subcolumns,
The formatter'divides,thewpagc,into rectangular blocks by
a sequence of hpfizontal or vertical slicés in acCordance’
with instructions supplied by the user of the'program.

By this,stage,~the»progfam-is supposed to know as -
much as can be gleaned from fhé page layout, Ilowever, some
blocks may still contain logically hetcrogeneous information.
Suppose a particular block contains a bibliographic
reference; we know from the formatter which block it is,
If gross features of posifion on the page do not suffice
to distinguish author, title, publisher, etc., more sqhtle
means must be’édoﬁted. The syStem allows the inclusion of a
parser capable of applying to the contents of a block grammati-

cal rulgs tailored to the kind of informafion-in that b1c$k.

These rules may result in a finer subdivision of the blocT.

A parser is only applied to_blocks that need it, and for-
' some purposes no parser is needed. A relatively simple |
pafser’is described in Sec, 5.

The blocks delineated by the formatter, and the seg-
ments within blocks identifiédrb}“tﬁe parser; can be collected
into new combinations in preparation for output, When
necessary, the selector described in Sec, 6 is used for
this purpose. The internal code produced by the line maker

is translated by the retoder (Sec, 7) into the final form

required by the user,

«10-

A page is stored in the computer as a rectangular
array in which each cell represents a character position,
The code for a character occupiés 24 of the 36 bits in the

. cell, This may seemﬂprqdigal,”butﬂit has the great advan- .
7'Mtagev6f”ailoﬁing properties of characters to be repre-
‘sented by individual bits, Thus, one bit can be uscd to
distinguish digitsvandranothef punctuation marks. One
can be used for italics, one for upper case, onc for under-
lining, and so on, This possibility greatly simplifies the
remainder of the system,

" A cell containing only zefos represents a blank; other

codes are specified by tables supplied by the user. A
standard convention'is adopted for the blank bhecause thé
computer must know what code to store for those parts of
the page that the original input device never visits
and because of the strategy adopted for handling over-
- struck characters. The characters remain in this array
throughout the process to berdescribed.' The result of
subdifidihg fhe page is shown by means of coordinates
rather than by moving material to new storagc locations.,
This means that it is possible, in princiblé, for

the blocks into which the page is.cut to overlap, though
it is not clear that any good can come of this,

What is finally passed to the program using this
‘input system is a page, the result of dividing a

page into blocks and segments, or the output of a parser,

-11-

It is therefore of some intgrest to establish a standard
form in which to deliver a unit of text, Economy clearly
requires that an indication of the part of the page occu-
pied by a unit be given rathér than that the characters
themselves be moved, If only blocks were inveolved, it would
be sufficient to deliver coordinates--first and last row
and column. Howéver a parser may find segments of scme-
what odder shapes. Nevertheless, four parameters are prob-
ably enough, namely first and last column and first and
last character in the region so defined (see Fig. 2). 'For
this purpose, of course, all columns are fcgarded‘as-running
froh top to bottom of the page. |

Suppose a page accommodates 2000 characters arranged
in 50 lines of 40 (see Fig.vZJ. The formattér has recog-
nized five blocks, A, B, C, D, and E, Block A consists
- of the top 15 lines of the page and block E of the bottom

24, Lines 16 through 26 are occupied by B, C, and D arranged

side by side with widths of 20, 12 and 8 character posi- . . .~

‘Wtions each, Block C can be specified by the numbers 21
and 32 (the character positions that bound it) and the
numbers 181 and 312 (the serial numbeté of the first and
last‘characters falling within these limits and contained
in C). _Similarly, the block A can be specified by the
quadruple 1, 40, 1, 600, Now, suppose that a parser has
been set to work on block C and that it has identified,

among other things, the sequence "John Doe, Inc. (New York.)"

40

33

21

John Doe,

LI

New

Inc,
York.)

—n — Gmmm G Gt Gte— G—— G— — G— — G — — — — —

. Gy T Gm— G—— Gm—— — fi— G W G S— = — — a——

- Fig.2—Sample pagé

16

27

50

w]l3-

beginning with the 3rd character of the 7th line of the
block and ending with the 6th character of the 9th line,
These are, infact, the 255th and the 282nd characters in
the region bounded by the 21st and 32nd columns, The
sequence can thereforc be uniquely identified by the quad-

ruple 21, 32, 255, 282,

2. THE LINE MAKER
A keyboard input device (keypunch, paper?tape type-

writer, etc.) may or may not have shift keys, but whethef

it does or does not, the user may wish to use certain keys

as‘shifts; He may, for example, wish to bound by asterisks

sequences that arc to be taken as being in bold facé.

If the machine he is using already has a built-in upper-

and lower-case shift key, this means that he has effectively

four shifts., One of his shift keys, the built-in one,

does not cause the carriage to move, whereas the other,

the asterisk, causes it to move forward one position.

The effect of a shift key, whether built-in or conventional,

is to chénge the significance of-othgr keys. After one shift,

a given key produces an "a'", after another "A", and so on,

On a machine with two or more shift keys, the effect of

one shift key, or even whether a given key functions

as a shift, could in principle be determined by the shifts

already made. Thus, if only lower-case boldface type

were required, the asterisk could be used to indicate

wlf-

this; in the upper-case shift, the same key might produce

say, a dash,

In general, then, tlle description of the

device furnished to the line maker| consists of a number

of major parts, one for each of the shifts that the devic

or the user's conventions allow,

For each shift on the input device, the description

1 .
vides a table with onec entry for each permissible input

code, As e ﬁh code is received, it is referred to the tal

for the current shift, and four kinds of information are

-obtained:

(i) A binary number representing a graphic mark.

If the incoming code represcnts a space, béckspe

tab, shift, or move of the device that does not

produce an actual characﬁer, then this binary nt

. . | ‘ .
is zero., llow binary numqers are assigned to cha

acters is important, ard we return to it shortly

(ii) An'indication of any movement of the ;arfiage'

implied by the code, There are five possibiliti

a,
b.
Ce.
d,

€.

No movement ("“dead key"™)

Space forward

E
Backspace | '_!
Tabulate L

Return carriage

(iii) An indication of whether the current code makes

the input device advance to a new line., A code

that does this can have other ﬁéahings; it can

also produce é carriage return, a shift, or even
a graphic mark. |

(iv) An indication of any change in shift entailed
by the current code,.

The description of the input device has one further

part, nameiy a list of tab sfops. This list is separate from

the remainder of the description since it can be expected =

to change more often, It has as many entries as there are
character positioﬁs on the line. The entry for a given
character position gives the number of.the'character position
where the next tab stop is set, Thus, if the device is at
character position p and the code representing a tab is re-
ceived, the number in entry p on the list replaces p as
current position.

To simplify the detailed description of the line méker
we assume that the main part of a device's déscriptioh (all
except the tab list) is stored in the form of four rectangular
arrays. In each array, the rows-represent codes issued
by the device and the columns shifts. The notation “Char[i,j]"
will then mean the entry in the "Char" array for character
j and shift i, The four array§ are as follows:

(i) '"Char" contaiﬁs the binary numbers representing

graphic marks. | |
(ii) 'Move'" contains the indications of carriage

movement--cne of five possibilities for each entry,.

(iii) "Feed"'may be regarded as a Boolean array in
which the entry in a given cell is set to true if
the correspond1ng shift and character represent a
line-feed (the last code of a line) and otherwise
to false. . |
(iv) *shift" contains, for a given'current shift
If the current code is not a shift character, then
the entry contains the current shift,
Figure 3 is a floﬁ chart of the line maker, There p
is an 1nteger variable g1v1np the current pos1t1on of the
carriage, When the routine is first entered, p is undefined,
for there is usually no way of knowing where the carriage
was efore the first code was issued. For this reason, it
is standard practice to arrange for the first code to be
that for a carriage return. The value of s, an integer

variable, represents the current shift, Like p, it is appar-

ently undefined on first entry to the routine, llowever, |

the user must in fact set s to some reasonabhle initial
value sinee it is otherwise impossible fdr the routine to
ihterpret any codes at all,

The line maker prepares one 1iﬁé[éaéh'iiﬁé it is
entered, Accordingly, it begins (Box 1) by filling the
array representing the line with zeros--the agreed repre-
sentation for blanks. Then a character is read (Box 2).
At the beginning of work on a new line, the current posi-

tion on the line (p) is not necessarily 1 since there'may

1

¢: = input

l

line
line [p] u[?:]hcr [s.¢]

Carriage
retum

p:=1_ ‘ p:=p+1 : A p:~=p-l p:=tab[p]

EXIT

Fig.3—Flow chart of the line maker

=18~

not have been a carriage return at the end of the preceding
line, 1In position p in the line array is now placed the
logical sum of thc binary number of the new character

' specified by the current code and shift and the previous
oecupant of that position (Box 3).

We can now sce why the choice of binary numbers to
represent characters is important, When a character posi-‘
tion is first encountercd, thc operation of taking the
logical sum:has no effect other than to enter the number
for the new character in that position. If no graphic
mark is associated with the code, the binary numher'assigned
to that code is zero, and the contents of the current '
character position remain unchanged. Now, when a'characf
ter is underlined, the number that ultimately occupics
that position in the line array must be der1vah1e by mcrelv
combining that character with the underline, One way tou

do this is to assign a numher'consisting of zeros except

for one hit to the under11ne and to 1nsure ‘that th1s bit

”1s zero for a11 other characters. Similar considerations
apply to accent marks., If there is an accent that may
combine with any vowel, then the result of taking the
‘logical sum of the corresponding bhinary numhers must alwéys
be a code that can he arrived at in no other way, Illow-
ever, the combhination of an accent with a consonant or
other character can be allowed to result in a nﬁmber that

represents some other character or no character at all

since this would in any case be a mistake, Notice that,
with suitably chosen numbers, such overstruck characters
as "t" "§", and "p" are automaticaliy provided for.

The next thing the line maker does (Box 4) 1s to take
“note of the carriage movement spec1§1ed by the current code
and shift, The forward movement accompanying a normal
character or a space causes p to be incremented by one
(Box 6); a backspace decrements p by 1 (Box 7). '"Carriage
return" resets p to 1 (Box 5) and "tab" gives n a new
value obtained from the table of tab stops in the manner
already described (Box 8).

A variaﬁle L is now set to true if the current code
and shift indicate a liﬁe end and otherwise to false (Box 9),
This information is obtained from the "Feed" array. Next,
thg number correSpoﬁaing to fhe new shift, or to the current
shift if this is unchanged, is obtained from the '"Shift"

" array and made the new value of s (Box 10). Finally, the

variable L is examined to see if the line is complete (Box 11).

If not, we return to the pbint where a new code is read
(Box 2) aﬁd continue processing‘éharacters in this manner
until a line-feed is encountered, |
'It is an impertant feaiure bf this scheme that shift,
carriage movement, liné-feed, and even graphic marks
-are regarded as independent entities, any combination of which
may be represented by a single code. If the line-feed key

on a machine is separate, it has a vacuous mark associated

-20-

with it, but it takcs no morc than a simple change in a
table entry to make this mark non-vacuous, A machine
combining the functions of carriage return and linc-feed

‘can likewise be accommodated by appropriate table entries,

3. THE PAGE MAKER

The first major component of the input processing
-,s&stem is’a”program,calléd the page maker, It reads a
sequence of lines, using the line maker suhroufine,;and
identifies a groﬁp of one or more lines as marking the bounda
between two consecutive pages, When a boundary is recog-'
hized, the page maker returns contr:l to the user's'program.
To use the pégemaker, one must provide all of the
input information needed by the line maker--a desCription of
the input machine and of the conventions followed in
typing text, The user also supplies a description of the
~ kind of line or sequence of lines that mark the end of

each page, Since pages can end in many w5ys, the page maker

allows the u;erh;qﬂspecjfywpqgndgriesrin”thewsame fairlyﬁ_ﬁwhwww}mw

rich language that is used in the formatter (Sec, 4). A

line can be described as consisting of all blanks,’all undeff
scores, blanks ekcept for a designated sequence of characters
in fixed or variable position on the line, and So on, A page
boundary can consist of a sihgle line of a designated kind,
or df several kinds in a fixed sequence, A boundary can

be defined as a liﬁé of any of several different kinds, or

dif ferent boundaries can be made up of lines of different

e v < pr—— e e s — 2 -

-21-

kinds in different orders., The user pays a small penalty
for this freedom; even if his needs are simple, he cannot

avoid a certain amount of complexity,

To obtain a page then, the user allocates a block

of storage space to 1t sets aside four cells for para-
meters that will identify its first and last column
numbers and its first and last character numbers, sets
“ma maximum depth for the page, and reserves one cell f°rLV
reports of any oddities that the page maker finds in ‘
doing its work. Since one cell will be used for each
character on the page, the amount.of space to be resefved
for storage of the page itself is the product of maxlmum
width by maximum depth, The user must state maximum
width, since the first several lines on the page may not?

‘be filled completely; he designates maximum depth in

ordef| to avoid the -pitfall that would otherwise be c~ea;ed
i

by fa11ure to insert a page boundary in the input,

f the four parameters that identify boundarles of

mthe'rage only one is in fact 51gn1f1cant. Every page

begins in column 1 and extends through its maximum column,

It begins with character number 1, but its last.character
~has to be determined by inspection of the input stream,
The four parameters are required for consistency with

what follows (as explained in the description of the

formatter, Sec. 4). : ' i

The description of the page boundary supplied by the
user is a short program that examinés every line when it
is delivered by the line maker., If the line quélifies
as a possible last line of a page, the description program
- goes on to test the preceding line and, if thétlline
qualifies as a possible next to last line, the one before

that; boundaries are_aiways tested from the bottom up.

~-The group of lines comprising'a'boundarY”can”bé"treated"““'MW””“””“"”’

either as the end of a page or the beginning of one; if
they end a page, the next liné of input will not be
constructed by the line maker until the user calls’thQ
page maker again; if they mark the beginning of a page,
they will be stored until the next page maker call, then
moved to the head of the page.

Let us suppose, for example, that each page ends
with a blank 1ine.below the text matter, followed by a
page number thﬁt appears on the left when even, on the
right when odd, followed By exactly two blank lines, The
program tests whether the last two iines delivered by
line méker are blank, If they are, the next preceding
line is tested‘against each of two possibilities: a
number followed bf blankémﬁg;bss the line,.or bianks
across the line ending with a numbef. If either of those
conditions is satisfied, the next preceding line is tested
against a4 description of an all-blank line, and if it

passes the test, the end of the page is recognized, The

boundary lines=--four lines, hiank everywhere except for

a page number at the right or left on the second line--are
delivered by page maker together with what preceded them.
The next line is produced by the line maker whenever the

- page maker is called. | '

But suppose that the user's input stream consists

of short statements, say two or three paragraphs, each

: béginning with a caption of some kind, Spécifically;“ o
suppose that each page begins with two blank lines, and
that on the firét nonblank line, after .a paragraph inden-

-fation; there is én underscored word or phrase followed
by a period, two spaces, and solid text, Such'a boundary
cannot be taken as the end of a page, since the caption
must stay with what follows. The page maker examines each
liné_to sce whether it begins with a caption, then checks
for two preéeding blank lines. The three-line group is

. preserved in memory; the page delivered does not include

the newly found bdundary; but when the page maker is

__called next it moves those three lines-to~the“top*of”the;
page storage area before reading another line from the
‘input stream and proceeding, To avoid‘error, the user

- must always remember that the page storage area just below
the end of the page he is using can contain the beginning

- of the pagé that he will see later, He must not tamper

with that area between successive calls of the page maker

when his page bovndaries are heginnings rather than endings,

.24

A line description is a statemeht of the characters
it can contéin, and the order in which they can occur,
The lines that.participate in boundary markers commonly
include long strings of identical characters: blanks,.
asterisks, and so on., In‘our program, a line of blanks
is described this way: |
0. Start with the first position on the line,
I Does the position contain a blank?
If yes: Move to the‘next position and
redo step 1,
If no: Hold the same position and per-
form step 2,
2. Does the position contain a line-feed?

If yes: The line is blank,

If no: . The line is not blank.
If a line contains blanks eveiyﬁhere except for a line-feed
in the last position, this description causésl;hé computér
to apply step 1 at each position, finally moving to step 2
and recognizing the line, Putting a line-feed in the
first position reduces the labor to be performed, since
then step 2 is performed after a single execution of
step 1.
~ Step 0 is implicit in every lihe description; the
first step is always applied initially to the first position

on the line,

P v o — e g——— .)
: : 84 Bl e (Rl e o e et an— . T

=25

An abbreviatcd notation is used in actual descriptions.
Steps 1 and 2 cach consist of three parts., The first
names a character; the second and third tell what to do if
the character is or is not found. The following form is
eQuivalent to the foregoing, and closer to the real fomm:

‘1, (Blank) (Next, 1) (Same, 2)

2, (Line-fced) (Truc) (False)
lHere "same" and "next" refer to positions on the line; "1"
and "2" refer to locations in the description; and Qhat is
true or false is thc statement 'the line is blank,"

If a page number consists of ecither one or two digits,
we can test for a number flush left.
. (Digit)(Next, 2)(False)
(Digit) (Next, 3)(Same, 3)

(Blank) (Next, 3)(Same, 4)

& (%2} ~N i
L]

« (line-feed)(True) (False)
Of course, "Digit" is not a character; rather, it‘is a pro-
perty of scveral characters. We allow 24 bits per position
- just for the'sakq of encoding different propertiesvwith o
individual bits, llere in steps 1 and 2, the program asks
whether a éertain bit is equal to unity; the input encoder
must make that bit zero for all characters except the
digits, | |

A line with page number flush right* is recognized

by a different program:

*
Flush right in this example means not left adjusted,

T e s e, e ——" v e

=20~

. tBlank)(Next, 1) (False)
(Blank) (Next, 1) (Same, 2)

(Digit) (Next, 3)(False) .

. (Digit) (Next, 4)(Same, 4) j
e e e e P P T, e S ,/ e e
. (Line-feed) (True) (False) ’

w L - (7] [3%] | o
:)

The two programs can be combined to accept a linc with page
numbers at either margin:

1. (Digit)(Next, 2)(Same, 4)

2, (Digit)tNext, 3)(Same, 3)

3. (Blank) (Next, 3)(Same, 7)
(Blank) (Next, 4)(Same, 5)

(Digit) (Next, 6)(False)

-

(Digit) (Next, 7)(Same, 7)

~ [« W L)
.

. (Line-feed)(True)(False)

'.i-)
To recognize a centered page number reliabhly, we shounld

have to specify that it follow some exact number of blanks,

say 40, and this would entail wfiting"AO ésSentially

identical instructions. But this can be avoided by means

of a simple”shorthahd device allowing us to give as part

of an instruction a count of the number of characters ?*-:

"h which it must be applied. Thus, for the centered page’

number, we could write:
1. 40(Blank) (Next, 2)(False)
-2, (Digit)(ﬁext, 3)(Faise
3., (Digit)(Next, 4)(Same, 4)
.4. (Line-feed) (True) (False)

27«

A caption line, as described above, can be recognized
by the following program if underscore is a property and
an indentation is three spaces: |

1. (Blank) (Next, 2) (Falsej

2, (Blank)(Next, 3) (False)

3., (Blank) (Next, 4) (False)

, 4.1W(Underscore)(Next, 5) (False)

5. (Underscore) (Next, 5) (Same, 6)

6. (Blank) (Next, 5) (Same, 7)

7. (Period) (Next, 8) (False)

8. (Blank) (True) (False)

This version of the description has several attributés
that may or may not be appropriate depending on the input,
but'are instructive., Steps 1-3 require exactly three |
blanks at the left matgin. Steps 4 ‘and 5 guarantee at
least one underscored éharactgr, but not.more, although
they accépt more., Step 6 allows blanks within the
"btherWiSe”undefSCOféd”étfihg;“héfﬁittihg”ﬁ;ifiﬁﬁfdMééﬁ;mm
tions. A period must follow the caption, and a line-
feed is not allowable until after at least one blank,
but no further text on the same line is guaranteed,

| Each program describing a type or class of types
- of line is named. Another program uses these names to
describe a boundary marker. In this context, let "blank"
mean the program defining a blank line. A page end can now

be described in this way:

1,
2,
3.
4,

g

qupose

~ End of page

Blank, No page
Blank, No page
Page number, No page

Blank, No page

that the line maker has just delivered the 47th line

of a page; the page maker attemﬁts step 1 with line 47, If

~ that line is not blank, there is no page, i.e., line 48

should be cohstructed. But if step 1 succeeds, steﬁ 2

is tried on line 46. Another success leads to applica-

tion of step 3 to line 45, Here "Page number" is supposed

to be the name of a program describing a line that is

blank‘excépt for a one- or two-digit number, flush left

or right. If step 4 is successfully applied to line 44,'

‘the end of a page occurs'at line 47; the 47-1line block

is released by the page maker.

If

the User decides to write two line descriptions,

i .

~call them RP§ for a page number appearing flush right and

LPN for a page number appearing flush left, he uses a dif-

ferent program to describe the boundary sequence:

.1.

(<)} (3,] L= w N
.

Blank, No page
Blank, No page
RPN, 6

Blank, No page
End of page
LPN, No page

7. Blank, No page
8. End of page
At step 3, failure causes a iump to step 6.
The beginning of a p#ge is described in the following
”prdgfgm{” T e e
| i. Caption, No page
2, Blank, No page
3. Blank, Nowbﬁé;
4, Béginning of page
" When the page maker apﬁlies step 1 successfully to line 47,
vand goes on to steps 2 (line 46) and 3 (line 45), search-
ing step 4 causes it to deliver lines 1-44 as a complete
pagé. Lines 45-47 remain in the general hage storage
area; when the user asks for a new page, the page maker
»’moves line 45 to the normal position of line 1, 46 to line 2,
and 47 to line 3; then it calls the line maker to produée
line 4, These changes of location go astray if maximum liné
length changes between successive calls. |
Each program describing a boﬁndary type has a name,—mwmWWWMMMw
“which appears in a call to the page maker.
A user who wants to read a stream of text arranges S
for his program to call the page maker whenever it‘is
ready.to examine a new page, Each call includes:
(1) The address in storage where the first character

on the page is to be stored.

«30-

(2) The address where the first of four page
parameters is to be stored; the others go in
the three following cells,
'(3) The number of lines in the deepest page to be
read, ' ' L
(4) The numbér of columns in the longest line to
be read. ' | |
(5) The identification of a'program'thét‘éaﬁ”fééﬁg-wm
‘nize page boundaries,
(6) The address in which the page maker is to store
| an indication of its actions. The four condition
that it can report are (i) normal completion of
its task, (ii) overflow 6f a maximum line B
| length or page depth; (iii) end of input,

(iv) end of input and overflow,

4, THE FORMATTER

The business of the routine called formatter is to div:

a box into two subboxes or blocks., The formatter works only

/”ﬁiiﬁ“;étféﬁéléé; “b;éinarily the user begins with a page anc
calls the formatter repeatedly, cutting first perhaps hori-
'zéntally, then (if he likes) vertically, then vertically
again, and so on, untilqhe obtains the boxes’he can use,

Given a box to be cut, and a direction, the formatter -
works by seeking a row (if the cut is to be made horizontall
or a column (for vertical cuts) that meets a certain

specification, One way to specify a line or position

-31-

across the page is by number., If the input box is 80 charac-
ter positions, that is to say, if the line length is 80
characters, and if it is to be divided into two equal

columns, then the user can specify a cut after position 40.
Counting lines and character positions is sometimes good -
enough, but not always, The user can also write épecifications
in the lahguage described in Sec. 3, the one he uses

to describe page boundaries., |

The‘formatter can cut before, at, or after a row or
column of specified type. A cut before position 41 has the
éame.effect as a cut after ﬁqsition 40; either cut yields
a box containing everything in columns 1-40, another con-
taining 41-80, for example. A cut at column 40 effectively
deletes the 40th column; if the input box consists of
80-position lines, the left-hand output box gets 1-39, the
right-hand 41-80,

Wnen two useful boxes are separated by a gutter‘con-
sisting}of several adjacent blank lines or positions, the
user can call for a cut Ei a blank line or position, He
thereby excludes the whole gutter: when a cut is made
at a line or position of a certain type, all contiguous
lines or positions of the same type are eliminated,

If a page consists of three or more blocks of text,
each separated by a gutter from the preceding and followihg,
then the user calls the formatter repeatedly, The first

call separates the top (or leftmost) box from the remainder

32«

of the page;}the second call isolates the second box;
and so bn, until the last call separates the last two
boxes from each other. Each call eliminates one gutter.‘
The user names each box as he creates it, using singie
letters or arbitrary strings. Sometimes a box has only
momentary interest; in the last example ahove, the first
cut produces a box containing one block of text and another
.containing two or more, The first box is presumably |
. useful subsequently, but thé second is to be recut
immediately, In such a case, the user can use one name
over and over.
Continuing the example, a formatter instruction seQ

quence could be

Cut the Input into One and Rest at the first blank line;

Cut the Rest into Two and Rest at the first blank line;

‘Cut the Rest into Three and Four at the first blank line,

Suppose that the input is 47 lines deep, and that lines 13,
.14, 21, 22, 23, 31, and 45 afe blank, . Carrying out the

first instruction, formatier identifies lines 1-12 as belongin
to a box named ggg'and lines-ls;ii aérbeioﬁgiﬁg to Rest;

~ the first blank line of the input, 13, and the contiguous
blank line, 14, are eliminated since the instruction uses the
word at., With Rest defined as comprising lines 15-47,
formatter obeys the second instruction by assigﬁing lines

1520 as the box named Two and redefining Rest as lines 24-47,

According to the new defjnition, the first blank line of
Rest is row 31; box Three receives lines 24-30, and box
Four receives lines 32-47, The fact that line 45 is blank
does not matter, since the three instructions locate only
three‘gutters.
In some input streams, more complex format conventions
are used. For example, the upper bortion of a form could
consist of several lines, say three or more, with the
s cond line occasionally blank, A gutter, beginning

somewhere below the th1r$ 11ne, could separate the upper

portion from the rest, Here the user wishes to call for
a cut at a blank line after row 3. ‘

To pfovide for suchzsituations, the formatter accepts
instructions containing ﬁultiple line or position descrip-
ti;;s. Each description}consists of a preposition (at, |
.before, or after) and a SpeC1f1cat10n. The descfiptions

‘cope in the order in wh1cn they are to be appllcd. Thus,

- for example, if an 1nstruct1on reads

Cut the Input into dne and Rest after line 3 at
0 : _
- the first blank line

and rows 2 and 5 are bladk in the‘Input, the formatter
counts off three rows and‘then begins looking for a blank
TOW, | }

In a sequence of des?riptions within one instruction,
~ the three prepositions ha%e altogether different effects,

l !
When after is used, subsequent descriptions apply to lines

below the one specified, or to character positions further
to the right. When before is used, subsequent descriptions
apply to lines above the one specified, or to positions
further to the left, Once boundaries are fixed,'they are
never crossed; evén counts are made within the bounded

region. For example, consider the following instruction:

Cut the nput into One and Rest after the first

blank after line 3

‘and suppose that the input contains lines mecting the given:
specifications as follows (see Fig, 4): Blank,‘7 and 31;
Dots, 15; Asterisks, 43. The formatter starts with line 1
of the_inpﬁt and locates line 7, which satisfies the first
specification; subseduent searches begin with line 8,’
making the contents of lines 1-6.irre1evant. Next, line 43
is/found; even if a line meeting the Asterisks specification
existed above line 7, the search beginning at line 8

~would end at line 43, The search region now comprises

lines 8-42; if lines of the required kinds cannot be found
there, the formatter gives up. In the example, the third
part of the instruction leads to line 15, reducing the
search region to lines 16-42; then the first blank line
within that region, number 31, is found, and the region

left to be searched is composed of lines 16-30, Finally,

a cut is made after the third line of the search region

blank line before Asterisks after Dots before>H'VHMWWWAWW““

-36-

(i.e., between lines 18 and 19), yvielding two boxes: One,
lines 1-18; and Rest, lines 19 to the'end of 12323. Note
fhat if line 17 or 18 had bheen blank, tﬁe third line'df a
one- or two-line search region would have been sought
unsuccessfully,

 In a sequence of descriptions, the preposition at can

be used only once, in last place; once it is used, no

further search region is defined,
o The”fbrmétté;Paoés not move the text it works on; it
operatés by means of calculations based on page location,
page width, column numbers, énd character counts, 1In
machine storage, cach character occupies a cecll, and
a page of C columns and R rows occupies C x R consecﬁtive
cells, For convenience, suppose that the first.cell is
~number 1; then the first row is in cells 1 through c,
the second in C + 1 through 2C, and éo on,

The user gives the formatter two locations before his
first instruction. One is the location of the first
cell assigned to the page. The other is the first of
four cells containing the parametefs 6f fhe“pagé: fifst
column (always 1), last column (C), first character
(always 1), and last character (R x C).

Each instruction to the formatter includes three
addresses, némely the starting locations for three sets
of box parameters: one input and two outputs., These para-
meters can be interpreted only by reference to the page

parameters, as an example demonstrates,

m e e it e e, — - — s i e s avepny
. R T P R T ST e S

-37-

Take C = 50, R = 40; the page parameters are (1, 50, 1,
2660). Assume that previous cuts have yielded a box with
parameters (21, 30; 1, 400); this box, with 10 characters
per row, runs the depth of the page., If we instruct the
formatter to cut ihis box at its first blank line, the
program must examine the following cells, counting from
the beginning of the page: }21-30, 71-80, 121-130, ...,
1971-1980. Obviously, the formatter must have row length
(page width), page depth, and starting location, Now if
cells 271-280 contain blanks, the sixth row of the input
box meets the specification, and, assuming that contiguous

~rows are nonblank, the two sets of outhut parameters
Care (21, 30, 1, 50) and (21, 30, 61, 400).

The exact form of a call (or iﬁstruction)‘tn the

formatter appears in thé Appendix (Sec, A.8). Roughly,

the user must state whether he wants a row or column cut;

where he has placed the parameters of the input box;
where he wants the paramctérs of the output boxes; and
hpw_heﬂygnt;utheVCUt to be made. This last element is a . o
sequence of one or more'preposition-speéification pairs;
in a row-cut instruction, it is assumed that the specifi-
cation applies to a row, and in a column-cut instruction,
to a column,
Application of an instruction can yield an empty'

box, that is, onc containing no rows., It is even possible

—— W 4 AT e e e e -— eyl G

-38-"

to obtain two empty boxes, by ordering a cut at a blank
row or column and supplying an input box with every
character blank; the whole box is exéludcd as gutter, and
both output boxes are vacuous, Wyhgp"gf output box is
Wéﬁﬁty; the‘fo;ﬁégéé; getsAits first paramcter at zero.

An empty box results from a successful cut; but an
attempt to apply the formatter can also fail, If a blank
TOW is specified, and no row of the input box is blank,
the formatter reports a failure; similarly, whenever
impossible spécifitatidns are imposed, the formatter puts
.an impossible number iﬂ the first parameter location for

both output boxes.

S. THE PARSER

'+ The system makes its finest distinctions among dif fer-
ent kinds of information on a page by means of a parser,
As many parsers may be supplied as there are boxes requiring
thém. Simple input formats should require none at all,

A parser is supplied with a set of rules equivalent

to a context-free grammar, However; the right-hand side
of each rule consists not of a string of terminal and
nonterminal symbols, but of a regular expression invelving
both terminals and nonterminals. Those to whom this is
a meaningful characterization will need to read little or
nothing of what remains in fhis section, They will find
a notation for the rules and directions for keypunching

them in the Appendix (Sec. A.9).

The grammar applied to a box consists of a more of less
complicated description of a particular kind of object,
such as a name, a citation, a date, a chemical formula,
or a statement in a computer programming language., The
object, since it is assumed to embrace all the material
in a box, is not itself the center of attention. More
~interesting are the smaller objects in terms of which this
first one is described, |

Suppose that a certain box contains a name, and the
parser is intended to distinguish between‘the first name,
initials, and last name. The primary object the parser will
investigate is the name itself, In the course of establish-
ing a relationsﬂip between the description.of names in
general given bf the rules and the particular string of
characters before it, the parser will have cause to inves-
tigate the descriptions of other objects, namely, first

name, initials, and last name,

must eventually be described, are the characters themselves
or, more precisely, the properties assigned to characters by
the line maker and referred to from time to time in the pre-

ceding sections,

The definition of "Name'" might be as follows:
First name Initial Last name

The definition of "First name'" might be

.. The most elementary objects, in terms of which all others.

-40-

Upper case letter Lower case letter string

Whether some part of tﬁe material in the box conforms

to this description can be verified directly, We check
.'first that the initial character has thevﬁfépefty "UpbefNVMM”
case", We then check that the next is a letter, and con-
tinue collectihg characters under this descripfion until

the first on Fﬁgzmggwﬂ;fwé letter-Qpresumably a spa;e--ié
éncountered.lyThe definition of an initiai is, if anything,

even more straightforward, It mighk be as follows:

Upper case letter Period

Finally there would be a definition of "Last name" substan-
tially similaz to that for "First ané", In fact, it will
be instructive to consider the admiLtedly unlikely possi-
bility that the descriptions of "Flrst name" and "Last
name" are 1dént1ca1 In such a cas%, it would clearly Be
'uneconomical to include separate de#criptions;‘ihstead we
may include a description of an obj?ct-calied, say, “Naﬁe
part", similar to the one previous1§ pfoposed for "First

name", and amend the description ofE"Name" to read as follows:
Name part Initial NJme part

Much of the power of context-ffee grammars, of which this

is an example, comes from the fact that they allow recursive
‘ , R

descriptions; in other words, they allow_descriptions to

-41-

refer to themselves, jSuppose, for example, we wish to
describe an object to be called a "String", consisting of

a series of letters (zero or more) and left and right paren-
‘theses, provided these occur in matching pairs. One way

to describe this would be as follows:

Lettér string [Open pafenthesis String Close parenthesis]

©7 O IString]l

Notice that we use the words "Open parenthesis" and "Close
parenthesis" to avoid any possibility of confusion between
the objects being described and the syntax of the description
itself, FIn this example, we are using brackets to enclose
the part of the description that is optional, Any lettér.
string, and in particulaf one tha; includes no parentheses,
is acceptable, However, if in the course of examining an
‘actual sequence of characters, an open parenthesis is
encountered, the work of checking the string description
currently under way is temporarily 1laid aside while we
check that the material from here tobthe matching close
parenthesis itself meets the aescription.of a string, If
this turns out to be the case, work is resumed on the
original description,

| In the course of checking a parenthesized string,
another open parenthesis may be encountered at ahy time,
In this case, the checking procedure on the main string

and the embedded one are postponed while yet a third is

%

-42 i

undertaken, If at any stage the attempts to match the
given material against the description of a parenthesized
string fail because, say, a number or a punctuation mark

is encountered, then clearly all the other checking pro-

cesses that were suspended pending the régﬁitéhbfwtﬁis one

also fail,

It is no accident that the word "String" is enclosed -

in brackets as part of the &éginition 6;_; §f¥}ﬁé; wfhig
must always be the case in a recursive descriftion, that
is, a description that refers to itself.: Clearly, an
object of finite size.cannot have another object of the
same kind as an obligatory part, for this part would also
have to have éuch a part, and so on indefinitely,

Another requirement on recursive descriptions is that

they must always refer to some other object as well as them-.

selves. Clearly; an object meeting a description couched

entirely in terms of references to itself has no Substance,

for the attempt to find out what one such object might be

never get anywhere, The essence of the argument is this:
The description of a particular object.may involve any
finite nrumber of references back to the original descrip-
tion, but, if the process is ever to terminate, then sooner
or later thé description must be nohvacuously met otherwise

than by a reference to itself,

Iike would involve an indefinite amount of work, but would

-43-

Recursive descriptions can be direct, as in the example
we have discussed, or indirect, An equivalent of the string

description discussed above would be as follows:

_ Letter string [Parenthesized expression] [String]

The description of "Parenthesized expression" is as

follows:
Open parenthesis String Close parenthesis

"Here the second description does not refer to itself |
directly, but each réfers directly to the other and therefofe
to itself indirectly; The same caution must be exeréised |

with indirectly as with directly recursive descriptions,

It is, for example, crucial that part of the new description
of “String", which leads to indirect recursion, is contained
in brdckets. It.is of course not necessary for the term

- "String" in the description of '"Parenthesized expression"

to be in brackets, but only that the recursive loop should

be capéble of being broken at some point,

We have seen that, in the interests of pfeserving some
symbols for our own use in writing descriptions, it is‘often
exﬁedient to refer to a symbol by writing out its name rather
thén by using it as a name for itself, In this connection,
it is important to make clear when an element of a descrip-

tion is the name of a symbol and when it is a reference

44-

to another description, Following the terminology estah-
lished by grammarians, we shall speak of references to actual
symbols as terminals and references to other descriptions

~as nonterminals, The object of the parser is to construct

a tree with terminals as labels for the extremities and
nonterminals at the root and at all other nodes., With these
~terms at our command we can go on to examine'a,notatiqn for
writing descriptions similar to that used by the computer
itself,

The following is the transcription in this notation

of our first description of "String" as a sequence of

letters incorporating optional parenthesized expressions:

Define String
A Terminal - Letter, B
Goto | A
B Terminal Open Parenthesis, C
Nonterminal String -
Terminal | Close Parenthesis
’ Ceete T S
c Stop

The first line identifies what follows as‘a definition of
"“String'". The second, fourth, and eighth lines have
labels on the left-hand side that are arbitrary names
distinguishing these lines from all others‘not only in

this definition, but in the whole set of definitions to

-45- : o

which this belongs. The second line says that the string
may begin with a lettef, and to verify whether this is

the case for a particular example, we go not to another
definition but directly to thé data, This is ﬁhat it means .
to mark "Letter" as terminal!

If, when the material is checked, a letter is
actually found, we move on to the third line of the des-
cription which immediately sends us back to the second.

A line bearing the word "Goto'" is one of the princibie ways
of modifying the normal reading order of a description,

and in this case it has the important effect of causing

the specification on Line 2 to be applied an indefinite
number of times; exactly the effect required.

'Sooner or later the supply of letters will run out,
When a specification in a description ié nbf’met, e may
normally conclude that the description did not fit the
material and abandon the attempt. However, in this case;
Line 2 contains the name of another line, R, to which
reference is to be made if ever this specification fails.
Now B’is the name of Line 4, and it is therefore to this
line that we refer the first character encountered that
is not a letter. If that character is an open parenthesis,
it is accepted under this description, and we go on to
the next line. If not, we find that there is yet another
line, C, to which we may refer. Line C, fhe last one in

the definition, carries the single word "Stop', indicating

~46-

that the description can be regarded as met by the symbols
that have bcen accepted so far, and without including this
latest character,

If the first character encountered that is not a letter
in fact turns out to be an open parenthesis, our attenfion
passes to Line 5 of the des<ription., Here the question
is; Can some scquence of characters be found starting
~with the character we have now reached in the material
that also meets the definition of a string? This is where
the process becomes recursive, and we sﬁspend our work
on thé present description while we go in search of another
string that we must know about before we can continue the |
original job, |

Suppose that this attempt to identify an embedded
parenthesized expreésion fails, perhaps because a number
or other unacceptable character is encountered, Clearly
we cannot now Eontinue where we left off in the original
description, and the line calling.for an investigation
of a nonterminal "Stfing" carries no reference to another
line in the description., It wouldrﬁe wrong for it to con-
tain a reference to Line C, for this would lead to the
open parenthesis being accepted without any following
string or close parenthesis, llowever, it would aiso be
wrong to abandon the present description as a failure bhe-
cause the parenthesized expression was, in any case,

optional, Accordingly, we retrace our steps through the

T R A S R S o e~ e

47«

description unti; we meet a specification with a reference
to an alternative line, rejecting previously accepted char-
acters as we go, and take the alternative, In this case,
the alternative line bears the single word "Sfop", and

~the material up to, but not'including; the open parenthesis
is accepted as fitting the description,

This first example has, in fact, the somewhat strange

‘property that it cannot fail ﬁ6 matter7what data'g.isr
applied to, Suppose the first charac;er in the d“ga is a
numeral., Since it is not a letter, the specification on
Line 2 will fail, and the line named B, that is Line 4,
will be tried next. But since the character is not an
open parenthesis, the line named C, that is the last line
of the set, will be tried, and this says "Stop", meaning
that the definition is to be taken as met by all the charaé-
ters accepted so far. But no characters have béen accepted
so far, and the description has therefore been meép
bacuouslyf—by the null series of characteré. -Thefe is
no rule against definitions of this kind, and,wfhodgh,
they can in fact always be avoided, they are sometimes
useful,

However, the fact is that this is not quite the descrip-
tion we have in mind for this example. We want somehow |

to arrange that, however many characters turn out to be

covered by the description, there shall always be ?t least

one letter, We shall shortly introduce a device that

-48-

makes this kind of description particularly easy., But

for the sake of the exercise and to demonstratc that, in

principle, nothing more is required than we have already

1ntroduced we have in the follow1ng lines a descrlptlon

~ that does in fact fulfill the reqU1rementS'

Define-~

Terminal
'WA o "Termln;i

Goto'

B Terminal
Nonterminal
Terminal
Goto

C Stop

D | Terminal
Nonterminal
‘Terminal

Goto

The same effect can be achieved using

follows:

Define
Terminal

A Terminal

LT T s gy ”mwww S —p

A

String -

Letter, 0
Letter, B

A

‘Open Parenthesis, C

String
Close Parenthesis

A

Open Parenthesis
String

Close Parenthesis

indirect recursion as

String
Letter, D

Letter, B

Goto

B Nonterminal

Goto
C Stop.

N Nonterminal
Goto
Define
Terminal
Nonterminal
Terminal

Stop

A
Pstring, C

A

Pstring

A

-Pstring

‘"Opeﬁ"Pérenthesis

String

Close Parenthesis

‘In order to enrich the language and avoid cumbersome

descriptions like the one shown above, we are allowed

- terminal specifications of the following five kinds:

(7, T O VR N
<

Terminal (A' B,» .ooo)
Terminal mult (A, B,)

~Terminal or (A, B,)

- Terminal not (A, B,)

Terminal anybut (A, B,)

Each kind allows a set of character names--often only one--

to be included in the parentheses. A sequence of charac-

ters meets a specification of the first kind if it con-

sists of just the characters named occurring in the order

specified, Thus, the specification "Terminal (C, A, T,)"

is met only by the three character string "CAT"., A speci-
fication of the second kind is met by any string made up
entirely of the characters named--or rather characters
,having the properties named--in the parenthescs,“ Thus the
specification "Terminal mult (C, A, T,)" would be met,

- among indefinitely many others, by the string "CAACAC".

A specification of the third kind can be met only bya

single chéracter, which is one of those named or a characé
ter with at least one of the pfope;ties named. The speci-
fication "Terminal or (C, A, T)" could be met by a C, - |
an A, or a T, The fourth kind onSpecification also accepts
a single characfer, which hay be any of those not referred
to between the parentheses, The fifth kind of specification
- is similar to the second.in that it accepts a string of
,indefinité iength. In this case, however, the string

must not include any of the characters referred to.

The defipition of "String'" can now be as follows:

Define . : String
Terminal (Open Parenthesis), A
Nonterminal String
Terninal (Close Parenthesis)
tho B

A Terminal ﬂﬂlﬁ (Letter)

B Nonterminal String, C

c Stop

.d

The program that checis thi: definition will first look for
a p#renthesized expression and, if this fails, will follow
the direction of line A and seek a string of letters
followed by an optional string., If a parenthesized expres-
sion is found, the program will also go on to look for
another optional string. Thus, every parenthesized ex-
pression begins a new gtfing as does the firét of every
sequence of letters., Figure 5 is the structure of a typical
expression according to this definition.

Since the terminal characters on which the parser works
can come from a vériety of input devices and since, in any
case, they are all recoded in an essentially arbitrary way
by the line maker, the parser must be told explicitly»how
to'recognize an "a", a "b"; an underlined character, a capital,
etc, The lahguage in which parser specifications are written
therefore confains twq‘other kinds of statement besides those

used in definitions. These have the forms:

" "Term ~ (a,b,c)

and
» TcrmS, (a’b’c)’(d’e’f)oooooo‘o

The second is simply a shorthand way of writing a series
of statements of the first kind, The triples consist of
a name by which a character or character property is to

be known, and a pair of octal numbers serving to define it,

e3la

Fig.5— Structure of a string

The octal nurnhers mav contain ar- to 2ight dipits, which
correspond to 24 binary plases, the nunber used to repre-
sent a character, The first aunber shows which of the

24 binary places are significant to rccopnlze it as fall1np
under the definition, and the second shows for cach sig-
nificant place whether it must contain a one or a zero.

We can besprmake_thcsg statements cleér with an
cxample, Lach of the ten digits except zero could be
represented, in thé code supplied by the line maker, by
its translation into the binary number system. The digit
"1" would be '"1'", "2'" would be '"10", and so on, Zéro
cannot be "0'" bccause we have secn fhat there is very good
reason to reserve this for the space character. llowever,
a pars2r will often have cause to check whether a charac-
ter is a digit without having any concern for which par-
ticular one it is. Let us therefore assume that the line
maker supplies a "1'" in, séy, the fiftcenth position of
the codes for all d101ts. Thls W111 not only serve to
”d15t1ngu15h the d1g1ts from other characters but W111 make
it possible for the representation of zero to be consistent
wi h those of the other digits; it will have a "1'" in
ppsition fifteen and nowherc else,

Table 1 tablec shows the codes we have sét up for
digits in both binary and octal notation. Now, tﬁerc is
alrule that numbers cannot be used as names in parser

specifications, We shall thereforc use "N0" as the name

e~ 1 e T AN L TS . e

oy g -

-54-

of zero, "N1" as the name of one and so on., We could
equally well have used "ZLRO", "ONL", ctc,, instead, hut
there is something to be said for brevity., The following

will introduce these codes to the parser:

Table 1
© DECIMAL-BINARY-OCTAL CONVERSION
}

Octal

 pigit Binary ‘ .
1000000000 1000
1 1000000001 . 1001
2 1000000710 1002
3 1000000011 1003
4 1000000100 1004
5 1000000101 1065_ s
6 1000000110 1006
7 11000000111 1007 i
8 1000001000 1010
)

1000001001 1011

Terms (N0,1777,1000),(N1,1777,1001),(N2,1777,1002),
(N3,1777,1003), (N4,1777,1004), (N5,1777,1005),
(N6,1777,1006), (N7,1777,1007), (N8,1777,1010)
(N9,1777,1011), (DIGIT, 1000,1000)

The last triple defines the word "DIGIT", saying that only
the "digit" bit is significant and}that'it must be a one,

Let us use another bit, say the fourteénth, to mark

letters, We can represent the individual letters in a

56~

manner analogous to that adopted for the digits., FLach
can be represented by its serial number in the alphabet,
A statcment of the following form is in order in the parser:
Terms = (A,2777,2001), (B,2777,2002),400ua.
ceeees(2,2777,32), (LETTER, 2000,2000)

Notice that letfcts can perfectly wcll be used as names
“for -themselves. 7
Now, let us make the complicating but realistic
assumption that we are faced with an input device that
does not have séparate characters for onc and lower-case "L",
The symbol used to represent these two should clearly ‘be
marked as both letter and digit, As for the rest of the
‘éode, it does not matter if we put it with the numbers or
the letters or with neither. Let us put it with the
letters. This means that theltriple defining "1" can
be '"(N1,1777,1014)", "(N1,2777,2014)", or "(N1,3777,301§)"._ .
Which of the "digit'" and "letter'" bits we choose to make |
~significant does not rcally matter in this case. =

With the definitions so far in force, we can write

descriptions with statements like these:

Terminal (T,l,E)

Terminal o (LETTER) -

Terminal not (DIGIT)

Terminal or (A,C,I,0,U,N2,N4,N6,N8)
- e T T T T AT s e e i R T 7
—’

-Sh-

But wherever we mention a lcttcr, it wi'l be understood
that any form of the letter will do; it does not matter
whether it is in upper or lower casc or if it is underlined,
If the input keyboard device makes these distincfiqns,
then we need some ﬁore definitions in 6rdcr‘to"profitffrdﬁ““‘“‘“‘“““*”
them; H

~Supposc that a one in the thirtecnth position of the
twenty-four-bit code signals 5h"uppcr-éﬁSéwibffE?wiﬁﬂwfﬂhE”"""W“WM

the underscore puts a one in the twelfth position., Then we

can have these definitions:
Terms (CAP,4000,4000), (UL,12000,12000), (UD,11000,11000)

among others, '"CAP" is now a general nahcvfor:any capital
letter, "UL" for. any underscorcd letter, "UD" for any under-
scored digit, and so on., If necessary, we can SUppiy

names for the individual lctters of the alphabet in upper
and lower'case. The triple for upper-case "A" will be

"(CAPA,6777,6001)"; for upper-case "R", ' (CAPR,6777,6002)

~and so on, -
Like numbers, punctuation marks and the space character
cannot be used as names for themselves, and we must there-

fore use definitions like

Terms (SPACE, 3777,0000), (PERIOD,3777,0401),...

Notice that, even in the definition of "space", not all parts
of the code are significant; we leave open the possibility

that a space is underscored

e et M Chermmagnen " I8 S0 T —— TWINK PN g T TS —m: - m‘-.“ Eac bt - >

We have now covercd cverything that needs to be said
about the parser's principal function of revealing the fine
structure of a page. llow the informﬁtion discovered by a
- parser can be exploited is the subject of the next section.
But the parser also has a subsidiary function. We have

remarked that some keyboard devices introduce ambiguities in

the representation of characters and that allowance must be

made for these, If the parser is looking for a number, it
will accept a charécte; that just might have beeﬁ'intended
for an "L'", therec being no obviously better policy., It
will accept the same character as a letter in another
context, In mbst cases, the rules can, in fact, be written
so that thesg judgments turn out right, and it is therefore
appropriate to recodec the character so that the ambiguity
'will not be preserved in the archival form of the material.
The rulés“for parser specifications'aliow for a re-
coding clause to be added to any "Terminal” or "Nonterminal®

statement, An example might be

Terminal mult (DIGIT?

Edit RD

where RD (Recode Digit) refers to a definition introduced

in a "Term'" or "Terms" statement, That statement might be

Term (RD,11777,0)

———y PO P PO s < e ey T A

-58 .

This tine, the interprefation of the two octal nunhcrs must,
of course, be different, 1f a digit is found, then only
the bits that match those in. the first octal numbcrlreferrcd
to in the rccoding clause are preserved, and ny bits specified
by the second octal number are'added. In the prcscnt‘ |
‘example, the recoding has the cffect of reroving the bit
indiéating a letter, if it is present. Nothing ha% to be
added., | |
Consider another example, Suprose the parserxis set
up fo recognize hyphens as distinct from minus signs ai-
though the input device produces the same code for both
~and, furthefmore, that it recognizes two of these as
representing a '"dash", The parser nightrcontainkthe follow-

ing statements:

Terminal (Minus)
Edit - RMIN
Terminal | (llyphen)
Edit RHYPN

w«;wmw~wnmNcntcrmina1 o Dash) o
Edit ~ RDASH |
Terms "'-“tnypﬁén,777,501),(nAsu,777,soz),
'cuinus,777,sos),(Ruvpu,lnsn1,0);
(RDASH, 10500,2), (RMIN,10500,3)

This, of course, is only onc way to do it. For example,

the triples "(RMIN,10501,2)", "(RMIN,10000,503)" and

T TS S T e TS Kl WY M Y R R R AN TI T ST T e g
. FLS My Shinax
*

59~
;
"(RMIN,10400,103)" among others would have had equivalent
effeccts,

If recoding is specified for a ﬁontcrminal, it applies
to all the/characters covered by the corrcsponding definition.
Recoding d% a single character may bergpgcificd,inwmore”than
one piaééi vﬁér‘ckgmblé, the "Terminal" instfuction referring
to a character may be followed by an "Edit" and o may one
or more of the "Nonterminals" covering‘this positioh. Pos-
'sible conflicts are resclved as follows: the recoding of
characfers covered by the most inclusive nonterminal is
performed first. The next most inclusive definition.is takeﬁ
next, and so on, The "Edit" following the "Terminal" in-
struction is applied last, |

In describing the way the parser gves to work on a box,
-we occasionally referred to such things as the current
cﬁaracter, the previous Zharacter,'and the next character.
These were to be interpreted relative to the normal left-
to~right, top-to-bottom reading order, But the parser can
also be instructed to work from the end of the box tbward
"the beginning, that is, from right to left, and from bottom
to téb. Everything else remains the same, This is useful

when the pafser.is required to work on material only at

fhe bbttom of the box.

() -

6, THE SELECTOR

The parser constructs a phrase-structurec Jiagram for.
the contents of a box or part of a box, This diagram is.
a trce with labeled nodcs, Several direct descendants pf
a node can bear identical labhels, and since récursivc
grammars are permissible, a node éan bear the same label as
one or more of its ancestors., In this diagram, the usef""i‘
must seek out nodes covering the'terminal_strings he needs.,

For example, if the input is a citation, the user hust
~find the last name of the authors; perhaps he wants the
name of the first, second, ..., last authors in order,

The most convenient plan is ﬁrobahly to select one or
a few strings,varrange then as appropriate, and usc the |
result before selecting further input, Otherwise thé uscer
would have to provide an intermediate storage format, dis-
tinct from the parser'é phrase~structure formét. |

The selector is a set of subroutines for finding nodes

_and reporting the location in storage of -the strings they — -~~~

cover, A node is identified by three properties: (i) It :
is a descendant of some specifically identified node. |
(ii) It bears a specified label, (iii) Among the nodes
satisfying conditions (i) and (ii), it is the leftmost

(or the rightmost) not previously found by the routine,
According to condition (iii), it is not possible to

select the same node twice,

When the parser finishes working on a box, it sets up

-b1-

the sclector, ready for use. The program that |[callcd the
parser continucs by specifying a single node, presumably the
6rigin of the phrasc-structurc trce. Specification mcans

- attaching an index to the nodc. Now an instruction.toi

find a node can bhe written; it has four clements:

INDEX, = FIRST _ (NAME, INDEX,

1
LAST

I |
. y
!

Here INDEXZ points to a known node; to begin with,'only

the origin qualifies. NAME is a variable that takes as

values the labels borne by nodes in the phrase-structure
trce, The two optinns TFIRST and LAST yield, re%pectively,.
the leftmost.and rightmost nodes descendant from the node

identified by INDEX, and bearing the label given as NAME,

2
At most one node in thc trece mects this specification;
henceforth it can be poiﬁﬁed out by INDEX;. |

Calls to the FIRST-LKST subroutine can be woven into
a program of whatever.dcgrce of complexity the user nceds.
Often enough, the user cannot find a node of ingerest'
with a singlc call, To find the first author's}éurname,
he might begin by atfaching an index to the lefﬁmoSt node
labeled author; then, using that index, he could go on
to find the descendant node labeled surname. Iﬁ his
program returns to the same instruction to find?(for
the second or third time)lthe leftmost author anc, it
will index the second, third, etc., such nodes.é o

i
|

-62~

In a moderately complex situation the user will know
that his program has found all nodes meeting a certain set
of conditions only by virtue of the fact that a call to
~ FIRST-LAST produces no result, The index, in effect,
is attached to no node., The program making the calls must
of course test for such a nonresult,.
" _'When the user is ready to do so, he caﬁ.obtain the
location of the string covered by a node; he subpl%es an index
to the node and a loéation (the first of four cells, as

usual) for storage of parameters:
PACK (PARAMETERS, INDEX).

The Subroutine traces out descendants of the indexed node

until it finds terminals, thch are still kept in their

original place in the page image. It computes the serial

number of the first and last characters of the terminal

~ string, relative to the column in which the box lies,

and puts the four parameters in the place indicated,
Should a call to the parser result in coverage of

only part of a box, the user can select and pack the

covered portion and then reduce the box by elimination of

whgt was parsed. The subroutine called REDUCE changes

the parameters of the box; after it is applied, the material

covered by the parser no longer belongs to any box at all,

When the parser operates backward, the FIKST-LAST

63~

subroutine does so as well., FIRST then means rightmost, and

LAST iuieans leftmost.

7. THE RECODER
All the processes that have been described except the
initial character reader operaté on a special intermediate

form of the original lines and pages. Each character

occupies a whole cell in fﬁéuﬁémbry 6fmfﬁémh5chinengﬁ&:mihﬂ'u”
order that the layout of the page is accurately preserved, |
even extra spaces at the end of a line count as charactérs.
But, against this inefficiency in the use of spacé we can

set the advantages of a coding scheme in which e#ch character
is self-sufficient. To discerr if the chéracter at a certain
place on the page is a letter, a number, a punctuation mark

or whatever, whether it is in upper or lower case, or whether
if is underlined or carries an accent, it is hecessary only

to examine the bits stored in a single cell whose location is

readily calculable., It is never necessary to search back to

'see if the shift key was up or down when a given code was
produced, or forwafd to see if an underline produced later
was intended to go with this character, |

However, when the formatter, the parsers, and the selector
have done their work, the usefulness of this extravagant

storage and coding scheme will presumably be‘exhaUSted.

/ - ()4 -

It is available,* and the usef is free to do what he will
with it, but for most purposes, and certainly for permanent
storage, a more compact representation would be preferable,
_This is what the recoder is for. It moves data from the pége
~array to a new location provided in the user's program,
rearranging them and recasting them according to new cbding
.conventions as it goes,

Just as ‘the parser is an embodiment of a well-established
theoretical device, namely a context-frce ﬁhrase-structure
grammar, so also is the recoder; specifically, it is a
finite-state transducer. And, once again, there will be
those for whom this is an adequate summary of what will be
explained in this section, and they can turn straight to
the Appendix (Secs.lA.ll and A.12).~ | _

The recoder examines thé character codc§ in a bbx or
sequence of boxes one by one, moving steadily forward and
never going back on its tracks., For each code encountered,
it produces a string of new codes--usually'one, sometimes
none and sometimes more than one. The code or codes pfo?
duced depend on the old code and also on the history of the
recoding process up to that point, Unlike the parser, the

recoder cannot go back over ground it has once covered, and

*The FETCH routine (see Appendix, Sec. A.13) can be
used to transfer characters one by one from the page array
to arbitrary core locations without recoding.

so it cannot easily produce different outputs for a given
input depending -on other codes coming iater in the sfring.
But what has gone before can influence the coding of what
follows. This is not a serious restriction precisely
becuaéc of the self-sufficiency of the intermediate codes.
Thé new codes are six bits (two octal digits) rather
than twenty-four bits (eight octal'digifs) long. This is a
restfiction that could, on occasion, be scrious. However,
thé,physical construction of the IIM 7040/44 computers for
which these programs were prepared is such as to make the
choice of six-bit codes very natural., All the input and
output devices attached to thesec machines and, invparticular,
the mﬁgnetic taﬁe ﬁnits, process only six-bit units of
code, One cell of machine storage accommodates ¢xactly
six such units, and special instructions are provided
for manipulating them. 1In short, while a user of these
machines may not always work with codes of six bits, he
- is very likely to use fundamental unlts con51st1ng of some
multiple of six bits, and these can be read11y héndled by -
“the system to be described.
The detailed déscription of the reccoder will profif
by being tied to an example from the start. Suppose, there-
fore, that the library catalog card shown in Fig. 6 has
been read in to the page array and divided into the boxes

A, B, and C by the formatter. Box A contains an accession

number, box B a catalog mark, and Box C a citation,

-66-

A ' 890

123.45 Ludwig Wittgenstein, Tractatus Logico-
A678 Philosophicus, london, Routledge & Kegon -
Paul (1922).

Fig.6—An input page

‘Suppose that the immediate concern is with recoding box C.

The program will pick up the first 1ntermedlate code

in box C and’ ask if it has certain prOpert1eq, say thosc

~defining the letter "A'", If the character has thesc proper-

L

|
ties, a new code may be provided in the 1nstructlon, which
will then be}output. In the example, the first letter is
an "L", and ghe»insffuction gives ‘the location of another
instruction éo try instead. Sooner or later, an instruction
will presumaHly be encoun.ered specifying prOpérties that

the first character in the box does have, It might have

|
|

This can be r?ad "If the character is an 'L', output one six-

the form

Code (L,1,43,done) (tryM)

bit code, namely octal 43, and apply the instruction at

-67-

location 'done' to the next character, If the character
is not an 'L', then go to location "tryM', and apply that
instruction to it", . The coding sequence for the Roman

alphabet as a whole might begin

done Code (A,I,Zi,done)(tryB)
try B Code (B,1,22,done) (tryC)
~try C Code '(c,1,23,done)(tryn)

L] L]
L] L] L]
L3 L L]

Like the parser, the recoder must be told what sets of
properties are being referred to by symbols like "A" and wpr

in the above instructions, and the method is the same,

Statements of the forms

Term a,b,c
and

Term _ (a,b,c),(d,e,f)...

~are used, the second being simply a shorthand for a string. ¢ T

'of statements of the first form. The triple consists of a
name for the combination of properties being defined and two
octal numbers, the first showing which of the 24 bits of the
intermediate code are significant and the second giving the
values they must have,

It is reasonable to assume that the same bits will

~always be used for upper case, underlihing, diacritics, etc,,

badn e Sam e - .
e]

and that the same set of bits will always be significant for
distinguishing letters from one another. Now, the v;1ucs

of these significant bits impose an ordering on the letters
of the alphabet that can be exploited in the recoding process

__Let us _assume.that therc is somc subsct of~thc“24-hit'ficid;

say the last 6 bits, in which each lettcr has a distinct
representation and, furthermore, that the values found in
. _these bits correspond to the normal alphabetical order. We

S .) . 'y
shall now show how the technique known as binaryv search

can be used in:an efficient stratcgy for recoding the letters.
If the first instruction in the recoding sequence
suggested above inquires after an "A":hut fails to find it,
the possibilities arc reduced by’one; there arc 25 remaining.
If the letter is "I", 26 questions will be asked before |
_the propef output code can be produced, and the average
number of questions for a letter wiil be about .13, If,
however, the routine first inquiresfjafter an '"M" and, failihg
to find it, notes whether the signiFtcant portion of the

~__intermediate_code it _does find precedes or follows that for

"M', the number of possibilities will at once he reduced by

t]

See inter alia Bernard A, Galler, The Lanpuage of
Computers, McGraw-Hill Book Co., New York, IV6Z, pp, 97-104,
an enncth E, Iverson, A Programming language, John Wiley
and Sons, Inc., New York, IU6Z, pp. 14T1-T47,

60~

half, If the code precedes the one for '"M", only the first

part of the alphabet need be searched, if it follows, ghly the
last part, The two parfs of the alphabet can now be divided
into two sections in the same way so that the next character

to bz sought will in one case be, say, "G" and in the other "T",
After two questions have been asked of a given code, it may"

ﬁot have been identified, but less than a quarter of the
number of questions that need be asked to identify any
-letter is five instead of 26.

If we know the language to be recoded, then we can do
even better than the simple binary search provided that |
the significant part of the intermediate codes can be
arranged to impose on the letters an order based on their
frequency of occurrence in the language, There are many
orderings that are about equally good for English, and one

is the following:

PDBOCYARNMUJEZLHKFVTQSIGWX

The first possibility to be tested will bz "E", the most
frequently occurfing letter in the language, When the letter
found is not an "E" but precedes it in this sequence, it

Qill be compared with "A", when it follows, with "T",

These are the next most frequent letters, The aﬁtual order
in which the tests are performed for different letters is

established with a view not so much to reducing the number.

- .._.,.? :—‘?w“._m” e et ot

=70~

of different letters by half at each operation as to ﬁakiné
the probability that the letter comes before or after the
one tested approximately equal. This probability is esti=
mated from observed frequencies.* A set of instructions
for the recoder using the above ordering of the letters is

as follows:

done Code (E,1,25,done) (tryA,tryT)
tryA Code (A,1,21,done) (tryO, tryN)
try0 Code (0,1,46,done) (tryD,tryY)
tryD Code (D,1{24,done)(tryP,tryB)
tryP Code (P,1,47,done)

tryB Code (B,1,22,done)

tryY Code (Y,i,70,done)(tryC)

tryC Code (C,1,23,done)

tryN Code (N,l,dS,ddne)(tryR,tryU)
tryR Code (R,I,Si,done)

tryU Code .(U,i,64,done)(tryM,tryJ)
tryM Code (4,1,44 ,done)

tryd Code (J,1,41,done)
tryT. Code (T,1,63,done) (tryH,tryl)

*The frequencies used here are taken from Lawrence M,
Stolurow and Paul I, Jacobs "Tables of Estimated Letter and
Letter Combination (Bigram and Trigram) Frequencies in Printed
English" which, in its turn, was based on the Lorge Magazine
count together with some extra material.

R N I R A Y Y. S S TN T e e gmanny

-7]-

tryll Code (H,1,30,done) (tryL,tryF)
tryL Code (L,1,43,done) (tryZ)

tryZ Code (Z,l,?l,done)

tryF Code (F,1,26,done) (tryK,tryV)
tryK Code (K,1,42,done)

tryV Code (V,1,65,done)m

tryl Code (I,1,31,done) (tryS,tryW)
tryS Code (S,1,62,done) (tryQ)

tryQ Code (Q,1,50,done) |

tryW Code l(w,1,66,done)(tryG,tryX)
tryG Code fG,l,Z?,done)

tryX Code (X,1,67,done)

This example shows some new forms of the basic "Code”
instruction, In thé'earlier'exampie; the second pair of
parentheses enclosed the name.bf a location from which the
next instruction would be taken in case the present one
failed, When failure occurs in this example, if the second
pair of parentheses contains a pair of location names
separated by a comma, the first is used if the'charééter
sought comes later than the one found in the sequence
cstablished by the 24-bit intermediate codes, the second if
the character sought comes carlier than the one found, Thus,
in the example, if the character being tested is not an

"E" and comes before it in the sequence, "A'" is tried next,

otherwise "T",

. - - .

-72-

Extending these principlesAbeyond tﬁe 26 letters of the

Romén alphabet is entirely straightforward so long as the
total number of characters to be treated is not greater than
64, the total number of combinations of six bits., But
this clearly will happen., A typical typewriter has come 46
keys, each of which produces one of two characters depending
- on the position of the shift key, giving a total of 92
characters, Furthérmore, conventions appointing certain char-
acters as shift markers can be used in the way outlined in -
Sec, 2 to augment the effective character set still more.
In any case, the conventions established by the programming
systém or the permanent storage format may have to accommo-
date many more symbols than are produced by any one input
dévice.

There are two standard ways of escaping from the six-
bit straight jacket, The simplest is to assign 12 bits to
every symbOI; thus raising the maximum number of combina-
~_tions from 64 to'4096. ~The machinery already'describéd :
takes this in its stride, It is sufficient to réplace

instructions like
L1 Code (Char,1,36,done) (L2,L3)
with instructions like

L1 Code (Char,2,3536,done) (L2,L3)

-73-

The other method is to introduce codes that function like
shift keys, determining the interpretation of other godes
that follow them. This is the solution adopted in tﬁe
'RAND text encoding scheme,* and it requires some extra
" devices in the recoder,
In the example in Figs. 6 and 7, the first letter is

in upper casc, and the ones immediately following in lower

case, In the RAND scheme, the same six-bit codes‘are used
for the Roman alphabet regardless of case., They are taken

to represent lower-case letters except when an upper-case

shift character precedes them somewhere in the string.

There are also other shift characters for italics, boldface,
and the like. The effect of a shift chargcter continues
until nullified by a down shift, and in the RAND scheme
the only down shift provided is one which nullifies the
effect of all shifts currently in force. This is not the
place to argue the merits of such a system; it is rather the
place rb profit from its apparent perversities to demonstrate
the power of the recoder,: |

The recoder must examine the first charactér of any
string presented to it to see if any shift characters need

to be issued and then go on to code it as a member of the

alphabet, It must examine each subsequent character for

- :

Martin Kay and Theodore Ziehe, Natural Language in
Computer Form, The Rand Corporation, RN-4390-PK, Fegruary
1965, :

buised jo synsay—; 614

*(2261) 1ned weda) ¥ IFparanoy ‘uopuoy ‘snojydosoriyd

A UUR R Aa A e

Jd(NNNN) STIINSSSSTITINSIS T I T T T TIAS T I T TINSd T I T I TITITITINSSSSSHTTTTINS TITITTTINS Y TTTITITTITIASTITTIA

,_,___._ ::_::_:_ ________E___E__._._E:__:__:___:_::::::::EE::EE

~0dTB0T sMIWIDBIL ‘UINPUIBIFIN FApN]

X m\<<Z._ w<<<Z"_

ava , | o m2_<z

YOHINY

|

v

shift changes. For this purpose, it is convenient to be

75

able to apply morc than one instruction to the same inter-

mediate code,

.- BEGIN Code
"Code

UIE Code
‘UIA Code-
ulo Code
UID Code
UIP Code
UIB Code
END Code
UNE Code
LC Code
LIE . Code
LNE Code

In some of the instructions, the fourth place in the

Consider the following sequence:

(Ucase,1,1,S) (LC) -
(Italic,1,2,S) (UNE)
(UCITE,1,25,UIE) (UIA,UIT)
(UCITA,1,21,UIE) (UIO,UIN)
(uc1to,1,46,UIE) (UID,UIY)
(uciTp,1,24,UIE) (UIP,UIB)
(UCITP,1,47,UIE) (END)
(UCITB,1,22,UIE) (END)

(LC

Ll
f
i

(Any,1,11,S,BEGIN)
(UCNIE,1,25,UNE) (UNA,UNT) .

(Italic,1,2,S) (LND)
ETE,I,ZS,LIE)(LIA,LIT)

| []
(LC%IE,i,zs,LNE)(LﬁA,LNT)

first set of parentheses is occupied by the letter "S" (for

"Same'"), which is not to be interpreted as the name of a
location from which the next instruction executed is to
be taken, but as an indication that, whatever instruction

is next used, it must be applied to the same character.

The

-76-

following two sequences are equivalent:

Code (Ucase,1,1,S) (LC)
Code (A,121,NEXT)
Code (Ucase,1,1,S,TrvA) (LC)

[.

~and

TryA Code (A,1,21,NEXT)

In the second case, both the "S" and a location to go to
in case of success aré given.

The table given on p.'75 inquires of the first character
presented to it if it is in upper case, If not, it directs
attention to the instruction at locatidn LC wHere.fhe re-

- coding of lower-case letters begins, If the lettef is in
upper case, a code (octal 01) is output, and, in the absence
of any direction to the contrary, the next instruction in
line isAtaken next, DBut, since the fifst instruction
contains an "S", the next one will also be applied to the
first.character. ‘The sccond instruction works in a simi-
lar way, delivering an output code (octal 02) if the char-
acter is italic, and otherwise directing'that the next
instruction be taken from location UNE (Upper-case not
italic), Once again, the same input character is retained
for processing by the next instruction. Suppose the first

character is an upper-case italic "E", The first and

second instructions will output octal 01 and 02 respectively,

-77-

and the instruction at location UTE will confribute octal
25. Only then will work begin on the second character,

The sequence of instructions beginning at UIE con-
stitutes an improved binary search of the letters of the
alphabet as already described, but it applies 6n1y to upper-
case italic letters. Any other letter will fail to be
identified and, sooner or later, will cause the instruction
at ldcation END to be used. This produces an output charac-
ter, namely the universal down shift, regardless of what
input it is applied to, The namc "Any" can conveniently be

defined as follows:
TERM Any,0,0

Sincé no bits are significant for recognizing an "Any",
any nattern of bits will do. Once the instruction at END
has been carried out, the brogram goes back to the head of
the list.to'output any shift characters necessary.

Each of the four styles of alphabet (upper case, lower

case, upper-case italic and lower-case italic) has its-own —--

set of binéry search instructions, These continue to be
~used for character after character until one in a new style
is encountered, This leads to the instruction at END,
which produces a down shift, issues any‘shift characters

. needed for the new charﬁcter style, and causes a transfer
to a new set of binary search instructions. The only ex-

ception is the sequence that codes lower-case non-italic

-y

-78 - | /

/
/

characters; it does not transfer to END on failure since,

in this case, no down shift is required,

The binary-search sequences are only trivially different

from one style to another, ard some means of conflating them

would be welcome. There are, in fact, two méthods, and the |

[P — ,/ B PP - e e
first is illustrated in the following sequence:

BEGIN Code
iTAL Code
Ul Do
Code'
Code
LC Code
LI1 Do
Code
Code
LCN1 Do
Code
LCNZ Code
UNI Do
Code
Code
-DOWN Code
Define
Code
TryA Code

END

Stop

(Ucase,1,1,S) (LC)
(Italic, 1,2,3)(UNI)
Letter
(Ucase, S) (DOWN)
(Italic,S,UT) (DOWN)
(Italic,l,Z,S)(LCNlj
Letter

(Italic,S) (DOWN)
(Ucase,1,1,S,UT)(LI1)
Letter | _
(Ucase,1,1,S,ITAL) (LCN2)
(Italié,l,Z,S,LIl)(LCNl)
Letter | '
(Ucase, S) (DOWN)
(Italic,l,z,s,UI)(dNI)
(Any,1,11,S,BEGIN)
Letter
(E,1,25,END) (TryA, TryT)
(A,1,21,END) (Try0,TryN)

[] *

~79-

In this sequence, which achieves the same effect as the
previous one, and by a fundamentally similar'strategy, tﬁree
new instruction types, "Do'", 'Define" and "Stép", have been
introduced, The instructions included between a "Define"
and a "Stop" make up a package that can be inserted‘by
means of a "Do" at any number of other places in the stream,
In this case, the package refers only to those bits in the
intcfmediate code that distinguish the letters of the alpha-
bet from one another and not to those that distinguish type
styles, and it'performs the binary search. As soon as a
letter has been identified, the program goes to the instruction
at END, which is a "Stop". This causes the machine to take
next the instruction immediately following the "Do" that
called the package of instructions into use, The instruc-
tion "Do" occurs four times in this example, once for each
type style, Each "Do" is followed by a pair of instructions

that check that the type style of the next character is the

- .same as that of the previous one and, if it is, return to

the "Do". Many of these instructions do not cause any
output to be produced but merely cause 'a transfer to the
instruction at DOWN, which issues the universal down shift
in appropriate circumstances, The reader may find it worth-
while to work through Box C of the example in Fig.6 using

these instructions,

[B 2 N

" character is not; otherwise the program will take the

~80-~

The other way of economizing in recoding specifications
is to use special forms of the "Code'" instruction, which
permit glances at characters to the left and right of the

current one, The instruction
~ Code (FR(M,Ucase,1,11,S,NEXT) (FAIL)

will output the six-bit code octal 11 just in case the

preVious non-blank character was igﬁupper case and the current’
. [

instruction at FAIL, This could be‘dsed to output the

downshift code in case of a change of type style from upper

case, Similarly, the instruction

Code (TO,Ucase,1,1,S,NEXT) (FAIL)

will output the code octal 1 in case the previous non-blank
. , ", nop-n_anx

character was not in upper case and the current character is,

~that is, if there is a change to upper case,

' ,
When an ordinary "Code" instruqtipn fails, we say tha

- it is sometimes appropriate.to distinguish two possibilities,
"~ one in which the code found preceded the one sought and
‘one in which it followed. Two possibilities can also

usefully be distinguished for instructions involving "FROM"

and "TO", one in which the property mentioned in the instruc-

tion is not manifested by the character that would have to .
have it for the instruction to succeed, and one in which

 both characters show this property so that the (hange needed
. z i

-81-

for the instruction to succeecd is not found., Consider the

instruction
Code (FROM,A,1,21,NEXT) (FAIL1,FAIL2)

" If this is applied to a character that does not follow

an "A", it fails in the most conspicuous way and sends the
machine to FAIL1l for its next instruction, But, if it is
applied to a character_thaf does follow an "A" but that
is itself an "A", then it also fails, but this time the
next instruction is taken from location FAIL2., Similarly,

if the instruction
Code (TO,A,1,21,NEXT) (FAIL1,FAIL2)

is applied to a character'that is ndt an "A", it fails and
points to FAIL1l; if it is applied to an "A" that, however,
follows arn "A", it fails and points to FAILZ, =

In a final example; we shall demonstraté all the facili-

-

ties available in the recoder, The RAND encoding scheme

has a spedial set of 15 codes called alphabet flags. These

function rather like the shift codes already mentioned,
They condition the interpretation of all codes following
them up to the next alphabet flag, They are different from
shifts in that their effect is not cumnlative so that no
downshift is required from them; the effect of one flag
ends with the beginning of another, The characters whose

codes follow a given alphahet flag are said to belong to

the corresponding ulphabet, Provision is made in this

way fbr a Roman, a Cyrillic and a punctuation alphabet

among others--these will be enough for the examplg.' Within
each alphabet, an arbitrary selection of codes can, in
pr1nC1p1e, be chosen as shift markers; 1t happens that the
uppor-case and italic shifts as well as the un1versa1““*‘“wm““““
down shift are represented by the same codes in the Roman

and Cyrillic alphabets, and we shall make use of this fact,

The recoding sequence is as follows:

Recode RAND,SP

81 Code (SP,S1) (S3)

's2 Code (sP,1,60,51) (S3)
S3 Code (TO,Roman,l,35,S,RAB) (54,RAA)
S4 Code (TO,Cyrillic,1,36,S,CAB) (S5,CAA)
S5 Code (TO,Punctuation,1,15,S,PA) (,PA)
RAG Do (Gamma,RomE) | |
RAA Do (Alpha) (RAG)

RAB Do (Beta)
RomE Code (E,1,25,52)(RomA,RomT)
CAG Do (Gamma,CyrE)
CAA Do (Alpha) (CAG)

CAB Do (Beta)

CyrE Code (B,l,ZS,SZ)(CyrI,Cer)
PP Code (Period,1,33,S2) (PCom,PSemi)

-83-

| Define Alpha
Code (FROM,Ucas,1,11,5,A1) (A2)
A2 Code (FR®4,Italic,1,11,S)
Al Stop
Define Bet#
-Code - (Ucase,1,1,S) (B1)
Bl Code - (Italic,1,2,S)(B2)
B2 Stop
: Defiﬁe Gamma
Code . (TO,Ucase,1,1,S)(G1)
Gl ~ Code (T0,Italic,1,2,5)(G2)
G2 Stop

‘The first instruction in this sequence is of a type
that still remains to be explained, Its purpose is to give
a name to this particular sequence of recoding instructions
so that it may be distinguished from others that may be
used in the same program and to tell the program the
intermediate code for a space, In this case, the recoding
sequence is to be known as "RAND", and "SP" is the name of
the space character ihat musf be defined somewhere in a
TERM or TERMS statement--these statements are not shown
in the example, The program must know how to recognize
a space in order to make "Code" instructions invblving "FROM"
and "TO" operate in the.way described, Recall that they
must be able to identify the nearest non-blank preceding

any given character,

—— Yy TG S ——— e e ey g gy .

-84-

The next two instructions, S1 and S2, handle the recoc
of spaces, Instruction S1 returns to itself if it identi-
fies a spade; otherwise it causes a transfef to S3., In an)
case, it does not produce any output and serves simply to
delete any-spaces from the beginning of the character strir
submitted for recoding. We shalllsee that a space en-
couhtered later in the process will be handled by the in-
sfruction at S2, which does produce an output code (octal ¢~
and then causes a transfer back to S1. The effet; of this
will Be that a sequence of spaces will be closed up and
represented by a single space in the result,

The next three instructions (S3, S4, and S5) are
the only ones in the sequence that concern alphabét flags.
They are used at the very beginning to produce the first
alphabet flag, and, when the coding of'any character is
complete, the program returns to these instructions to chec
. for a change of alphabet. In order to see hbwAthey will o
ate when applied to the first character in a string, it is
" necessary to have a convention for the ﬁredecessor of the
first character., According to the conventions used by the
program, thé character whose intermediate code is all zero
is deemed to precede the first character in Qny string so
that, provided the bits that are significant for recogniz-

ing the alphabets each contain at least one "1", the desire.

-85- /

effect is obtained, When the condition specified in one of
these instructions is met, that is, when a character
belonging to the given alphabet is found following one
' belonging to another alphabet, ihen the necessary alphabet
~flag is output, If the instruction fails because the |
current character does not belong to the specified alpha- .
bet, the next instruction is tried, or, if the character
found does not belong to any of the three alphabets, the
'reco&ing 6peration as a whole fails, If, on thevother hand,
an instruction in this group fails because the current
character is indeed in that alphabet, but so was the
previous one, then.the prbgram transfers to a place in the
sequence of instructions that simply continues the recoding
of characters in that alphabet (RAA, CAA, or PA).

The instructions for the Roman and Cyrillic alphabets
begin with three "Do" instructions, and they illustrate the
ways in which the format of this instruction can be
generalized on the analogy of the "Codé" instruction, When
there are two symbois in the first set of parentheses, the
first is the name of the package of instructions to be
used at that point, and the second is the locationvof an
instruction to be used if that package ends succgssfully
at a "Stop". If there is a second pair of parentheses, they
contain the location of the instruction to be taken if
one of the instructions in the package fails and does not

indicate an alternative,

-86~

The instruction package called "Alpha" produces the
universal down shift at appropriate places; '"Beta" broduces
" any shift codee appropriate to the current character
regardless of what has gone before; "Gamma'" produces
shift codes for new shifts when they are first encountered
"Alpha" is defined in such a way as to succeed, that is, to
reach the '"Stop'" instruction, only if it issues a down- |
shift code, The "Do" that invokes "Alpha" directs the
machine to do "Gamma" in case of failure and "Beta" in
case of success., The "Beta'" and "Gamma' packages are both
needed because, after a down sh1ft, any shifts that remain
in force must be reissued whereas, in other places,'only
new shifts need be issued., The three '"Do" instructions
do not figﬁre in the instructions for the punctuation
alphabet where they are-presumahly irrelevant.

Each alphabet has a sequence of binary-search instruc-
tions (beginning at RomE, CyrE and PP), end when any one

of these instructions finds its character, it directs

the mackine back to the instruction at S$2, which we have =~ = "~ 7~

already discussed,

Once again, the reader is urged to apply these
instructions to specific examples to verify that they pro-
duce the effects claimed for them,

A program using the recoder must supply it with a
name specifying the sequence of instructions to be used,

a name that appears in a "Recode" instruction at the

-87-

head of that sequence., It must also supply parameters
specifying boxes in the page array that contain the infor-
mation to be recoded, and a storagé area in the computer in
which to store the results, The boxes are takgn‘in the
specified order, and thcvrecodéd characters follow one another
without breaks so that distinctions brought out by the for-
matter and parsers méy:qugggqinbe submérgcd.. Thus, in the
Aekamplé iﬁrFig. 7, the name "Ludwig Wittgenstein" could be re-

* |

coded as a single un‘t, but if the user desired the last name

could be_blaced first, The standard [ormat’thag places last
names first also normally'reqﬁjres them to Pe followed by
commas, The recoder hés facilities for int;oducing constant
information like this comma directly from th program. The

!
main program might call for rccoding of the author's name

|

somewhat as follows: , .}

. . |
Encode RAI_ND, LNAME, COMMA, FNAME
"1
RAND is the name given to the particular seﬁuence of recbding
L : P . v
instructions in a RECODE instruction, LNAM% and FNAME are
. s ! .
names of boxes found on the page, in this case, by the parscr.

COMMA is the name of a string of intermediate codes provided
) . i . g
in the user's program and consisting, in this case, only of a
cofna. |
Any amount of constant material cén be%introdu;ed in the
output sequence, For(example, the string "Koutledge & Kegan

Paul (1922)" from Fig. 7 could be made to contribute "Published

' .
by Routledge § Kegan Paul in 1922" in the output,

-89~ L

Appendix

PROGRAMMER'S REFERENCE MANUAL

A.1, INTRODUCTION

Table 2 gives a lisi¢ of the routines and tables that

make up the input syétéﬁ;‘éﬁd the dependency relations among
them., The routines whose names appear at the left margin

are those normally called by the user's program. The

formatter and the parser may be left out, or the formatter
left out and the parser applied directly to a page. The
" recoder can be left out if the user arranges t6 use the material
in the page array directly or provides his own recoding fa-
cilities, The line maker can be used in place of the page
maker for simple line-by-line inpdt, but single lines must
'be made to appear as page§ to subsequent routines.. A simple
way of doing this is given in Sec. A.3. |

A program using all the capabilities of the input

system could be outlined as follows:

oreew.1) . Call the page maker to obtain a page and its para-
meters,

2) Call the formatter repeatedly to slice the page
into rectangular blocks and obtain their parameters,

3) Call the parser to identify méaningful subseétions
of a block. Then call the selector repeatedly to
obtain the parameters of the smaller blocks.

4) Repeat step 3 for as many blocks as necessary.

L]

«00«

Table 2

ROUTINES AND TABLES

Pagé Maker
| WﬁﬂLine Maker
Character Reader
Input Deyice'Dcscription**
Page Tester**
Stringer Checkér
Y
Specification Tables
Formatter
'String Checker

Y
Specification Tables
. '**
Parser

Selector

Recoder

k&
~Recoding Rules

®
Supplied by the user,

AR ’ ; A ,
Constructed by the user as a set of macro-instructions

with the system-provided package of macro-definitions,

5) Call the recoder repeatedly to collect and reaode
the data in blocks.

6) ‘Output the recoded data,

7) Repeat steps 1 through 6 until all of the data

are processed,

Table 3 contains a list of deck names, entries, and -
externs. Those decks that must be previded (character
reader) or supplementcd (page tester, parser, etc.) are not
assigned names., [ELxamination of the entries and externs
reveals the logical relationships betwcen the segments of
the system.,.

The routines are written in MAP language'for the IBM
7040/7044, They can be called from either MAP or FORTRAN IV
programs. All arguments are core locatlons, all 1ntegers
are stored right-adjusted in words, and all arrays are
stored forward in core,

The calling sequences given are as from a MAP prbgram.
The only changes the FORTRAN user necd make coﬁcern (i) the
transmission of constant arguments and (ii) results returned’
in the accumulator. -In MAP, the location of a constant or
literal must be supplied, whereas in FORTRAN Fhe constant
may be written directly in the argument list and the com-

piler left to provide a location for it, Thus, MAP

CALL PGEMAK (PAGE,PGEPAR,=50,=80, TEST, IND)

- - e o e e yrwns s b

a2 I i b i e T e - -y

-92-

_ Table 3
DECKS, ENTRILS AND EXTERNS

'‘ROUTINE/TABLE DECK NAME ENTRIES EXTERNS COMMENTS
Character reader CINPUT Supplied by user j
Input device INDD, TABS Nritten by user with system :
description - e macro-definitions .- 4
Line maker LNEMAK LINMAK, PRELIN | CINPUT, INDD,
TABS
Specification Cne for each Written by user with system
tables table macro-definitions
String checker STNCHK STRCHK
Page tester One ¢:r each STRCHX Written by user with system
routine One for each macro-definitions
' specification
table
Page maker - PAGMAK PGEMAK, CLRPGE | LINMAK
Formatter FORMT FORMAT, ROW, _ STRCHK
COL, BEFORE,
AFTER, AT
Parser P.1, P.4, P.L | -PICK Written by user with system
macro-definitions, May be com-
posed of separate subroutine
decks given appropriate ENTRIES
and EXTERNS
Selector SELECT PICK, FIRST, P.1, P.4, P.L
. LAST, PACK, .
REDUCE
Recoder RECOD RECODE
Recoding rules One for each Written by user with system
set macro-definitions

- — W P AT,
. -

-93-

corresponds to FORTRAN
CALL PGEMAK(PAGE,PGEPAR,S50,80,TEST, IND)

Routines that return results in the accumulator appear as

functions in a FORTRAN program. Thus MAP

CALL FIRST(NAME,I)
STO K

_ corresponds to FORTRAN

K = FIRST(NAME,I)

FIRST and LAST are the only routines in which Hollerith
literals may be communicated as literals. A typical pair
would be MAP |

CALL FIRST(=HTITLE ,I)

STO K

corresponding to FORTRAN

) CALL ATHRUZ (A,SHTITLE)
K = FIRST (A,I)

Certain routines and tables must be constructed
by the user with macro-instructions provided as part of the
system. These all have the following format, familiar to

MAP programmers:

T T L T "y T e

Col's 1-6:° the symbolic location, if any, assigned
to the statcment,

Col's 8-14: one of the macro-opcratic.s: SHIFTS, SHIFT,
ENTER, TABS, PGTEST, NOPGE,‘ENDPGE, BEGPGE,
TEST, SPECS, SPEC, GRAM, DEFINE, N, T, GOT(
STOP, TERM, RECODE, CODE, DO

" Col's 16-72: the paramcters for the statement,

A.2. INPUT DEVICE DESCRIPTION

_o.....The line maker refers cach input code received to onc of

the input tables that make up the input devicec description.

The first code is normally referred to the first table and
the rcemainder to tables determined by shifts implied by
precediﬁg codes, Each entry of an input table contains’thé
character to be stored in the line array, an indication of
any.carriage movement, an indication of whether or not there
is a change of shift, i.é., a change of input table for the
next code, and a line-feed flag, |

The input device description consists of macro-

. . . !
instructions. The set is herded by the statcment:

vUSHIFTSW"(Tl,TZ;]I;;T)

n

where_Tl,Tz,...;Tn are the symbolic names of the input tables,

The input table names can be any distinct MAP symbols with

less than six characters.,

-

macro-instructions, cach subsct describing a shift table,

The leading statcment is followed by the subsets of

The order in which the tables arec described need not cor-
respond to the order of their names in the above list,
Each input table description begins with the identifying

statement:

SHIFT b

" table has the form:
ENTER Inchar, Char, Move, Feed, Shift

where

Inchar = An octal number, no greater than 6ctél 30600;
which is the code supplied by the input devicé.
If this parameter is nuli; it is taken to be
zero, |

Char = A number of up to eight octal digits, which
is the code to be stored in the line array,
If this paramcter is null, it is treated as -
zero., .

Move = "BACK" for backspace;

| "TAB" for tabulate;
"FORWD'" for forward space;
"CARR" for carriage feturn;'

Null or zero for no movement.

where b is the name of the table., ELach entry in an input |

Feed = "FEED" for line-feed;
Null or zero for no line-feed,
Shift = Symbolic hame of the shift table to be used
| for the next character, If this parameter is
null, it is interpreted as implying no change

in shift,

The last one, two, or three parameters may be missing from-

the list, in which case they will be treated as null,

Each ENTER assembles as one word with the following

format:
Bit 0 | = 1 for line-feed; 0 for no line-feed.‘

Bits 1-5 = b for no movement; 1 for backspace;
2 for tabulate; 3 for forward spéce;
4 for éarriage return,

Bits 6-11 = position in shift table directory for next

- ghift table to use, .
Bits 12-35 = character to be Storeéﬁiﬂ;;iﬂg,aFT?Y:WMﬁmm

The ENTER macro-instructions within an input table des-
cription may he in any order. The assembled table will be
in order 6f increasing "Inchar'" values, Also, there will
be an entry in the assembled table for every integral value
between zero and the largést Inchar value. For example,
if the latgest Inchar value is 200, there will be 201 entries
in the table. All entrieé not resulting from an explicit

ENTER macro will be zero.

“07 -

Tab stop settings are specified by the statement:

TABS (tl,tz...tn, length)

where

tistysee.t, = the positions of the tab stops relative
tbAthe first character position on
~ the liné.
lengfh = the total number of character positions

on a line,

For example, a line with 20 character positions and tab
~stops set at positions 5 and 10 would be described by the

statement:
TABS _(5,10,20)

This statement assembles as an array of "lehgth" cells, with
each entry containing the character position of thevnext tab
stop on the line., Thus, in the above example, if the
.current ;haracter position on the line were 6 and the current
character's input table entry contained the tab indicator,
the next character would go int§ position 10, Also, any tab

indicator at position 10 or thereafter would move the carriage

.to the end of the line,.

————— e

-98-

A.,3. THE LINE MAKER

The calling sequence for this routine is:

CALL LINMAK (Line, Linlen, Ind)

where
Line = location of line array.
Linlen = location containing line length‘(maximumA
B number of characters on a line),
Ind = location for return conditions,

When the iine maker is called by the page maker, tﬁe line
array will be a suitably chosen sequence of cells in the
page array. When the routine is entered, each cell is sot
to zero, the internal code for blank, and the cell for any
position for which no character is sdpplied by the input
device will remain zero on exit. The normal return from the
line maker occurs when a "line-feed" is received from the
input device.

A character reader, supplied by the user, feeds the line

~maker one character, right-adjusted in the accumulator, in

response to the calling sequence:
CALL CINPUT

The character reader returns a negative number, whose exact

value is insignificant, after the last character in the

‘input stream. If the input is being read from a multi-reel

tape file, the negative accumulator can be used to signal

Al

T g e o P —— v T T

-99-

an end of reél, the line maker then resgming normal opera-
tion when a new reel is supplied,

The first character input from thé reader will be
looked up in the fiiiﬁ inbut tableJ(Sec. A.Z.)fand the appro-
‘priate character stored in the first cell bf“fheflihé'arréy}J
Thereafﬁe:, these positions are determined by the informa-
tion obtained from the input device_description for the last
chéracter recéived. However, both settings can be altered

by the user's program at any time with the call:

CALL PRELIN (Stpos,Chpos)

where

Stpos = location containing the serial number of an
input table in the input device description,
Chpos = location containing.chéracter positibn in the

- line array,

The line maker checks each indicated movement of the
Carriage for line overflow. 'If a forwarduspace or tabulate
‘would cause the line to overflow bn'the right, the routine
resets the current character position to "1", sets a
bit in IND, and returns the current line to the page
ﬁaker as it is without testing for a line-feed indica-

- tion, Any characters remaining between this point and the

‘"line-feed" will be treated as a separate line, which will

be delivered when the routine is next called.

-100=-

The return conditions set in IND are as follows:

2 = Line overflow
1 = Input exhausted

0 = Normal return |

Normally, the user's program calls the page maker (Sec, A.7
and this calls the line maker. But if the page maker is
__omitted from the package because the input format is mot
sufficiently complex to require it, but other routines in the
system (e.g., the parser) are required, then the user's
program must.provide a set of four parameters that will make
each line appear as a page in its own right, 'In MAP, this
can be done simply as follows:

CALL LINMAK(LINE,LEN, IND)

LEN PZE LENGTH
PPAR PIE 1
PZE . LENGTH
pE 1
PZE LENGTH
LINE BSS LENGTH

where the value of LENGTH is the number of characters in the
longest line expected, and the four locations beginning with

PPAR are the required pagé parameters,

e+ o . e - S
. T B e o gt s - o tens o ~CCa s o Mo A T

N

i
4
7

-101-

A.4. SPECIFICATION TABLES

Specification tables arc used to give more or less
complete descriptions of character strings for use by the
page tester (Sec. A.6.) in recognizing page boundaries and the
formatter (Sec. A.8.) .in recognizing boxes., In both cases, the
' "string checker" routine (Sec. A.5.) is called to interpret the

tables, Each table consists of a sequence of macro-instruc-

- tions headed by - - - -
SPLECS Name
where

"Name' is a MAP symbol that will be used to refer

‘to the table,

The table itself is constructed from statcments of

the form:

Lpnc n(Char,Mask) (Match) (No Match) - o
| v

_.where . _

n = number of string characters to be comparcd
with "Char." 1If this argument is missing, it

is assumed to be 1,

Char = A number of up to eight octal digits to be
compared with the string character(s).
Mask = A number of up to eight octal digits to be |

used as a mask in the comparison. When

DU S

et e e P ——— o o s i

-102-

a string character is comparedeith Char, only
those bit positions that contain a 1 in Mask
will be considered significant, If this
argument is missing, it is interpreted as
octal 77777777,
- "Match" and '"No Match" hafe one of the following forms:
1) "F" meaning false or failure.
2) "T" meaning true or success,
3) "NEXT, Loc" meaning check the next character
in the stfing against the specification at
lbca;ion '*Loc', If 'Loc' is misSing, it is taken -
to be the immediately following statement,

4) "SAME, Loc' meaning check the same character

against the specification at 'Loc’,

The SPEC statements describe a row from left to right

or a column from top to bottom. The meaning of a statement

‘is: "Compare n string characters with 'Char', using 'Mask’',

If all n match, proceed as indicated by the 'Match’ alter-
native., If any one of the n does not match, proceed as
indicated by the 'No Match' alternative",

For example, consider the statement:
SPIC (310,770) (T) (SAME, L1)

The string character (current at the time the string checker
reaches this specification in the table) will be compared

with octal 310, taking account only of the six bits coinciding

~-103-

Qith octal 770, If it matches, the string satisfies fhe
specification table. If it does not match; the same string
character will be compared with the specification at LI.

Since the string checker routine will return a failure
indication if it exhausts the string before encbunte;ing a
success or failure indication in the table, it is pdssib]é'f6f ‘ N

a table to consist of one statement such as:
L1 SPEC (60) (T) (NEXT, L1) S

This specification table will be satisfied only by a string
that contains at least one character equal to ocial 60,
To specify a string consisting of 99’characters, all

of which are octal 60, the table could consist of the state-

meﬁt:
SPEC 99(60) (T) (F)
This one statement is equivalent to the 99 statements:

SPEC (60) (NEXT) (F)
- SPEC (60) (NEXT) (F) = _.

SPEC (60) (T) (F)

Notice that if only, say, 35 characters are found meeting

the specification, the next character is deemed to be the

36th and not the 2nd.

RialiiRb s 4™ S

Each spec statement

First Word

Bits 0-11 Match

Char

Bits 12-35

Seéond Word

 Bits 0-11
Bits 12-35 = Mask

'No Match field

=104 -

assembles as two wordsy

field

Match and No Match Fields

Bits 0-1 = () for
=1 fbr
2 for

' v 3 for
~ Bits 2-11

0 for

Index

- A.5. THE STRING CHECKER

P

failure
success
check next string character

check same string character

failure or success

of next entry to use otherwise

This routine is used by the page tester (Sec. A.6.) and

formatter (Sec., A.8.) routines, On each entry it compares a

string of characters from a row or column with a specifica-

tion table and returns a

" The calling éequence is:

success or failure indication.

. CALL. STRCHK(String, Inc,Strlen,Spec)

TR o i b etrontdeanc I8 e oo A % e 5 e, e i e
. . . - - wwae v o - T ind i n - Came e
r

-105-

where

String = location of first character in the string.

Inc location containing dif ference of memory

locations between two successive characters

in the string.
Strlen = location containing numbher of characters in

the string,

Spec = location of the specification table (Sec. A.4.)

When checking rows of a page, Inc will contain "1'"; when
checking columns, it contains the number of columns on the
page.

The routine returns in the accumulator:

1 for success.

0 for failure.

If the routine checks all of the characters in the string
without encounterihg an explicit success or failure indica-

tion in the specification table, it returns the failure

A,6, THE PAGE TESTER

Each time the page maker (Sec., A.7.) receives a line from

the line maker (Sec. A.3.), the page tester is entered to
determine if a complete page has been constructed, The
page tester first examines the current line, i.e,, the one

most recently constructed by the line maker. If this line

STy prgrLrr e —y

~-of macro-instructiors. The macro-instruction pac

passes the test, and the specifications involve morc than

one line, the previous line is examined, then the¢
previous to that, and so on. Therefore, the uscr

the page tester so that it exanines lines from the bottom
upward,

A page tester routine is written by the user

vides three types of statements:

1) The identifying statement

* PGTEST IName

where
"Name'" is any valid MAP symbol with no more

five characters., r°- is the first

. |
in a routine, and its function is to

line

constructs

as a set

kage pro-

than
statément

assign a

1
. . 1 .
name to the rqutine, The name is used in the

‘page maker calling sequcncevto ident
particular'pﬁge tester,

‘W

2) The terminating statcments

NOPGE
ENDPGE
BEGPGE

ify the

These macro-instructions, which have no'parameters,

'
i

are used to terminate the test routine,

A routine

may contain as many such statemcnts as desired,

The ENDPGE terminator indicates that the page ends
with the last line constfucted. The BEGPGE terminator
indicates that a new page begins with the last line
tested by the routine (i.e., the first constructed
among those tested)., The NOPGE terminator indicates
that a pége has not yet been completed.

3) The test statement

TEST Spec, Alt
"yhéfé J“u,”mm,hlwmwﬂ.e”,u.
Spec = Name of a specification table (Sec., A.4.)
describing a line, All names must be listed
in a MAP EXTERN statement when the routines
are assembled,
Alt = location of another TEST statement in the

sequence or one of the words "NOPGE,"

“ENDPGEL,'" '"BEGPGE."

The first test statement in'a program applies.to the most
recently constructed line, The line is matched with the
description in the specification table, If it matches, the
next statement in the sequence is executed, If that is a
test statement, the previous line on the page is matched

with the indicated specification., Whenever a line fails

to match, and "Alt" is the location of another test statement,

-108-

the same line is matched with the indicated specifica-
tion,
Using onc of thc terminating words for "Alt" is cqui~-

valent to making "Alt" the location of a terminating state-

ment, That is, the statements:

TEST BLANKS, Al

Al BEGPGE
are équivalent to:
TEST BLANKS, BEGPGE

The line returned as a page beginning is always the
last line tested, regardless of/the results of the test, In
the above example, a line that does not match the line |
description in the table called BLANKS will be considered

the first line of a new page. In the exanmple:

— | - TEST—-BLANKS,-NOPGE—
| BEGPGE

a line that does match the line description is considered
the beginning of a new page. A line that does not

match causes the routine to return the indica£ion that a
page is not complete,

The calling sequence for a page tester routine is:

CALL Test(Line,Lneno,Cols)

where

Test

Line

Lneno

Cols

-109-

name assigned to the routinc by the PGTEST

statement.

location of the linec.

location containing the line number of the

current line (first, second, third, etc,).

location containing the length of a linc.

The routine returns in the accumulator:

1) zero for no page.
2) minus one for end of page.

3) line number of first line for beginning of page.

~A,7., THE PAGE MAKER

where

Page

Pgepar

Depth

width

The calling sequence is:

CALL PGEMAK(Page,Pgepar,Depth,Width, Test,Ind)

location of the page array of dimension

C(Depth) x C(Width).

location. for page (Boundary) parameters--a‘
four-word array.

location containing the maximum number of
lines on the page.

location containing the maximum number of

character positions on a line,

-110-

Test = name of a page tester routine (Sec, A.6.).

Ind = location for return conditions.

. The name of the page tester routine must be an external
symbol, | |

.. The page maker constructs a page by alternately calling
the line maker (Sec. A.3.) and the page tester (Sec, A.6.)

until one or more of the following conditions is met:

1) the page testér indicates that the page is complete,

2) the specified maximum number of lines has been
constructed, i.,e,, the page array ié full,

3) the line maker indicates that the input is

exhausted,

The line maker stores characters directly into the page array.
Regardless of the return conditions, the routine stores the
page parameters as right-adjusted integers in the four-ﬁord
array.

The order of the houndary parameters is: |

1) First character position across the page.

2) Last character position across the page.

3) Sequénce number of first character within the
region bounded by 1) and 2),

4) Sequence number of last character within the

region bounded by 1) and 2),

-111-

The first and third parameters of a page are alwayé 1, and
the second paramcter is the number of columns on the page.
The fourth paramcter, number of columns timecs number of
rows, is computed by the routine.

The page haker calls the line maker (Sec. A.3,) with the

calling scquence:
CALL LINMAK (Page+n*iidth,Cols, Ind)

‘with n initially zero and incremented by one on each succes--

sive call, The page tester (Sec, A.6,) routine is called by:
CALL Test(Page+n*Width,n+1,Cols)

The three arguments of the calling sequence are the line
location, the line number (the first line of the page is’
line némber 1, etc.) and the length of the current line on
the page.

' The page maker calls on the page tester to tell it when
the end of a page or the beginning of a new page has been
encountered, When pages are heing.recognized by their’
beginnings rather than their ends, one or more lines of the
next page will already havc been set up in the page array
before the parameters of the current one can be constructed
and passed to the calling program, For this reason, it is
important that cells of the page array should not be
tampéred with between successive calls to the page maker even

if they lie beyond the end of the current page, and that

o

TN e T . — e x g ian SN

-112-

the number of characters on a line should not he varied
from one call to the next (see bhclow: Return Condition
Bit 34).

The user can cause left-over lines td be igﬁored on

the next entry to the page maker with the calling sequence:
CALL CLRPGE

~Any combination of the following bits in IND may be

set to 1 when a page is returned to the user's program:

Bit 35 - Input is exhausted, and the current page is
the lasf.
Bit 34 - Either a line has been encountered that
is longer than the specified maximum; or that
maximum has Dheen changed sincc the last call.,
Bit 33 - The end of the current page was not signalled
by the page tester either becausc it over-
flowed the page array or because the.input

is exhausted,

A.8, THE FORMATTER

The formatter is initiated by the calling sequence:
CALL FORMAT (Page,Pgepar)

where

3
[
o
4]
n

location of page array.

location of page (boundary) parameters,

"I
Q
L]
o
1Y)
-
8

- - -

-113-
This entry to the routine specifies a particular page as
current, The calling program ¢an format any number of pages
in parallel with appropriate c41lls of this form to indicate
the curreﬁt page. llowever, thils flexibility is of limited
use since the other routines do not allow for parallel input
from several devices, | | |
Once a page is specified‘and FORMAT has been called,

\ .
d box on the page is subdivided with the calling sequence:

. | i‘ | . .
| | 'CALL Sub(a,b,c,cuti,Speci,...,cu;n,Specn)

where

"ROW" or "COL",

wn
=

.o
[}

a = location of the input box parameters,

o
"

location for the first output box parameters,

&£ = location for the second output box parameters,

Cut. = "“AFTER'", "BEFORE" or "AT",

lJocation of a specification table (Sec. A.4.)

| N N [
describing a row or column, or a location con-

wn .
e}
o
-0

[

[}

taining a row or column number,

"AFTER", "BEFORE" and "AT" arctthe‘naﬁes of entries in tﬁe
‘formatter and must be identified as external symbols by
the EXTERN pseudo-op in MAP orlthé EXTERNAL étatement |
in FORTRAN caliing programs, Also, all specification

table names must be identified as external symbols,

R e e M S o Sy

~114-

When "ROW" is used, the‘formattcr divides the input
box horizontally. The upper box becomes the first output
box and the lower hox the second. When "COL" is uscd,_ﬁhc
division is vertical, with the left box the first output
box and the right the sccond. The first time ROW or COL
“is used for a page, the input box is of course the page
itself, and therefore "a" will be the "Pgepar" of the initiati

call, It is permissible for either output box parameter

location to be the input box parameter location, i.c., h=a
or c=a, But "Pgepar" should never be used as an output
. box parameter location. |

All boxes produced by the formatter arc rectangular,
and/the routine assumes that all input boxes are also..

Any number of cut indicaiors may appear in a single
call, They are interpreted from left to right, ELach is
applied to those rows or columns that satisfy.the previéus}
indicators. A cut is completely defined when there is
only one division of the inpuf box that willlsatisfy the
indicators. For example, the cut indicator "after row three"
following '"before row four"'édmplétélyddefiﬂés”a'cﬁt;wwwm o
Whenever this point is reached by the formatter, the
routine ignores all further indicators and makes the
division,

On the other hand, if all the indicétors are processed
and the cut is not completely defined, the divisioh is made
after/before the last row/columh specified, The AT indi-

cator defines a cut compietely.

The following conditions result in a return to the
calling program without a cut and with the first parameter

of both output boxcs set to -1;

1) An input box with the first parameter equal to -1,
2) A specification for a row or coulumn that does - B
not. ex1st, encountered by the formatter when the

cut is not yet completely defined,

- Either or both output boxes may be empty. An empty.
box is represented by the first bhox parameter set to zero,
If the formatter receives an empty 1nput box, it produces

empty output boxes,

A.9, THE PARSER

The program using the parser calls it with the follow-

ing calling sequence'

CALL - Name(Page,Pgepar,Boxpar,Flag)

where

mﬂwmmwmwygmgmfwnamemof,thehgrammar\appearingmin a GRAM state- -
ment (see below).
Page = location of the pége array.
Pgepar = location of the page paranmeters,
Boxpar = location of the}paréﬁeters of fhe box on the
page to be parsed,

Flag = location containing plus one if the box is to

be parsed forward; minus one if backward,

-116-

A box is parsed backward by cxamining the string of charac-
'ters in it.in reverse order, i.c., starting with the last
character and cndiné with the first,
- The parser returné an indication of whether or not the
rules of the grammar were successfully applied to the box,
~ The accumulator contains the total number of phrases--
successfully applied T and N statements--which is zero when
the whole parsing fails. |
The set of rules constituting a grammar are constructed
from the macro-instructions listed below, As many different
grammars as desired ﬁay be included in the same assembly
as long as all symbols are uniquely defined. Objects define
in one grammar may be referred to freely in others., TIn
particular, one grammar can completely contain}another;

The following macro-instructions are used in building

parsers:
1) GRAM Grname,Poname
where
Grname = name of the grammar.
Poname = name of the primary object described by the

grammar,

There is one statement of this form in every grammar., '"Grnam
is the name used by the program calling the parser to qpcc1f
the dcs1red gramnar, "Poname" appcars in the variable

field of a DEFINE statement in’the grammar, These names

may be any valid MAP symbols.

117~

2) DEFINE Name
where
Name = the name of the nonterminal object described by
the statements immediately following this one,
It may be any valid MAP symbol. Any number of
names may be associated with the same description
by listing them in the statement,lseparated by

- commas and all enclosed in a pair of parentheses.
3) N (Name,c,Loc)

where

Name the name of a nonterminal appearing in a DEFINE

statement somewhere in the parser,
¢ = the number of characters in'the string claimed
by this statement, If the parameter is null or
missing, it is interprefed as zero,
Loc = the location of an alternative statement to
this one, If there is no alternative in fhe

description, the parameter is omitted,

Both "Name" and "Loc" may be common to more than one grammar

provided they are assembled together,

4) T ((tyyeee,yty),c,Lloc)Op

where

= terminal symbols defined by the TERM (or

5000yt
1’.’11

-118=

__TERMS) statement (sce 7 helow). When n=l1,

the inside sct of parenthescs may be omitted,

= "OR", '"NOT', "MULT', "ANYBUT" or null,
? ? ’

"c" and "Loc'" have the same meanings as above,

!
i

|

Any number (except zero) of terminalsymb91§mmay_bgﬂiﬁstgd""H

'in this statement, The statemcnt describes one or more

characters, depending on the operator Op, as follows:

- Op ' Description

"OR'! A single character that is an y one
: of those listed, :

“NOT" . A single character that is not any
: one of those listed,

*"MULT" ' Any number (greater than zero) of
_ o Characters, each of which is an ny on
of those llsted

"ANYBUT" An‘ number (greater than zero) of
characters, each of which is not in.
the set listed, ‘

Null | A1l of the characters listed in the
Iisted order,

When the,operatofs MULT and ANYBUT are used, the number of

- characters claimed, 'c', refers to each'application of the

- description to the sffing; Usually, then, ¢ = 1 for these

operators, For all others, 'c' refers to the number of

characters claimed by the entire statement.

5) GOTO Loc

TY TR e g - g
[t . ;

where

where

Name

Mask

Char

6)

7)

statements,

-1l1lY=-

Loc = the location of a statement that is to be taken

next,

STOP

This statement, which contains nn parameter list, logically

terminates an object description,

TERM (Name,Mask,Char)
TERMS ((Name,Mask,Char),...)

A MAP symbol used to designate a terminal

symbol or class of symbols, 4

Up to eight octal digits specifying the bits

in the internal 24-bit code that are signifi-
cant for thc identification of this symbol or
class of symbols,

Up to eight octal digits giving the values
required of each of the bits specified in "Mask".
"Char" must have zeré for all bits where

"Mask'" is zero,

A TERMS statement is equivalent to a sequence of TERM

The following is an example of a grammar written in

this language:

I A g A g e aduit A

TERMS
1 TERMS
@AM

M1 N

GOTO
A2 N
STOP

DEFINE
T

T

| STOP
FAMI T
'FAM2 STOP -

DEFINE
T
sTOP

NAME ié an clement in the

of a first name called FNAME

midlle names called MNAME

The grammar is named CITGR

description of CIT.

-120-

((sr,77,00), (L.ET, 200,200))
(PRD,77,33), (HY,77,40)
CITGR,CIT

NAME
(FNAME, 2)

(SP, 1)MULT

(MNAME, 1, NM2)

(SP, 1)MULT -

NM1

LNAME

(FNAME, MNAME)
(LET,1)
(PRD,1,FAM1)

((LET,HY),1,FAM2)MULT

LNAME
((LET,HY), 1)MULT

s and a last name called LNAME,

» and the primary object is CIT
NAME consists

» any number (including zero) of

.

-121-

Each of these is separated by at least onc terminal called
SP, a space, The first namc and niddle name have the same
descriptionf a letter followed by a period or a string
of letters and hyﬁhens. The last name is a string of lettefs
and hyphens, |
The terminals are based on'aﬂ input device description
in which the low-order two of the eight octal digits of
. the intermediate representation identify the character, The
remaining positions are flags, with ihe 17th bit position
from the left as a letter flag.
The first statement in the description of NAME claims
two characters, one for the first namc and one for the last.
Both of these descriptions can be satisfied by one |
charactér; additional characters, if any, are claimed within
the subordinate descriptions., Since middle names are optional,
no characters are claimed for them in the first statement,:
Since there must be at lcast one space, between the first
and iast hamé, a thi;d character could have becen claimed
~.in the first statement. But then, to avoid claiming théfwfw"wwww'wmmm

space a second time, the second statement would have to

be replaced by:

T SP
T (SP,1,NM1)MULT

A.10, THE SELECTOR

Once a box on a page has been parsed, the user obtains

the results of the parsing with repeated calls to the selec-

-;-=:===------------;---------.--.-.-....-.----IIIIIIIIIIl---.-

J— t}](_’ sel e(‘ tor ., o e e

T -122-

tor routines. Since the parser has only one storage area

for its -esults, the user must select all these desired heforc

3

PATS1Ly efnother box, Before returning to the main program,
the parsex activates the sclect - by giving it che para-

meters of the parsad box‘and*tHE"hérsiﬂg”di?EéfEbﬁ]mforwafd”m‘
or Backward (via an entry‘callcd PICK). The location of

the current page and its parameters are not requ;red by

Tne user selects a node with one of the calling se-

quences:

CALL FIRST(Name,i)
CALL LAST(Name, i)

where

Name = a location containing the BCD name of the node
to be selected., The dharacters are stored left-
adjusted in the word; lunused positions are

. | ,

filled with blanks.

i = a location containing a pointer (index) to a
- node that is an ancestor of the one to be

selected,

The routines return, in the accumulator, the pointer (index)
to the sclected node,

The pointer to the origin is always one, and initially

this is the only pointer the user knows. Therefore the

113~

first time a ncde is selected afrer a hoxvhas beecn parsed,
the ancestor referred te will be the primary oﬁject.
Thereafter it may be any previously selected node,

The routingv"FiRSTf‘selqéts, from the parser's results,
a noderéﬁlled NAME that has not heen previously selected

and that is the first such descendant nf the node indicated

by i. The rqqtinewﬁLAST?>se1e¢tsﬂthe'1ast,such descendant,~ T T

If n: such descendant exists, the routines return a pointer
of zero., By testing this pointer the user determines whether
he.has selected all the descendants of a particular hode.

The terms "first' and "last" are rclative to the direction
of parsing. If the bpx was parsed in a forward direction,
first means left-most and last means right-most, If thé box
was parsed in a backward direction, the meanihgs are
reversed,

Once a node has been selected, its parameters can be

obtained with the calling sequence:
CALL PACK(Par,i)

where

Par = the location of the four-word array in which
the new box parameters are to be stored,
i = location containing the pointer to the desired

node.

-124-

If the vaiue of i1 is zero, the routine will indicate an
empty bex (first parameter set to zero). 1f the desired
node represents a character string of zero lenpth, the
routine will ale indicate an empty box. This arises from
an'object'déséfiption'in the grammar that is satisfied
by the null string of characters,

 Once all desired nodés have been selected and packed,
the user canrreduce the initial bhox to exclude the portion

that was parsed by:
- CALL REDUCE

This routine calculates the parameters of the portion
of fhg box not parsed and stores them as the parahctcrs
of the original box. If the entire hox was parsed, the new
pafémeters will indicate an empty box.
Below is a'segment of a FORTRAN program using the

selection routines, 1t is based on the grammar example

.given in the last section. - - : ol

IND=C ITGR (PAGE, PGEPAR, BOXPAR, 1)
IF (IND) 90,2000,90
90 CIT=1
NAME=ATiRUZ (NAME , 41INAML)
100 - NAME=FIRST (NAME,CIT)

/ ~ -123-

IF {NAME) 110,1600,110
110 © CALL ATIiRUZ (FNAML, SHFNAME)

FNAME=F IRST (FNAME, NATE)
CALL PACK (FEPAR,FXAME)

200 CALL ATHRUZ (MNAME , SIMNAME)
MNAME=FIRST (MNAME, NAME)
IF (MNAME) 210,300,210
210 © CALL PACK (MNPAR,MNAME)

GOTO 200
300 LNAME=F IRST (SHLNAME , NAME)
CALL PACK (LNPAR,LNAME)

GOTO 100

The first statemeht shown calls the barser. The next' ' |
determines whether the box was sucéessfﬁiiy pérsed. A block of
statemenis to deal with a parsing failure begins with

the statement numbered 2000, When control reaches State-

ment 1000, all of the names havé heen selected from the

arscr's results,
p

A.11, RECODING RULES

The six macro-instructions used to write recoding

rules are as follows:

------------;----------.-----.-------lIlll.lilll---...-.....

-126-

1) RECODE Nanme,Space,Filler
fwhere
"Name' = A MAP symbol to be used in referring to
vthe set of recoding instructions of which
this is the first., It will bccome an‘external
symbol znd must therefore be chosen so as not
“to conflict with other external symhols."
- "Space" = A MAP symbol defined in a TERM or TERMS
| ﬁacro-instructioh, giving the propertiesk.
by which the internal code for a space can
be récognized.
"Filler" = An octal numbef,of one or two digits to
be used as the filler character whén the

last output word is partially filled.
~2) CODE (Type,Name,n,Output,s,Locl) (Loc2,Loc3)

where

‘““’"T)'Pe" = ."FROM" or -"TO" or is omit ted‘;"‘ - 'Thewﬁffe;cﬂt T T e

of ;his parameter is described fully in . =
Sec, 7 of the text and is Summarized below,
"Name'" = A MAP symbol defined in a TERM or TERMS |
macro-instruction, giving the properties
(hbits) required of an int.rmediate code to
satisfy this instruction, This parameter

"must be present,

"n" = The nunber of six-bit hytes to be output

when this instruction is satisfied., This may

"Output® .= An octal number of 12 digits or less giving
the outjut to be produced when the“ingtfﬁc;
tion is satisfied, If less than 2n digits
are;given,.the cbde will be right-adjusted’
in the field, If more than 2n digits are

given, the 2n least significant digits are

used, This parameter may be omitted if '"n"

is omitted, |
"s'" = "G" if present and specifies that, if the
instruction is satisfied, the follqﬁing
instruction will be applied to the same inter-
mediate code, If this parameter is omitted,
the next instrﬁction wiil apply to the
following code, 7 | 7
"Locl" = A'MAPAsymboi (other than "S") naming the
 location from which the next instfuction is
to Be-taken after this one is satisfied, It

may be omitted, in which case the instruction

immediately following this one will be used,

"Loc2 and o
Loc3" = Locations from which the next instruction

1

i will be taken if this onc is not satisfied.

be omitted if "OQutput" is omitted.

-128-

*® the instruction fails and "Loc2" and "Loc3'" are
both missing, then the whole recoding process or the current
subroufincvfails, and an error condition is signalled in the
main program. (See Sec, A,12,) If only one location is “

given and no comma, .the instruction at taat location is

'given together with a comma to show whether it is intended
to fill the position of “Loc2" or "Loc3", then the whole
recoding process fails in cases where the missing location
would normally be used. |

If "Type" is omitted, "Loc2" is used if the signifi-
cant part of the intermediate code'found is algebraically
leég than the one sought; if it is gre&ter, "Loc3" is used,
If "Type" = "TQ", *"Loc2" is used if the current code does
not have the specified properties;.'Loc3" is used if both

the current code and the previous non-blank one have the

'specified properties, If "Type" = "FROM", "Loc2" is used 7

if the p;evious‘non-blank code does not have the properties
specified in the instruction; "Loc3" is used if both the
previous non-blank and the current code have the specified
properties,
~ 3) DO Locl
DO (Locl,LoéZ)(LocS)

where

"Locl'", "Loc2'", and "Loc3" = MAP symbois

P S

e — it "

© ok e o

The symbol "Locl" must be defined in a "DEFINE" macro-

instruction as the name of a subroutine, The subroutine

are satisfied, the pfogrém takes its next instruction
from "Loc2", If "Loc2" is omitted, the next folloﬁing
location is used. The symbol "Loc3" is used if the last
insfrﬁction to be executed in thc subroutine was not satis-
fied, and no alternative location was provided, There is

no provision for recursive subroutines,
4) STOP

This macro-instruction, which has no parameters, marks

the successful conclusion of a subroutine,
5) DEFINE Name

where

\° g

e "Name'-=-A MAP symbol naming a subroutine, i.e., a
self-contained package of recoding instruc-
tions called by DO instructions elsewhere in’
‘the program and ¢nding in a‘STOP‘instruction.
The first instruction of a subroutine must

immediately follow the DEFINE,

6) TERM (Name,Mask,Char)
TERMS ((Name,Mask,Char)..eees)

where

"Name" = A MAP symbol used to designate a class of

- ——is-called by this instruction, and if all its instructions

-130-

"Mask" = Up to twelve octal digits specifying the
bits that are significant for the recogni-
tion of this class of codes,

"Char" = Up to twelve ocfal digits giving the values

"Mask",

A.12, THE RECODER

The calling sequence to the recoder is:
CALL RECODE(Output,Length,Table,Page,Pgepar,al,aZ,....an
where

"Output" - = The location of an array where the recoder
output is to be stored,

“Length"

The number of words in the "output" array,

“Table" = The name of the sequence of recoding inﬁtruq-

tions to be used.‘ This must appear in a RECODE
instruction in the recoding rules (Sec. A.11.).
"Page" = The location of the page 5rray.
'"Pgepér" = The location of the page parameters,

"al,.;an" = Location of box parameters or'conStantrarfays;~
RECODE is used as a function in FORTRAN and must he declared
to be of type INTEGER, A constant array is distinguished
by the fact that it contains a negative number in its first

cell, An array headed by the number =-n contains n intermediate

‘required of each of the bits specified in . - --

“include a recoding step. There are two calling sequences,

-131-

character codes in the immediately following cells and there-
fore consists of n+l cells altogether.
The following return codes are transmitted through

the accunulator:

-1 = An ill-formed set of hox parameters was offered
for recoding (first word = octal 777777777777).

-2 ='?ailurc fo.recode~-an interhediate code was en-
countered for which no equivalent was provided.
.The last instruction applied therefore failed,
but pointed to no alternative location,

=3 = The‘output array overflowed,
+n = The input was successfully recoded, and n output

words were produced,

A.13. FETCl

The FETCH routine is used internally by the system to
extract individual intermediatc codes from the page array,

and it can be called by the user who does not wish to

one to provide parameters to the routine and one ‘to obtain

the codes. These are:

1) CALL PREFET(Page,Pgepar,Boxpar,Flag,Error)

where

"Page" = The location of the page array.

"pgepar'" = Location of the page parameters,

han a2 g o o a2 - M B =7 age 4 m— atantian it 2N atr e L]

— e

"Boxpar" = Location of the parameters of the box from
which codes are to he fetched,

“Flag" = 1 if the character codes in the box are

14

| to be considered numbered from top left

|

mmw~ww7/-10 bottom -right and -1 if they are to be

o ‘numbered from bottom right to top left.
"Error"- = A location to which return should be made
from "CALL FETCH" if the serial number
" of the charactcr called for is such as to

place it outside the specified box,

' On return the accumulator contains the number of characters

in the box (zero for an empty bok) or octal 777777777777 if

.the first box parameter is that,

2) CALL FETCH

,The ith intermediate code in the hox, where i is given
in index fegister 1, is returned in the accumulator., The
sign bit is positive unless the code is the.first in the

box on a4 line, i.e., unless it begins a new line in the

box in which case both sign and p-bit are set to one,.

If the number in index 1 is greater than the number of
characters in the box, the return is to the error location,

This routine may not be used between a call to the

~parser and the last corresponding call to the selector. Also,

FETCH cannot be called from a FORTRAN program,

UMENT CONTROL DATA

IGINATING ACTIVITY

THE RAND CORPORATION

20 REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2b. GROUP

EPORT TITLE

COMPUTER 'ROUTINES TO READ NATURAL TEXT WITH COMPLEX FORMATS

UTHOR(S) (Last name, first name,nithial)

Graves, Patricia A, David G. Hays, Martin Kay and Theodore W. Ziehe

FP%§éx§§§535 August 1966

6a TOTAL '12.30F PAGES

6b. No. OF REFS.

INTRACT OR GRANT No.

8. ORIGINATOR'S REPORT No.
RM-4920-PR

AVAILABILITY/ LIMITATION NOTICES

9b. SPONSORING AGENCY |
United States Air Force

DbC 1 Project RAND
ABSTRACT 1. KEY WORDS
A description of a system of IBM Toko/ Algorithms
."subroutines that will accept natural- Bibliography
nguapge input with complex formats--e.g., Catalogs

‘om books, Journals, questionnaires,
ippings, library catalog cards, etc.--
-epared by any typesetting device or
her machine (typewriter, keypunch, etc.).
.puts are transcribed by the computer

to a standard code for machine process-

g and can be rearranged into any desired
wrmat for stecrage or output. Different
nds of information are recogunized by
'plicit markers, position on the line or
re, or syntactic clues given by other
ems., The subroutines can be used singly
~'together; they may be called fronm’ T
ther FORTRAN or MAP programs. A detailed
‘ogrammers' gulde is included.

Data processing
Dictionaries '
Documents
FORTRAN

Grammar

Indexes

" Information storage and

retrieval
Language
Linguistics
Library science
Computer languages

"Computer programs

IBM 7T0L0/70LL
MAP languacge

