
MEMORANDUM

RM-4920-PR
AUGUST 19(6

tCOMPUTER ROUTINES
TO READ NATURAL TEXT

WITH COMPLEX FORMATS
Patricia A. Graves, David G. Hays,

Martin Kay and Theodore W. Ziehe

116i research is sponsored by the United States Air Force under Project RAN)-Con.
tract No. AF b'y(6h))I ,(X)-mnitred ly the I)irectorate of Operational Requirements
and Development Plans. Deput. Chief of Staff. Research and Il)evelopment. Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force. .

DISTRIBUTION STATEMENT
I)istrihitiion of this document is unlimited.

1700 AIN I * SA*NTA ONICA * (AoI$OtNiA * .04.t

147

-iii-

PREFACE

Use of the computer as a tool for managing files of text

as a part of information systems for management or science -

or as part of linguistic research - is more convenient if a
standard format is maintained internally. But for the con-

venience of input typists, the designer must be free to set
up keyboard arrangements and special conventions accoidikg to
his requirements for each job. The present Memorandum des-

cribes programs facilitating the connection of an arbitrary

input scheme with either a standard internal storage scheme

or any arbitrary output scheme.

The present Memorandum is intended for use by system de-

signers. The authors hope that it will be useful to anyone

with ordinary text to process and a computer to do the pro-

cessing.

-v -

SIJMMARY

This Memorandum describes a set of subroutines for the

IBM 7040/44.computers for reading textual material with com-

plex formats and coding conventions--questionnaires, libra'y

catalog cards, etc.--from any external medium into the high-

speed store of the machine. Different kinds of information in

the input are recognizcd by explicit markers, posit'ion on the

line or page, or syntactic claes given by other items. Less

complex material requires only a portion of the system. In-

formation may be recoded according to the user's conventions

before being delivered to his program. The routines may be

called from either FORTRAN- or MAP-coded programs.

-vii-

FOREWORD

The variety of tasks to which digital computers are

applied is rapidly increasing, and more and more of the

computer's time is being devoted to non-numerical work,

much of which involves processing ordinary-language text

in one form or another. Research in linguistics, machine

translation, and documentation can only proceed i large

files of text are available. The Linguistics Project at

RAND, in collaboration with the Centre d'Etudes pour la

Traduction Automatique of the University of Grenoble, has,

over the past two years, developed a method of encoding

linguistic data on magnetic tape so as to capture all the

information from the most complex printed page. This for-

mat greatly facilitates the exchange of information.

The programs described in this Memorandum are intended

for reading texts in other formats so that they can then

be processed by standard programs or- re-encoded according

to the standard conventions. It is expected that the text

in its original form will often be most unsuitable for

computer processing, having been produced with some quite

different purpose--automatic typesetting, library catalog

For a detailed description of the application of this
format to text, see Martin Kay and Theodore Ziehe, Natural
Language in Computer Form, The RAND Corporation, RMYITPf ,
February 1965.

/

-viii-

card preparation, etc.--in mind, and in these cases a

great deal of preliminary work will be required before the

material can be used. For this reason the programs described

here will sometimes seem cumbersome and unnecessarily

complicated. However, every attempt has been made to divide

the work up among several autonomous routines, the whole

set of which will only rarely have to be used together.

If the format is simple and the keys explicit, then the

largest and most sophisticated routines can be left out.

Conversely, if the format is complex and the distinctions

subtle, then the whole system will probably be required,

and the labor involved in specifying the parameters for

each process will be correspondingly greater.

This Memorandum is divided into two parts, the first

of which is an introduction to the system as a whole and

to the individual programs. Since the routines are intended

to carry out sophisticated processes on almost any kind

of textual material, the directions required from the user

are very comprehensive and detailed. However, the amount

of programming experience required to use the routine5 is

actually very small.

The second part (Appendix) is a detailed programmer's

guide, giving all the information necessary to use the

routines. The Appendix will only be intelligible to a

reader with some programming experience, but this need not

-ix-

be very extensive. These programs and any others developed

by the Linguistics Project at RAND are available to others

on request.

-Xli-

CONTENTS

PREFACE *. * e0* 00S0*SSSS00

SUMMARY ********-/v

Section
1. INTRODUCTION 1

1.2. Desiderata ****.*.....*. 3
1.3. Overall Design

2.* THlE LINE MAKER 13

3. THlE PAGE MAKER 206

4o* THlE FORMATTER .. ** . 6**.**** 30

S.* THlE PARSER *. 38,

6. THE SELECTOR *............... 60

7PPE IE R.C...R............ 63

COMPUTER ROUTInrES TO READ NATURAL TEXT

WITH COIPLEX FORMATS

1. INTRODUCTION

In a typical computer job, a program is written first

and then data are prepared for it in a form the machine can

read. The details of the data format--how the numLers shall

be represented, where they will be placed on the card or

line, how program options are chosen--are dictated by the

program. It is right that they should be because data are

most often prepared for a single program, and one format is

usually as convenient as another for the person preparing

the data, though not necessarily for the programmer. Sys-

"cems programs provide a minimum of assistance in the form

of routines for converting numbers found at a certain

place on a line to binary form.

1.1. Shortcomings

However, under some conditions, this way of doing

things is intolerable either because the data format

exists before the program or because the amount and com-

plexity of the data are such that the burden on the persons

preparing the data far outweighs that on the programmer.

Linguistic data are a case in point. Most of the raw

material used in linguistic, literary, and bibliographic

computing consists of text. The amount of material to

be processed is often large, and the tedium of keypunching

-2-

or typing ordinary texts so as to preserve all the typo-

graphical distinctions of the original is often very

great. This leads to compromises and short cuts that

often entail-more labor- in the long run, for a single

text-could often be profitably used in other processes

than that for which it was first prepared if sufficient

- information from the original had been preserved. Further-

more, text is now becoming widely available in a form

acceptable to a computer from sources outside research

and computing, notably as a by-product of the printing

process itself. This will save the scholar tedious work

if he can convert the by-products into usable form.

It is therefore wrong that linguistic computing

should continue in the traditional pattern with a new data

format for each new job. There is a pressing need for a

standard format for textual material and for

flexible method !of getting material from widely differing

___ sources into this format, The most profitable direction

for linguistics computation to pursue is a method that

goes beyond the well-known "format statements" of FORTRAN

and the like. The programs that we describe here, used

in various combinations, accept data in a wide variety of

formats, on diverse media, and leave the data in core

storage ready for whatever processing the user requires,

.3-

1.2. Desiderata

The person who prepares text for a computer is the

machine's eye. His task is to record in a series of

codes on a punched card, a role of paper tape,orin

whatever medium, everything of significance on the page.

This task includes not only encoding sequences of letters

and marking differences of type font and-style, but-also

noting the position of each mark on the page. Positions

are critical for the proper'interpretation of diacritics

and underlines and for the identification of titles, sub-

titles and footnotes. Page positions are equally important

for tabular material such as questionnaires, directories

and catalogs.

The best way to collect samples of text is to eavesdrop

on the process that actually produces the page of print.

For example, it is easy to salvage the punched paper tapes

used by the printer to drive his typesetting machines.

Ideally, nothing should be printed on the page that was

not expressly directed to its place by instructions on this

.tape. In real life, printers often correct the type after

.it has been set and adjust the machines manually, leaving

no mark on'the tape. The method therefore falls well short

of perfection, though it is certainly the most economical.

If we cannot eavesdrop, we must produce a replica of the

original and monitor our own process. We might, for example,

replicate with a typewriter and monitor with a tape punch.

-4-

The programs that interpret the final stream of codes

reconstruct from them everything of significance about the

page of print they represent. This is not necessarily straight

forward. There are often many ways in which the operator

of the original machine could have gone about producing

a given result on the hard copy, and we dare not suppose that

one way is-consistently preferred to the rest. By looking

at a typescript we cannot tell whether the shift key was

pressed immediately after the period at the end of a sentence,

between the two spaces separating sentences, or immediately

before the capital beginning the second scntence. We cannot

tell if the shift key was pressed and instantly released

at any place in the document. These are differences that

do not change the appearance of the final result; they are

therefore matters of no. concern to the person at the key-

board. However, if there is a paper-tape punch connected to

the typewriter, the codes it punches are different in each

case. Consider the case of underlining. A typist may

underline words one by one, backspacing from the end of the

word each time, or she may backspace after every letter,

or she may'underline only when she has finished everything

else on the line, or she may have no consistent policy. So,

the underline that goes with a letter can occur before

or after it in the stream of codes and can be separated

from it by a large or small number of other codes that

affect quite different places on the line.

-5-

Our programs therefore begin by reconstructing, in

coded form, the sequence of characters that were produced

on the hard copy. Since we wish to accept input from a

number of different machines (keypunches, typewriters, etc.),

our programs are capable of disentangling information about

the appearance of the page from information abou t incidental

properties of the initial machine. A given machine may re-

turn the carriage and advance the page with two control sig-

nals or with one; it may or may not have a tabulator control.,

and so on. The programs use a formalized description of a

particular machine as a guide to the interpretation of the

input codes; the sequence of characters constructed by our

programs to represent a page will be the same no matter what

initial machine prepared the input.

A strategy of much or little generality might be pro-

posed for describing a text-encoding machine to a computer

and having the computer use it to decode text. The programs

reported in the present Memorandum are capable of develop-

ment in various directions, but to understand them in their

present form the reader needs to be aware of some important

limitations that we have accepted.

1. Each character is taken to occupy .the same amount

of space on the line--there is no allowance for

prop'ortional spacing.

- . . - --- . - ... " .

-6-

2. The system always assumes as much space to

be filled on a line as was in fact filled. This

means that there can be no means of deleting

a letter--for example, by overstriking with "X"--

that will cause the character to disapppear

from the record. On the other hand, combina-

tions produced by overstriking are permitted.

3. The basic unit of information is the printed line.

Once a "line feed" code has been issued, the

current line is accepted as it stands, and work

begins on the one below. Within a given line,

attention may be directed to different character

positions by the normal advance that accompanies

a character, and by tabs, backspaces and carriage

returns. If future machines provide for rolling

the platen down as well as up by pressing keys,

they will require a modification to our system.

1.3. Overall Design

The overall design of the system is shown in Fig. 1.

The magnetic tape image is disentangled by the character

reader (characters may be packed together in unhandy, if not

irrational, ways on the tape); characters pass one by one

to the line maker. Operating in accordance with a formalized

description of the input machine, which the user supplies in

the form of a set of tables, the line maker assembles a single

line of text from the input stream. This routine also

Keyboard Input Device

Character Reae

Description of Ln ae
Input DeviceLieMIor

PaTe UsrPoram reers toPhelie Makerlyol

when~yu theote paemkrN o ~gue

The ser' prgra.rfesto he ovel moden ontelyse

-8-

converts characters from the input code to a code established

by the person supplying the tables. The line maker is

described in Sec. 2.

The line maker serves as a subroutine to a second

routine called a page maker (Sec. 3) whose function is simply

to collect batches of lines that will go through subsequent

----- steps together. The logical status of a line in a text

sometimes has to be determined by reference to other lines.

In a certain context, a line immediately preceded or followed

by'a line of blanks must perhaps be treated in a special way,

or,. if the information on the page is arranged in columns,

information of a certain kind is contributed by small parts

of different lines. The context for operations of this kind

must all lie within what the system knows as a page. The

system recognizes a page by the line or sequence of lines

that ends it or begins the following one; the user must

specify how these lines are to be recognized.

....-A routine called a formatter (Sec. 4) takes each page

and does little or mu:h, depending on the complexity of

the page layout. Its job is to identify areas on the page

that contain different kinds of information. An ordinary

page of prose requires ailmost no work of the formatter.

Text arranged in columns is easily handled provided it is

known how wide each column is. In more complicated examples,

a single column may contain several kinds of material, each

of which is either known to occupy a set number of lines,

-9-

or is distinguishable from its surroundings by more subtle

means. Part of a page or a column may be solid, whereas

another part may be divided into columns or subcolumns.

The formatter divides the-page into rectangular blocks by ----.

a sequence of horizontal or vertical slices in accordance

with instructions supplied by the user of the program.

By this stage, the program is supposed to know as

much as can be gleaned from the page layout. However, some

blocks may still contain logically heterogeneous information.

Suppose a particular block contains a bibliographic

reference; we know from the formatter which block it is.

If gross features of position on the page do not suffice

to distinguish author, title, publisher, etc., more subtle

means must be adopted. The system allows the inclusion of a

parser capable of applying to the contents of a block gr mmati-

cal rules tailored to the kind of information in that bl k.

These rules may result in a finer subdivision of the blo I

p....A,_parser is only appliedtoblocks that need it, and forC

some purposes no parser is needed. A relatively simple

parser is described in Sec. 5.

The blocks delineated by the formatter, and the seg-

ments within blocks identified, by the parser, can be collected

into new combinations in preparation for output. When

necessary, the selector described in Sec. 6 is used for

this purpose. The internal code produced by the line maker

is translated by the recoder (Sec. 7) into the final form

required by the user.

-10-

A page is stored in the computer as a rectangular

array in which each cell represents a character position.

The code for a character occupies 24 of the 3b bits in the

cell. This may seem prodigal, but it has the great advan-

tage of allowing properties of characters to be repre-

sented by individual bits. Thus, one bit can'be used to

distinguish digits and another punctuation marks. One

can be used for italics, one for upper case, one for under-

lining,.and so on. This possibility greatly simplifies the

remainder Of the system.

A cell containing only zeros represents a blank; other

codes are specified by tables supplied by the user. A

standard convention is adopted for the blank because the

computer must know what code to store for those parts of

the page that the original input device never visits

and because of the strategy adopted for handling over-

struck characters. The characters remain in this array

throughout the process to be described. The result of

subdividing the page is shown by means of coordinates

rather than by moving material to new storage locations.

This means that it is possible, in principle, for

the blocks into which the page is cut to overlap, though

it is not clear that any good can come of this.

What is finally passed to the program using this

input system is a page, the result of dividing a

page into blocks and segments, or the output of a parser.

-11-

It is therefore of some interest to establish a standard

form in which to deliver a unit of text. Economy clearly

requires that an indication of the part of the page occu-

pied by a unit be given rather than that the characters

themselves be moved. If only blocks were involved, it would

be sufficient to deliver coordinates--first and last row

and column. However a parser may fin8 segments of scme-

what odder shapes. Nevertheless, four parameters are prob-

ably enough, namely first and last column and first and

last character in the region so defined (see Fig. 2). For

this purpose, of course, all columns are regarded as running

from top to bottom of the page.

Suppose a page accommodates 2000 characters arranged

in 50 lines of 40 (see Fig. 2). The formatter has recog-

nized five blocks, A, B, C, D, and E. Block A consists

of the top 15 lines of the page and block E of the bottom

24. Lines 16 through 26 are occupied by B, C, and D arranged

side by side with widths of 20, 12 and 8 character posi-..

tions each. Block C can be specified by the numbers 21

and 32 (the character positions that bound it) and the

numbers 181 and 312 (the serial numbers of the first and

last characters falling within these limits and contained

in C). Similarly, the block A can be specified by the

quadruple 1, 40, 1, 600. Now, suppose that a parser has

been set to work on block C and that it has identified,

among other things, the sequence "John Doe, Inc. (New York.)"

121 33 40

I JonDe

I.0.

Fi. -S l pag

-13-

beginning with the 3rd character of the 7th line of the

block and ending with the 6th character of the 9th line.

These are, infact, the 255th and the 282nd characters in

the region bounded by the 21st and 32nd columns. The

sequence can therefore be uniquely identified by the quad-

ruple Z1, 32, 255, 282.

2. TilE LINE MAKER

A keyboard input device (keypunch, paper-tape type-

writer, etc.) may or may not have shift keys, but whether

it does or does not, the user may wish to use certain keys

as shifts, lie may, for example, wish to bound by asterisks

sequences that are to be taken as being in bold face.

If the machine he is using already has a built-in upper-

and lower-case shift key, this means that he has effectively

four shifts. One of his shift keys, the built-in one,

does not cause the carriage to move, whereas the other,

the asterisk, causes it to move forward one position.

The effect of a shift key, whether built-in or conventional,

is to change the significance of other keys. After one shift,

a given key produces an "al, after another "A", and so on.

On a machine with two or more shift keys, the effect of

one shift key, or even whether a given key functions

as a shift, could in principle be determined by the shifts

already made. Thus, if only lower-case boldface type

were required, the asterisk could be used to indicate

-14-

this; in the upper-case shift, the same key might produce

say, a dash. In general, then, t e description of the

device furnished to the line maker consists of a number

of major parts, one for each of th shifts that the devic

or the user's conventions allow.

For each shift on the input d vice, the description

vides a tab e with one entry for e ch permissible input

code. As eAch code is received, i is referred to the tal

for the current shift, and four kinds of information are

.-obtained:

(i) A binary number representing a graphic mark.

If the incoming code represents a space, backsp

tab, shift, or move of the device that does not

produce an actual character, then this binary nL

is zero. low binary numbers are assigned to cha

aciters is important, ard we return to it shortly

(ii) An'indication of any moveent of the carriage

implied by the code. There are five possibiliti

a. No movement ("dead iey")

b. Space forward

c. Backspace

d. Tabulate

e. Return carriage

(iii) An indication of whether the current code makes

thei input device advance to a new line. A code

that does this can have other meanings; it can

-15-

also produce a carriage return, a shift, or even

a graphic mark.

(iv) An indication of any change in shift entailed

by the current code.

The description of the input device has one further

part, namely a list of tat) stops. This list' is separate from

the remainder of the description Since -it can be expected

to change more often. It has as many entries as there are

character positions on the line. The entry for a given

character position gives the number of the character position

where the next tab stop is set. Thus, if the device is at

character position p and the code representing a tab is re-

ceived, the number in entry p on the list replaces p as

current position.

To simplify the detailed description of the line maker

we assume that the main part of a device's description (all

except the tab list) is stored in the form of four rectangular

arrays. In each array, the rows represent codes-issued

by the device and the columns shifts. The notation "Char[i,j]"

will then mean the entry in the "Char" array for character

j and shift i. The four arrays are as follows:

(i) "Char" contains the binary numbers representing

graphic marks.

(ii) "Move" contains the indications of carriage

movement--one of five possibilities for each entry.

-16-

(iii) "Feed" may be regarded as a Boolean array in

which the entry in a given, cell is set to true if

the corresponding shift and character represent a

line-feed (the last code of a line) and otherwise____-.......

to false..

(iv) "Shift" contains, for a given current shift

and cod-e,what shift the machine now moves into.

If the current code is not a shift character, then

the entry contains the current shift.

Figure 3 is a flow chart of the line maker. There p

is an integer variable giving the current position of the

carriage. When the routine is first entered, p is undefined,

for there is usually no way of knowing where the carriage

was efore the first code was issued. For this reason, it

is standard practice to arrange for the first code to be

that for a carriage return. The value of s, an integer

variable, represents the current shift. Like p, it is appar-

ently undefined on first entry to the routine. lhowever,

the user must in fact set s to some reasonable initial

value since it is otherwise impossible for the routine to

interpret any codes at all.

The line maker prepares one line each time it is

entered. Accordingly, it begins (Box 1) by filling the

array representing the line with zeros--the agreed repre-

sentation for blanks. Then a character is read (Box 2).

At the beginning of work on a new line, the current posi-

tion on the line (p) is not necessarily 1 since there may

for i I st 2 I
ENTRY LTntiI line f-ength

Z line [i):=O

2- c input
7-

I ine 101
I ine (p] u Char (sc)

4

Move Is, cl
Carriage
return

Forward Dead Bock- Tab
key space

51 p:= 1 .6 P p + 1 7 P: P - 1 8 p: tab [p)

9
L feed c

10
3: Shift Is,

c]

P40 Yes
L true ? EX I T

Fig.3-Flow chart of the line maker

-18-

not have been a carriage return at the end of the preceding

line. In position p in the line array is now placed the

logical sum of the binary number of the new character

specified by the current code and shift and the previous

occupant of that position (Box 3).

Ile can now see why the choice of binary numbers to

represent characters is important. When a character posi-

tion is first encountered, the operation of taking the

logical sum has no effect other than to enter the number

for the new character in that position. If no graphic

mark is associated with the code, the binary number assigned

to that code is zero, and the contents of the current

character position remain unchanged. ANow, when a charac-

ter is underlined, the number that ultimately occupies

that position in the line array must be derivable by merely

combining that character with the underline. One way to

do this is to assign a number consisting of zeros except

for one bit to the underline and to insure that this hit

is zero for all other characters. Similar considerations

apply to accent marks. If there is an accent that may

combine with any vowel, then the result of taking the

logical sum of the corresponding binary numbers must always

be a code that can be arrived at in no other way. flow-

ever, the combination of an accent with a consonant or

other character can be allowed to result in a number that

represents some other character or no character at all

-19-

since this would in any case be a mistake. Notice that,

with suitably chosen numbers, such overstruck characters

as "i", "i" and "0" are automatically provided for.

The next thing the line maker does (Box 4) is to take

note of 'the carriage movement specified by the current code

and shift. The forward movement accompanying a normal

character or a space causes p to be incremented by one

(Box 6); a backspace decrements p by 1 (Box 7). "Carriage

return" resets p to 1 (Box S) and "tab" gives n a new

value obtained from the table of tab stops in the manner

already described (Box 8).

A variable L is now set to true if the current code

and shift indicate a line end and otherwise to false (Box 9).

This information is obtained from the "Feed" array.. Next,

the number corresponding to the new shift, or to the current

shift if this is unchanged, is obtained from the "Shift"

array and made the new value of s (Box 10). Finally, the

variable L is examined to see if the line is complete (Box 11).

If not, we return to the point where a new code is read

(Box 2) and continue processing characters in this manner

until a line-feed is encountered.

It is an important feature of this scheme that shift,

carriage movement, line-feed, and even graphic marks

.are regarded as independent entities, any combination of wh.ich

may be represented by a single code. If the line-feed key

on a machine is separate, it has a vacuous mark associated

-20-

with it, but it takes no more than a simple change in a

table entry to make this mark non-vacuous. A machine

combining the functions of carriage return and line-feed

can likewise be accommodated by appropriate table entries.

3. TIlE PAGE MAKER

The' first major component of the input processing

system is a program called the page maker. It reads a

sequence of lines, using the line maker subroutine, and

identifies a group of one or more lines as marking the bounda

between two consecutive pages. When a boundary is recog-

nized, the page maker returns contr ,l to the user's program.

To use the pagemaker, one must provide all of the

input information needed by the line maker--a description of

the input machine and of the conventions followed in

typing text. The user also supplies a description of the

kind of line or sequence of lines that mark the end of

each page. Since pages can end in many ways, the page maker

allows the user to specify boundaries in the same fairly- ,

rich language that is used in the formatter (Sec. 4). A

line can be described as consisting of all blanks, all under-

scores, blanks except for a designated sequence of characters

in fixed or variable position on the line, and so on. A page

boundary can consist of a single line of a designated kind,

or of several kinds in a fixed sequence. A boundary can

be defined as a line of any of several different kinds, or

different boundaries can be made up of lines of different

-21-

kinds in different orders. The user pays a small penalty

for this freedom; even if his needs are simple, he cannot

avoid a certain amount of complexity.

To obtain a page, then, the user allocates a block

of storage space to it, sets aside four cells for para-

meters that will identify its first and last column

numbers and its first and last character numbers, sets

a maximum depth for the page, and reserves one cell forq,1

reports of any oddities that the page maker finds in

doing its work. Since one cell will be used for each

character on the page, the amount of space to be reserved

for storage of the page itself is the product of maximum

width by maximum depth. The user must state maximum

width, since the first several lines on the page may noto

be filled completely; he designates maximum depth in

order to avoid the pitfall that would otherwise be creared

by f lure to insert a page boundary in the input.

3f the four parameters that identify boundaries of

the Oage, only one is in fact significant. Every page

begins in column 1 and extends through its maximum column.

It begins with character number 1, but its last.character

'has to be determined by inspection of the input stream.

The four parameters are required for consistency with

what follows (as explained in the description of the

formatter, Sec. 4).

-22-

The description of the page boundary supplied by the

user is a-short program that examines every line when it

is delivered by the line maker. If the line qualifies

as a possible last line of a page, the description program

goes on to test the preceding line and, if that line

qualifies as a possible next to last line, the one before

that; boundaries are always tested from the bottom up.

. The group- of lines comprising a boundary can be treated.

either as the end of a page or the, beginning of one; if

they end a page, the next line of input will not be

constructed by the line maker until the user calls the

page maker again; if they mark the beginning of a page,

they will be stored until the next page maker call, then

moved to the head of the page.

Let us suppose, for example, that each page ends

with a blank line below the text matter, followed by a

page number that appears on the left when even, on the

right when odd, followed by exactly two blank lines. The

program tests whether the last two lines delivered by

line maker are blank. If they are, the next preceding

line is tested against each of two possibilities: a

number followed by blanks across the line, or blanks

across the line ending with a number. If either of those

conditions is satisfied, the next preceding line is tested

against d description of an all-blank line, and if it

passes the test, the end of the page is recognized. The

-23-

boundary lines--four lines, blank everywhere except for

a page number at the right or left on the second line--are

delivered by page maker together with what preceded them.

The next line is produced by the line maker whenever the

page maker is called.

But suppose that the user's input stream consists

of short statements, say two or three paragraphs, each

beginning with a caption of some kind. Spec if ically,

suppose that each page begins with two blank lines, and

that on the first nonblank line, after.a paragraph inden-

tation, there is an underscored word or phrase followed

by a-period, two spaces, and solid text. Such a boundary

cannot be taken as the end of a page, since the caption

must stay with what follows. The page maker examines each

line .to see whether it begins with a caption, then checks

for two preceding blank lines. The three-line group is

preserved in memory; the page delivered does not include

the newly found boundary, but when the page maker is

called next it moves those three lines to -the -top-of-- the

page storage area before reading another line from the

input stream and proceeding. To avoid error, the user

must always remember that the page storage area just below

the end of the page he is using can contain the beginning

of the page that he will see later, lie must not tamper

with that area between successive calls of the page maker

when his page botndaries are beginnings rather than endings.

,,'" -24-

A line description is a statement of the characters

it can contain, and the order in which they can occur.

The lines that participate in boundary markers commonly

include long strings of identical characters: blanks,

asterisks, and so on. In our program, a line of blanks

is described this way:

0. Start with the first position on the line.

1. Does the position contain a blank?

If yes: Move to the next position and

redo step 1.

If no: Hold the same position and per-

form step 2.

2. Does the position contain a line-feed?

If yes: The line is blank.

If no: . The line is not blank.

If a line contains blanks everywhere except for a line-feed

in the last position, this description causes the computer

to apply step 1 at each position, finally moving to step 2

and recognizing the line. Putting a line-feed in the

first position reduces the labor to be performed, since

then step 2 is performed after a single execution of

step 1.

Step 0 is implicit in every line description; the

first step is always applied initially to the first position

on the line.

-25-

An abbreviated notation is used in actual descriptions.

Steps 1 and 2 each consist of three parts. The first

names a character; the second and third tell what to do if

the character is or is not found. The following form is

equivalent to the foregoing, and closer to the real form:

1. (1llank) (Next, 1) (Same, 2)

2. (Line-feed) (True) (False)

Here "same" and "next" refer to positions on the line; "I"

and "2" refer to locations in the description; and what is

true or false is the statement "the line is blank."

If a page number consists of either one or two digits,

we can test for a number flush left'.

1. (Pigit)(Next, 2)(False)

2. (Digit)(Next, 3) (Same, 3)

3. (Blank)(Next, 3) (Same, 4)

4. (I.Ane-feed) (True) (False)

Of course, "Digit" is not a character; rather, it is a pro-

perty of several characters. We allow 24 bits per position

just for the sake of encoding different properties with

individual bits. Here in steps 1 and 2, the program asks

whether a certain bit is equal to unity; the input encoder

must make that bit zero for all characters except the

digits.

A line with page number flush right* is recognized

by a different program:

Flush right in this example means not left adjusted.

-26-

1. (Blank)(Next, 1)(False)

2. (Blank)(Next, 1)(Same, 2)

3. (Digit)(Next, 3)(False)

4. (Digit) (Next, 4) (Same, 4)

S. (Line-,feed) (True) (False)

The two programs can be combined to accept a line with page

numbers at either margin:

1. (Digit)(Next, 2)(Same, 4)

2. (Digit)(Next, 3)(Same, 3),

3. (Blank)(Next, 3)(Same, 7)

4. (Blank) (Next, 4) (Same, 5)

S. (Digit)(Next, 6)(False)

6. (Digit) (Next, 7) (Same, 7)

7. (Line-feed) (True) (False)

To recognize a centered page number reliably, we should

have to specify that it follow some exact number of blanks,

say 40, and this would entail writing 40 essentially

identical instructions. But this can be avoided by means

of a simple shorthand device allowing us to give as part

of an instruction a count of the number of characters -

which it must Ie applied. Thus, for the centered page

number, we could write:

1. 40(Blank)(Next, 2) (False)

2. (Digit) (Next, 3) (False

3. (Digit)(Next, 4)(Same, 4)

4. (Line-feed) (True) (False)

-27-

A caption line, as described above, can be recognized

by the following. program if underscore is a property and

an indentation is three spaces:

1. (Blank) (Next, 2) (False)

2. (Blank)(Next, 3)(False)

3. (Blank)(Next, 4)(False)

4. (Underscore) (Next, 5) (False)

S. (Underscore) (Next, 5) (Same, 6)

6. (Blank) (Next, 5) (Same, 7)

7. (Period) (Next, 8) (False)

8. (Blank) (True) (False)

This version of the description has several attributes

that may or may not be appropriate depending on the input,

but are instructive. Steps 1-3 require exactly three

blanks at the left margin. Steps 4 and 5 guarantee at

least one underscored character, but not.more, although

they accept more. Step 6 allows blanks within the

otherwise underscored string, permitting multiword cap-

tions. A period must follow the caption, and a line-

feed is not allowable until after at least one blank,

but no further text on the same line is guaranteed.

Each program describing a type or class of types

of line is named. Another program uses these names to

describe a boundary marker. In this context, let "blank"

mean the program defining a blank line. A page end can now

be described in this way:

-28-

1. Blank, No page

2. Blank, No page

3. Page number, No page

4. Blank, No page

S. .Endof page .

Suppose that the line maker has just delivered the 47th line

of a page; the page maker attempts step 1 with line 47. If

that line is not blank, there is no page, i.e., line 48

should be constructed. But if step 1 succeeds, step 2

is tried on line 46. Another success leads to applica-

tion of step 3 to line 45. Here "Page number" is supposed

to be the name of a program describing a line that is

blank except for a one- or two-digit number, flush left

or right. If step 4 is successfully applied to line 44,

the end of a page occurs at line 47; the 47-line block

is released the page maker.

If the JLser decides to write two line descriptions,

call them RPM for a page number appearing flush right and

LPN for a page number appearing flush left, he uses a dif-

ferent program to describe the boundary sequence:

1. Blank, No page

2. Blank, No page

3. RPNq 6

4. Blank, No page

5. End of page

6. LPN, No page

-29-

7. Blank, No page

8. End of page

At step 3, failure causes a jump to step 6.

The beginning of a page is described in the following

program:

1. Caption, No page

2. Blank, No page

3. Blank, No page

4. Beginning of page

When the page maker applies step 1 successfully to line 47,

and goes on to steps 2 (line 46) and 3 (line 45), search-

ing step 4 causes it to deliver lines 1-44 as a complete

page. Lines 45-47.remain in the general page storage

area; when the user asks for a new page, the page maker

moves line 45 to the normal position of line 1, 46 to line 2,

and 47 to line 3; then it calls the line maker to produce

line 4. These changes of location go astray if maximum line

length changes between successive calls.

Each program describing a boundary type has a name,

which appears in a call to the page maker.

A user who wants to read a stream of text arranges

for his program to call the page maker whenever it is

ready to examine a new page. Each call includes:

(1) The address in storage where the first character

on the page is to be stored.

-30-

(2) The'address where the first of four page

parameters is to be stored; the others go in

the three following cells.

(3) The number of lines in the deepest page to be

read.

(4) The number of columns in the longest line to

be read.

(5) The identification of a program that can recog-

nize page boundaries.

(6) The address in which the page maker is to store

an indication of its actions. The four condition

that it can report are (i) normal completion of

its task, (ii) overflow of a maximum line

length or page depth, (iii) end of input,

(iv) end of input and overflow.

4. THE FORMATTER

The business of the routine called formatter is to div4

a box into two subboxes or blocks. The formatter works on1)

with rectangles. Ordinarily the user begins with a page anc

calls the formatter repeatedly, cutting first perhaps hori-

zontally, then (if he likes) vertically, then vertically

again, and so on, until he obtains the boxes he can use.

Given a box to be cut, and a direction, the formatter

works by seeking a row (if the cut is to be made horizontall

or a column (for vertical cuts) that meets a certain

specification. One way to specify a line or position

731-

across the page is by number. If the input box is 80 charac-

ter positions, that is to say, if the line length is 80

characters, and if it is to be divided into two equal

columns, then the user can specify a cut after position 40.

Counting lines and character positions is sometimes good

enough, but not always. The user can also write specifications

in the language described in Sec. 3, the one he uses

to describe page boundaries.

The formatter can cut before, at, or after a row. or

column of specified type. A cut before position 41 has the

same effect as a cut after position 40; either cut yields

a box containing everything in columns 1-40, another con-

taining 41-80, for example. A cut at column 40 effectively

deletes the 40th column; if the input box consists of

80-position lines, the left-hand output box gets 1-39, the

right-hand 41-80.

Mnen two useful boxes are separated by a gutter con-

sisting of several adjacent blank lines or positions, the

user can call for a cut at a blank line or position. lie

thereby excludes the whole gutter: when a cut is made

at a line or position of a certain type, all contiguous

lines or positions of the same type are eliminated,

If a page consists of three or more blocks of text,

each separated by a gutter from the preceding and following,

then the user calls the formatter repeatedly. The first

call separates the top (or leftmost) box from the remainder

-32-

of the page; the second call isolates the second box;

and so on, until the last call separates the last two

boxes from each other. Each call eliminates one gutter.

The user names each box as he creates it, using single

letters or arbitrary strings. Sometimes a box has only

momentary interest; in the last example above, the first

cut produces a box containing one block of text and another

....containing two or more. The first box is presumably

useful subsequently, but the second is to be recut

immediately. In such a case, the user can use one name

over and over.

Continuing .the example, a formatter instruction se-

quence could be

Cut the Input into One and Rest at the first blank line;

Cut the Rest into Two and Rest at the first blank line;

*Cut the Rest into Three and Four at the first blank line.

Suppose that the input is 47 lines deep, and that lines 13,

14, 21, 22, 23, 31, and 45 are blank., Carrying out the

first instruction, formatter identifies lines 1-12 as belongin

to a box named One and lines .15-47 as belonging to Rest;

the first blank line of the input, 13, and the contiguous

blank line, 14, are eliminated since the instruction uses the

word at. With Rest defined as comprising lines 15-47,

formatter obeys the second instruction by assigning lines

I5-20 as the box named Two and redefining Rest as lines 24-47.

-33-

According to the new definition, the first blank line of

Rest is row 31; box Thret receives lines 24-30, and box

Four receives lines 32-47. The fact that line 45 is blank

does not matter, since the three instructions locate only

three gutters.

In some input strea s, more complex format conventions

areused. For example, the upper portion of a form could

c nsist of several lines say three or more, with the

sond line occasionally blank. A gutter, beginning

somewhere below the thirA line, could separate the upper

.portion from the rest. Here the user wishes to call for

a cut at a blank line after row 3,

To provide for such situations, the formatter accepts

instructions containing multiple line or position descrip-

tions. Each description consists of a preposition (at,

before, or after) and a specification. The descriptions

core in the order in which they are to be appied. Thus,

for example, if an instruction reads

Cut the Input into dne and Rest after line 3 at

.the first blank line

and rows 2 and S are blank in the Input, the formatter

counts off three rows and then begins looking for a blank

row.

In a sequence of descriptions within one instruction,

the three prepositions have altogether different effects.

When after is used, subsequent descriptions apply to lines

-34-

below the one specified, or to character positions further

to the right. When before is used, subsequent descriptions

apply to lines above the one specified, or' to positions

further to the left. Once boundaries are fixed, they are

never crossed; even counts are made within the bounded

region. For example, consider the following instruction:

Cut the Input into One and Rest after the first

blank line before Asterisks after Dots before

blank after line 3

and suppose that the input contains lines meeting the given

specifications as follows (see Fig. 4): Blank,. 7 and 31;

Dots, 15; Asterisks, 43. The formatter starts with line 1

of the input and locates line 7, which satisfies the first

specification; subsequent searches begin with line 8,

making the contents of lines 1-6 irrelevant. Next, line 43

is found; even if a line meeting the Asterisks specification

existed above line 7, the search beginning 'at line 8

-would end at line 43. The search region now comprises

lines 8-42; if lines of the required kinds cannot be found

there, the formatter gives up. In the example, the third

part of the instruction leads to line IS, reducing the

search region to lines 16-42; then the first blank line

within that region, number 31, is found, and the region

left to be searched is composed of lines 16-30. Finally,

a cut is made after the third line of the search region

2
3 Tx
4.
5
6
7
8

"One"
10 o

12
13
14
15
16

-17
18
19
20
21
22
23
24
25 I26
27 o
28
29
30
31
32
331

$$Rest" 34
35
36 1
37ex
38
39

Z-- - 40

41
42
43

45
46
47 Tx
48
49
50L

Fig.4-An example of formatting

-36-

(i.e., between lines 18 and 19), yielding two boxes: One,

lines 1-18; and Rest, lines 19 to the end of Input. Note

that if line 17 or 18 had been blank, the third line of a

one- or two-line search region would have been sought

unsuccessfully.

In a sequence of descriptions, the preposition at can

be used only once, in last plce; once it is used, no

further search region is defined.

The formatter does not move the text it works on; it

operates by means of calculations based on page location,

page width, column numbers, and character counts. III

machine storage, each character occupies a cell, and

a page of C columns and R rows occupies C x R consecutive

cells. For convenience, suppose that the first cell is

number 1; then the first row is in cells 1 through C,

the second in C + 1 through 2C, and so on.

The user gives the formatter two locations before his

first instruction. One is the location of the first

cell assigned to the page. The other is the first of

four cells containing the parameters of the page: first

column (always 1), last column (C), first character

(always 1), and last character (R x C).

Each instruction to the formatter includes three

addresses, namely the starting locations for three sets

of box parameters: one input and two outputs. These para-

meters can be interpreted only by reference to the page

parameters, as an example demonstrates.

-37-

Take C i 50, R = 40; the page parameters are (1, 50, 1,

2000). Assume that previous cuts have yielded a box with

parameters (21, 30, 1, 400); this boy, with 10 characters

per row, runs the depth of the page. If we instruct the

formatter to cut this box at its first blank line, the

program must examine the following cells, counting from

the beginning of the page: 21-30, 71-80, 121-130,

1971-1980. Obviously, the formatter must have row length

(page width), page depth, and starting location. Now if

cells 271-280 contain blanks, the sixth row of the input

box meets the specification, and, assuming that contiguous

rows are nonblank, the two sets of output paramieters

are (21, 30, 1, 50) and (21, 30, 61, 400).

The exact form of a call (or instruction) to the

formatter appears in the Appendix (Sec. A.8). Roughly,

the user must state whether he wants a row or column cut;

where he has placed the parameters of the input box;

where he wants the parameters of the output boxes; and

how he wants the cut to be made. This last element is a

sequence of o':e or more preposition-specification pairs;

in a, row-cut instruction, it is assumed that the specifi-

cation applies to a row, and in a column-cut instruction,

to a column.

Application of an instruction can yield an empty

box, that is, one containing no rows. It is even possible

-38 -'

to obtain two empty boxes, by ordering a cut at a blank
row or column and supplying an input box with every

character blank; the whole box is excluded as gutter, and

both output boxes are vacuous. When an output box is

empty, the formatter sets its first parameter at zero.
An empty box results from a successful cut; but an

attempt to apply the formatter can also fail. If a blank

row is specified, and no row of the input box is blank,

the formatter reports a failure; similarly, whenever

impossible specifications are imposed, the formatter puts

an impossible number in the first parameter location for

both output boxes.

S. THE PARSER

,;,The system makes its finest distinctions among differ-
ent kinds of information on a page by means of a parser.

As many parsers may be supplied as there are boxes requiring

them. Simple input formats should require none at all.

A parser is supplied with.a set of rules equivalent

to a context-free grammar. However, the right-hand side

of each rule consists not of a string of terminal and
nonterminal symbols, but of a regular expression involving

both terminals and nonterminals. Those to whom this is

a meaningful characterization will need to read little or
nothing of what remains in this section. They will find

a notation for the rules and directions for keypunching

them in the Appendix (Sec. A.9).

-39-

The grammar applied to a box consists of a more or less

complicated description of a particular kind of object,

such as a name, a citation, a date, a chemical formula,

or a statement in a computer programming language. The.

object, since it is assumed to embrace all the material

in a box, is not itself the center of attention. More

interesting are the smaller objects in terms of which this

first one is described.

Suppose that a certain box contains a name, and the

parser is intended to distinguish between the first name,

initials, and last name. The primary object the parser will

investigate is the name itself. In the course of establish-

ing a relationship between the description of names in

general given by the rules and the particular string of

characters before it, the parser will have cause to inves-

tigate the descriptions of other objects, namely, first

name, initials, and last 'name.

The most elementary objects, in terms of which all others

must eventually be described, are the characters themselves

or, more precisely, the properties assigned to characters by

the line maker and referred to from time to time in the pre-

ceding sections.

The definition of "Name" might be as follows:

First name Initial Last name

The definition of "First name" might be

-40-

Upper case letter Lower case letter string

Whether some part of the material n the box conforms.

to this description can be verifie directly. We check

first that the initial character has the property "Upper

case". We then check that the nex is a letter, and con-

tinue collecting characters under this description until

the first on that is not a letter--presumably a space--is

encountered.h The definition of an initial is, if anything,

even more straightforward. It might be as follows:

Upper case letter Period

Finally there would be a definition of "Last name" substan-

tially similar to that for "First name". In fact, it will

be instructive to consider the admittedly unlikely possi-

bility that the descriptions of "First name" and "Last

name" are id6ntical. In such a case, it would clearly be

uneconomical to include separate descriptions; instead we

may include a description of an object called, say, "Name

part", similar to the one previously proposed for "First

name", and amend the description of "Name" to read as follows:

Name part Initial N~me part

Much of the power of context-free grammars, of which this

is an example, comes from the fact that they allow recursive

descriptions; in other words, they allow descriptions to

-41-

refer to themselves. Suppose, for example, we wish to

describe an object to be called a "String", consisting of

a series of letters (zero or more) and left and right paren-

theses, provided these occur 'in matching pairs. One way

to describe this would be as follows:

Letter string [Open parenthesis String Close parenthesis]

[String]

Notice that we use the words "Open parenthesis" and "Close

parenthesis" to avoid any possibility of confusion between

the objects being described and the syntax of the description

itself. In this example, we are using brackets to enclose

the part of the description that is optional. Any letter

string, and in particular one that includes no parentheses,

is acceptable. However, if in the course of examining an

actual sequence of characters, an open parenthesis is

encountered, the work of checking the string description

currently under way is temporarily laid aside while we

check that the material from here to the matching close

parenthesis itself meets the description of a string. If

this turns out to be the case, work is resumed on the

original description.

In the course of checking a parenthesized string,

another open parenthesis may be encountered at any time.

In this case, the checking procedure on the main string

and the embedded one are postponed while yet a third is

-42-

undertaken. If at any stage the attempts to match the

given material against the description of a parenthesized

string fail because, say, a number or a punctuation mark

is encountered, then clearly all the other checking pro-

cesses that were suspended pending the results of this one

also fail.

It is no accident that the word "String" is enclosed

in brackets as part of the definition of a string. This

must always be the case in a recursive description, that

is, a description that refers to itself. Clearly, an

object of finite size cannot have another object of the

same kind as an obligatory part, for this part would also

have to have such a part, and so on indefinitely.

Another requirement on recursive descriptions is that

they must always refer to some other object as well as them-

selves. Clearly, an object meeting a description couched

entirely in terms of references to itself has no substance,

for the attempt to find out what one such object might be

likewuidinvolve an indefinite amount of work, but would

never get anywhere. The essence of the argument is this:

The description of a particular object may involve any

finite number of references back to the original descrip-

tion, but, if the process is ever to terminate, then sooner

or later the description must be nonvacuously met otherwise

than by a reference to itself.

-43-

Recursive descriptions can be direct, as in the example

we have discussed, or indirect. An equivalent of the string

description discussed above would be as follows:

Letter string (Parenthesized expression] [String]

The description of "Parenthesized expression" is as

follows:

Open parenthesis String Close parenthesis

IHere the second description does not refer to itself

directly, but each refers directly to the other and therefore

to itself indirectly. The same caution must be exercised

with indirectly as with directly recursive descriptions.

It is, for example, crucial that part of the new description

of "String", which leads to indirect recursion, is contained

in brackets. It is of course not necessary for the term

"String" in the description of "Parenthesized expression"

to be in brackets, but only that the recursive loop should

be capable of being broken at some point.

We have seen that, in the interests of preserving some

symbols for our own use in writing descriptions, it is often

expedient to refer to a symbol by writing out its name rather

than by using it as a name for itself. In this connection,

it is important to make clear when an element of a descrip-

tion is the name of a symbol and when it is a reference

-44-

to another description. Following the terminology estab-

lished by grammarians, we shall speak of references to actual

symbols as terminals and references to other descriptions

as nonterminals. The object of the parser is to construct

a tree with terminals as labels for the extremities and

nonterminals at the root and at all other nodes. With these

terms at our command we can go on to examine a notation for

writing descriptions similar to that used by the computer

itself.

The following is the transcription in this notation

of our first description of "String" as a sequence of

letters incorporating optional parenthesized expressions:

Define String

A Terminal Letter, B

Goto A

B Terminal Open Parenthesis, C

Nonterminal String

Terminal Close Parenthesis

Goto A

C Stop

The first line identifies what follows as a definition of

"String". The second, fourth, and eighth lines have

labels on the left-hand side that are arbitrary names

distinguishing these lines from all others not only in

this definition, but in the whole set of definitions to

-. 4S--45-/

which this belongs. The second line says that the string

may begin with a letter, and to verify whether this is

the case for a particular example, we go not to another

definition but directly to the data. ThiL is what it means

to mark "Letter" as terminal.

If, when the material is checked, a letter is

actually found, we move on to the third line of the des-

cription which immediately sends us back to the second.

A line bearing the word "Goto" is one of the principle ways

of modifying the normal reading order of a description,

and in this case it has the important effect of causing

the specification on Line 2 to be applied an indefinite

number of times; exactly the effect required.

Sooner or later the supply of letters will run out.

When a specification in a description is nof met, we may

normally conclude that the description did not fit the

material and abandon the attempt. However, in this case,

Line 2 contains the name of another line, B, to which

reference is to be made if ever this specification fails.

Now B is the name of Line 4, and it is therefore to this

line that we refer the first character encountered that

is not a letter. If that character is an open parenthesis,

it is accepted under this description, and we go on to

the next line. If not, we find that there is yet another

line, C, to which we may refer. Line C, the last one in

the definition, carries the single word "Stop", indicating

-46-

that the description can be regarded as met by the symbols

that have been accepted so far, and without including this

latest character.

If the first character encountered that is not a letter

in fact turns out to be an open parenthesis, our attention

passes to Line 5 of the dcs,:ription. Here the question

is: Can some sequence of characters be found starting

with the character we have now reached in the material

that also meets the definition of a string? 'This is where

the process becomes recursive, and we suspend our work

on the present description while we go in search of anothe'r

string that we must know about before we can continue the

original job.

Suppose that this attempt to identify an embedded

parenthesized expression fails, perhaps because a number

or other unacceptable character is encountered. Clearly

we cannot now continue where we left off in the original

description, and the line calling for an investigation

. .. .of a nonterminal "String" carries no reference toanother

line in the description. It would be wrong for it to con-

tain a reference to Line C, for this would lead to the

open parenthesis being accepted without any following

string or close parenthesis, However, it would also be

wrong to abandon the present description as a failure be-

cause the parenthesized expression was, in any case,

optional. Accordingly, we retrace our steps through the

-47-

description until we meet a specification with a reference

to an alternative line, rejecting previously accepted char-

acters as we go, and take the alternative. In this case,

the alternative line bears the single word "Stop", and

the material up to, but not including, the open parenthesis

is accepted as fitting the description.

This first example has, in fact, the somewhat strange

property that it cannot fail no matter what data t is

applied to. Suppose the first character in the dhta is a

numeral. Since it is not a letter, the specification on

Line 2 will fail, and the line named B, that is Line 4,

will be tried next. But since the character is not an

open parenthesis, the line named C, that is the last line

of the set, will be tried, and this says "Stop", meaning

that the definition is to be taken as met by all the charac-

ters accepted so far. But no characters have been accepted

so far, and the description has therefore been met

vacuously--by the null series of characters. There is

no rule against definitions of this.kind, and, though

they can in fact always be avoided, they are sometimes

useful.

However, the fact is that this is not quite the descrip-

tion we have in mind for this example. We want somehow

to arrange that, however many characters turn out to be

covered by the description, there shall always be at least

one letter. We shall shortly introduce a device that

-48-

makes this kind of description particularly easy. But
for the sake of the exercise and to demonstrate that, in
principle, nothing more is required than we have already
introduced, we have in the following lines a description

that does in fact fulfill the requirements:

Define-, String

Terminal Letter D

A Terminal Letter, 13

Coto* A
B Terminal Open Parenthesis, C

Nonterminal String

Terminal Close Parenthesis

Goto A

C Stop

D Terminal Open Parenthesis

Nonterminal String

Terminal Close Parenthesis

Goto A

The same effect can be achieved using indirect recursion as

follows:

Define String

Terminal Letter, D)

A Terminal Letter, 11

-49 -

Goto A

B Nonterminal Pstring, C

Goto A

C Stop

D Nonterminal Pstring

Goto A

Define Pstring

Terminal Open Parenthesis

Nonterminal String

Terminal Close Parenthesis

Stop

In order to enrich the language and avoid cumbersome

descriptions like the one shown above$ we are allowed

terminal specifications of the following five kinds:

1. Terminal (A, B, ...)

2. Terminal mult (A. B, *...)

3. Terminal or (A, B, **°.)

4. Terminal not (A, B, ...)

5. Terminal anybut (A. B, .*.*)

Each kind allows a set of character names--often only one--

to be included in the parentheses. A sequence of charac-

ters meets a specification of the first kind if it con-

sists of just the characters named occurring in the order

specified. Thus, the specification "Terminal (C, A, T9)"

is met only by the three character string "CAT". A speci-

fication of the second kind is met by any string made up

entirely of the characters named--or rather characters

having the properties named--in the parentheses. Thus the

specification "Terminal mult (C, A, T,)" would be met,

among indefinitely many others, by the string "CAACAC".

A specification of the third kind can be met only by a

single character, which is one of those named or a charac-

ter with at least one of the properties named. The speci-

fication "Terminal or (C, A, T)" could be met by a C,

an A, or a T. The fourth kind of specification also accepts

a single character, which may be any of those not referred

to between the parentheses. The fifth kind of specification

is similar to the second in that it accepts a string of

indefinite length. In this case, however, the string

must not include any of the characters referred to,

The definition of "String" can now be as follows:

Define String

Terminal (Open Parenthesis), A

Nonterminal String

Terminal (Close Parenthesis)

Goto B

A Terminal mult (Letter)

B Nonterminal String, C

C Stop

The program that checks thi- definition will first look for

a parenthesized expression and, if this fails, will follow

the direction of line A and seek a string of letters

followed by an optional string. If a parenthesized expres-

sion is found, the program will also go on to look for

another optional string. Thus, every parenthesized ex-

pression begins a new string as does the first of every

sequence of letters. Figure 5 is the structure of a typical

expression according to this definition.

Since the terminal, characters on which the parser works

can come from a variety of input devices and since, in any

case, they are all recoded in an essentially arbitrary way

by the line maker, the parser must be told explicitly how

to recognize an "a", a "b", an underlined character, a capital,

etc. The language in which parser specifications are written

therefore contains two other kinds of statement besides those

used in definitions. These have the forms:

Term (a,b,c)

and

Terms (a,b,c), (d,e,f)

The second is simply a shorthand way of writing a series

of statements of the first kind. The triples consist of

a name by which a character or character property is to

be known, and a pair of octal numbers serving to define it.

s/

String

String

String

String String String

AA B(C D) E (F G))H

Fig.5-Structure of a string

The octal narbers ray contain j- to ?ir!-t dirits, which

correspond to 24 binary pla-es, the nunher used to repre-

sent a character. The first nunher shows which of the

24 binary places are significant to recognize it as falling

undcr the definition, and the second shows for each sig-

nificant place whether it must contain a one or a zero.

We can best make these statements clear with an

example. Each of the ten digits except zero could be

represented, in the code supplied by the line maker, by

its translation into the binary number system. The digit

"I" would be "1", ''2'' would be "10", and so on. Zero

cannot be "0" because we have seen that there is very good

reason to reserve this for the space character. However,

a pars3r will often have cause to check whether a charac-

ter is a digit without having any concern for which par-

ticular one it is. Let us therefore assume that the line

maker supplies a "1" in, say, the fifteenth position of

the codes for all digits. This will not only serve to

distinguish the digits from other characters but will make

it possible for the representation of zero to fe consistent

,, h those of the other digits; it will hade a "1" in

position fifteen and nowhere else.

Table 1 table shows the codes we have set up for

digits in both binary and octal notation. Now, there is

a rule that numbers cannot be used as names in parser

specifications. We shall therefore use "NO" as the name

-54-

of zero, "'Sl" as the name of one and so on. We c oul1d

equally well have used "ZERO", "ooNE", etc., instead, but

there i .s something to be said for brevity. The following

will introduce .these codes to the parser:

Table 1

*DEC IMAL-BINARY-OCTAL CONVERSION

Digit Binary Octal

0 1000000000 1000

1 1000000001 1001

2 l000000')10 1002

3 1000000011 1003

4 1000000100 1004

S 1000000101 1005

6 1000000110 1006

7 1000000111 1007

8 1 000001000 1010I

9 1000001001 1011

Terms (NO.,1777 ,1000),(N1 ,1777,l00l),(N2,1777,1002),

(N3,1777,1003),(N4, 17771,1004),(N5,1777,loo0S),

(N6,1777,1006),(N7 ,1777,1007),(NS8,1777,lolo),

(N9,1777,10l1),(DIGIT, 1000, 1000)

The last triple defines the word "DIGIT", saying that only

the "digit" bit is significant and that it must be a one.

Let us use another bit, say the fourteenth, to mark

letters. We can represent the individual letters-*in a

-55-

manner analogous to that adopted for the digits. Each

can be represented by its serial number in the alphabet.

A statement of the following form is in order in the parser:

Terms (A,2777,2001),(I,2777,2002),......

...... (Z,2777,32), (LIiTTER,2000,2000)

Notice that letters can perfectly well be used as names

for -themselves.

Now, let us make the complicating but realistic

assumption that we are faced with an input device that

does not have separate characters for one and lower-case "L".

The symbol used to represent these two should clearly'be

marked as both letter and digit. As for the rest of the

code, it does not matter if we put it with the numbers or

the letters or with neither. Let us put it with the

letters. This means that the triple defining "1" can

be "(N1,1777,1014)", "(Nl,2777,2014)", or "(N1,3777,3014)".

Which of the "digit" and "letter" bits we choose to make

significant does not really matter in this case.

With the definitions so far in force, we can write

descriptions with statements like these:

Terminal (TII, E)

Terminal (LETTER)

Terminal not (DIGIT)

Terminal or (A,E I,O,U,N2,N4,N6,NS)

r7 III I

-5b - /

But wherever we mention a lettcr, it will be understood

that any form of the letter will do; it does not matter

whether it is in upper or lower case or. if it is underlined.

If the input keyboard device makes these distinctions,

then we need some more definitions in order to profit from--.......... ...

them.

Suppose that a one in .the thirteLnth position of the

twenty-four-bit code signals an upper-case letter nrd that

the underscore puts a one in the twelfth position. Then we

can have these definitions:

Terms (CAP,4000,4000),(UL,12000,12000),(111),1l1o,liooo)

among others. "CAP" is now a general name for any capital

letter, "UL" for. any underscored letter, "1)" for any under-

scored digit, and so on. If necessary, we can supply

names for the individual letters of the alphabet in upper

and lower case. The triple for upper-case "A" will he

"(CAPA, 6777,6001)"; for upper-case "B, "(CAPB, 6777,6002)

and so on.

Like numbers, punctuation marks and the space character

cannot be used as names for themselves, and we must there-

fore use definitions like

Terms (SPACE, 3777,0O00),(Pt-RIOD,.i777, o401)

Notice that, even in the definition of "space", not all parts

of the code are.significant; we leave open the possibility

that a space is underscored

h;e have now covered everything that needs to be said

about the parser's principal function of revealing the fine

structure of a page. How the information discovered by a

parser can be exploited is the subject of the next section.

But the parser also has a subsidiary function. We have

remarked that some keyboard devices introduce ambiguities in

the representation of characters and that allowance must he

made for these. If the parser is looking for a number, it

will accept a character that just might have been intended

for an "L, there being no obviously better policy. It

will accept the same character as a letter in another

context. In most cases, the rules can, in fact, be written

so that these judgments turn out right, and it is therefore

appropriate to recode the character so that the ambiguity

will not be preserved in the archival form of the material,

The rules for parser specifications allow for a re-

coding clause to be added to any "Terminal" or "Nonterminal"

statement, An example might be

Terminal mult (DIGIT)

Edit RI)

where RD (Recode Digit) refers to a definition introduced

in a "Term" or "Terms" statement. That statement might be

Term (RD,117770)

This time, the interpretation of the two octal numbers must,

Of courso, be different. If a digit is found, then only

the bits that match those in. the first octal number .referred

to in the recoding clause are preserved, and aiy bits specified

by t Ihe second octal number are added. In the present

examp .le, the recoding has the effect of remroving the bit

ind .icating 'a letter, .if ii is present. Nothing ha s to be

added.

Consider another example. SuPpjOse the parser isse

up to recognize hyphens as distinct from minus signs al-

though the input device produces the same code for both

anfurthermore, that it recognizes two of these as

representing a "dlash"o. The parser night contain the follow-

ing statements:.

Terminal (M inus)

Edit RMIN

Terminal (Hyphen)

Edit RHYPI

Nonterminal -(Dash)

Edit RDASI

Terms (Jyphen0777,50I), (1)ASII,7779502),

(Minus.777,503). (RIIYPIIlflS0l0)),

(RD)ASIf,l0500,2) ,(RMIIN.lOSOO,3)

This, of course, is only one way to doa it. For example,

the triples "'(RMIN, 10501,2)", "(RMIN,lfl000,5S03)" and

"(R.MIN10400,103)" among others would have had equivalent

effects.

If recoding is specified for a nontcrminal, it applies

to all thecharacters covered by the corresponding definition.

Recoding of a single character may be specified in more than

one place. For example, the "Terminal" instruction referring

to a character may be followed by an "Edit" and so may one

or more of the "Nonterminals" covering this position. Pos-

"sible conflicts are resolved as follows: the recoding of

characters covered by the most inclusive nonterminal is

performed first. The next most inclusive definition is taken

next, and so on. The "Edit" following the "Terminal"in-

struction is appli.d last.

In describing the way the parser goes to work on a box,

we occasionally referred to such things as the current

character, the previous character, and the next character.

These were to be interpreted relative to the normal left-

to-right, top-to-bottom reading order. But the parser can

also be instructed to work from the end of the box toward

the beginning, that is, from right to left, and from bottom

to top. Everything else remains the same. This is useful

when the parseris required to work on material only at

the bottom of the box.

6. TEil SELECTOR

The parser constructs a phrase-structure diagram for

the contents of a box or part of a box. This diagram is

a tree with labeled nodes. Several direct descendants of

a node can bear identical labcls, and since recursive

grammars are permissible, a node can bear the same label as

one or more of its ancestors. In this diagram, the user

must seek out nodes covering the terminal strings he needs.

For example, if the input is a citation, the user must

find the last name of the authors; perhaps he wants the

name of the first, second, ..., last authors in order.

The most convenient plan is probably to select one or

a few strings, arrange then as appropriate, and use the

result before selecting further input. Otherwise the user

would have to provide an intermediate storage format, dis-

tinct from the parser's phrase-structure format.

The selector is a set of subroutines for finding nodes

and reporting the location in storage of the strings they-

cover. A node is identified by three properties: (i) It

is a descendant of some specifically identified node.

(ii) It bears a specified label. (iii) Among the nodes

satisfying conditions (i) and (ii), it is the leftmost

(or the rightmost) not previously found by the routine.

According to condition (iii), it is not possible to

select the same node twice.

When the parser finishes working on a box, it sets up

..(l-

the selector, ready for use. The program that called the

parser continues by specifying a single node, frcstmahly the

origin of the phrase-structure tree. Specifica tion means

attaching an index to the node. Now an instruction to

find a node can he written; it has four elements:

INDEX, = FIRST (NAME, INDEX 2

LAST

Here INDEX 2 points to a know.m node; to begin with, only

the origin qualifies. NAME is a variable that takes as

values the labels borne by nodes in the phrase-structure

tree. The two optinns FIRST and LAST yield, respectively,

the leftmost and rightmost nodes descendant from the node

identified by INDEX2 and bearing the label given as NAME.2I
At most one node in the troe meets this specification;

henceforth it can be poi ted out by INDEX1 .

Calls to the FIRST-LAST subroutine can be woven into

a program of whatever degree of complexity the user needs.

Often enough, the user cannot find a node of interest

with a single call. To find the first author's surname,

he might begin by attaching an index to the lef most node

labeled author; then, using that index, he could go on

to find the descendant node labeled surname. If his

program returns to the same instruction to find (for

the second or third time) Ithe leftmost author node, it

will index the second, third, etc., such nodes. i

-62-

In a moderately complex situation the user will know

that his program has found all nodes meeting a certain set

of conditions only by virtue of the fact that a call to

FIRST-LAST produces no result. The index, in effect,

is attached to no node. The program making the calls must

of course test for such a nonresult.

.... When the user is ready to do so, he can obtain the

location of the string covered by a node; he supplies an index

to the node and a location (the first of four cells, as

usual) for storage of parameters:

PACK (PARAMETERS, INDEX).

The subroutine traces out descendants of the indexed node

until it finds terminals, which are still kept in their

original place in the page image. It computes the serial

number of the first and last characters of the terminal

string, relative to the column in which the box lies,

and puts the four parameters in the place indicated.

Should a call to the parser result in coverage of

only part of a box, the user can select and pack the

covered portion and then reduce the box by elimination of

what was parsed. The subroutine called REDUCE changes

the parameters of the box; after it is applied, the material

covered by the parser no longer belongs to any box at all.

When the parser operates backward, the FIRST-LAST

-63-

subroutine does so as well. FIRST then means rightmiost, and

LAST L eans leftmost.

7. THE RECODER

All the processes that have been-de-scri-bed-except-the

initial character reader operate on a special intermediate

form of the original lines and pages. Each character

occupies a whole cell in the memory of the machine, and, in

order that the layout of the page is accurately preserved,

even extra spaces at the end of a line count as characters.

But,' against this inefficiency in the use of space we can

set the advantages of a coding scheme in which each character

is self-sufficient. To discover if the character at a certain

place on the page is a letter, a number, a punctuation mark

or whatever, whether it is in upper or lower case, or whether

it is underlined or carries an accent, it is necessary only

to examine the bits stored in a single cell whose location is

readily calculable. It is never necessary to search back to

see if the Shiftkey S up or down when a-given code was

produced, or forward to see if an underline produced later

was intended to go with this character.

However, when the formatter, the parsers, and the selector

have done their work, the usefulness of this extravagant

storage and coding scheme will presumably be exhausted.

-64-

It is available,* and the user is free to do what he will

with it, but for most purposes, and certainly for permanent

storage, a more compact representation would be preferable.

This is what the recoder is for. It moves data from the page

array to a new location provided in the user's program,

rearranging them and recasting them according to new coding

conventions as it goes.

Just as the parser is an embodiment of a well-established

theoretical device, namely a context-free phrase-structure

grammar, so also is the recoder; specifically, it is a

finite-state transducer. And, once again, there will be

those for whom this is an adequate summary of what will be

explained in this section, and they can turn straight to

the Appendix (Secs. A.11 and A.12).

The recoder examines the character codes in a box or

sequence of boxes one by one, moving steadily forward and

never going back on its tracks. For each code encountered,

it produces a string of new codes--usually one, sometimes

none and sometimes more than one. The code or codes pro-

duced depend on the old code and also on the history of the

recoding process up to that point. Unlike the parser, the

recoder cannot go back over ground it has once covered, and

*The FETCH routine (see Appendix, Sec. A.13) can he
used to transfer characters one by one from the page array
to arbitrary core locations without recoding.

-65-

so it cannot easily produce different outputs for a given

input depending on other codes coming later in the string.

But what has gone before can influence the coding of what

follows. This is not a serious restriction precisely

becuase of the self-sufficiency of the intermediate codes.

The new codes are six bits (two octal digits) rather

than twenty-four bits (eight octal digits) long. This is a

restriction that could, on occasion, be serious, However,

the physical construction of the IINt 7040/44 computers for

which these programs were prepared is such as to make the

choice of six-bit codes very natural. All the input and

output devices attached to these machines and, in particular,

the magnetic tape units, process only six-bit units of

code. One cell of machine storage accommodates exactly

six such units, and special instructions are provided

for manipulating them. In short, while a user of these

machines may not always work with codes of six bits, he

is very likely to use fundamental units consisting of some

multiple of six bits, and these can be readily handled by

the system to be described.

The detailed description of the recoder will profit

by being tied to an example from the start. Suppose, there-

fore, that the library catalog card shown in Fig. 6 has

been read in to the page array and divided into the boxes

A, B, and C by the formatter. Box A contains an accession

number, box B a catalog mark, and Box C a citation.

-66-

A 890

123.45 Ludwig Wittgenstein, Trcetatus Logico-
A67B Philosophicus. London, Routledge & Kegan

Paul (1922).

B C

Fig.6-An input page

Suppose that the immediate concern is with recoding box C.

The program will pick up the first intermediate code.

in box C and ask if it has certain properties, say those

defining theiletter "A". If the character has these proper-

ties, a new code may be provided in the instruction, which

will then be output. In the example, the first letter is

an "L", and the instruction gives the location of another

instruction to try instead. Sooner or later, an instruction

will presumably be encounered specifying properties that

the first character in the box does have. It might have

the form

Code (L,1,43,done)(tryM)

This can be read "If the character is an 'L', output one six-

bit code, namely octal 43, and apply the instruction at

-67-

location 'done' to the next character. If the character
is not an 'L', then go to location 'tryM', and apply that
instruction to it". The coding sequence for the Roman

alphabet as a whole might begin

done Code (A,1,21,done)(tryB)

try B Code (Bpl,22,done)(tryC)

try C Code (Cl,23,done)(tryD)

Like the parser, the recoder must be told what sets of
properties are being referred to by symbols like "A" and "B"
in the above instructions, and the method is the same,

Statements of the forms

Term abc

and

Term. (a,b, c), (d, e, f).

are used, the second being simply a shorthand for a string-,---
of statements of the first form. The triple consists of a
name for the combination of properties being defined and two
octal numbers, the first showing which of the 24 bits of the
intermediate code are significant and the .second giving the

values they must have.

It is reasonable to assume that the same bits will
always be used for upper case, underlining, diacritics, etc.,

-68-

and that the same set of bits will always be significant for

distinguishing letters from one another. Now, the values

of these significant bits impose an ordering on the letters

of the alphabet that can be exploited in the recoding process

Let us-assume that there is some subset of thc-24-bit field,

say the last 6 bits, in which each letter has a distinct

representation and, furthermore, that the values found in

...-. these-bits correspond to the normal alphabetical order. -_ e

shall now show how the technique known as binarv search*

can be used in an efficient strategy for recoding the letters.

If the first instruction in the recoding sequence

suggested above inquires after an "A" but fails to find it,

the possibilities arc reduced by one; there are 25 remaining.

If the letter is "Z", 26 questions will be asked before

the proper output code can be produced, and the average

number of questions for a letter wi 1 be about 13. If,

however, the routine first inquiresl after an ''"M and, failing

to find it, notes whether the signi icant portion of the

intermediate-code-it does find prec es or follows that for

"'W", the number of possibilities will at once be reduced by

See inter alia Bernard A. Galler, The Language of
ComputersMcGraw-il Book Co., New York, 1962, pp. 97-104t
and Kenneth E. Iverson, A Programming Language, John Wiley
and Sons, Inc., New York, 1962, pp. 141-144.

-Wi-

half. If the code precedes the one for "M", only the first

part of the alphabet need be searched, if it follows, only the

last part. The two parts of the alphabet can now be divided

into two sections in the same way so that the next, character

to be sought will in one case be, say, "G" and in the other "T".

After two questions have been asked of a given code, it may

not have been identified, but less than a quarter of the

possibilities still remain open. Therefore, the greatest

number of questions that need be asked to identify any

letter is five instead of 26.

If we know the language to be recoded, then we can do

even better than'the simple binary search provided that

the significant part of the intermediate codes can be

arranged to impose on the letters an order based on their

frequency of occurrence " n the language. There are many

orderings that are about equally good for English, and one

is the following:

P D B 0 C Y A R N N1 U J E Z L H K F V T Q S I G W X

The first possibility to be tested will b- "E", the most

frequently occurring letter in the language. When the letter

found is not an "E" but precedes it in this sequence, it

will be compared with "A", when it follows, with "T".

These are the next most frequent letters. The actual order

in which the tests are performed for different letters is

established with a view not so much to reducing the number

-70-

of different letters by half at each operation as to making

the probability that the letter comes before or after the

one tested approximately equal. This probability is esti-

mated from observed frequencies. A set of instructions

for the recoder using the above ordering of the letters is

as follows:

done Code (L,1',25,done)(tryA,tryT)

tryA Code (Al,21,done) (tryOtryN)

tryO Code (O,l,46,done)(tryD,tryY)

tryD Code (D,l,24,done) (tryPtryB)

tryP Code (P,1,47,done)

tryB Code (B,,22,done)

tryY Code (Yl,70,done)(tryC)

tryC Code (C,1,23,done)

tryN Code (N,14 5done) (tryR,tryU)

t ryR Code (R1, 51 ,done)

tryU Code (U,l,64,done) (tryMtryj)

tryM Code (14,1,44,done)

tryJ Code (J,1,41,done)

tryT. Code (T,l,63,done) (tryIltryI)

The frequencies used here are taken from Lawrence M.
Stolurow and Paul I. Jacobs "Tables of Estimated Letter and
Letter Combination (Bigram and Trigram) Frequencies in Printed
English" which, in its turn, was based on the Lorge Magazine
count together with some extra material.

-71-

tryl Code (H,l,30,done) (tryLtryF)

tryL Code (L,1,43,done)(tryZ)

tryZ Code (Z,1,71,done)

tryF Code (F,l,26,done) (tryKtryV)

tryK Code (Kl,42,done)

tryV Code (V,l,65,done)]

tryI Code (I,l,31,done)(tryS,tryW)

tryS Code (S,1,62,done)(tryQ)

tryQ Code (Ql,50,done)

tryW Code (W,1,66,done)(tryGtryX)

tryG Code (G,l,27,done)

tryX Code (X,1,67,done)

This example shows some new forms of the basic "Code"

instruction. In the earlier example, the second pair of

parentheses enclosed the name of a location from which the

next instruction would he taken in case the present one

failed. When failure occurs in this example, if the second

pair of parentheses contains a pair of location names

separated by a comma, the first is used if the character

sought comes later than the one found in the sequence

established by the 24-bit intermediate codes, the second if

the character sought comes earlier than the one found. Thus,

in the example, if the character being tested is not an

"E" and comes before it in the sequence, "A" is tried next,

otherwise "T".

-72-

Extending these principles beyond the 26 letters of the

Roman alphabet is entirely straightforward so long as the

total number of characters to be treated is not greater than

64, the total number of combinations of six bits. But

this clearly will happen. A typical typewriter has fome 46

keys, each of which produces one of two characters depending

on the position of the shift key, giving a total of 92

characters. Furthermore, conventions appointing certain char-

acters as shift markers can be used in the way outlined in

Sec. 2 to augment the effective character set still more.

In any case, the conventions established by the programming

system or the permanent storage format may have to accommo-

date many more symbols than are produced by any one input

device.

There are two standard ways of escaping from the six-

bit straight jacket. The simplest is to assign 12 bits to

every symbo1, thus raising the maximum number of combina-

tions from 64 to 4096. The machinery already described

takes this in its stride. It is sufficient to replace

instructions like

Ll Code (Char, 1,36,done) (L2,L3)

with instructions like

L1 Code (Char,2,3536,done)(L2,L3)

-73-

The other method is to introduce codes that function like

shift keys, determining the interpretation of other codes

that follow them. This is the solution adopted in the

RAND text encoding scheme, and it requires some extra

devices in the recoder.

In the example in Figs. 6 and 7, the first letter is

in upper case, and the ones immediately following in lower

case. In the RAND scheme, the same six-bit codes are used

for the Roman alphabet regardless of case. They are taken

to represent lower-case letters except when an upper-case

shift character precedes them somewhere in the string.

There are also other shift characters for italics, boldface,

and the like. The effect of a shift character continues

until nullified by a down shift, and in the RAND scheme

the only down shift provided is one which nullifies the

effect of all shifts currently in force. This is not the

place to argue the merits of such• a system; it is rather the

place to profit from its apparent perversities to demonstrate

the power of the recoder.

The recoder must examine the first character of any

string presented to it to see if any shift characters need

to be issued and then go on to code it as 6 member of the

alphabet. It must examine each subsequent character for

Martin Kay and Theodore Ziehe, Natural Language in
Computer Form, The Rand Corporation, 1l0-4390-PR, February

-74-

4

C-'-

0

___ CA0

_____ _____ LI _ "44

I- - - -
ad 1- 1

J-E

z-

-75-

shift changes. For this purpo se, it is convenient to be

able to apply more than one instruction to the same inter-

mediate code. Consider the following sequence:

BEGIN Code -(Ucase, 1,1 ,S)(LC)

Code (Italicl,2,S)(UNE)

UIE Code (UCITE, 1,2 ,UIE) (UIA,UIT)

UIA Code (UCITAt1,21lJIE) (UIOIJIN)

U10 Code (UC ITO l,4 6,IJIE) (IJIDUIY)

UID Code (UCITD, l,24,,LJIE) (IJIPUIB)

UIP Code (UCITPl,47,UIE)(END)

UIB Code (UC ITB1,2 2t UI E) (END)

END Code (Any, 1gltlS.BEGIN)

UNE Code (UCNIE,1,25,1JN.) (UNA,UNT).

L6 Code (It l ic 1,p,2 .S) (LND)

LIE Code (LC TE,l,25,L3) (LIA,LIT)

LNE Co;de (LC 'IE,l1,25SLNE) (LNA, LNT)

In some of the instructions, the fourth place in the

first set of parentheses is occupied by the letter 'IS" (for

"Same"t), which is not to be interpreted as the name of a

location from which the next instruction executed is to

be taken, but as an indication that, whatever instruction

is next used, it must be applied to the same character. The

-76-

following two sequences are equivalent:

Code (Ucase,1,1,S)(LC)

Code (A,121,NEXT)

and

Code (Ucase, 1,1,5 ,TryA) (LC)

TryA Code (A,l1,21,NEXT)

In the second case, both the "S" and a location to go to

in case of success are given.

The table given on p. 75 inquires of the first character

presented to it if it is in upper case. If not, it directs

attention to the instruction at location LC where the re-

coding of lower-case letters begins. If the letter is in

upper case, a code (octal 01) is output, and, in the absence

of any direction to the contrary, the next instruction in

line is taken next. But, since the first instruction

contains an "S", the next one will also he applied to the

first character. The second instruction works in a simi-

lar way, delivering an output code (octal 02) if the char-

acter is italic, and otherwise directing that the next

instruction be taken from location UINE (Upper-case not

italic). Once again, the same input character is retained

for processing by the next instruction. Suppose the first

character is an upper-case italic "E". The first and

second instructions will output octal 01 and 02 respectively,

-77-

and the instruction at location 11TE will contribute octal

2S. Only then will work begin on the second character.

The sequence of instructions beginning at UIE con-

stitutes an improved binary search of the letters of the

alphabet as already described, but it applies only to upper-

case italic letters. Any other letter will fail to be

identified and, sooner or later, will cause the instruction

at location END to be used. This produces an output charac-

ter, namely the universal down shift, regardless of what

input it is applied to. The name "Any" can conveniently be

defined as follows:

TERM Any,O,0

Since no bits are significant for recognizing an "Any",

any pattern of bits will do. Once the instruction at END

has been carried out, the program goes back to the head of

the list to output any shift characters necessary,

Each of the four styles of alphabet (upper case, lower

case, upper-case italic and lower-case italic) has its own

set of binary search instructions. These continue to be

used for character after character until one in a new style

is encountered. This leads to the instruction at END,

which produces a down shift, issues any shift characters

needed for the new character style, and causes a transfer

.to a new set of binary search instructions. The only ex-

ception is the sequence that codes lower-case non-italic

-78-

characters; it does not transfer to END on failure since,

in this case, no down shift is required.

The binary-search sequences are only trivially different

from one style to another, ard some means of conflating them

would be welcome. There are, in fact, two methods, and the

first is illustrated in the following sequence:

BEGIN Code (Ucase.,1,l,S)(LC)

ITAL Code (Italic, 1l,2,S)(UNI)

UI Do Letter

Code (Uca se, S) (DOWN)

Code (Italic, S,UI) (DOWN)

LC Code (Italic,l,2,S)(LCNl)

LI1 Do Letter

Code (ItalicS) (DOWN)

* * Code (Ucase,l,I,S,IJI)(LIl)

LCN1 Do Letter

Code (Ucase,l,l,SITAL) (LCN2)

LCN2- Code (Italic,l,2,S,LIl)(LCN1)

* UNI Do Letter

Code (Uca se, S)(DOWN)

Code (Italic,l,2,SUI)CUNI)

DOWN, Code (Any,l,ll,S,BEGIN)

Define Letter

Code (E,l,2S ,END)(TryA.TryT)

TryA Code (Al,2l1END)(TryO,TryN)

END Stop

-79-

In this sequence, which achieves the same effect as the

previous one, and by a fundamentally similar strategy, three

new instruction types, "Do", "Define" and "Stop", have been

introduced. The instructions included between a "Define"

and a "Stop" make up a package that can be inserted by

means of a "Do" at any number of other places in the stream.

In this case, the package refers only to those bits in the

intermediate code that distinguish the letters of the alpha-

bet from one another and not to those that distinguish type

styles, and it performs the binary search. As soon as a

letter has been identified, the program goes to the instruction

at END, which is a "Stop". This causes the machine to take

next the instruction immediately following the "Do" that

called the package of instructions into use. The instruc-

tion "Do" occurs four times in this example, once for each

type style. Each "Do" is followed by a pair of instructions

that check that the type style of the next character is the

....same as that .of the previous one and, if it is, return to

the "Do". Many of these instructions do not cause any

output to be produced but merely cause 'a transfer to the

instruction at DOWN, which issues the universal down shift

in appropriate circumstances. The reader may find it worth-

while to work through Box C of the example in Fig.6 using

these instructions.

• -i - -- - - -I

,l ' - 8 0 ' -

The other way of economizing in recoding specifications

is to use special forms of the "Code" instruction, which

permit glances at characters to the left and right of the

current one. The instruction

Code (FR(1,Ucase, 1,11 S, NEXT) (FAIL)

will output the six-bit code octal 11 just in case the

previous non-blank character was in upper case and the cur ent

character is not; otherwise the pro am will take the

instruction at FAIL. This could be 'Used to output the

downshift code in case of a change of type style from upper

case. Similarly, the instruction

Code (TO,Ucase, 1,1,S,NEXT) (FAIL)

will output the code octal 1 in case the previous non-blan

character was not in upper case and the current character is,

that is, if there is a change to upper case.

When an ordinary "Code" instrudtion fails, we say that

it is sometimes appropriate to distinguish two possibilities,

one in which the code found preceded the one sought and

one in which it followed. Two possibilities can also

usefully be distinguished for instructions involving "FRCM'4

and "TO", one in which the property mentioned in the instrd'c-

tion is not manifested by the character that would have to

have it for the instruction to succeed, and one in which

both characters show this property so that the ,.,ange needed

-81 -

for the instruction to succeed is not found. Consider the

instruction

Code (FRciAl,21,NEXT) (FAILIFAIL2)

If this is applied to a character that does not follow

an "A"l, it fails in the most conspicuous way and sends the

machine to FAILl for its next instruction. But, if it is

applied to a character that does follow an "A" but that

is itself an "A", then it also fails, but this time the

next instruction is taken from location FAIL2. Similarly,

if the instruction

Code (TOAvl 21 ,NEXT) (FAIL1,FAIL2)

is applied to a character' that is not an "A", it fails and

points to FAILl; if it is applied to an "A" that, however,

follows an "A", it fails and points to FAIL2.

In a final example, we shall demonstrate all the facili-

ties available in the recoder. The RAND encoding scheme

has a special set of 15 codes called' alphabet flags. These

function rather like the shift codes already mentioned.

They condition the interpretation of all codes following

them up to the next alphabet flag. They are different from

shifts in that their effect is not cumulative so that no

downshift is required from them; the effect of one flag

ends with the beginning of another. The characters whose

codes follow a given alphabet flag are said to belong to

No a P No I 19 it7i

the corresponding alphabet. Provision is made in this

way for a Roman, a Cyrillic and a punctuation alphabet

among others--these will be enough for the example. Within

each alphabet, an arbitrary selection of codes can, in

principle, be chosen as shift markers; it happens that the

upper-case and italic shifts as well as the universal-------

down shift are represented by the same codes in the Roman.

and Cyrillic alphabets, and we shall make use of this fact.

The rec od ing sequence is as follows:

Recode RAND.SP

S1 Code (SP,Sl) (S3)

S2 Code (SP 1116OfSl) (S3)

S3 Code (TO.Roman,l,35,S,RAB) (S4,RAA)

S4 Code (TOCyrillic , ,36,S,CAB)(SSCAA)

S5 Code (TO,Punctuation,l,S,,PA) (,PA)

RAG Do (Gamma,RomE)

RAA Do (Alpha) (RAG)

RAB Do (Beta)

RomE Code (E 11P2 5, S2)(RomA,Rom T)

CAG Do (Ganma;,CyrE)

CAA Do (Alpha) (CAG)

CAB Jo (Beta)

CyrE Code (Elf2SfS2)(CyrI,CyrY)

PP Code (Period.l,33,S2) (PComPSemi)

-83-

Define Alpha

Code (FROMUcas, 1,,3.,AI) (A2)

A2 Code (FRC4,Italic,1,l l, S)

Al Stop

Define Beta

Code (Ucase,l,l,S)(Bl)

B1 Code (Italic, 1,2,S) (B2)

B2 Stop

Define Gamma

Code (TO,Ucasel,,1S)(Gl)

G1 Code (TO, Italic, 1,2,S) (G2)

G2 Stop

The first instruction in this sequence is of a type

that still remains to be explained. Its purpose is to give

a name to this particular sequence of recoding instructions

so that it may be distinguished from others that may be

used in the same program and to tell the program the

intermediate code for a space. In this case, the recoding

sequence is to be known as "RAND", and "SP" is the name of

the space character that must be defined somewhere in a

TERM or TERMS statement--these statements are not shown

in the example. The program must know how to recognize

a space in order to make "Code" instructions involving "FROM"

and "TO" operate in the way described. Recall that they

must be able to identify the nearest non-blank preceding

any given character.

-84-

The next two instructions, Si and 52, handle the recoc

of spaces. Instruction S1 returns to itself if it identi-

fies a space; otherwise it causes a transfer to S3. In an)

case, it does not produce any output and serves simply to

delete any spaces from the beginning of the character strir

submitted for recoding. We shall see that a space en-

countered later in the process will be handled by the in-

struction at S2, which does produce an output code (octal

and then causes a transfer back to S1. The effect of this

will be that a sequence of spaces will be closed up and

represented by a single space in the result.

The next three instructions (S3, 54, and SS) are

the only ones in the sequence that concern alphabet flags,

They are used at the very beginning to produce the first

alphabet flag, and, when the coding of any character is

complete, the program returns to these instructions to chec

for a change of alphabet. In order to See how they will or

ate when applied to the first character in a string, it is

necessary to have a convention for the predecessor of the

first character. According to the conventions used by the

program, the character whose intermediate code is all zero

is deemed to precede the first character in any string so

that, provided the bits that are significant for recogniz-

ing the alphabets each contain at least one "1", the desire

-85-

effect is obtained. When the condition specified in one of

these instructions is met, that is, when a character

belonging to the given alphabet is found following one

belonging to another alphabet, then the necessary alphabet

flag is output. If the instruction fails because the

current character does not belong to the specified alpha-

bet, the next instruction is tried, or, if the character

found does not belong to any of the three alphabets, the

recoding operation as a whole fails. If, on the other hand,

an instruction in this group fails because the current

character is indeed in that alphabet, but so was the

previous one, then the program transfers to a place in the

sequence of instructions that simply continues the recoding

of characters in that alphabet (RAA, CAA, or PA).

The instructions for the Roman and Cyrillic alphabets

begin with three "Do" instructions, and they illustrate the

ways in which the format of this instruction can be

generalized on the analogy of the "Code" instruction. When

there are two symbols in the first set of parentheses, the

first is the name of the package of instructions to be

used at that point, and the second is the location of an

instruction to be used if that package ends successfully

at a "Stop". If there is a second pair of parentheses, they

contain the location of the instruction to be taken if

one of the instructions in the package fails and does not

indicate an alternative.

-86-

The instruction package called "Alpha" produces the

universal down shift at appropriate places; "Beta" produces

any shift codes appropriate to the current character

regardless of what has gone before; "Gamma" produces

shift codes for new shifts when they are first encountered.

"Alpha" is defined in such a way as to succeed, that is, to

reach the "Stop" instruction, only if it issues a down-

shift code. The "Do" that invokes "Alpha" directs the

machine to do "Gamma" in case of failure and "Beta" in

case of success. The "Beta" and "Gamma" packages are both

needed because, after a down shift, any shifts that remain

in force must be reissued whereas, in other places, only

new shifts need be issued. The three "Do" instructions

do not figure in the instructions for the punctuation

alphabet where they are presumably irrelevant.

Each alphabet has a sequence of binary-search instruc-

tions (beginning at RomE, CyrE and PP), and when any one

of these instructions finds its character, it directs

the machine back to the instruction at S2, which we have

already discussed.

Once again, the reader is urged to apply these

instructions to specific examples to verify that they pro-

duce the effects claimed for them.

A program using the recoder must supply it with a

name specifying the sequence of instructions to be used,

a name that appears in a "Recode" instruction at the

-87-

head of that sequence. It must also suppl parameters

specifying boxes in the page array that contain the infor-

mation to be recoded, and a storage area ir the computer in

which to store the results. The boxes are taken in the

specified order, and the recoded character follow one another

without breaks so that distinctions brought out by the for-

matter and parsers may once again be submerged. Thus, in the

example in Fig. 7, t e name "Ludwig Wittgenstein" could be re-

coded as a single unit, but if the user desired the last name

could be,placed first. The standard format that places last

names first also normally requires them to e followed by

commas. The recoder has facilities for introducing constant

information like this comma directly from the program. The

main program might cal for recoding of theauthor's name

somewhat as follows:

Encode RAND, LNAM1E, COMMA, FNAME

RAND is the name given to the particular sequence of recoding

instructions in a RECODE instruction. LNAMI and FNAMI, are

names of boxes found on the page, in this case, by the parser.

COMMA is the name of a string of internediate codes provided

in the user's program and consisting, in this case, only of a

comma.

Any amount of constant material can be 'introduced in the

output sequence. For example, the string "Routledge F, Kegan

Paul (1922)" from Fig. 7 could be made to contribute "Published

by Routledge & Kegan Paul in 1922" in the output.

-89- -z

Appendix

PROGRAMER'S REFERENCE MANUAL

A.l. INTRODUCTION

Table 2 gives a lisLc of the routines and tables that

make up the input systeii, and the dependency relations among

them. The routines whose names appear at the left margin

are those normally called by the user's program. The

formatter and the parser may be left out,. or the formatter

left out and the parser applied directly to a page. The

recoder can be left out if the user arranges to use the material

in the .page array directly or provides his own recoding fa-

cilities. The line maker can be used in place of the page

maker for simple line-by-line input, but single lines must

be made to appear as pages to subsequent routines. A simple

way of doing this is given in Sec. A.3.

A program using all the capabilities of the input

system could be outlined as follows:

1) ---Call the page maker to -obtain- a _page and its para-

meters.

2) Call the formatter repeatedly to slice the page

into rectangular blocks and obtain their parameters.

3) Call the parser to identify meaningful subsections

of a block. Then call the-selector repeatedly to

obtain the parameters of the smaller blocks.

4) Repeat step 3 for as many blocks as necessary.

-90-

Table 2

ROUTINES AND TABLES

Page Maker

Line Maker

Character Reader4
*4

Input Device Description

Page Tester

Stringer Checker
**

Specification Tables

Formatter

String Checker
**

Specification Tables

**

Parser

Selector

Recoder
**

Recoding Rules

*

Supplied by the user.
**
Constructed by the user as a set of macro-instructions

with the system-provided package of macro-definitions.

7

-91-

5) Call the recoder repeatedly to collect and recode

the data in blocks.

6) Output the recoded data.

7) Repeat steps 1 through 6 until all of the data

are processed.

Table 3 contains a list of deck names, entries, and

externs. Those decks that must be provided (character

reader) or supplemented (page tester, parser, etc.) are not

assigned names. Examination of the entries and externs

reveals the logical relationships between the segments of

the system.

The routines are written in MAP language for the I1W

7040/7044. They can be called from either MAP or FORTRAN IV

programs. All arguments are core locations, all integers

are stored right-adjusted in words, and all arrays are

stored forward in core.

The calling sequences given are as from a MAP program.

The only changes the FORTRAN user need make concern (i) the

transmission of constant arguments and (ii) results returned,,

in the accumulator. In MAP, the location of a constant or

literal must be supplied, whereas in FORTRAN the constant

may be written directly in the argument list and the com-

piler left to provide a location for it. Thus, MAP

CALL PGEMIAK(PAGE,PGEPAR,=50,-80,TEST, IND)

- - ~ - -v-- - -~-- - -r~-~-- - --- ~'- ~- ~-

-.92-

Table 3

DECKS, ENTRILS AND EXTERNS

ROUTIN E/TABLE DECK NAME ENTRIES EXTERNS COMMENTS

Character reader CINPUT Supplied by user

Input device INDD, TABS Written by user with system
descrijtion macro-definitions

Line mi ker LNEP4AK LINMAK, PRELIN CINPUT, IND,
TABS

Specif cation One for each Written by user with system

tables table macro-definitions

String checker STNCIIK STRCHK

Page t ster One f ..r each STRCHK Written by user.with system
routine One for each macro-definitions

specification
table

Page maker PAGMAK PGEMAK, CLRPGE LINMAK

Formatter FORMT FORMAT, ROW, STRCItK
COL, BEFORE,
AFTER, AT

Parser P.1, P.4, P.L PICK Written by user with system
macro-definitions. May be com-
posed of separate subroutine
decks given appropriate ENTRIES
and EXIERNS

Selector SELECT PICK, FIRST, P.1, P.4, P.L
LAST, PACK,
REDUCE

Recoder RECOD RECODE

Recodinz rules One for each Written by user with system
set macro-definitions

-93-

corresponds to FORTRAN

CALL PGfMAK(PAGEPGEPAR,5O,80,TESTIND)

Routines that return results in the accumulator appear as

functions in a FORTRAN program. Thus MAP

CALL FIRST(NAMEI)

STO K

corresponds to FORTRAN

K - FIRST(NA9E,I)

FIRST and LAST are the only routines in which Ilollerith

literals may be communicated as literals. A typical pair

would be MAP

CALL FIRST(=HTITLE ,I)

STO K

corresponding to FORTRAN

CALL ATHRUZ (A.5IITITLE)

K = FIRST (AI)

Certain routines and tables must be constructed

by the user with macro-instructions provided as part of the

system. These all have the following format, familiar to

MAP programmers:

Col's 1-6:' the syibolic location, if any, assigned

to the statement.

Col's 8-14: one of the macro-opcratic,,,s: SiNIFTS, SHIFT,

EINTER, TABS, PGTEST, NOPE, ENDPGEi, BEGPGE,

TEST, SPECS, SPEC, GRAM, DEFINE, N, T, GOT(

STOP, TERI, RECODE, CODE,)O

Col's 16-72: the parameters for the statement.

A.2. INPUT DEVICE I)ESCRIPTION

... Theline maker refers each input code received to one of

the input tables that make tup the input device description.

The first code is normally referred to the first table and

the remainder to tables determined by shifts implied by

preceding codes. Each entry of an input table contains the

character to be stored in the line array, an indication of

any carriage movement, an indication of whether or not there
/

is a change of.shift, i.e., a change of input table for the

next code, and a line-feed flag.

The input device descr tion consists of macro-

instructions. The set is h ded by the statement:

SHIFTS (1 ,2T2,..Tn)

where T1 ,T 2 ,.. .,T are the symbolic names of the input tables,

The input table names can be any distinct MAP symbols with

less than six characters.

- -- 7

The. leading statement is followed by the subsets of

macro-instructions, each subset describing a shift table.

The order in which the tables are described need not cor-

respond to the order of their names in the above list.

Each input table description begins with the identifying

statement:

SHIFT b

where b is the name of the table. Each entry in an input

table has the form:

ENTER Inchar, Char, Move, Feed, Shift

where

Inchar = An octal number, no greater than octal 30000,

which is the code supplied by the input device.

If this parameter is null, it is taken to be

zero,

Char = A number of up to eight octal digits, which

is the code to be stored in the line array.

If this parameter is null, it is treated as

zero,

Move = "BACK" for backspace;

"TAB" for tabulate;

"FORIW" for forward space;

"CARR" for carriage return;

Null or zero for no movement.

-96-

Feed = "FEED" for line-feed;

Null or zero for no line-feed.

Shift - Symbolic name of the shift table to be used

for the next character. If this parameter is

null, it is interpreted as implying no change

in shift.

The last one, two, or three parameters may be missing from

the list, in which case they will be treated as null.

Each ENTER assembles as one word with the following

format:

Bit 0 = 1 for line-feed; 0 for no line-feed.

Bits 1-5 = 0 for no movement; 1 for backspace;

2 for tabulate; 3 for forward space;

4 for carriage return.

Bits 6-11 - position in shift table directory for next

shift table to use.

Bits 12-35 = character to be stored in line array. .

The ENTER macro-instructions within an input table des-

cription may be in any order. The assembled table will be

in order of increasing "Inchar" values. Also, there will

be an entry in the assembled table for every integral value

between zero and the largest Inchar value. For example,

if the largest Inchar value is 200, there will be 201 entries

in the table. All entries not resulting from an explicit

ENTER macro will be zero.

-97-

Tab stop settings are specified by the statement:

TABS (t1, t2*..tn, length)

where

tlot 2,.,t n - the positions of the tab stops relative

to the first character position on

the line.

length = the total number of character positions

on a line.

For example, a line with 20 character positions and tab

stops set at positions 5 and 10 would be described by the

statement:

TABS .(5,10,20)

This statement assembles as an array of "length" cells, with

each entry containing the character position of the next tab

stop on the line. Thus, in the above example, if the

current character position on the line' were 6 and the current

character's input table entry contained the tab indicator,

the next character would go into position 10. Also, any tab

indicator at position 10 or thereafter would move the carriage

to the end of the line.

-98-

A.3. TIlE LINE MAKER

The calling sequence for this routine is:

CALL, LINMAK (Line, Linlen, Ind)

where

Line = location of line array.

Linlen = location containing line length (maximum

number of characters on a line).

Ind = location for return conditions.

When the line maker is called by the page maker, the line

array will be a suitably chosen sequence of cells in the

page array. When the routine is entered, each cell is sot

to zero, the internal code for blank, and the cell for any

position for which no character is supplied by the input

device will remain zero on exit. The normal return from the

line maker occurs when a "line-feed" is received from the

input device.

A character reader, supplied by the user, feeds the line

maker one character, right-adjusted in the accumulator,, in

response to the calling sequence:

CALL CINPUT

The character reader returns a negative number, whose exact

value is insignificant, after the last character in the

input stream. If the input is being read from a multi-reel

tape file, the negative accumulator can be used to signal

-99-

an. end of reel, the line maker then resuming normal opera-

tion when a new reel is supplied.

The first character input from the reader will be

looked up in the first input table (Sec. A.2.) and the appro-

priate character stored in the first cell of the line array.

Thereafter, these positions are determined by the informa-

tion obtained from the input device description for the last

character received. However, both settings can be altered

by the user's program at any time with the call:

CALL PRELIN (Stpos,Chpos)

where

Stpos = location containing the serial number of an

input table in the input device description.

Chpos = location containing character position in the

line array.

The line maker checks each indicated movement of the

carriage for line overflow. If a forward space or tabulate

would cause the line to overflow on'the right, the routine

resets the current character position to "1", sets a

bit in IND, and returns the current line to the page

maker as it is without testing for a line-feed indica-

tion. Any characters remaining between this point and the

"line-feed" will be treated as a separate line, which will

be delivered when the routine is next called.

-100-

The return conditions set in IND are as follows:

2 - Line overflow

I = Input exhausted

0 - Normal return

Normally, the user's program calls the page maker (Sec. A.7

andthis calls the line maker. But if the page maker is

omitted from the package because the input format is not

sufficiently complex to require it, but other routines in the

system (e.g., the parser) are required, then the user's

program must.provide a set of four parameters that will make

each line appear as a page in its own right. In MAP, this

can be done simply as follows:

CALL LINMAK(LINE, LEN,IND)

LEN PZE LENGTH

PPAR PZE 1

PZE LENGTH

PZE 1

PZE LENGTH

LINE BSS LENGTH

where the value of LENGTH is the number of characters in the

longest line expected, and the four locations beginning with

PPAR are the required page parameters.

-1 01 -

A.4. SPECIFICATION TABLES

Specification tables arc used to give more or less

complete descriptions of character strings for use by the

page tester (Sec. A.6.) in recognizing page boundaries and the

formatter -(Sec. A.8.) in recognizing boxes. In both cases, the

"string checker" routine (Sec. A.5.) is called to interpret the

tables. Each table consists of a sequence of macro-instruc-

tions headed by

SPECS Name

where

"Name" is a MAP symbol that will be used to refer

to the table.

The table itself is constructed from statements of

the form:

PEC n(Char,,Mlask) (Match) (No Match)

.where .

n - number of string characters to be compared

with "Char." If this argument is missing, it

is assumed to be 1.

Char = A number of up to eight octal digits to be

compared with the string character(s).

Mask = A number of up to eight octal digits to be

used as a mask in the comparison. When

-102-

a string character is compared with Char, only

those bit positions that contain a 1 in Mask

will be considered significant. If this

argument is missing, it is interpreted as

octal 77777777.

"Match" and "No Match" have one of the following forms:

1) "F" meaning false or failure.

2) "T" meaning true or success.

3) "NEXT, Loc" meaning check- the- next character

in the string against the specification at

location 'Loc'. If 'Loc' is missing, it is taken

to be the immediately following statement.

4) "SAIE, Loc" meaning check the same character

against the specification at 'Loc'.

The'SPEC statements describe a row fron left to right

or a column from top to bottom. The meaning of a statement

is: "Compare n string characters with 'Char', using 'Mask'.

If all n match, proceed as indicated by the 'Match' alter-

native. If any one of the n does not match, proceed as

indicated by the 'No M4atch' alternative".

For example, consider the statement:

SPEC (310, 770) (T) (SAMIE, Ll)

The string character (current at the time the string checker

reaches this specification in the table) will be compared

with octal 310, taking account only of the six bits coinciding

.--- . , . - ---.-

-103-

with octal 770. If it matches, the. string satisfies the

specification table. If it does not match, the same string

character will be compared with the specification at Li.

Since the string checker routine will return a failure

indication if it exhausts the string before encountering a

success or failure indication in the table, it is possible for

a table to consist of one statement such as:

Ll SPEC (60) (T) (NEXT, Li)

This specification table will be satisfied only by a string

that contains at least one character equal to octal 60.

To specify a string consisting of 99 characters, all

of which are octal 60, the table could consist of the state-

ment:

SPEC 99(60)(T)(F)

This one statement is equivalent to the 99 statements:

SPEC (60) (NEXT) (F)

SPEC (60) (NEXT) (F)
* 0

* 6

SPEC (60) (T) (F)

Notice that if only, say, 35 characters are found meeting

the specification, the next character is deemed to be the

36th and not the 2nd.

-i uq "

Each spec statement assembles as two words,:'

First Word

Bits 0-11 = Match field

Bits 12-35 = Char

Second Word

Bits 0-li ='No Match field

Bits 12-35 = Mask

Match and No Match Fields

Bits 0-1 = 0 for failure

= 1 for success

= 2 for check next string character

3 for check same string character

Bits 2-11 = 0 for failure or success

= Index of next entry to use otherwise

A.S. TIE STRING CHECKER

This routine is used by the page tester (Sec. A.6.) and

formatter (Sec. A.8.) routines. On each entry it compares a

string of characters from a row or column with a specifica-

tion table and returns a success or failure indication.

The calling sequence is:

CALL STRCIIK(String,Inc,Strlen,Spec)

-" *.--*. . .:" " :.: - - : - ' -'- :
"

-1OS-

where

String = location of first character in the string.

Inc = location containing difference of memory

locations between two successive characters

in the string.

Strlen = location containing number of characters in

the string.

Spec location of the specification table (Sec. A.4.)

When checking rows of a page, Inc will contain "1"; when

checking columns, it contains the number of columns on the

page.

The routine returns in the accumulator:

1 for success.

0 for failure.

If the routine checks all of the characters in the string

without encountering an explicit success or failure indica-

tion in the specification table, it returns the failure

i n "-! " c a t i o n . _ :,

A.6. TIE PAGE TESTER

Each time the page maker (Sec. A.7.) receives a line from

the line maker (Sec. A.3.), the page tester -is entered to

determine if a complete page has been constructed. The

page tester first examines the current line, i.e., the one

most recently constructed by the line maker. If this line

10-"M NMI I I I I I l I I

passes the test, and the specifications involve more than

one line, the previous line is examined, then the line

previous to that, and so on. Therefore, the use constructs

the page tester so that it examines lines from tile bottom

upward.

A page tester routine is written by the use as a set

of macro-instructioys. The macro-instruction pa kage pro-

vides three types of statements:

1) The identifying s tatement

PGTEST 4J me

where

"Name" is any valid MAP symbol dith no mor than

five characters. .r - is the firstistatement

in a routine, and its function is to assign a

name to tile rqutine. The name is used in the

page maker calling sequence to iden zify the

particular page tester.

2) The terminating statements

NOPGE

ENDPGE

BEGPGE

These macro-instructions, which have no parameters,

are used to terminate the test routine. A routine

• -.__ . .. -1 __ __ __ _

may contain as many such statements as desired.

The EN1)PGE terminator indicates that the page ends

with the last line constructed. The BEGPGE terminator

indicates that a new page begins with the last line

tested by the routine (i.e., the first constructed

among those tested). The NOPGH terminator indicates

that a page has not yet been completed.

3) The test statement

TEST Spec, Alt

where

Spec Name of a specification table (Sec. A.4.)

describing a line. All names must be listed

in a MAP EXTERN statement when the routines

are assembled.

Alt = location of another TEST statement in the

sequence or one of the words "NOPGE,"

"ENDPGE," "BEGPGE."

The first test statement in a program applies.to the most

recently constructed line. The line is matched with the

description in the specification table. If it matches, the

next statement in the sequence is executed. If that is a

test statement, the previous line on the page is matched

with the indicated specification. Whenever a line fails

to match, and "Alt" is the location of another test statement,

___________ - .---- 1.~~~--* - --

-1 08 -

the same line is matched With the indicated specifica-

tion.

Using one of tle terminating words for "Alt" is equti-

valent to making "Alt" the location of a terminating state-

ment. That is, the statements:

TEST BLANKS, Al

Al BEGPGE

are equivalent to:

TEST BLANKS, BEGPGE

The line returned as a page beginning is always the

last line tested, regardless of the results of the test. In

the above example, a line that does not match the line

description in the table called BLANKS will be considered

the first line of a new page. In the example:

-..... ... TEST. .BLANKS, NOPGE

BEGPGE

a line that does match the line description is considered

the beginning of a new page. A line that does not

match causes the routine to return the indication that a

page is not complete.

The calling sequence for a page tester routine is:

CALL Test(Line, LnenoCols)

-109-

where

Test - name assigned to the routine by the PGTEST

statement.

Line = location of the line.

Lneno = location containing the line number of the

current linc (first, second, third, etc.).

Cols = location containing the length of a line.

The routine returns in the accumulator:

1) zero for no page.

2) minus one for end of page.

3) line number of first line for beginning of page.

A.7. THE PAGE MAKER

The calling sequence is:

CALL PGDFAK(Page,PgeparDepth,Width,Test,Ind)

where

Page = location of the page array of dimension

C(Depth) x C(idth).

Pgepar = location for page (boundary) parameters--a

four-word array.

Depth = location containing ,the maximum number of

lines on the page.

Width - location containing the maximum number of

character positions on a line.

-110-

Test - name of a page tester routine (Sec. A.6.).

Ind - location for return conditions.

The name of the page tester routine must be an external

symbol.

The page maker constructs a page by alternately calling

the line maker (Sec. A.3.) and the page tester (Sec. A.6.)

until one or more of the following conditions is met:

1) the page tester indicates that the page is complete.

2) the specified maximum number of lines has been

constructed, i.e., the page array is full.

3) the line maker indicates that the input is

exhausted.

The line maker stores characters directly into the page array.

Regardless of the return conditions, the routine stores the

page parameters as right-adjusted integers in the four-word

array.

The order of the boundary parameters is:

1) First character position across the page.

2) Last character position across the page.

3) Sequence number of first character within the

region bounded by 1) and 2).

4) Sequence number of last character within the

region bounded by 1) and 2).

-111- r

The first and third parameters of a page are always 1, and

the second parameter is the number of columns on the page.

The fourth parameter, number of columns times number of

rows, is computed by the routine.

. The page maker calls the line maker -(Sec. A.3.) with the

calling sequence:

CALL LIIMAK (Page+n*iWidthCols, Ind)

with n initially zero and incremented by one on each succes-

sive call. The page tester (Sec. A.6.) routine is called by:.

CALL Test (Page+n*1Vidth,n+lCols)

The three arguments of the calling sequence are the line

location, the line number (the first line of the page is

line ntimber 1, etc.) and the length of the current line on

the page.

The page maker calls on the page tester to tell it when

the end of a page or the beginning of a new page has been

encountered. When pages are being recognized by their

beginnings rather than their ends, one or more lines of the

next page will already have been set up in the page array

before the parameters of the current one can be constructed

and passed to the calling program. For this reason, it is

important that cells of the page array should not be

tampered with'between successive calls to the page maker even

if they lie beyond the end of the current page, and that

-112-

the number of characters on a line should not he varied

from one call to the next (see below: Return Condition

Bit 34).

The user can cause left-over lines to be ignored on

the next entry to the page maker with the calling sequence:

CALL CLRPGE

Any combination of the following bits in IND may be

set to 1 when a page is returned to the user's program:

Bit 35 - Input is exhausted, and the current page is

the last.

Bit 34 - Either a line has been encountered that

is longer than the specified maximum, or that

maximum has been changed since the last call.

Bit 33 - The end of the current page was not signalled

by the page tester either because it over-

flowed the page array or because the input

is exhausted.

A.8. THE FORMATTEIR

The formatter is initiated by the calling sequence:

CALL FORIAT (Page, Pgepar)

where

Page = location of page array.

Pgepar = location of page (boundary) parameters.

z7.

-113-

This entry to the routine spec fies a particular page as

current. The calling program an format any number of pages

in parallel with appropriate c lls of this'form to indicate

the current page. However, th s flexibility is of limited

use since the other routines do not allow for parallel input

from several devices.

Once a page is specified and FORMAT has been called,

a box on the page is subdivided with the calling sequence:

K CALL Sub (a,b,c, uti, Speci, ..,Cutn, Specn)

where

Sub = "ROIV" or "COL".

a = location of the input box parameters.

b = location for the first output box parameters,

t - location for the second output box parameters.

Cut i = "AFTER", "BEFORE" or "AT".

Speic. = location of a specification table (Sec. A.4.)

describing a row or columnfi, or a location con-

taining a row or column number.

"AFTER", "BEFORE" and "AT" are the names of entries in the

formatter and must be identified as external symbols by

the EXTERN pseudo-op in MAP or the EXTERNAL statement

in FORTRAN calling programs. Also, all specification

table names must be identified :as external symbols.

mo , a" l- I o 1 I. I

-114-

When "ROW" is used, the formatter divides the input

box horizontally. The upper box becomes the first output

box and the lower box the second. WV'hen "COL," is used, the

division is vertical, with the left box the first output

box and the right the second. The first time RO,' or COl,

is used for a page, the input box is of course the page

itself, and therefore "a" will be the "Pgepar" of the initiati

call. It is permissible for either output box parameter

location to be the input box parameter location, i.e., 1=a

or c-a. But "Pgepar" should never be used as an output

box parameter location.

All boxes produced by the formatter are rectangular,

and the routine assumes that all input boxes are also.

Any number of cut indicators may appear in a single

call. They are interpreted from left to right. Each is

applied to those rows or columns that satisfy the previous

indicators. A cut is completely defined when there is

only one division of the input box that will satisfy the

indicators. For example, the cut indicator "after row three"

following "before row four" completely defines a cut.

Whenever this point is reached by the formatter, the

routine ignores all further indicators and makes the

division.

On the other hand, if all the indicators are processed

and the cut is not completely defined, the division is made

after/before the last row/column specified. The AT indi-

cator defines a cut completely.

I

-l15-

The following conditions result in a return to the
calling program without a cut and with the first parameter

of both output boxes set to -I:

1) An input box with the first parameter equal to -1.
2) A specification for a row or column that does-

not exist, encountered by the formatter when the

cut is not yet completely defined.

Either or both output boxes may be empty. An empty
box is represented by the first box parameter set to zero.
If the formatter receives an empty input box, it produces

empty output boxes.

A.9. THE PARSER

The program using the parser calls it with the follow-

ing calling sequence:

CALL Name(Page,Pgepar,Boxpar, Flag)

where

------------- -Name _ name of the grammar-appearing--in a GRAM sta -

ment (see below).

Page - location of the page array.

Pgepar = location of the page parameters.

Boxpar location of the parameters of the box on the

page to be parsed.
Flag - location containing plus one if the box is to

be parsed forward; minus one if backward.

, ii i tt,,, tl II I I H I I III II IIII llllll lllli if IIIIIII llllllllii l I II

-116-

A box is parsed backward by examining the string of charac-

ters in it.in reverse order, i.e., starting with the last

character and ending with the first.

The parser returns an indication of whether or not the

rules of the grammar were successfully applied to thie box.

The accumulator contains the total number of phrases--

successfully applied T and . statements--which is zero when

the whole parsing fails.

The set of rules constituting a grammar are constructed

from the macro-instructions listed below. As many different

grammars as desired may be included in the same assembly

as long as all symbols are uniquely defined. Objects define

in one grammar may be referred to freely in others. Tn

particular, one grammar can completely contain another.

The following macro-instructions are used in building

parsers:

1) , RAI Grname,Poname

where

Grname = name of the grammar.

Poname = name of the primary object described by the

grammar.

There is one statement of this form in every grammar. "Grnam

is the name used by the program calling the parser to specif

the desired grammar. "Poname" appears in the variable

field of a DEFINE statement in the grammar. These names

may be any valid MAP symbols.

-117-

2) DEFINE Name

where

Name Z the name of the nonterminal object described by

the statements immediately following this one.

It may be any valid MAP symbol. Any number of

names may be associated with the same description

by listing them in the statement, separated by

commas and all enclosed in a pair of.parentheses.

3) N (Name,c,Loc)

where

Name = the name of a nonterminal appearing in a DEFINE

statement somewhere in the parser.

c = the number of characters in the string claimed

by this statement. If the parameter is null or

missing, it is interpreted as zero.

Loc = the location of an alternative statement to

this one. If there is no alternative in the

description, the parameter is omitted.

Both "Name" and "Loc" may be common to more than one grammar

provided they are assembled together.

4) T ((tl,...,tn),cLoc)Op

where

tl,...,t = terminal symbols defined by the TERM (orn

-TERMS) statement (see 7 below). W;hen n-l,

the inside set of parentheses may be omitted.

Op = "OR0' "NOT", "MULT", "ANYBEJT" or null

"c" and "Loc" have the same meanings as above.

Any number (except zero) of terminal ynbols may be listed

'in this stateaent. The statement describes one or more

characters, depending on the operator 01), as follows:

OP Description

"OR" A single character that is any one
of those listed.

"NOT" A single character that is not any
one of those listed.

"MULT" Any number (greater than zero) of
characters, each of which is any on,
of those listed.

"ANYBUT" An number (greater than zero) of
haracters, each of which is not in
the set listed.

Null All of the characters listed in the
listed order.

When the operators MULT and ANYBUT are used, the number of

characters claimed, 'c', refers to each application of the

description to the string. Usually, then, c = 1 for these

operators. For all others, 'c' refers to the number of

characters claimed by the entire statement.

5) GOTO Loc

t - •

where

Loc = the location of a statement that is to be taken

next.

6) STOP

This statement, which contains no parameter list, logically

terminates an object description.

7) TERM (NameMaskChar)

TERMS ((Name,Mask,Char),...).

where

Name = A MAP symbol used to designate a terminal

symbol or class of symbols.

Mask = Up to eight octal digits specifying the bits

in the internal 24-bit code that are signifi-

cant for the identification of this symbol or

class of symbols.

Char = Up to eight octal digits giving the values

required of each of the bits specified in "Mask".

"Char" must have zero for all bits where

.. "Mask" is zero.

A TERMS statement is equivalent to a sequence of TERM

statements.

The following is an example of a grammar written in

this language:

-. -I...- I I I. -I.

TERMS. ((SP,77,00),(J-ET,200t 200))

TERMS (PRDP77P31)q(i1Yv77v
40)

CUAM CITGR,CIT

DEF INEL NAMEh

N (FNAME, 2)

T (SPt l)MUIT

11 N (MNAME 1, NM 2

T (sp,1)MULT

12 GOTO VM. 1

IiM2 N LNAME

STOP

DEFINE (FNAM 1:, MNAIME)

T (LET,1)

T(PRD f AM 1)

STOP

F Ml T -((LET ,I!Y),FAM2)MULT

FAM2 STOP

DEFINE LNAM-E

STOP

Theo grammar is named CITGR,, and the primary ob jectisCT
NAME is an clenent in the description of CIT. NAMI consists
of a fi rst name called FNAMJE, any number (including zero) of
mid-'le 'names called IMAM, and a last name called LNAM.

Each of these is separated by at least one terminal called

SP, a space. The first name and middle name have the same

description: a letter followed by a period or a string

of letters and hyphens. The last name is a string of letters

and hyphens.

The terminals are based on an input device description

in which the low-order two of the eight octal digits of

the intermediate representation identify the character. The

remaining positions are flags, with the 17th bit position

from the left as a letter flag.

The first statement in the description of NAME claims

two characters, one for the first name and one for the last.

Both of these descriptions can be satisfied by one

character; additional characters, if any, are claimed within

the subordinate descriptions. Since middle names are optional,

no characters are claimed for them in the first statement.

Since there must be at least one space, between the first

and last name, a third character could have been claimed

in the first statement. But then, to avoid claiming that

space a second time, the second statement would have to

be replaced by:

T SP

T (SP, i1 N 1I)MULT

A.1O. THE SELECTOR

Once a box on a page has been parsed, the user obtains

the results of the parsing with repeated calls to the selec-

." | ! II u u u u u ! ! I ! !

-": -122-

tor routines. Since the parser has only one storage area

fcor its 'esults, the user must select all those desired bcforc

p rsir-. rother box. Before returning to the main program,

the parser activates the sclect - by giving it i'he para-

. .. -- meters of the parsd box and-tWf parsih dlirection, forward

or backward (via ana entry called PICK). The location of

the current page and its parameters are not required by

.. the-selector. .

The user selects a node with one of the calling se-

quences:

CALL FIRST(Name, i)

CALL LAST(Name, i)

where

Name - a location containing the BCD name of the node

to be selected. The aracters are stored left-

adjusted in the word; ijnused positions are

filled with blanks.

i = a location containing a pointer (index) to a

node that is an ancestor of the one to be

selccted.

The routines return, in the accumulator, the pointer (index)

to the selected node.

The pointer to the origin is always one, and initially

this is the only pointer the user knows. Therefore the

first time a node is selected after a box has been parsed,

the ancestor referred te will he the primary object.

Thereafter it may be any previously selected node.

The routine "FIRST" selects, from the parser's results,

a node called NAME that has not been previously selected

and that is the first such descendant of the node indicated

by i. The routine "LAST" selects the last such descendant..

If nr! such descendant exists, the routines return a pointer

of zero. By testing this pointer the user determines whether

he has selected all the descendants of a particular node.

The terms "first" and "last" are relative to the direction

of parsing. If the box was parsed in a forward direction,

first means left-most and last means right-most. If the box

was parsed in a backward direction, the meanings are

reversed.

Once a node has been selected, its parameters can be

obtained with the calling sequence:

CALL PACK(Par,i)

where

Par - the location of the four-word array in which

the new box parameters are to be stored.

i = location containing the pointer to the desired

node.

-l2L-

If the vaiue of i is zero, the rnutine will indicate an

empty bex (first parameter set to zero). If the desired

node represents a character string of zero length, the

routine will also indicate an empty box., This arises from

an object descrip tion in the grammar that is satisfied

by the null string of characters.

Once all desired nodes have been selccted and packed,

the user can reduce the initial box to exclude the portion

that was parsed by:

CALL REDUCE

This.routine calculates the parameters of the portion

of the box not parsed and stores them as the parameters

of the original box. If the entire box was parsed, the new

parameters will indicate an empty box.

Below is a segment of a FORTRAN program tusing the

selection routines. It is based on the grammar example

given in the last section.

IND=CITGR(PAGE, PGEPAR, BOXPAR,1)

IF (IN)) 90,2000,90

90 CIT=I

NMIE=ATiIRUZ (NAME, 41INAMIL)

100 NAME=FIRST(NAE,CIT)

/

IF {:,Art1) Il0,IflflP,llO

11(CALL ATiiRU- (FA1,IISFXAI)

FNAM L =r I RST (FXAN,1I L ,A" 11.)

CALL PACK (F'PARFNMEi)

200 (:ALL ATIHRIJZ (M1NAME SIMNAME)

MN, AME = F I R STI (M,1AM~ E, NAE

IF (MNAME) 210,300,210

21() CALL PACK (MNPARMNAI'rE)

GOTO 200

300 LNAME=FIRST(SIILNA\1F ,NAMII")

CALL PACK (1, NPAR , LNAME)

GTO 100

The first statement shown calls the parser. The next

determines whether the box was successfully parsed. A block of

statements to deal with a parsing failure begins with

the statement numbered 2000. When control reaches state-

ment 1000, all of the names have been selected from the

parser's results,

A.11. RECODING RULES

The six macro-instructions used to write recoding

rules are as follows:

-126-

1) RECODE Xane,Space,Filler

where

"Name" A A MAP symbol to be used in referring to

the set of recoding instructions of which

this is the first. It will bccome an external

symbol and must therefore be chosen so as not

to conflict with other external symbols.

"Space" - A MAP symbol defined in a TERM or TERIS

macro-instruction, giving the properties

by which the internal code for a space can

be recognized.

"Filler" = An octal number.of one or two digits to

be used as the filler character when the

last output word is partially filled.

2) CODE (TypeName,n,Output,s, Locl) (Loc2,Loc3)

where

.. "Type" -. "FROM" or "TO" or is omitted .. Theeffect

of this parameter is described fully in

Sec. 7 of the text and is summarized below.

"Name" - A MAP symbol defined in a TERM or TLRMIS

macro-instruction, giving the properties

(bits) required of -an int.;rmediate code to

satisfy this instruction. This parameter

must be present.

-127-

'In" The nunber of six-bit bytes to be output

when this instruction is satisfied. This may

be omitted if "Output" is omitted.

"Ou put" An octal number of 12 digits or less giving

the outlut to be produced when the instruc-

tion is satisfied. If less than 2n digits

are-given, the code will be right-adjusted

in the field. If more than 2n digits are

given, the 2n least significant digits are

used. This parameter may be omitted if "n"

is omitted.

Its" '"S" if present and specifies that, if the

instruction is satisfied, the following

instruction will be applied to the same inter-

mediate code. If this parameter is omitted,

the next instruction will apply to the'

following code.

"Locl" - A MAP symbol (other than "S") naming the

location from which the next instruction is

to be taken after this one is satisfied. It

may be oitted, in which case the instruction

immediately following this one will be used.

"Loc2 and
LoC3" Locations from which the next instruction

will be taken if this one is not satisfied.

, -128-

' the instruction fails and "Loc2" and "L.oc3" are

both missing, then the whole recoding process or the current

subrout ine fails, and an error condition is signalled in the

main program. (See Sec, A.12.) If only one location is

given and no comma, .the instruction at taiat location is

used in all cases of failure. --If a single location is -...........

given together with a comma to show whether it is intended

to fill the position of "Loc2" or "Loc3", then the whole

recoding process fails in cases where the missing location

would normal.ly be used.

If "Type" is omitted, "Loc2" is used if the signifi-

cant part of the intermediate code found is algebraically

less than the one sought; if it is greater, "Loc3" is used.

If "Type" n "TO", "Loc2" is used if the current code does

not have the specified properties;."Loc3" is used if both

the current code and the previous non-blank one have the

•specified properties. If -"Type" = 'FROV', ",Loc2" is used

if the previous non-blank code does not have the properties

specified in the instruction; "Loc3" is used if both the

previous non-blank and the current code have the specified

properties.

3) DO Locl

DO (LoclLoc2) (Loc3)

where

"Loci", ".'Loc2", and "Loc3" MAP symbols

~-129-

The symbol "Locl" must be defined in a "DEFINE" macro-

instruction as the name of a suhroutine. The subroutine

.. iscalled by this instruction-, and if all its instructions

are satisfied, the program takes its next instruction

from "Loc2". If "Loc2" is omitted, the next following

. location is used. The symbhcl "Loc3" is used if the last

instruction to be execuated in the subroutine was not satis-

fied, and no alternative location was provided. There is

no provision for recursive subroutines.

4) STOP

This macro-instruction,.which has no parameters, marks

the successful conclulion of a subroutine.

5) DEFINE Name

where

- A MAP symbol namin¢ a subroutine, i.e., a

self-contained package of recoding instruc-

tions called by DO instructions elsewhere in

the program and cnding in a STOP instruction.

The first instruction of a subroutine must

immediately follow the DEFINE.

6) TERM (Name,Mlask,Char)

TERMS((Name,Mask,Char)......)

where

"Name".- A MAP symbol used t designate a class of
Ong

-130-

"Mask" - Up to twelve octal digits specifying the

bits that are significant for the recogni-

tion of this class of codes.

"Char" = Up to twelve octal digits giving the values

required of each of the bits specified in

"M'-fask".

A.12. THE RECODER

The calling sequence to the recoder is!

CALL RECODE(Output,Length,Table,PagePgepar,al,a2,....an

where

"Output" -= The location of an array where the recoder

output is to be stored.

"Length" = The number of words in the "output" array.

"Table" The name of the sequence of recoding instruc-

tions to be used. This must appear in a RECODE

instruction in the recoding rules (Sec. A.11.).

1"Page" The location of the page array.

"Pgepar" = The location of the page parameters.

"al an" = Location of box parameters or constant arrays.

RECODE is used as a function in FORTRAN and must he declared

to be of type INTEGER. A constant array is distinguished

by the fact that it contains a negative number in its first

cell. An array headed by the number -n contains n intermediate

-131-

character codes in the immediately following cells and there-

fore consists of n+l cells altogether.

The following return codes are transmitted through

the accumulator:

-1 An ill-formed set of box parameters was offered

for recoding (first word = octal 777777777777).

-2 = Failure to recode--an intermediate code was en-

countered for which no equivalent was provided.

The last instruction applied thereforc failed,

but pointed to no alternative location.

-3 = The output array overflowed.

n = The input was successfully recoded, and n output

words were produced.

A.13. FETCH

The FETCII routine is used internally by the system to

extract individual intermediate codes from the page array,

and it can be called by the user who does not wish to

include a recoding step. There are two calling sequences,

one to provide parameters to the routine and one to obtain

the codes. These are:

1) CALL PREFET(Page,PgeparBoxparFlagError)

where

"Page" - The location of the page array.

"Pgepar" - Location of the page parameters.

W ,W.............................

-132-

"Boxpar" - Location of the parameters of the box from

which codes are to be fetched.

"Flag" = 1 if the character codes in the. box are

/ to be considered numbered from top left

to hottom-right and -1 if they are to he

numbered from bottom right to top left.

"Error" = A location to which return should be made

from "CALL FETC1i" if the serial number

of the character called for is such as to

place it outside the specified box.

On return the accumulator contains the number of characters

in the box (zero for an empty box) or octal 777777777777 if

.the first box parameter is that.

2) CALL FETCH

.The ith intermediate code in the box, where i is given

in index register 1, is returned in the accumulator. The

sign bit is positive unless the code is the first in the

box on a line, i.e., unless it begins a new line in the

-box in which case both sign and p-bit are set to one.,

If the number in index 1 is greater than the number of

characters in the box, the return is to the error location.

This routine may not be used between a call to the

parser and the last corresponding call to the selector. Also,

FETCH cannot be called from a FORTRAN program.

UMENT CONTROL DATA
'GINATING ACTIVITY 2o REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
THE RAND CORPORATION 2b. GROUP

EPORT TITLE

COMPUTER ROUTINES TO READ NATURAL TEXT WITH COMPLEX FORMATS

,UTHOR(S) (Lost name, first name,,intiol)

Graves, Patricia A, David G. Hays, Martin Kay and Theodore W. Ziehe

EPORr DAT August19 6o TOTAL Ot. +F PAGES 6b'N-° OF REFS.

ONTRACT OR GRANT No. S. ORIGINATOR'S REPORT No.

.AF49(638)-1700 RM-4920-PR

%VAILABILITY/ LIMITATION NOTICES 9b. SPONSORING AGENCY
United States Air Force

DDC 1 Project RAND

ABSTRACT I. KEY WORDS

A description of a system of IBM 7040/ Algorithms
* subroutines that will accept natural- Bibliography
.nguage input with complex formats--e.g., Catalogs

'om books, Journals, questionnaires, Data processing

ippings, library catalog cards, etc.-- Dictionaries
epared by any typesetting device or Documents
her machine (typewriter, keypunch, etc.). FORTRAN
puts are transcribed by the computer Grammar
to a standard code for machine proce3s- Indexes
g and can be rearranged into any desired Information storage and
,rmat for storage or output. Different retrieval
nds of information are recognized by Language
:plicit markers, position on the line or Linguistics
ge, or syntactic clues given by other Library science
ems. The subroutines can be used sinply Computer languages
-together; they may be called from Computer programs
ther FORTRAN or MAP programs. A detailed IBM 7040/7044
ogrammers' guide is included. MAP language

