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ABSTRACT

Further analytical investigations are made into
the damping capability and determination of natural
frequencies of laminated beams, consisting of elastic-
viscoelastic-elastic layers, as a means for reducing
the vibratory energy transmitted through machine founda-
tion supports in naval vessels.

An exact analytical solution is obtained for de-
termining the natural frequencies of simply-supported
sandwich beams having no rivets at the ends. Three
possible modes of vibration are shown to exist. The
case of the simply-supported sandwich beam having rivets
at each end is considered and the equations reduced to
the solution of 12 x 12 determinant for calculation on
a digital computer.

An approximate method is suggested for determining
the natural frequencies of sandwich beams having any
end conditions. The procedure is simple to use and is
exact for simply-supported beams.

A simple but approximate expression is also de-
veloped for determining the composite loss factors of
sandwich beams. The procedure yields good engineering
results.
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1 Nomenclature.

=1 mid-plane extension

R = R1(l+i)

= material loss factor

Gb

b = width of beam

G = Gl(l+ia) - complex shear modulus

G = real part of complex modulus

2Hl = thickness of elastic layer

2H 2 = thickness of viscoelastic layer

K = EA

E elastic modulus

A cross-sectional area

H1 + H3 + 2H2 =HI + H 3

p = mass per unit length

B = El

I = s b(2Hl) 3

K+
S = K1 "

22w W, (l+in)

l= natural circular frequency

, = mass density of elastic material
° 2. 2  2hi = 481-E H l

n = composite loss factor

L = length of beam

iv
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Natural Frequencies and Damping Capability of Laminated Beams

I. Synopsis

100 Introduction

1.1 Overall Program; As part of the overall Navy Program to
reduce noise emanating from vessels, a 'Structural Damping
Program" is in progress at tie U, S. Navy MEL. The aim
of this program is to investigate methods for attenuating
vibratory energy in the structure between the machines and
the hull.

1.2 Specific Prog-am The UoSoNoMoEoLo has taken an approach
to accomplish the above goal through the use of laminated
material as structural members, This material is made of
steel and viscoelastic layers, so that structural rigidity
is maintained concurrent with damping (or dissipation of
vibratory energy).

1.3 Previous Results. Tests have shown that reasonable amounts
of damping are possible by using laminated material, in
order to better understand, use and design with the material
analytical investigations have been in progress. The re-
sults of References 1,2,3 and 4 indicate that mathematical
expressions are available for determining the composite
loss-factor of a laminated beam as a function of the natural
frequency. These results also show that the composite loss-
factor versus frequency curve is independent of the boundary
conditions and solely dependent upon the physical and geo-
metric properties of the cross-section of the beam. The
natural frequencies themselves are dependent upon the boun-
dary conditions. In reference 5 the free and forced vibra-
tions of sandwich beams were investigated. The eigenvalues
no s-0 s2 , t-. and t, were obtained as a function of h;. and
plotted. The mathematical expression for , y, 4, M and
V were explicitely written in terms of the eigenvalueso A
generalized plot is given of the composite loss factor versus
h, and z from which the composite loss-factor n can be
readily found. Reference 6 is a short survey of the theory
of viscoelasticity especially as it pertains to this pro-
gram.,

2 o Scope of this Study Details of the free vibrations of
sandwich beams have been investigated. The 'exact' natural
frequencies have been obtained for a simply-supported sand-
wich beam. In view of the complexity of the 'exact' solution,



approximate solutions have been evolved which can be used
to calculate the natural frequencies of sandwhich beams
having any end conditions. These approximate procedures
allow one to design beams for optimum damping and/or
measure the properties of the viscoelastic material.

3.0 Results

3ol Natural Frequencies - Exact: The two cases considered
are the simply-supported sandwich beam with and without
rivets at each end. The unriveted case yielded the analy-
tical result that a natural frequency exists when

sin nol RIk L = 0

or

no R2 L = nn

This result is to be expected and ij the result for a
sinusoidal deflection y = yo sin n,_ An unexpected re-
sult is that natural frequencies exist when

2th R L = n7i

and

2t' R' L = mT

This result appears to be new and indicatesthat natural
frequencies can occur in simply-supported sandwich beams
for other than sinusoidal mode shapes. The tj vs h, curves
show that only the lower values of n yield natural fre-
quencies and a cut-off value of n exists above which none
of this type of mode of vibration occurs. The t2 vs h,
curve displays a similar characteristic; ioe0 only the
first few values of n yield natural frequencies and a cut-
off value of n exists above which no natural frequencies
exist.

The case having riveted ends did not yield to a closed-
form solution and required the calculation of a 12 by 12
determinant, The necessary elements of the determinant
are presented in a form ready for use in a digital com-
puter.

- a-
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3°2 Approximate Relations for detefmining the Natural Frequencies

of Sandwich Beams.

(a) The natural frequency is written in the form

an
:an- [B + B2 + Ki 62 a]

- pL 2

in which

an is a constant dependent upon end-conditions
(see page 35).

p is the mass/unit length

Bi is the stiffness of the i th elastic layer.

K, = EA,

A, is the cross-sectional area of the elastic layer.

6 is the distance between the neutral axes of
layer 1 and 3.

is shear parameter given by equation Z 4-0!

For the case in which a <<I, it is found that

21112H2E -I
= [an (--) - + 2]n 12

and
4EH, 3a 2

2 . . [1+ 6a].
3(4ylH 1+2y2H2)L

4

3.3 A simplified method for determining the shear moduli and loss-
factor of a viscoelastic for o,<<l is proposed in section III
in which the composite loss factor n and natural frequency w,
are measured and G, and s calculated. This procedure may be
used as a procurement test-method for the viscoelastic material.

3°4 Optimum damping for a sandwich beam0

(a) Design Given E, [12; Y, w, and the end conditions, one

-3-
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can determine the optimum length of the beam and
elastic layer thickness to yield maximum damping
for a given viscoelastic material.

(b) Design of the shear properties of the viscoelastic
may be performed so that optimum damping may be G,
obtained over a wide frequency range. By letting T
be constant for the maximum value of n. maximum
damping is attainable over the frequency range.
Thus, if the real part of the shear modulus is speci-
fically designed into a material to increase wl, then
an optimum material can be obtained. In all cases the
tangent loss factor, a, should be as large as possible.

305 An approximate equation has been found for the composite
loss factor of a sandwich beam, which is within 10% of
the correct value. The relation is

h 8

.66s2
((2+ 475 ho'6) 2+2) ]

3.6 It is further shown in section III, that the natural fre-
quency of a sandwich beam increases with damping. This is
in agreement with a result derived in reference 3.

4.0 Continued Investigations

It is recommended that the following be considered for
further investigations of sandwich beams0

4.1 Computer solutions be performed to find the natural fre=
quencies for the following end-condition

a0  Simply-supported riveted ends
b. Free-free
c. Cantilever
d. Fixed-fixed
e. Fixed-pinned

Correlation with the approximate methods should be investigated0

4.2 Consider the mode shapes and meaning of the natural frequencies

associated with

t;L = n and t2L = mvo

Consider correlation with tests if necessary

-4-



Iio Determination of the natural frequencies of sandwich beams - exact
solution.

1.0 As discussed in reference 5. the determination of the natural
frequencies of three layer laminated beams may be found by
satisfying six boundary conditions, ioe., the usual four of
deflection, and/or slope, and/or moment and/or shear; plus
an extensional effect at each end, iLeo zero stress, and/or
zero deflection and/or zero shear.

The equations for extensional effect

=0

¢ :0

0

and for 'lateral effects

y :0

I€ =0

M 0

V =0

are given in reference 5, as equations IIlC9 II2. II3,
11-5, 1-7, 11-8. and II-l0., Equations for M and V are re-
written in the appendix as errata to 11-8 and 1I10. The
genera) case of different elastic layers can be solved on
the basis of individual cases, In general, the solution
requires the evaluation of a 12 by 12 determinant and the
results cannot be eas*ly generalized. The special but im-
portant results of the sandwich beam can be generalized and
this case has been solved herein for the simply-.supported
beam with and without rivets at each end, The simply.supported-
no-rivets case requires that

M yT ; 0.,

since the moment deflection and axia! stress is zero at each
end. These six boundary conditions yield 12 linear homogeneous
equations. By selecting, the coordinate system at one end, the
twelve equations become two sets of six equations each having

-5-
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its own set of six undetermined coefficients, Since one set
is independent of the length of the beam (the only remaining
variable in the determinant of coefficients) then this set
can only be satisfied, in general, if the six undetermined
coefficients in that determinantal set are all zero. The
determinant of coefficients of the second set of six equations
can be made equal to zero for three cases

sin a1L 0

sin 2tiL 0

and

sin 2t2L 0

The first case s the qxpected one in which the mode shape is
sinusoidal (y = yosin UL) and the natural frequencies are
obtained when L

n T
a1

or

where n is an integer 1, 2, 3, etc. For a given L. R1 and n
the value of no may be computed0 With this value of no

and a value of a, one may find hi from the curve on page 11-34
of reference 5. These natural frequencies correspond to the
usual relation

w2 n22 El

The second and third cases were unexpected results0 These
imply that natural frequencies also occur for a simply-supported
no-rivets case at other frequencies and mode-shapes than sinu-
soidal. The mode shapes were not investigated but the frequencies
were, For a natural frequency to exist

2t1L nn

or

2t 2L mi

-6-



where m and n are integers. A given value of n or mand
L yields a value for t1 and t2 which can be used in curves
11-37 and 11-38 of reference 5o Recalling that

t= Rlto

and

t 2  R Vt

the values of t' and t' may be calculated and used in the
curves to obtain hl from which wl may be obtained0

It is seen that the tj type of vibration could yield an hl
for a given L and n = 1 and for n = 2 it is possible for
lower value of hl to be obtained. At some value of n and 0
the curves indicate a cut-off of any of these type of vibra-
tions0 Thus the lower mode is associated with a high natural
frequency of vibration in this kind of vibration0 This is
contrary to the usual vibration phenomenon and merits further
academic investigation0 The t' type of vibration can yield
a value of hi for m = 1 and a given L. For higher values of
m, larger values of hl may be found until a cut-off frequency
is reached. This too merits further academic study0  The simply-
supported beam with riveted ends requires that

M = 0

y=0

and

co =0

at each end0

Since each equation is complex, the six boundary conditions
yield twelve linear homogeneous algebraic equations0 Unlike
the unriveted case, the resulting 12 x 12 determinant does
not simplify by factoring0  In this case, the origin of the
coordinate system was placed at the center of the beam and
the equations written accordingly. In order to retain some
generalization to the results,, a factor of R, was eliminated
from each of the equations by using

-7-



aI  no2 R t I : t' R1

0 t2 tR 1

s2  2 1 R

-
and using F = R2L as a parameter. The specific equations and the
144 elements of the resulting determinant have been written and are
to be used to find the natural frequencies of this type of beam,
Computations are in progress on the IBM 360 computer for finding
the first five natural frequencies. Using the results of reference 5
for no, si, sj, tj and t' and values of i1l equal to 6, 209 509 1509
500, 2000 and 5000 for a equal to ol and 1, values of F will be found
which satisfy the 12 x 12 determinant. These results will be reported
in the future as a plot F vs hi for the first five modes of vibration.

-8-



2.0 Simply-supported - 3 layer beam .. ends unconstrained

The boundary conditions involve the Moment, the deflection y and the
axial strain.

Now
M = S j + (B, + B) ' -1

and

so that

M [Kl6 + (B+al) ]B .(3) ,

also

i' 0 @x= 0 & x =L

and in addition

y" f x R6 4

In view of the fact that 4' must be zero at each end, then this

term in M and y may be dropped so that for these boundary conditions,

there remains

@ x = 0
f;dx = 0 and

x
' =0

In order to evaluate the above expressions the. values of the coefficients

Rij, Sij, Tij, U andfR dx are evaluated at x=,O. They are:

-9-



R 31 R32 =0

R41 =0 R42 :0

R 51= 1 R52 0

R 61 = 0 R62 :0

S31 =0 S51 0

S32 =0 S52 : 0

S41 : s S = s2

S42 = 1 S62 = 2

T = 2 2 T 2_T31 : S2t 51 :(s22t2

T32 = 2s1tT = 2s2t2

41 =0 T61 5

142 =0 T62 =0

U31 =0 U 1  0

U32 =0 U52 =0

U41= Sll2_ 3tl2  U61 = s 2 [s 2
2 -3t 2

2 ]

u D 2_ t 2 32_2.t2U42 = t1[3sl t ] U62 = t23s2[  t2

fR31dx = 0 fR51dx = 0

fR32dx = 0 fR52dx = 0

fR41dx 2 fR61dx = "
Sl2 + t s2 + t2

tI t2

SR42
dx = 2 22 fRB2dX 2 "

- 10-



(] at x = 0

=0

so that

(1-1) E21a1 + E41s I - E42t1 + E61s 2 - E62t2 = 0

and

(1-2) E22a1 + E41t1 + E42s1 + E61t2 + E6 2 s 2 = 0

atx 0

4 ' oi 0

so that

(2-1) -E21a13 + E41s1(s 2-3t, 2 ) - E42t1(3s12-t12 ) + Esls 2 23t22]

- E62tZ'(3s22-t22 ) = 0

and

(2-2) -E2a 3 + E E l2(2+2_3t, 2) + E6 ,2 23t2

+ E61t2 (3s2
2-t22) = 0

(I] atx=0

f4dx = 0

so that

(3-1) -E21 1T E S 1t1

s 1 + -t1 -

+ E62 ,, = 0s 22 + t2 2



1 tl lt
(3-2) E22 a1 - E41  1S + E 1 7 - E+

+ E62 2 + T = 0

These six equations are all independent of the length L, indicating

that the only non.trivial solution is for:

E 21 =0

E 22= 0

E41 = 0

E42 = 0

E 61= 0

E62 = 0

@x= L

R = cos tiL cosh siL S31 = siR41 - tiR 42

R32= sin tIL sinh s1L S32 = sIR 42 + tiR41

R41 =sinh s1L cos tiL SR41 =  1R31 - t1R32

R42= sin tIL cosh sIL $42 = s1R32 + tlR3 1

R51 = cos t2L cosh s2L S51 s2R61 - t2R62

R52 =sin t2L sinh s2L S52 = s2R62 + t2R61

R61= sinh s2L cos t2L S61 = s2R51 - t 2 R5 2

R62= sin t2L cosh s2L $62 = s2R52 + t2R51

- 12-



s 2  3t2  R t 3s12  _ t12jR 2

u U31 = 1L[S1 1 41 -,R42

32 sl1sI  3tI
2] R42 + tl 3s, t R41

U41 = S1ls12 - 3tl2 R31 - t1 13Sl1 - t12]R32

42 Sl[Sl2 - 3t 1 R32 + tI  3s1 1 - R31

U51 = s21s22_ 3t22] R61 - t2 [3s 22 _ t22 ]R62

U52  s2 s22 _ 3t22] R62 t2 (3s22 t22 R 61

U6 1  s2[s22_ 3t22] R51 - t2 [3s 22 - t22]R52

U62 =s 2[s2 - 3t2  R52 + t2 3t - t22]R51

Letting
Pij= fRij dx

We have
,. Si 1, t1  s2  t 2

P31 2 + l2-- ' R42 ; P52 = 2 2 R62  2 s22+t22 R61
S1 Ii +tl s2 t 2 2

P32 ='- I 2 R42
S12+t S12+t12 R41; P61  2 2 R51 +-2 2+2 2 R52

R 1 1 s 2t 2 2

P41  1 2+t P62  2+t2 R52  s+t2 R51

ps I  R tlI

s2  t2

S 1+t2

- 13 -
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Considering the boundary conditions at the other end.

jatx=L

4'= 0

(4-1) -E11 a1 sin alL + E3 1S3 1 -E32 S32 + E51 Ss .E52S52 = 0

and

(4-2) -E12 a1 sin alL + E31S32 + E32S3 1 + E51S52 + E52S51 = 0

CO atx=L

oil 0

so that

(5-1) E11 a13 sin a1L + E31U31 -E32U32 + Es5 U51 -E5 2U52 = 0

and

(5-2) E12 a13 sin aIL + E31U32 + E32U31 + E5 1U52 + E52 = 0

atx=L

f ; dx = 0

so that

si .n aIL sI
(6-1) E11  I a , + E31 s 2 + tl2  R41  + s 2 + tl2 R42 1

E32[12 1 2 R42 2--2 2 R 41] + [ s  2 + 'l+tI1 s I  + t I  s s2 + t22 61 s22 + t2 2 ]

s2  t 2

-E 52 R62 ---2 . R6 1 ]= 0
5 2 + t22 s 2  + t 2

and

- 14 -



(6-2) sin alL S, t 1

( 12(  a-) 31[S + + tl[-- R 42  s + R411

sI tl
.E32[S2 2 R4 1 + 2 1 '2 R42]

[E51 s2 262-s2t 2.. .. R 61 ]
s2 + t 2 s2 + t2

2 t2~

-E52[ 2 2 2 R61 + 2 2 R62 3 = 0
s2 + t 2  s2 + t 2

It is seen that when the six above equations are written in matrixform

(6-3) laij IlEiki = 0

that the first two columnsare made up of a the common factor sin alL, so

that the matrix equation may be written as

(6-4) sin 2aL ibijilEiki = 0

The matrix Ibijl is the same as Jaijj except for the first two columns
in which

(6-5) ail = bil sin a1L

and

(6-6) ai2 = bi2 sin alL.

Equation ( ) shows that a solution is obtained when

(6-7) sin a1L = 0

or

(6-8) alL = ni

or
n-r

(6-9) a, n '

- 15-
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The bi, determinant has the following elements

b11 =-a b = 0

b = 0 b22= -aI

b13 = IR 41-tIR42 b23 = IR42+tlR41

b = -s1R42-tIR 41  b24 = 1lR41-tIR42

5= s2R61-t2R62  b25 = s2R62+t2R61

b16 = -s2R62-t2R6 1  b26 = 2R61-t2R62

b3 1 = 1 b41 0

b32= 0 b a42 1
3

b33 = C1R41-C2R42  b43 = ClR42+C2R41

b34 = -C1R42-C2R41  b44 I R41-C2R42

35= C3R61-C4R62 4 = C3R61-C4R62

= -C3R62+C4R6 1  46= C3R62+C4R61

whr 2 
weeC l1 = Sl(Sl2-3tl2) and C2 = t1(3Sl2t 2

C3  s2 (s22-3t22 ) and C4 = t2(3s22-t22)

1
b51 = l b61 = 0

b =0 b 1
52 b62  a 1

b 53= d1R4 1+d2R42  b63 = 1lR42-d2R41 s2

b54 :-d1R42+d2R41  b64 = -d1R41-d2R42  3  s 2 +t2

i55 = d3R61+d4R62  b65 = "d3R62+d4R61  and

b 56 = -d3R62+d4R61  b = -d3R61-d4R62

where d l tand d =, ,
I 12 l 2+t12 S2 +t2

- 16 -
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Equation- (6-4) may be written as the sum of two matrices or

b!.E +bW E 0
ij kj 0ij

-a1  0 Sl R41  -S1 R42  s2R6 1  -s2R62  E 1

0 -a1  tl R41  -t1 R42  t2R61  -t2R62  E12

a13 0 CIR 41  -C1R42  C3R61 -C3R62  E13

0 a13  C2R41  -CR C3R61  CR E

0 0 diR41 -dlR 42  d3R61 -d3R62  E15

0 0 -d2R41  -d2R42  d4R61 -d4R62  E16

0 0 -t1R42  -t1R41  -t2R62  -t 2 R6 1  El1

0 0 si1R42 s1R41  s2R62  -s2R61  E12

+ 0 0 -C2R42 -C2R41 -C4R62  C4R6 1  E13  =0 (6-10)
0 0 C1R42  CiR41 -C4R62  C4R61  El4

1 0 d2R dR d4R d4R61  E I

a, 42 41 d3R62  d3R6 1  16

- 17-



It is seen that the above equation may be written in the form

R4 1R4 2R6 1 R6 2  Cij Ekj + R4 2R4 1R62R6 1 Dij E = 0 (6-11)

Now iciji 0
and IijI k 0

therefore

R4 1R42 R61R62  0 (6-12)

This becomes

sinh s1L cos t L sin tIL cosh sIL sinh s2L cos t2L sin t2L cosh s2L 0

or

( sin 2t 1L)( sin 2t 2L)( sinh 2s1L)( sinh s2L) = 0 (6-13)

therefore

2t 1L = n, (6-14)

and

2t 2 L = mro (5-15)

Using the relation developed in ref ( 5 ) we have

tj Rf L t (6-16)

t R 2 = t2  (6-17)

so that a natural frequency exists when

2t'R L = 2tiF = ni (6-18)

and

2t2R1L = 2t F = mtr (6-19)

This may be written as

nir (6-20)

and

, mi (6-21)
t2  2-1

18-



This may be interpreted in the fQllowing manner. Given a beam in which R and L

are known then assume n = ;a value for tj is calculated. (recall R l = 1

This value of ti is used to find h, for a given a using the chart on pg II - 37

ref ( 5). Knowing hl, the corresponding composite loss-factor n may be found

from pg II - 33 of the same reference and the natural frequency Wl may be cal-

culated using
hI  48Gl H22 Wl2

Integer values of n (2, 3, 4 etc) may be substituted to obtain larger values

of t and Fi use of.the charts obtain the corresponding natural frequency

and composite loss-factor. For a given a the ti vs h1 curves indicate lower

natural frequencies for increasing n with a cut-off frequency for which no

natural frequencies occur above a given value of n.

A. similar procedure may be followed to obtain the natural frequencies and

associated-composite loss-factor for t using the curves of t' vs hI on pg !I -

38. In this case the natural frequencies increase with m and reach a cut-off

frequency.for a given value of a.

- 19 -



3.0 Simply-supported-3 layer beam-ends constrained (riveted)

The boundary conditions at both ends are

N 0
y= 0

and 4' = 0, (ends riveted).

The moment and deflection equations do not simplify as for the
previous case with no rivets. The moment equation of reference
is corrected and shown as errata at the end of this report.
For ease of writing)the three equations are written as

N = PjiXi + iajixi] = 0

y = [djix i + igjixi ] = U

and
Is = M[ujixi + iljix j] = 0

The origin of the coordinate system is selected at the middle
of the beam, so that the above three relations hold at x equal
to plus and minus L/2. For a solution to exist the resulting
12 x 12 determinant of coefficients must be zero. All elements
of the determinant are written in terms of R .. The R terms
are trigonometric or hyperbolic functions of1  13

R L 1, L k- L 1-2 L , 1- L
no - -- , s1 Ri 12* 2 R, t1 R, Iand/or t; RI 2-o

The factor R L is made a parameter F and for a given geometric
cross section and physical properties of the elastic and visco-
elastic layers a variation of F with hI can be obtained by solving
the 12 x 12 determinant on a digital computer. This will be done
in the near future.
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M' M BI+B 3=m 2R1 =
2 2 1 +02

Moment

Real part of M = Pjii

pll = [-mlno mn 03/2 )sin a1X = qlIsin aIX

P12 = [m2no3/2 ]sin aIX = q12sin aX

P13= [AIal+]2no3/2 ]cos aIX = q13cos a1X

P14 = [-m2 no3/2 ]cos a1X = ql4cos a1X

Pl msj-m2(s,,3-3s't 2 )+m20(3si2 tl-t 3 )]R4

P151 1m I)iR 41

+ [-mltt+m(3s 2tti 3 )+fl (sl3.3s N 2 )]R 42

= q15R41+r15R42

4Pl6 2 [mtm23lti'ti3 'SBsi 3_3s it 2 )]R 41

[.m sv+mo(s9 3-3s t1 2)m0(3sj 2t-tl3 )R4

= q 16 R41 +r16 R42

P17 = q15R31+r15R32

p18 = q16R31+r16R32

- 21 -
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(m33s ,2, + s2, 3 R[ig S2'-Y~S~ 2 t )+'32  t2-t~) R61

+ [-Mt~o~ (3s 2 33_ 3 2 22 JIR62

=ql9R 61 +rl9R62

p 1 M~s 3~ 3 3_3

IS2'+2'(s- 2 2 - ~ -i 6



Imag. part of M = jii

all =[2o 3/2 ] sin al X sin alX

= n, n -m'n 3/2+mon 3/2]sin alX  sin alX

"12  1 o 2 o 21Osa

13 = [2ono03/2 Icos a1X = a13
Cos a1X

a14 = Imnoe+m2(l'o2)n ]cos aIX = 014cos a1X

m2 (3S2t-t 3) (s 3-t3s 2 )]R40115 = mlti-" ' ' +~aii 4

lss-m2 (si -3siti )-m2  42

= 15 R41Y15 R42

a16 = q15R41+Y15R42

a717  R 31+Y15R32

,18 = q15 R31+Y1 5 R3 2

Os ' 2 3 qs3_ 3s N 2 )]R 61
C119 = Imlt2"-m2(322t2"-t2 )+m2R s32't(22]6

+ (m3 3_ 3s 2 )-.,(s'2 qq3)]
[mls-m 2 (s2' -3s2t 2 )-m2 (3s2t2-t)]R62

01 9 = O19R6 R

= q19R61+Y19R62

a,1 , 11  lR61ygR6
al ,ll o 19 R51+Y19 R52

al,12 = q19R51+Y19R52

- 23 -
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d.iXi : ReAl part of y

Using aI = no- R1
o o1

d = [ + sin a X = sin aiX11 no '('I+B2)

-o2

Sn a(1+12 = 1£na1x 12 sin a IX

d13 = -. S .+ 0o cos alX = 13 cos a1X
n02 1+82

n o2

nor cos aX 14cos aIX1l4 = I+02] 1 14=

Ssj si a+' Sti tj as,
d12IT- + 341+ 2 -+ 2+ R4

15 R 41 +f+ R 42

Sti tj ace -Ss1 j 4 tod16  2 + 2 + =- R 4+ 2 + - = IR4 2

si ~ ~ 1- + + t 1+0 1+8

Ssi Sjo 0+1 Ste to aS$
= 164 1+2 + + +

z15 R31 +f15R32
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d18 = 1 6R31+f16R32

Ss Btto a
d 19  -- 2- - 2.~ + .-)R 61+-2 -- + 2+ 85' 6

S2+1 + 1+0 S2 +t 1+0 ~2 2

19R61 +f19R62

st t -SS So
d11 2 2 s 2 2 2 ~ --. R 1 V----

.. + - + +[R +s S Itd , 1 2 2 2 21 2+ 2+ "
S20 +q~ 1+B 1+0 S2

2 +t~ 1+0 +

dlO= 1 10R61 + fl 10 R62

d I'll = 119R 51 +f199R 52

d1,12 =  91 ,o51+f ,IOR52
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Imaginary part of y

Im y = I gjii

factor out -1
n l2

=i sin alX = hllsin alX

g 2 2 aXno a1

no - ] sin aiX = hi2 sin aiX
n 0 1+a

g13 = I cos aIX = h13 cos a1X
1+8

914 o + n-+2 cos a1X = cos alX

9 Sto tl + - _ s s .t R

S+ 1+ S 2+t 2  +

= h15R41+k15R42

Ss si at, st to -'

1 s 2+t 2 - " -.]R41+['s2+t 2 + 2 - 4 2

1, + 1 1+8 1+8 s i +t 1+0 1+a
- h16R41+k16 k 42

917= h 15 R3 1+k15 R32

g18  h16R31+k16R32

St' t Os' __ 2 . _ s

919  E --2 +- ---T] 61+ l 1s 2 1+0 6=s2+t 21 z z 2 -
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g19  h h19 R61+ k 19 R62

Ss ' st
g1 ,1 2 4= - =f - -2 ] 61+---- 2 2- 62

s 'I +tB 1+0 S2 +t 10 +

g11 h19R 51 +kl9R52
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Real part of " = Z uijXj

Ull -nocos a1X = Vllcos a1X

Ul2 = 0

u13 -n0 sin aIX = v11 sin a1X

Ul4 = 0

u15 =(s2 -ti2 )R31-2sitiR 32 = v15R31+w15 R32

U16 = 2sjtjR31 +(s 2-ti2 )R32 = - w15R31+V15R32

u17 (s2 -ti2 )R41-2sitiR 42  v15R41+w,5R42

U18  2sjt R41+(s -ti2 )R42 15-W15R41+v15R42

19 ( -t2 )Rt -2S5t1R52 = v19R51+w19R52

U1,10 = 2s tYR51+(S 2-t 2)R52 =-W 19R51+V19R52

U-11 = (sk2-t 2)R61-2s t R62 = VlgR61+w19R62

Ul,12 = 2s2t2R6,+(s-"t22)R62  -w19R61+v19R62
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Imag. part of 1' ijXj

111 = 0

112 = -ncos aIX

113 = 0

1
14  -nosin a1X

115 W15R3 1-Vl 5R32

116 = V15R31+w15R32

1 17 W 15sR 41-v15 R42

1 v +w

18 = 15R41+w15R42

19 19R51-v19R52

1i,10 =, v19 Rs51+W19 R52

11,11 = w19R61-v19R62

11,12 = v19R61+w19R62
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III. Determination of Natural Frequencies - Approximate Method

1.0 In view of the complexity in solving the 12 by 12 determinants
for various boundary conditions, an approximate procedure
was considered. The characteristic equation of the sixth
order homogeneous differential equation developed in refer-
ence 5 is re-examined. This is re-written as equation (III-1).
When solved for the natural frequency, equation 111-4 is ob-
tained. An investigation of equation 111-4 reveals that it
is in the usual form for homogeneous beams

La

an
in which the eigenvalue X0 is comparable to L2 , and El,
the stiffness in the homogeneous beam, is comparable
to (Bi+B 3+Ki6 2a). The values of an are determined by the
boundary conditions and a table of such values is given
on page 350 The quantity (Bi+B 3+Ki6 2a) represents the
effective stiffness on the vibrating beam, in which B, and B3
are stiffnesses of the individual steel layers about their
own neutral axes and Ki6 2 is the portion of the stiffness
due to transferring the area moments of inertia of the
elastic layers to the composite neutral axis. The factor
a is a factor which indicates the shear carrying capacity
of the viscoelastic. When a is equal to one-half then
there is no shear strain in the viscoelastic, whereas when
a is equal to zero, the viscoelastic cannot transmit any
shear stress and each elastic layer bends independently
except for being restricted to moving laterally the same
amount. For the case of the simply-supported beam having
no axial constraints at each end, the value for the eigen-
value A0 is exact; i.e.; X0 (nil)2 , so that substituting
this value for xo into the frequency equation yields the
exact natural frequencies. The factor a is exact for this
case and truly represents the effect of frequency on the
stiffness of the beam. Guided by this form of the frequency
equation and by the exactness of using this form for a simply-
supported beam, it is postulated that this form of the equa-
tion for the natural frequency may be used as an approxima-
tion to the natural frequency of beams having other end
conditions, Thus it is assumed that X0 = a where an is the
usual factor determined by the boundary L2 conditions.
Thus, given the geometry of the cross-section, length of
the beam, the physical properties of the materials and the
boundary conditions, the natural frequency may be approxi-

- 30 -



mated by equation 111-4 in which a is given by equation
111-5. For ease of calculation the curves of a versus
G are plotted for the first five modes of the cantilever,
simply-supported, free-free, fixed-fixed, and fixed-pinned
beams.

It is recognized that this procedure~suggested for finding
the natural frequencies of laminated beamsis approximate
and that its accuracy can only be checked by exact solu-
tions of the kind performed in section II, and/or by tests
of actual beams. It is felt that the procedure should
yield good engineering results.
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1.1 Approximation of Natural Frequencies

Equatio, (36) of reference 3 , is

Rl(2d S+1) SR2(l+a2)(l+Sd I) d2
A4 + X3  - . - + - ]X 2  2 1 '2]

2SR1 d2  d
1 - w. S2R2(l+8 2 ) = 0 III-I

Solving for iw, we obtain,

W2 IdX 2SR + 111-2
2 X2 + 2x SRI+S2R2(I+02 )

or,

B +B3K 1 2R [ X[X+R1S(l + a2)]W2 1 3-7 x2  1+Kl 111- - I-3
oI - B+B)X + 2X SR +,S2R2(l+02 )]j

B1+B3
where dI 

= -----
K1 62

d2 =---- °

1

The last equation may be written as,

B = x2  + 111-4

where R1[ 0+R1 S(+ 2)]
= = ... .11 I-5

x2 + 2x SR+S 2 R (1+82)
0 0 122 I a2

IfX o RoI

then no+S(+2)= 0.. .. .. II -6
n2'+ 2noS+S2 (l+02)

For a sandwich beam having a thin viscoelastic layer S -2, so that

a• n +2(1+02)
a - 0 ... . . .. .I -7

n2 + 4n0+4(l+8 2 )
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Reconsidering equation 111-5, for a, it is seen that, for a sandwich beam, if
we let

an
YO=

L
then 24 2anRI L2+2RI2L4(l+82)

a 2 - _2 -- 24 2- 111-8
an +4anR 1 L +4R IL4(1+o-)

or letting

G = F2 = R L2 111-9

an G+2G2 (+2 )

a = anG22(+2111-10
an 2+4anG+4G2 (1+ 2)

For the special case in which o <<l

: G
an +2G

Using the relations III-10 and III-11, plots of a versus G are obtained and
are given for the following end conditions

1. Cantilever
2. Simply-supported
3. Free-free
4. Fixed-fixed
5. Fixed-pinned
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.- .I

For a simply supported beam with no axial constraints on the layers at each
support it is found that

X0 =a : (1U)2 (See page 35) 111-12

s o t ha t 22 4 B I + B 3+ K a1

I" p
2al repesnt the stfns of... the-1

It can be seen that the term [Bl+B 3+K16 2 a] represents the stiffness of the
laminatedIbeam. When Rl is infinite (no shear strain in the VoEo layer)
then a .: (or for a sandwich beam in which S - 2 then a-* -) so that the
stiffness approaches a value of

K 162

B + B3 + = .

This is the stiffness of the composite cross-section in which the shear is
carried, directly through the V.E. layer without shear deformation. The
other extreme case occurs when Rl o 0. In this case a becomes zero, and
the stiffness is 01+B3) and each beam contributes solely the stiffness about
its own axis; no shear stress is 'transmitted through the viscoelastic layer
although the theory imposed the corldi:tion that both beams move laterally by
the same amount.

The above description indicates that the parameter a is an inverse measure
of the shear strain occurring in the Viscoelastic layer. We note that for
small values of a

e 1
a= n-+

0

so that a maximum value of a is for n0 equal to zero; and a approaches zero
as no becomes large compared to S. The quantity no is always positive.

It is seen that for the condition of simply-supported, unrestrained ends,
using o = (n,)2 the value obtained by the usual homogeneous beam, an exact
solution is Totained by using equation(III-13).The factor 'a is exact in this
case, This procedure suggests a means for obtainin§ the natural. frequencies of
laminated beams having other restraints, i.e.; use the an constants obtained
for homogeneous beams in the relation Xo = an A table of values for an is

given on page 35 , for several boundary conitions.

-34 -



* an "

Beam Condition General Specific
Relation Relations

1. Cantilever an (n- )2 7Ta2 a 3.52

for n > 2 a2 = 22.0

a3 = 61.7
I3

a4 = 121.0

a5 = 200.0

2. Simply- an = (nIT) 2  al = 9.87
supporteaI

a2 = 3905

a3  88.9

Sa4 = 158.

a5 = 247.

3. Free - Free an (n+P)2i22  a1 = 22.0

a2 = 61.7

4. Fixed - Fixed (same a for Free a3  121.0
Free aRd Fixed -

Fixed] a4 = 200.0

a5 = 298.2

5. Fixed - pinned an (n+1) 272  a1 = 15.4

a2 = 50.0

a3 = 104.0

a4 = 178.0

a5 = 272.

an

Table 1
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IV Miscellaneous Considerations

a]I l0 The approximate expression for the natural frequency of a
sandwich beam further approximated for the case in which a
The expression for a simplifies to

n +2

The expression for "I is written explicitely in terms of the

geometric and physical properties of the elastic and visco-
elastic material.

j 2.0 Consideration is given to designing a beam for optimum dampingif the physical properties of the materials and the natural

frequency of the beam is selected, The relation is based on the
- case in which 0 <<lo Considering wlO as the natural frequency

obtained when a = 0, a relation, equation (V-13),is obtained
for no For optimum damping ref. 5 shows that no = 5. Using
this ?act a relation, equation (V-17),is obtained for the
necessary half thickness, Hl, which would yield optimum damping.
The optimum length is obtained from

-- an

0 =nR1 a
L

yielding
:-' ran

1

3.0 Based on the results of section III ,for a <<l, expressions
are derived for Gl and a which allow one to solve these pro-

-_7 perties of the viscoelastic material if the geometric pro-
perties, elastic properties, and the end-conditions are known
and if n and wl are measured. These equations may be used to
find the shear properties of a viscoelastic material if .<<L
This procedure may be considered as a means for testing material
to insure adherance to procurement specification of a viscoelastic
material.

4.0 Using the results of ref. 5, an approximate expression for the
_ composite loss factor, equation (V-23),is obtained in terms of h.,

and 0. It is shown that this expression yields results which
are within 10% accuracy.

-:I
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5.0 It was shown in ref. 3 that the natural frequency of a sand-
wich beam increases as the loss factor, 0, is. increased. It
is shown herein that the same situation occurs using the
approximate expressions for the natural frequency developed
in section III, thus reinforcing the analytical result that
viscoelastic damping causes an increase in natural frequency
for a laminated beam.
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101 Determination of the natural frequencies for small values of material loss
f : (B < 1)..
Considering equation qIII-4for small values of a we note in the equation

2 2 B1+B 3 K 1 2

W I +- a] IV-l
1 =  o [p p

that for a sandwich beam having a thin viscoelastic layer

n0+ 2(1+a 2 )

n 0 +4n 044(1+ 2

and-that for s<l

n 1a-2' IV-3

We note that since no can have values from zero to infinity then a has values
between one half and zero.

Using the relation

=n IV-4

in equation (IV-3)

then R1L2

a an+ 2R1L2 IV-5

or since

Gb GbIV-6
1 2H 2 K I 2 b

then 2

aGL 2  IV-7
4anH2 1E+2G1
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or

+ 2H IV-8(a 21 22 E +2

n L'2  
T1

Now

B1 = 1-. (2H,) 3b = 2 H3 b E IV-9

and for the sandwich beam

B1 = B3

therfore
Bl + B3 = H3bE.

1 1

also
2 1]2 3 EHK16  , Eb2HI[2H1  8EbH

for

H2 2 HI .

The value for p is

Yl[4H1b) + Y212H 2b]

where

YI is the mass density of the elastic material and Y2 is the mass
density of the viscoelastic material. The natural frequency may be written as

2 3 1Wl +  Iv V -1
2r a 2~HE8H Vl
13 ~ 3[4y1H1+2y2H 2 1 4y1H1+2y2fH2

or 4EH 3 a2

2. 1 n [+a
1 3(4ylHI+ 2Y2H2)L4 [l+6a] IV-11

in which a is found from equation (IV-8).
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Thus, in order to calculate the natural frequency of a sandwich beam, one
would need to know

1. an - This is determined from the end conditions and the mode of

vibration. A list of these values is given on page35o

2. (2H,) - This is the thickness of the elastic layers.

3. (2112) - This is the thickness of the viscoelastic layer.

4. L - This is the length of the beam.

5. E - Young's Modulus of the elastic material.

6. - This is the real part of the shear modulus (storage modulus)
of the viscoelastic material.

7. y- - This is the mass density of the elastic material.

8. Y2 - This is the mass density of the viscoelastic material
(Note that the mass per unit length and per unit width is the
quantity 4yiHl + 2Y2H2).
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2.1 Designofa Sandwich Beam for Optimum Composite - Loss Factor

Using the suggested approximate procedure for finding.the- natural fre-
quency of a sandwich beam having a thin viscoelastic layer, we have

•an}o=  noRl = a n

L

But using eq. (

S a2 4E H1
3

nl LZ IV-12
0 3L 4yH l + 2Y2H2

we can obtain from ( IV-12)

H 2
(noRl)2 _ 3(4yH. + 2Y2H2.) .310n' 0EH1 IV-13

ol 4 EHI

For optimum damping,

h= 50 (see pg. 11-33 ref. 5 ).

Also for hI = 50 we find from the n0 vs h, plot that no  5.

for no = 5, we find for $<<I that

2 2 13 IV-14WI 1 0 1

or
2 7 2 IV-15

Since RInc R1 7=R1

then G2  21(4yiH 1 + 2y2H2 )W 2

25-, 2 12 3 22= . IV-16

16E H-1 H2  1
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Solving for H1 we find

2 2yH3Ew 2H2Y2H2E 1

1 3.86 G 4yEwiH' IV-17

Thus for given elastic material (E and y ) and a given viscoelastic
material (G and y ) one may select an wl witA its associated GI and a
viscoelastil thickhess layer (2H2), then solve for the half thickness of
the elastic layer (Hi) for optimum damping. The length of the beam may be
found from the expression.

an
n R a-

L

so that for no = 5

an 4anEHIH 2
L = -5 - 2 IV-18

in which an is found on page 35.

Equations (IV-17nd(IV-18)yield the half thickness of the elastic layer
and the associated length of the beam to achieve optimum damping.
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3.1 A Suggested Method for Determining the Shear Moduli and Loss-Factor of a
Viscoelastic-Material - 8<1.

A method for determining the shear moduli and loss-factor of a visco-
elastic material is suggeste'd, based on the analysis on pages44 and 45
If in some manner, as for example impedance measurements of a free-free beam,
the composite loss factor n and the natural frequency wl and its associated
mode number are measured For a sandwich beam having a thin viscoelastic layer,
then the shear modulus G, and material loss factor a may be calculated.

For the case in which a is small Gl and n can be obtained in the follow-
ing manner. Knowing the mode number and the end-conditions, the value of an
may be obtained from table 1. This may be used in equation (IV-1l to solve
for a, i. e.,

3(4yIHI+2y2H2 )L4 2 1 IV-19
24E H3 an2 "

i n

Using equation (IV-7)and solving for GI, one obtains

G = aa nH 2 1 EIV-20I L 2 [1- 2a]

in which a is obtained by solving eq. (IV-.19).The real part of the shear
modulus is thus calculated.

The relation for the composite loss factor n for a sandwich beam is shown
in ref. 5 , to be eq. 11-15.

n . ... IV-21
PWl [(R 1S+X 0) +(R ISO)2 I

which for the assumptions being considered i.e. (<l), becomes,

(4yIH1 +2y2H2) w[Gl+2X H2H1E]2
Y220 l 1) 2 2 1H] IV-22

4EGIX3 H3

This last equation allows one to calculate the material loss factor 00
Having found G and a, the loss modulus G2 may be found using

G2  = aG 1 0
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40l An Approximate Equation for -the "omposite Loss-Factor

It was found in ref. 5 , that for a sandwich beam having a thin
viscoelastic layer

6 n03 2

h I [2+n 0) +(U8)]

An inspection of the no vs h' plot for values of 8 between .1 and I

(pg"II-34 ref. 5 ) indicates that the log n vs log hl , curve is approximately
a straight line and rather independent of a or values of a between .1 and 1.
The relation can be assumed to be

no = c IV-23

in which c and k must be evaluated from the curve. We see that two corres-
ponding-points on the no-hl plot are

no -.20, and hI = 500

no = 2 and hI = 11

Solving for c.and k by using the above.values we find

k .6

and c = .475

This then yields the relation
.8

n = .66a I IV-24
[(2+.475h, 06)+(2a) 2

A check of three values of hI indicates a good correlation with the exact re-
sults. These. are shown below.

hI nApprox. Exact error

4 .022 .0238 -7.5 .1
4 .153 .150 +1.95 1
40 .031 .033 -6.05 .1
40 .282 .280 +.7 1
600 o0195 .0185 +5.4 .1
600 .195 .185 +5.4 !
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The approx. value of n uses equation (IVa24) whereas the exact value of
n is taken from the n vs hl plot of ref. 5..

As was shown previously in ref. 5 , the approximate equations for small
values of hl i.e. h6 less than 1, and the approximate equation for larger values
of hl, i.e., hl 2000 are given as

•3h1
2  B

n =2 for h1 < I

n 6s for h >> 1.
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5.1 Comments on the apparent increase in wl when damping is present

In ref. 2 , it was shown that
03n

WI = Wo 1 + ]

where

Wl is the natural .frequency including damping effects

2 [-], the undamped natural frequency

n is the composite loss-factor

p is associated with, the mode number

p2 an

El - stiffness

p - mass/unit length.

In the above El is the stiffness and should take into account the decrease
in stiffness due to the shearing effect occuring in the viscoelastic layer.
Thus if used.properly I is the total I of.the cross-section about the composite
neutral axis, at-the low frequencies, and decreases to the sum of the individual
I's about their own neutral .axis as .the vibration frequency increiseso But for
a given El, indeed the relation above indicates the natural frequency would
increase with the addition of damping. As a further substantiation of this
increase we look.at the expression, for the sandwich beam having a thin visco-
elastic layer,

2. : 2  [1 + 6a],

The factor a accounts for the shear effect of the viscoelastic layer as
was, pointed out previously since , for a = 0, it varies from 0 (no shear
carrying. capacity by VoE.) to (all shear carried). Now a also contains 8,
the material loss factor. In particular we have

no + 2(1 + 82)

n2 + 4n o + 4(l + )

If we compare a containing a and that for which o = 0 i.e0 a , and if this
ratio- is greater than one, then the natural frequency of a beam would tend
to be higher with damping than it would be without damping. Looking at this
ratio we see, nO + 2 (1 + 82)

n~~ ~ 0) n0+4 (n 0+2)[n 0+2(1+o )
0_ n 0 . ... n2+4 ) n 0 +4 (+s 2

(no 0+ 2)
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no 2+ 4 no+4(l+0)

For a small compared to no, we have

+ 2 n 0 2 2
0  (n0+ 2)

This.shows 2-- > 1i therefore-this indicates that the natural frequency will
ao0

increase-wlth.damping, from the value it would have with no damping.
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V.' Errata

The following two equations are the 
errata for equations 11-O and 1I-11

(Moment and shear) of reference 5.

Let

11-9 mlK 
+(BI+B3

) S

BI- I .I+B 3

Then,

(II-10) aM = E11[-m 1 aisi
n a1x -m2a1

3sin aix)

+ E O2 am2 al 3sin alx)-E 22[m2 6a I cos aIx1

+ E21[rmlalcOS a1x + m2a1 
3cos alx]

+ E 31 [ml31"m2 U31 +m 2 au 2 +E32['m I S 3,+m,2U 32 +M 2BU31 3

+ E 41 [ml S 4 1 "m2 U4 1+m2 $U 4 2 ]E F42 -mI S42+m2 U42 +M2BWU41

+ E 51 (MIS S5'M 2 U51 +M 2 A52]+E52( -ml S52+M 2 U52+m 2 NsI ]

+E61(R l 512 U61 +M 6 B 62 l("~ 62 2 U62 +M2 s613

+i lmsBal13 sin alx]-E21[m2Oal 
3cos aix]

+ E12 L-ml1al sin alx-42al s i n al1x+m 2 sal s i n al1x1

b.22 [mlalcos alx+m~al 
cos alx-m2 sa I Cos ax

+ 31 1m~ 3 a-m^ 2 U31 ]+3,[m.S31"m2U31+m2 32]

+ E 41 [m IS 42"m,2 U 42 +m 2sU41 3+E 42m IS 41"m 2 U41 +m2 WU423

+ E51[miS52"m2 U52 +2lU52 ou,+E52[mlS~l'm2 U51 +M2 NU523

+ 61 mi62"m2 U20%U1 ]+62'mlS61"m2
U61 m 2B 62) ,'  11-l15- U
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Evaluation of Shear - V

t ~ dmi
2 4

(II-1t) 6V-n E,,[-,,a12Cosalx-m 2al cosa 1xJ

+ E12(m 2oa1  Cs a~x]+E22Em2~aj sin a 1XJ

+ E21(-m~a1 2sin alx-m 2 a 4sin aixJ

+ E31[n1T 3l-m2V31+m2'V32 3+E32( -mT 32 "2V32 'TI2 V31]

+ E 41 Em IT 41-M2 v41 +M 2aV 42 +E 42 -mT 4If 2V42uii2" 41]

+ E 51[ ( 1 T51"'M2V51+m 2aV52]+E 52 E-m IT52+m 2 v52+M2 aV 51 J

+ E61 [m 1T 61-M 2V6l4m2 0 62 ]+E62 -m 1 T 62+M2 v62 +M2sv 611

+4 4.4

+ 1 .m1a, 2cos a X-M a 4cos a alcsax
12 1 2 1 lx +m2 a1 csax

24. 4 sia+ E2Masin ax m2a, sin a I 1 asna

+ E 31 [mT 32-m2V32+m2OV31 ]+E 32Em1 S31 -m2V31+m2'V32]

+ E 41 (m T 42-m 2 V42 +Mu20V41 ]+E 42 (m 1 S41 -.M v41+n, OV4

+ E51 (m1T52-m2V52+M2OV51 )+E52LmlS51-m2V51+m25V52J

E E61 [mT 62-m2V62+m2$V61 3+E62(mlS6 l-m2V61+m2OV621].I

11-16
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