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ABSTRACT

Further analytical investigations are made into
the damping capability and determination of naturai
frequencies of laminated beams, consisting of elastic-
viscoelastic-elastic layers, as a means for reducing
the vibratory energy transmitted through machine founda-
tion supports in naval vessels,

An exact analytical solution is obtained for de-
termining the natural frequencies of simply-supported
sandwich beams having no rivets at the ends. Three
possible modes of vibration are shown to exist. The
case of the simply-supported sandwich beam having rivets
at each end is considered and the equations reduced to
the solution of 12 x 12 determinant for calculation on
a digital computer.

An approximate method is suggested for determining
the natural frequencies of sandwich beams having any
end conditions. The procedure is simple to use and is
exact for simply-supported beams.

A simple but approximate expression is also de-
veloped for determining the composite loss factors of
sand¥ich beams, The procedure yields good engineering
results,
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Nomenclature:

1
R

» m )

mid-plane extension
Ry(1+ig)
material loss factor

E”2“1

width of beam

G](1+is) - complex shear modulus
real part of complex modulus
thickness of elastic layer
thickness of viscoelastic layer
EA

elastic modulus
cross~-sectional area
Hy + Hy + 2H, = Hy + Hy

mass per unit length

El

}E b(zH])3

RytKs
K
w% (1+in)

natural circular frequency
mass density of elastic material

yE 2 2
4 L5ty uy
1

composite loss factor

length of beam

iv
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Natural Frequencies and Damping Capability of Laminated Beams

I. Synopsis

1.0
10]

1.2

1.3

2.0

Introduction

Overall Program: As part of the overall Navy Program to
reduce noise emanating from vessels, a 'Structural Damping
Program’ is in progress at the U, S. Navy MEL. The aim

of this program is to investigate methods for attenuating
vibratory energy in the structure between the machines and
the hull,

Specific Progvam: The U.S.N.M.E.L. has taken an approach
to accomplish the above goal through the use of laminated
material as structural members. This material is made of
steel and viscoelastic layers, so that structural rigidity
is maintained concurrent with damping (or dissipation of
vibratory energy).

Previous Results. Tests have shown that reasonable amounts
of damping are possible by using laminated material., In
order to better understand, use and design with the material
analytica? investigations have been in progress, The re=
sults of References 1,2,3 and 4 indicate that mathematical
expressions are available for determining the composite
loss=factor of a laminated beam as a function of the natural
frequency. These results also show that the composite loss-
factor versus frequency curve is independent of the boundary
conditions and solely dependent upon the physical and geo=
metric properties of the cross~section of the beam. The
natural frequencies themselves are dependent upon the boun=
dary conditions, In reference 5 the free and forced vibra=
tions of sandwich beams were investigated. The eigenvalues
Ngs S:p Sz, L, and t; were obtained as a function of h; and
plotted. The mathematical expression for z,z', y, ¢, M and
V were explicitely written in terms of the eigenvalues. A
generalized plot is given of the composite loss factor versus
h; and & from which the composite loss-factor n can be
veadily found, Reference 6 is a short survey of the theory
of viscoelasticity especially as it pertains to this pro-
gram.

Scope of this Study: Details of the free vibrations of
sandwich beams have been investigated. The ‘exact® natural
frequencies have been obtained for a simply-supported sand-
wich beam, In view of the complexity of the ‘exact’ solution,
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3.1

approximate solutions have been evolved which can be used
t0 calculate the natural frequencies of sandwhich beams
having any end conditions., These approximate procedures
allow one to design beams for optimum damping and/or
measure the properties of the viscoelastic material,

Results
Natural Frequencies -~ Exact: The two cases considered
are the simply=supported sandwich beam with and without

rivets at each end. The unriveted case yielded the analy-
tical result that a natural frequency exists when

Lol
sin ng? R, 2L =0
or
L s
ng?R*L =nm.

This resuit is to be expected andni§ the result for a
sinusoidal deflection y = y, sin —%— . An unexpected re-

sult is that natural frequencies exist wien

1

2ty RZ L

nw

and

~ep

2t; R L =mm ,

This result appears to be new and indicates that natural
frequencies can occur in simply-supported sandwich beams
for other than sinusoidal mode shapes. The t{ vs h; curves
show that only the lower values of n yield natural fre-
quencies and a cut-off value of n exists above which none
of this type of mode of vibration occurs. The tj vs hy
curve displays a similar characteristic; i.e. only the
first few values of n yield natural frequencies and a cut~
off value of n exists above which no natural frequencies
exist,

The case having riveted ends did not yield to a closed-
form solution and required the calculation of a 12 by 12
determinant. The necessary elements of the determinant
are presented in a form ready for use in a digital com~
puter,
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3.2

3.3

3.4

Approximate Relations for detqpnining the Natural Frequencies
of Sandwich Beams. v

(a) The natural frequency is written in the form
4 an
wé = =~ [By + By + K; 62a]
- pL2
in which

a_ is a constant dependent upon end-conditions
(see page 35).

p 1is the mass/unit length

B; is the stiffness of the ith elastic layer,

Ky = EAy

A, is the cross-sectional area of the elastic layer,

6 is the distance between the neutral axes of
layer 1 and 3,

o« is shear parameter given by equation ITF/K)

For the case in which B <<1, it is found that

i Gl g
a-an(w-;-z )G+2]
and
4EH}33n2
wl = [1+6a].
© 3(4y Hyt2y Hy LY

A simplified method for determining the shear moduli and loss=
factor of a viscoelastic for g.<<1 is proposed in section III
in wiich the composite loss factor n and natural frequency w,
are measured and Gy and B calculated, This procedure may be
used as a procurement test-method for the viscoelastic material,

Optimum damping for a sandwich beam.

(a) Design - Given E, Hy; v, w, and the end conditions, one




3.5

3.6

4.0

4.1

4.2

can determine the optimum length of the beam and
elastic layer thickness to yield maximum damping
for a given viscoelastic material,

{(b) Design of the shear properties of the viscoelastic
may be performed so that optimum damping may be Gy
obtained over a wide frequency range. By letting oY
be constant for the maximum value of n, maximum
damping is atta’nable over the frequency range.
Thus, if the real part of the shear modulus is speci-
fically designed into a material to increase w;, then
an optimum material can be obtained. In all cases the
tangent loss factor, 8, should be as large as possible.

An approximate equation has been found for the composite
loss factor of a sandwich beam; which is within 10% of
the correct value. The relation is

8

0 ni
N = 0668 e o
[(2+.475 h°®)%+(23)%]

It is further shown in section IIl, that the naturai fre-
quency of a sandwich beam increases with damping. This is
in agreement with a result derived in reference 3.

Continued Investigations

It is recommended that the following be considered for
further investigations of sandwich beams.

Computer solutions be performed to find the natural fre=
quencies for the following end-condition

a., Simply-supported riveted ends
b, Free-free

c. Cantilever

d. Fixed-fixed

e, Fixed-pinned

Correlation with the approximate methods should be investigated.

Consider the mode shapes and meaning of the natural frequencies
associated with

t;L = nn and t,L = mn,

Consider correlaticn with tests if necessary

o § =

o g




IT. Determination of the natural frequencies of sandwich beams = exact
solution,

1.0 As discussed in reference 5, the determination of the natural
frequencies of three layer laminated beams may be found by
satisfying six boundary conditions, i.e., the usual four of
deflection, and/or slope, and/or moment and/or shear; plus
an extensional effect at each end, i.e. zero stress, and/or
zero deflection and/or zero shear,

The equations for extensional effect

;. =0
" =0
CI':O

and for 'lateral’ effects

y =0
¢ =0
M =0
v =20

are given in reference 5, as equations II-1C, II-2, II-3,
115, II-7, 1i-8, and II-10, Equations for M and V are re-
written in the appendix as errata to II=8 and 11-'0. The
general case of different elastic layers can be solved on
the basis of individual cases. In general, the solution
requires the evalvation of a 12 by 12 determinant and the
results cannot be eas®ly generalized. The special but im-
portant results of the sandwich beam can be generalized and
this case has been solved herein for the simply-supported
beam with and without rivets at each end., The simply=supported-
no-rivets case requires that

M=y=yg <0,

since the mement deflection and axia! stress is zero at each
end. These six boundary conditions yield 12 iinear homogeneous
equations. By selecting, the coordinate system at one end, the
twelve equatrons become two sets of six equations each having

s o i i Ta e SRR | ORAST GGy ~o e Tt o ———e -
. O O T T TR B T SR T g S LR




its own set of six undetermined coefficients. Since one set
is independent of the length of the beam (the only remaining
variable in the determinant of coefficients) then this set

can only be satisfied, in general, if the six undetermined
coefficients in that determinantal set are all zero. The
determinant of coefficients of the second set of six equations
can be made equal to zero for three cases

sin alL =0

sin Zt]L =0
and

sin 2t2L =0 .

The first case s the expected one in which the mode shape is
sinusoidal (y = y,sin nﬁ&) and the natural frequencies are
obtained when

=nn
S
or
e 81
= (DTS
no = (T R

where n is an integer 1, 2, 3, etc. For a given L, Ry and n
the value of ng may be computed. With this value of ng
and a value of 8, one may find hy from the curve on page I1I-34
of reference 5. These natural frequencies correspond to the
usual reiation
2 . 22 El
w =nm

ol

o

The second and third cases were unexpected results, These

imply that natural frequencies also occur for a simply=-supported
no=rivets case at other frequencies and mode~shapes than sinu~
soidal. The mode shapes were not investigated but the frequencies
were. For a natural frequency to exist

Zt]L = Nn

or

2t2L ma




where m and n are integers. A given vailue of n or m-and
L yields a value for ty and t2 which can be used in curves

11-37 and 1I-38 of reference 5., Recalling that

R,t3

4= Ry

and

b= Rt
the values of t{ and t) may be calculated and used in the

curves to obtain hy from which w) may be obtained.

It is seen that the tj type of vibration could yield an hy
for a given L and n = 1 and for n = 2 it is possible for
lower value of hy to be obtained. At some value of n and g8
the curves indicate a cut-off of any of these type of vibra-
tions. Thus the lower mode is associated with a high natural
frequency of vibration in this kind of vibration. This is
contrary to the usual vibration phenomenon and merits further
academic investigation. The té type of vibration can yield

a value of hy form =1 and a given L. For higher values of
m, larger values of hy may be found until a cut-off frequency
is reached. This too merits further academic study. The simply~
supported beam with riveted ends requires that

M

0

y=20

and
CBU =_.0
at each end,

Since each =2quation is complex, the six boundary conditions
yield twelve linear homogeneous algebraic equations. Uniike
the unriveted case, the resulting 12 x 12 determinant does
not simplify by factoring. In this case, the arigin of the
coordinate system was placed at the center of the beam and
the equations written accordingly. 1In order to retain some
generalization to the results, a factor of Ry was eliminated
from each of the equations by using

> T P N S ST S IRy ™, v e
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52752 Ry

L

and using F = R{L as a parameter. The specific equations and the

144 elements of the resulting determinant have been written and are

to be used to find the natural frequencies of this type of beam.
Computations are in progress on the IBM 360 computer for finding

the first five natural frequencies. Using the results of reference 5
for ng, S1. S3, t] and t; and values of hy; equal to 6, 20, 50, 150,
500, 2000 and 5000 for g equal to .1 and 1, values of F will be found
which satisfy the 12 x 12 determinant. These results will be reported
in the future as a plot F vs h; for the first five modes of vibration.




> 2.0 Simply-supported - 3 layer beam - ends unconstrained

The boundary conditions involve the Moment, the deflection y and the
axial strain,

Now .
= ) ' -
and
=S ¢ ] -
A ST | ¢
s0 that
M= [K,8 + (B,#B,) 2]g! - (El;:_gi) 1 =3
] 171 8% RS %
also

'=0 @x=0 & x=1_
and in addition

]
y"%f{d)('%é'. '4

In view of the fact that ¢' must be zero at each end, then this
term.in M and y may be dropped so that for these boundary conditions,

there remains

C"I.' =0
@x=20
Judx =0 and
x = Lo
g =0

In order to evaluate the above expressiocns the.values of the coefficients

Sise T

R: i3

iy .. and jRij dx are evaluated at x =<0, They are:

i i

»

- s e = - oo s - N G "&W-
| er— e e — e - T Y Y R AR S T e e :




R3p = 1 Ryp = 0
Rgy = 0 Rgg = 0
"5y = 1 Rep =0
>3 7 0 Sgp = 0
S32 = 0 Ssp = 0
0 T S61 = Sy
27 Y 2 % &
— 2 .2 _ 2 .2
Tay = (5y7-t;7) Tsy = (5,7-1,°%)
Ty = 25,t, Tep = 25,1
T[“ =0 TG] = ,0 =
Uy = 0 Ugy = O
Usp = 0 U, = 0
= 2 .2 - 2 .. 2
Ugy = sqls¢7-3t,%] Us1 = Splsy =3ty ]
i =t 2 21 = 2 2
Ugo = 035)7-447] Ugp = to[3s,7-t,"]
[Ryqdx = 0 [Rgqdx = 0
[Rypdk = 0 [Rspdx = 0
S S
_ S 5
PRt = ——7 [Reyox = ———
S-l t] 52 + tz
t] t2
Ropdx = - ——— [Repdx = = —=—
S'l + t] SZ + t2
- 10 - /
e el :FT‘ Ty i L Adat o on o W ey ———; e aympen |




(1-1)

(1-2)

(2-1)

{2-2)

(3-1)

atx =0
5y =0
so that

Ejjay * EgqSy = Egty + BgSp = Egpty = 0

and

Ejpdy * Egyty + EgpSy * Egyty + Egpsy, = 0

at x =0

clll - 0
so that

-E .2 3

2 .. 2 2
2131 * Egsp(s17-347) - Egpty(3sy

2 2 .. 2
~t;7) + Egys,ls,7=3t,7)

2 . 2y _
and

3 2.2 2 .2 L2 .2
~Eppaq” * Egqt(35,7-1,7) + Egps (5)7-387) + Egps,p(sy-3t)7)

2 .2y _
+ E .t (352 -t2 ) =0

6172
at x =0
frdx =0
so that
S t S
“Ey —lt E LI L +E 2
21 a 41 7 2 2 4 7 2 2 61~ 2 2
1 Sy + t] S5 + t] Sy + t2
t
+ E 2
62 —y——y = 0
s2 + t2

-1 -

- ;«- - a—— r—y v n
; T R e I Ao
= > Lo

s s Wy gy




| S

(3-2)

-E

These six equations are all independent of the length L, indicating

— -

22 a4,

t

S

2

1 51
T3ty 7 - by

+E =0
62 'ST"TZ "y

that the only non-trivial solution is for:

@ x

31

32

41

42

51

52

61

62

cos t]L cosh
sin t]L sinh

sinh s]L cos

sin t}L cosh s

cos t2L cosh
sin tZL s3inh
sinh 52L cos

sin tzL cosh

Ex

Eoo
3
E
E

E

a -
42 °
61 =

62 ~

=0

=0

- J2 -

62

——




Uz = 590597 36,71 Ryy = 8 (397 - £)%1R,,
Ugz = 5055 36,71 Ry + 1 1357 - £%Ry,
Uy = 59055 36,71 Ryy -ty 135,% - %1k,
Ugg = 51181% 3,°1 Ryp + & [35¢° - 6% 1Ry
Ugy = Splsg- 36,71 Rgy =ty [35,° - 4, RRgy
Usp = S085°= 36,71 Rep + 5 [355° - t° IRy
Ugy = Spls5"= 3,7 Rgy = 1 (357 = &Ry

_ 2 .. 2
Uga = Salsp = 3tp7] Rgp + 8y 35,7 - 157 IRy

Letting
We have
S t S t
P = =77 Ry g Rags Pep = 7 Rep - 77 Ry
s, tt s, +t S, +t S, +t
1 1t 2 *t) 2 *t)
P3p = “';l"E'R42 S S S S
5 o+t 7R P T T Ry Y =3 Ry
] 1 S, +t S, +t S, +t
1t 2 tt 2 tt)
5 t s t
Pov =77 Ry1 * "7?;L7? Ryps Pgp = —3— 5 Rgp = — i Rss

s t
5 1

P2 " 77 7 R T T 7 P
174 1™

s t
.52 2
2 R o I o
2 S2 ™t

-13 -
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Considering the boundary condjtions at the other end.

(I atyx=1
;'= 0
(4-1) =Eyq @y sin agl + E3,83 “EgpSq) + EgiScy -Eg,S, = 0
and
(4-2) =Eyp ap sin ajl + EgySg) + EgpSqq + EgSey + EgpScq = 0
)] at x = L
' =
so that
(5-1) Eyq a)3 sin agl + EqjUgy =Egplsy + EgqUpy -E,Ug, = 0
and
. 3 :
(5-2) Epp 2% sinagl + EqUgy + Egliyy + Eg Uy + EgoUpy = 0
(&) at x = L
Jzdx=0
so that
sin a]L t]
(6-1) Epy (g E31[“’[‘""‘ I vy U7
Y

t,
'532[_7"‘"‘ 42 "T— Rgpl * Esl[‘"z—é' 61 "T'—'T Re21

t,
2[“’2“_7 62 "T‘"‘— Rg) = 0

and

gy _ wp— DG L e e S e T s o ke a0 TN




sin a]L t

(6-2) Eyyf ) + 531["77""1? 42 “1?““‘7? Rpp!
s t
‘E:sz["'?““‘:é'+ A “'T"‘“ R4z}

“E..[ 2 e *2 R -]
510737 R - =57 Rg,
St S, * i

t

“552[‘".)."“""+ 7 "61 "T‘"“‘ "62) =
2

It is seen that when the six above equations are written in matrix
form

(6-3) [24] [Fix] -
that the first two columnsare made up of a the common factor sin a]L. SO

that the matrix equation may be written as

. 2. =
(6-4) sin“al IbijIIEikl =0

The matrix |b, | is the same as [a,.| except for the first two columns
in which J

and

(6-6) a;, = by, sin ajL.

Equation ( ) shows that a solution is obtained when

(6-7) sin a,L = 0
1
or
(6-8) a]L = Ny
or
_ Ny
(6"9) a" hd r .

- 15 -




The biJ

1
12
13
14
15
16

(o c o (=2

b
b

SR

-a,l
=0

= s.R

Raq-tR

1Ra2
~S1Rga-t Ry
= SoRgy=taRes
R

=SoRe2-toR6)

“1
=0

C1Ra7=CaRypp

“CyRgp=CoRpy

C3R61C4Rg2

~C3R62*C4R51

3R62
_ 2 2
- S](S] ‘Bt] )

2 2
52(52 ~3t2 )

1
a4
=0

= dyRyqtdaRy,

#=diRyatdoRy,

d3Rg1+dgReo

= =d3Reatd,Re,
51

s]2+t]2

and

and

and

o o (= (=2

O

. determinant has the following elements

0
..a_l

S1Rga*t Ry,
S1Ra1"t1Reg
SoRe21taRe:

R R

SoR617taRs2

0
3

a4

C1R42*CoR:
C1Rg1-CoRygp
C3Rg1-CqRe2
C3R62*CaRe1
2)
2)

2
t!(3S] ‘t]

3s 2-t

tp(3s,°t,

m'-a

1
1Rg2-9R
diRgy=daRys

-d3RgatdgRe,

~d3Re1

I3
51 *t12

d

~d4Re2




Equation: (6.4 ) may be written as the sum of two matrices or

o O O o

N T L Lo

] 13 -
b,ij Ekj + b,i- Ekj = Oo

S1Ra

4Ra
1Ry
CoRay
diRq

=doRyy

“tRep

S1R42
~CaRyp

CiRg2

doRs0

1742

J

"S1Rg2
~tiRe2

“CyRygp

“tiRg

S1R43
aRa1
CiRs1
2Ry

~diRy4

" C.R

SR

toRsy

C3Rs1

3761

d3Re

dgRe1

~toRe2

SoR62
~C4Reo

-C4Re2

dyRe2

362

-17 -

~S9Rs2
“toRso
aR62
C3Rs2
~d3Rep

-d4Re2

-tRe1
~S2%61
C4Rs1

CaR61

4761

-d3Re;

11
12
13
14

15

16

+ -

=0

(6=10)




It is seen that the above equation may be written in the form

RarRazRe1Rs2 Cij Exy * RaoRaReoRer Dy Egy = O (6-11)
Now '
1Cig 30
and 'Dijl X0
therefore
Ra1R4oRe1Rg2 = O (6-12)

This becomes

sinh s]L cos t]L sin t1L cosh s]L sinh SZL cos t,L sin t,L cosh s,L =0

2 2 2
or
(2 sin 2t,L)(% sin 2t,L) (% sinh 2s,L)(4sinh s,L) = 0 (6-13)
therefore
Zt]L = N (6-14)
and
2t2L = mn, (5-15)
Using the relation developed in ref ( 5 ) we have
P pE =
t] R] = t] (6~16)
v o = -
tz R] t2 (6=17)
so that a natural frequency exists when
l/ 4
Zt%RfL = ZtiF = nm (6-18)
and
9
ZtéRfL = ZtéF = mr . (6-19)
This may be written as
and
g . M
tz = 'ér ° (6"2])

- 18 -
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This may be interpreted in the following manner. Given a beam in which RA and L
G

are known then assume n = 1;a value for ty is calculated. (recall Ry = ZAEK;OO

This value of ti is used to find h] for a given B using the chart on pg II - 37

1

ref (5). Knowing hys the corresponding composite loss-factor n may be found

from pg Il - 33 of the same reference and the natural frequency wy may be cal-

culated using

2 E ,2 2
h]-4Sé—7H2 wy e
]

Integer values of n (2, 3, 4 etc) may be substituted to obtain larger values
of t% and +/ use of .the charts obtain the corresponding natural frequency
and- composite loss-factor. For a given 8 the ti Vs h] curves indicate lower

natural frequencies for increasing n with a cut-off frequency for which no

natural frequencies occur above a given value of n.

A similar procedure may be followed to obtain the naturai frequencies and
associated.composite loss-factor for té using the curves of té VS h] on pg II -
38. In this case the natural frequencies increase with m and reach a cut-off

frequency .for a given value of 8,




3,0 Simply-supported-3 layer beam-ends constrained (riveted)

The boundary conditions at both ends are

M

- {1 1
Hoo

y
and gz’ 0, (ends riveted).
The moment and deflection equations do not simplify as for the
previous case with no rivets. The moment equation of reference &
is corrected and shown as errata at the end of this report.
For ease of writing,the three equations are written as

y = ZZ[dMX‘ + 19\]1)(1] =0

and

ot o= ZX[ujixi + i]jixj] =0 .

The origin of the coordinate system is selected at the middle
of the beam, so that the above three relations hold at x equal
to plus and minus L/2. For a solution to exist the resulting
12 x 12 determinant of coefficients must be zero. All elements
of the determinant are written in terms of Ri'° The Ri’ terms
are trigonometric or hyperbolic functions of J J

R 2L 5 L %L 5L 1y
"o'%"’ 5] Rlzé-, s, R,* % t; Rlzzand/or té R122'°

3

The factor R®L is made a parameter F and for a given geometric
cross section and physical properties of the elastic and visco-
elastic layers a variation of F with h; can be obtained by solving
the 12 x 12 determinant on a digital computer. This will be done
in the near future,
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m":mR =
2 2" 1+82

Moment
Real part of M = J pJ1 ;

i
P11 [--m]no2 2 03/2151n a]X = q]]s1n a]X
Pyp = [mésno3/2]sin alx = qlzsin a]X
P13 = [m]a]+mén03/2]cos X = Gq3€08 a,X
Pig © [-méBn03/2]cos a]X = Qq4C0s a]X
P1s = [msimy(si™-3sqe1)amap (35126061 %) R,

+

[-mytiams (352768609 man(si 335 1) IR,

A15R41*15R42

Prg = [mytimy(3sies-ti®ymia(si®3s1t32) 1R,

¥ [-m]si+mé(s;3-3siti2)-més(3sizti»ti3)]R42

= 96R49%r16Rs2

7 = 958317 ry5Rs

O
-
~J
I

P1g = 916R377r16R32
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03

[mys3-m3(s3°-353 3% mmis (35745 -t43) R,

+

.3)

[-m]t§+m§(3sézt2 t) '3-3s't°2)]R62

+ mée (52 ots

= 9198617 r19Rg
= [-my th+ma(ss t‘ '3)+m s(s t'z)]R
P1,10 1527 2 22 1iRg

3 2)

+

] ) ] 049
[-»m]sz+m2(s2 -352t2

200 03
-ms8 (3552153 IR,
= 99,10%1% 71, 10R62

P1,11 7 919R57%r0Rs0

P1,12 = 91,10%1%r1,10Rs2




Imag, part of M =} J 25i¥5
3/2

a1 [mzsn0 ] sin a]X = B]]sin a]X

ayp = [-m]n; m2 03/2+mé8n03/2]sin a]X = 31251" a]X

3/2

%3 = [--m26n0 Jcaos a]X = 8]3cos a]X

%q [mjno%+mé(1~82)no3/2]cos a]X = B14C05 a]X

g = (mtiomy (351 e}t min s 381 61%) IRy,

+ [W s (s -3s1 tiz)-més(3si2ti-ti3)]R42
= B15Rg1tY15R02

M6 = N5R41MY15R42

417 = B1sR31*YisR32

a1g = 9y5R31H5R 32
g = [m1 5" 2(35 -té3)+mé3(s 3s t >1R61

$ ] !3 [} 12 ] |2
+ [m]s?_-mz(s2 -3s,t) ) -m (3s2

3
] [}
283557 t5-t5") R,

a9 = B1gRg1Y19R62

61,10 = 919f617Y10R

62
O 17 = B1gR51*Yq0Rs

1,12 = N9R51+Y19R52
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) dJ1 ; = Real part of y

Using a; =n % R];i

dya = [ > + "o ] sin a,X = 2., sin a.X
1N no% (]+623 1 11 1
-Bn
dy, = [ ] sin a.X = 2.,sin a.X
12 (1+85) 1 12 1

1
2

[N
1

ny
13 = a[-n- + --7?] cos a]X %13 €0s aX

2
ny 148

\-

nOB
d]4 = [::;?J cos a]X = 2]4cos a}X
: Ss] s] Bti ] St‘ ti Bs°
d. = - + R, + [ ey ] R
15 "?+t;E' (1482)  (14p2) 41 ;;§+t]§' 148 2 42
= 25Ra1*F 1R,
: Sti ti Bsi ] : -Ssi s; st{
ds, = + + R,.+ + 1R
16 si2+t§2- 1462 14ge 4 Siz tiZ' 82 14gl M2
= 2eRartfi6Ra
Ssi si Bt] St] ti Bsi
diy = [ - + TRt + IR
17 siz+tiz 1462 14ge. 31 ’“? 1+62 14ge 32
R31*F15R3,
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216R31*16R32
Ss) s! gt} St t) gs.)
2 2 2 2 2 2
( - + JR.1#[ + + 1R
2 tt 2 ¥t
219R61*F10R62
[} ] [ ] ] ]
= { zta 5t & 5+ BSZZ]R61+[ ~Zs2 7+ 2 5 - BtZZ]Rsz
[] ] ] [}
52 +t2 148 1+8 52 +t2 148 1+8
= 21,101 * 1,102
= L19R51*f; gRsy
= 21,1011 10Rs2

— e g
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Imaginary part of y

Imy=77 qJ1 ;
factor out -—]-;
R 2
P 1
g =[—-—-]s1nax hysin a,X
N i n 1
[ S Bn02] . . . .
gyp = T - sin a,X = n,, sin a
12 noz i 1 12 1
Lo
g =-—-—-cosaX h,, COs a,X
137 2 1 13 1
L
[- = + n°ZB] X X
g N - CO0S a COS a
14 noa o 1 14 1
st} t1 s ssj sl st
SRy sver Rabvee Sbver s vy el e iRy
1t IS I
= 1q5Ra1K5Re0
Ss." si Bt] St] ti S‘i
916 = [Siz*tiz Tl Tl A i2 Tl Teal a2
= MgRayRy6Re0
917 = NygRay*ko5Rs,
918 = MgR31+ky6Rs3
St t! BS. Ss)! s} gt
999 = [=3 : — 7+ 22]R61+[ —= 7 - = 7 - 22]R62
S;7HE,T 14T T4 sé‘+té 148 148
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919 = MgRg1* KigReo

1 ] [] 40 ] ]
91,70 = | SZZ 7 - 2 7 - Bt22”‘61"[ th 5+ 2 7 - : 51R62
’ S e+t) 1+8 148 sie+t) 1+8 1+8
2 *t 2t
= Ny 10R61%%1,10R62

91,11 = MoRs1tkigRs

91,12 = M1,10R51%K, 10882
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Real part of z'' =] u; %3

U

U2

1

U3

U14

Uig

U6

oy — —

-n,cos a]X = v]]cos a]X

0
-n051n a]X = v]]s1
0

08 .12

2 2w
251t Ray +(s17~t1")Rgy =

2 .2
(s17-t17)Ryy-257,

. 2 .2
25qtRy* (57717
2

l2 ]
(52 -t5 )Rs]-ZS t R

2
2sptoRg (s -1;

2
148 [}
255 toRg (557~ t;

2 .42
(Sé -té )R5]-25é ;

n a]X

R3p = VisRa1tWy5Ra,
= WigR3p#VygRa,
Ra2 = VisRgtvisRsep
Rg2 = “H15Ra1*V15Rg2
2toRga = VigRg W gRs50
2VRe = —WooRertVo R
52 = “"19R51*V19R52
taRs2 = V1gRg1M19R62
2o o
JRsa = =W1gRs1+V19Ro
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= Wy

’.= ..‘.
part of ¢ Z]1JXJ

-n sin a]X
W15R317V15R30
V15R31%W R 3,

¥15R41V15R42

= Vi5Ra1Wq5Ry,

R51-V19Rs52

u

V19R51*WqgRs;
= W1gR61-V19R62

Y19R61*%19Rg2

B R
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III. Determination of Natural Frequencies - Approximate Method

1.0 In view of the complexity in solving the 12 by 12 determinants
for various boundary conditions, an approximate procedure
was considered. The characteristic equation of the sixth
order homogeneous differential equation developed in refer-
ence 5 is re-examined. This is re~written as equation (III~1).
When solved for the natural frequency, esquation III-4 is ob-
tained. An investigation of equatcion 1II-4 reveals that it
is in the usual form for homogeneous beams

a?
LY P

a
in which the eigenvaiue Ay is comparable to ~gr, and EI,

the stiffness in the homogeneous beam, is comparable

to (By+B3+Kis2a). The values of a, are determined by the
boundary conditions and a tabie of such values is given

on page 35, The quantity (B)+B3+K;s2a) represents the
effective stiffness on the vibrating beam, in which B; and By
are stiffnesses of the individual steel layers about their
own neutral axes and Kj62 is the portion of the stiffness
due to transferring the area moments of inertia of the
elastic layers to the composite neutral axis. The factor

o is a factor which indicates the shear carrying capacity

of the viscoelastic. When o is equal to one-half then

there is no shear strain in the viscoelastic, whereas when

o is equal to zero, the viscoelastic canrot transmit any
shear stress and each elastic layer bends independently
except for being restricted to moving laterally the same
amount. For the case of the simply-supported beam having

no axial constraints at each end, the value for the eigen=
value Ay is exact; i.e.; Ag = (%1)2, so that substituting
this value for Ay into the frequency equation yields the
exact natural frequencies., The factor o is exact for this
case and truly represents the effect of frequency on the
stiffness of the beam. Guided by this form of the frequency
equation and by the exactness of using this form for a simply-
supperted beam, it is postulated that this form of the equa-
tion for the natural frequency may be used as an approxima-
tion to the natural frequency of beams having other end
conditions. Thus it is assumed that Ag = 28 where a, is the
usual factor determined by the boundary ° conditions,
Thus, given the geometry of the cross-section, length of

the beam, the physical properties of the materials and the
boundary conditions, the natural frequency may be approxi-

- 30 -

-



D

mated by equation III-4 in which o is given by equation
III1-5, For ease of calculation the curves of o versus
G are plotted for the first five modes of the cantilever,

simply-supported, free-free, fixed-fixed, and fixed-pinned
beams.

It is recognized that this procedure, suggested for finding
the natural frequencies of laminated beams,is approximate
and that its accuracy can only be checked by exact solu=
tions of the kind performed in section II, and/or by tests
of actual beams. It is felt that the procedure should
yield good engineering results.

- 3] -
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Approximation of Natural Frequencies
Equation {36) of reference 3 , is

; R](2d15+1) , SR%(1+62)(1+Sd]) d2 \
y — -
}‘o+>‘o[ d-]-__]+)‘o[ d] H']'“’l]
2
ZSR]dzw] d2

-Ao[—-:-a']——] - a-]- u%SZR%(HB?') =0

Solving for m%, we obtain,

R
2 1 2 2y¢]
;- gl . Po + 2 [25R gl + RES(1482) (3 +5) ]
0 2 n2p2 2
2 L AZ + 2% SR.*5 R](He )
OY',
2 ' 2
. F]+B3 . []LK]ﬁ Ry[A #RS(T + 82)]
1 ) o ' 2 2R2 2
(B]+B3)[AQ + 24 SRy+S R](1+e )]
B,+B
where d] =13
K]52
d = -.2-— 4
2
K162

The last equation may be written as,

B.+B. K.62 ]
1°3 ., ™M

2 = 32

ol Ao K. * o J

P p
where
@ = El}xo+R]S(]+62)]
2 + +S2R2 +52
A2 ZAOSR'S Ri (1+82)
If Ao = noR]
then no+S(1+32)
a:

2 2 2
n2’+ 2nOS+S {1+82)

I11-1

[11-2

III-3

I11-4

III-5

I11-6

For a sandwich beam having a thin viscoelastic layer S * 2, so that

no+2(1+62)

a
2 2
ng + 4no+4(]+3 )

- 32 -
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Reconsidering equation I11-5, for a, it is seen that, for a sandwich beam, if
we let

Y, = o
0"
then
anR]L2+2R]2L4(1+82)
«= =7 T 28l HI-8
a, +4anR]L +4R] L7 (1+8%)
or letting
G = F° = R]Lz IT1-9
anG+262(1+62)
a = 3 2 . III-10
a,“+4a G+4G (148°)

For the special case in which g «<1

3'%55 ° I11-1

Using the relations III-10 and III-11, plots of « versus G are obtained and
are given for the following end conditions

. Cantilever
Simply-supported
. Free-free

. Fixed-fixed
Fixed-pinned

I WN —
Y
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For a simply supported beam with no axial constraints on the layers at each
support it is found that

2 2

A = a7 = (D) (See page 35 ) I111-12

so that 2
4 (B,+B,+K 6 a

2 < () { ] g ] f 11113
It can be seen that the term [B1+B3+K s%a] represents the stif fness of the
laminated,beam. When Ry is infinite lno shear strain in the . layer)
then o + 4 (or for a sandwich beam in which S = 2 then a+ ) SO that the

stiffness approaches a value of
K]GZ
By + B3+ ——.

This is the stiffness of the composite cross-section in which the shear is
carried. directly through the V.E. layer without shear deformation, The
other extreme case occurs when Ry + 0. In this case o becomes zero, and
the stiffness is @ +B3) and each beam contributes solely the stiffness about
its own axis; no shear stress is ‘transmitted through the viscoelastic layer
although the theory imposed the condition that both beams move laterally by
the same amount,

The above description indicates that the parameter o is an inverse measure
of the shear strain occurring in the Viscoelastic layer. We note that for
small values of 8

1
o = =g

0

e

so that a maximum value of o is g-for n_equal to zero; and « approaches zero
as n, becores large compared to S. The quantity n, is always positive,

It is seen that for the condition of simply-supported, unrestrained ends,

using Aq = (3%)2, the value obtained by the usual homogeneous beam, an ‘exact
solution is ;E tained by using equation(III-13).The factor '« is exact in this
case., This procedure suggests a means for obtaining the natural. frequencies of
laminated beams having other restraints, i.e.; use the a, constants obtained
for homogeneous beams in the relation Ay = an A table of values for a, is

given on page 35 , for several boundary conh1t1ons.
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s General Specific
Beam Condition Relation Relations
" 2.2 ,
1. Cantilever a, = (n=%)“n = 3,52
y forn> 2 = 22.0
/ 1 61.7
ﬁ
121.0
200.0
|
2, Simply - a, = (n'fr)2 9,87
supported
: 39,5
]
‘ 5 { 88.9
# #7 !
! = 158,
= 247,
22 _
3. Free - Free a, = (n+) n = 22.0
L —J = 61,7
4, Fixed - Fixed |[[same a_ for Free ~ 121.0
Free afld Fixed -
4 ‘ Fixed) 200.0
’ /
-’ 298.2
. . 2.2
5. Fixed - pinned a, = (n+4)“n 15,4
3, 50,0
: ' ay = 104.0
/ Pr
a, 178.0
a 272.
_on
Ao LZ
Table 1
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IV. Miscellaneous Considerations

1.0 The approximate expression for the natural frequency of a

2,0

300

4.0

sandwich beam further approximated for the case in which g «<1,
The expressicn for o simplifies to

The expression for wy is written explicitely in terms of the

geometric and physical properties of the elastic and visco-
elastic material.

Consideration is given to designing a beam for optimum damping
if the physical properties of the materials and the natural
frequency of the beam is selected. The re’ation is based on the
case in which 8 <<1. Considering wig as the natural frequency
obtained when « = 0, a relation, equation (V-13),is obtained

for n.., For optimum damping ref. 5 shows that ny = 5. Using
this ?act a relation, equation (V=17),is obtained for the
necessary half thickness, Hy, which would yield optimum damping.
The optimum length is obtained from

yielding

a. i
L=[§-%]—]*°

Based on the results of saction 111 , for B <<1, expressions
are derived for Gy and g which allow one to solve these pro-
perties of the viscoelastic material if the geometric pro-
perties, elastic properties, and the end-conditions are known
and if n and vy are measured. These equations may be used to
find the shear properties of a viscoelastic material if 8.<<1,
This procedure may be considered as a means for testing material

to insure adherance to procurement specification of a viscoelastic
material.

Using the results of ref. 5, an approximate expression for the
composite loss factor, equation (V-23),is obtained in terms of h

and 8, It is shown that this expression yields results which
are within 10% accuracy.

- 42 -




5.0 1t was shown in ref. 3 that the natural frequency of a sand-

wich beam increases as the loss factor, 8, is. increased. It
is shown herein that the same situation occurs using the
approximate expressions for the natural frequency developed
in section III, thus reinforcing the analytical result that

viscoelastic damping causes an increase in natural frequency
for a laminated beam.
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1.1 Determination of the natural frequencies for small values of material loss
factor = (B < 1)

Considering equation (II-4 for small values of B we note in the equation

2
B+B, K8
2,207, 0

“17 % 7 P

) V=1

that for a sandwich beam having a thin viscoelastic layer

ngt 2(1+8%)
a4 = Pl ’ IV-2

} 4
n, +4n0+4(1+8 )

and that for g<l1

a ; ?]_1?*.70 IV‘3
()
We note that since n, can have values from zero to infinity then « has values
between one half and zero. °

>

Using the relation

= 2 _n
S 1V-4
in equation (fv-3)
then R LZ
a = ——]———-2- IV-5
a_t2R,L
n
or since
G]b G]b
STl )i V-6
21 2 1
then
A NE
o = 2 . IV~7
4anH2H]E+2G]L

- 44 -
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or
o ] IV-3
TH-2H, y
[a <-—l§-3o E 4 2]
"oy G
Now

] 3 2.3

By = 5 (2H,)b = S Hy b E IV-9

and for the sandwich beam

3
therfore
_4 .3

also

2

8¢ o 2 _ 3

K] = EbZH][ZH]] = 8EbH1

for

H2 << H].
The value for p is

y;[4H;b] + y,[2H)b]

where
Y, is the mass density of the elastic material and y, is the mass
density of lhe viscoelastic material. The natural frequency may be written as
, @ 4H3E ) 8EHS
n Eﬂ' [3[4Y]H1+272HZT‘ : 4Y1H]¢§72H2] H-10
o ,  AEH3 a°
w] = 3(4Y{H]*2Y§H27[1 [ 1+6a] V-1

in which a is found from equation (IV-8),

- 35 -




VL e L A __..7(-1;,‘._._,,-“_ e ae EREE - I

Thus, in order to calculate the natural frequency of a sandwich beam, one
would need to know

1.

2.
3.
4,
5.
6.

7.

a_ - This is detemined from the end conditions and the mode of
vibration, A iist of these values is given on page 35.

(ZH]) - This is the thickness of the elastic layers.
(2H2) - This is the thickness of the viscoelastic layer.
L = This is the length of the beam.

E - Young's Modulus of the elastic material,

G] - This is the real part of the shear modulus (storage modulus)

of the viscoelastic material.
- This is the mass density of the elastic material.
Yo * This is the mass density of the viscoelastic material

(Note that the mass per unit length and per unit width is the
quantity 4Y]H'l + 272H )e

- 46 -
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> 2.1Design of a Sandwich Beam for Optimum Composite - Loss Factor

Using the suggested approximate procedure for finding.the-natural fre-
quency of a sandwich beam having a thin viscoelastic layer, we have

= 2 n
Ao"noR"-F.

But using eq. ( ).
2 3
2 _ 3 AEH

Y10 ©

7 ] Iv-12
LY dygHy + 2y,

we can obtain from (IV-12)

2
. 3(8y.H, + 2y, H,) w
2 2 Xl T B o Vot3
4 EH3

(noR]

For optimum damping,

h = 50 (see pg. 11-33 ref. 5 ).

Also for hy = 50 we find from the ng vs hy plot that ng = 5,
for Ny = 5, we find for g<<1 that
2 _ 2 13
w] = UJ]O ['T-] IV"]4
or
2 _71 2
w'lo - T§' U.)‘lo IV"]S
. Gy
Since R1 = ﬁEﬁTﬁ;
then 2 9
G 21 (4y H;y + 2y H,)w
25[ ) = ek 22 1V-16
16E H] H2 52 EH]

- 47 -




Solving for H] we find

3.2
Hy = ksl V=17
1 3,86 G% - 4~Y]Ew§H§ -

Thus for given elastic material (E and y,) and a given viscoelastic
material (G, and y,) one may select an wy with its associated Gy and a
viscoeiastil thickﬁess layer (2H), then'solve for the half thickness of
the elastic layer (Hy) for optimum damping. The length of the beam may be
found from the expression.

noRl N

"~

[
o

so that for n
IV-18

in which a, is found on page 35.

Equations (IV-]7hnd(1v-]3%yield the half thickness of the elastic layer
and the associated length of the beam to achieve optimum damping.

- 48 -
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3.1 A Suggested Method for Determining the Shear Moduli and Loss-Factor of a
f’ Viscoelastic-Material - B<<T.

A method for detemining the shear moduli and loss-factor of a visco-
elastic material is suggested, based on the analysis on pages44 and 45
If in some manner, as for example impedance measurements of a free-free beam,
the composite loss factor n and the natural frequency w) and its associated
mode number are measured for a sandwich beam having a thin viscoelastic layer,
then the shear modulus G, and material loss factor g may be calculated.

For the case in which g is small Gy and n can be obtained in the follow-
ing manner. Knowing the mode number and the end-cond1t1ons, the value of ap
'ﬁay be 9bta1ned from table 1, This may be used in equation {(IV-11).to so]ve

or (s Y To eo’

3(4Y]H]+2y2H2)L4 > 1
o = 3 2 w'l - '6— IV“’]g
20E H3 2

Using equation (1v-7)and solving for G], one obtains

4aanH2H]E

. 1V-20
1 e2a)

G

in which a is obtained by solving eq (1v-19).The real part of the shear
modulus is thus calculated.

The relation for the composite loss fagtor n for a sandwich beam is shown
in ref, 5 y to be eq. II-15,

R1K1Ag 862
n= 2 - 2 G IV"Z]

which for the assumptions being considered i.e. (B<1), becomes,

2 2
(4Y]H]+272H2) w][G]+2A0 HZHlE] ,
4EG]A0 }]

B =0

This last eauation allows one to calculate the material loss factor 8.
Having found G] and 8, the loss modulus G2 may be found using

G, = BGy.

- 49 -




b 4.1An Approximate Equation for . the -Composite Loss~Factor

It was found in ref. 5 , that for a sandwich-beam having a thin
viscoelastic layer

3
i 6 "o B

-
g (24n )%+ (28)°]

An inspection of the n_ vs hy plot for values of R between .1 and 1
(pg-11-34 ref. 5 ) indicates that the log n_ vs log h,, curve is approximately

a straight line and rather independent of 8 $or values of g between .1 and 1.
The relation can be assumed to be

n_=c h] IV=23

in which ¢ and k must be evaluated from the curve. We see that two corres-
ponding: points on the no-h1 plot are

500
11

n
0

"o

.20- and h1

2 and hl

Solving for c.and k by using the above.values we find
k = .6
and c = 475
This then yields the relation
h1’8
[(2+.4750,"°)%+(28)°]

n = .668 V=24

A check of three values of hy indicates a good cerrelation with the exact re-
sults, These are shown below.

: n

hy Approx, | Exact | % error R
4 022 .0238 -7.5 ol
4 .153 .150 +1.95 1
40 .031 .033 -6.05 ol
40 282 .280 +,7 1
600 .0195 0185 +5.4 o]
600 . 195 .185 +5.4 1

- h0Q =~




— PUPFURURVOT vt p S i g P b i - 7. .

The approx. value of n uses equation (IV<24) whereas the exact value of
n is taken from the n vs hy plot of ref. 5..

As was shown previously in ref., 5 , the approximate equations for small
valtues of hy i.e, hy less than 1, and the approximate equation for Jarger values
of hy, i.e., hy > 2000 are given as

1.
3h,?
. ] 8
n = for hy < 1
16 1+82 1
n = -g,— for h] >> 1,
h]/’

- 51 -




5.1 Comment$ on-the apparent increase in Wy when damping is present

In vref, 2 , it was shown that

where
W is the natural.frequency including damping effects

1.
w, = p2 [5542. the undamped natural frequency

n is the composite loss-factor

p is associated with the mode number

EI - stiffness
p = mass/unit length.

In the above EI is the stiffness and should take into account the decrease
in stiffness due to the shearing effect occuring in the viscoelastic layer.
Thus if used properly I is the total I of.the cross-section about the composite
neutral axis, at-the low frequencies, and decreases to the sum of the individual
['s about their own.neutral-axis-as-the-vibraticn-frequency increises. But for
a given EI, indeed the relation above indicates the natural frequency would
increase with the addition of damping. As a further substantiation of this
increase we look.at the expression. for the sandwich beam having a thin visco-
elastic layer,

o8 = by 11 + 6al,

The factor a« accounts for the shear effect of the viscoelastic layer as
was. pointed out previously since , for g = 0, it varies from 0 (no shear
carrying.capacity by V.E.) to % (all shear carried). Now « also contains 8,
the material loss factor. In particular we nave

ng + 2(1 + 52)

a =

2 2
n, + 4n + 4(1 + g°)

If we compare o containing 8 and that for which g = 0 i.e. a_, and if this
ratio -%- is greater than one, then the natural frequency of a bedm would tend
to be higher with damping than it would be without damping. Looking at this
ratic we see, , +2 (1+ 82)

2 2
nod + 4no + 4(T + g°) (n0+2)[no+2(1+3 )]

N =
%o o * ? 9 n02+4 n +4 (1+32)
h+2)
0

- 52 -
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® 2n, 8°

£t =7 z
" + 4 n +4(1+87)

o™

A

For g small compared to Nys We have

2

Lo e
QIQ

. 2n,
=1+ T—~——§)2 B
0 gt

This. shows %— > 1; therefore-this indicates that the natural frequency will
0
increase' with--damping, from the -value it would have with no damping.

- 53 =
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V.  Errata

The following two equations are the ervata for equation

(iloment and shear) of reference 5,

Let

TR 4
m K]s +(B]+BS)S

I1-9

B]+83

m:
2 R1(1+32)

Then,

(11-10) &M = ET][-m]alsin apx -m2a13sin alx]

+ E12{m23a13sin a]x]-Ezz[mzﬁa]3cos a]x]

+ E2][m1a]cos ayX + m2a13cos a]x]

* 531[m1531‘m2”31““23”321+532['m1Ssﬁ*mzusz*m23”31]
* 541[m1541'm2”41+m23U4z]+E42[‘m1542*m2“42*m23”41]
¥ Es1[m1551'”2”51*“25”52]+552[‘mlssz*mzusz*mzsusw]
* Eelfm1ss1'm2“61+m23”62]+562['mlsez*m2“62““23U61]

*4%11[m25a]3sin a1x]-E21[m26a13cos a]x]

, . 3. 3
R E]zl-m]aT sin alxamza] sin a1x+m26a] sin a]x]

& Ezz[m1a1ces a3x+m2a13cos a]x~m23a13cos alx]

* 531[mlsaz'm2“32““23”31]*Eaztmissi“m2“31*m23U323
* E4i[m1542’m2“42*m23“41]*Eaz[mz541’m2U41*m26”42]
* 551[m1552‘mzusz+m23“51]*552[m1551'“2”51*m23U52]

¥ 561[m1562”m2”52*m29U51]*Esz[mlsel'm2U61+m23U521}'
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4

V & e

dx *

Evaluation of Shear -V

(I1-11) = §V-7 E]][-m]a]?pqsa]x-m2a14cos$1x]

+ Elz[m23a14pos a]x]+E22[mzsal4sin a]x]

+ Ezl[-m]a]zsin aix-m2a14sin asx]
¥ EgyImyTgymoVgytmaBVap 1*Eg, LMy TaptmpVapimpslsy ]

+ Egy[myTayomaV gyima8V o 1B 4ol =My TyptmpV a8l

¥ Egy Iy Ty mmoV gy imp8V o 1+Eg, [ -my T tmyV iy tmyBl, ]

* EgyImyTgy-moVgytmoBY o 1+E gy [-my TgotmyVp,tmy8Ygy ]
+1E,+ [m,Ba 4cos: a.x)+E,.[m,Ba 4sin a x]
11(mp82, X 1¥Eyy [myBa, 1
+ Ey,[-m,a 2cos aX = m,a 4cos a.x +m,Ba 4cos a.X]
+ Eqpl-mya, X = Mady % HmoBay 1
+ E,,[-m,a 2sin A X = m,a 4sin a,x Hi Ba4sin aq %]
ARILY % = Mody % HmpBagsin ay
* EgplmyTapmmoVaotmoBV gy 1+E 55 [My Sy -myVgqHmygV 5o
* EgqlmyTypomVgotingsV g 1+EgolmySpqmyV gy ima8V gy ]

* Egy(myTopmmoVeotmoBV gy J+E5o My Spq=myVpy tmosVp, ]

¥ EGl[mlTGZ'm2V62+mZBV6]]+562[m1561"m2V61+m23v62]}'
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