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PREFACE 

This Memorandum deals with a combinatorial problem 

concerning edge colorings In bipartite graphs. The main 

results can also be Interpreted In terms of sum decomposi- 

tions of (0,1)-matrices or In terms of multlcommodlty 

flows In certain kinds of directed networks. 
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SUMMARY 

An n-list of nonnegative integers P - (p,, p«^ ...* Pn) 

Is said to be color-feasible for graph G If the edges of G 

can be colored (edges on the same vertex having distinct 

colors) In such a way that exactly p. edges of G have color 

1, 1 ■ 1, 2,   ...j n. The problem studied In this paper Is 

that of determining conditions for color—feasibility of a 

list P In a bipartite graph G. Necessary and sufficient 

conditions are obtained In case the n—list P contains at 

most two distinct positive Integers. It Is shown that 

these conditions (while necessary In the general case) are 

not sufficient If P contains three or more distinct positive 

Integers. For the case of two distinct Integers In P, the 

method of proof leads to an efficient edge-coloring algorithm. 
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EDGE COLORINGS IN BIPARTITE GRAPHS 

1.  INTRODUCTION 

The following edge-coloring problem can be posed for 

any finite graph G.  Given a finite sequence of positive 

Integers p^, $2*   ''•*  Pi*  when can the edges of G be colored 

(edges on the same vertex having distinct colors) with l 

colors In such a way that precisely p. edges of G have 

color 1, 1 - 1, 2, ..., -t? In this general form, the 

problem Is no doubt extremely difficult. Even for the 

case of bipartite graphs, where one might reasonably expect 

major simplification to occur, very little seems to be 

known. The question In this case., rephrased In terms of 

(0,1)-matrices, becomes: When can a (0,l)-matrlx A be 

written as a sum 

(1.1)    A - P1 + P2 + ... + P^ , 

where each P. is a permutation matrix of size p., that Is, 

P. has at most one 1 In each row and column and contains 

p. I's? Two special cases of this problem have been ex- 

amined In [1, 4]. In [1] It Is shown that If A has T I's 

and maximum row or column sum k. If p Is an Integer In the 

Interval 1 < p < [rr]>  and If r and q are the unique Integers 

such that r £. 0,  0 ^ q < p, T ■ (k + r)p + q, then A can be 

written as a sum of k + r permutation matrices of size p 

and one permutation matrix of size q. The main result of 
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[4] Is a combinatorial duality formula for the maximum 

number of permutation matrices of size m contained In an 

m-by-n (0,l)-«aatrlx A, where m <£ n. Denoting this maximum 

number by MA), It Is shown In [4] that 

(1.2)    h(A) - min 
B^A m 

Here B Is an e-by—f submatrlx of A,  T(B) denotes the number 

of I's contained In B, s(B) ■ e + f — n, and the minimum Is 

taken over all B such that s(B) > 0. The content of for- 

mula (1.2) can be rephrased as follows. Let 

(1.3) P! - p2 " ••• " Ph " m* Ph+l - ph+2 m '"  m $1 m ^ 

Then a necessary and sufficient condition for a decomposi- 

tion (1.1) Is that for any e-by-f submatrlx B of A, 

e - 0, 1, ..,, m,  f ■ 0, 1, ..., n, we have 
00 

(1.4) T(B) ^      I Vy 
j-(m-e)+(n-f)+l 

In (1.4) p. denotes the number of Integers p. that are 

greater than or equal to j, that Is, the p-sequence and the 

p —sequence are conjugate partitions of the Integer 

pi + P2 + ••• + P.'     s also understood that equality 

holds In (1.4) for B = A. 

Although conditions (1.4) are necessary for a decompo- 

sition (1.1) In which P. contains p. I's, It can be seen 

from examples that they are not In general sufficient. We 
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shall prove In Sees. 2 and 3, however, that these condi- 

tions are sufficient If 

(1.5) Px " P2 " ••• " Ph " P^ Ph+1 " Ph+2 " ••• " P^ " ^ 

thereby generalizing the main result of [4]. Our attempts 

to find necessary and sufficient conditions for arbitrary 

p. have not been successful. What little Information we 

have on the general case Is presented In Sec. 4. 

There Is a kind of coloring problem Involving matrolds 

for which conditions analogous to (1.4) are known to be 

both necessary and sufficient. A matrold M ■» (E, F) Is a 

finite set E of elements and a family F of subsets of E, 

called Independent sees, such that (1) every subset of an 

Independent set Is Independent, and (2) for every set 

X c E,  all maximal Independent subsets of X have the same 

cardinality, called the rank r(X) of X. It Is known [2] 

that the elements E of matrold M can be partitioned Into 

Independent sets I,, I»* •»•,  I, of respective sizes 

?lf $2*   "'*  P-6 *^ an^ on^y If*  for every X c E, 
flD 

(1.6) |X| ^    Z   Pj • 
J-*(X)+1 

Here 7 -> E - X, |X| denotes the cardinality of set X, and 

equality Is assumed to hold for X » E. Thus the coloring 

problem Is one In which a set of elements can have the same 

color If they form an Independent subset of E, and we are 

asked to color elements of E In such a way that p. elements 



have color i, i * 1,  2t   .*•, I,    If we say that a set of 

edges In the bipartite graph G having edge set E (a set 

of l's in the (0,l)-matrix A) is "independent"if it forms 

a matching, that is, if no two edges of the set are on the 

same vertex (no two l's lie in the same row or column), 

the family F of "independent" sets thus defined satisfies 

axiom (1) for matroids, but does not satisfy axiom (2). 

However, an analog of (1.6) for the resulting coloring 

problem would be 
00 

(1.7)    |X| >    1       p*   all X c E, 
j-P(X)+l 

where p(X) denotes the maximum size of a matching in set 

X of edges. Conditions (1.7), which appear on the surface 

to be stronger than (1.4), are again necessary, but not 

sufficient, for the desired coloring. Indeed, using the 

König theorem on maximum matchings in bipartite graphs, 

it can be shown that (1.4) and (1.7) are actually equiva- 

lent systems of inequalities. Thus the matroid result 

mentioned above extends in only a limited way to the non- 

matroidal situation we are concerned with here. 

^> 
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2. A DECOMPOSITION THEOREM FOR BIPARTITE GRAPHS 

Let G « [M, N; E] be a bipartite graph with edge set 

E and vertex "parts" M - {1, 2, ..., m), N - {I, 2, ..., n}. 

Thus each edge of G joins a vertex of M to a vertex of N. 

Throughout this and the following section we shall need to 

single out subsets of E of the following kind—all the 

edges of G that join vertices In X c M to vertices In 

Y c N. We denote such a set of edges by (X, Y). Thus 

E - (M, N). 

Let Gf - [M, N; E'] and G" - [M, N; E"] be subgraphs 

of G and suppose that E', E" Is a partition of E, empty sets 

not being excluded. We then write G - G' + G", and say that 

G Is the sum of Its subgraphs G1, G".  (If we let A, A', A" 

be the m-by-n adjacency matrices for G, G1, G", respectively, 

we have A - A* + A".) Let the degree In graph G of vertex 

1 € M be denoted by r^, that of vertex j e N by s,.  Simi- 

larly, let rl, si, and rV, s'.1 denote degrees In G* and G", 

respectively* The question we raise and answer In this 

section Is the following. For each 1 e M and j e N let p|, 

a I and pV, aV be specified nonnegative Integers.  We also 

specify two nonnegative Integers T
1
, T". When can we write 

G - G' + G" where the degrees In G' satisfy r[ ^ p[, si ^ aj, 

the degrees In G" satisfy rj ^ pj, sV < aV, and G' has T
1 

edges, G" has T" edges? As we shall see In the next section, 

the answer to this question leads to a solution of the edge- 

coloring problem for bipartite graphs If the Integers 
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Pi* Po*   ,*,, p-f satisfy (1*5)• Moreover, the method of proof, 

which uses basic results of network flow theory [3], provides 

an efficient edge-coloring algorithm In this special case. 

Theorem 2.1. Let 6 - [M, N; E] be a bipartite graph 

having degrees r,, 1 € M, and Si, j € N, and T - |E| edges» 

Further, let P*, crj, P^1, a1.1, T
1
, T" be specified nonnegative 

Integers satisfying 

(2.1) T - T1 + T"; 

(2.2) ri < pi + pi' i  € Mi 

(2.3) Sj < aj + oy      j € N. 

Then 

(2.4) 0-0'+ G", 

where G^G") has T^T") edges and degrees r]  < P^ for 

1 € M (rj < PJI for 1 e M) and si < rri for j e N (sV < aV 

for j € N) If and only If, for each X c M, Y c N, we have 

(2.5) T' - ^P^ - Jaj ^ |(X, Y)|, 
lex    jcY 

(2.6) T" - Ij'l -    Ya'j<  |(X, Y)|, 
l€X     J€Y 
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(2.7) |(X, Y)| < ^Pi + Ya'L 
lex "  jcy 

(2.8) |(X, Y)| < Vpj; + ^aj. 
ieX    J€Y 

Here X-M-X, Y-N-Y, and | (X, Y) | denotes the number 

of edges joining X to Y in G. 

Proof. The necessity of each of the conditions (2.5)- 

(2.8) can easily be verified directly. Suppose (2.4) 

holds with 6* and G" as specified, and let t1 denote the 

number of edges joining X to Y In G', t" the number of 

edges joining X to Y In G". Then 

^ ^ Iji+ L8J+ ^ ^ Ifi+ hi+ l(x'Y)l' 
l€X J€Y ' IeX j€Y 

|(X, Y)|  -t' + t'^    lrl+   Is'}*   1*1+   Iq, 
l€X     J€Y     l€X      J€Y 

verifying (2.5) and (2.7).  Similarly for (2.6) and (2.8). 

The sufficiency of conditions (2.5)-(2.8) can be 

established using known results about flows In networks. 

We begin by Imbedding the graph G In an appropriate flow 

network G* as follows. The vertex set V of G* consists of 

Xp *-2*  * * ■' "in' corresponding to part M of G, and 

Vl* 72*   '" '  yn' corre8Ponding t0 P^t N of G, plus two 

additional vertices that we label a and b. The directed 
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edges of G* are those ordered pairs (xi, yj) that correspond 

to the edges of G, plus the ord.ered pairs (a, xi) for 

i eM, (yj' b) for j e N, and (b, a). We not-1 impose 

nonnegative integral lower bounds t(x, y) and capacities 

(upper bounds) c(x, y} on the amount of flow f(x, y) in 

edge (x, y) of G* as follows: 

( 2. 9) t(a, xi) •max (0, ri ") - pi , c(a, xi) • Pf., 

t(xi' yj) - 0, c(xi, yj) - 1, 

t(yj, b) •max (0, sj ") - O'j , c(yj' b) • rTj, 

t(b, a) - ,.., c(b, a) • ,. ' • 

Then an integral-valued flow f satisfying Kirchoff's 

conservation law at all vertices of G* and also satisfying 

the prescribed bounds t(x, y) ~ f(x, y) ~ c(x, y) for all 

edges (x, y) of G* picks out subgraphs G', G" of G satisfying 

the requirements of the theorem by putting edge (i, j) of 

Gin G' or G" according as f(xi' yj) • 1 or f(xi' yj) • 0. 

It therefore suffices to show that (2.5)-(2.8) imply the 

existence of such a flow. 

It is known [5) that such a flow exists if, for every 

subset Z c V of the vertices of G*, the sum of the lower 
-

bounds on edges from Z to Z • V - Z is less than or equal 

to the sum of the capacities on edges from Z to Z: 
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(2.10)    ][ JXX, y) < ^c(x, y). 

xeZ        xeZ 
yeZ       yeZ 

We shall show that (2.5)-(2.8) imply (2.10). 

Let Z c V. First assume a c Z, b e Z.  Let S denote 

the subset of indices i € M such that x. € Z, and T the 

subset of indices j c N such that y. € Z.  Then (2.10) may 

be written as 

(2.11)    ^max (0, vi -  P'^) + ^max (0, Sj - (jj) < T» + | (5, T) |. 

ie§ J€T 

Let X c S be that subset of ? on which r^ - Pj| > 0, and 

let Y c T be that subset of T on which s* - 9? > 0. Then 

(2.11) becomes 

(2.12) T + |(5, T)| - YH -   ^sj > T" - ^P}« - ^a'«. 

ieX    j€Y        ieX    j€? 

But the left-hand side of (2.12) is at least | (X, Y)|, where 

X - M - X, Y - N - ?, and hence (2.6) Implies (2.12). 

Next suppose a € Z, b c Z. Let ? denote the subset 

of indices i e M such that x. € 1,  let 7 denote the subset 

of indices j e N such that y. e Z, and let Y « N - Y. Then 

(2.10) may be written as 

(2.13) £ max (0, ri - Pp < |(S, Y) | + ^ aj . 

i€5 J€Y 

■wpp|pl^w■■^pp■,■,■ll|,,|,■,^ ' ■" ' '•  "■■' ■' mmM '   '"■^^■^ 



-10- 

Let X c S be that subset of 5 on which r^ - PjJ > 0, and 

X » M - X. Then (2.13) becomes 

(2.14)    lrt -  |(5, Y)| < ^Pi;+ la'y 
ieX ieX    jeY 

Since the left-hand side of (2.14) is at most | (X, Y) |, we 

see that (2.8) implies (2.14). 

The remaining two cases, a e Z, b e Z and a e Z, b e Z, 

can be dealt with similarly.  In the first case, (2.5) 

implies (2.10); in the second, (2.7) implies (2.10). 

This completes the proof of Theorem 2.1. 

In Corollaries 2.2 and 2.3 below, we specialize the 

primed parameters occurring in (2.1)-(2.3) in order to 

note simplifications that occur in the existence conditions 

(2.5)-(2.8).  We shall be particularly interested in the 

case of constant bounds on degrees in G* and in G". 

Corollary 2.2. Let P[ - k' and Pj| - k", all i € M, 

and let al - k1, aV - k", all j € N. Then there is a 

decomposition (2.4) if and only if the inequalities 

(2.5a)    T' - k'dXl + |Y|) < |(X, Y)|, 

(2.6a)    T" - k"(|X| + |Y|) < | (X, Y) | 

hold for all X c M, Y c N. 

Proof.  It suffices to show that (2.7) and (2.8) hold 

automatically.  Suppose that (2.7) fails for some X c M, Y c N: 
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(2.15) |(X, Y)| > k'lXl + k"|Y|. 

Let k «max (r,, ..., r . s., ..., s ) be Che maximum degree 

in G. Thus k < k' + k" by (2.2) and (2.3). Then 

(2.16) - |(X, Y)|  >-k|X|, 

(2.17) - |(X, Y)|  >-k|Y|. 

Adding (2.15) and (2.16), and (2.15) and (2.17), yields 

0 > (k* - lc)|x| + k"|Y|  > k"(|Y|  - |X|), 

0 > k'lXl  + (k" - k)|Y|  > k'dXl  - |Y|), 

a contradiction.    Hence (2.7) holds.    Similarly for (2.8). 

If we further specialize parameters by taking k*  «1, 

k" « k - 1, where k is the maximum degree in G, a generaliza- 

tion of a result due to Dulmage and Mendelsohn  [1J is 

obtained.    In this case there always exists a value of r' 

that produces a decomposition (2.4).    Indeed, it is shown 

in [1]  that if the bipartite graph G has T edges and 

maximum degree k,  there exists a matching in G of size 

T'  • [r/k]  that "hits" all vertices of degree k;  that is, 

each vertex of degree k is incident with some edge of the 

matching.    Corollary 2.3 below describes the full range of 

values of T' for which such a matching exists. 

Corollary 2.3.    Let k > 0 be the maximum degree in the 
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blpartite graph G - [M, N;  Ej having T - |E|  edges, and let 

(2.18) max {T - |(X, Y) |  - (k - 1)(|X|  + |Y|)}  -a, 
XcM 
YcN 

(2.19) min {|(X, Y)| + |X| + |T|} - P. 
XcM 
YcJI 

Then, for each T
1
 in the interval 

(2.20) a < T« ^ p, 

there exists a decomposition G - G1 + G" where G'  is a 

matching of size T1 and G" has maximum degree k - 1.    In 

particular,  the integer T*  - [r/k]  satisfies (2.20). 

Proof.    We show first that the interval (2.20) is 

nonempty.    Let T'  -. [r/k].    If T' > P,  then there are 

X c M, Y e N such that 

T > k{|(X, Y)|  + |X| + |Y|}, 

a contradiction. Hence T
1
 < p. Next suppose T1 < a. Then 

there are XcM, YcN such that 

T - [r/k] >  |(X, Y)| + (k - 1)(|X| + |?|) 

and hence 

T(k - 1) > k|(X, Y)| + k(k - 1)(|X| + |Y|), 
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again a contradiction. Hence a < [iVk] < P. Corollary 

2.3 now follows from Corollary 2.2. 

The nonnegative integers a and P defined in (2.18) and 

(2.19) can be described in other ways. It is easy to see 

that the minimum in (2.19) occurs for X, Y such that (X, Y) 

is empty, and hence P is  the minimum number of vertices that 

cover all edges in G. By the König theorem, this is equal 

to the size of a maximum matching in G (frequently called 

the term rank of G). The integer a  can also be described 

in terms of certain matchings in G.  If we let S c M, T c N 

be the vertices of maximum degree k in G, and let P(X, Y) 

denote the size of a maximum matching in the subgraph of 

G having edge set (X, Y), then it can be shown that 

(2.21)   a  - P(S, N) + P(M, T) - P(S, T). 

We conclude this section with some further discussion 

of the existence conditions  (2.5)-(2.8) of Theorem 2.1. 

Our first comment concerns  (2.7),   (2.8).    We noted in 

Corollary 2.2 that these conditions could be dispensed with 

in the case of constant bounds on degrees in G*  and G".     In 

the general case, however,  it can be seen from examples 

that these conditions are essential.     Our second comment 

concerns interpretations of conditions   (2.5)-(2.8), viewed 

individually.    Suppose we know,   for example,  that  (2.5) 

holds.    What does  this say about G,  if anything?    It 

is not difficult to see (by taking P^ - jj - • in Theorem 2.1, 
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for instance) that inequalities  (2.5) are equivalent to 

the existence of a decomposition G - G'  + G11 where rj < PJ 

for i e M,  si  < al  for j  € N,  and G'  has T*  edges.    Similarly 

for (2.6).    Conditions  (2.7),  on the other hand, are equiv- 

alent to the existence of a decomposition G » G' + G", 

where r[ < P^ for i € M and sV ^ aV for j   € N,  and similarly 

for (2.8).    For example,  consider (2.7).    Let p£ and aV be 

specified nonnegative integers,  and take PV m a*  « «.    Then 

(2.8) clearly holds.    Define 

(2.22)        T'  -min {|(X,  N) |  +   ^ P^} - | (X0, N)| +   V   P^, 
XcM ieX i€X0 

so that (2.5) is valid.  Suppose that (2.6) were violated 

for some XcM, Y c N. Then clearly X ■ M, and hence 

T' < T - |(M, Y)| - JaJ - |(M, Y)| - ^crj. 
jeY j€Y 

By (2.22) we have 

|(X0, N)| + X 
pi < KM' Y)l - Z^j 

i€X0 J€Y 

Z pi + I^j < l(M' Y)l - l(V N>l ^ KV ?>l' 
i€X0   jcY 

contradicting (2.7). Hence (2.7) implies G « G* + G", where 

r^ < P^, sV < a I,  and G* has the number of edges given by 

(2.22). To sum up. Theorem 2.1 can be viewed as saying that 
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If G can be decomposed In four different ways, each of which 

satisfies a certain subset of requirements in the theorem, 

there will be a single decomposition of 6 satisfying all 

requirements in the theorem. 

We state this result for the situation of Corollary 2.2 

explicitly. 

Corollary 2.4. Let the bipartite graph G have T 

edges and maximum degree k. Suppose T • T* + T" for 

nonnegative integers T ', T", and let k1, k" be nonnegative 

integers satisfying k ^ k1 + k". If G has a subgraph H' 

having T f fdges and degrees not exceeding k'j and also a 

subgraph H" having T" edges and degrees not exceeding k", 

then G ■ G1 + G" where G* (G") has T ' (T") edges and degrees 

not exceeding k' (k"). 
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3.     EDGE COLORINGS 

In this section we assume that (1.5) holds and apply 

the results of Sec.  2 to the edge-coloring problem described 

In Sec.  1. 

We say that a sequence of positive Integers pp p^* 

...j P. is color—feasible In graph G If there Is an edge 

coloring of G In which precisely pj   edges have color i, 

Theorem 3.1.     Assume 

(3.1) P^ ■ •••  ■ Pjj • PJ      Ph+l "  •••  " Pj, " q* 

The sequence (3.1)  Is color—feasible In the bipartite graph 

G - [M, N;   E] If and only If the Inequalities 

(3.2) |(X, Y)|  £ £ p* 

J-IXI+IYI+1 

hold for all X c M, Y C N. Here the p —sequence Is the 

conjugate of (3.1), and equality Is assumed to hold In 

(3.2) for X - M, Y - N. 

Proof. Suppose the sequence p,, p«, ..., p. Is color- 

feasible In G. The number of edges In E — (X, Y) having 

color 1 Is at most |x| + |Y|; hence the number of edges In 

(X, Y) having color 1 Is at least max (0, p^^ - |x| - |7|). 

Summing over 1 yields 

I 

\U3  Y)\   >   Y    ^x C0^  Pi " 1*1   -  1*1)   - ^ Pj- 
1-1 j.|X|+|Y|+l 
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Now assume (3.1)  and (3.2).    We shall first apply 

Corollary 2.2 with 

h - k",  t - h - k",  ph - T», q(l - h)   - T". 

To this end, we note that by (3.2), with X - M, Y - N,we 

have T' + T" - [(M, N) | - T. Also, taking X - M- {ij, 

Y - N in (3.2) yields 
eo 

|(M- {1J, N)|  2   Z   P4. 
J-2 

and hence 

^ - |(ii N)|  £ pj - *, i € M. 

Similarly, s. < t for J e N. Thus the maximum degree k in 

G satisfies 

k ^ k1 + k" - -t. 

We now check that (3.2) implies the existence condi- 

tions  (2.5a) and (2.6a) of Corollary 2.2.    Let X, Y be 

arbitrary subsets of M,  N,  respectively.    Then 
00 

(3.3) |(X, Y)|2 7 P?2Ph-h(|5n  + |Y|), 
J.|X|+|Y|+1 

verifying (2.5a).    Similarly, 
OS 

(3.4) |(X, Y)|  > y Pj > q(-t-h)  - U -h)(|5f|  + |Y|). 
j.|X|+lY|+l 

It follows from Corollary 2.2 that G - G' + G" where G' has 

ph edges and degrees not exceeding h, and 6" has q(|, - h) 
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edges and degrees not exceeding <t — h. 

We can further decompose G1, and also G", by use of 

the following lemma. 

Lemma 3.2. Let G be a bipartite graph having T edges 

and maximum degree k.  Then G decomposes into a sum of h 

matchingSj each of size p, if and only if T ■ ph and 

k ^ h. 

The necessity of these conditions is obvious.  The 

sufficiency is a consequence of the Dulmage-Mendelsohn 

theorem described in Sec. 1. Sufficiency can also be 

established by induction on h, using Corollary 2.3,  as 

follows. The case h ■« 1 is trivial. Assume the validity 

of the lemma for h — 1 and consider h.  If k < h, then 

[iVk] ^ [r/h] - p. By Corollary 2.3, G has a matching G1 

of size p. Moreover, the graph G — G, obtained by delet- 

ing edges of G^ from G has p(h - 1) edges and the assumption 

k < h implies that G — G, has maximum degree less than or 

equal to h — 1.  On the other hand, if k - h. Corollary 

2.3 implies that G has a matching G-, of size p that hits 

all vertices of degree h. Thus again G — G, has p(h — 1) 

edges and maximum degree h - 1.  The lemma now follows 

from the induction assumption. 

We return to the decomposition G ■ G1 + GM reached 

prior to the statement of Lemma 3.2 in the proof of 

Theorem 3.1.  It follows from the lemma that G' decomposes 

into a sum of h matchings, each of size p, and that G" 
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decomposes into a sum of I — h matchlngs, each of size 

q. This completes the proof of Theorem 3.1. 

By taking Pu+i " ••• ■ p. » 1 in (3.1), we obtain 

the following corollary. 

Corollary 3.3. Let h(G, p) denote the maximum number 

of disjoint matchings. each of size p, contained in the 

bipartite graph G « [M, N; Ej. Then 

(3.5) h(G, p) ■ min 
XzM 
YcN 

—. ■ —i  * 

the minimum in (3.5) being taken over all X, Y such that 

p - |X| - |Y| > 0. 

This result is a direct generalization of formula 

(1.2) for the case p • |M| - m < n. 
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4.  SOME REMARKS ON THE GENERAL CASE 

It can be seen from examples that conditions (3.2) 

are not sufficient for the sequence p^, ^2»   •••»  P* t0 be 

color-feasible in a bipartite graph if this sequence con- 

tains three or more distinct positive integers.  For 

instance, consider the tree in Fig. 4.1 having the adjacency 

matrix shown there.  This graph satisfies (3.2) for the 

Fig.4.1 

10 10 0 

0 110 0 

0 0 111 

0 0 0 10 

0 0 0 0 1 

sequence 5, 3, 1, but this sequence is not color-feasible. 

Each of the sequences 5, 2, 2 and 4, 4, 1 satisfies (3.2) 

and is color-feasible. 

Let P « (p1,   p2, ..., pn) and Q = (q^ q2, ..., qn) 

be two sequences of nonnegative integers.  The sequence 

P is said to maiorize Q, written P >- Q, provided that 

with subscripts renumbered in accordance with 

(4.1) Vl > $2 -  " '  - pn'       ^1 ^ ^2 - ' * " - qnJ 

we have 
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(4.2) ^Pi > ^i'  e - 1, 2, ..., n - 1, 
i-1    1-1 

n     n 

(4.3) 1*1-   lqv 
i-1    i-1 

If P > Q and Q >• P, we say that P and Q are equivalent 

and write P <* Q. Thus P P» Q means that with the numbering 

selected In (4.1), we have pi 
m Qi*  1 ■■ 1* 2,   ..., n.  The 

majorlzatlon relation can be viewed as a partial order on 

the set of all n-llsts (unordered n—tuples) of nonnegative 

Integers satisfying (4.3). 

It follows from Theorem 3.1 that If P and Q each 

contains at most two distinct positive Integers« and If P 

Is color-feasible and P > Q, then Q Is also color-feasible. 

This Is In fact generally so, without any special assump- 

tions on P and Q. To prove this, we first make a definition 

and establish a lemma. Let P *■ (p,, p^* ... * Pn),  and 

suppose p. > Pi. Then the sequence P* obtained from P by 

defining 

(4.4) Pi -Pi - 1, 

Pj -Pj + 1, 

pk ■ Pk'  k ^ !> 5 * 

satisfies P >- P'.    Moreover, if PJI > pi + 2, we have P 4* P1. 

We call the transformation (4.4) a transfer from 1 to j on P. 
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Lemma 4.1. If. P V Q, then P can be transformed into 

Q by a finite sequence of transfers« 

Proof.  Select the numbering so that P and Q are mono- 

tone decreasing, and suppose P 4* Q* l'et ^ be  the last 

integer in the interval 1 ^ <t > n — 1 for which strict 

inequality holds in (4.2). Then P,+i < ^i+i« There are 

integers in the interval 1 £ i £ -t for which p. > q. . Let 

k be the last such.  Thus Pir > ^i, ^ ^i+l ^ ^i+l'    ^,et pl ^e 

obtained from P by a transfer from k to t + 1. Then 

P > P1 >• Q and P 4» P* • Repetition of this process estab- 

lishes the lemma. 

Using Lemma 4.1, it is easy to prove Theorem 4.2, below. 

In Theorem 4.2 it is unnecessary to suppose the graph G 

to be bipartite. 

Theorem 4.2. Let G be an arbitrary graph and suppose 

that P - (p,, p«, ..., Pn) is color—feasible in G.  If 

P ^ Q ■ ^IIJ Qo' * * *' ^r? *  t^en Q is also color—feasible in G. 

Proof. By Lemma 4.1, it is enough to prove that if 

P1 is obtained from P by a transfer from i to j, then P' 

is also color—feasible. Let G ■ G, + G« + ... + G , where 

G^ is a matching of size p., i - 1, 2, ..,, n. Consider 

the matchings G., G., where p^ > p,•  Each connected 

component of the graph G. + G, is either an even circuit 

or a chain, with edges alternately in Q.  and G.. Moreover, 

since p. > pi, at least one component must be an odd chain 
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havlng first and last edges in G. . Let Gj and Gl be ob- 

tained from G. and G. by interchanging G. -edges and G.— 

edges in this chain.  This produces a coloring of G in 

which pi edges have color i. 

In view of Theorem 4.2, one possible approach to the 

general edge-coloring problem might be in the direction of 

attempting to characterize those lists of nonnegative inte- 

gers that are color—feasible and maximal in the sense of 

majorization, that is, are not majorized by any other color- 

feasible list.  (In the example of Fig. 4.1, for instance, 

(5, 2, 2) and (4, 4, 1) are the only two such lists.)  However, 

even for the case of bipartite graphs, we don't know how 

to construct one such list, let alone all of them.  The main infor- 

mation we have in this direction is contained in Theorem 

4.3, below, the proof of which is modeled on König's proof 

that the edges of a bipartite graph having maximum degree 

k can always be colored with k colors [6]. 

Theorem 4.3. Let G be a bipartite graph having 

maximum degree k.  Then each maximal color—feasible list 

for G contains exactly k positive members. 

Proof. Let p,, .,., p be a maximal color—feasible 

list for G and assume that Pi > po ^ ••• ^ Pr > 0«  Since 

some vertex of G has k edges incident to it, we must have 

r > k.  Suppose that r > k. Let G - G, + ..• + G be a 

decomposition of G into matchings such that G. has p. edges. 

Let (u, v) be an edge in Gj^. Now u is incident to at 
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most k — 1 edges of G other than (u, v).  Hence, there is an 

s with l£s ^ k such that u is incident to no edge of G . 

Similarly, there is a t with 1 ^ t ^ k such that v is incident 

to no edge of Gt. Interchanging u and v if necessary, we 

may assume that & £ t. 

We will now construct a decomposition G - G^ + ... + G' 

of G into matchings with the following properties: 

' G^ - Gi for i f s, t, 

(4.5)  < number of edges of G' > number of edges of G . 

k neither u nor v is incident to an edge of G*. 

If u is not incident to any edge of Gt, take Gj " G. for all i. 

If u is incident to some edge of Gt, let U be the component 

of G + Gt containing u.  Since u is incident to no edge 

of G   U is a chain with u as an endpoint.  Suppose v is 

in U.  Then v would have to be the other endpoint of U. 

Furthermore, the number of edges in U would have to be even, 

since the edges are alternately in Gt and G , with the first 

edge in G.. and the last one in G . Hence, U together with 

the edge (u, v) would form a circuit in G of odd length. 

This is impossible because G is bipartite.  Therefore v is 

not in U.  Now let G^ - G^^ for i f s, t, and let G' and G' 

be obtained from G and G,. by interchanging G -edges and s     t s 

Gt-edges in the chain U.  Conditions (4.5) now hold. 

Since neither u nor v is incident to an edge of G', 

we may define a decomposition G •» GV + ... + G" of G into 
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matchings by setting 

/ 

G^ -G^ U {(u,  v)}. 

(4.6) {       G|;+1 -G^- {(u, v)}. 

G" Gi      for i f t,  k + 1. 

Let qj be the number of edges In GV. Then q^,, q«, ..., q. 

is color-feasible for G. Furthermore, by (4.5) and (4.6) 

we have 

^i -Pi    t .or    i 

^s -Ps + e. 

^t -Pt- e + 1, 

qkH-l "PkH-l - 1, 

where e > 0 is the excess of the number of edges in G' — * s 

over the number of edges in G  .     Since s<t<k+lit s 

now follows that 

i^i ^   ZPi      for      ! < J < r' 
i-1 i-1 
k k 

E^i > Zpi- 
i-1 i-1 

Since the list P is in monotone decreasing order,  this 

implies that Q > P and Q 4* ?*  contradicting the assumption 

that P was a maximal color-feasible list.    Hence r - k. 
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