
1 

ioW 
iO^ FOREIGN TECHNOLOGY DIVISION 

1> 
CO     ! 
CD 

9£ 

PROBLEMS  IN DYKAMICS AMD STABILITY OF SUKU.C- 

L 
€ l E A Rt N « H 0 « S E 

f€B FEDERAL SCIENTIFIC AND 
TICHWICAL INFORMATIOK 

LM3 LjJL£g J^Mt 

r 

L 

E^'J^.i'i'HiHiPSP ii ijl.UI■-iiJ.il   B.wy»i'.'.. i..nww 



THIS DOCUMENT IS BEST 
QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLY. 



This document is a machine translation of Russian 

text which has been processed by the AN/QSQ-l6(ar-2) 

Machine Translator, owned and operated by the United 

States Air Force. The machine output has been post- 

edited to correct for major ambiguities of meaning, 

words missing from the machine's dictionary, and words 

out of the context of meaning. The sentence word 

order has been partially rearranged for readability. 

The content of this translation does not Indicate 

editorial accuracy, nor does It Indicate USAF approval 

or disapproval of the material translated. 

DISTRIBUTION STATEMENT 

Distribution of this document 
is unlimited. 

ir-wjrt ^--lyffww! ftfg SU^Ws'J.  ' ^■■'"^tm'mm 



FTD-MT- 

EDITED MACHINE TRANSLATION 

PROBLEMS IN DYNAMICS AND STABILITY OF SHELLS 

BY:  P. M. Ogibalov 

English Pages: kjO 

THIS TRANSLATION IS A RENDITION OF THE ORIGI- 
NAL FOREIGN TEXT WITHOUT A4Y ANALYTICAL OR 
EDITORIAL COMMENT. STATEMENTS OR THEORIES 
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE 
AHDDO NOT NECESSARILY REFLECT THE POSITION 
OR OPINION OF THE FOREIGN TECHNOLOGY DL 
VISION. 

PREPARED BYi 

TRAK'SLATION DIVISION 
FOREIGN  TECHNOLOGY DIVISION 
WP-AFB, OHIO. 

FTD-MT- i 
AFLC-WPAFB-APR  66  67 

Date       P?  MarW 

Edited   by   .TpR: 



P. M. 0GIBAL07 
m 

VOPROSY DINAMIKI I USTOYCHIVOSTI OBOLOCKEK 

Izdatel'stvo 
Moskovskogo Universlteta 

1965 

Pages - 417 

V 

1 *> 

.. j...i| «»«■■IHJIIHI. ■ . .. PWP»« r*.*-*^ 



mmmmmmmm/mmumi 

f 

TABLE OF CONTENTS . 

U. S. Board on Geographie Names Transliteration System  iv 

Des agnations of the Trigonometrie Funetions ,  v 

Prel'ace.,  1 

i#   Chapter I. Necessary Data on Shells  3 

§ 1. Definitions, Hypotheses, Geometrie Elements  3 

§ 2. Deformed State, Conditions of Compatibility  7 

§ 3. Stressed State, Equations of Equilibrium  21 

I 

* 

l 

i 

§ h.    Relationship Between Deformations and Stresses. 
Differential Equations  ?2 

§ 5. Variational Formulation of the Problem of the Theory 
of Si BIIS With Geometrie Nonlinearity Taken Into 
Aeeount  36 

§ 6. Improved Motion Equations in Moments and Forces  ^3 

§ 7. Equations of Motion in Displacements in Axisymmetric 
Deformation  4 u 

§ 8. Initial and Boundary Conditions  b^ 

Chapter II. Elastic Oscillations of Shells.....  r>9 

§ 1. Natural Oscillations. Formulation of Problem  r/} 

§ 2. The Closed Cylindrical Shell  6'j 

§ 3. The Spherical Shell  7^ 

§ 4. Asymptotic Method of Investigation of Oscillations... 79 

§ 5. Parametric Oscillations, Formulation of Problem..... 89 

§ 6 . The Closed Cylindrical Shell  9^ 

§ 7. The Spherical Shell  100 

Chapter III.  Flutter of Panels and Shells  I07 

§ 1. Formulation of the Problem  107 

§ 2. Flutter of Panel  11^ 

§ 3. Experimental Investigation of Panel Flutter  136 

§ 4. Unlimited Closed Cylindrical Shell  340 



awiiaMiwiJfPlBiiBRiii imtaiiJip.Mp i n 

§ 5. Closed cylindrical Shell of Limited Length  1^5 

§ 6. Effect of Aerodynamic Damping  151 

§ 7. Approximate Method of Investigation of Flutter. 
Cylindrical Panel  156 

§ 8. Sloping Spherical Shell  162 

§ 9. Nonlinear Setting-Up and Solution of a Problem on 
Plate Flutter  171 

Chapter IV. Certain Other Eynamic Problems of Shells  183 

§ 1. Radial Elastic Deformation  183 

§ 2. Plane Elastoplastic Deformation  187 

§ 3. Action of a Moving Load on a Cylinder  193 

§ 4. On the Propagation of Elastic Waves in a Shell  198 

§ 5. On the Propagation of the Elastoplastic Loading Wave 
in the Shell.  202 

Chapter V. Stability of Shells Within Limits of Elasticity  211 

§ 1. Formulation of Problem  211 

§ 2.  Panel of a Flexible Sloping Shell  22Y 

§ 3. Dynamic Stability of the Sloping Shell Panel  270 

§ 4. The Circular Cylindrical Shell  278 

§ 5. Dynamic Stability of the Cylindrical Shell  287 

§ 6. Statistical Method of Investigation of the Stability 
of Shells  316 

Chapter VI. Stability of Shells Beyond the Elastic Limit  327 

§ 1. Formulation of the Problem  327 

§ 2.  Closed Cylindrical Shell  338 

§ 3. Approximate Method of Investigation of the Stability of 
Shells Taking Into Account the Physical and Geometric 
Nonlinear!ty  344 

§ 4. A. V. Pogorelov's Method for Investigation of the 
Supercritical State of Shells  360 

Chapter VII. Special Problems In Calculation of Shells 389 

§ 1. Varlational Formulation of the Problem on the Elasto- 
plastic Deformation of Shells  389 

11 

tmmmm wmm 



HMHIjMuuiiiitipBp^wpiiiMyMpai^^ 

§ 2. A. A. Il»yushin»s Final Relationship 592      I 
f 

§ 3. Setting Up the Problem of Determination of the i 
Supporting Power  ^00 

§ h.    Determination of the Supporting Power and Work- 
Hardening of Shells  ^02 

§ 5. Energy Method of Determination of the Supporting 
power 408 

§ 6. Shells With Nonuniform Mechanical Properties  414 

§ 7. Shells Subjected to Heating by Radiation  4l8 

§ 8. Shells Exposed to Irradiation  424 

Literature  431 

iii 



a, 

I 

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM 

Block Italic Transliteration Block Italic Transliterat: 
A   a A a A, a P P P P R,  r 
B   6 S 6 B, b C c C c S,  s 
B   • B t V, v T T T m T,  t 
r r r t G, g y y y y U,  u 
n A n d D,  d <t> ♦ <t> * F,   f 
E   e e t Ye, ye; E,  e* X X X X Kh,  kh 
m M m M Zh,  zh u u u H Ts,  ts 
3   t 3 $ Z,  z H M V V Ch,  ch 
H     M H U I,  i III Ul Ul Ui Sh,  sh 
R   ft n Ü Y, y IU m IU «f Shch,   shch 
K     K K K K,  k •b I h % it 

Jl   a ji A L,   1 , bl u hi u Y, y 
M     M M M M, m b h b h i 

H     H H N N, n 3 9 9 » E,   e 
0   o 0 0 0,  o 10 » 10 10 Yu, yu 
n   n 77 n P, P fl n B M Ya, ya 

* ye initially, after vowels, and after T,, hi  £ elsewhere. 
wKen written as 6 in Russian, transliterate as yö or 8. 
The use of diacritical marks is preferred, but such marks 
may be omitted when expediency dictates. 

iv 

■■■■"jp ü memmmmm 



f OLLOUING ARE THE CORRESPONDING RUSSIAN AND ENGLISH 

DESIGNATIONS OP THE TRIGONOMETRIC FUNCTIONS 

Russian       English 

sin sin 
cos cos 
tg tan 
ctg cot 
sec sec 
cosec esc 

sh slnh 
ch cosh 
th tanh 
cth coth 
sch sech 
csch csch 

arc sin sln"^- 
arc cos cos'1 

arc tg tan"1 

arc ctg cot"1 

are sec sec"1 

arc cosec esc"1 

arc sh 
arc ch 
arc th 
arc cth 
arc sch 
arc csch 

V 

slnh"1 

cosh"1 

tanh"1 

coth"1 

sech"1 

csch"1 

rot curl 
lg log 

rmr,-^vri^!3mmmmmmmm.m »m wm^mmv J  i   .».'"mmmmFsmt* 



1  S 

I 

PREFACE 

In modem structures of the most diverse types and purposes 

shells are very widely used and therefore, are of interest to us. 

I        In writing this book we used materials from lectures on the 

course "Shells," read by the author at the Mechanical-Mathematical 

Department of the Moscow State university, well-known monographs, con- 

temporary periodical literature, mostly Russian, and also the latest 

results obtained by the author in this field. 

On the general theory of shells we have many good books: P. F. 

Papkovich "Structural mechanics of the ship," Part IIj V. Z. Vlasov 

"General theory of shells," S. P. Timoshenko "Plates and shells," 

A. L. Gol'denveyzer"Theory of thin elastic shells," A. I. Lur'ye 

"Statics of thin-walled elastic shells," V. V. Novozhilov "Theory of 

thin shells," A. S. Vol'mlr "Flexible plates and shells," Kh. M. 

Mushtari and K. Z. Galimov "Nonlinear theory of elastic shells,"' 

S. A, Ambartsumyan "Theory of anisotropic shells and others. However, 

the problems of dynamics and stability of shells are insufficiently 

elucidated, and our book fills this gap to a certain degree. 

In the book we examine problems of oscillations of shells: their 

natural and parametric oscillations, panel flutter, and certain other 

dynamics problems, in it--we also examine problems of stability of 



Shells within and beyond the limits of elasticity of their material 

and certain special problems of calculation of shells, among them the 

effects of hardening of shells through cold-hardening, heterogeneity 

of the material, and penetrating irradiation. 

The book may be used as training aid for post-graduates and stu- 

dents of universities and technical institutes, who are specializing 

in the theory of elasticity and plasticity; it will be useful for 

scientific workers and engineers, studying the problems on strength. 

The author expresses his gratitude to Reader M. A. Koltunov for 

his attentive and thorough editing of the book, an*,  also thanks for 

their valuable advice the honored worker of science and technology of 

RSFSR, Doctor of Technical Sciences, Professor N. I. Bezukhov and 

Doctor of Physical and Mathematical Sciences, Professor V. V. Moskvitin. 

The author expresses his gratitude to his colleagues of the Chair of 

Theory of Elasticity of the Moscow State University, assistant I. M. 

lyuneyeva for the help,given in preparing and putting into shape the 

manuscrlpti technician-experimenter S. A, Orlova and laboratory tech- 

nician M. A. Trapp for participation in shaping of the book. The 

author will be grateful to all who will find it possible to send their 

wishes and remarks concerning the book. 
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CHAPTER  I 

NECESSARY DATA ON SHELIS 

§ 1, Definitions, Hypotheses, Geometric Elements 

A body, limited by two curvilinear surfaces, the distance between 

which (thickness h) is small with respect to its other dimensions. Is 

called a shell. 

The surface, dividing it in half throughout its entire thickness 

is called its middle surface. It is assumed that everywhere, excluding 

certain points or lines on it, the middle surface is continuous with 

continuously variable tangent and curvatures, while all its geometric 

characteristics change very smoothly, i.e,, so that during the transi- 

tion from one point to another point located at a distance of the order 

of thickness h of the shell, they undergo a relative change of the 

order of h/R (R being the radius of curvature) or less. 

We shall consider only shells of constant thickness. Depending 

on the shape of the middle surface we distinguish such types of shell 

as: cylindrical, conical, i.e., having the shape of developing sur- 

faces; spherical, in the form of ellipsoids, and others, which have 

the shape of nondeveloping surfaces. In actual structures the most 

widely used shells are those having the shape of developing surfaces 

and most frequently, cylindrical shells. 
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Let us assume that we have separated an element  of the middle 

surface of a shell, having an arbitrary outline; in a certain point m 

of it we draw a nonaal n to the surface, and if we draw through the 

normal n a number of planes, then at the intersection with the surface 

they will produce variously oriented plane curves — which are nonaal 

sections, 

Upon rotation of a certain plane S, containing normal n, around 

its normal sections s are formed. Determining their curvature, we 

find that for the two curves r and  t, lying in mutually perpendicular 

planes 1? and if, the curvatures have extreme values with respect to 

other normal sections. Directions of curves 

r and t are termed main directions in the 

given point of surface, and  corresponding 

curvatures are termed main curvatures. 

Let us assume that we found the main 

directions for all points of the surface, 

and if now we draw lines, the tangents to 

which in every point coincide with these directions, then we obtain 

lines. 

For coordinate lines a and ß we shall select lines of main curva- 

tures of the undeformed surface; they form an orthogonal grid on the 

surface (Fig, 1). 

For any point of the surface we may find the Gaussian curvature, 

which is equal to the product of main curvatures: 

The value 

^--(*8 + ^)=-(*, + *,) --^(Ä1 + *l). (1.2) 

Is termed the mean curvature of the surface at the point. 



Shells can be classified according to the sign of Gaussian curva- 

ture of their middle surface: thus, for example, the spherical shell 

has a positive Gaussian curvature, constant for all points; cylindri- 

cal and conical shells have a zero Gaussian curvature, since one of the 

main curvatures turns into zero, etc. 

A cylindrical shell, the cross section of which is a circumfer- 

ence, is termed circular; wnere, if its section constitutes a full 

circumference, it will be a closed circular shell, and, if its section 

constitutes only a part of circumference, it will be an open circular 

shell. 

A shell of any shape, the rise of which H is comparable to its 

thickness and is small when compared to its other dimensions, is 

usually considered to be a sloping shell. 

The solution of the problem of shell equilibrium during elastic 

and elastoplastic deformations is based on two Kirchhoff-Love hypoth- 

eses. The first hypothesis states that the total material particles, 

located on the normal to the middle surface of the shell before defor- 

mation, is located also on the normal to its middle surface after 

deformation and, therefore, the deformed state of the shell is deter- 

mined only by the deformed state of its middle surface. The second 

hypothesis states that all stress components which have the direction 

of the normal to the middle surface, are minute as compared to other 

stress components. These two hypotheses are in ageeement with each 

other and state that any thin elementary layer of materialj, parallel 

to the middle surface of the shell, is under the conditions of plane 

stressed state or, to be more exact, the stresses, effective in its 

plane, are significantly larger than other stresses. 

In addition to Kirchhoff-Love hypotheses, in our research on 

elastoplastic deformations we shall subsequently use the assumption 
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of the inccMpressibillty of the shell material. The degree of accuracy 

of this assumption is sufficiently definite, inasmuch as we know from 

the theory of elastic shells, the effect of the Poisson factor on 

strains and stresses. Meanwhile the incompressibility hypothesis 

introduces significant simplifications in the theory of elastoplastic 

shell defoliations. 

If we apply to the shell a certain relatively small distributed 

lateral load, then first of all, as a result of the action of compres- 

sing or stretching forces, chain stresses, evenly distributed through- 

out the shells thickness will originate in the shell. Since in this 

case, bending stresses in the shell will be comparatively small, the 

shell can be termed a zero-moment shell. This is the essential fea- 

ture of the shell as compared to the plane plate, which reacts to a 

lateral load with small sags mostly at the expense of natural bending 

stresses. 

If the shell is sufficiently thin, then upon a further increase 

of the load sags, comparable with the shell's thickness, may appear 

in it. Then in addition to stresses in the middle surface we shall 

have bending stresses with them in value, and the stressed state will 

be of a composite or momentum nature. 

Consequently, two different stressed states, which occur with 

small loads in cases of the plane plate and zero-moment shell, for 

flexible plates and shells become one composite stressed state. Hence, 

differential equations of the flexible plates and shells theory must 

have a common structure. For sloping shells, the composite stressed 

state is characteristic even with small loads. 

When investigating, for example, the resistance of a cylindrical 

shell, compressed along its generatrix, we may assume that in the 



Fig. 2. 

initial equilibrium position the shell works as a zero-moment shell. 

However, upon the loss of resistance significant bending stresses im- 

mediately appear. 

§2. Deformed State. Conditions of Compatibility 

Let us select the main orthogonal system of curvilinear coordi- 

nates £, TJ on the middle surface of the shell. At the point with co- 

ordinates (| and TJ) of the middle sur- 

face we draw the tangent plane. Me dis- 

pose of the mobile Darboux trihedron 

(x, y, z) in such a manner that the 

origin of coordinates ( x«y= z=0) 

coincide with point (|, r\)t  the x and y 

axes are directed toward the growth of 

i  and r\,  respectively and the z  axis 

toward the center curvature of line ^, Thus, the x, y axes coincide 

with main directions of surface at point (|, T\),    The middle surface 

element of the shell is formed by lines 4 = const, TJ = const and | + 

+ dC = const, T] + drj = const, and the element of the shell — by draw- 

ing normal sections through the above-mentioned lines (Fig, 2). We 

designate the displacement of points of the middle surface along lines 

x, y, and z through u, v, and w respectively. For initial curvatures 

of lines x and y let us introduce the designations kx = k^, k =» k2. 

Elongations per unit length and the shift of the element of middle 

surface resulting from the deformation of shell we designate: 

«'» = (««)«-o. «, = («„), o. «»= Y(*,„)* o. (2.1) 

and the change of its normal curvatures and torques, which from now 

on we shall term shell distortions due to strains, we respectively 

designate: 
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If components of the displacement vector of the point of the middle 

surface x, y, z axes are given as functions of coordinates (£, TI), 

then deformations e^, e«, e^o are expressed through them by known 

formulas, containing derivatives from displacements not exceeding the 

first order, and distortions H., K^, K.« — not higher than the second 

order. 

According to the first Kirchhoff-Love hypothesis, the normal 

element of the shell before deformation remains also normal to the 

middle surface after deformation, therefore, small deformations of 

the layer, located at the distance z from the middle surface, will be; 

3« = «« •2*1. 

(2.3) 

or,  expressed through displacements: 
du 

3«-««- to      w ^ • 

do 9IB 

dy df 'yy *yi 

Formulas (2,5) fully determine the rule of signs for distortions 

For instance, value K. is considered positive in the case when the 

fiber, parallel to the x axis and located on the side of positive 

values z, is shortened owing to distortion H.; torsion T = yi.0  is 

positive, if the angle between fibers, which are parallel to x and y 

and located on the side of positive z. Increases, 

In examining the elastoplastlc deformation problems we shall 

require an expression for deformation Intensity, which we write In 

the form 

"-TT^ KT 
VP.-2zP„+2»P. . 

(2.'.) 
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where ? ,  P    ,  P    are quadratic forms: 
e*    EH    H 

P,«c?-f«1t, + 4+«««; (2.6) 

P.«x?+«tii+4 + *»: (2.7) 

Pi. = «1xI + «rf4-f —«4»,+~Vl-f twxlv (2.8) 

Expressions for deformations of the middle surface when the shell 

has sags comparable with its thickness, can be presented by formulas: 

*, 
(2.9) 

Deformations (2.9), similar to (2.4), are dependent, for them the 

compatibility condition should be met: 

KdxdtJ d*    W ' df ' d* (2.10) 

Let us give short systematization of data on the deformation of 

shells and consider the deformation during final displacements [1]. 

We shall determine the position of the shell point with Gaussian 

coordinates a, ß of the middle surface of the z coordinate, directed 

toward the outward normal. Lame coefficients for the system of coor- 

dinates (a, ß, and z) will be equal to 

«.->•(.+i> «.=«(.+ i).tf.-.. (211) 

For a thin shell we can assume that 

i.e., 

//, = * //,~B. //,= !. (P.11') 

Values A, B. R,, PU are connected by well-known Gauss-Kodazzi 
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relationships: 

* \*%)' *% * ' 

d*\Ad%)^\B   #)      "A»«,' 

JLIJL\   JLJÜ 

(2.12) 

In the instance of shell of rotation we can assume that the 

length of the arc of meridian s, is the a coordinate and the azimuth 

is the ß coordinate, then 

A = 1, B = r0(s), (2.13) 

where r0(s) is the distance from the axis of rotation to the point 

with the s coordinate. In this, if a is the angle formed by the tan- 

gent to meridian and axis of rotation, then 

i 
dt 

—sina. (2.14) 

If with the increase of S the value r0 decreases, then a > 0; with 

the increase of r0 the angle a < 0. We note that from (2.14) ic 

follows that 

„1 
ft l*J  . \*i  *J 

tint 
(2.15) 

1 

Let us now assume that during deformation displacements u and v 

change through the thickness of the shell according to the linear law, 

but displacement w does not change 

«(o. M,/) = «(o. ?. 0 - »P (a. M, 

»(a. M. 0 = o («. M - *Ko. M. 

w(o.M.0 = «'('».M)- 

Deformation and turn parameters will be equal to 

i r i d«  i «M ~ s i 
-r[T-w+-ÄB-wv'j"wy «ii ,+*r 

10 
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(2.17) 



«.-f 
I     /I   Si       I   dA A 

I     / la«       id« ~\ 
+ .. « w-W-TSsr0)' l + T. 

1 + i^' (2.17 cont'd) 

* «. 

0      aiT        i     /1  aS     « ^ 

2«'-7T-r-lT-är~7ä-äru)- ,+t 
i    / i   ^     i  aa ~\ 
— y- if~Ac-drv)' 

For a thin shell, considering (2.16), we have. 

where 
«     i  a«  ,   i   a^ .,.   w 

.o     i  a»  ,   i  aa M ,   I» 

«     i  a» .   i  a«      ' / ^ „ . dB „\ 

A    in Hi 

a        I    dw       v 

.o     i   a* .   i   a<p      * fM m,   M A 

.o      i   a?  .   i   a/* . 
^'^Tir + ^-aT^ 
.o      >   a* ,   i   aa m 

^Tir + iFir*- 

11 



In axisymmetric deformations of the shell of rotation its state 

will depend only on one coordinate a, and the displacement v will be 

equal to zero, therefore, e^p - e2Z = ^ = ^o =: 0* 

For the axisymmetric deformation of thin shell we obtain 

A-*-T-+~-, Ä= —(—ttsino + »coso), ^«^. — ^L—v, 

(2.20) 

Deformation components in large displacements will be expressed 

by the following formulas: 

l-=-'-sL+i-*t'=-£-   *—t*"'- 

+(T^~-)(T^+4 

+ (-fe««+w#)(Y*t,--«i). 

(2.21) 

t 

Expressions  e^,   e22,   e^ through displacements u,  v,  w can be 

written in the form: 

12 

(2.22) 
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-^ + 

«M = ,+t 
(2.22 cont'd) 

/id«      1   dfl ~\    / 1   a v      1   ^ ~\ 

/1 an   JI_«»~ .  5\ ./i ^     « \v 

x(-F-^--i^)] 

Substituting in (2.22) expressions (2.16) for displacements, we 

obtain: 
_  > •      a..   _ t t 

*\A   d*  ^ AB   9}     ^   RJ}       AB   0} 

+ 

(2.23) 

, + ^ 

AB   da 

Id« I    dA 
,T    ^ v A *«    AB a?  ^ /?i ;l 

L Äi 

+ 

13 
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I *f 1    dA 

Ad»       AB   9} >)" 
__i_rf±*L-_L«iIIw 

xf,+i--V{K+^"^)]+ 
ri+±-_i_-/JL*L + -Lil«+•.)] + + -L^« 

AA  «■ 

xt  ..ill«»     «fc'/^a'V«^ 
ft 

+ ^~2iTX]-Z{TfX (2.23cont-d) 

f    LV B   dp       AB   d*    )\B   #}       ßB   to  *} 

AB  9* 

+T. 

rVil    d*       AB   # RiJ} 

dm 
AB   di 

\U *    via dß v; L\      Äi /    a ^ ^ 

.  r   I     dto   dp        g    gg       p_   dB>   .    'w  "] 

L>t«    di   dp '   Äifl  d?  "" A,/!   di       Ä^J"" 

1    dA 

14 
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[\B   # ^ AB   *W/\A   9*        AS   Q    1^ 

Formulas for shear deformations in large displacements have  the 

form: 

»I 

.    l   (l &    ' ü^* . 

dp  . '       /' dm       "p ^ , 

. L   f * aZ      i «ä-N a«   , 

,___|__   / 1   dg p \ dS 
+  . ,   *    V B   * Rt ) to ' 

{2.2k) 

, + *T 

After introduction of formulas (2.16) in (2.24), we obtain, 

15 
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(2.25) 

T^A»«? )^*\A   9*       AB   #     Jj 

-'{-['{■7-2-+if*)+ 

\   At/    « #  Aft 

In the future we shall consider deformations of the element of 

shell with the dz thickness to be small as compared to 1, and, con- 

sequently, the element of the shell with the dimensions of dadßdz 

will only turn, as the result of deformation, but will remain to be 

the rectangular parallelepiped, and will retain its dimensions: how- 

ever, by virtue of (2.16) these parallelepipeds will shift with respect 

to one another by the shell thickness. We will also assume chat the 

shell is so thin that h/R < 0.01; sags w will be considered ^mall as 

compared to the thickness of the shell. Considering the possibility 

that the shell material may exceed the elastic limits and its work 

until reaching the tensile strength, we should assume that deformations 

e., are of the order of 0.1 (e., < 0.1). 

Let us consider two of the most frequently encountered instances: 

1. Nonsloping shell, i.e., when the least radius of curvature 

is of the order of linear dimensions of the shell. 

2. Sloping shells, i.e., when the least radius of curvature is 
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one order larger than linear dimensions L/R < 0.1,* Moreover, in the 

future we shall disregard the values of the order of w/L or less as 

compared to 1, We shall also assume that components of deformation 

throughout the thickness of the shell change according to the linear 

law, i.e., 

««(».MO = «tt(o.M—«M*.?.0. «i,(«.P.«.0 = £(*.M-«*i,(a.M. 

«^(s.p.z.O^eLC'.^O-^b^.^O- (2.26) 

1. Nonsloping shells. In this case w/R < 0,1, i.e., w/R « h/L 

or w/R = lOh/L. Let us assume that angles of inclination of tangents 

dw/ös, and öw/ösp are such that their squares are of the order of the 

deformation parameters /^/f « o.l; consequently, (^\^ l^2> 

i.e., the variability index for the derivative from the sag along the 

coordinate is equal to (h/L) ' . The angles of rotation <p and f  will 

be of the same order. The change of angle of rotation along the coor- 

dinate lines characterizes the bend of shell. We can easily note that 

from expressions for deformation parameters it follows that öu/ös and 

öv/ös are of the order of (h/L), i.e,, u < h, v < h. 

Let us examine in detail the following three forms of bend: 

slight, average and strong, included in the described case. 

a) The slight bend of the shell occurs, when turns of its lineal 

elements during bending are small everywhere as compared to unity. 

This may take place for sags, which are small as compared to the shell 

*The sloping shell can be defined, according to M. A. Koltunov 
[48], as the shell, for which L/R « IGh/L, i.e., the shell, which can 
snap without the appearance of plastic deformations on the boundary 
of the region of stability. 
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thickness, for which w < h£ ' . In this case in the expression for ~  p r 

deformation of the middle surface it is necessary to retain members 

up to (h/L) '  inclusive. Then we have 

.•        I   to   t     l    »A 
AB  $     TÄ,2A«\d.y      M^' A   4> 

**      B   Q ^ AB   d*     * H,^  t m\9> ) 
 ;    dm 

**      B   q ^ AB   d**' 

A     * AB   d>   $       RtB %       JM   a. ' 
J ^Jijty L*L    i   «   a?      i   aa (2.27) 
Itt= >i a.     iW a? f     B a>     >IB ai ?' 

Disregarding in the expressions for shear, the value (h/L) as compared 

to 1, we obtain 

«•.= 
1   *"       "a» 
Ad*       «1      T 

*»,=o. 

4 = 1  a«     P 

ku = 0. 

(2.28) 

b) The average bend of shell takes place, when the sag is of the 

order of thickness, but significantly less than characteristic linear 

dimensions of the shell. For the average bend we usually disregard 

squares of turn of the element from the bend as compared to unity.  In 

this case öcp/ös ~ (p/yLh, h (ckp/^s) « (h/L) ' . Here in expressions 

for deformations it is possible to be limited only by the terms of the 

order up to (h/L) inclusive, and, consequently, nonlinear terms, con- 

taining displacements of the middle surfac-i u and v, can be disre- 

garded, if, however, we take into consideration terms up to (h/L)-^ 
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inclusive, then formulas (2.27) will remain in force, and deformations 

of shear will be determined by formulas (2.28). 

c) The strong bend of shell is a term given to such a bend, wher^ 

sags are large as compared to its thickness and are commensurable with 

its linear dimensions. In this case turns of lineal elements will be 

1/2 
commensurable with unity, but d(p/ds » <p/h, h (dq)/ös) « (h/L) ' ' and, 

consequently, with the accuracy up to terms (h/L), expressions for 

deformations e.., e^, e^o wm ^e  the same, as and in the preceding 

case. In shear deformations it is necessary to consider values k 

and kp , equal to 

'{'1t\'Ä~är~~ÄB~ö'Vy 

^  . ^(B   fff^ AB  ih ^r (2.29) 

TVV B   %        AB   d*   VJ 

If, however, in expressions for deformation we disregard terras 

(h/L) '  « 0.1 as compared to 1, then it is possible not to consider 

the deformation of the middle surface, and the shear deformation can 

be considered constant throughout the thickness and equal to 

o   I dw 

The strong bend, as a rule, takes place only when the external 

load changes sharply on a small section of the shell surface. 

It is permissible to consider, as we do for small sags, that the 

shear deformation does not change throughout the thickness with any 

variation of the angle of rotation of the normal. Thus, for sags of 

the nonsloping shell, which are comparable with its thickness, defor- 

mation components will be calculated by the formulas (2.26)-(2.28). 
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Calculation of values k. and k22 according to (2,29) will not cause 

any complications. 

With axisymmetric deformation of the shell of rotation components 

of deformation £*„  and e  will be equal to zero, since the displace- 

ment v = 0, and other displacements are determined by formulas: 

^a.—(wcosa —fisina).  *„=—S.$ina, (2»51) 

We can easily see that the effect of large sags shows only on the 

values of meridxonal extension-compression deformations of the middle 

surface of the shell, 

2. Sloping shells. In this case the value h/R is minute, namely 

h/R < 0.1(h/L), and here, if l/R « h/l, then h/R « l2/R2  « .^/L2. 

Since deformation parameters of the middle surface are of the order of 

h/R, the displacements of the middle surface will be of the order of 

(l/R)h, i.e., higher than the sag. Nonlinear terms in expressions 

for deformation components will be effective, if angles of inclination 
2   

of tangents are such that (öw/ös) « h/R, i.e., öw/ös «* Vh/R, where 

öw/ös « h/L when L/R « h/L. Consequently, for the bend of sloping 

shells it is necessary to change to nonlinear theory for smaller angles 

of inclination of tangents than lor the bend of nonsloping shells. 

In determination of deformations of sloping shells it is possible, 

as in plates, to disregard nonlinear terms, containing displacements 

of the middle surface. 

1 
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§ 3. Stressed State, Equations of Equilibrium 

In Fig. 2 we represented the element of shell, on the edges of 

which forces act in the middle surface, and in Fig. 3 we depict the 

element of the middle surface of the 

shell and the diagram of forces act- 

ing on it; bending forces are moments 

and transverse forces: normally a 

transverse load of intensity q is 

applied to the element. 

Let u. constitute the equation 

of equilibrium of the shell element. We write the sum of projections 

of all forces on the direction of tangent to line x; considering that 

in view of the smallness of angles, the forces in the middle surface 

are projected in actual size, we obtain 

~XJidx = 0. 

Projections of transverse forces are not included here, they give 

terms of a higher order of smallness and therefore, can be disregarded. 

Fig. 3. 

After simple transformations we obtain 

(3.1) 

Analogously we will find in projecting of all forces in the direction 

y, that 

(5.2) 

The equation of moments of all forces with respect to the tangent to 

line y will have the form, as follows 

{M'+^t dx)dy ~M' d»+{T' + ^-^ - 

-TMdx-i,dxdy-f~{Nt + -?l*~dx)äydx-   «frdydx^-O. 
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Leaving out small values of the highest order, we find: 

(3.3) 

Analogously we will find the equation of moments for the tangent to 

line x: 

ar. dM L~N.= 0. (3.4) 

Let us now set up the equation of projections of all forces in the 

direction of the normal, where we consider the element of the shell 

in deformed state. Forces X h and Y h will give additional components, x     y 

equal to 

*'»(*.+-i5-)'M'-M(*, + i-)*«»- 

We can easily see that the final equation of equilibrium will have 

the form 

^(*.+-*-)+2x'*^+'=0- (3.5) 

For the shell with initial deflections w.  from the ideal form we 
in 

shall have an analogous equation of equilibrium: 

+ 2* A —(w + tO + 9-0. [HM = in = initial]     (3.6) 
'    dxoif 

§ 4. Relationship Between Deformations and Stresses. 
Differential Equanohs 

Let us be given a shell with thickness h, which is acted upon by 

a certain system of balanced forces, which cause plastic flows. 

Stresses in layer o'mn (Fig. 2) will be: 

s,-^~--y.-f-(«i-^). 

^^ä^ 

(4.1) 



2 " (4.1 cont'd) 

V""? ^ T 
Xx - X Y + Y + 3X*" is the Intensity of stresses; where 

o, is a specific function e . Stresses X , Y , Z are small when com- i     r i z' z' z 

pared with basic stresses. 

The entire simplification, introduced in the theory of shells by 

the Kirchhoff-Love hypotheses, consists of the fact that, instead of 

six stress components it is possible to introduce five force compo- 

nents and three moment components, which act on the shell element as 

a whole, and these eight values will be functions of only two indepen- 

dent variables i,   r\;  for their determination it is sufficient to have 

equations of equilibrium of element only, if the relationship between 

forces, moments, deformations, and distortions will be established. 

Five force components are determined, as resultants of all 

stresses along two mutually perpendicular edges of the element, 

lengths of arc of which in the middle surfaces are equal to unity. 

If the shell is sufficiently thin, so that the ratio of its thickness 

to the characteristic radius of curvature can be disregarded as com- 

pared with unity, then we obtain the following five expressions for 

the forces: 
_*_ 
2 

I 
-1 A. 

. _ _ _ 

* a 

(4.2) 

N^N^   J ZMdz.  N,= Nt~   j Zydz. 
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I 

Intersecting forces N . N , in spite of the smallness of stresses, are x  y 

not equal to zero, and they are determined only from equations of 

equilibrium. 

Analogously it is possible to write formulas for the bending 

moments and torques: 

JL *. 
i t 

MM^Ml -    { Xjdz.M^Mi       J Yfdz, 
« » 

JL ! '   } 

^-^n= f Xfzdz. 

a 

Inasmuch as stresses, applied to the element, are thus replaced 

by resultant forces and moments, it is possible to replace the very 

element of the shell (see Fig, 2) by the element of the middle surface 

(see Fig. 3), In Fig. 3, which shows the diagram of forces acting on 

the element of the middle surface of the shell, we see that forces 

T = T and T = T2, stretch it in the direction of x and y axes; 

furce T  = T. 0 creates a shift inside the surface, and their positive xy   12 ' L 

directions in x, y axes are the same, as directions of stresses X , 

Y . X . Positive directions of intersecting forces N = N., N = Nr. 
y  y x  i  y  ^ 
coincide with positive directions of stresses Z , Z . Bending moments r x' y       0 

M = M,, M = M0 are considered positive, if they strive to give con- x   i.  y   d 

vexlty to the shell in the direction of positive z axis. Torque M 

= M.,p Is positive In the case when on the part of positive x axis It 

strives to turn the element clockwise. 

For simplification of calculations, following A. A. Il'yushln 

[2], it Is recommended Instead of forces T., T-, T.p, to Introduce 

their linear combinations: 
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s.-r.-i-TV- J s,*. 
i 

-f s»=7,
If=   J S„<fe. 

and instead of moments M.,  Mp, M.p — values 

H^Af.-^-AI.-   Js^fe. 

s 

9 

W.-Af.-i-Af.«   J S/rfi. 

i 

t 

THlt-Mlt=   J S^afe. 

From (4.4) and   (4.1) we now have. 

JL JL 

S. = ..  J **-..   J i^. 

^— J i*— {i^ 
2 3 

S.,-.„   J ^dz-*» j^zdz. 
JL -.^. 
9 ^   2 
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(4.5) 
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T 7 (4.4-) 



and from (4,5)  we obtain. 

s > 
«.-.. J^-^Jiz.*. 

s        s 

t t 

"•-•• J^*-« Ji1**- 
s a 

»        i 

' z*dz. 

(4.5') 

«»-» J t'*--» J f 
s i 

In formulas (4.4') and (4.51) we encounter three types of integrals, 

distributed throughtout the thickness of the shell: 

JL  -     Jt JL 

k i k 

Through them forces and moments are expressed as follows: 

3 

(4.6) 

— Tn — s,1/1 — *„/,; 

>■ = (-+T")/'-(«. + T")'- 

(t.T) 

(1.8) 

~2 Mtt •= «it'i — «u'j- 

Since in (4.6) o.   is the given function of e., where its concrete form 

for every material becomes known in particular problems, we naturally 

avoid integration by z on the basis of relationship (2.5) change to 

integration by e^.     Multiplying I1 by Pe, I2 (by - 2P£K) and I, by 1^ 

and adding the results, we obtain: 
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/jP. -TltP.* + /A = -^ J »i'irf«- (4.9) 

~ t 

Differentiating (2.3) by z, we find 

-?-*,ife,= (ZPK-?«)<&. (I, #10) 

Now multiplying 1^ by {-^EK)»  Ip ^ PK 
and adding the results, we 

obtain: 

s 
-/,P.K + /A= Y J »/^. (^.11) 

x 
2 

i^et us find expression z through e.^ for this purpose it is necessary 

to resolve quadratic equation (2.5) 

I 2«PJ.-22P.x + P.= f^. 

I    the root of which, does not contradict relationship (4.10), and is 

-^-rkV^ -iP^sign(2P.-P..). (4.12) 

where it is necessary to take always positive value of the square 

root. Differentiating (4.12), we obtain: 

A* _     V* eldetsiendei 

Sign of value (zP - P ),* according to (4.10), coincides with the 

sign de./dz, and since in the intervals which interest us dz is alway:: 

i ositive when z changes from -h/2 to +h/2, then integration by de^ 

should be executed in such a manner that de. increase also, i.e., we 

must integrate by de. sign de.. 

Let. us examine values of intensity of deformations in three 

^Designated by symbol sign. 
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points, located on z axis: 

where 

We designate them respectively: 

««=-^ ]A.-*"•■ +-f ^    (1=+T)- C-«) 

As we see from (4,10), point z = z0 is the point of minimum e., since 

2    2 
d e./dz > 0. Consequently, inequalities 

««>««.  ««>«»• (4.151) 

always occur. 

We assume that tensile and shearing strains of the middle surface 

e., Ep, e.p are either commensurable or small compared with flexural 

strains of the shell ±(h/2)H1, ±{h/2)n2,  ±{h/2)x12  or that the latter 

are dominating if point z0 does not occur beyond the limits of the 

-Y<'.= ^L<Y- (4.16) 

Deformations of the middle surface are termed large, or domina- 

tin;-, as compared with flexural strains, if point z0 is located out- 

side the thickness of the shell, i.e., if one of inequalities takes place 

In case of commensurable tensile and flexural strains the 

Integral from any positive value R throughout the thickness of 

the shell must be calculated by the formula 
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(^.16«) 
t       "        •" 

In case of incommensurable or large tensile strains such an inte- 

gral should be calculated by the formula 

T »A 

We now introduce designations of basic values in the theory of shells: 

A^A»   B~BV   C-Ct     (l^l>y). (4.1S) 

where values A0, B0, CQ pertain to the case of dominating flexural 

strains and are equal: 

'»       '!•       »ft 

*li 'A 

'Jo 

•ii    . _        »I* 

*A 'A 

•ft           'A 

C0= J <»,/^-<f0^+ J ^yq^äet. 
A 

and A,, B., C1 pertain to the case of dominating extension of the 

middle surface and are determined by the formulas: 

'A 'A 

A = A, = f ',de,,   Bt ~  f '/*%   sigr ^-en). 

'A         (4  18") 
Ct = J *, YZ - el dei sjen (*« - ^i)- 

Integrals I., I2, I, can be expressed through basic values A, R, 
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C, depending on main quadratic forms P , P . P,., according to the 
£   n.        En 

formula (4,18), For this purpose let us note that integral I. on the 

basis of (4.6^ and (4,16'), (4.17») is expressed directly through 

function B, after which from (4.11) we find Ip through A and B and 

then from (4,9) we obtain I, through A, B, C, In this manner we find 

the following formulas: 

i'-l^c+-JirrB+-JprA' 
where to values A, B, C we must either ascribe index "0" and calculate 

them by the formulas (4,18'), if the flexible strain dominates, or 

ascribe to the index "1" and calculate according to (4,18") if exten- 

sion — compression of the middle surface dominates. 

An exceptional case, when formula (4.13) and all subsequent cal- 

culations lose their meaning, presents the zero-moment stressed state, 

with which the value e., and consequently,. G. are constant with respect 

to thickness. In this case 

P,«=P„ = 0. e^-^VK, (4.20) 

and integrals 1^, I2, I, can be calculated directly. From formulas 

(4.6) we have: 

ll       u'  /,~0, '• TäT (4.21) 

where, inasmuch as equality P = 0 is possible only when H,, = H0 = 

= H.p = 0, then bending moments and torques are equal to zero 

M1 = M2 = M12 = 0, 

and forces are found from simple relationships: 

Tt—j^-S^h-^i-H. (4.22) 
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Tn^ — Sit^h — hf (4.?2 cont'd) 

These relationships coincide with those that take place in plane 

stressed state, where 

r1 = ikXt, Tt~hYr   Tu*=hXr (4.2^) 

Relationships {kA'),  (4.5) or (4.7), (4.8) express forces and 

moments, acting on the element of the shell, through three quadratic 

forms (2.6), (2.7), (2.8) P , P , P  and six deformation and distor- 

tion components e^, £2» e12
, K±* n2*  and K12 and consequently, through 

three components of the vector of displacement of the middle surface 

point, inasmuch as deformations and distortions have specific differ- 

ential expressions through u, v, w. 

It is easy to show, that, conversely, all deformations and dis- 

tortions can be expressed through forces and moments [2]. 

The set-up relationships, connecting deformations and stresses, 

take place both in the case of elastoplatic deformations,* and in 

purely deformations. 

Actually, values a. and e. are connected with one another by laws, 

«/=*(*/) = 30^11 -«(^l, (4 .24 ) 

*, = a>-»(3,)=.^-ll+«p(',)l. (4.25) 

here G is the modulus of elasticity in shear. With respect to curve 

0. = ^(e.) we will assume that it satisfies the inequality (Fig. 4) 

3e>^>^><'- (4.26) 

Function a)(e.) (function of plasticity by A. A. Il'yushln) constitutes 

the ratio of line segment MM' to line segment N^'M' (Fig. 4).  It is 

equal to zero, as long as deformation is elastic and satisfies the 

*In the assumption that a simple or close to simple load is 
realized, i.e., such a load, when all individual loads are proportional 
to one parameter. 
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following inequality, ensuing from (4.26): 

1 ^^i-l^ >ü)^0' 

du) s n (4.27) 

Fig. 4. 

The noted properties of functions o., and ü> 

correspond to the experiment data. The func- 

tion of plasticity cu is expressed though o. 

according to equation 

_ 3Cei —»I 

^    3Cf| 

and analogous to it function <p has the expression 

30*1—ai _  •• 
I-- 

Designating by a and ec the point, to which the deformation of 

material may be considered elastic (a is the yield point and e_ the s s 

flow deformation), we have for function CD: 

• = 0, et<es. 
(4.28) 

In the case, when curve a. = ^(e.) may be replaced with the 

broken line OAMB , values a . e_ will correspond to the break point s  s 

do./de. will be constant, but for function a> we obtain: 

» = 0, et<et; 

<i>^ 

(4.29) 

f 

where constant X (hardening factor) designates the value 

)L=1- 
I di, 
36 de, 

Relationship (4.25) does not have any meaning in the case when 

the shell material was not hardened, i.e.. Van Mlses' condition of 

plasticity takes place 
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O. = ö i   s 

or 

Xx " XxYy + Yy + 5Xy = 0s* ^'^ 

Now v/e write the relationships between deformations and stresses 

in the middle surface for the case of purely elastic deformations: 

•* —(«x + »v). n=r3S
(l' + w')- (4.31) 

v/here E is the elastic modulus, v is Poisson's ratio. Dependences 

between moments and changes of curvatures will remain the same, as 

for the plane plate [3]: 

«.—»(£+•£)• 
«.-*(£-+•£)• 

(4.32) 

Mw=-D(l-.) 9*9 

dxdy 

For transverse forces we have expressions: 

Here D is the cylinder rigidity: 

D=-^-. (4.34) 
12(1-v«) v     ; 

Equations of equilibrium (3.1) and (3.2) are automatically fulfilled 

upon the introduction of stress function according to formulas: 

where 3> is the function of stresses in the middle surface, or, in 

short, the stress function. 

We Introduce (4.32) and (4.33) in the equation of equilibrium 

(3.6), then we arrive at the following equation: 
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DW» = *>(*. + ^)+ **('.+ ■-) 

Let us now transform the condition of deformation compatibility (2.10) 

Expressing deformations e , e . 7 through stresses, we find: 

ÄL^2^- + -^--vr-i^-- 2-^- ^M- 

- lU*dyj  a*« d^   ' dy«   "dx«!' (^.37) 

We introduce in equations (4.36) and (4.37) the stress function ^ 

according to (4.35). Then basic equations of the theory of flexible 

sloping shells will take the following form,* 

ivVB.-i(«.«) + *,-g-:*,-0 + f.       (».38) 
±v.^~, = _±L(B.c)-»^-»,^L. (4.59, 

2 2 Here through V V (  ) Laplacian operator is designated. 

In the particular case of circular cylindrical shell with the radius 

R we obtain 

» v v    d*   df   ^ dy*    dx* dxdy dxdy 

4-JL **.+ «.. 
/? dx« ^ A * (4.40) 

i^=(^)'- «ftv d1»   1 5%» 
dx« dy*        R   dx*   " (4 .41 ) 

In examining only small sags of the shell we can disregard non- 

linear terms in equations (4,38) and (4.39). Here we obtain: 

♦These equations are applicable also in examining of shells of 
an arbitrary outline, if deformation has the character of local loss 
of stability [4]. 
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-fvV-^+*,# + f; (^) 

£ vv      ' ^   * &= (^.45) 

Considering that curvature k and k are constants and applying to 
p  p 

(4.42) operator v V , v;e find: 

If we substitute nere v 7 * according to (4.43), then it is possible 

to reduce system (4.42)-(4.43) to one solving equation of the eighth 

order with respect to function w: 

For the circular cylindrical shell the equation will have the 

form 

— VW?'» + — — = — v V^- (4.45) 

Let us now investigate the case, when we must take into considers 

tion initial forces in the middle surfaces, constant in value, which 

is necessary, for instance, in problems of stability of shells, 

dy*  -~y"     djfl   " r>'   gxdy" (4.46) 

Then equation (4.40) will assume the form (when q = 0) 

* V V »   rM ^      r, ^  ^ ^^ + 

** 4-* Ül 
^   " ^ ' (4.4?) +**-Tf+**-^- 

Taking into consideration (4.43), we obtain the solving equation 
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In the case of circular cylindrical shell: 

Assuming that in (4.36) w = 0, we obtain the equation of theory of 

zero-moment shells: 

let us note that the transverse load is considered positive in the 

direction toward the center of the curvature, 

§ 5. Variatlonal Formulation of the Problem of the Theory 
of Shells With Geometric Nonlinearity Taken 

""   Into Account 

Let us examine geometric nonlinearity* of a shell, being in 

equilibrium under action of volume F and surface F forces. Let us 

assume that 5u^, öUp, ow — infinitesimal variations of displacements, 

Work of external forces on variations of displacements will be 

*A = J J J P**® + J J ps"dI' (5.1) a       x 

where dO = A*B*dadßdz is the element of the volume of shell, 2 is the 

general boundary surface of the shell; a and ß are curvilinear orthog- 

onal coordinates, determining the position of the point on the middle 

surface before and after deformation, asterisks mark the values, per- 

taining to the deformed shell or its middle surface, cü is the varia- 

tion displacement, equal to 

Ut^tö+zln: (r).2) 

«■Deformations are expressed as derivatives of displacements taking 
into account nonlinear terms.  For instance, e = öu/ox + 

+ l/2(aw/öx)2  - k1w. 
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Here O"Y is the variation of vector of iisplacement of points of the 

middle surface; on* is the variation of the vector of the normal to 

the middle surface. The stress vector P on the area with the normal n 

n is expressed through stress vectors "F., Tp, "F , acting on the areas 

taken on coordinate surfaces a = const, ß = const and z = const, 

according to the known formula of the theory of elasticity 

Pm =-P.costiw) + P.cos (/#) + P,cas(fi2). 

Let us set up the expression of the virtual work of external 

forces ÖA through the energy of deformation of the shell. Putting 

expression "F in (5.1), we obtain n 

M = J JJ fS« dö + J J IP, cos (na) + P, cos {/$) -L 
o 

+ P,cos(«)}8a<ffi. 

Hence, using formula of transformation of the surface integral into 

the volume integral and taking into account equations of equilibrium, 

we find: 

iA = JIJI PIB'M.I + PtA'&h + PzA'B-ißh)d^dridz. (^ . 3) 

where (6ü) . = (öv) . + z5n*. = 57*. + zbn ., (on)      = on*, where "," v  Si  v  ;,i     ,1    ,1     ,1' v  Sz 

below, before the index designates differentiation by a or ß once. 

This is the expression of the principle of virtual displacements for 

the shell, considered as a three-dimensional body. Formula (5.3) may 

be also written in this form: 

M = J J sr dS.        (d2 = A'B* da dft (5.4) 

where 

SIT = £ tffa + AlJ («v- 2 kllu,)}, (5 # 5) 
it »-I 

this is the variation of the deformation energy of the shell, referred 

to one unit of area of the middle surface. If we use the simplest 

variant of elasticity relationships - the Kooke's law, - and reject 
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- _—w .-.s^a*-™*-**«»« 

values cf the order of k e..  (^-:c 
are curvatureF uf coordinate lin* 

a aind ß, for instance, with small deformations k.. a. VR
aß) 

and take 

into consideration the equality T.- = T.. (here 6e.. = oe.1t ^±2 + 

+ oTp. = 266.2), then (5.5) takes this form: 

W**2i (Tu^i/ + MV Satf/), (5.6) 

where e.. and n.. are expressed by formulas: 

2«/y = «•// + *>/+!] *///* + »/«y        (*. / = • • 2)' (5.7) 
«-1 

^»^„-^„-^-(f.^ + f.^ 4-£,^-)- (5.3) 

t   M 
ÜB a? * 

?!_««_       (|72) 
AB    fff       '<- 

Parameters e.., a)., E., E, characterize angles of rotation of coordl- 
_   _  * 

nate vectors r ., n in the process of deformation, for instance n = 

= ?1S1 + e2E2 + nE3, here  E. = e.^ + e,^ - (1 + e^ + e22)a)., 

E5 = (1 + e^) (1 + e22) - e12e21. 

Thus, the variation of strain energy of the shell is composed of 

variation of the stretch and shear energies: 

Wi = T'tfai + ifes f 2r|2«1, (5.9) 

and the variation of the bending and torsion energies: 

iWt = AfI,S*n + Ma?/,, -f 2Af*2v/„. (5.10) 

Putting in (5.6) forces and moments, 

rli-*(«„ + >«,,). rla^r^/cci-v).,,. rn = K(*n+'en), 

= D(Ktl4 VX,,) 
0 

(here K = Eh/1 - v is the extension-compression rigidity and D = 

= Eh^/12(l - v ) is the cylinder rigidity) and integrating by 
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deforraatior. components in the ranp-e from zero state to the state with 

ieforraations E.. and K.,, we find the expression of the specific v'ork 

of deformation of the shell: 

2r=#C|(5lI+e«)« - 2 (I - v) (2ll£M - «yj+ 

where e.. and H.. are expressed through displacements u., u2, w accord- 

ing to formulas (5.7) and (5.8). Formula (5.11) is analogous to the 

formula of deformation energy of the plate. Applying it to the thin 

shell, we allow an error of the order of h/R as compared to 1. 

Now, after a number of simple, but sufficiently labor-consuming 

transformations, we find the expression for variation of the work of 

all possible external forces, which may be recorded thus: 

^ 8,4 = JJ {Xlv -f {Lxh'] fcOdS + 
s 

+ J (ÖSÖ + G'm'in-) ds + ft Vtoj,. (5.12) 
r 

where <$" is the vector of external boundary force, G* and H* are the 

external bending moment and torque on the contour of deformed shell. 

The surface integral in (5.12) is the work of external forces on 

infinitesimal variations of displacements and external moments on 

infinitesimal variations of angles of turn, since 

irxrt*i?.«"=5]^«*. (5.13) 
i-1 

./here 'e*bn¥'  are variations of angles of turn. 

The contour integral in (5.12) Is the work of external forces 

and moments on variations of displacements and angle of rotation, since 

m*"5h* is the variation of angle of rotation around the tangent to the 

contour. 

Outside-the-lntegral term H^rT^bvl  is the work of concentrated 

boundary forces on displacements. It disappears, if shell edges are 
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either supported on hinges or rigidly fastened. It disappears also 

when the contour does not have any angle points, and neither H* nor v" 

can have discontinuities. If the shell contour contains angular- 

points, concentrated forces of the H*n* type can appear in angles in 

the form of reactive concentrated forces. Thus, the variational equa- 

tion of the principle of possible displacements in the nonlinear theory 

of shells will be expressed by the relationship 

M^tfiVABthtQ, (5.14) 

where ÖW is yielded either by formula (5.5) or (5.6) and 6A by formula 

(5.12). Let us note that the variational equation of the type (5.14) 

is also true for the general nonlinear theory of shells, where dis- 

placements and deformations considered arbitrary. 

Variational equation (5.14) may be interpreted in the following 

manner. Let us assume that d1 is the potential strain energy of the 

shell, öä is its full variation in isothermal or adiabatic deforma- 

tion processes: -,.        «. 

Let us further assume that ocL = -5A is the variation of potential 

load energy. Then it is possible to record (5.14) in the form 

«=«, + 23,. (5.15) 

where 3 is the full potential energy of the system. 

Thus, the state of equilibrium of the shell differs from adjacent 

geometrically possible states by the fact that with any infinitesimal 

virtual displacements of the system from the position of equilibrium 

the Increase of full potential energies is equal to zero. This is 

Lagrange's variational principle. Geometrically possible states of 

shell are such, states, with which displacement variations do not 

disturb holonomic constraints, superimposed on the shell. Geometric 
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couniary conditions, and also comparable in the Lagrange variational 

principle values e.. and K,v, which have to present continuous defor- 

mations, satisfying conditions of deformation continuity car. serve as 

holonoraic constraints. This condition will be assured, if deformations 

£., and K.. are expressed through displacements u. and w through for- 

mulas (5.7) and (5.8), 

An increase of the work of external forces and moments 6A is a 

full variation only in certain particular cases: for instance, when 

external forces can be considered to be independent of deformations 

and, furthermore, parameters e.-.   are small, i.e., e., ~ e^ (e is the 
IK IK    p   p 

elongation per unit length at the proportionality limit of the shell 

material. 

Let us rewrite the variational equation (5.15) in the form 

8(3,+ 3t) = 85=0. (5.16) 

This equation is also true for end sags under the condition that edges 

of the shell are either supported on hinges or rigidly fastened and, 

furthermore, external forces tolerate the potential 

dui dut dm 

Consequently, (5.16) can be formulated in this manner: from all 

virtual displacements, congruent with holonomic constraints, superim- 

posed on the shell,  in reality only those take place for which the 

potential energy of system 9 assumes the steady-state value, i.e., 

öd   = 0. 

From the variational equation (5.14) equations of equilibrium 

and static boundary conditions ensue. 

Let us note that earlier we obtained fundamental equations of 

the shell theory proceeding from the principle of virtual displace- 

ments . 
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On the variational principle of virtual displacements the Ritz 

approximation method (energy method) is based, the essence of v/hich 

consists in the following. Variational equation (5.1^) contains the 

equation of equilibrium and static boundary conditions. Therefore, 

satisfying this variational equation, we thereby satisfy static con- 

ditions inside the shell and on the contour. The latter conditions 

will be executed in the process of resolution of the problem with the 

exactness that will be the greater the higher approximation of the 

problem's solution. Moreover, geometric boundary conditions are es- 

sential, i.e., they have to be satisfied beforehand. Therefore, in 

the approximate solution of specific problems with the help of varia- 

tional equation (5.1^) we shall prescribe approximating functions of 

the form: 

« « « 

«i-= VIM(«.?). Ut=y.Bk<fk(a,$, w^yc&ii/i), (5.17) 
" tfi Hi v   . ; 

where A, , B, , C, are constants to be determined , and f,, cp,, ip,   are 

given functions, which are chosen in such a manner that the displace- 

ments u., Uo, w, permissible in comparisons, satisfy geometric boundary 

conditions. Then, putting (5.17) in (5-14) and comparing factors In 

variations 5A, , öB^, 5Ck, we obtain the system of algebraic equations 

for determination of constants A^, B^, Ck sought. In the general in- 

stance the system of obtained algebraic equations will be nonlinear. 

It will be linear only in linear problems of the theory of shells. 

In concrete instances along with difficulties of selection of approxi- 

mating functions (5.If) the resolution of the obtained nonlinear 

system presents difficulties of a purely algebraic character. But, 

in spite of this the Ritz method is the most widely used and reliable 

method. 
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§ 6. Improved Motion Equations In Moments 
and Forces* 

Let us assume that 0., Is the projection of stress on the area, 

the normal to which In undeformed state coincided with the direction 

of coordinate line 1, on the direction, which before deformation coin- 

cided with the direction of coordinate line k. Let us Introduce forces 

.i        .* *. 
> 3 3 

and moments, with usual formulas 

3 ;) . 

_*.        _*        _A (6.1) 
3 3 3 v   / 

(«. * - I. 2). 

Formulas, by means of which forces, moments and intercepting forces 

are expressed through deformation components, will coincide with known 

formulas for the shell with small sags and with formulas for the plate 

with large sags. 

Let us now write motion equations of the theory of elasticity in 

curvilinear coordinates in projections on directions 1, 2, 3 in unde- 

formed body, 

oi| OH 0a* •wt 

■i- CWi. J + 4- W Ai) + -r- («AS«) + »,■?£-S9 + 
Oil <H| Oij <w» 

+ H,'^Sn-Hl^Sn-H3*£LSll = 9HlHtH,-£-. 

01| <Wf OIj 0*1 

*,   "      ' a.,   "      * a«,   "   .... d/. 

*The material presented here and in §§ 7 and 9 was kindly offered 
us by the senior scientific colleague of the Institute of Mechanics of 
the Academy of Sciences of USSR, Candidate of Physical and Mathematical 
Sciences, M. P. Galin [5]. 

The reader will find a survey of the contemporary state of the 
statics theory of thin shells in E. Reysner's ..-tide "Certain problems 
of the shell theory.  Elastic shells. Foreign literature (XL), 19fP. 

43 



•w 

Here the following designations are introduced 

5« = (y'..+ «^;.+('+*«)'« + (y^-«.)v 

S««(Y'U—.)<»:( + (yew + «1),-tt + (l+^)3-u. (6 ^ 

^•«(y'i. + ^. + O +<«)^ + (y^--i)v 

Values 
S<      a// 

o,. «es r— i    a.. = a.. 
v       Si   1 + ty      "      ^ 

constitute stresses, referred to initial dimensions of the element, 

the dimensions of faces of vrhich are increased by E. and their area 
d 

becomes equal to S.   instead of S.,aand here 

£, = 1^7+1 __|f 

~- = V7r+2e//)(l+2sij-7f4 (i. /. * .. 1. 2. 3). (6.4) 

With small deformations  1 + e..  * 1,   o. . » a, ..    Subsequently we  shall 
ii      ij   i,]       ^    J 

consider deformation to be small and even In initial equations will 

assume that o*    =  a... rtrictly speaking, in differentiation of valuer 

o. . we should bear in mi.-a that 
ij 

J^i^^i [_^iL+9  \ 
d I s'' ]   ! 

da,  " S,   l+Ej 07,   * "[d*, \ S, 111 Ej 

_(iL)_J„i^l   (fSB,.2.3,. 

since 
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then in small deformations 

*- 
* 

In accordance with the expressions accepted for displacements 

de /öa = 0, therefore 

Taking into consideration that o  = 0 when -h/2 < z < h/2, we shall 

also have 

^.=0   (/-I. 2). 

Let us assume thai, the shell is under action of external and 

internal pressures P (h/2) and Pn(-h/2), and also of external and 

internal tangent of loads Psl(h/2), Ps2(h/2) and Fsl(-h/2), 

Ps2(-h/2).  In the case on surfaces z = ±h/2 the following conditions 

must be fulfilled: 

«« 

«« 

(6.6) 

We shall first integrate motion equations by z from -h/2 to h/2, 

and then multiply the first two equations by z and also integrate 

them within the same limits; then, disregarding the effect of moments 

of stress on the conditions of equilibrium of forces and the effect 

of moments of tangential stresses and moments of the highest order 
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on conditions of equilibrium of moments, after simple transformations 

we will obtain: 

PTMH £K i  dv 1    dB 
d*% 

«Ptf Vlf 

AB  dt 

I    dB 

+ «4 r/1 
((- 

B   fc, 

l    VB  Ä,       AB 

do       I   a^i 

7iU *, 
i? 
a>< _L|ia)rtl+r1.-(W] + 

40 *t 

t   M 

+f[(i^-t)r"+a^-t)r»+*]+ 

^^. 

_a 
-.^^-k^+UBii^-ii^u)T"]- 
i;»«'>+i[(i^-^^'')r"+r"-<^]- 
-^[(i^-ir^")r"+'-"-H+ 

+^[(T^-i;M(Tlr-i)J-«+0-]+ 

-^»pA^B^-. 

(6.7) 

46 



£-^Ss^^5 

t)r"l 

+t[>-(if-i-)'--]+i[''(i^-t)r-] 

^e^-ir)[',-(i)+p-(-i)]+ 

Ht[',-m-',-(-i)]+(i^-ir)x 

-M-l)H-'-(i)+M-T)])+ 
+ A«pAi4ß 

UP 

(6.7) 
cent. 

Here value A is caused by the second component of the right side oi 

the second formula (6.5) and is equal to 

(6.8) 

Frcm equations (6.7) it is clear that In the first two equations 

we can disregard values cpA and tf/A, which are of the higher order of 

smallness, in the last equation from (6.7) the value A is of the same 

order as, for instance, the component B(~~ ~\?!JL, 

Now we write the equation of moments: 

(6-9) 

+ %[{■ 

f[ai-^ii")^<H+ 
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+"Nr[(i£-ir)Mi£-ilrH- 

-'-(-^-»[-'.(D-M-DJH 
f»MB 

12   tV 

+ * 

(6.9) 
cont. 

+"{i[(i-£-t)*-+(Tlr-t)*.-- 
-«■-(T^-ir^«)ft}+T^{[',-(T)- 

-'-(-^-♦[-"•(D-M-i)]}" 
12  A1 

In equations of moments (6.9) nonlinear terms, containing displacements 

of the middle surface, can be disregarded and for sloping shells we 

may disregard also nonlinear terms containing angles of rotation of 

normals cp and f  and angles of inclination of tangents (l/A)(öw/da), 

(l/B)(aw/öa2). 

In the axisymmetric deformation of the snell of rotation equations 

(6,7) and (6.9) assume the form: 

>.*•.,) - £ MO + r.sin a -, -*L[(£ - ±-)Tu+<l] + 
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^+iN£-t)r^4,>-WM+^}+ 

H{v-tHT)+M-T)]+£NT)- 
-M-TM'>-K)-',-(T)])-^^- -"? 

t2 at* 

Disregarding values of the order of h/L and higher as compared to 1, 

the motion equation can be reccrfed in the form: 

l',..(i)+',-(-f)]-'l-',"^)+','(-T)l 
a»« 

+[-p.(i)+p.(-i)]^ 
3A«U   Afu —MM s,nG_Q 
ds       r» t 

(6.11) 

12 Ä« 

§ 7. Equations of Motion In Displacements 
In Axisymmetric Deformation 

We introduce abbreviated designations: 

^u -«?, + - «6«. ^« - «0« + Y «?,. K„ - *„ + 

F- " "S"^1'a,) ~ Wt (x,, ^^ F"* ^"" IT (ä1' u) ~ *»:      (^ •2) 
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9i9 

A--^-.~--|ili.u(J«I~4I)-cusa(üi~1tI.ii)l; (7#5) 

£u=w#—x,«. ,'7.5) 

In this case derivatives from quadratic forms P0,  P1,  P2 on coordinate 

s along the meridian will be equal to: 

-£- = 2£U«M + ( 2£u£l, + 
l
T »u) w« + 

+ 2£MF„ + 2£tt15i + Y«,^. 

at 

+ KUF,. + /C„ß. + £.A. 
^ = 2#C„ftt + 2ICwÖ*. 

at 

Therefore,  derivatives from integrals I,    (K = 1,  2,  3)  on coordinate 

s can be determined by the formula 

-^ = (2£u'*. + W«)«« + [[^nEu + Y «w) I* + 

+ K,i£u/«] wM + (£II/»I + 2/Cn/w) «F„ + 2/to (£a£«, + (7  7 ) 

+ £«& + -j- .uf,*) + /„ (/(uF... + ^A + Ej>k) + 

+ MkJKvPk- 

After substitution of expressions of moments, forces, Intersecting 

forces and their derivatives with respect to coordinate in motion 

equations (6.11) and simple transformations we obtain a system of three 

quasi-linear second-order equations with respect to cp, w and u: 

w« = M»» + *W,+ *•«„ +Af. .  Q, (7.o) 
«// = Cl %s + ^.i + W, + 'V. 

Let us note that equation of moments is linear with respect to 
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coefficients a1» ...» b , ..., c1, ..., L, M, N, and the force equation 

with respect to these coefficients is nonlinear. Bearing in mirip that 

in motion equations in projection on the direction of meridian with 

small intersecting forces we can disregard nonlinear terms, it is 

expedient to present coefficients b., hg, h-,,  M and c^. c^, c,, N as 

consisting of two parts: 

*,«*•+&;. *,=«S+6y 6,=6S+6;. AI=AI0+AI'. 

^ = «« + c;. ca = ^ + ^ f, = cS + c;. N = N* + N\ (7'9) 

where strokes designate components, dependent on nonlinear terms in 

force equations. 

We introduce the following designations for the sake of brevity 

in writing: 

A, = 2 ( EnFuw + f„ß. + -1 .uf^ (£„/„ _ KJm) + 

+ CCnF,. + KMÖ. + Etßt) (£„/„ - /CH/„) + 2/C,A (£„/« - 

- /C„/^ -f- /, (f.. + y B.) - y Z»0*. 

AQ = «u [2 (fnF^ + £„0. +-j e>'F-*)/l0 + 

+ (KuF., + K^. + £, A) /.1 + 2/C^/,, ] + /if.». 

Ar = 2 (£,/., + £„0. + i- «,/„) (£„/,„ - /C,,/,») 1 

+ (/CuF« + /Cttß. i- £,Ä) (£u/i. - /C,,/«) + 

Then for coefficients of the system of equations (7.8) we obtain the 

following formulas: 

a,« ± \lt - En (£„/,. - /(„/,.) - 2^, (£.,/„ - /CuUl-i- 
3 f.A 

««« --f [W. +2 (£»£» + -f '„) (£»1/» - /c„/,o) + 

+ f II£I»(£U'« — KU'JI)]— . 

0, = -y [/, + 2^» (£a/M -/Cu/30) + Ku(£„/„ -/(,»/«)]^Jf 
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t =-j-{—(Al,, - Af^) sin o + 0 - A, - 

*S=Yei'(2£l|/- + /c"/»)- 

^•^ T{"3 (^Qsino+X|7',, ■f,I*r,I)+ 

+ [-/>.(fV/,-(-T)]-N: 

<t - -f C- /. + £u töi'u - X«/«) +2^,, (£„/„ - #C„I«)1 -1- 

+ Äii^i« iEultt—KuUt) j—£-. 

<•= ^-I/l + iS£ll(£MAM-iC,./J + /fII(£n/u-/C1,/M)| -1-. 

iV«{-[^-(r11~rfi)8ina-).1Q] + [Pi(A) + P,(-A)] + 

(7.11) 
e.-nt. 

(7-12) 

+TM--L= (7.13) 

(7.14) 

1 

*    _|Hi. (7.15, 

For elastic-deformations integrals  I,    (k = 1,   2,   3)  are constants: 

I1 -  Eh,   I2 = 0,   I    = Eh^/2,  and  therefore,   their derivatives  I      = 

=--  0   (j  =  0,   1,   2). 

Thus,   the  first motion equation will be  linear,   the other two — 

quasi-linear,  where 

A?=---***.• Ajr-w- A,;i=£Mf..+>a). (7.i6) 
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Coefficients of motion equations for elastic deformations will 

be equal: 

B a,« «_-._.. ^^^«o. L = -j:L^[l.{Mu—AltJs»na+ 

+ Q'—~E*'B*h (7.17) 

Al» » — Ty- Qsin a + A,?,, + ^7^ + 

+ [~/>-(T) + /,-(-T)]+/Äf- 
(7.18) 

(7.19) 
£h -{Fn+^y. I-v« 

cj = 0,   cj -= - 9 —,   cj = 0, 

*i = 0.   b^^. (7.20) 

*• = -r^r«'..  ^'" -r—.- P.» + ^.) "'i: 

(7.21) 

For the unloading throughout the entire thickness of the shell 

made from Incompressible material motion equations will have this forn 

where 

Vu = btwu + b#n + M*, 
(7.22) 

Af* « w,, — 6,S„ — *,«„ + iM, — AT,; ( ^ • 5) 
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^~ff. '.-j-f. (7.24) 

^♦««„-^„-^„-fiV,-^ (7.25) 

Here L . MÄ, N are coefficient values for elastic deformations when 
6    6    6 

t < 't + 0, and sign (~) marks values of corresponding functions in the 

moment of the beginning of unloading t = T - 0. 

§ 8. Initial and Boundary Conditions 

If on the surface, which limits the body, external forces f* are 

given, projections of which on coordinate lines a.,  ou, a, are equal 

fj, fg, f^, then t^e following conditions should be fulfilled on the 

surface: 

Sn cos («A,) + Sna*(nkJ + SM cos {nkj = ft. 

Sit cos («*,) + Sö cos (/i*,) + Si, cos {nkt) = ^, 

S,, cos («*,) +Sa cos (/iAJ + S„ cos (n*1) = ^. ^8•1^ 

Here (nk ), (nk2), (nk,) are angles, formed by the normal to the unde- 

formed surface with directions a,, ou, a,. 

If however external forces "watch" the deformed surface of a body 

(for instance, pressure of liquid or gas) and projections of the ex- 

ternal force f* on directions 1', 2', 3' of axes 1, 2, 3 after defor- 

mations are equal to f|, f£, f'  then condition on the surface will 

have this form: 

1(1 + Z««)«;, + e»«;, + «„«'JcosM) + 1(1 + 2Sn) 9-tt + e«^ + 

+ «M«y C08(«*l) + 1(1 + 2*xiK + «H»« + «««Ll«6^«) ^ 

--|-[(i+«u)/;+(-f *»+»,)/;+(y^—,)/;-/;. 
l(l+2«M)^ + «^;i + ttla2Mcos(n&t) + l(l+2e1J4 + .w3;i+ (8.2) 

+ «M»;,! cos (n*.) + 1(1 + 2«,,) <»;, + .„o;, + e^,! cos (n*,) = 
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+ V«!<»(«*.) + [(1 + 2^) »^ + ttt,]3 + rls3ycosC«*,) =        (8.2 cont • d) 

For small deformations relationships (8.2) will be simplified and will 

assume this form: 

auco&(nkt) + aMcos(iiftJ + 9ucx{nka) - /;, 

% cos(n*,) + <»„a» (nkj + ouco&(nkj » /;, 

««€«(«*,) + «„««(rt*,) + a„COS(«*,) = T,. ( 8 '3 ^ 

On the surface of a body displacements can also be given 

u = u(t), v = v(t), w = w(t). 

In solving dynamic problems in points of boundary surface we may 

be given, speeds and accelerations, and not displacemenün. 

Let us first consider the unclosed shell, the contour of the 

middle surface of which is described by equation F{a.,  a^) =  0.  Let 

us assume that to this contour force "K*  and moment G* are applied . 

Let us expand vector K* in the directions a., ou, z: 

iC*=i^+*,♦*;+*£. (8.4) 

The connection between internal forces T.. and Q. and components K* 

O, K^ of k* can be obtained by integrating (8.1) with respect to 

thickness, in this we should take into consideration that 

•'A        
J
*       _ » 

as a result, for a small deformation, we obtain (a. = a, ag = ß): 

'■■+(T-|-^|-")r"-'f5'H"*i)+ 

+[r"+(TT-^-Fc)r"-,,<?,h("*J-'c;- (8-r0 
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+[T»+(TTT-^ f ")r"-'«']c«<"tJ - ^ 

If the shell is limited by lines a ^ c, = const and ß = c . = 

= const (i, ti = 1, 2), to which forces K.*^ K^, K*  K* , KL, 
* 

K,j, are applied then on lines a = c.^ = const these conditions must 

be fulfilled 

r" + (T-Ä-—Af'«')7-"-*5'"'^ (8.6) 

*+(-xv-t)r»+(TT-i)r-Jr' 

and on lines ß = c. = const — conditions: 
J 

<''+(TT-i)r"+(T-SL-t)r»='Ci-      (8-6,) 

Here K^, K^,       are normal forces, K^, K* ,  are tangent forces, 

K3±'  K3y    are lntersectln^ forces, acting on the contour.  For slopinp; 

shells nonlinear terms, containing displacements of the middle surface 

u and v, can be disregarded. 

If surface forces, in the process of deformation "watch" the 

direction of the normal and tangent to the contour and are equal re- 

spectively, to K., Ko, K, in small deformations from (8.3) we obtaln 

boundary conditions for the forces in that same form as in small sags, 

namely: 



mmwBmvmmmwmmmmmmmKmmmti^mmmmmmum*mmimß'**1I^W*yto'*-'m-W 

Tucos{nkt) + THax>{nkJ -= /fj, 

Tnm{nkJ + Tncosinki) = K'r 

Qtcosinkj + Q,co5(nftj « /Cy (8 • 7) 

For moments in small deformations w° do not have to distinguish between 

projections of the vector of moments on the deformed and undeformed 

contour of the shell, and therefore, boundary conditions for moments 

will be written in this manner: 

Mnix&lnki) + Mucai{nkJ = G], 

MnOOsinkJ + MuCOiinkJ^Gl. ^8-8^ 

If the shell is limited by coordinate lines a = c. = const and ß = 

= c. = const, then along a — 
J 

^u = C«. ^„ = 0;. (8.9) 

and along lines ß — 

Mu~G-ir   Mn~G;r (8-10) 

Here G^, GJ . are bending moments;  G^, G| . - torques, acting on 

the contour of the shell. 

Along the entire contour of the shell or its part, instead of 

forces and moments we can be given displacements of the middle surface 

u, v, sag w and angles of rotation of normals <p and f  or their first 

or second derivatives. 

Thus, on every section of the shell contour five boundary condi- 

tions have to be given, which is in full conformity with the available 

five motion equations with respect to five unknown functions u, v, w, 

If the shell presents a ruled surface with a closed directrix, 

where a is the coordinate along generators, and ß is the coordinate 

along the directrix, then when a = c. (i = 1, 2) ten conditions of 

the single-value of displacements and their derivatives with respect to 

S? 
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i 

ß must be fulfilled, and for the shell of rotation, when coordinate a) 

is the azimuth, they will have the form: 

(8.11) 

«(•) = «(» + 2e). P(«) = o(<a + 2e). w(o») = »(« + 2R). 

fW = f(- + 2«), ♦(•) = ♦(«+ 2«), 

«;(«) - u;(»+&). p;(«)«»;(« + 2«), 

«iW-«4(- + 2«). 

f:(«) - *(»+2«). ♦;(") = W«+2e)- 

For dynamic problems it is sometimes expedient to use the condi- 

tion of single value of derivatives from time and ß coordinate dis- 

placements . 

The remaining ten equations will supply immobilizing conditions 

when a = c, and ct = c0. 1        2 

If the deformation of the shell of rotation is symmetrical with 

respect to the plane, passing through points CD = 0  and cu = ir, then it 

will be possible to consider only the section 0 < a) < TT, and Instead 

of conditions of periodicity to use ten conditions of symmetry, when 

u) = 0 and üJ = TT 

B=o.t = o.-^.o.-|.=o.A-o. (8.12) 

where Instead of the third condition, taking into account the second 

condition It Is possible to take condition of symmetry Q2 = 0. For a 

shell, closed on both coordinates a and ß, conditions of single value 

both for a and ß must be fulfilled. 
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CHAPTER  II 

ELASTIC OSCILLATIONS OP SHELLS 

§1. Natural Oscillations. Pormulatlon of Problem 

Let us set up a problem on thin-shell oscillations according to 
that/ 

Love [6]. It is known / equations for shell equilibrium are obtained 

by means of equating to zero the main vector and the moment of all 

forces, applied to any part thereof. Equations for shell oscillation 

can be set up by means of addition of expressions for forces of 

inertia and their moments to external forces and pairs, which enter 

in equations of equilibrium:* 

-Tfh-^-.   -TrA-^L,   -2?*-^. 
^   dfi '    dfl '    dfl 

where p is density of material. 

In setting up the equations we reject all products of values u, 

v, w by their derivatives; since forces and moments are linear func- 

tions of these values, we wilx simplify the equations, referring them 

to the undeforraed state of the shell. Equations of moments we will 

write in the following form: 

♦Damping forces are not examined here 
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AB \     dt at in 0*1 

J_I agt^ ^iJjML_.Af|iJi,AftJB.|_A(|^o. 
40 V     ^* *.* ^ ** » 

fft ^1 (1.1) 

and the three equations for forces will be: 

AB\    9,     *     $ ,l *       ^ d.f  If,  ^ *» * 

ÜÄ \ «i  T  «?  f ^ A»   «,   *  Ä« (1.2) 

Equations (1.2) constitute a system of oscillation equations, 

where some of the values included are connected by relationships (1.1). 

These equations must be transformed into a system of partial 

differential equations for determination of displacements u, v, w by 

means of replacement of values T.., ... , by expressions using u, v, w 

and their derivatives, while the ---hird equation from (1.1) should 

turn into identity. 

Let us note that, as a particular case, the theory of oscillation 

of plane plates is included here. Actually, if one were to assume 

1   1 that •«— = ^— = 0 in all equations (1.1) and (1.2), then these equations 
Kl  K2 

will fall into two groups:  one of them will contain —^, —^ and 
at     öt 

ö2w force T, S, the other —w, the elastic force N and moments M.  Further, 
dtd 

in this case T, S are expressed through e., ..., and the latter in 

turn through u, v according to known formulas. 
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Thus, one of the groups, into which equations (1.1) and (1.2) 

are divided, is identical with equations of longitudinal oscillations 

(deformations are reduced to elongation in plane of the plate). 

Further, moments M are expressed through x,, ..., and the latter — 

through w according to known formulas. Components KL, and Np are 

expressed through moments M by the formulae: 

»» WOT|      ,      dAffl mm diMf dJilt» N*~-jr+IT-"*--*—ir- 

This second group of equations is equivalent to the equation for 

transverse oscillations of the plate. 

With such a rendition of the theory of oscillations we make 

assumptions, similar to asumptions, applied in the theory of thin 

rods. We assume that the deformed state in the thin oscillating 

shell (or plate) is of the same type, as that determined in setting 

up equations of equilibrium. For instance, in the case of the plane 

plate [5], subjected to transverse oscillations, we make an assump- 

tion that internal deformation in a small part of the plate is very 

close to that form of deformation, which this part would have, if it 

were kept in equilibrium with the same degree of distortion of the 

middle plane. Let us consider the state of cylindrical or prismatic 

element of plane plate, inserted in a corresponding hole in it.  Let 

us assume that during transverse oscillations such an element of the 

plate in any moment of the period of oscillations is practically in 

the same state, as in  equilibrium.  If this takes place, then defor- 

mation component in this section during transverse oscillations will 

be equal to: 

exx = —ft,. *yy = — 2«t. exll = -2rc. e„ = -~;*(*i + ««). 
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and when the plate oscillates in its own plane, 

Mir ly 

In both cases e„„ is such that stress Z„ is equal to zero. It is zz z    n 

clear that our assumption is Justified, when the period of oscillation 

of the plate is great as compared to the period of those free oscil- 

lations of the prismatic element of the plate, with which the defor- 

mation is of the assumed type. Actually, the period of all transverse 

oscillations of a plate is directly proportional to the square of 

the linear dimension of the area, included in the outline of the plate, 

and is inversely proportional to its thickness; the period of any 

kind of longitudinal oscillations is directly proportional to the 

linear dimensions of plate and does not depend on its thickness. The 

period of any free oscillations of the prismatic element, accompanied 

by deformations of the type adopted here, is proportional to the 

linear dimensions of this element or approximately proportional to 

the thickness of the plate. In this reasoning there is nothing which 

specially pertains to the plane plate only. Hence, we conclude that 

in an oscillating plate or shell the deformed state in the small 

section must be considered to be practically the same, as if the plate 

were in equilibrium, during which the middle surface would have such 

stretch and bend, as in any moment during oscillation. It should be 

borne in mind also that these reasonings, which justify the assumption 

made, become invalid when oscillation frequency increases. 

Displacement component must satisfy equations (1.2), which are 

transformed, as it is indicated above. Furthermore, they must satisfy 

the boundary conditions.  On the free ends the bending pair, and the 

three linear combinations, composed of forces and the turning pair, 

must turn into zero. 
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Let us note that expression for moments M, of forces; N contain 

Eh       2 Eh 
factor D =  -— or ^r *, and expressions for the forces 

12(1 - vd) 3 ± . vd 

consist of two members, of which one is proportional to h and the other 
■55 

to hr. Each of equations (1.2) we shall divide by h; then terms de- 

pending on e., e2, and w, will not contain h, while others will con- 

2 
tain factor h . Further, we assume that we can obtain a correct 

o 
approximate solution, rejecting terms, containing h . If we do this 

then on the free edges two boundary conditions, namely, M7 = 0 and 

If si = 0 become superfluous; the system of equations will be of 
as 

a sufficiently high order to satisfy the remaining boundary con- 

ditions. But, now h is left cut of the equations and boundary con- 

ditions and, therefore, frequency will not depend on thickness. 

Lengthening of the middle surface will be the most important feature 

of the deformation, and, furthermore, deformation is necessarily 

accompanied by a bend. 

Oscillations of thin shells, accompanied by elongations, are 

analogous to oscillations of this type for plane plates. Examination 

of shells with slightly bent middle surfaces shows that an open shell 

can accomplish such kind of oscillations, which are analogous to 

transverse oscillations of plane plates. The frequency of these 

oscillations will be significantly lower than the frequency of 

oscillations, during which elongation of the middle surface occurs. 

The existence of such kind of oscillations may be established by 

means of the following reasonings. 

The upper limit for the lowest pitch frequency can be founn. If 

we set out to achieve a certain suitable type of oscillation, since 

in an oscillating system the frequency, obtained for an adopted type 
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of oscillations, cannot be less than the lowest frequency of natural 

oscillations. If, for Instance, we adopt such a type of oscillation, 

with which lines, drawn on the middle surface, do not change their 

own length, we can calculate the frequency with the help of a formula 

for the kinetic and potential bending energies. Since the kinetic 

energy is proportional to h, and potential energy is proportional to 

h , then the frequency should be proportional to h. Frequency of 

similar oscillations, not accompanied by elongations in a shell of 

a given shape decreases indefinitely together with h in contrast to 

longitudinal oscillations. It follows from this that the frequency 

of longitudinal oscillations cannot be the lowest. However, let us 

note that the case of the closed shell, for instance a spherical 

shell, is an exception, since here oscillations without elongations 

are absolutely impossible:  similarly a sh«11 of small thickness, 

which is almost closed and has only a small hole is also included in 

this exception, but only if this hole is sufficiently small.  In 

order to force the shell to oscillate in such a manner that there 

would be no elongations, it will be necessary to apply forces to its 

edges and its surface.  If these forces are absent, then the displace- 

ment differs from the displacement, which satisfies conditions of 

deformation without elongations. However, this difference for low 

oscillation frequencies should be insignificant, since otherwise we 

would have to deal in actual practice with longitudinal oscillations 

and the frequency in reality could not be sufficiently small, to 

correspond to the given case. As we can conclude from the form of 

motion equations, the elongation, which we are discussing, on the 

greater part of the surface is extremely small; only near the edges 

will it be such, as to satisfy the condition on these boundaries. 
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§2. The Closed Cylindrical Shell 

Let us assume that a is the radius of a shell, and a = x, ß = <p. 

Let us assume that the edges of the shell are formed by two circum- 

ferences x = ±im    Elongations and change of curvatures are determined 

by values: 

«! = --. «t =—(-r--»). «=-j-H —, 
to a \ &$ J dx        «a? 

\ f »w   ,   do\ I 9  f da   ,    \ a»» 
ax* 

The displacement is a periodic function with respect to qp with 

period of 2-n.     It is assumed that normal oscillations of the shell 

have a frequency of fi—. Therefore, we assume that u, v, and w are 

proportional to sines or cosines of arcs, multiple of «p, and also 

cosines pt + e. After that oscillation equations are transformed into 

a system of linear equations with constant coefficients, determining 

u, v, and w in relationship to x.  Let us establish these equations, 

but first let us examine the order of this system. Expressions >:., 

it,-,;, end t include only second derivatives, expressions e., E^J and CD 

include first derivatives. Thus, M. and Mp contain second derivatives, 

but NL — third derivatives. The third equation (1.2), consequently, 

contains —j- in those terms, which are lowered, when an equation of 
ox 

oscillations with elongations is formed. Thus, full equations will be 

of a significantly higher order than equation of oscillations with 

elongations, the first ones will be of the eighth order, the second 

ones — of the fourth order. Lowering of order upon the transformation 

from the full system to equations of oscillations with elongations 

lias a fundamental value and in general, is quite independent of the 

special cylindrical shape of the middle surface. 
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In accordance with the above, we shall write that: 

it = C/siniif cos(pf-f e), 

v "tVcmnyco&ipi + e), ^   '   ' 

where U, V, W are functions of x. It follows from this that 

Mi t, «= ——äniif cas(pt + «), 

«, = _ "ILLfÜL sin «,, co5(p/+«). 

TS= —~-(K + ny)cosnf cos O^ + s). 

(2.2) 

and,  consequently, 

M, --Dann, cos(pr + e) ^-^ ~ üLi^V 

AfM = Dcosiifcos^ + 2)-^ (n ^-+-^.) = - Al,,. 

The first two equations from (i.i) of this chapter will have the form. 

»        I   dAf,       dMlt IV« as —      —  
«    dj Ar 

or,  which is the same: 

yv, =-OcosnVcosa>r + 3) JA ^---^ r-f .'^-^-- 
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Further we have: 

i        [Ai*|T    *' 2(1-rv)     a        2il-')   a\ 

* I*« ^        *       2(1-v)   «        2(1-.)   a J 

S'=TD<'-'[-?-+T]' 

where e^ ..., n^,   ..., have values, given by formulas (2.2). The 

oscillation equation will be, 

Ar        «    df 

*iL + ± i*L _ 3- + tyhfy = 0. 
9*        m    d% a 

dUt   ,    I    AV,   .    Tt _ 1 __ ^ __. 
Ar        «    df a 

+ _u J^«. -f -^i. .f 2f^p*tt» = 0. 

or,   introducing U,  V.  and W,  we will obtain: 

™\JL(*L-V v + nV \ _ -Lzi.«. f .^ + «ü V + 2.1«/ + 
*»|^Vitr a      ; 2      aVrf* o/J        ^    ^ 

+ O. f^z^z^iW + ±rlL JLJ-{v+ „W)l« 0. (2.3) 

3P T n /   <fl/       r i «V \ ■   I - *    d / dV 

A»  1 o V   <** «      / 2      *t ^ dx 

-f T[ 

)+±r-t{%+Jtu)]+i'"*+ 

2 + v    n« 

2(| — »)   a*   dx* 

I    l->   d* 

2(1-v) a 
r(V + nin + 

2     a»     dx« ^ '       o«   dx1        o* 

+ 
I»     dx»        a*   J (2.4) 

^ I«   dx a«     J+^W     Ä [^       fl,   ^ t 
n    d-V «» 

a» a*   dx*        a* 

v + 2.»   d*W 
2(1-vjo» d-c» 

2(1-v)   a'1     ^    'J (2.^) 
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Conditions on the boundary with x = ±7 will be as follows: 

M 0 Of 

where all the left-hand parts of equalities are linear functions of 

U, V, and W and their derivatives with respect to x. 

Ihe  system of equations for determination of u, v, and w depend- 

ing upon x constitutes a linear system with constant coefficients 

of the eighth order. This system contains an unknown value p , and 

also known values h and n, where n is an arbitrarily selected number 

of wave lengths, which can be laid along the length of the circum- 

ference. Let us assume that u, v, and w in addition to factors, 

mx   nix   nix 
containing q) and t, are proportional to values |e , T)e , ^e , 

where 4* T)* Ci an<3i m  are constants. Constant m will be the root of 

the equation, obtained by means of equating the determinant to zero; 

this will be an equation of the eighth degree with respect to m or 

2 
the fourth degree with respect to m and will not contain terms with 

2 
odd powers of m. The coefficients of this equation depend on p . 

If m will satisfy this equation, then relationships |:TI:£ will be 

2 
determined depending upon m and p from any two equations of motion. 

Not taking into consideration the factors, depending on cp and t, we 

can write: 

c-S(v",''+VM'')' (2.6) 

w 
/-I 

where tU and £. are arbitrary constants, and r^, ..., will be propor- 

tional to the first two constants. Boundary conditions x = ±1 
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yield eight linear homogeneous equations with respect to i.  and ^.. 

Exclusion of these constants leads to one equation for determination 

2 
of p ; this will be the equation of frequencies. 

Let us examine longitudinal oscillations (oscillation of elonga- 

tions). Equations of longitudinal oscillations are obtained by means 

of rejecting in equations (2.3), (2.4), (2.5) terms, containing factor 

D 2 j-. The equation for determination of m becomes a quadratic equation. 

Conditions when x = ±1 are reduced to equalities: 

or 

dU 
dx 

• V- 
V + nV 

a 
se 0. 

dV 
dx 

+ a 
0 

Since h is not included in these equations, then the frequency will 

not depend on h. 

Under the condition of symmetrical oscillations, when u, v, and 

w do not depend on cp, we have: 

substituting in oscillation equations, we will obtain: 

(f-TfW-* 
2(1+ v) dx*   ^*H ' 

Thi-rZ-i*)***-*- 

Boundary conditions with x = ±? will be, 

dx a dx 
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There exists two kinds of symmetrl.ai oscillations. In the first 

U and W disappear, so that the displacement will be tangential to the 

normal section of the cylinder. In this case we have, 

^„•ca^H:. ^« E     ** . (2.9) 

where n is an integer. In the second kind of oscillations V disap- 

pears so that displacements occur in the plane, passing through the 

axis; here: 

where | and C are enterconnected by equations, 

"      f(l-^) P  J   f(l—^) to '" ' (2.11) 

r   Ml-^^J   PO-^) to 

The equation for the frequencies will be 

If the length of the cylinder is great in comparison with its diameter, 

i.e., j is  small, then there are two types of oscillations, i) almost 

purely radial with frequency 

|p(»-W| 
2m 

2) and almost purely longitudinal with frequency 

2t 

The latter are similar to longitudinal oscillations of a thin rod 

(oscillation of elongations). 

Let us now examine oscillation without elongations. Such oscil- 

lations along the generatrix are determined by formulas: 
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I - J. 

w=—fl^co80rf4-««)sin(nf+ ».). (2,13) 

where 

.a o  wcn'-iy (2.14) 
^■^ a^ka«  ««+1 

If oscillations occur in three dimensions, displacements will have 

the following form: 

a « _ _?_ B, cos (p;/ -f «;) sin (iwp + %). 

w - —nxBacas{pmt + t^)än (nq> + %). 

where 

6(1 —>)a|i 

., _ O ««(n«-0  _  w«/P (2.16) 
P/ = 2fka*     «»+1       3g 

+ «•(«• -r UP 
i 

As we can see, values p and p here are proportional to h. 

In the latter case, when we introduce the assumption of the pos- 

sibility of oscillations, not accompanied by elongations, an inaccurac; 

is admitted, owing to which the equations of motion, and boundary 

conditions are not fully satisfied. Besides, it turns out that in 

order to satisfy different equations, it is necessary to introduce 

a correction which contains small changes due to displacement, while 

to satisfy boundary conditions the correction for displacement should 

be more significant than the one, which is necessary to satisfy 

differential equations. 

Let us clarify the character of the corrections, which must be 

Introduced into the deformation without elongations. The existence 

of oscillations, not accompanied by elongations is connected with the 

fact that the order of the system of motion equations is lowered 

from eight (oscillation with elongations) to four.  In the frequency 

equation (in the case of oscillation with elongations) terms, 
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fi ft Q O 
containing m and m , have factor h , and, thus, two values of m 

± 
will be large numbers of the order r-.  In order to show, how with the 

help of the solution, depending on large values of m, it would be 

possible to satisfy conditions on the boundary, we will examine Lamb's 

example [7]. 

A cylindrical shell, limited by two generatrices and two circum- 

ferences of normal sections, is subjected to action of forces, applied 

along the generatrices (circumferences are free from forces); it is 

distorted, turning into a surface of revolution, in such a way that 

the displacement, tangential to the circumference of normal section 

v is proportional to qp. Let us find this displacement. 

We have v = c<p, where c is a constant and displacements u and w 

do not depend on <p. Hence: 

Forces S^, S2 and moments MLp, M21 disappear, and M., M2, K., Np 

will be equal: 

1    V«*•tf,/      {*      d* J' 

Equations of equilibrium will assume the form: 

and tie condition when x = ±1 will lead to equalities: 

In order to satisfy these equations and conditions, we assume 

that E. and e2 will be values of the same order as hn*   and hxp.  If 

this takes place, then the forces can be expressed, with a sufficiently 

close approximation, in the following manner: 
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If n > 1, then two normal oscillations of the second class correspond 

to each n, and the lowest tone corresponds to the slowest of the two 

oscillations of this class when n = 2. Its frequency will be 

psBVl/T(U76>- (5.5) 
if Polsson's ratio v = 0.25, the frequencies of all these oscillations 

do not depend on the thickness of the shell. 

In the specific case of the plane plate oscillations £ire divided 

into two main classes: one of them corresponds to deformations with- 

out elongations with displacements., which are normal to the plane of 

the plate; the second — to deformations, accompanied by elongations, 

when displacements are parallel to the plane of the plate. Here we 

can have longitudinal oscillations, when displacements are parallel 

to the plane of the plate; oscillations of this class are divided 

into two subclapsfcs, the first subclass includes such oscillations, in 

which the middle plane does not undergo deformation; the second in- 

cludes oscillations, in which displacements are analogous to the 

tangent displacements in a closed thin spherical shell.  Oscillations 

of the second class, with which displacement has both the normal com- 

ponent to the plane of the plate and the component, lying in this 

plane are also possible; if the plate is thin, the first compor.ent 

will be smaller than the second. The normal component of displacement 

disappears on the middle plane, and the normal component of rotation 

disappears everywhere, so that these oscillations are analogous to 

oscillations of the second class in a closed thin spherical shell. 

There Is, further, still another class of bending oscillations, when 

the displacement has a normal and a tangential component, where the 

latter is smaller than the normal one in the case, when the plate is 

thin. The tangential component disappears on the middle plane, so 
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that the deformation can be approximately considered not to have 

any elongation. With these oscillations linear elements, which at 

the beginning were normal to the middle plane, during the entire 

movement remain rectilinear and normal to the same plane. The fre- 

quency of the oscillation is approximately proportional to the thick- 

ness of the plate. Similar oscillations without elongation, as 

noted earlier (see §2 of this chapter), in a closed spherical shell 

are impossible. 

Among these extreme cases there is an open sphere or a spherical 

arch (dome). If the hole is small and the shell is almost closed, 

then its oscillation closely approaches the oscillations of the closed 

shell. If however, the solid angle, under which the hole in the shell 

is seen from a pole, located on a part of the sphere, locking the 

shell is small, and the radius of the sphere is large, then oscilla- 

tions approach those of the plane plate. In intermediate cases we 

will find oscillations, which for all practical purposes belong either 

to the type of the oscillations which proceed without elongations or 

to the type of oscillations with elongations. 

Investigation of oscillations without elongations of thin spheri- 

cal shell with the boundary contour in the form of a circumference 

was performed for the first time by Rayleigh [8]: he applied the 

energy method. In the case of a hemisphere the frequency of the 

lowest pitch is equal to 

When angle a which determines the size of the hole approaches TT, the 

sphere will be almost closed and the frequency of the lowest tone of 

these oscillations will be equal to 

'"J^b/-«5'«")- (3-5) 
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Let us assume that angle (rr - a) becomes sufficiently small; 

leaving h constant, we can obtain for the frequency of the lowest 

pitch of oscillations without elongations, a value larger by any 

amount than the lowest frequency of oscillations of a closed spheri- 

cal shell (the oscillations of the latter, of course, will be with 

elongations). Thus, in the case of an almost closed shell the princi- 

pal argument, with the help of which we verify the existence of 

oscillations, which have practically elongations, becomes superfluous. 

When fundamental equations of oscillations are set up by the 

method, which is shown in §2 of this chapter for the cylindrical shell 

we take the displacement components in a form, containing two factors, 

the first is the sine or cosine of an arc, which is a multiple of cp, 

the second constitutes elementary harmonious function of tj after 

that, equations are reduced to a linear system of the eighth order, 

which serves us to determine the dependency of displacement components 

on width 6. Conditions on the free edges are expressed by equating 

to zero, for a specific value of 6, certain linear expressions, con- 

necting displacement components and their derivatives with respect 

to Q.    The order of the system is sufficient to enable us to satisfy 

these conditions.  If the solution of the system of equations sub- 

ordinate to boundary conditions, was found, this would lead to deter- 

mination of the type of oscillations and their frequency. 

Oscillations of elongations are investigated by the method, which 

is expounded in the problem on the cylindrical shell. The system of 

equations in this case will be of the fourth order, besides it will 

be necessary to satisfy two boundary conditions. With any form of 

oscillations., movement is composed of two moclons; in the first, the 

radial component of displacement is absent; In the second, the 
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radial rotation component. Each of these motions is expressed with 

the help of the spherical function, but the order of the latter In 

general, will not be a whole number. The order of the spherical 

function, expressing the oscillation without radial displacement, is 

connected with the frequency by relationship (3.1) which has a instead 

of n; order ß of the spherical function, expressing displacement, 

when the radial component of rotation equals zero, is connected with 

frequency by relationship (3.2), in which n is replaced by ß. Both 

a and ß are connected by a transcendental relationship, which con- 

stitutes an equation of frequencies. Oscillations are not divided 

into classes, as in the case of the closed shell; as the shape of the 

open shell approaches the shape of the closed shell, its oscillations 

of elongations are transformed into analogous oscillations for the 

closed shell. 

The existence of oscillations, practically approaching oscilla- 

tions without elongations, obviously, are intimately connected with 

the fact that upon assuming the presence of elongation oscillations 

we lower the order of the system of motion equations from the eighth 

to the fourth. As in the case of the cylindrical shell, it is pos- 

sible to show that oscillations cannot be entirely unaccompanied by 

deformations of elongations and that the correction, necessary to 

satisfy the conditions on the edges, is greater than that, which is 

needed to satisfy motion equations. Hence it may be concluded, that 

on the free edge elongations are comparable in value with bending 

strains and that to all purposes these elongations are limited only 

by a narrow band near the edges. 

If we Imagine the gradual changes in the character of oscillations, 

appearing with the growth of curvature, starting with the plane plate 
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and finishing with the closed spherical shell, the class of oscilla- 

tions, which proceed practically without elongations, will disappear 

completely. The basis for this should be sought in the rapid growth 

of the frequency of all oscillations belonging to this class, upon 

a significant decrease of the hole in the shell. 

§4. Asymptotic Method of Investigation of Oscillations 

For investigation of natural oscillations of plates, sloping 

shells, and also unsloping shells during oscillations with high 

indices of changeability of shape, V. V. Bolotin proposed an effective 

asymptotic method [9-11], the essence of which in the general formu- 

lation can be presented thus. 

In a certain retangular (in a generalized sense) spatial region 

of variables x,, x2, ..., xm, (0 s x. s a., i = 1, 2, ..., m) we seek 

functions cp., <p2, ..., cp , satisfying the system of differential 

equations 

0=1. 2,...,n) 

and, on every border of the region, satisfying conditions: 

(^.1) 

^ja (9i. ft qWO) = 0, Nw foi, 9,,..., <p„/fl4) = 0 
(*= 1, 2 n; a== 1, 2,...,r). (4.2; 

Where L. , M. , and N.  are linear differential operators, and 2r is 
ja" jar     la ^ 

the general order of the system (4.1).  It is assumed that the bound- 

ary value problem is self-conjugate.  It is necessary to determine 

for this problem the eigenvalues cf X and eigenfunctions of cp... 
<J 

According to the author [11], let us introduce the classification 

of the border self-conjugate problem. The problem, the eigenfunctions 

of which permit their presentation in the form of the product of 
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functions, depending only on each of the arguments individually: 

we will call a boundary value problem with separable variables. Solu- 

tion of such problems, as a rule, is sought in the form of the product 

of trigonometric functions. 

¥e shall term the self-conjugate problem (if.i)_(4.2) a boundary 

value problem with quasiseparating variables, if either the system (4.1) 

permits a generating solution in the form (4.3) owing to the cor- 

responding selection of conditions (4.2), or system (4.1) permits a 

solution in the form 

m 

f/-♦*(**)riM*/) («•=1.2.....«; l-i.2 «).      (4.4) 

where <&..  are certain functions of one variable x. . Consequently, 
J:L
0 10 

substitution (4.4) transforms (4.1) into a system of differential 

equations with respect to functions $.. ; or substitution (4.4) in 

conditions (4.2), which correspond to 1 = in, transforms them into 

conditions, containing only *.. . 

An example of boundary-value problems with quasiseparating vari- 

ables are problems, described by systems of differential equations 

with constant coefficients, which contain derivatives of even orders; 

boundary condition for every boundary must contain an operation of 

differentiation with respect to every "transverse" coordinate of the 

same parity. 

V. V. Bolotin's asymptotic method for Ioundary-value problems 
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with quasidlviding variables is based* on the assumption of possibility 

of the use of solution (4.5)** as a generating solution also for those 

problems, which do not permit an exact solution in this form; in 

addition we should consider it only as an approximate solution for 

an Internal region, sufficiently removed from the boundaries. Near 

the boundaries the exact solution will differ from the generating 

solution; this phenomenon is termed by dynamic edge effect. Here If 

for every boundary we will manage to construct a solution, satisfying 

all the conditions in it and tending to a generating solution as it 

is removed further from the boundary, then asymptotic expressions for 

elgenfunctions can be found by means of a "gluing" operation. 

In setting up the solution one should bear in mind every function 

c .. (x.) in (4.3) in the corresponding selection of conditions for 

normalization contains two constants:  the wave number k. and certain 

phase response. These constants can be found only after "gluing" 

of solutions. After substitution of (4.3) in (4.1) we will find a 

bond between eigenvalue X and wave numbers k., k,-,, ..., k : 

Actually, we will examine, for instance, boundary x. =0. 
10 

Assuming that parameter X in equations (4.1) is determined according 

to (4.5), we will look for their solution in the form (4.4). A 

system of ordinary differential equations obtained in such a way will 

have, as it was already noted earlier, a solution of type f..     (x. ) 

*0nly qualitative consideratioriL- are adduced here. 

**Solution (4.3) possesses asymptotic properties of elgenfunctions, 
which are maintained also when boundary conditions are changed. 
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which depends on two arbitrary constants.  If this system, furthermore, 

admits r - i linearly independent solutions, possessing properties 

of the boundary effect, then we will have r + 1 arbitrary constants. 

And, consequently, we will satisfy r conditions on the boundary and 

the normalization condition. Analogously we will construct a solu- 

tion also for the opposite boundary x. = a- • Requiring that in the 
i0   i0 

internal region both solutions coincide with the accuracy of the 

solution of the edge effect type, we will obtain condition of "gluing", 

containing as unknowns wave numbers k,., k2, ..., k . In all we may 

obtain m such conditions, after which eigenvalues are determined by 

for formula (^.5). 

It is possible to expect that the error of operation of "gluing" 

has an order of values, which is adopted by functions of dynamic edge 

effect in the internal region. Consequently the faster the edge 

effect damps the smaller is this error. 

The investigation of solutions shows that with the growth of 

wave numbers the error decreases rapidly. However, in certain in- 

stances, when for a certain region of wave numbers the solution of 

the type of edge effect, in general, cannot be constructed.  In such 

cases, according to the author, we will discuss the degeneration of 

dynamic edge effect resulting from the strong influence of the bound- 

ary on the behavior of eigenfunctions in the internal region, in these 

cases the asymptotic method becomes invalid and, consequently, cannot 

be used. 

Solutions, obtained by means of the asymptotic method,* can be 

considered to be approximate expressions for eigenfunctions, which 

^Differential equations and boundary conditions are satisfied 
exactly here, however singleness of solution is attained only by the 
"gluing" operation, which needs a mathematical foundation, as also, 
does the entire method. 
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can be used everywhere, except in the vicinity of angular points of 

the region. It would be a sound practice to examine separately the 

solutions for the internal region and the solution for every boundary, 

as we do when we examine separately the moment and zero-moment solu- 

tions in the shell statics. 

Let us apply V. V. Bolotin's asymptotic method to do research 

on natural oscillations of the sloping shell [11] and the circular 

cylindrical shell, using Yu. V. Gavrilov's resolution [12]. 

First, we will examine the natural oscillation of the sloping 

shell of constant thickness with radii of curvature IL = const and 

R^ = const, supported on a rectangular frame [11]. Equations on 

sag w and tangential forces qp are recorded thus: 

i a«f  i a«? 

I    t     .1  <J»T» .  i &0 n  T»1  J) ^ v- -I y = 0. 

(4.6) 

(^.7) 

The generating solution has the form, 

w = an *, (jf, — JC«) sin *, (jr. — x«). 

where k^ and k^ are wave numbers, x.  and x2 are phase responses 

(limit phases). 

Solution for edge x. = 0 we take in the form of: 

«'=^i('i)sin*t(4:t~JcS). ^ g. 

Substitution (4.8) In (4.6) leads to a system of ordinary differential 

equations with constant coefficients with respect to VL (x.) and ^.(x.) 

The dynamic edge effect does not degenerate, if the characteristic 

equation of this system, set up with the additional condition that 

'•-f^H-fiH--! (!t.9) 
>  (»t + »SJ1 J 
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- t 

I 

has three roots with negative real parts. Let us note, that the edge 

effect does not degenerate with any values of fe1 and kp, if R. >  Rp 

(it also never degenerates for plates). With R, < R« degeneration 

is possible only with sufficiently small k^ and kp. For instance, 

for the asymptotic edge in a shell of zero Gaussian curvature the 

edpe effect degenerates, if 

"Gluing" together the solutions, which originate at the boundaries 

x. = 0 and x. = a^ and at boundaries x2 = 0 and Xp = ap.» we will 

obtain two equations for finding k, and k«. After that frequency p 

is found by the formula (^.9). Let us note that with large wave 

m.ir        nipTr 
numbers k. **  and k0 «? , where m,, and m0 are positive integers -»-a>i     --ap       -"-     £- 

and formula (^.9) is turned into an estimate of the type of well- 

known appraisals of Courant-Weyl.* 

Now let us investigate the spectrum of natural oscillations of 

circular cylindrical shells [12]. 

Let us combine with the middle surface of the shell an orthogonal 

curvilinear system of coordinates x., Xp so that line Xp = const 

coincide with the generatrices. 

Forms of oscillations for normal sag w# are determined from the 

resolving equation 

VVVV«'.^ ^ --^-vVa'.-O. (4.10) 

*With large wave numbers the equations of the classical theory 
of shells (and plates) become Insuitable and must be replaced by equa- 
tions, which take into account deformation of r.he shift and rotation 
inertia,  The asymptotic method may be applied to this class of prob- 
lems also. 
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Here 7 is the specific gravity of the shell material, g is the 

acceleration of the force of gravity. 

Solution of equation (4.1ü) near the circular edge is in the form 

«'.= ^i(*i)an*t(x,-jrp 

and analogously near the rectilinear edge 

Function Vi^x^) is determined by expression 

^« W = C* sin *,*, + Cw cos Vt + J] CJV+^V'.. (^.U) 
1-1 

Here Sp. are negative roots of the characteristic euqation for edge 

effect near the rectilinear edge. Ponetion ¥i(x1) has the form 

^» (*i) = Cu sin ^x, + CIf cos *(X| + J] C1(/+,^/'., (^.12) 

if all roots of the corresponding characteristic equation assume real 

values, and 

Vi (*i) = C.i sin k^ + C.jcos fr.x, + C,^-'« + 

+ CM sin 3jt1«a" -j C« cos ?x1e
,,''I (^•13) 

if roots s,2 and s., are complexly conjugated, s.0 1 ^5 =:: a ±  iß« 

The first two terms in expressions (4.11), (4.12) and [k .1J>)  cor- 

respond to the asymptotic expression for forms of oscillations, but 

the three remaining ones describe the dynamic edge effect. 

Values of s0. are expressed in the explicit form, but s, . can be 

represented graphically or determined from the characteristic equa- 

tion directly. 

Wave numbers k. and k2 are determined from conditions of "gluing" 

together, which, for cylindrical panel, in the case of Identical con- 

ditions on opposite edges are recorded in the form: 
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(^.l1*) 

where n., n2 = 1, 2, 5, .,.; a^ and a^ are sides of panel. 

After determination of wave numbers it is easy to calculate the 

frequency of oscillations. 

'~fl<*+v+%«U] 
Let us now determine the parameters of the dynamic edge effect 

near the circular edge. Let us examine the edge effect near the 

fastened circular edge and near the circular edge with sliding fasten- 

ing. 

In the first case boundary conditions have the form 

w,--|~--«. = »,-0 whenJC,-0 (^.15) 

and in the second 

Here u# and v^ are tangential displacements, which can be determined 

from relationships, 

w(^)-i^h.+(.+^]. ^^ 
where cp# is a function of efforts in the middle surface, for the 

determination of which we can use the second Mushtari - Vlasov 

equation [13]. Then 

VVT.-   Ä ^ ■ (I).!«) 
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- -. lih fc-TJÜ^aw^n, * ** • ■ ■.-ST"'" 

From (4.17) and (4.18) we find, 

where In the case of nonoscillating edge effect, 

s 
t/i = ^-#C(C11caMl-CwsinAlxJ-][;CK^w.^S^,^ 

/-i 

t 
K» - -^[iTCCuSin^ +CI>cosMi)-5]Cltf+nS;ieV]. 

I-1 

t 

♦i = - [iC'tCaSin Vi + CMCOSMI) - %€*„*&*'"] 
/-i 

Here we introduce designations 

Further, assuming that C.. = 1, from (4.15) and (4.16) we find con- 

stants C., (k = 2, 3, 4, 5). For determination of wave numbers we will 

C12 be interested only in ratios ■*—, which for a clamped circular edge 
uil 

^re equal to: 

t^tr (4-19) 
Pi 

and for edge with sliding fastening 

&'" 
C„ 
c» _* E! (jK?(- 

/-I 
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Here, 

'M *= *II {^tt—SuJ (#f + Sj,), 

^««^..(Sn-SriXir + Sa). 

and expressions for jR . (k = 1, 2, 5, 4; ,j = 1, 2, 3) are obtained 

from p.. by cyclic permutation of second indices. 
K.J 

In the case of the oscillating edge effect the corresponding 

expressions are obtained analogously. 

With the help of (4.19) and (4.20) from equations (4.14) we 

calculate wave numbers for closed cylindrical shells with rigid and 

sliding fastening at the circular edge, as well as for panels with 

the same conditions at the circular edge and with free support at the 

rectilinear edge. 

The solution of system (4.14) presents certain difficulties. 

However, the first approximation may be obtained by the graphic method 

relatively simply. 

After the wave numbers are determined, oscillation frequencies 

are easily calculated. Furthermore, calculating all roots of charac- 

teristic equations s„ . and Sp. (J = 1, 2, 3) and all constants C,. 

and Cp. (k = 1, 2,  3, 4, 5), we obtain expressions for function of 

forces, as well as for forms of oscillations and for bending moments 

and forces. Thus we can determine the stresses near the edges. 

The asymptotic method may be applied also to probltius on forced 

oscillations which is based on making use of expansion into series 

with respect to asymptotic expressions for forms of natural oscilla- 

tions.  This method can be successfully applied, for the analysis of 

vibrations of plates and shells during high-frequency excitation. 
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Since in this case simplifications are possible, because with large 

wave numbers the influence of the edge effect is localized in narrow 

regions near the lines of distortion. Consequently, it is permissible 

to resort to expansion with respect to eigenfunctlons of the generating 

solution (under the condition that phase responses are found, taking 

into account boundary conditions). After all coefficients of de- 

compositions are found, we can calculate bending moments, severing 

forces, stresses and so forth in the dynamic edge effect zone. 

§5. Parametric Oscillations.  Formulation of Problem 

In preceding paragraphs we examined natural oscillations, when 

an oscillating body is isolated from any external influences. Such 

oscillations appear after an external action, which determines thr- 

initial deflection and initial speed, i.e., initial conditions, tut 

the latter simply determine the subsequent process in the elastic 

system. An elastic system itself from the point of view of natural 

oscillations, in general, is determined by two parameters, which 

characterize the oscillatory process: natural frequency p and decre- 

ment 6 (or damping coefficient). 

Forced oscillations in the body, i.e., oscillation under the 

action of external forces, are determined not only by the physical 

properties of the body and by the parameters of the elastic system 

(p and 6), but also by external forces; mathematically this is ex- 

pressed by the fact that into the equation a term enters which, depends 

explicitly on time.  However an external Influence of another form 

is possible, when an external force does not act on a body, and at 

the same time either parameters of the system (included in the coef- 

ficientp of the equation) depend on time, or the external influence 

changes the parameters of the elastic system. Appearance of an 
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oscillatory process due to variation of parameters is called para- 

metric excitation of oscillations, and oscillations are called para- 

metric. 

Thus, parametric oscillations are oscillations, appearing in an 

elastic system as the result of periodic change of those of its pro- 

perties, which remain constant during free oscillations. And con- 

sequently, among oscillations, appearing in the presence of external 

periodic influence, we must distinguish two forms: forced oscilla- 

tions and parametric oscillations. Forced oscillations are caused 

by the action of prescribed external forces on the elastic system, 

the properties of which are constant, i.e., the values (parameters), 

characterizing these properties, are constant. Parametric oscilla- 

tions, on the contrary, appear owing to the periodic change of the 

elastic system itself. 

The phenomenon of the build-vy in time of the intensity of para- 

metric oscillations of an  elastic system is called parametric reso- 

nance. Parametric resonance appears with a definite relationship 

between the frequency of change of a parameter during external in- 

fluence on the body and frequencies of its natural oscillations; it 

can arise every time, when the ratio 

- _ average natural frequency  

frequency of change of parameter 
1 

is close to one of the following values, 75, 1, 2, 3, .... The condi- 

tion for appearance of parametric resonance is fulfilled easier tne 

larger the magnitude of the change of parameter, the less the loss 

of energy in the elastic system (friction or resistance), and the 

less the value £. Therefore, it is observed most frequently when 
■1 

^ = i. The essential specific feature of parametric resonance is the 
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fact that it can appear in the presence of even an insignificant 

Initial deflection of the elastic system from the state of equilibrium. 

In actual practice such deflections are always possible. 

Let us outline the formulation of the problem en parametric 

oscillations of shells.* 

Let us investigate the behavior of a shell under the influence 

of external surface load, variable in time according to periodic law: 

x.(o,p.o. r,(..p,o. -*•(«.P.O. (-•1) 

Let us assume that load (5.1) induces in the shell a momentless 

state of strain and let us assume that in this state displacements 

of points of middle surfaces are equal to u0, v0, w0. A change to 

the moment state will produce transpositions: 

(5 . S) 
««» a, + ö, » = », + 0. w = i»« + «>. ■" 

satisfying equations of the moment theory.  Components X, Y, Z of the 

surface load consist of the reduced external load (5.1)^ forces of 

Inertia and an additional induced load, appearing upon deflection of 

the middle surface from the initial momentless state: 

X— Xt-\- AX — m 

ot* 
0ßO / f  -7, 

Here m Is the mass of the shell, referred to a unit of area of 

the middle surface. 

Introducing (5.2) and (5.3) in equations of the moment theory 

in V. Z. Vlasov's [15] form and taking into account that undisturbed 

parameters are connected by equations, 

*Here and in subsequent paragraphs of this chapter V. V. Bolotin's 
Ih]  results are expounded. 
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we obtain "equations in variations." 

I,, (u) + Lw (v) + £„(») + ^ (AX - «-g-) - 0. 

(5.4) 

bars above u, v, w are subsequently omitted. Here L.., ^o* •**» 

are linear di ferential operators, referred to lines of the main 

curvatures: h is the thickness of the shell. 

Regarding determination of components of ?. reduced load M, AY, 

and AZ, it may be carried out in the following manner.   ,-t us assume 

that the zero-moment state is characterized by normal forces T, 

(a, ß, t) and T2 (a, ß, t), which will be considered positive, if 

they cause compression. Disregarding forces of inertia of the zero- 

moment state, we can calculate the internal forces from equations of 

equilibrium of the shell element in this state: 

a »A (5-5) 

W + Wt-Z,, 

where k,, kp are the main curvatures. 

Let us assume that, as it was earlier, r, and ep are relative lon- 

gitudinal deformations, x.and Kp is the increase of main curvatures due 

to moment deformation. The first quadratic form assumes the form 



Now, If in equations (5.5) instead of coefficients of the first quadra- 

tic form A and B we introduce A(l + E2)  and B(l + e,p) respectively; 

furthermore, if in the last equation we replace k, and kp by k. + vi. 

and k2 + Kp, then in this case they are not satisfied identically and, 

consequently, it is necessary instead of X0, YQ, ZQ to take X0 + AX, 

YQ  + AY, Z0 + AZ, where AX, AY, and AZ are the additional (reduced) 

load. Thus, equation (5.5) should be written in the following form: 

--IßO + ^TM-r.-l-iB'+e,)l = 

= i<B(l+«,)(!+fJ(X# +AX). 

«iWa + eiXi+^O'.+Ay). 
{ki + ^Tt + ikt + xJT^Zt + liZ. 

Taking into account (5.5) and disregarding values of the second order 

of smallness (products of type e^o* ei ^C)» we arrive at the follow- 

ing formulas: 

AX =-^ [-^-(^BT,) - Tf-£-(£, ß)J - X0 (e, + ej. 

*y~~r[iir{**AT*~T*i-M]-Y^+^ 
AZ^TV^ + TV,. (5.6) 

Let us Introduce in formulas (5.6) instead of e., £p, n,, Kp expres- 

sions: 
l   du   ,    I    9A     . . . 

t     dB       .    I    dv   ,  . 
••==irirw+y-^+*^ (5.7) 

dkt   u   ,   dk,   v       .2 

l    d   / l    dui -L. fJ- to\ L_ id. -*L 

*t = ~ — -f- -— R2W — 
d*    A 9}    B 

JL_*_/JL  fo\ I dB   ftp 
fi   a? V B    5? /      A*B   d*   d* ' 
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Now it is easy to note that the terms in equations (5.^)» con- 

taining AX, AY, AZ, are linear with respect to internal forces T,, 

and Tp, and also with respect to displacements u, v, w and their 

derivatives. In the case of a periodic external load, of forces T1 

and T2, are also periodic functions of time; system (5.
;+) in this 

case has periodic coefficients. Assuming that 

«'(«.M = S«'*(0x*(«.?). 

where functions are selected so that corresponding boundary conditions 

are satisfied, and putting them in (5.^), we will reduce the problem 

to a system of ordinary differential equations with periodic coef- 

ficients. Methods of solution of such are sufficiently well developed, 

§6. The Closed Cylindrical Shell 

Let us assume that a circular cylindrical shell with a radius 

of the middle surface R and thickness h is loaded with an evenly 

distributed radial load q0 + qt cos et and is compressed by a longi- 

tudinal force P0 + Pt cos et. We shall use the system of coordinates 

in accordance with Fig. 5, introducing a dimensionless longitudinal 

coordinate a = w. We will designate the displacement in the direction 

of the generatrix by u, the circumferential displacements by v and 

the radial displacem» nt by w. 

}- 2 ■dR— —: 

LM L[^—m_ 

Fig. 5. 
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In equations (5.^) of this chapter, v.ithin tolerance limits 

assumed with respect to a cylindrical shell, one should write: 

Here, 

t,=-i^-   '■=^-+ 

V,V-V=^+2^ + ^-. (6.2) 

Noting that internal forces corresponding to the initial zero- 

moment state, are expressed in the form: 

*** (b.5) 

1 
and that in the case under consideration A = B = R, k. = 0, kg = ■^■ 

and according to the formula (5.7) of this chapter. 

«i 
I Ai      I / * . „A 

it is not difficult to write the expressions of components of the 

reduced load AX, AY, AZ using formulas (5.6): 

R»     d* \df       J' 

Ar w**: (6.4) 

Thus,   for a cylindrical shell equations   (5.4)  of this chapter 

assume the form: 
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asam* .M#m.P?'" 
«      # 

1 

a L   jp    at \# ^ J      ** } 

+=^r T—::—rr + 

» 

2     *■$       #» 2     di*        4? 

+r.(f-+-)]+-»^} = o. 

We seek the solution for the system of equations (6.5)  in rhe form: 

u => £/(/) cos/ii OJS^, 

o«F(/)sinii»sin*?. (6-6) 

iirR where n = —r—,  where i and k become positive integers. Here i indi- 

cates the number of half-waves in the meridional di^ction (I is the 

length of the shell), k indicates the number of half-waves in the 

circumferential direction. The solution in form (6.6) corresponds 

to tha case, when on the ends of the shell (z = 0 and z = I) both 

the rc-dial and the circumferential displacements (u ^ 0) disappear. 

We can easily prove by direct substitution that equations (6.5) 

are identically satisfied, if functions U(t), V(t), W(t) are deter- 

mined from a system of ordinary differential equations: 

mJ^>%r-1i1°*'+(*.+ ^ny+ 

f*.  «• (6.7) 

Cn    at* 

§ s w (V+ '/,(*«-i)i=o. 
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form 

The system of equations (6.7) may be represented in the matrix 

*/ 

wiere f is the vector with components U, V, and W, 

Ek 
I—^ 

2 

1+' 

n. + iZLlft. 14-* nk      —-m 

nk       AM- 
I—A» 

*"* 

0    nk  n 

-nk    0   0 

0      0    R* 

.s,--^ 

0   —nk   n 

nk      0     0 

0      0*«—I 

Frequencies of natural oscillations of an unloaded shell are 

determined from equation 

|/?-p»£| = 0. 

and critical parameters of longitudinal compressing, and radial loadc 

are determined from equations 

1^—4'S>|==^,,'/?-^S«,s-0' 
The problem of dynamic stability leads in the first approximation 

to the equation 

|«-ii«(','±T',')S|- 
-(ft±-i-«,)«s.-±e'£|-o. (6 e) 

In case it is possible to disregard the effect of tangential 

forces of inertia and tangential components of the reduced load, then 

Die  problem about oscillations of a cylindrical shell is reduced to 

one "resolving" equation.  For a nonsloping cylindrical shell it has 

the form: 
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(v.+ i^vVo-(i-v)£-(|r-^)v^ + 

^ «(• di« D (6.9) 

here 

Using (6.9) and the last formula (6.4), we obtain, 

«V^ l)Vv'»-(I - .)-iL (JL-JL) W+ 

Let us assume that X is the length of a half-wave in the meridio- 

nal (or circumferential) direction. Then the first terra in equation 

/R\8 /p\6 
(6.10) will have the order ~(jl * the second term ~\Y] ;  the third 

R    If the length of a half-wave is small as compared to the 

radius, then the second component in (6.10) can be disregarded. 

Disregarding on the basis of similar considerations the other terms 

of the similar order of smallness we arrive at equation 

+ m-|L)vV*-=0. (6.11) 

This equation completely corresponds to the known equation for mildly 

sloping shells. 

Thus, returning to the general equation (6.10) and assuming that 

in  it 

<I> («. M = / (0sln n2 cos *?• 

which corresponds to case (6.6), we arrive at an ordinary differential 

equation 

•^■^+*(M)/--^lV + r.(f-i)i/'.o.      (6.1?) 
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where 

f («.*) =  *      ... (ö . -O; 

Let us introduce designations: 

Equation (6.12) may be now recorded in the form 

V+^fl-lL-JLAi.n (6.15) 
IP 

T, ̂
-M'-f-t)"0- 

where P# = 27rRT1#, q# = —K—.  Consequently, the problem is reduced 

to a known equation. 

In conclusion let us note that these results are easily genera- 

lized for the case of the orthotropic cylindrical shell. Really, 

let us assume that E,, Ep and v., Vp are moduli of elasticity and 

Poisson's ratio in directions ß = const and a = const respectively; 

G is the shear modulus. Let us introduce the following differential 

operators: 

^-=E9 — + Et—, 

^^^äS' + ^ä^ + ^a?*' (6.16) 

where 

. £0=2G(l-v1v1)4-£1vl. 
Et = 4C (I — v,*,) + f^, -{- fjv,, ,6 17 v 
£_ _^L _ f v _ f v « Q clvi — ciV 

The equation, analogous to (6.11), for the orthotropic shell assumes 

the followino; form lo 

V,V2  ^     «•      da« «•      da« 

+±iifL(r-^+r'|- +'"«,^)v;*='>. (6.1«) 
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where 4) is the function, connected with the radial displacement by 

relationship (6.9). 

Further transforms again result in equation (6.15), the coef- 

ficients of which for the case of a supported shell are determined 

without difficulty.* 

§7. The Spherical Shell 

Let us investigate oscillations of the spherical shell under 

the action of a radial load evenly distributed on the surface: 

^•s=s—(* + *#«>s00- (7-1) 

Let us designate with R the radius of the middle surface, with 

h — the thickness, and adopt geographic coordinates f  and ß (^ is 

the angle of latitude, ß — angle of longitude. Fig. 6). Displace- 

ments of points of the middle surface will be disignated by u in the 

direction of line f  = const, by v in the direction of line ß = const, 

and by w — the radial displacement, positive in the direction of the 

external normal. 

We know [15] that in the case of a 

radial load only, the system of equations of 

a spherical shell is reduced to one resolving 

equation 

i^(v'+i),+n(v,+2)w=-~(v,-i-v). (7-2) 

Here ?   (   )  is  a Laplacian operator on the  sphere 

v.() =-L. f-Lfsin ^^ . _j_ JM 

A« 
mi-*)* ' (7.3) 

*See A.   N.   Markov   [16]. 
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In the zero-moment state th« internal forces of the shell are 

reduced to compressing forces 

In the case of a spherical shell 

*i-*. = —. 

A = R.   B=Run^ 

and formulas (5.7) of this chapter assume the form: 

-=-F(-+-^)- 

Mhere, according to (5.6) of this chapter an additional given load, 

appearing upon deflection of the shell from the zero-moment state, 

will be 

or 

Components AX and AY are equal to zero.  In addition to the externa1 

pressure (7.1) and reduced load (7.5) the shell is acted upon \ y 

forces of inertia 

i dt* dp & \ 

Rejecting, in accordance with the adopted approocimation, the tangential 

components of the forces of inertia, we will find that forces, acting 

upon the shell, are reduced to a radial load 

z = -(9, + ^coseo--^-to, + ?««KOO x 
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The first ccaponent produces a uniform compression of the shell and 

may be discarded if we understand that w(^, ß, t) is the deflection 

from an undisturbed, moraentless state. Then equation (7.2) assumes 

the form 

|c«(v,+ iyt+I|(v, + 2)io + 

+  t**"™***  (v«+l-v)(V,+ 2)«' + 

-f ^-(^+1—)^- = 0. (7.8) 

Let us look for the solution of equation (7.8) in the class of 

functions 

•(t-M-mf^.». (7.9) 

where f(t) is an unknown function of time, F(^, ß) are solutions of 

the differential equation 

VV + IF^O. (7.10) 

satisfying the boundary conditions for w (i.e., conditions of con- 

tinuity and the single-valuedness on the sphere). Substitution in 

(7.8) after reduction on F(Vs ß) yields: 

x0~2)/+^(>.-l + v)^.0. (7.U) 

Let us introduce designations: 

♦.-ÜCTTT^C'-'f + 'l (7.1?) 

and, introducing them in (7.11)j we will obtain: 

^ + ^.(l-.«. + ««"»"j^O. (7.15) 
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Formulas (7.12) give natural frequencies and critical forces, depend- 

ing on the still unknown parameter X. However, one practically im- 

portant question may be solved to the end even without determination 

of X. Boundaries of main regions of instability can be found by 

known approximate formulas.  In particular, the lowest boundary 

«-4-^4 (7.1M 

For practical applications it is interesting to know the envelope 

of the lower bounds of regions of instability. Let us assume that 

parameter X can assume any real positive values, i.e., let us assume 

that equation (7.10) has a continuous spectrum of values. For a 

limited region, such as the sphere, spectrum of values is discrete. 

But in the vicinity of values of X which are of interest to us the 

spectrum of equation (7.10) is, nevertheless, sufficiently "thick," 

so that the error, following from the assumption made, is small. 

Subsequently let us designate. 

where 

-A  J^-O'-H   (**T*)*1 
vw  l   H X-l + v        2Eh J 

For determination of envelope let us assume that ^ = 0, hence, 

we will obtain an equation for X.  Let us consider the case of suf- 

ficiently large values of X »1. Then 

«W 
(«•+-f««V (7.17) 
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and the root of equation ^ = 0* 

iEkfl (7.13) 

and consequently. 

e-i^f.- (*4T«)'* ) 
*       «IP  L I6£W J (7.19) 

Let us introduce designation: 

iei-,M.  Ä = 4. (7.20) 

Formula (7.19) assumes the form 

<-4-^FL] (7.21) 

Certainly, one should take into account that q## constitutes an ap- 

proximate (in the sense of the assumptions made) value of the minimum 

critical pressure. Actually, considering that 

c.^ *!  

we will obtain a well-known formula 

*•• = 
2E» I (7>22) 
A« Kao-^i 

Finally, let us determine parameter X  in the general case. 

Equation (7.10) on a sphere 

(7.23) 

leads, as we know to spherical functions. 

We find the solution of equation (7.23) in the form: 
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The condition for single-valuedness of F(^, 0) on the sphere requires 

that k be an integer or a zero (k = 0, 1, 2, ,..). Substitution in 

(7.23) yields: 

(* = 0.l.2. ...). U'^) 

Assuming that x = cos V, we reduce equation ^7.25) to the form: 

i-[('-')f] + (l-J^i)', = 0- (726) 

This is a known equation for associated Legendre polynomials. Equa- 

tion (7.26) has eigenvalues 

Ji.-n(«+l) (« = 0.1.2....). (7.27) 

Every eigenvalue X corresponds to (N + 1) eigenfunctions: 

m       — rf» (7.23) Pk
m{x) = {\-^*-£rPmix),   (ft = 0.l.2 n). v 

where 

Now it is possible to record for equation (7.25) a system of its 

solutions: 

*~0 f.Ct.W-Mc«*). 
* = 1  f _, (j». p) = Pi" (cos $ sin ?. (7.29) 

»     » 
>     » 

ft = n f_„ Q, p) = Pi"» (cos 0) sin n?. 

F^t.W^^lcos^casn?. 

We know that Legendre polynomials P (x) have in the interval of change 

fiO,  v),   exactly n zeroes. Associated functions Pv '(x) have accord- 
n 

ingly (n - k) zeroes. 
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Since sin kß and cos kß turn into zero on 2k meiidians, and 

p' '(x) in view of that what was just now said — on (n - k) latitudes, 

then the entire sphere is partitioned into "cells" inside which 

F(^, ß) retains the constant sign. This means that number X deter- 

mines the form of the oscillation formula and, in particular, dimen- 

sions of "half-waves" in meridional and latitudinal directions. The 

smaller are the dimensions of half-waves, the larger is, consequently, 

the parameter X. In this case the difference between two neighboring 

eigenvalues becomes small compared to their magnitude, which Justifies 

the assumption about the continuity of change of X. 
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CHAPTER  III 

FLUTTER OF PANELS AND SHELLS 

§ 1. Formulation of the Problem 

In the preceding chapter we investigated natural oscillations of 

parametric character.  Other types of natural oscillations of platen 

and shells originate in their interaction with liquids and gas flow:. 

Here we examine a phenomenon, very interesting and essential r r 

the technology of high speeds, which is termed panel flutter and per- 

sists of the fact that sheathing or other thin-walled elements of 

structures of the type of plates and shells, around which there is a 

supersonic fluid or gas flow, during specific critical speeds attain 

oscillatory motion with intensely growing amplitudes, which can bring 

the structure to destruction. 

Theoretical research of panel flutter in a setting that is corrc.M , 

in the physical and mathematical sense, became possible after the law 

of plane sections in the aerodynamics of large supersonic speeds [17] 

was established in 19^7. 

Analyzing the motion of thin solid bodies with great supersonic 

speeds in various media, A. A. Il'yushin discovered the following 

general property, which he termed the law of plane sections, "if the 

speed vector of any point of a body of a regular aerodynamic 
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form,* is V and If transverse speeds of its other points are of the 

order not exceeding eV, then in either the established or transient 

motions the body produces in its environment only transverse pertur- 

bations, and the pressure at any point of the botiy surface, calculated 

according to this law, can differ from the true pressure by the value 

of the order not exceeding 

as compared to unity.  Here M = —^ » 1 is Mach number, e = ■=— is 
vo Vo 

Il'yushin's parameter,expressed through the body speed V, slope of the 

normal to area e, and speed of sound in undisturbed medium v0, i.e., 

speed of sound in gas at infinity; this parameter has fundamental 

value, inasmuch as both in linearized and nonelinearized theories in 

the presence of vortexes and shock waves the pressure on the body 

surface is determined only by these parameters and the form of the body. 

Consequently, if before the body we separate by two neighboring 

parallel planes a layer of physical particles of the medium, perpen- 

dicular to the speed vector V of the body, then in calculating the 

prassure with the shown degree of accuracy, one may assume that 

particles of the medium will luake motions, parallel to the planes, so 

that for them the plane would be like hard impenetrable walls. 

The law of plane sections enabled us to give a new setting for 

supersonic aerodynamics problems (and the method of aerodynamic model 

studies); at the same time it made it possible to reduce the problem of 

♦This is the body., for which during the motion in a gas medium the 
normal to its surface deviates fi-om the plane, perpendicular to the 
vector of speed V, by a small angle e in all points of the surface* 
with the exception of singular points or lines. However, inasmuch as 
.In supersonic aerodynamics the state of flow in a certain cross section 
of the body depends only on the form of the front part of the body, all 
calculations, true for regular bodies, are also true for other thin 
bodies, having a regular front part, i.e., for plates and shells of 
various forms. 
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calculation for the established and transient motions to the simplest 

problem on the motion of a piston in a pipe of constant section,* where 

the piston moves according to the given law v = v(t), and this is the 

speed, with which in a motionless column the surface cutting it, 

compresses the gas; for any point of the surface it is equal to the 

projection of the vector of absolute velocity of the surface element 

on the normal to this element. 

Thus, it became possible to investigate theoretically in a correct 

and convenient for practical applications form the important problems, 

pertaining to motion of thin-walled structures in gas, determine 

pressures, and consequently all aerodynamic forces, acting on the 

supporting surface during great supersonic speeds, presence of shock 

waves and variable entropy of gas.  The calculation is especially 

simple in the linearized theory,** in this case, for instance, over 

pressure Ap on any area of the surface is equal to the pressure in 

motionless gas p0, multiplied by politropy n  index, and the relation 

of normal component of the speed vector of this area v(t) to the speed 

of sound in undisturbed gas v0; 

Äp«=itpe 
9(0 

In 19^9 A. A. Il'yushin for the first time expressed the idea 

on the possibility of investigation of the panel flutter on the basis 

of these regularities and give a correct formulation of the problem.*- 

*This theory is true for M > 1.5 and small angles of attack e. 

2 
**I. e. when with M > 1 parameter e < 1 is nevertheless small 

at the expense either of the angle of incidence e or thickness of the 
profile >f supporting surface and the gas entropy can be considered 
constant. 

***The model of supporting surface in the form of a beam with a 
rigid chord, considered in the theory of bending-twisting flutter (M. V. 
Keldysh, Ye. P. Grossman, A. I. Nekrasov and others), is replaced by ?. 
model in the form of elastic plate and shell. 
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The first solution of the problem en plate flutter in this formulation 

took place in 1950 and belongs to A.  A. Movehan; they also introduced 

the effective concept of the "stability parabola," which is widely 

used, and offered the method of obtaining exact solutions for the class 

of problems on rectangular plates, two sides of which, directed along 

the flow, are supported by hinges, and two remaining sides have 

arbitrary boundary conditions [18-22], After him a number of authors 

— abroad and in our country have examined problems of this kind [23-28] 

as well as numerous other authors. 

Problems on flutter as applied to shells for aerodynamic forces, 

considered in the form of overpressure [17],  were studied by R. D. 

Stepanov; to him belongs the solution of problems on the flutter of 

cylindrical, spherical shells, and panels and the attempt of investi- 

gating plate flutter in nonlinear setting [29-31]. We know of research 

on critical speeds in nonlinear theory of aeroelasticity performed by 

V. V. Bolotin [32-33] and others. 

Now we will give a formulation of the problem on the flutter of 

shells [3^].  The principal layout of formulation of the problem, 

without lowering the general character of reasonings, can be suffi- 

ciently distinctly comprehended with the example of cylindrical shell 

flutter. 

It is known that in the case, when a load, directed in every 

point along the normal to surface (X = Y = 0, Z ^ 0), acts on the shell, 

the basic solving equation for sloping cylindrical shells, without 

calculation of tangential forces of Inertia, has the form [15] 

V-VV-V  T ^  ^   D *- (1Aj 

oh*-                                               „                  Fh 
Here c^ = -±~ is the constant, R - radius, D =       - cylindrical 

12^ 12(l-v2) 
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rigidity, h — thickness, a, ß are dimensionless coordinates of the 

point on cylindrical surface of the shell, constituting, a — distance 

along the generator expressed in fractions of radius R, ß — central 

2  d2   d2 angle, y =   + —5-, and, lastly, ^(a, ß, t) — scalar function, 
da2  dß^ 

determined by Lhe formulas; 

9*tp    v ft* ' 

-[ %■+*+*£*]■ (i2) 

Internal forces are determined through function 1» with formulas; 

S^^-S.»-^^-. (1.5; 

Generalized transverse forces, determined in the Kirchhoff sense 

and necessary for the formulation of "boundary conditions, are calculated 

hy the formulas; 

In the system of dimensionless coordinates a, ß when X = Y = 0. 

and Z ^ 0 the basic solving equation for average-length* cylindrical 

shells has the form 

Here function ^.(a, ß, t) is determined by formulas. 

*From now on we use the approximate theory of calculation oi' 
cylindrical shells of average length [35]. 

ill 



«--^-. p»-—. »=-^r. (a.6) 

Internal forces in this case through function <!>.. are expressed by 

relationships; 

1 «• l^F■'f"^^J, Mt-"W[~W"i"Wl' 
Sr=     EH   9^     HBS    D(i-^r i^t   .   ^*t l 

K    9*# * *      [ 9*0?  "*" *$> J' 

^  IFla-^^a.^J' ^ — 1^l^r+ ^ J-     (1.7) 

To differential equations (1.1) and (1.5) in every particular case 

we must add boundary conditions prescribed on edges of the shell. 

Let us assume that the shell moves in the gas flow with constant 

speed V under the action of aerodynamic and other forces, originating 

from loads on the structure, and is in the state of relative 

equilibrium, which we call undisturbed equilibrium.  Let us assume 
•* ♦  «•   * ♦ * 

that u (a, ß, t), v , w , T^ (a, ß), ..., <& (a, ß, t), $1 (a, ß, t) 

will be displacements and other corresponding functions in undisturbed 

motion.  Then force Z , included In equation (1.1) or (1.5), according 

to [17] will be equal 

ifO* Of 

P0H 
Here B =   = const is the coefficient of swaying and B, = const — v0     1 1 

coefficient of damping, which reflect properties of the medium. In 

which the shell moves. 

For greater generality it is of interest to study the boundary 

value problem for values V, Included In the Internal 0 < V < 00, which 

we propose to do subsequently. 

Let us assume for states, other than stationary; 
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Then force 

Z=Z* + X 
while on the basis of [17] and D'Alerabert's principle 

2-«'-f-*4-f*^-. (1.S) 
where ph s- is the force of inertia, p — density of the shell material; 

at 
and, consequently, equations (1.1) and (1.5), as well as the corre- 

sponding boundary conditions will become linear and uniform. 

Equation (1.1) taking into account (1.2) assumes the form 

i n 1 

+ 45.-^=0. 
(1.1UJ 

In its turn equation  (1.5)  taking into account  (1.6)  assumes  thl 

form* 

(1.11) 

Ek     tod? "*"   Eh     dtS? 

In equation (1.10) and (1.11) we introduced a new dimensionless 

value 

^• = ~l r* == .__... r < (1.12) I—>•   I2Ä«(I —v») v    / 

Relationships (1.10) and (1.11) are equations of small oscillation:- 

of cylindrical shells.  Together with corresponding boundary conditions 

they form the initial boundary-value problem of the shell flutter. 

This problem has the solution 

©(..M = 0. (1.13) 

♦From (1.11) we can easily obtain an equation, describing plate 
I'lutter. 
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The flutter problem consists of clarification of conditions, 

under Mhich the undisturbed motion, responding to trivial solution 

(1.13), is stable in the sense that the given smallness of perturbed 

motions at any moment Of time t > t0 will be guaranteed by the suffi- 

cient smallness of initial perturbations, given in the initial moment 

of time t0. 

Let us investigate the class of solutions of the type 

a>(«. p. o «▼(«.»«-'. (1.1^) 

where CD = p + iq is the constant complex number (complex frequency), 

and ^(a, ß) = ^1(a> ß) + i^'pte* ß) 
is a continuous together with 

eight derivatives, complex function of real values a, ß. It is obvious 

that in the class of solutions (1.14) condition Reo) > 0 will be a 

sufficient criterion of instability. 

Let us gi'e the name of critical speeds to those values of speed 

V, which separate regions of stable and unstable states of the shell. 

The question of the relationship between the stability in class 

(1.14) and stability with respect to a broader class solutions of 

equations (1.10) and (1.11) is not considered here. 

After introduction in equation (1.10) expression (1.14) instead 

of $ and reduction by factor e  we obtain for functions of ^(a, ß) 

the equation 

c:v^ + -0—>^-^~vN' = o. (i.i5) 

Here we assume that B = B,. and introduce designation 

Adding here the given boundary conditions on the edges of the 

shell, we obtain the boundary-value problem, the solution of which 

gives values of X and eigenfunctions of $/(a, ß).  From the relation- 

chip (1.16) we can easily find for every X two values of complex 
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i'requency CJD; 

B     .f/B\*        Ek  T* •u--—±^—J-—J. {ul7) 

In investigating the stability in class (1.14) those values of 

speed will be critical during transition through which the boundary- 

value problem acquires solutions of the form (1.14) with positive real 

part of the complex frequency CD.  One of the roots (1.17) always 

has a negative real part, because the sum of roots 

•. + «* = ~^- (1.^) 

is negative. Let us assume that for a certain X one of the roots of 

(1.17) is a purely imaginary number; Recu = p = 0, OJ = iq. Then from 

(1.16) we find. 

Equations (1.19) on the complex plane X., X^ depict points of a 

square parabola (Fig. 7) 

which Is called [18] parabola of stability.  The region, lying inside 

the parabola of stability, corresponds to proper values, for which 

both roots of (1.17) have a negative real part, but the region, lying 

outside the parabola, corresponds to proper values, for which the 

real part of one of roots (1.17) is positive. 

Thus, the problem of finding the critical speed in class (1.14) 

is reduced to the study of location of eigenvalues of X of the boundary- 

value problem (1.10) or (1.11) with respect to the stability parabola 

(1.20). 

§ 2-  Flutter of Panel 

Let us assume that a slender body of aerodynamic shape moves in 
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a stationary gas rectllinearly and evenly at a high supersonic speed V. 

On the surface of the body we will examine a part of its sheathing — 

the rectangular panel, which in the undisturbed state, being plane, 

moves parallel to two own edges without an angle of incidence with 

respect to the gas* (Fig. 8).  In the plane of this undisturbed motion 

of the panel we introduce a rectangular system of x and y coordinates, 

moving together with the body rectllinearly and evenly with speed V 

along axis x. Edges of panel at any moment of time t coincide with 

sectors of straight lines x « 0, x = a, y - 0, y = b. 

Fig. 7. Fig. 8. 

Under the influence of certain causes the undisturbed motion of 

the panel in its own plane may be disturbed, and the panel will begin 

to perform a perturbed motion with sag w(x, y, t), the positive value 

of which is determined by w axis in Fig. 8,  Considering the panel to 

be thin and Isotropie, we use for the description of its small sags 

w(x, y, t) the equation of bend of plate [3], 

"(^ 

where u is the mass, per one unit of the panel area, q ~ transverse 

load, forces PL, NOJ being the result of heating or some other cause; 

*Here are expounded the results of research by A. A. Movchan [19] 
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are assumed to be constants in the entire panel and not changing with 

a change of sag w(x, y, t). 

Sag w will produce over pressure Ap ^n  the upper streamlined 

surface of the panel from the side of the gas, in which the body moves, 

and over pressure Ap on the lower surface from the side of the medium, 

which adjoins the panel from within the body, 

*---*-(•'-£-£)•*'—('-+*'£) 
Here PQ is the pressure, v^ — speed of sound in the gas at infinity, 

KA   and kp — non-negative numbers, characterizing properties of medium 

(ki — elastic support factor, k„ — damping factor).  The transverse 

load q is the result of pressures shown, q = Ap - Ap. 

Subsequently instead of x, y, w we use values —, ¥■  and —, for 

which designations x, y, w are retained. 

With the above assumptions for a panel supported along its entire 

contour we obtain the following perturbed motion equations, 

-^^[^(-^^-H (21) 

W(x. 0.0 = ^£^= w(xj. 0 =-^^^ - 0. 

For obtaining sufficient criteria of instability of undisturbed 

motion let us study the class of solutions 

w(x, y. 0 = X(x)€\nnzyr*,       (n = 1,2....). (2.2) 

iii f x) where cu = p + iq is a complex number, X(x) = |X(x)|e ^^ y is the 

comnle: function of real value x.  Putting (2.2) in (2.1) and intro- 

ducing designations, 
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^„Äü. fl^^L+i^ x^-^^t + ß»), (2.3) 
D9$ 9§ D 

<!»«• [-f^+^i«.-^]-^-. >.*-x+d. 

we find the function (2.2) is the solution of Initial problem (2.1) 

when and only when X(x) is the eigenfunction of the beandary-value 

problem, 

X^ - 2iMX« + ÄVX - iW - (X + d) x =a«Jlf. 

X(0)»JICB(^ = X(l)=X"(l) = O. ^2,4) 

and complex frequency co is determined by fcrraula 

Let us note that to the complex solution (2.2) correspond real proper 

motions of panel with sags, 

w(jr.y.<) = |X(jr)|sin/iic^~((^(x) + ^I. (2.2)' 

The actual solution (2.2) is subsequently termed a complex proper 

motion. 

Value A in equation (2.4) is called the reduced speed of undis- 

turbed motion of the panel, X and X are called eigenvalues. 

Complex frequencies (2.5) will be designated as CB and CD in such 

a manner that Reoo < Reo) is fulfilled.  Frequency üJ has a negative 

real part with any X, and for frequency ü) Recu < 0, Reoo = 0 or RBCD > 0 

is fulfilled depending upon whether X is Inside or outside the 

parabola (Fig. 7), 

Re^-i^/m).)». (2.6) 

Thus, to the eigenvalue X of the boundary-value problem (2.4) 

correspond two complex proper motions wf(x, y, t) and w(x, y, t), the 
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first of which damps with the flow of time, but the second, while 

damping, either has a constant amplitude or deviates without a limit 

depending on the fact whether X is inside, on, or outside the parabola 

of stability (2.6). 

2 2 
For every k = a g 4- 0.5n1, (n = 1, 2, ...) equations (2.4) 

b 

deteimine own boundary-value problem.  Considering a great number of 

values of all these boundary-value problems, let us use the term of 

the instability of undisturbed motion of the panel for the number s 

of eigenvalues \t   located outside of the stability parabola.  Obviously, 

inequality s > 0 means that there are proper motions of the panel, 

the amplitude of which grows with the passage of the time without any 

limit; equality s = 0 signifies the absence of proper motions of the 

panel with the growing amplitude.  Let u-  ote that we do not affirm 

here that when s - 0 the undisturbed motion is stable.  If in addition 

to proper motions (2.2) we -onsider the "apparent additional motions" 

of form 

IX, (*) + **(*)! sin mrsr'. 

[*,(*) + iXt (x) + Y^X (x)l sin n*ye*  

which can appear for multiples of \ , then it can happen, that even 

with s = 0 there are deflected perturbing motions (this is possible, 

when the multiple X is on the parabola of stability). 

Let us investigate eigenvalues of the boundary-valut problem. 

The characteristic equation 

f(ft.AX«) = 0. (2.7) 

connecting values k, and A with eigenvalues X , may be, hv applying 
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variables» o, ß [18], reduced to equations; 

^»4s(p*—«>+Ml: (2.9) 
X'-AV + ^ + M^-^+S*«»). (2.10) 

The characteristic system of two equations (2.8), (2.9), In which k, 

and A are considered to be given, and a and ß are sought, has the 

specific property that to Its every solution 

«-«(».iO. P = P(*.^ (2.11) 

according to the formula (2.10) corresponds the eigenvalue 

JL««!^*,^, (2.12) 

i.e., the solution of equation (2.7); to every eigenvalue (2.12) 

orrö.-ponä several solutions (2.11) of the characteristic system. With 

the fixed k and changing A solutions (2.11) and (2.12) can be treated 

as curves, which we shall term "branches." Using analytical properties 

of equations (2.7)-(2.10), we can show that branches (2.11) and (2.12) 

are continuous and "indestructible," if we consider them both in the 

real, and complex regions [18]. 

The elementary analysis of characteristic system shows that when 

A = 0 all eigenvalues of X are yielded by formulas 

jL»-=ir«(m« + *)«.   (/n=1.2,...) (2.13) 

■"■Transition to parameters a,ß may be carried out in this manner: 
let us assume that z1(k. A, XÖ) are roots of a characteristic equation. 
At first, we will consider certain two roots, for instance z^, z^,  as 
basic parameters from parameters z^, z2 by uieans of transformation .-^ = 
= a+iß» Zp = a - iß we pass to parameters a, ß, and through them express 
the remaining roots and all characteristic values of the boundary-value 
problem. 
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and each eigenvalue (2.15) gives the beginning to a certain branch 

(2.1?). Hence and from the properties of indestructibility follows 

the existence of a denura^rable set of continuous branches 

^«^•(*.4)t  (m=l.2....). (2.14) 

which we number in sucJ- a way, that branch (2.14) with number m passes 

through point (2.13) with the same number m when A = 0. 

Let us prove that with any fixed k and A ^ 0 any real eigenvalue 

X (k. A) is strictly larger than the least eigenvalue X (k, 0), avail- 

able when A = 0. Multiplying equation (2.4) by X(x) and integrating 

by parts with the use of boundary conditions, we can easily obtain 

the relationship 

Vsit 4> - ü^l+j^Vf tt—*il* 

— *? ' _ r, *x ** (/.-f*x*. /.=^f f. /.-J- 
'•-f* %*)' 

connecting eigenvalue X (k. A) with the corresponding eigenfunction 

X(x).  Hence 

In the class of functions X(x), which are continuous together 

with derivatives of the fourth order and satisfy boundary conditions 

(2.4), the minimum ReX (k. A) is equal to the minimum with respect to 

4 ?    P 
m[min TT (m + k) ] and is attained for the solution X(x) - sin rmrx 

of the boundary-value problem (2.4) when A = 0; for any solution when 

A ^ 0 the absolute inequality is fulfilled. 

ReX»(A.^>min(1I««('«« + Ä)« = inJnJI(X||1(*tO). C2-^) 
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Hence follows that which was to be proved. 

The examination of the real plane a, ß and lines, detennined on 

it by equations (2.8)-(2.10), allows us without the fulfillment of 

any approximate calculations to establish the following. 

For any fixed value A and for sufficiently large m all points 

of branches X = * (k. A) are real and positive, and with the growth of 

m they asymptotically come near eigenvalues (2.13), available when 

A = 0. 

On the real plane A, X there exists a denumerable set of finite 

ovals l^ isolated from one another (:  i Pig. 9 parts of these ovals 

are shown in the right half-plane), consisting of real pieces of 

branches (2.14). In a general instance the 

straight line A = 0 intersects every oval 

in two certain points (2.15). For certain 

negative values k < -2.5 a certain oval 

can be pulled into a point, lying on axis 

A = 0 (for instance, the lower oval when 

k = -2.5; -6.5; -12.5; the second oval 
o 

when k = -8.5; -14.5, ...). When m > -0.5k on each of ovals l , there 

Is a point 

A*{k) m ITT 
1t,(5m,+k) v****' 

(2.16) 

ß = 2m7r,  of the char- 

0 

corresponding to the solution a = r w ' ^g '., 

acteristic system. 

Let us prove the existence of complex eigenvalues X^ in the 

investigated boundary-value problem.  Let us assume that A = Am(
k) 

is the upper limit of those values A, with which oval i  ,   has real 

intersections with straight lines A = const. Let us consider any one 
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jf these ovals,  and for simplicity's sake let us assume that it is the 

lower oval and that in a certain neighborhood of the value A = A1 for 

A < A^ parts of the oval are formed by two branches, 

^•^•.(^K ^ = ^(*.iD- (2.17) 

When A = A1 branches (2.17) cross at the point (A1, O*).  In its 

neighborhood the equation (2.7) is presented in the form 

f(*.A).t) = [(X*-).«)«-2fl(*.i«)(i.»-3Lt) + 

+ f,(*.i4)l<I»(*.A*<,)«=0, 

where the analytic function 4>(k, A, \ ) does not vanish in the neigh- 

borhood examined, and analytic functions (p1(k. A), (Po(k* A) turn into 

zero when value A = A^ Hence for branches (2.17) we obtained the 

presentation 

*#=fi(*.i4)±/*?(*.i4)-*>|(*.i1)-f>.» (2.18) 

which proves the existence of branches (2.17) in a certain neighborhood 

of value A = A^ as well as for A > A^.  Inasmuch as by virtue of 

determination of numbers A = A (k) in the neighborhood of value A = A. 

for A > A. branches (2.17) cannot be real, they are complex. 

In those cases, when the oval is pulled in point (A = 0), complex 

eigenvalues X exist with any small A. / 0.    For instance, with k = -8.5, 

when the second oval IF pulled into a point,branches X = Xm (k. A), 

X = X  (k. A) are complex with any small A ^ 0.  This example shows, 

incidentally, that with a monotonous growth of A not necessarily those 

branches, may become complex for the first time which give the least 

real eigenvalues. 

Considering the Inequality A (k) > A'(k), it is possible to show 

that for the given k > -2 and for any A nDm the interval 

0<i4<i^r««(5-f*)V
r2+l (2.19) 
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all eigenvalues of ^(k* A), m - 1, 2, ... are real. 

Real parts of branches, forming ovals l.-, i—, ..., and also 

cc.,plf:x {.arts of these branches can be built by points, finding of 

which by the method of successive approximations does not present ony 

fundamental difficulties. For the series of values k from interval 

-16 < k < 16 such calculations were carried out, and for the treatment 

of their results presentation (ü.iS) was used. Here, for all k 

. :amined it was possible to select such values of constants a. =  a1(k), 

b. = b1(k) that the oxpression 

^(f-OV^* (2.20) 

obtained from (2.18), when 

f.-.(f-')■ ^=^+».(^-1). 

with an accuracy sufficient for practical calculations, approximates 

branches (2.17), which form the lower oval z.., evenly on the entire 

Interval 0 < A < A..,, and also in a certain interval A. < A < A. , 

where A.  is determined by conditions of accuracy. A good illustration 

to the above is Table 1, adduced below where k - -1 true magnitudes of 

eigenvalues (2.17) are given, and under them for comparison are adduced 

values, found with the help of (2.20) 

Table 1. Magnitudes of Eigenvalues \    for 
k = -1 

A 0 M 100 ISO 4 ito.ts too 250 300 400 600 

V 877 
877 

867 
867 

834 
834 

760 
760 ReJt0 519,5 

519.5 
528 
527 

578 
577 

714 
.711 

800 
794 

1011 
99? 

V 0 
0 

20.7 
20.9 

88.6 
87.2 

216 
217 ImV 0 

0 
137 
136 

374 
370 

685 
673 

826 
807 

1104 
1081 
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dumber t^ and corabiratlon (X.     - a±)  included in (2.20)  are found 

immediately; 

*t-fl» = -fIXi<*•0) + >-.(ik•0),• (2'21) 

inasmuch as we know X (k, 0), X (k, 0) ordinates of points of inter- 
ml    '  m2 

section of the oval z.. with the straight line A = 0. The expression 

(2.20) becomes definite, if in addition to (2.21) we know either the 

pair of numbers A^, X.  (coordinates of the right most point of the 

o-'al) or A1, a*. 

When k = -4 the following formulas yield value of numbers a.,  A. 

with an accuracy sufficient for practical calculations; 

«. = -^-(5+ 2*)'. 

^ = "243" ^TT{9 ^8I61 +1640* ^ ^ * 679 "" 20Ä-20Ä*I-    (2.22) 

In every concrete problem parameter k passes through a sequence 
2 2 

of values k =  —, n = 1, 2, ... Fixing n, we fix k, and also those 
b +T 

branches, X = X (k. A), m = 1, 2, ..„which are available with this 

k.  Subsequently, branches, corresponding to the fixed numbei n, will 

be designated X = X (A). mns ' 
To eigenvalues X  according to the formula (2.3) correspond 

eigenvalues 

(fli, n ~ 1, 2,...) 

The degree of instability of the unperturbed motion of the panel 

is equal to the number of eigenvalues (2.23) situated on the complex 

plane beyond the stability parabola (2.6).  To every such eigenvalue 
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situated beyond the stability parabola, correspondc a deviating motion 

of the panel:  the divergent motion (bulging) corresponds to th3 

negative X, and fluttering motion to the complex X. 

With fixed values of the parameters included in the problem only 

a finite number of eigenvalues [2.25] can be situated beyond the 

stability parabola. Beyond the stability parabola only a finite number 

of eigenvalues (2.23) can be situated. Actually, by virtue of the 

information, obtained on the asymptotic behavior of eigenvalues X (A), 

all ^mn(A) with sufficiently large figures ra or n are real, and 

X (A) -» \„(0),  if at least one of the figures m or n tends toward mnv '   mnv / 0 

infinity. From (2.23) by means of (2.13) we obtain: 

(01.11 = 1.2;...) 

Hence it is clear that for sufficiently large m or n eigenvalues 

X (0) and X _(A) which approach them are positive and are located mnx '     mnv /      *-«- *- 

inside the stability parabola. Corresponding proper motions of the 

panel are oscillations with a damping amplitude. 

Let us prove that in the adopted formulation of the problem,the 

flutter of panel exists.  For proof we will examine the total parameters 

«i.««.-f-*-^L' A' {2.2k) 

which determines single-value by a great number of eigenvalues (2.23). 

Let us assume that this totality is such that among eigenvalues there 

are complex eigenvalues (as we established earlier, there always exist 

such A, for which the boundary-value problem (2.4) has complex 

eigenvalues). Without changing parameters (2.24) and, consequently, 

the location of eigenvalues (2.23) on the complex plane X, let us 

begin to increase parameter 
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eg 
••a* 

¥*> 

-•(---+*-)' (2.25) 

This is attained, for instance, either by means of increasing the 

mass n or decreasing the damping factor kp^B.) of th3 medium, adjoining 

the panel from within. With the increase of parameter (2.25) branches 

of the stability parabola (2.6) come near to the real axis, and it is 

clear that, with any fixed complex (immaterial) eigenvalue, it will 

exceed the stability parabola with a sufficient increase of parameter 

(2.25) and the corresponding proper motion will be a flutter. Thus, 

with any forces M^, N?, whether compressing or stretching panel flutter 

is possible. 

These reasonings give useful information about the influence of 

mass u and damping kg('-IL):  loading of the panel and a decrease of 

damping increase the danger of flutter, lightening of the panel and 

an increase of damping decrease it. Let us note that lightening of 

the panel and an increase of damping cannot destroy either its 

divergent proper motions, or those flutter motions, which correspond 

to eigenvalues X with non-positive real parts. 

Let us examine the effect of the elastic support factor ki(~B) 

and forces HL, N^. As we can see from formula (2.23)* an increase 

k. (with other parameters unchanged) transfers all eigenvalues ^mn(
A) 

on the complex plane to the right. Here the degree of instability 

chen^es, only in the direction of decrease if it changes at all. With 

a sufficient increase of k. we can render the degree of instability, 

equal to zero, removing the danger of all divergent and flutter 

motions.  The same effect is produced by an increase of force Ng. 

This can be easily derived from formula (2.23), if we remember that 

X (A) does not depend on Np.  Conversely, decrease of No produces a 
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1 I 
displacement of all eigenvalues ^„^(A) to the left, which increases 

the danger of appearance of deflecting proper motions of the panel. 

The large stretching force li, renders the degree of instability equal 

to zero.  Indeed, whatever the fixed values of the remaining parameters, 

an increase of N^. can produce such an increase of parameter k that all 

eigenvalues ^.„„(A) will be real and close to ^^C0)* which with a 

sufficiently large k are all positive. 

We shall prove that if vlth A = 0 the compressing forces do not 

exceed critical forces of buckling, then for the same compressing 

forces with any A jt 0  divergent proper motions are impossible. We car 

easily obtain proof from the inequality 

ReU^imn^tO). (2.26) 

which in the corollary of (2.15).  Really, from the fact that with 

A = 0 compressing forces do not exceed critical forces, it follows 

that ^rnn(
0) > 0^ w*  n = 1, 2, ...  But then from (2.26) we obtain 

ReX (A) > 0, m, n = 1, 2, ..., which is a sufficient condition of 

the absence of divergent to motions.  Let us note that for such a 

panel the deflecting proper motions in flight can only be motions of 

the flutter type.  They cannot be detected by static research, since 

in the static research it would be necessary to put >.(A) = 0 in 

equation (2.4) which is erroneous, since it contradicts the inequality 

ReX(A) > 0. 

Inequality (2.26) also enables us to substantiate the possibility 

of such cases, when the panel compressed by supercritical efforts, and 

known to be unstable when A = 0 (s > 0 when A = 0), has neither the 

divergent nor flutter proper motions during flight with a certain 

speed A ^ 0 (s = 0 when A / 0).  Such possibility of instances of 
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"stabilizing" of undisturbed motion with the growth of speed of flight 

will be illustrated by an example.  Let us now use formu.ia (2.16) for 

obtaining of certain estimaces, and information, pertaining to forms 

of proper motions. According to (2.16) to the value of a given speed 

corresponds, along with an infinite set of other solutions, an exact 

solution of the characteristic equation 

*.-[("■■+^+-h),+ 
+ T(5m,+ ^ + T"0,]-<'- (2"28) 

It is not difficult to find the corresponding eigenfunction, 

X]IM(jr)<=sinmitjcsin(miMr + '/) x 

2 2  n1 
It is possible to show that when m = 1 and k = —I— + -^- > -1 

b 

formulas (2.27), (2.28), (2.29) give the least real eigenvalue Xln  and 

corresponding eigenfunction X1 (x), which are available for the given 

n, and A = A^ .  Let us compare expression X. , Xln(x) with expression::.. 

M0) = ««(l + -^ + -^-y-d. Xu.W-slntrjr. 

giving for k 2 '^ the least real eigenvalue ^ln(
0) and corresponding 

eigenfunction X1 (x) when A = 0. We notice, first, the fact of an 

Increase of X,.  as compared to X. (0) and, second that, whereas with 

A = 0 the eigenfunction X^ (x) does not have any zeroes in internal 
i 

points of the internal 0 < x < 1, with A = Aln the eigenfunction 

Xln(x) always turns into zero in the internal point of the same internal. 

129 



Consequently, in flight, proper motions of panels, responding to the 

least eigenvalues, even before these motions become flutter motions, 
* 
can significantly differ both in form, and in frequency from those, 

which exist when the speed of undisturbed motion is zero.  It is 

especially important to remember this, when approximation methods 

are applied to flutter problems.  In connection with the application 

of approximation methods it is also useful to remember that in the 

presence of a sufficient compressing force with the monotonous growth 

of A, complex eigenvalues and flutter cannot appear for the first 

time in those branches X = X (A), which with A = 0 give the least mnv ' D 

eigenvalues, 
i 

If the given speeds of undisturbed motion does not exceed A. , 

then, as it ensues from the sense of inequality (2.19), for those n, 

which satisfy the inequality 

all eigenvajves ^^(A), m = 1, 2, ... are real and flutter of corre- 

sponding proper motiors is impossible. Hence, taking into account 

(2.3), we obtain the formula of "pre-flutter" speed 

(2.30) 

In a number of cases formula (2.30) enables us to clarify an 

essential part of the region with the zero degree of instability. 

For instance, if Np > 0 (divergent to proper motions of panel in this 

case are absent) for any speed V in the internal 0 < V < V,, where V, 

is derived from (2.30) when n = 1, flutter proper motions are 

Impossible and the degree of instability of the undisturbed motion 

is equal to zero. 
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Fonnula (2.50) enables us to make a useful forewarning remark 

about the method of calculation of panels, greatly st/etched in the 

direction of undisturbed motion. Departing somewhat from the adopted 

formulation of the problem, we will only assume here that around the 

rectangular panel, free from forces in its own plane, gas flows on 

two sides. Then, applying (2.30) with factor 0.5 before the right-hand 

part, we find that, no matter how great the length of a the panel in 

the direction of undisturbed motion, its critical flutter speed will 

always be larger than 

On the other hand, if in the initial problem the panel is pre- 

considered to be infinitely long and at the infinitely remote end of 

panel we set no condition, except the condition of arbitrary smallness 

of initial perturbations, then we can prove for it the existence of 

flutter motions, when the speed exceeds the value 

The value (2.32) may be less than value (2.51) which evidences 

the inapplicability of formula (2.52) for limited panels.  The example 

given shows that the results, obtained by studying panels, cylinders, 

etc., theoretically infinite in the direction of undisturbed motion 

are not always applicable to the case of finite dimensions, even if 

these dimensions are sufficiently great. 

All the features of panel behavior in a flow which have been 

clarified so far, were obtained by means of qualitative research of an 

exact characteristic system (2.8), (2.9).  In future conclusions, 

pertaining to branches X «= Xm „(A), X = X  (A), which give for every 

fixed n the least eigenvalues, we shall use the presentation of these 
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branches by approximate formula (2,20), from which we obtain 

With any A from the interval 0 <^ A < A^ eigenvalues (2.33) are 

real. In this interval such values of A are critical, in transition 

through which one of  the eigenvalues (2.33) changes the sign.  These 

values A, termed the critical divergence speeds, turn into zero the 

right side of (2.33) and are easily determined by the formula 

*.-4i—"^s>]. 
Hence 

(2.34) 

When A > A,, formula (2.33) gives complex conjugate values 

^••(■f ■|)±fr/"^:-T)+)- (2-55) 

disposed on the complex plane along the second order parabolic curve 

Re X --L Cm >.)• + >.,. (2.36) 

In the interval A. < A < A. , where expression (2.35) with suffi- 

cient accuracy approximates pieces of branches X = X n^' X = X n(A) 

such value of A is critical, in transition through which eigenvalues 

(2.35) intersect the stability parabola (2.6).  This value termed the 

stalling flutter speed, is derived from the condition of intersection 

of parabola (2.6) and (2.36): 

«'-M'+^bi]-   («=-2F)- 
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Hence 

1 ■  6 

««Al  ' 

(2.57) 

«•* 

To every n = 1, 2, ... corresponds a definite value of values of 

n2a2  nl Ax, a., X., r, depending only on the argument k = —|— + -^ and, 
b 

consequently, the specific value of stalling flutter speed (2.37), of 

course, if value (2.37) is real. 

Let us adduce the examples which give a certain Idea of the orders 

of stalling speeds.  In all examples the following values of constants 

are taken v = 0.3, K = 1.4, k = 0, E = 2.1.1010 ^, p0 = 105-10
2 ^%, 

0 ■ mm mm"" 

„ _ ^p0^ ü _ 7 Q grams    _ ^kC)  meters B - -^-p g - J.Ö «--j-, v0 - 340  sec • 

Example 1: Square panel (a = h), free from forces in its own plane 

(fiL = Np = 0).  Results are represented graphically with solid lines 

(Fig. 10), depicting for n = 1, 2, 3 the dependency of stalling 

flutter speed (2.37) in m/sec on the value of the ratio —.  The dotted 

line gi'^es the value of pre-flutter speed YJ,   found according to 

formula (2.30).  In regions, limited by solid curves, the degree of 

Instability s is shown. For a panel with the thickness h = 5"10  a 

we have., for instance, 

»(0<V<2900) = 0. s(2900<V<6300)s=2. 

s(6300<V<13300) = 4. 

Example 2;  Square panel (a = b) with the thickness 1\ = 5-10 y a, 

IL-JT    T\ 1T2D 
compressed by forces N1 ^-, N2 = --JL^-,  with V = 0 such a panel 

a    ^    a 

is known to be unstable, and bulges after the least initial perturba- 

tion.  Buckling becomes Impossible after the achievement of stalling 

speed of divergence V,. = 600 m/sec, found from (2,34) when n = 1. 

133 



Formula {2.37)  gives for n = 1, 2, 3 stalling flutter of speeds 1100, 

4000, and 10,500.  The degree of instability is given by realtionships, 

«|0<V<600)=1.   s{600<K< 1100)-0, 

f(llOO<V<4000)-2.   »(4000<K< 10500) = 4. 

Comparing the above with the case of a panel, free from forces in 

its own plane, we see that compressing forces not only made possible? 

tne appearance of divergent proper motion, but also significantly 

lowered the stalling flutter speed. 

The example examined is remarkable by the fact that in it the 

unstable state of the stationary panel, compressed by supercritical 

Vn/fo forces, is stable for the same forces in a 

flight at supersonic speed (from the interval 

600 < V < 1100). 

Lastly, let us note that the expounded 

method of investigation of the rectangular 

panel, supported along its entire contour 

is transferred without a change to those 

cases, when two sides of the panel, parallel 

to the speed of undisturbed motion, are 

supported, and the other two are either secured arbitrarily or are 

free. 

In the case, when sides x = 0, x = a are fastened, characteristic 

equation (2.8) assumes the form 

* 

/M/ 
///4 

1 

mo 

em 

mo 

noo 

9 
2       1 

Fig. 10. 

t O-n3 
8 a 

+ te>-3«« ikYP-te + ikr*   liny  m0 

Adding to it relationships (2.9), (2.10), it is possible, as in 

the case of panel supported along its entire contour, to clarify 
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basic properties of branches X = ^mnCA)1  continuity and indestructi- 

bility, asymptotic behavior (X,fA) -► \ (0) when m, n-»-oo), existence 
HUI      nin 

of complex eigenvalues and possibility of flutter; properties of 

strengthening of the motion, determined by inequality (2.26), we note 

that the latter property in problems with other boundary conditions 

may not be fulfilled. Conclusions concerning the effect of parameters 

k^, N., kp, N2, M on the degree of instability remain in force. As 

before, to the value of a given speed (2.27) corresponds the exact 

solution of characteristic equation (2.28), where the corresponding 

eigenfunction has the form 

*;■(*)-«in« m«exp( ^ |/2m« +-^-+-|-JC) . 

Formulas of critical speeds (2.3^), (2.37) are also retained. 

In Fig. 11 curves are shown, analogous to curves in Fig. 10, allowing 

us to Judge of the degree of instability of square panels of different 

thicknesses, free from forces in their plane. For a panel with a 

thickness h = 5'10~-5 a we have, for instance, s(0 < V < 4600) = 0, 

s(4600 < V < 8100) = 2, s(8l00 < V < 1^200) = 4.  Comparing with the 

case of the panel, supported along its entire contour, we notice that 

in the example considered fastening of two sides resulted in a 

significant increase of critical flutter speeds. 

Lastly, let us note that not only solutions of the examined non- 

selfadjoint problem, but also the solutions of corresponding self- 

adjoint problems can be reduced to form (2.2) .  In the latter case, 

as a rule, the condition ^(x) = const will be fulfilled and solutions 

(2.2)  will have the character of standing waves (when flutter f{x)  f 

f  const).  An analysis of the concrete-form functions |X(x)|, ^(x) and 
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of the character of corresponding traveling waves (2.2) during flutter 

is given by Movchanami (results were reported in August 1962 in the 

city of Stockholm and in Octoter 1962 in the 

city of Yerevan). They marked a strong 

irregularity in the distribution of sag 

along the length of the panel, growth 

of concentration of maximum sags near the 

trailing edge of panel with the growth of 

flight speed, which agrees with the results 

of experiments [56].  It was determined 

that for panels, which have a practical 

significance, the speed of waves, traveling downward along the flow 

(it is precisely for them that the case of p > 0 is possible), is small 

as compared with the speed of sound in gas, which is in accordance with 

assumptions of applied aerodynamics piston theory [17]. 

vu j/| 
w n 
\\ 
?  ♦   *  4 T®* 

Fig. 11. 

§ 3. Experimental Investigation of Panel Flutter 

Experimental investigation of natural oscillations of a square 

flat plate in supersonic flow when values of Mach number M = 1.7; 2.5, 

and 3 for the case, when two edges of the plates, perpendicular to the 

flow are fastened, and two edges, parallel to the flow, are supported, 

was conducted by G. N. Mlkishev [56].  Results of the experiment are 

in complete accord with the theoretical solution [19]. We give a 

description of the experiment. 

Samples were prepared of steel lKhl8N9(o, = 80 - 120 kg/mm ) and 

from duralumin D16AT (o^ = 40 kg/mm2) of 300 x 300 and 250 x 250 mm. 

size, of different thicknesses. 

The device for bracing of samples in the wind tunnel consists of 

a slab, two edges of which are fixed to the walls of the pipe, the 
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two other edges are wedge shaped, for streamlining, the slab has a 

square cavity in the center.  In the bottom of the cavity drain holes 

are made for fast levelling of pressures and for decreasing the air 

damping in the cavity. The sample tested is secured above the cavity. 

By adjuoting -»"he bracing screws of the rear cover plate and upper 

fulcrums it is possible to select such a position, in which edges of 

the plate during oscillations can converge with sufficient ease freely. 

The plate is blown at a zero angle of incidence. From the lower side 

in the attachment cavity there is motionless air.  Pressure in the 

cavity is practically equal to the pressure in the flow.  The pressure 

was measured in several points both in the flow and inside the cavity 

by mercury ma^omet. rs, as well as by rheostat gauges. 

For the dett-rmination of the moment of the beginning of natural 

oscillations, and also for the determination of the frequency and shape 

of oscillations resistance tensometers were used.  Tensometers were 

glued on the lower side of the plate. Wires from tensometers were 

brought out through the body of the slab beyond the pipe wall. 

Before every blowing frequency tests of the plate were performed 

by the resonance method. For this purpose the device was suspended on 

rubber shock absorbers.  Excitation of oscillations was created by a 

directed mechanical vibrator, which was braced on the device.  The 

resonance frequency was determined by the tachometer and according 

to the oscillogram recorded with strain gauges.  The form of oscilla- 

tions was determined with the help of sand. For tests in the wind 

tunnel only those plates were chosen, for which values of natural 

frequencies deviated by not more than 10$ from estimated values. 

The introduction of the plate into self-excited operating condi- 

tions was carried out by selecting the plate thickness and the smooth 
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change of pressure in the flow with the constant number M. 

Observations showed that even long before the entry of the plate 

ufider intense self-excited conditions, the spectrum of natural 

frequencies is greatly deformed. For instance, the basic natural 

frequency of the plate by the moment of beginning of natural oscilla- 

tions increases mere than 1.5 times as compared to the frequency in 

motionless air. At the same time the shapes of oscillations also change, 

For instance, the profile of the pre-flutter shape of oscillations of 

the basic type in contrast to the profile in motionless air is 

asymmetric, and the summit of the profile is displaced toward the 

trailing edge.  In the region of stability weak oscillations of the 

plate in the flow are observed.  In crossing the boundary of the 

stability region, random oscillations are replaced by intensive natural 

oscillations.  In natural oscillations of the plate standing waves are 

the form of oscillations, but under self-excited conditions plate 

oscillations resemble traveling waves. 

Certain time plate oscillations occur with a constant amplitude. 

Then near the trailing edge a fatigue crack is formed, and the destruc- 

tion of the plate begins.  The destruction of the plate proceeds 

against the flow.  The largest amplitudes and the fastest destruction 

occur for those plates, the edges of which can converge during 

oscillations.  Limitations, set on the edge, convergence decrease the 

amplitudes of oscillations and sharply increase the time, necessary 

for the destruction of the plate. 

Different methods tried for bracing of plate edges did not change 

the character of destruction. 

Theoretical boundary of the region of stability Is determined 

by the expression 
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{*>-* fc-Ä' M-v) 
The value of parameter \  for the basic region of stability, 

calculated for the square plate, 8l4.  In Figs. 12 and 13 we give the 

comparison with the experiment of calculating the boundaries of the 

basic region of stability (the dotted curved line corresponds to the 

value ß., the solid curve, to ßp).  In Fig. 12 the comparison is 

given for the constant number M = 1.7. 

 1 T^ o 

* o »' Jfi * 

Fig. 12. Fig. 15. 

Along the X-axis the ratio between the plate thickness and its 

length is plotted, along the Y-axis — the ratio between the pressure 

and Young's modulus of the plate material.  Experimental points 

correspond to the moment of beginning of natural oscillations.  Every 

experimental point is obtained as the mean from several tests.  The 

first two points correspond to steel plates, the third point — to 

Duralumin plates. 

In Fig. 13 we show the comparison with the experiment of calculat- 

ing the boundaries of the region of stability depending upon number 

M.  Curves are plotted for Duralumin plates and pressures corresponding 

to the sea level. 

Experimental points were also obtained by means of recalculation 

109 



for these conditions. Every experimental point corresponds to plates 

of such a thickness, with which natural oscillation are still produced. 

For thicker plates natural oscillations were not observed. 

As we can see from the given comparison, the computed curvts 

quite satisfactorily agree with the experiment. 

§ 4.  Unlimited Closed Cylindrical Shell 

We shall seek the solution of the basic differential equation of 

small oscillations (1.15) for the case under consideration in the 

form* 

♦ («iM-EEfc^-H*», (4.1) 
a-li-i 

where C.  is a certain constant number, n, k designate the number of 

half-waves in the meridional direction and in the direction of the 

generatrix of the shell respectively. 

Placing (4.1) in equation (1.15), we obtain the characteristic 

equation, from which for X we obtain the following expression; 

On the complex plane X., X equations (4.2) depict points of 

parabola of the eighth degree: 

For determination of the stalling speed of flow let us investigate 

the relative position of the parabola (4.5) with respect to the 

parabola of stability (1.20) in the case when n = 0 and n ^ 0. When 

n = 0 (i.e., for the case, when the contour of the cross section of 

♦Solutions belong to R. D. Stepanov [29]. 
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the shell remains a circle in the process of deformation) equations 

(4.2) take the form: 

For points of intersection of the parabola (4. :) hy the parabola of 

stability these qualities are true: 

,-eL.w+i. ^-^ (4.5) 

Excluding from the first equality (4.5) parameter q, we obtain one 

equation for the determination of points of mutual intersection of 

two investigated parabolas: 

*'-'^r*'+7f=0' (4.6) 

the solution of which will be 

From (4.7) it follows that when 

parabola (4.4), crossing the parabola of stability in four points, 

exceeds the bounds of the region of stability.  Hence, when the speed 

^2 ECA 1/2 of flow is larger than I ^-l / , the shell motion may be unstable. 

For the study of mutual intersection of the parabola of stability 

with the parabola (4.3), in a general instance when n ^ 0 we obtain 

the equation 

+ ».(^-P-^-)+B.Jo.   * (M) 
the solution of which will give eight roots, 
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*i - ± «•*•«-« ± («•—46 + 8n*)'*| ± 

±!(-« ± laF- 4* + 8ii*r.)« - l6«*.')-,fc. (4.10) 

t 

where 

0-4««-.- •* 

• 

Similarly to the manner in which we worked it out for the instance, 

when n = 0, it is possible to show here that the necessary and adequate 

condition, under which parabola (4.3)* crossing the parabola of 

stability, exceeds the boundaries of the region of stability, is 

reduced to the determination of conditions of appearance of complex 

roots (4.10). 

Analyzing expression (4.10), we can set the following two condi- 

tions, which are essentially different, necessary and adequate for 

parabola (4.5), crossing the parabola of stability, to go beyond the 

limits of the region of stability: 

-a±(Ä«-46 + ii«)'"<4««. (4.12) 

For (4.12) the inequality should be fulfilled 

a«4Ä«-p.J£->0. (4.13) 

Inequalities (4.12) and (4.13) enable us to determine critical 

speeds 

f^-i-lfd&^+m". (',15) 

Formula of the critical speed (4.14) identically coincides with 

the critical speed of the flow, found for the closed cylindrical shell 

when n = 0, and, as we can see from inequality (4.13) it can be used 
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for all values n > n#, which for the class of thin shells corresponds 

to the number of half-waves n > 30 to 50, i.e., to such a large number 

of half-waves, with which the shape of the cross section differs little 

from the circle. 

The  minimum of speed (4.15) with respect to n  occurs when 
1 

1 "? n = -pC # and coincides exactly with the stalling speed, found above 

for n = 0. 

Thus, the analysis performed shows that the flutter of a closed 

cylindrical shell of unlimited length, being in supersonic flow, can 

take place when the speed of flow V > 1   * I ' , when the shape of the 

cross section remains a circle. 

Using formulas (1.1?) and (4.2), we can obtain two values of 

frequencies, which essentially depend on the speed of flow. 

The solution of differential equations for small oscillations of 

sloping shells (1.15), adduced in the form 

♦(«.T. 0 = <**+*•»«'+*». (4.17) 

means chat along the generatrix of the shell waves propagate, running 

with the velocity 

■*»=- — • (4.18) 

Separating the real part of the complex frequency (4.16) from the 

imaginary part, we find. 

hyp*]    Lv** f&x • (*•+«•) 
(4.19) 
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Using formula (4.19), we determine the propagation velocity of 

the traveling wave when V = 0: 

The minimum propagation velocity of the traveling wave will be 

when 

"''lie;)*"*]' (4.20) 

and Is equal to 

Omitting all Intermediate calculations, we reduce the formula 

of critical speed of the flow for the unlimited closed cylindrical 

shell, found from the examination of differential equations for small 

oscillations of cylindrical shells of the average length (1.11). 

K^p^l-Jj^J«. (4.22) 

We can use formula (4.22) for all n > 2. From (4.22) It follows 

that when n = oo the critical speed of the unlimited closed cylindrical 

shell of an average length coincides with the speed of the unlimited 

closed cylindrical shell, which was found by proceeding from the 

theory of sloping shells. 
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§ 5. Closed Cylindrical Shell of Limited Length 

Let us investigate a series of boundary-value problems, on the 

basis of the differential equation of small oscillations of average- 

length shells (1,11). 

Let us introduce a new variable |, connected with a by the formula 

— T* (5.1) ft 

where I  is the length of the cylindrical shell. 

Then the resolving equation of small oscillations (1.11) will 

be written in the form 

(5.2) 

EM" I «^«  *W J 

To equation (5.2) in every particular case we must adjoin boundary 

conditions on ends | - 0 and £ = 1. 

Determining by the formulas (l.6)-(l.7) displacements and inter- 

nal forces of the shell through $., we can present the boundary con- 

ditions for boundary-value problems in the following form: 

a) the shell is supported by means of hinges on ends ^ = 0 and 

e -  1: 

(*tmt<»0 M4 I« 1) 

b) the shell is clamped on ends ^ = 0 and (• = 1: 

(5.3) 

c) the shell (when ^ = 0 and | = 1) is supported by hinges otV 

end i = 1  and is rigidly clamped on edge £ = 0: 
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..Ä.ft«..^^^.].«: (-t-l)      (5.5) 

d) the shell is clamped on end £ = 0 and is free on end 1=1: 

(from the second group of equations it is clear that boundary condi- 

tions on the free edge are partially satisfied); 

e) the shell is supported by means of hinges on end ^ = 0 and is 

free on edge | =. 1: 

In the class of solutions* 

<M«. ?. 0 - SjC^a^cosn? (5.8) 

equation (5.2) after a series of simple transformations will be written 

in the form 

J^-A^^^q^-iy^-u^o, (5.9) 

where 

H + T"]- 

a~c>JL = . w . (5.io) 
R* l2/*(I-v») * 

*The solution belongs to R. D. Stepanov [29]. 
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The equation of the stability parabola will have the following form 

».-f-^^--^*-.».—1^«).        (5.11) 

With fixed C., n. A, X the solution of equation (5.9), when roots 

of characteristic equations are different, has the following form 

xt(0-c1r*
t+Cir*s+Qr^+cle-«. (5.12) 

The subsequent problem is reduced to determination of nontrivial 

solutions of C.; for this purpose it is sufficient to subordinate 

solution (5.12) to boundary conditions and to request conversion into 

zero of the corresponding determinant A(k.). Dropping the question 

about the form of the determinant A(k.) with different possible com- 

binations of multiple roots, we will introduce into the examination a 

function 

'W-Hg- (5.13) 

where 

»(*i) = (*»--^(*i-*,)(*,-ft«)(*,-*,)(ikt-A4)(*,-*4). 

From expression 5(k.) it follows that all zeroes of function A(ki. ) 

will be zeroes 6(k.), and F(k.) will be an analytic function in the 

entire region of variation of variables. 

The solution of equation (5.9) in the most general case is con- 

Jugate with appreciable mathematical difficulties. We will apply here 

the method of Investigation of eigenvalues [18, 19]. 

The essence of the method consists of the fact that instead of 

solution of equation (5.9) the parameters of problem A and X and the 

two sought roots, for Instance, k,, kj., are expressed through two 



other roots k^, kp of the equation! 

(5.14) 

and instead of finding the eigenvalues of the equation (5.9) we inves- 

tigate the system of two equations, of which the characteristic sys- 

tem is composed: 

where T\  and 7 are values connected with roots of the equation 

besides 

(5.15) 

(5.16) 

1 

*(* T) = m IT* - Stfl'' UT* ~ 3tf) + 4t«T«|. (5.17) 

The left part of each equation (5.15) presents the analytic func- 

tion of variables t]  and 7, and the problem consists of finding such 

a solution 

of  a system, which would enable us, using formulas: 

x-q(««-i).+i±ji(Ti_3V)f 

(5.18) 

(5.19) 
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for every boundary-value problem to calculate corresponding eigenvalues 

of X and to establish that value of A, with which the eigenvalue 

becomes complex. 

The easiest way to obtain a solution of the characteristic sys- 

tem is by the graphic method; if we plot on one drawing in a 

rectangular-angle system of coordinates T] and y  graphs of the curves, 

determined by equations (5.15). The general appearance of curves of 

the characteristic system is adduced in Fig. 14; graphs of curves, 

corresponding to the first equation of the system (hyper- 

bola), are plotted for different values of A = const. 

The subsequent problem is reduced to establishing of 

such values of A#., with which the point of the first 

and second real branches (5.l8) coincide and we cannot 

draw any conclusion concerning the eigenvalues of the 

boundary-value problems examined. 

Equating A = A#., according to (5.10), we find the 

the speed of the flow, with which the stability of undisturbed motion 

still exists, but above which the motion can become unstable. Con- 

sequently, for every particular boundary-value problem it is necessary 

first of all to construct an expression of the second equation of 

characteristic system A(rj, 7) = 0. 

Let us construct a characteristic system A(TI, 7) in the case of 

the hinge supported shell. To determine non-zero C.(i = 1, 2, 3, 4) 

we will subordinate expression (5.12) for Xk(?) to boundary conditions 

(5.5) and equate zero determinant of the system obtained: 

A (*!, *i, A3, *«) = 

1 

"I 

I 

A2 
1 

A» 

I 

g-k,     g-k,     g-kt     g-k* 

*»«-*• *|e-*. A|e-*« *»*-*• 

1^9 

^THI|g1P»r^»>y*«,,yiwi 



I 

Opening the determinant and performing in it the replacement of 

K, through r\  and 7 according to formulas (5.16), we will obtain: 

•) A(l.T)=-«-2il«Tl7'-^T'ch2T1 + 2T(«TIT«-2T«r'.x 

XCATCMT'-W'-CV-T*—2VT,)anT«*IT,- (5.20) 

--2Vrb)ltt~0. 

expressions A(T), 7) for different boundary-value problems are obtained 

in an analogous way, 

b) the shell is clamped on ends ? = 0 and ^ = 1: 

A(^T)-{Th"~^T'lc«Tdi(T«~2t|t)v.-ch2Tj + 

+ 3r/sta TJ* IT«—W«} K = 0; (5.21) 

c) the shell is clamped on end ^ = 0 and is hinge-supported on 

end |=1: 

XllnTchlT•-21i,r'•-Y(T, +'i")a»TS*lT,~W'}8« = 0;       (5.22) 

d) the shell is clamped on end ^ = 0 and is free on edge £ = 1: 

A fo. T) = {«T (V + I*)* if - 2t4«|v. ch 2T + 
+ 4t(26»l« + 2T«-4TlV)(lf«-27l«l1.caTcAlT»~2tl«r'.+ (c        ) 
+ »»1 (2»IV-T« + 3T4«)«in7sAIT«-2^]'-■ 16TJT(T«- {■J*   ->) 

- V) cos T «ft IT* - 2Vr • — l&f, (VT" - 3V - f) 17* - M • x 
X an T eft IT« - 2tl«V • - 32^7« (T« — V) l7« - 2T(»|* • e-*) i «= 0; 

e) the shell is hinge-supported on end £ - 0 and is free on end 

<; = 1: 

A (T4. Y) = (- 2^ (Y* + V) lY1 - 2Vl'..ich 2Y + 

+ W lY* - a»!1!' • UY* - V)« + (Y1 - av)1! «-^ + 
+ toft lY* — 2^1'» (Y* — V) cos Y ch I YB - 2^'/. + 

+ *i (^iV — Y- + ^i* -- SVY") s>n ysh [y* — 2TI•|
, • + 

+ Y NV — Y* — l^Y* + 23^«] cos YSA lY* - 2^1' • + 
+ IY« - 2T(•J

,'. (Y* + I IT/Y« - VY« - 3V) sin Y ch (Y'-^VI' .} » - 0. 

Let us note that when TJ = 0 equations A(TI, 7) = 0 degenerate 
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into characteristic equations of beam fundamental functions for cor- 

responding boundary conditions. 

§ 6. Effect of Aerodynamic Damping 

In certain examples of calculation of panel flutter in a super- 

sonic flow with the use of the piston theory formula [17] 

^   H  V   dx        *) 

P0H dw 
aerodynamic damping —  — exercises a weak effect on the value of the 

v0  öt 

critical flatter velocity Vf.. , This served as the cause for recom- 

mendations in favor of the quasi-stationary theory, which does not 

take aerodynamic damping into consideration [27,28], However, dis- 

regard for aerodynamic damping does not allow [22] to investigate in 

full measure the influence of the elastic base and forces acting in 

the plane of the panel on the value of critical velocity and can lead 

to appreciable errors in its determination. 

Let us show using an example of a problem on axisymmetric flutter 

of a circular cylindrical shell, that even in the absence of elastic 

support and tangential efforts, disregard for aerodynamic damping can 

cause incorrect results. 

Let us assume that a circular cylindrical shell moves in a gas 

v/ith supersonic speed along x axis directed along the axis of the 

cylinder (undisturbed motion), and performs additional small axisym- 

metric motions (perturbed motions). Applying the law of plane sections 

[17] in its linear formulation and the resolving equation of circular 

cylindrical shells [15], it is easy to obtain for dimensionless normal 

displacement w(x, t) of shell points the equation 

l£Ll 
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ü" + 2v-^J^ +-2^ J 12(1-»«1-^-+ ll w- 

-^!L^^[*."+(*.+-^)^^^]=«- (6-1) 

.Here R is the radius of the cylinder, x is a dlmenslonless coordinate, 

referred to length a of the cylinder. Let us consider natural motions 

the perturbed motions of the form 

Substituting (6.2) in (6.1) and introducing designation: 

^a, *£_   *—   ^»y    »_* J-JÖL —. ^--5^. ««*.+ 

we arrive at the boundary-value problem, for the case of a cylinder 

freely supported (clamped) on the edges: 

X(0) = *H(0) = *il) = X«(l):=0. (6.4) 
(X(0) ~ X^O)« X(\) = X'd) = 0). 

Comparison of equations (6.1)-(6.4) with corresponding equations 

(2.1)-(2.4) of this chapter shows that the problem examined about 

cylinder flutter is equivalent to the plane problem on the plane panel 

flutter of infinite amplitude, the parameters of which and condition 

of fastening coincide with those for a cylinder (except, of course, 

for the radius), while the curvature of the cylinder is compensated 

by an additional fictitious force, compressing the panel in its plane, 

and an additional fictitious elastic base. As we should expect, when 

§ = 0 the identity of both problems (cylinder of infinite radius and 

panel of infinite amplitude) does not require the introduction of any 
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additional fictitious factors. If |r/ 0, formula (6.3), determining 

value k, gives with v / 0 a negative value, which is interpreted as a 

fictitious compressing force; in equality (6.3), which determines value 

d, an additional term appears, which it interpreted as an additional 

elastic base. With the decrease of radius R both fictitious factors 

are strengthened, which is formally expressed in a decrease (in alge- 

braic sense) of values k and d. 

As in the problem on plane panel flutter, when B > 0 one should 

distinguish two characteristic values of dimensionless speed A. 

The first value AAk)  corresponds to the resonance (to the coin- 

cidence at least with respect to frequency of two different natural 

motions when A < A1(k)) (6.2); when A = A1(k) two coiciding eigenvalues 

X of the boundary-value problem (6.4) become, when A > A1(k) complexly 

conjugate; corresponding real natir A  motions cease to have the shape 

of standing waves and take the sLdpe of waves traveling on tae shell; 

the amplitude of these waves damps as long as the complex eigenvalues 

X = ReX0 + ilmX0 are on a complex plane X0 inside a second degree 

parabola 

ReX«-rf+±am>.V.(r=-^.). (6.5) 

The second value Af.7 corresponds to the output of complex eigen- 

values of X on parabola (6.5); the amplitude of corresponding travel- 

ing waves ceases damping; it begins to increase (flutter appears), 

when with A > Af- complex eigenvalues of X
0 exceed ehe limits of the 

rabola (6.5). 

The determination of speed Ai(k) usually consists of proving 

that with A < A^k) all eigenvalues of X0 are real, but with A > A^k) 

there exist complex values. Determination of the critical flutter 
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1 

velocity A-,  is  appreciably more complicated, since it is necessary 

actually to find complex eigenvalues of X0 which is a very labor- 

consuning work. 

When B = 0, i.e., in the absence of damping, both branches of 

parabola (6.5) merge with the real semiaxis, and consequently velocities 

A,{K)  and Af- coincide. We arrive at such an essentially simpler case 

(as compared to case B > 0) usually in connection with the use in flut- 

ter calculations of quasi-stationary aerodynamic theories, which do 

not take into account aerodynamic damping [37* 38] into account. 

Subsequently it is assumed thsX  k. = k^ = 0, i.e., damping of B 

is entirely aerodynamic, and value d is completely dependent on the 

curvature of the cylinder. 

Obviously, the error in the appraisal of the critical flutter 

velocity Af, which appears if we disregard damping B, consists of 

replacing value Af.7 by a smaller value A.fk), which in no way depends 

on B. In the problem under consideration this error can be large 

owing to the following caus""  As we have already said, with the 

decrease of the radius of cylinder R parameters k and d decrease simul- 

taneously. The decrease of k in the interval between 2.5 ^ k s 0 

(-5 s k ^ 0 for clamped edges) monotonously lowers velocity A/1(k) from 

value A, (0) = 343 (A^O) = 636 for clamped edges) to zero [20]. On 

the other hand, the decrease of d displaces on the complex plane X0 

the apex of the parabola (6.5) to the left; its branch in the right 

half-plane, where all eigenvalues X are located, move away from the 

real axis, which is accompanied by an increase of the least critical 

flutter velocity Af,. Consequently, by the selection of radius R it 

is possible to lower velocity A,,(k) to zero, simultaneously increasing 

the critical flutter velocity Af.7 . Under these conditions replacement 
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of Af, by A1{K) is not permissible. The same may be said also about 

velocities Vf- and V., obtained by the formula 

(6.6) 

\wa L 
6 

\   • ^ 
? 

2 

^-i—1—i 1—i   * 

^ = 2.10"5, 
a 

0   7  «  «  «  » 

-Fig. 15. 

by substituting in the right-hand part values A = Af, and A = A1(k) 

respectively. 

The above is illustrated by Fig. 15, in which we give the graph 

f'->r the critical velocity Vf of axisymmetric flutter depending on 

the value S- for an aluminum cylinder clamped 

on the edges with the relative thickness 

The upper curve gives the criti- 

cal velocity Vf, taking into account aerody- 

namic damping, caused by air at the elevator 

of 11-12 km above the sea level.  The lower 

subsonic curve indicates the value of velocity 

V.. It is clear that disregarding aerodynamic damping.(replacement 

of Vf, by V.) would lead in a number of practically interesting cases 

to erroneous conclusions concerning the possibility of axisymmetric 

flutter of the cylindrical shell during any supersonic velocities (in 

region of applicability of the Irw of plane sections). 

In the plotting of graphs the results of numerical resolution of 

exact characteristic equations of the boundary-value problem (6.4) 

were used. For values of parameters cf the problem, which is of 

interest, the first branches X°(k, A) are located in region 0 § Re A. s 

%  lO-^, ImX0 i 0. In this region parabola (6.5)j cutting off on an 

imaginary axis segment V-dr, is located above the straight line 

Im X0 = V-dr = const, which is parallel to the real axis, and differs 

er- 



little from it, if the distance (-d) of its summit from the center of 

6   - the coordinates is sufficiently great (-d 5 10 ). In the latter case 

the critical flutter velocity Af, can be estimated from the condition 

of intersection of branch X°(k, A) not with parabola (6.5), but with 

straight line Im X0 = V-dr which will lead to somewhat low results. 

Values (-d) and /-dr can be conveniently calculated by approximate 

formulas: 

-'-^-ATK-T)'- 

§ 7. Approximate Method of Investigation of Flutter. 
Cylindrical Panel. 

Let us examine the application of the- Bubnov-Galerkin method to 

the solution of problem on the flutter of a circular cylindrical shell 

of open profile, moving in a gas with supersonic velocity. It is 

assumed that the shell on its limiting longitudinal and lateral edges 

has hinged fastenings in mobile in the planes of these edges. 

Let us assume that the shell has dimen- 

sions in the direction oi generatrix I and 

along the arc of the transverse circle s 

(Pig. 16). Dimensionless coordinates a  and 

ß will be counted off from the point of inter- 

section of the longitudinal edge of st~ell with 

the lateral edge. Since the shell is supported on hinges on all edges, 

then function <t)(a, ß, t) should be determined so that, firstly, equa- 

R 
tlon be satisfied (1.10) and, secondly, on edges a = 0, a == a. = =■, 

ß = 0 and ß = ß, the following boundary conditions be fulfilled: 
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#*«    #••    #<•    *»-■  ~w «  »„ 

A #• #•  a«»    *««*        (7.1) 
Jg(»  ^   i^   ^^p   p n' 

Differential equation (1,10) jointly with boundary conditions 

(7.1) constitutes the initial boundary-value problem. 

Repeating the reasoning of § 1 of this chapter we arrive at equa- 

tions (1,15), (1.16) and (1.20) also, which must be examined fürt,' er. 

Let us apply the Bubnov-Galerkin to the solution of this boundary- 

value problem. Particular integrals of equation (1.15) under boundary 

conditions (7.1) can be determined in the following form: 

^»^sln-^-ste^.. (7.2) 

where c,  (k = 1, 2, .,.; n = 1, 2, ...) are the coefficients sought. 

Substituting (7.2) in equation (1.15). we will require that the 

obtained function be orthogonal to all functions * „ (when s = 1, 

£-J  • » • f  lU = X> C. 9       • • • y • 

If in equations (1.15) and (7.2) we change over to a new variable 

| by the formula (5.1) and substitute (7.2) in (1.15), then after 

series of simple transformations we will obtain: 

* Ka« + «»)• + a4 - >. (o« + np«! J]c» sin ^ * 
* t 

(7.3) 
»i 

where 

a«--«, n,--■=—-, A --    . U.^j 

In Galerkin's variational form equation (7.3) will be written in 

the following form: 
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SS^lK^ + ^ + ^-M^ + ^lfsinJbrtsinsictdt- 

i (7.5) 

Integrals, included in expression (7.5), have the following values; 

I suiib:|sinsc|4| 2 

0 

i 

cosibc|sinsic|i(( = 
0 

«1MB S — k 

«tan S*k, 

«hn k + SU odd 

«h«i If -f f la «van« 

For determination of solutions of a system of linear uniform 

algebraic equations unequal to zero (7.5) it is necessary and suffi- 

cient to equate to zero the determinant of the system: 

tsA 

0 

12 
15 

0 

24 - 

0     -T-^  4-(^-->) 

(7.6) 

To every eigenvalue of equation (7.6) corresponds to the zero 

value c,  of system (7.5) and an approximate solution (7.2) of the 

boundary-value problem examined. In equation (7.6) we Introduce the 

following designations: 

3V «=«:(*..-MS-H-^-J-. 

A« = e'(l6o, + /iS' + 
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During calculations by the first approximation, equation (7.6) 

assumes the form: 

(f-l^O. (7.8) 

It follows from this that all eigenvalues of the boundary value prob- 

lems examined are positive and real and, consequently, independent of 

the speed of flow, the undisturbed motion of the panel in class of 

solutions (1.14) is stable, and the critical flutter velocity of a 

cylindrical panel is equal to infinity. 

During calculations in the second approximation from equation 

(7.6), being limited by determinant of the second order, we will have, 

V~l{F+L) + FL + -%-A*~0. (7.9) 

Solution of equation (7.9) will yield two roots: 

From formula (7.10) it follows that eigenvalues in calculations 

in the second approximation depend essentially on the speed of flow, 

anc with the following values of the speed of flow 

eigenvalues become complex, where 

ReX»X1Ä-l(F + iL). Iml^^-^-iL^T'.        (7.11) 

Substituting values X. and X- in the equation of the stability 

BVR 
parabola (1.20) and taking Into account that A = gh , after a number 

of sin.Dle transformations we will obtain the formula for determination 
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of the critical velocity in the second approximation, i.e., of the 

speed of flow. When this speed is exceeded, there appear complex 

eigenvalues, lying beyond the boundaries of the stability parabola: 

v->-*T{T[2*+L)+-%rHF-L),y-- (7.12) 

In calculations in the third approximation from equation (7.6) 

for eigenvalues we will have 

-}.•+§£•-§+ +1$~0. (7.13) 

Here 

'/, .FLtFK + KL + ^[(^-), -i- (I)'] . (7.1^) 

Assuming that X = X.+  iXp and separating in equation (7.13) the real 

portion of complex eigenvalues from the imaginary we will obtain a 

system of two equations: 

-Xf + »v.|4-/I^_}j)-/,XI-f/,-0. (T>15) 

-^J + 'l+2/l>.1-/, = 0. 

For further computations it would be more convenient, to present 

the equation for the stability parabola (1.20) in the form 

rt'-li   i'-w)- (7-16) 
Substituting (7.16) in equations (7.15), we will obtain the following 

system: 

Xff/j + 8r) - X, (2/, + fr/,) + 3/, - 0. 

160 

' f. rmniti)0m ►«r*-«"-,»--     ■-  -"*._' ilijt^Ä»' 



Frr determination of the common root of two polynomials (7.17) 

it is necessary to equate the resultant of these equations to zero: 

3 -(2/t + r) /, 0 
0 3 -(2/j + r) /, 

|1 + 8r -p/. + Sr/O 3/. 0 
0 /1 + 8r -(2/, + 3r/t) 3/, 

(7.18) 

or 

|(ls + 8^(2/» + r)-3(2/, + SriOna/,^ + r) 
-/,(2/1 + 3r/1)| + |/t(/1 + 8r)-9/,P»0. (7.19) 

Equation (7.19) enables us to investigate the character of the 

change of complex eigenvalues in the boundary-value problem examined 

in the third approximation depending on the speed of flow and to trace 

their location with respect to the stability parabola. 

In calculations in the fourth approximation eigenvalues are 

determined from an equation of the fourth degree 

k«-/pi» + /^«-|^ + /;as0. (7.20) 

Here 

/'.«f + L + K + Af. 

f, = FKM -»- A!LF + MKL + KLF + 44« {[(-y-),+ (-7-)'] ^ + 

/; - FMKL + AA>[(JLyMF + (^-)VL ^{J)^ + 

+(-iyW]+1M.[(^)(i)+(-f)(^)]-, 

(7.21) 

Substituting in equation (7.20) value X = Xi + iX2 and separating 
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the real portion from the imaginary, 've will obtain: 

(7.22) 

Replacing in equations (7.22) X2 with r^ according to (7.16), we will 

obtain a system of equations: 

X»(/; + 20r)-/.«(llr/; + 4f« + 2f^ + XI(4r/; + 3/^-4/; = 0. 

4i»-X«(3/; + 4r) + ^(/.r + 2^ - /; - 0. (7.25) 

(7.25) 

Constructing the resultant of system (7.23) and expanding it, we will 

obtain an equation, which will enable us to determine the critical 

speed of flow in the fourth approximation: 

(«,0 - W + M - cxip foO - M) + 2 (/.d - OjO) (cfi - 

-*d)(o/-W1) + (/d-W)(*a1-cl/I)(a10-/Id)- (7.24) 

- (fa-toy (bit -«,/) + (CjO-WKW-Cj/HW.-aj/HO. 

Here we introduce the following designations: 

fl1 = /; + 20r.   6-4r«+nr/; + 2/y ^ = 4^ + 3/3. 

d-4/;. /1=4. / = 3/; + 4r. it=rri+2/;. 0 = /'. 

Formulas (7.12), (7,19), (7.24) enable us to calculate according 

to Galerkin's method (in the second, third and fourth approximations) 

the critical speeds of flow for cylindrical panels, supported with 

hinges on all edges and moving in a gas with supersonic velocity. If 

we know the geometric dimensions of the panel and the constant, charac' 

terlzing the gas medium. 

§ 8, Sloping Spherical Shell 

Let us investigate natural oscillations of a sloping spherical 

shell in the case of support with hinges of all edges and in the case 
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of rigid clamping along the entire outline.* 

In the class of solutions (1,14) the equation for small oscilla- 

tions of a sloping spherical panel, legated in a supersonic flow of 

gas, assumes the following form: 

AMP     D B    dx        D l0»1; 

ho  ^  ^1      ^1^ 
Introducing designation -^ ^  + -«- CD = -X^ ', we will obtain the equa- 

tion for the stability parabola: 

In a system of new dimensionless coordinates x = a^ and y = brj eauation 

(8.1) can be written in the following form 

**»<».g»»*» a*«» .»«a«» .12(1--^)*«^ 
••as«   •» »» S&dx* '  *  w «• 

(8.3) 

{±)   4       h^n  2        ^l^1 

where the new -X = X^ 'h , X. = -—£• q , Xp = -—»— q. 

Conditions of hinged support of shell on the edges will be iden- 

tically satisfied, if we look for the solution of equation (8.3) in 

the form 

O^stafcrEsln/nni. (8.4) 

Substituting (8.4) in equation (8.3), we will obtain: 

(8.5) 
smk*v»k*l~0. 

Applying to equation (8.5) the Bubnov-Galerkin method for determination 

*The solution of the problem is credited to R. D. Stepanov. 
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of eigenvalues and nonzero solutions of a system of algebraic equations, 

we will obtain a determinant 

.where 

i-(f-k) 

12 

-ii—D 

m 
v 

o. 

F">,i^+^r+i2(i""v,) 

.Without reproducing here the computations, which are analogous to 

those which were made for the cylindrical panel, we will obtain a 

formula for determination of critical speeds of flow in the second 

approximation according to the Bubnov-fralerkin method: 

" - iH Vr siib. [2(f+^+isrb^- «•]. (8.6) 

I 

The critical speed in the third approximation is determined from equa- 

tion 

where 

|/, (/. + 8r) - AM« +1(7, + 8r) (27, + r) - 

- 3 (27, + 3^)1137, (27, + r) - 7, (27, + SrIJ] = 0. 

7,-K + f+I. 

/.-f/C + Z^ + FL + ^^'+^yj. 

p 
and r is the parameter of the stability parabola: rX. = X?. 

1G1 
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Let us note that from the solution, obtained for the spherical 

panel, it is not difficult to obtain a solution for plate hinge- 

supported on all edges; for that purpose it is sufficient in (8.6) to 

make R -♦> oo. 

Now we will examine the case of natural oscillations of spherical 

panels rigidly clamped along their entire outline. 

Here, as we did earlier, we applied the Bubnov-Galerkin method, 

where as approximating functions we use fundamental beam functions. 

It is known that team functions, the orthogonal nature of which is 

well studied, do not retain this property with respect to their deriva- 

tives of the first, second and third orders, and therefore certain 

authors introduce the idea on quasiorthogonality of these functions, 

i.e., they consider integrals from the product of second derivatives 

of beam functions multiplied by the same function as a negligible 

value.* Let us note the necessity to exercise caution in postulating 

the property of quasiorthogonality of fimdamental beam functions. 

To solve this problem let us use equation (8.3) as the point of 

departure in which X = X. + iXp are complex eigenvalues. Coordinates 

of the stability parabola in this case will be: 

1*~D*'  ^—Tq' 

For convenience in recording let us introduce designation: 

12(1-*)*«  l~^ ft«   A      BW 

We will present the resolving function <&(£;, T|) in the form of 

the product of beam functions 

*A number of new quadratures from beam functions, encountered in 
the investigation of flutter in plates and shells, was calculated by 
R. D. Stepanov [39]. 
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*(m~Xma)YM. (8.9) 

each of which satisfies both, the differential equations 

and also the conditions of clamping of the spherical panel on the edges 

£ = 0, ^ = landT) = 0, T^ = 1. 

Substituting (8.9) in (8.3), we will obtain: 

$*mxmYm+2£xmY:+'txmy.t+ (8io) 

+ [1j^-~->-]xmYm-AX'mYm~0. 

If we multiply all the terms of (8,10) by Y and integrate with 

respect to TJ from 0 to  1, we will obtain: 

* **•    » (8.11) 

where 

l^-*. (8.12) 
P' 

{»^ 

If now we multiply (8.11) by X and integrate with respect to ^ 

from 0 to 1, then for determination of nonzero solutions of algebraic 

equations 

I    it is necessary and sufficient to equate to zero the determinant of 

|    this system of equations, i.e.. 
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If-*I«u+SP—^u-Mi ■A» it 
A« 

- Amu        |lf->lBit^K~ ^«-/te« — AB^JI 

*« 
-A«» |t->>« ru—Ka-yl^, 

(8.14) 

.Here 

F^*+Vt*+*-'* 

K~4 
a* 

4 * 

^ *       If 

>       i        i 

(3.15. 

(8. lo j 

.In the case investigated these integrals have the following value: 

«„-1.0359. wls»—3.399. «„*= 0.9984. »„=-5.512. 

*%%-—12.775. i»w=9,9065, o,,» -45,977, tt^= —9,9065. (3.17) 

WU<B0.    ipn=:3399,  (%«0.  »^ = 5^12. 

Every eigenvalue X of equation (8.14) corresponds to nonzero value C 

of system (8.13) and to an approximate solution of the boundary-value 

problem examined. 

In calculations in the second approximation equation (8.14) 

assumes the form: 

|F - X|«», + 2? -£- Vn -AWH        - Aw, 
a»*« it 

■Aw, n l/C-)-!«,, + 2?^iott-AK^ 
= 0. (8.18) 

Expanding the determinant, we will obtain for the eigenvalues a 

quadratic equation 

^-/.>+/,-o. (8.19) 

where 
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+ *£.!*,„.-*„*„] + *?%,**-. (8_.o) 
During calculations in the third approximation for determination 

of eigenvalues we will obtain a cubic equation 

JL»-JI>/;+x/;-/;=o. (8.21) 

where 

*•• L «u       «M       a».} L «u       «•       «»J 

4(F + K)ife-1   i,r(/c + iL)»sL + (f + L)i5» + 

. ««J ««»• L "til's*       «a«»»      «iitf»       «««»»J 

<W L «tt««        «M««       «u«»       «««11       «««»      «iiajjj 

L «n«» «uM» "ft"» «U«M «»«*» J' 

L «U «M «M J 

4. jp[l"H*n j  ^ gag» r pVvPn _ £ VvPt* _. p «"t^nl   . 
L    «n«» "a"» «««M «11«»» «»»«»] 

^*» L ««» «M «U J 

a**«L    «a«« «a«» «a«» «a«»] 

9*k* [ «H«««ii       «a«»»"»       «nun«»       «aUnUn J 

U'9*  UllH»»«»» 

MB i 

«•*• «a«»«!* 

- vff ■ JWa» ««'w — «'»»n«'» - »««'«»wl — 
«a«!««« 

^    fl^ft* L   |iia<<n «a«» «Wn «M«M 

+ j(J!!toi,U4./c^5ül. 
«a«w «a«« J 

1(8 
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The solution of equation (8,19) yields two roots 

^=^±[4-/.]''. (6.23) 

From (8,23) one can determine at what speed value do the the eigen- 

values of the boundary-value problem investigated become complex and 

the motion of the shell in a flow of gas becomes unstable: 

ReX.^A. tax «X, »[/,--£?'. 

Substituting X. and Xp in the equation of the stability parabola 

»•-^ 

and replacing A by its value 

A 
•D   ' 

after a number of simple tranfforraations we will obtain a formula for 

determination of the critical speed of flow in the second approxima- 

tion. 

The critical speed of flow in the second approximation can be 

obtained by another method also. 

Substituting in equation (8.19) X = X. + iX^ and separating the 

real portion of the equation from the imaginary, we will obtain: 

»txt-/1x,=o. 
v  ' 

Equation of the stability parabola Is more conveniently presented in 

the form 

xi-v. 

where 
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(8.25) 

Substituting (8.25) in (8.24), we will obtain the following system of 

two equations: 

^-/.«o. (8.26) 

For determination of a common root of two polynomials it is neces- 

sary to construct and to equate to zero the result of these equations: 

I -(r + A) /, 0 

0 -| -(r + ZO /, 

0 8 -/, 0 

0   0    2  —Ig 

2  -/,    0 

0   2  -/, 

-0. 

After a number of simple transformations we will obtain an equa- 

tion, from which we can determine A: 

^-uv-zf-o. (8.27) 

Speed V now can be easily determined by the formula 

ßAD (8.28) 

By similar means we can obtain a formula for determination of 

the critical speed of flow in the third approximation also; 

1 

Here 

+ (/d ~ M (*« - d) («w—«0 ~ (/<<—M" (*« - ^)+ 

+ («n—W) (6* —c/) (6e—«/) = 0. 

«-/; + 20r, 

fr-4f«+ nr/, + 2/i. 

c-4r/i + 3/;. 

rf-4/;. 

«-4. 

/=3i; + 4r. 

*-r/;+24 

(8.29) 

(8.30) 
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Formulas (8.27) and (8.29) permit us to calculate the critical 

speed of flew for spherical panels clamped on all their edges, in the 

second and third approximations, if we consider as known the geometric 

dimensions of the panels and the constants which characterize the gas- 

eous medium. Let us note that if fundamental beam functions possess 

the property of quasiorthogonality then in all computations it is suf- 

ficient to make integrals of v.. equal to zero. 

§ 9. Nonlinear Setting-Up and Solution of a 
on Plate Flutter 

Problem 

It is of interest and at the same time extremely difficult to 

investigate flutter of shells in a nonlinear setting. So far we know 

of solutions of problems of this kind for shells. We know of the works 

by R. D. Stepanov [51] and B. P. Makarov [40] on the study in approxi- 

mate setting of natural oscillations of a plate taking into account 

factors, characterizing geometric and aerodynamic nonlinearlty. By 

analogy with determination of the critical speed of flow for problems 

in linear setting (see § 2 of this chapter) here we conventially con- 

sider the critical speed of flow to be such a speed, at which the 

envelope of perturbed solutions of a system of nonlinear differential 

equations of flutter in the interval of time examined constitutes a 

curve, which is continuously increasing in time. 

For considerations of a methodical character, wishing to pay 

attention to the possible settings of this type of problems and methods 

of solving them, we adduce here a problem on the flutter of plates In 

a nonlinear setting [31]. 

Let us assume that elastic rectangular plate with sides a, b and 

thickness h Is hinge-supported over Its entire outline In such a way 

that the possibility of convergence or displacement of Its edges Is 

m 
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excluded, and that a supersonic flow of gas passes about it from one 

side. 

For the case of final sags of the plate, commensurable with its 

thickness h, deformations of the plate 3re described by the known 

Kärman equations: 

vv  DL********  ***** »J' 

where w is the sag, * is the stress function, D is the cylindrical 

rigidity, and E is the elastic modulus. 

For an oscillating plate, taking into account the forces of excess 

pressure, determined according to A. A, Il'yushin's theory [17]* the 

normal component of the load may be written in the form 

-,-*% +8%-*%-^$% + 

+fl'v,(f)' 
(9.2) 

Here 

*=—, a» 4Tr—. 

p0 is the density of material; p , V are pressure and velocity of 

sound for the undisturbed gasj V is the speed of flow on the surface 

of the plate; n  is the index of the polytrope. 

Equations (9.1) together with boundary conditions: 

9x* dp (9.3) 

w = —r + * ~r -« = 0 = 0, i*mu = 0 H y**b 
o^ it* 

constitute the initial boundary-value problem. 

Let us examine here an approximation method for the solution of 
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this  problem, which will enable us to obtain the solution of the sys- 

tem in the closed form. 

Upon bending, the following forces appear in the middle surface: 

(9.4) 

ML ejL 

T   r*     t*     c 

v/here e , e , e  are components of the ultimate deformation, deter- xx  yy  xy 

mined by formulas: 

^as^ + T(-^)' (9.5) 
dm   »m 

•r- + T1 + Ax dy 

If we substitute (9.4), taking into account (9.5), in equations 

of motion of a two-dimensional problem 

-är+-i^—** IF-0* 
^k + ^k-^J^^o (9-6) 

and to study the form of the bend of a plate during oscillations in 

the form 

then we can write out equation of the bend of a plate for the case of 

ultimate sags (9.1) in the form of a system of equations, connecting 

u, v and w. 

i&»    . p.,    d*tp     ,   dHv  .4 ^  &h T iPO   a*B>   .    gig   gHg  .  gg     jt»       _£_1 
dg« "^      a?aT« "^ ar«    ^  o L a»« a? + «•   a.«        asar, asar, + *»AJ' 

a? T     2     at« ^     2     asan £       a^ T *    ' ^,  ^ 

a»,«        2    as» ^    2     agar, £      **'*'* 
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The equations are written in variables ^ and TJ, which are connected 

with the old variables x and y by relationships. 

|-T. ,„^i *„T 

In system (9.8) we introduce designations 

(9.9) 

^5^ d? 

where t(^, rj) is a function, selected in such a manner that we would 

know that boundary conditions (9.3) are satisfied, and f(t) is an 

unknown time function. 

If in system (9.8) we drop the terms which take into account the 

longitudinal forces of inertia, and represent function w in the form 

of a series 

•({. Ti) = JUI/jM^nmntsinnKy, 
M « 

then the solution of the two last equations of system (9.8) will have 

the form: 

«0. 'i.O = -^- sin 2«^ [cos 2n«i~ 1 + ^j + «,, 

«'(|.r|.0=-^-sin2n«t1[cos2ffiirt- I + ^-j+i 

(9.10) 

where UQ, and v0 are the solution of a uniform system. For axial 

forces in accordance with (9.^) and (9.5), with (9.10) we will obtain: 

!_>• 8a* 

Eh    gg 
!->• 8*« 

(9.11) 

'«if - 

.Here 
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N 2. >v 2^ 
Taking into account Airy's relationship T v = h 2*, T„r = h —^ 

xx    ö 2  yy    ^d 

^2 
T  = -h   and expression (9.2) for a normal component of load, we 

will represent the first equation of equilibrium of the Kärmän system 

of (9.1) in the form 

m m 

M • 
(9.12) 

Equation (9.12) is correct for plate which is hinge-supported all 

over its outline on immovable supports, within the limits of the approx- 

imate solution proposed. The degree of approximation of the solution 

obtained consists of the fact that, everywhere the solution of the 

uniform system UQ and v0 is assumed to be equal to zero while the 

boundary conditions of the two-dimensional problem are satisfied not 

continuously, but at separate points of the outline of the plate. 

Actually, from expressions (9.10) with the above assumption it follows 

that if on edges t] = 0 and rj = 1 (| = 0 and i - 1)  v(u) is identically 

equal to zero, then component of displacement u(v) turns into zero 

only in separate points of the outline of the plate, although the total 

displacement u(v) on the corresponding edge is equal to zero. 

For the case of a two-term approximation of function w with 

respect to variable ^ and its monomial approximation with respect to r,, 

1.1»> 
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...e., for the case of a cylindrical bend of plate with respect to 

variable r\s  applying to the equation (9.12) the Brbnov-Galerkin method, 

we will obtain the following system of nonlinear second-order differen- 

tial equations, describing the phenomenon of plats flutter 

(9.13) 

v 
Equations ("»,13) are written in dimensionless variables i,   r],  t =  —r—, 

fl      f2 (p.  =  -r-, <Pp = -rr-. Here we introduce designations: 

M = ~T7Z~ $     Mi 
H 

K«     »« 

(9.14) 

*i = 
2  +   *• 2 

15      « M     w 
-—+ 2vik« -- 

2 2 

A-(^-i)(-f-.'+^:). 

dcp. 
Further the system (9.15) by replacement of variables -r— = 

= u. (i = 1, 2) is reduced to a system of four nonlinear first-order 

differential equations, the integration of which can be carried out on 

a computer with specific initial conditions, which was done with the 

-4 
precision of 10  at the interval of dimensionless time 0 ^ T s 40. 

For the, above accuracy the magnitude of the step of integration 

did not exceed 0.2. Automatic selection of step in the Runge-Kutta 

method was produced in the following manner. In the Initial step h 

ITS 
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was calculated by solution of system 9. at point ^Q + h* then the steP 

was divided in half and cp. was calculated at point |ri + ^. By value 

(pi and step ■*• we found a new solution %.   at pointy + h once again. 

The accuracy of the solution was checked by two values <p. and cp., cal- 

culated at one point £0 + h. If difference of solutions does ncx exceed 

the prescribed accuracy, then a recalculation of the solution ir per- 

formed with a half step, if however the required accuracy is attained, 

then we check whether it is possible to perform the further computa- 

tion with a doubled step of whether the step should remain the same. 

Solution of the system of differential equations by this method was 

conducted for a plate, having the following relative dimensions: 

K  «B» —— BS &  

»       «400 

with constants of problem: 

*.= 1.014-4; V, = Ve. = 3.4 I0«-2L 

and with initial conditions: 

l.f.(0) = *,(P) = 0: 

..|fi(0)-0.l  g.fftW^O.l  b)(%(0)-l 
IVtW^O.   /U.(0) = 0.1.   U,(0)--l: 

2. f,(0) = v,(0) = 91(0) = 0: 

•) f 1 (0) = 0,04.   oy «fi (0) «= 0.4. (9.16 ) 

The problem consisted of the fact that, with specific initial 

conditions of the boundary-value problem examined, we were to find th£ 

perturbed solution of system (9.13) for various values of speeds of 

flow and to establish the speed, at which solutions continuously 

increasing in time first appear in the time interval under considera- 

tion, 
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Results of calculations show that other conditions being equal, 

the value of the critical speed for a plate in nonlinear setting is 

essentially dependent on initial conditions. 

Fig. 17. 

f 

In Figs. 17 ana 18 we adduce graphs of perturbed solutions of the 

initial system of differential equations (9.13) for speeds of flow of 

800, 1000, 1200, 1400 and 1600 m/sec and under initial conditions, pre- 

scribed in the form of the initial sag (9.15), changing with respect 
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Fig.  18. 

to variable C  according to the law: 

« => 9t (0) sin «I + q>t 9)) sin 2ic|. 

An analysis of the calculations shows that with a change in the 

character of amplitudes of the initial deflection of the plate and 

their increase (9.1t3a), (9.15b), (9.15c) the frequency of oscillations 

and the value of the critical speed of the plate increase noticeably. 

Calculation of nonlinear factors in problems of aerostability of platen 

for the above-indicated boundary -conditions shows that even in the 

supercritical region no rigid excitation of oscillations is observed; 

oscillation amplitudes are increasing slowly. 
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During sufficiently small Initial perturbations plate flutter in 

a nonlinear setting appears at flow rates which differ little from 

the critical flow rate for the same plate in linear setting. However, 

with an increase in value and a change in the character of initial 

deflection of the plate surface, prescribed in the form of the initial 

sag [9,15)»  the possibility is revealed of the existence of established 

motions in flow rates, somewhat exceeding the critical flow rate for 

a plate in linear setting. 

Thus, if the critical flow rate of the plate in linear setting, 

found by the Bubnov-Galerkin method with a two-tem approximation of 

function of sag with respect to variable ^, constitutes 952 m/sec, then 

for the same plate in a nonlinear formulation of the problem of aero- 

elasticity under initial conditions, established by formulas (9.15a), 

(9.15b), (9.15c), the critical flow rates are equal to 1000, 1050, 

1600 m/sec respectively. 

The envelope of perturbed solutions of system (9.15) in flow rates, 

significantly smaller than the critical rate, for all cases of initial 

conditions (9.15) has the character of a curve, envelcring oscillations 

rapidly damping in time. With an increase in the flow rate of the 

envelope, of the curve which outlines the periodic oscillations with 

a certain increase of oscillation amplitudes at intervals of the first 

period and only with definite values of flow rates, corresponding in 

given determination to the critical rates, is the envelope of perturbed 

solutions CP.(T) and cpp('r) in the interval of time under consideration 

and assumes the form of continuously increasing curve for all T > 0. 

The investigation of solutions of a system of differential equa- 

tions of natural oscillation of plates in nonlinear setting for the 

class of initial conditions (9.15) and under boundary conditions, which 
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Fig.  19. 

present a definite practical interest, show that the sensitivity of 

a plate to excitation of its flutter sharply decreases v/ith the increase 

of the initial perturbation, prescribed in the form of the initial 

sag (9.15). 

Of the greatest interest are the results of investigation of 

perturbed solutions of a system of nonlinear differential equations 

(9.13), which were conducted for a plate of the same dimensions and 

with boundary conditions examined earlier, but under initial condi- 

tions (9.16). Physically these initial conditions ir.ean that in the 

moment of time T = 0 the surface of the plate develops a sag, the rate 

of variation of which with respect to variable i  is written in the form 

w**yi s!n it|. 

181 



1 

Calculations were performed for values of the maxiiaujn initial 

speed in the center of plate 9^(0), equal to 0.04; 0#4; 0.6. 

Results of calculations (Fig. 19) show that a change of maximum 

initial speed in the center of the plate by one and a half order does 

not lead to any noticeable change of the value of the critical speed. 

From the graphs (Fig. 19) it is clear that a change of value of initial 

perturbation, prescribed in the form of initial speed (9.l6a,b), leads 

only to a change of plate oscillation amplitudes, while the frequency 

of oscillation of the plate at the initial moment of time remains 

constant. 
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CHAPTER  IV 

CERTAIN OTHER DYNAMIC PROBLEMS OF SHELLS 

§ 1. Radial Elastic Deformation 

If a cylinder of average thickness is under the action of internal 

pressure p(t), which is uniform along its length, which changes accord- 

ing to the given law, and the pressure front moves along x-axis with 

a given speed, the problem of exact calculation even of elastic- 

stresses and deformations becomes very complicated with respect to 

calculations and we cannot find simple formulas, from which we could 

obtain a clear idea of dynamic effects [hi].     In the simplest case of 

a plane problem the radial and tangential stresses are expressed 

through e = —, Ea  = — with the formulas: r  or  ^  r 

■'-3«(V+-T)- ..-3*(^+.'£). (i.i) 

where K is the modulus of volume deformation; v    = -3 —, where v is 

Poisson's ratio. The dynamic equation for radial motion 

da,        'f — »i    d»B> 

A- +  r    P A« 

on the basis of (1,1) is reduced to the form 

dfw 

Here p is the density of the material, and c is rate of propagation of 

volume waves 
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/f- 

1 

(1.3) 

General solution of problem with the initial condition 

1.0: «-«b(r). ~-«i.(rr (l.j1) 

and boundary conditions 

r«*, ar-o C1«^ } 

is obtained by the known method by means of substitution 

Now equation (1.2) assumes the form 

r+J-r+(^-i)/=o. 

which is satisfied by function 

where I^xr) and N1(Kr) are Bessel and Neumann's functions. 

Eigenvalues of parameter K (frequencies of free radial oscil- 

lations of cylinder CK ) are found, according to (1.4) and (1.1), 
T TT 

from conditions (1.3 *  )* in which it is assumed that p = 0; the 

uniform system with respect to A  and B results in the frequency equa- 

tion which has the form [42] 

D(.o)-D(iA). (1.5) 

where it is designatec1   (when v = 0.25) 

1  '      toatiM-VtW K       ' 

*From now on the point above the-letter designates differentiation 
with respect to time. 
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Here IQ, I. are Bessel functions, and NQ, N1 are Neumann's functions. 

The first five roots of equation (1.5) of values of magnitude (nb) = 

= (f^)n 
for the relation a = |- = 0.75 (^ ~ 0.3J are adduced in Table 2. 

There are also tables for higher numbers of natural frequencies 

(Kb)n. Frequency n is equal c^ = (Hb)n |-. 

For every root H of the equation (1.5) the relationship of 

constants A and B becomes fully definite, and formula (I.1*) gives an 

expression for the n-th eigenfunctlon 
Table 2.  Roots of 
Equation (1.5) for 
the Ratio a = a/b = 
= 0.75 

/.--fl.MvU-A'i («.'). (1.V-) 

NUmber of 
frequency («»»ii 

I 
2 
3 
4 
5 

1.0665 
12.6243 
25.1615 
37.7183 
60,2799 

Now, substituting w0(r), wn(r) in the 
series/ u 

form of eigenfunctlon/from initial conditions 

(1.5 ) we find values A^, A^, i.e., v;e ottein 

the solution for the problem on free oscil- 

lations for given initial conditions. 

For the solution of problem on forcec. 

oscillations of a cylinder under the action of pressure p(t) we replace 

p(t) with the volume radial force q, applied in thin ring a < 4 < r + 

-i 6, so that boundary conditions become uniform (i.e., ör = 0 when 

r = a and r = b), and equation (1.2) becomes nonhomogenous. 

/ &»   ,   \   dm       ' »A 4. JL  JÜS? 
\ di*        r    dr       t*     )       ?        &* 

Let us select q(r, t) in such a way that when 5 -» 

m 

Decomposing q in an eigenfunctlon series fn(Knr): 

j^ = p(o. 

(1-7) 

0 

(i.:^ 

(1.81) 
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the solution of equation (1.7) we present In the form 
m 

•-JJf-W/.M. (1.9) 
a-l 

where for functions <Pn(t) we obtain from (1.7) the system of differen- 

tial equations: 

fl + e'f-'J-^W. 

each of which has a particular solution 

(1.10) f.-'-JLfp^)sta(c«Ä((--T)ldt. 

Inasmuch as with t = 0 the expression (1.10) gives ^ = 0 and qp^ = 0, 

the (1.9) with values (p (1.10) formally presents the solution of 

problem on the action of pressure p(t) on the initially undeformed 

cylinder. 

The series, included in expression (1.8 ),constitutes an expansion 

of the discontinuous function A(r): 

which may be written in the form 

A(r)- 

the/ T 

JL.      fl<r<a+J 
(1.12) 

0.        o + 8<r. 

Here /Tunctlon q (l.B"1") will satisfy condition (1.8), if the final 

result will have meaning when 5 -♦ 0. 

Considering the orthogonality of functions f , 

['U**~\0'      m*n' (1.15) J     I <2,  m = n, 

multiplying by rfdr both parts of (1.11) and Integrating from a to b, 

we will obtain: 

» 

«•"•■J/.M. f2-J«rdr. (l.l^) 
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This means, that the general solution is fully determined by- 

formula (1.9)f which will be written in the form 

• i 

*~~J!t
j!^fA*S}{p&™i*At~W*- (115) 

This expression is too complicated for analysis and requires 

bulky numerical calculations.  In the simplest case, when in the moment 

t = 0 constant pressure p = const is applied, formula (1.15) assumes 

this form (taking into consideration that pc = 3k) 

*~ irll 7? MvOUvHl -«»(«,01. (i. 16) 
■-I * * 

The coefficient of dynamics factor, showing the ratio of dis- 

placements (and stresses) in dynamic calculation of cylinder (taking 

into account forces of inertia of substance) to their values in static 

calculation, depends strongly on the law of application of pressure 

p(t) and can not only fdl to take value 2, but also to be essentially 

less than unity in the case of brief actions. Cylinders can sustain, 

while remaining elastic, pressures exceeding many times the maximum 

permissible static pressures, if the time of action of the pressure 

b - a is less than the time of double passage of sonic wave 2 —-— through 

the wall thickness, which fact is essential and should be taken into 

consideration for very thick-walled cylinders. This effect, conse- 

quently, first of all, pertains to large elastic masses with cylindricel 

cavities [4l] and therefore is not examined here. 

§ 2.  Plane Elastoplastic Deformation 

The dynamic problem for the cylinder in the case of plane elasto- 

plastic deformation is somewhat simplified, inasmuch as the cylinder 

may be considered to be a mechanical system with one degree of free- 

dom [41]. 

Let us assume that when t = 0 the cylinder with radii a, b is at 
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rest, but when t > 0 the internal pressure Pa(t) and external Pb(t) 

pressure, act so that the inltie.l coordinate of any particle r0 

changes to value r(r0, t), and the internal radius a becomes equal to 

dR 
R(t). Let us assume that v = TTT is the rate of expansion of the cavity, 

The condition of incompressibility of material: 

|«-«« = /J_|^ flJ-iP«*«-,!« (2.1) 

enables us for small and ultimate deformations to write expressions 

dr dvr 
of shear 7, rate v = -rr, and acceleration —gr-: 

y-z—T- 

The dynamic equation in the case of ultimate strains is written in the 

form 

where T = F(7) is the material strengthening function, which on the 

basis of (2.2) is expressed through R and r. 

Integrating this equation with respect to r from the internal 

surface (r = R) to external R- = r surface ar.d taking into considera- 

tion boundary conditions, we obtain: 

-f-^n^ + ^(ln-^ + -S--l) + -M-r^ = -f. (2.3) 

where p = p _ n, is the difference of pressures, which determines 
a  ^b 

the motion. 

In the beginning let us examine small elastic deformations. 

In this case, designating w(t) = R(t) a and discard in (2.2) small 

values of the order of — with respect to 1,  we obtain (R, = b, R_ = a): 
a. Da. 
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In equation (2.3) in addition to this simplification it is also 

p necessary to discard small values of the order of v with respect to 

£ and —, after which, designating the wave velocity of the shear c. 
i f 1 

and parameter yi  according to formulas: 

(2.4) 

we obtain the equation in the forji 

-^L-K^-PtfL-. (2-5) 
Min — 

« 

the solution of which, analogously to (1.10), will be 

i 

w — 
i 

(2.6) 

The dynamics factor KQ  can be determir ^ with the definite degree 

of authenticity on the basis of the solution (2.6). 

Let us assume that p(t) has with a certain t = tm a maximum p^; 

the static estimate for the action of pressure p yeilds the value of 

maximum tangetial stress ^D 

l_ 
I-a« '•■=-7—rfl-- 

The dynamic estimate gives for r = a 

while w is determined according to (2.6). This means, that the 

dynamics factor k^ is determined as the value biggest in time with 

respect to the modulus of ratio -—, i.e., 
m 

[ ö = d = dynamic ] *, « max I ^ f p WsinI^x(/ - *)!<£]. (2 •7) 

For the constant pressure appearing instantly 

0.   (<0 
p(0 ' p«const.   />0 
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from (2.7) we obtain: 

IS»-iMx|jaiDfr.~^|»2. 

In the case of constant pressure effective in a definite interval 

of time t.: 

P(0 
0,     <<0, iX, 
Ä 0<t<tt, 

the dynamics factor will be equal +o the biggest of the expressions; 

*;-IIIM| JMn(/—^|««iax(l~cosO. «</i. 

where t1 = C1HT. 

Now we will consider elastoplastic small deformations.  In one- 

ft'iod iynaiaic process (expansion or compression) the dependency x = P(7) 

allows us to express the integral included in (2.5), through w. Pre- 

senting F(7) in the form T = Gy[l -  01(7)], we obtain: 

2J^r " JY^-aeo—nf -20 J.(Y)rfv. 
I* 

Designating, 

^E.   Y»«-7:-«^   S^-ilp.. (2.8) 
fain— 

we convert the dynamic equation (2.3) to form 

—T + icrf*-*  f«(Y)rfv--22L.. (2.9) 

1» 

This quasi-linear differential equation has a small parameter. 

Inasmuch as function CD < 1. Therefore, the solution can be found by 

the method of small parameter, for which It is possible to take s. 

Here we examine th.; monotonous solution w, either increasing or 

diminishing in time. Therefore, following the method of elastic 

solutions, for the first approximation we must take the solution of 
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elastic problem (2.6). The second approximation is also obtained by 

the formula (2.6), if in it p(t) is replaced by 

where 

and 

Thus, in the second approximation we obtain: 

t 

^—T- f PÖsin [(vCZ-T)!^. (2.10) 

'taT ) 

I — f [i»(^+2ci T •iy)^hH-Mt-^)\äZ (2.11) 

Let us examine large piasc-ic delorrfditiov .  If ] »-esruie p(*y - 

= Pa " P^ depends only on the volume of the cylinder's cavity, i.e., 

P = P(R)> then equation (2.3) has the energy integral, and is linear 

v2 
with respect to •*—: 

«h-^(TH'4+f-')T- 
w »(*)  l^td^ (2.12) 

, Pi     r   ' 
Disregarding elastic deformations and material strengthening, i.e., 

Ö 
assume that T = —-= T , we write the integral of equation (2.12) 

73"   s 

from the condition of energy conservation. The internal pressure ps, 

necessary for surmounting plastic resistance of material, in this case 

is equal to 

''-7fln:F- (2-15) 

Thus, part of the effective pressure p(R), which will increase the 

kinetic energy of the cylinder, will be equal to p(R) - PS(
R)' The 
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corresponding work will be 

1 

il-2.J[pW~^ta|-]iW. (2.14) 

The kinewlc energy of a cylinder on the basis of (2.2) will be written 

thus: 

T*=*f\if/dr**iipiPv*h\-~*~. (2.15) 

Prom the law of conservation of energy we have: 

(2.16) 

where T0 Is the Initial kinetic eneiv'
7 of the cylinder 

TV-M^to-i-. (2.17) 

The rate of expansion of the cylinder's Internal surface from (2.16) 

Is found In the form of function of radius R: 

-L  / T9+A 
(2.18) 

If T0 = 0(VQ = 0)and pressure p decreases with the expansion of 

the cavity, so that beginning with certain R the expression in brackets 

under Integral (2.14) becomes negative, the rate v will have the maxi- 

mum v . Designating with ^(ILv) the radius, with which the maximum 

rate is attained, we obtain the relationship between v ar.d R from 

equation (2.12), in which we must assume that 

Radius R is found from equation 

(2.1n) 

/>(/?)--^rln-2-lw/?l-0.   iR~Rm). 4tir|[—w^l»«l (2.20) 

Let us consider the particular case of compression of the cylinder's 

cavity at the expense of initial kinetic energy TQ.  Assuming that 
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in (2.14) p = 0, we flnd- 

The movement according to (2.16) will cease with the R, determined 

from condition T~ + A = 0. We find the least kinetic enevgy T , when o ^ cr 
the cavity will be closed. Passing to limit R -»■ 0, we obtain: 

[kp = cr = critical]      rM--^r[fli»In^- + (6»-«^lfl^-].        (2.22) 

and the corresponding initial rate will be foirid from equation 

J**9  _    fuß 
(2.25) 

When T0 > Tcr the cavity will be slammed closed with the speedy which 

with R -»■ 0 tends toward infinity: 

J* U-T.,  (2.24) 
f       / §• —rfi \ v«-.«- j 

§ 3. Action of a Moving Load on a Cylinder 

It is possible to give an estimate of the dynamics factor with 

a mobile lo&d, on the basis of the theory of oscillations of a cylin- 

drical shell [41]. 

We give the equation of radial oscillations of the cylindrical 

shell: 

•^ *• ^  At« H *•   URj  9* * 

Eh Here: h is thickness of wall, R is radius, D ^  «- is cyllndri- 
12(1 - v^) 

cal rigidity, P is constant axial stretching force, p is internal 

pressure, 
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Let us examine forced oscillatiors of the cylinder under the 

action of consiant pressure p and annular pressure Q = qc, moving with 

constant speed v along the cylinder to 

the right- where we shall assume that 

pressure on the right of Q is equal to 

zero (Fig. 20). 

The stationary solution, constant in 

Fig. 20. axes, moving together with the load is of 

interest. Let us assume that the origin cf coordinates is at the 

point of application of annular pressure Q. We examine, consequently, 

the solution of equation (3.1), depending on the difference 

then 
§ 

l-JT-lrf. 

« ' ft 

(3.2) 

« * 

and therefore, (3.1) assumes the form 

ft,w+('w,+^-sr)"°+ «(i-^no W**P' 

where a stroke signifies the derivative with respect to ^. Prom the 

comparison of the first and last component of the right side (3.3) 

it is clear that the characteristic size of the region of variation 

of deformations will be of the order of 

(3.3) 

(3.4) 

and therefore, in the order of values, the equation (3.3) has the form 

The ratio of the second component to the first and third Is determined 

by values 
fW 

DT 

P    m 
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With very large rates v the first ratio may be large, and therefore, 

it cannot be disregarded. The second ratio equals 

i.e., the corresponding term in (3.3) can be disregarded with an error 
h not exceeding w as compared with unity. The third ratio is equal to 

[cp = av = average]    ^^ J^  ^f O-^-^V^O1^-^-^-. 
p 

where (a,)  = * »» is the average stretching stress from axial force 

P; the ratio shown is a minute value, and the corresponding component 

in parentheses (3.5) can be disregarded. 

Thus, the dynamic equation (3.3) has the following approximate 

form: 

We introduce new designations, simplifying the formulation of the 

problem, namely, the dimensionless coordinate: 

the static sag of shell according to the zero-moment theory 

[ct = st = static] W
"'

S
T'D{

P
'"^) (3*7) 

and dynamics parameter: 

X-^-V^RT^r-f-tf)'. (3.8) 

where c is the transonic speed in material. From (3.5) we obtain: 

Since w . is a function, which has a break in one point x = 0, then, 
ST* 

dividing the region into intervals x < 0 and x > 0, we will obtain for 
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x < 0 w = w ,. The general solution in the form e ^ leads to the 

characteristic eqvation 

having roots: 

(3.10) 

The sag w for the left-hand part of cylinder x < 0 has the form 

[Ji = 1 = left] w-»4 + **(At«»^ + MnJC). (3.11) 

and for the right-hand part (x > 0) 

[n = r = right] •-«^ + #-*t(V«j:+ 3,810/,). (3.12) 

where A, B are arbitrary constants and 

v—*■■•££-s> p. (3.1^; 
* -     '£1 

Conditions of conjugation of solutions in cross-section x = 0 

require a continuity of sag, and angle of inclination of generator, a 

bending moment and intersecting force N = -j—, which in cross section 

x = 0 should have a break by a value Q. Designating 

and satisfying conditions of conjugation, we find constants in (3.11) 

and (3.12): 

«. 

I r 

(3.15) 

From (3.11), (3.12) and (3.13) it Is clear that x = 1 determines the 

critical speed of motion of the load, with which a strong influence of 
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the dynamic load is possible. When x= i we obtain from (3.8): 

(the number is given for E = 2.1'icr k§/cm , v = i, pg = 7.8). 

When v < i the sag at the expense of the load dynami-'s will be 

larger than with its static application (x « 0), and therefore, we 

can determine the dynamics factor as the ratio of maximum sag w 

when x > 0 to the maximum sag when X = 0: 

(3.17) 

where w   is determined for the left-hand part of the cylinder, i.e., 
ulcLX 

by the formula (3.11). Point P ov < 
0* in which sag is the biggest, 

d\ dw is determined from the condition --1=0 which gives 

Let us examine the first example, when annular pressure Q spreads 

at the rate v, so that p = 0, q / 0. The maximum dynamic sag will be 

± 
and therefore, the dynamics factor is equal to k^ = ■ ; ■ ■ . 

^1 - X 

We consider the second example, when the axial force and annular 

load are absent (P= Q « 0, q= 0) and only the internal pressure is 

active. The biggest sag is obtained in point f 0„ < 0, for which 

so that, if we designate 
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! 

then for the maximum sag we obtain the expression 

•—iki^**"  X 
x(l^+Tf->^Ti)]. (3.19) 

and therefore, the dynamics factor 

«KT+^/nr^-^mT) (3.20) 
*• i/f+^.    • 

The dynamics factor of the annular pressure turns out to be signi- 

ficantly larger than the dynamics factor of internal pressure. For 

instance, when x= 0.45 we have Kd~= 1.35, K^p = 1.
035; for shells 

with the relationship w^ 0.2 this corresponds to the load speed 

v ~ 1200 m/sec. 

§ 4. On the Propagation of Elastic Waves in a Shell 

Of interest is the research on propagation of perturbations in 

thin-walled structures in connection with the problem of their dura- 

bility and rigidity. Let us consider propagation of elastic waves in 

shells. 

In the beginning let us write the system of differential equations 

[43] for symmetric oscillations of the circular cylindrical shell with 

the thickness of 2h and radius of the middle surface r0, which will 

then be used in the study of propagation of elastic waves in a shell. 

Proceeding from general equations of the theory of elasticity 

without any hypotheses about the character of deformation, on the basis 

of N. A.Kil'chevskiy's [44] algorithm, by excluding from matrix 

operators all displacement functions, with the exception of one or 

several, I. T. Selezov constructed generalized differential oscillation 
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equations* [45]: 

where x is the variable, counted off along the shell axis w0 and u0 

are the radial and axial displacement, q*^ is the radial load on 

internal and external surfaces of the shell, p. p :i-s ^he  axial load on 

the same surfaces, and a. and b. are constants, depending on Poisson's 
J     J 

number ^, Here the following dimensionless parameters are taken: 

«4-üL. «;=-&. jr«=A <*--5i-i. 
r» '•        '•        '• 

*Wlth the accuracy up to terms of the order of £/1 
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Here, as the author [45] thinks, the developed method leads to preser- 

vation in differential equations of all terms up to a definite order 

of smallness and presence of all possible partial derivatives, and 

therefore, he is of the opinion that the limits of applicability of 

equations are determined by the order of remaining terms.* 

We investigate the infinite cylindrical shell, to which at a 

distance x = 0 a concentrated axisymmetric momentum Qcr(t ) is applied, 

where a(t ) is Keaviside's function. We will solve the problem, ex- 

cluding points of application of concentrated momentum. Then we arrive 

at differential equations of the form: 

1 

+ lito,+«bl-~}»^0: (4.5) 

(l-^ + IW-i+|l + W-=r + W, # 

+(!-».-{»,l^-vtt.^r-t^-54r}«=o.       (^.t) 

These equations are obtained from (4.1) and (4.2), and terms of the 

order higher than ^  are rejected. 

We assume in points of application of concentrated momentum con- 

dition of conjugation are fulfilled, which ensue from general conditions 

♦The method needs a strict mathematical foundation. 
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of continuity of displacements and deformations: 

Three conditions are satisfied at infinity. Here X = —TTTLI^ 

where X and ^ are Lame constants. In moment t = 0, if we accept 

the zero initial conditions, such initial conditions are fulfilled, 

which also ensue from the exact formulation of the problem: 

The solution of equations (4.5) and (4.4) in the Laplace image 

space, satisfying conjugation conditions (4.5), conditions at infinity 

and initial conditions (^.6), has the form: 

^-w»—s M»wp(-">I**D 

»54 p*»IK-«j>^ + («3-*t>^l 

where ^(k =1, 2, 3) are roots of characteristic equation Re n^ > 0, 

c/#(**.rt - ("«-"•^(^.H^- 



of Laplace transformation, 

Al = gl(l2g'5 " l^2^t  A2 is obtalned frora Ai ^y cyclic permutation of 

indices: 

/«-P^+IÄ + P^ + S^1]. 

According to the conversion theorem [46] we obtain solution of the 

problem in the form of contour integrals: 

* 

I f  (4,-M 

10      4^i^i»»i(«!--4^+<«l-4^i 

§ 5« On the Propagation of the Elastoplastic Loading Wave 
in the SheTT 

Recently we heard of attempts to develop the dynamic theory of 

shells for elastoplastic deformations, which considers the possibility 

of large sags which fact is important for the calculation of structures 

and buildings [5]. 

Let us examine the action of moving axisymmetric load on free 

cylindrical and conical shells.* 

Let us assume that on the cylindrical free (loose) shell with a 

length L at the moment t = 0 an external pressure begins to act, which 

is symmetric with respect to the axis of rotation and spreading on 

the shell surface at a certain rate v, which may be either less or 

*The solution was obtained by M. P. Galin by the method of 
characteristics. 

202 



larger than the propagation velocity of extension and bend elastic 

»/i wa¥es in shell k^c = -/—-  Let us also assume that the width 
''' p(l - v 

of load l  § QD, i.e., the load, either is removed at a moment t, = -^ 

from the shell, or remains on it. 

When v < k10 deformations in the shell will spread at a rate k^, 

and when v > ^ the entire shell behind the front of load will be 

deformed, i.e., deformations will spread at a rate v. Consequently, 

when v < k.Q it is necessary to solve the second mixed problem, and 

when v > k. — the third mixed problem. 

Let us note that real shells are usually reinforced on ends with 

sufficiently powerful ribs, preventing the end sections of the shell 

from turning and shifting in radial direction, i.e., 

f «O.irhmx-0, X*L, (5.1) 

V-0.iiwnx«0. x**L ,^   2v 

In the axial direction shell ends can have either a rigid (immobile) 

sealing 

« = 0 (5.3) 

or a sliding (mobile) sealing 

T^-O. (5.4) 

We will reproduce briefly the course of solution of the problem 

for different load speeds. In the case of subsonic speed of load 

v N k10 (Pig. 21).  On line x = k^t we have zero conditions:  cp = w = 

= u = 0, qp = qp = w = w, = u = u, = 0. Reaching the opposite edge 

of shell x = L, the elastic wave x = k.^t will be reflected from the 

edge. The reflected wave will travel in the opposite direction accord- 

(2) ing to characteristic dx = -k^ Mt,separating the traveling wave region 
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(1) from the reflected wave region (Fig. 21); the Initial velocity 

reflected wave will be equal, of course, to k10. 

C 

Pig. 21. 

Solving the second mixed problem, we shall first determine the 

solution in region (1), limited by straight lines x = k10t, x = 0 and 

by characteristic dx = k^'dt, including boundaries of this region: 

in a similar manner we will determine the region (2), limited by 

straight line x = L, characteristic dx = -k^dt, on which functions 

u, w, cp and their first derivatives will be continuous, and by charac- 

teristic dx = kx^;dt, emanating from the point of encounter of charac- 

teristic dx = -k^dt with straight line x = 0. 

In the case of supersonic speed of load v > k10 (Fig. 22). Here 

the solution in the region, limited by characteristics of the first 

family dx = ik^dt, emanating from point 0 (0, 0) (line 0M) and point 

L(L, -) (line LM), will not depend on boundary conditions at the shell's 

ends, and in order to find it, we must solve the Cauchy problem accord- 

ing to the data on the sector of straight line x = vt(0 « x s L, 

0 s t s i) in the triangle, limited by this straight line and 
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characteristics OM and LM (see Fig. 22). 

From the analysis of motion equations of the cylindrical shell 

we see that with a load of constant intensity the solution of the Cauchy 

problem along straight lines, parallel to the front of motion of load 

x = vt, will not change. This circumstance significantly decreases the 

laboriousness of calculations in the solution of the Cauchy problem, 

since it will be required to determine only those points which lie 

directly on characteristic OM. 

For the beginning of integration we will take on straight line 

x = vt a point CL, sufficiently close to point 0. Now, solving the 

Cauchy problem according to data on the segment 00., we will define 

point M. on characteristic OM. of the positive direction, of the first 

family. In point N. lying on the intersection of characteristic of 

the first family of positive direction emanating from point 0., with 

segment M.N. of the straight line, parallel to line x = vt, the solu- 

tion will be the same, as for point M.. Therefore, the next point Mp 

on characteristic OM, as well as all the remaining points on this 

characteristic can be determined either by a general method, solving 

the problem of Gurs according to data on characteristics M.O. and O.N., 

or, using the constancy of solution along segment M.N., to solve Cauchy»s 

problem according to data on segment M.N..  In both cases basic initial 

points i and J will be identical; however, auxiliary points, lying on 

characteristics of the second and third family, will be different. 

The preceding point (m) sought will serve as point i.  In the solution 

of the Gurs problem the old point J will serve as point I.    New point 

j will be determined from equations: 

*, — *, = *,/,(*, — *,), 
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by formulas: 

•-*w (5.5) 
I,— 

The remaining values, characterizing the state of the shell, such 

as the displacements, deformations and speeds in point j — will be 

the very same, as in point i. 

In the determination of point m from the solution of Cauchy's 

problem, coordinates of point J with the given interval Ax = x. - x. 

are determined by the fomulas: 

jri-jj-f Ar. 

Along characteristic LM the solution is determined in the same 

manner, as on characteristic OM, and here the solution on characteristic 

LM will be equal to solution on characteristic OM, but with the time 

shift by tT = ^7, i.e., for any function f we will have: 
Li V 

In the particular case of instantaneous application of uniform pres- 

sure along the entire length of the shell the solution in the corner 

between characteristics OM and LM and axis x in every given moment of 

time t = t will be equal in all points of the segment of straight 

line t = t , enclosed between characteristics OM and LM. 

Let us examine the problem of the same type for the conical shell. 

If an external load acts on the free conical shell then the component 

of the resultant of external forces appears, directed along the axis 

of symmetry of the cone which will produce a motion of the center of 

the cone's mass. However, until the entire shell is deformed, i.e., 

until perturbations reach the end x = L, it will not start to move as 

a rigid body, and the center of mass will be motionless. 
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After the perturbations reach the edge of shell x = L^ the latter 

will begin to shift in the direction of the shell's axis as a rigid 

body, simultaneously having, of course, the displacement due to defor- 

mation. Consequently, in order to have the possibility to apply the 

equation to the shell in its motion with respect to the center of mass, 

it is necessary to stop the center of the shell's mass, and for this 

purpose we must apply to the center of mass d'Alembert's inertia, 

equal to the axial (in the considered case — horizontal) component of 

the external load resultant. d'Alembert's force will act on every 

element of the shell's mass. Therefore, acceleration of the center of 

mass (overload) will be equal to 

where F is the horizontal component of the external load resultant: 

M is the mass, for instance, of the entire structure. A portion of 

d'Alembert's inertia will act on the shell (separately), equal to 

f-tfl*. (5.8) 

Here M is the mass of the shell. If no concentrated masses, located 

inside the shell are connected with the shell, then the intensity of 

this load can be written in the form 

*•*"£-. (5.9) 

where S is the surface of the shell's area. Let us note that if a 

tangent loa^ will act on the cylindrical shell in addition to the 

external pressure, then the character of the shell's motion will be 

similar to the motion of the conical shell just described. Let us 

Introduce instead of s the variable x = s - s0 (s0 is the distance on 

the generator from the summit to intersection with radius r^), then for 

the new variable the boundary conditions with x = 0 and x = L for the 
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conical shell will have the same form as for the cylindrical shell. 

In solving Cauchy's problem for determination of solution on the 

OM characteristic (Fig. 22) we no longer will be able, in the case of 

a constant load, to determine all values on this characteristic, not 

knowing their values in the entire triangle OML, because the solution 

along straight lines parallel to line x = vt, will no longer be constant, 

since coefficients in motion equations will now depend on s(r0 = s 

sin ß). 

However, for the conical shell of small conicity the radius of 

cross section r0 will change little, but in length, and therefore, 

without any large error, for simplicity of calculation, when the length 

of the shell is noL, very great, this change can be disregarded. 
i 

We may assume that in narrow bands Ax wide which are adjacent to 

characteristics OM and LM, the solution along segments, parallel to 

line x = s - s0 = vt, will not change even with great conicity. 

Thus, in the case of the conical shell, on which a uniform load 

travels with the speed v > k10, the solution on characteristics OM 

and LM can be found with a great degree of accuracy, without determing 

it in the entire triangle OML; where, in contrast to the cylindrical 

shell, in the actual triangle OML the solution along straight lines, 

parallel to OL, will change the more the larger the angle of conicity 

of shell and the longer the actual shell. We also note that with the 

small conicity of the shell, when only external pressure acts on it, 

it can be replaced without any great error (which essentially simpli- 

fies calculation), by a load, directed perpendicularly to the axis of 

the cone (without introducing d'Alembert's inertia). 

Let us show an example of numerical calculation of a truncated 

conical steel (steel 5) shell with half-angle ß = 11°, for -^ •- 136. 

The calculation is performed for external pressure p = 112 kg/cm and 
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tangential load p = 22 kg/cm , spreading along the shell with the 

speed of 10 kg/sec in the direction of growth of r0 in a band, with 

the width I = 200h, where the tangential load is directed also in the 

direction of growth r0. In the calculation it was assumed that the 

material of the shell is not compressible. 

The solution was found on characteristic 0M. We assumed that at 

the distance Ax = 0.85h in the direction of the straight line x = vt 

the state of the shell does not change. Results of the calculation are 

shown in Fig. 25 and Table 3. 

* V jn-v») *, 

* 

Fig. 23 

It transpired that when t = t_ = 11.1 s 
h 

/ 

in section 

p(l - v^) 

x = x = 11.Ih plastic deformations appear for the first time in the 

shell opening.  It was assumed that sliding stopping is used on the 

end x = 0.  Results of the calculation are given in the same Fig. 2J> 

and Table 4, as referred to above when t^ = 0.565 
h 

0 
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deformations in the stopping were still elastic. 

Table 3. Change of Values Along the Charac- 
teristic of the First Family dx = ^di. 

Originating from Point (0, 0) and Line 

X - X ss v(T - t) 

Point 
»■ban * <4\ -* 

• 

*• 1 

I 1 » 4         1 s    ! • 7 > 

0.0 0 0 0 0 0 0 0 
II 0.6 i 0.86 -O.m 0.353 0.621 0.312 0,457 
1.2 17> 1.70 -0.23| 0.267 1.90 1.10 1,17 
8.3 S.51 2.66 -0.86* -   1.06 2.47 1.74 1.44 
4.4 3 40 8.40 -0.48il -   3.01 3.23 2.94 2,25 
5.5 4.2» 4.26 -0.639 -   5.98 4.26 4.73 .   3,74 
M 6.10 6.10 -0.78a -   9.91 5.74 7.30 6,(0 
T.T 5.9 ► 8.96 -0.986 - 16.7 7.79 10.9 9.43 
M 6.6) 6.80 -1.06 -23.9 10.7 16.0 14.3 
•••. 7«i 7.65 -1.19 -85.4 14.6 23.1 21,3 
0.10 8.6 > 8.80 -1.80 -61.7 20.6 33.3 31.2 
l.U 9.31 \ 9.36 -1.37 -74.7 28.8 47.4 45.2 
0.11 10.8 \ | 10.80 -1.40 -107.0 40.4 67,6 65.1 
S.I8 11.11 11.14 -1.35 -169.0 62.1 100.0 97.2 
4.14 n.fi M 11.56 -1.71 —200,1 109 134.0 130.0 
6.16 12.01 13.07 -6.72 -287.0 130.0 174.0 167,0 
6.16 12.93 13.13 -12.1 -441,0 33.3 270,0 241.0 

Table 4.  (Continuation of Table 3) 

1 l a 4           1        S • 1 • 

0.1 0 0.142 -0,0000382 -0.663 -i;i6 0.773 0.773 

0.2 0 0,565 -0.00013} -1.08 -1.77 1.20 1.20 

Calculations performed show that the deformation of transverse 

shift in its value is approximately equal to the flexural strain 

(elongation-compression in external layers); now, the elongation- 

compression deformation of the middle surface is by a whole order 

smaller than flexural and shear deformation. The velocity of the 

elastoplastic wave of the load, appearing at point (xs, ts) of the 0M 

characteristic at moment t = t_ will be approximately equal to the 

velocity of load v. Along the LM characteristic the solution is found 

in a manner analogous to finding it on 0M. 
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CHAPTER  V 

STABILITY OF SHELLS WITHIN LIMITS OF E'ASTICITY 

§ 1. FormulQ.tlon of Problem 

Let us assume that a shell is acted upon by a load, which is 

increasing in proportion to certain parameter X; conditions of fasten- 

ing of the shell are such thai; with a certain X, for instance X = 1, 

a zero moment state of strain exists. 

In process of loading changes in the forms of equilibrium ot 

shell are possible. For values of X, smaller than a certain X0, tnere 

exists only a zero moment form of equilibrium of the shell, which 

corresponds to a minimum of energy of the "shell-external forces" sys- 

tem. Further, there exists a load to which corresponds number X. § 

?= XQ  which is such that when X0 s X s X, along with the zero-moment 

form of equilibrium of the shell has a moment forms also, but ehe 

zero-moment form will have a lower energy level than any moment form. 

Further, we can mention number X2 L X., which is such that although 

the zero-moment form of equilibrium of the shell has a relative minimum 

of energy when X. < X < Xp, there is at least one moment form of equi- 

librium, to which corresponds a lower energy level. Finally, when 

X > Xp the zero-moment form of equilibrium of the shell, in general. 
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1 

ceases to be a minimum of energy point,* 

Such a change of the forms of equilibrium is established in a 

number of investigations of the shell behavior by solving equations 

of nonlinear theory of shells by approximation. 

In deriving [55] of such equations of the nonlinear theory of 

shell stability we assume that curvatures along ox and oy axes certain 

constant values, which phenomenon exists near second-order surfaces 

F*"jaM*+ l~b!fi + cx!f + dx + ey + t~0. 

Consequently, the nonlinear theory under consideration is applica- 

ble to ehells, the middle surface of which may be expressed by a 

second-order equation. 

Let us direct oz axis to the normal to the middle surface in the 

direction of the center of curvature; we will select the origin of 

the coordinates in a point of the middle surface of one of the angles 

of the rectangular contour of the panel of the shell. Let ox and oy 

axes coincide with directions of the lines of the main curvatures of 

the shell. Let us designate the thickness of the shell with h, its 

dimensions along ox and oy axes with a and'b (Fig. 24), 

Let us assume that k. = const is the curvature of the shell, which 

retains the constant value along the ox axis; kp = const is the curva- 

ture, remaining constant along the oy axis. We will designate with 

u, v, w the displacement of points of the middle surface along ox, oy, 

oz axes respectively. Displacements w will characterize sags of the 

*Expounded here is a wide-spread point of view on the stability of 
shells: in the author's opinion there can be other points of view. The 
reader will find a survey of the contemporary state of problem on the 
shell stability in the article by Peng Yuan Chien and Ye. Ye. Sekler 
"Instability of thin elastic shells." Elastic Shells, Foreign Litera- 
ture, 1962. Interesting results in the USSR belong to the Kazan' 
school. See "Nonlinear theory of plates and shells." Publishing 
House of Kazan' University, 1962. 
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Shell, the positive values of which correspond 

to their direction toward the center of the 

curvature. Sags w are not small in compari- 

son with thickness h. 

Fig. 24, I'et us assume that further e^ and e 

are linear relative deformations in the 
rv 

middle surface along ox and oy axes, e  is a relative deformation of xy 

du     du shift, -jA = K , Trr = * are the change of curvature of a deformed 

shell along ox and oy axes; n^..  is the torsion of the middle surface. xy 

For components of deformation of the middle surface, changes of 

curvatures of a shell and displacements of its middle layer we obtain 

the following approximate relationships: 

«----^ *>--%-• **~~i% (1-2) 
Let us find deformations e , e... . e  for the layer, located at xx  yy  xy 

a distance z from the middle layer. 

According to the hypothesis of straight normals we can assume 

that for ^ints of this la^er (Fig. 25) 

p^-zÄ. (1.5) 

Since the thickness of the shell h is small as compared to the radius 

of the curvature, we can consider here and subsequently that the sag 

of the middle layer w0 is equal to the sag of any other layer of the 

shell. 
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Fig. 25. 

In view of that fact that sags w are con- 

sidered so significant that (T^T and {^T'j   are 

duo 
values of the same order of smallness as IT— 

ox 

and ^—, then (13) can be rewritten in the form 

and by analogy: 

(i.^) 

where values e„„. e , and e_ are determined by formulas (1.1). More- xx' yy'     xy *        \   / 

over on the strength of the hypothesis of straight normals e  = e  = yz   zx 

s= 0. According to Hooke law, component of deformations and stresses 

are connected with one another by relationship: 

(1.5) 

««• 

where o , a  .  a ,  T , T , and T  are components of stresses. From 

these equalities it follows that: 

E 
^ji^r^+^w). 

£ (1.6) 

Here v is Poisson's ratio, E is the elastic modulus. Introducing here 

value e , ... from (1.4), we have: 
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•'-jh['--'%■+'{*•-'w)]' 

or 

•.«=0, f». 

+» 

T^-t^ 

i^ )• 
(1.7) 

.where it is designated that: 

•!-ir5^+*)- 

i—^ (<5»+ *Cm* (1.8) 
£  I — * j» 

•«r !-*• J 

are components of stresses in the middle layer. 

Let us separate the element of the shell by planes, parallel to 

the coordinate. Forces, acting on one unit of the width of the sec- 

tion of the element, will be (Fig, 26): 

s 
^i- J •,*. r,- J o,&. s.« J 

t 
JV,« J t„dr.  iV,- J t„dz. «j« J 

^<fa.  St f 

o^ife,  Aft«= J 

^<fe. 

V^« (1.9) 

s 
It 

/f,- J t^/fe. * Wt- J VA 

These forces are considered positive, if their directions coin- 

cide with the positive directions of external normals towards +ox 
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and 4oy. By virtue of relationship 

Txy = Tyx' 

known froa theory of elasticity, one 

may assume that 

St^S^mS, HtmHt-H. (1.10) 

Let us introduce in (19) value <J - a , T „ from (1.7). We will obtain x  y  xy 

for M1: 

*     i 

i 
F 

ft 
T 

\ 

where D = Eh' 

12(1 - v") 

find Mp and N. Consequently; 

95— is cylindrical rigidity. Analogously we will 

*•—D(^+'0)- 
(1.11) 

4c% 

Substituting now in expressions (1.9) for T1, ..., N1, N2 values 

ax, a , ..,, T  from (1.7), taking into account (1.8) and (1.1), we 

have: 
* 
T 

* 
7 * 

T 

,(«;,+o- 
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0       0 
Introducing here values e and  e  from (1,1), we will obtain: xx     yy 

Analogously we will find ^ and 8=8^=82, 

Thus we obtain important formulas: 

-*#»-WM»]. (1.12) 

which produce a relationship between tangential forces, effective in 

the middle layer, and its displacements. Shearing forces will be 

determined below. 

Excluding unknown displacements of the middle layer u0 and v0 

from equalities (1,12), we can express forces T., T2, S through sags 

w. 

First let us note that from (1,12) we can obtain the following 

relationships: 

«(l + ')V^   Ar -  a« dy )' 

Using these equalities, let us set up equation 

zv 

-, 



1 

-a{^r^+i(x)-*.-]^ 
^[fH(fh^]-M ^■^7]} 

.But, according to rules of differentiation 

'icUvAjjürL* Afürj^idr^j + mm_ = , jft»   *m_ 

«I* ^  ds*d|r* 

*   f im  imV     * f *m   *,       dm *m\ 

***   99 \»**§)' ä*   d?        äx dxdf 

Introducing this into the preceding equation, we will obtain: 

^(r,~^+^(rs-.r1)-2(i+.)£|- 

«[(^y- 9w ePw     . &m      . A»! 
as* cy 

(1.14) 

.Equation (1.14) gives us the sought relationship between forces, 

effective in the middle plane of the shell and its sag w. 

Introducing the stress function (p "by formulas: 

T.-A-A. r.-A-*.. S-^-ä. (1.15) 

equation (1.14), after substitution of values (1,15), will assume the 

form: 

-vv?+*i—+*«—+——-r—Y^o. 

where 

V'VN»- fix*         dx*df 
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Pig. 27. 

2 2 V V (  ) is a bihamonic Laplacian operator. 

Now let us turn to the construction of the equation of equilibrium. 

Let us assume that on the shell act the following load: trans- 

verse q = q(x, y), effective normally to middle surface; compressing 

or stretching forces hp(x) and hr(y), applied normally to the edges 

of the shell; and shear forces hT, acting along the edges. 

Let us separate element hdxdy from the shell by two pairs of 

mutually perpendicular planes, parallel 

prior to the deformation of the shell, 

to planes xoz and yoz. 

Forces, acting on the edges of this 

element, are shown in Fig, 27. 

When the middle layer is bent these 

forces turn in space. Projecting them on mobile coordinate axes and 

rejecting small values of the higher order, we will obtain: 

~{N.+ ^*y)ä*±%äy-Ntdx±%.dy~0. 

^r. + fdy + T.y^ + JL^dyy 

+ (st + &dy + St)äx±£.dy+(Nl + *£d*~Nl)äy + 

Performing reductions in the first two equations and rejecting 

terms of the third order of smallness, we have: 
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* 

#i|  i  ^g|    »» CT> 

te 

«i 
# 

«Si 

^•S 

The third equation after opening of brackets will be 

(1.13) 

äxdy + ^-dxdi/~ + 
2fti 

+ ^*t ' 8  AJ-ilr^ + 2rf^-^- + 2r.ifx-i-^ + 

—L&edif , 

f^^1 
S *> 

*rrfif + 2Sl^^-^Ar + 

9  a«^rf'+ dbr ^^W, +2S^jr s   «y^ <<y 

+%****^+~<iifä*Yi&**+itdxdy+ 

(1.19) 

Mt 

Taking into consideration relationship (1.10) and rejecting 

values of this third order of smallness, after reductions we will 

obtain: 

+~L + JrL + *»0. 

or 

ay. m. 

-2S 

(1.20) 

dxdf 

Comparing equation of moments of these forces with respect to 

the ox axis (Pig. 28), we have: 

1 
frt+^dxyy-Midy-Htdx + fr+MLdyyx- 

-(Nt+*£dx+Ntyy±dx~0, (1.21) 
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which, after simplification and calculation (1.11) 

Vg-A^  yields 

»   ' ^^ N^-^^-^'m-D^^B (1.22) 

Fig. 28. 
Analogously we will obtain: 

Relationships (1.22) express equality to zero of the main moment of 

all forces, acting on the shell element examined. With the help of 

equalities (1.22) we can exclude from (1.21) the severing forces NL 

and N2. For this we will introduce N. and Np from (1.21) into (1.22). 

We have: 

J^ + ^+^L + r'(*« + S)+r«(Ä' + ^)+       (1.23) 

Equations (1.18) and (1.235) give us the sought totality of funda- 

mental equations of equilibrium. The right sides of equations (1.18) 

ä2w ö2w can be assumed to be equal to zero, since values —«•, —*■ have the 
S? öy2 

order of -^ and N. ~ -r»  N.- ~ —jp, then the right sides of equations 
\>d 1       V        d       ^ 

h5w2 ,3 2        ÖT.  pvo 
(1.18) have the order of 2-?-* •2--r-, whereas —^=-, ^. and others will 

b5 a- °x dy 
2 2 

have the order ^U, ^t-. 
b^  a^ 

Introducing according to formulas (1.15) the function of stresses, 

we can easily see that equations (1.18) will be identically satisfied. 

Taking into consideration expression (1.11) for moments, after intro- 

duction of function of stresses, equation (1.23) will be rewritten 

thus: 
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1 

.or 

.will be written in an abbreviated form thus: 

.where V^ (  ) is a biharmonic Laplacian operator. 

The equation of equilibrium (1,24) is the second fundamental 

equation of the theory of flexible sloping shells. 

We must note that in setting up fundamental equations (1,16) and 

(1,24) ox and oy coordinate axes were assumed to coincide with the 

main curvaturas. In the more genexal case, when there is no such 

coincidence, equations (1,16) and (1,24) will contain component 

where F = F(x, y) is the equation of the middle surface of the shell, 

Thia term takes into account the influence of the curvature of tor- 

sion on deformation and stressed state of the shell. Assuming that in 

(1,16) and (1,24) the initial curvatures are k. = 0 and k2 = 0, we 

will obtain equations for plates with a large sag: 

^y-y«,  y   " [ ^ dd ^ d^« V     Öxdy   tody j 

****** 

' Jia^.v-imtm-vHmm*M mjj^fm^m^^ 



The problem en the bend and stability of plates and shells, as 

we can see from the preceding facts, is reduced to integration of the 

system of consistent nonlinear partial .'ifferential equations of the 

fourth order: 

V%» a*       i*  df dxdy  dxdy J     v 
(1.25) 

The relationship between forces, acting in the middle layer, 

and the displacements is determined by formulas (1.12): 

'-ms+-£+T';-),+T(£),-*."-H- 
(1.26) 

td + ^V^ 
^^     Eh    i tot   .   dot  .   dm dm \ 

Ar        dx   dg J' 

In the case of the spherical shell (k. = k« = k) equations (1,16) 

and (1.25) will assume the form: 

vy-V-w     IHCVY    »^fci^fct^ dxdi dxdf)    ¥ 

For the cylindrical shell (for instance, k1 = 0, k2 ^ 0) the 

equations will be as follows: 

If signs of curvatures k. and kp are different, for instance 

k1 > 0, kp < 0, then these equations can be used as fundamental 
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1 

equations of the theory of flexible shells of negative Gaussian curva- 

ture. 

Dropping the nonlinear terms in equations (1,16) and (1,25) we 

will obtain fundamental equations of shells with small sag: 

to which the linear technical theory of shells is reduced. 

If in the classical theory bends of plates are usually prescribed 

by two boundary conditions with respect to w on edges, then in the 

nonlinear theory these conditions are already insufficient. In addi- 

tion to two conditions about sags here we must prescribe two more con- 

ditions on every edge with respect to the function <p. 

Instead of boundary conditions relative to «p we can prescribe 

displacements u and v, which are connected with w and cp by conditions 

(1.26), In the nonlinear theory of bending 

v "- Li hv El aj.,..., ' „*,..P'     ""        of plates concepts of hinged support, rigid 

"^    c) ^^       clamping, anc1 others require a somewhat more 

p^  pq precise definition. For instance, diagrams 

of fastening of edges (Fig. 29) in the linear 

theory correspona to the idea of hinged fastening of edges. However, 

working conditions of these plates with large sags will be different. 

Boundary conditions of diagram (a) can be recorded thus. Sag w and 

moment on edges x = const turn into zero: 

where, by virtue of the first of these boundary conditions, the second 

one will turn into a simpler 

At« • 



Furthermore, since no external forces are applied on the contour 

then normal and tangent forces on the edges are equal to zero: 

In diagram (b) nothing can be said beforehand about forces on 

edges, but about displacements one may 

'':"' "''       assume that they turn into zero on the 
Fig- 30- edges. 

Consequently, boundary conditions for fastening of edges according 

to diagram (b) will be written thus: 

m«« «= 0,  ««= o = 0. 

These conditions indicate the fact that the geometry of the shell's 

edges when it is bent remains the same and they are not displaced. 

In the third case (c) of fastening of edges the boundary condi- 

tions will be: 

»=.*?. „o, 

««const, 0 = const, 

which expresses the fact of displacement of the panel's edges during 

deformation of the shell parallel to themselves. 

Combinations of these methods of hinged fastening are also pos- 

sible. 

We can reason analogously also in the case of clamped edges (Pig. 

30). 

Boundary conditions, corresponding to the diagram (c), can be 

written thus: 

w *~> *— «= 0, 
A* 

d^ dxdy 

f>*y «CO 



and boundary conditions of diagram (d) will be 

0mm   ^i. OB0K p as0. 

In the first ease (c) upon deformation of plates the edges are 

warped. In the second (d) the edges remain rectilinear and are not 

displaced. 

In the linear theory there Is no necessity for such distinction 

and diagrams (c) and (d) can be considered equivalent. 

In the case, when on plate edges displacements u and v are pre- 

scribed after Integration of fundamental equations (1.16) and (1.25) 

according to the function found qp and w we should set up general 

expressions of displacements u and v, which we should then subordinate 

to the prescribed boundary conditions on the edges. Other conditions 

are not considered here. 
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§ 2. Panel of a Flexible Sloping Shell 

Let us examine problems on the bend and stability of panels of 

flexible sloping shells (geometric nonlinearity). 

The term flexible is applied to such shells, for which sag is 

comparable with their thickness. For that we take into consideration 

geometric nonlinearity, expressing the deformation through displace- 

ments in the middle surface by relationships (1.1) of this chapter, 

i.e., in the series for components of deformation we retain terms of 

the second order of smallness with respect to sags w(x, y). The 

problem may be reduced to integration of a system of two nonlinear 

equations (1.16) and (1.25): 

_!,(*!. **.<* *m      2*1     *m\ 0 (2.2) 
Kd&d*^d*d? dxdf dxdgj     q 

.under corresponding boundary conditions. 

The majority of problems of the nonlinear theory of elastic shells 

is solved by approximation methods, while, in view of their complexity, 

we usually limit ourselves to a solution in series in the first approx- 

mation. We can acquaint ourselves with many solutions in books by 

A. S. Vol'mir^] and Kh. M. Mushtari and K. Z. Galimov [47]. Usually 

we apply Ritz and Bubnov-Galerkin methods. 

Let us give here the solution of problems on the bend and stabil- 

ity of a flexible sloping shell, constructed by M. A. Koltunov in the 

first [48] and higher approximations [49] by the Bubnov-Galerkin 

:;;3thod. 

Solutions of such problems present an interest from the point of 

view of possibility of establishment of a region of instability of 
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shells. The linear iheory of shells enables us ^ establish only the 

upper boundary of this region. Experiments show that values of cal- 

culated critical stresses do not coincide with experimental values and 

exceed them significantly. 

Examination of the problem on the bend and stability of shells 

in the light of the nonlinear theory enables us to foresee the behavior 

of the shell after loss of stability and to establish not only the 

upper boundary of the region of instability, corresponding to critical 

stresses, obtained by the linear theory, but its lower bound also. 

Let us present certain considerations of a general character 

about the solution of problems of this type. Let us assume that to 

the shell, which is somehow secured on hard piecewise smooth frame, we 

apply an arbitrary transverse load q(x, y) and compressing or stretch- 

ing stresses normal to edges, the components of which along oy and ox 

axes will be p(x) and r(y). It is required to determine the relation- 

ship between external forces acting on the shell and its sags, not 

considering the latter to be small. For the solution of this problem 

it is necessary to integrate equations (2.1) and (2.2). In view of 

the fact that methods of exact integration of these equations so far 

have not been found, we will look for their approximate solutions In 

the form of series: 

.   m m 

m m 

where AM„  and f, are unknown constants, but functions IL(x), Vfy), mn    mn ' mv'"nw/' 

X (x), Yr(y) are selected beforehand in such a way, as to satisfy all 

static and geometric contour conditions. 
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Applying the Bubnov-Galerkin method, we will enter these expres- 

sions for (p and w in equations (2.1) and (2,2), then, multiplying in 

accordance with their physical sense the first one by the variation 

of function of <p, and the second one by the variation of function of 

w and taking into consideration the independence of variations of 

parameters 5A^ among themselves and variations of parameters öf^, 

among themselves, we will integrate the expressions obtained with 

respect to region, limited by the contour of the shell. From the 

system of nonlinear algebraic equations obtained we will find unknown 

parameters A^ and f^. 

The feasibility of application of the Bubnov-Galerkin method to 

operators $ and W was studied in the works of I. I. Vorovich [50] and 

other authors. The same subject is related in [51]* where the proof, 

proposed by A. R# Rzhanitskiy is adduced. 

According to the physical sense, continuity equations of deforma- 

tions (2.1) and equilibrium (2.2) must tolerate one solution each and 

be the conditions of extremum of a certain function Q(w, cp). Let us 

assume that such a functional exists. Necessary conditions of extremuir 

of functional Q(w, cp) with respect to w and cp: 

W(w.V) = 0. ^(».^»O. 

must coincide with equations (2,2) and (2.1) i.e., 

V2 (». »)=<!> {w, if),   8.Q (w, v) = r (w. tf). 

Modifying these equalities, we will obtain: 

K IM? (w. %)\ - 8.<I> {w, <p),   J, \i9Q (w, 9)] ~ 8,r (w, 9). 

Subtracting one equality from the other, we will obtain the necessary 

condition with which equations <t = 0 and W = 0 are conditions of 

extremum of functional Q. 
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It is not difficult to verify that for equations (2.1) and (2.2) this 

equality is fulfilled. 

Indeed, Euler's equation gives for the first one of them: 

lwO - — - ~ (—j -— (—j +— (—j + 

+'^(^)+i(^)—-*[£(--£)+ 

.Analogously we will obtain: 

Consequently, this equality is fulfilled with an accuracy up to a 

constant factor. Multiplying (2.1) by ***,  we will obtain the exact 

fulfillment of the condition of applicability of the Bubnov-Galerkin 

method to the solution of nonlinear problems of elastic shells. 

Let us examine the solution of the problem in the first approxi- 

mation. ¥e will assume that functions U(x), .,., Y(y) are selected 

so that all boundary conditions are satisfied. We will write the 

solution in the following form: 

f~A[U(x)V(y)-B(x)-).U,)l (2.3) 

w~/*(*)m (2.4) 

.where functions 9(x) and X(y) are selected so that 

V{*)~-jP(x).   Ä'Ürt-^-rd/). (2.5) 

.Setting up the Bubnob-Galerkin equation: 

'0(U. V. X. Y. A, /. p. r)UVdxdy = 0. 
tt 

1/ W{U. V. X, Y, A. f, p. r, q)XYdxdy = 0. 
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where (G) is the region. United by the contour of the shell, and 

integrating, we will obtain: 

A .        A 

£/.~-j
/':f//« + /,/* = a (2,6) 

Here I. are constants, depending on the dimensions of the shell, 

its curvature, external forces, and boundary conditions, and are 

determined by the following formulas: 

/, - f f {U**V + WV» + UVtv)UVdxdy. 

-i/ ie'v + W)UVäxdy, 

in^ttikjcr+^xryuvdxdy. 

/4 = ff (JCYXY* - x'Y'^UVdxdy, 

/, « f f (*//T + kJUinXYdxdy, (2 •8) 

/, = ff (A.e* + W) XYdxdy, 

I,. J f (JpVK 4- 2X1" + XYn)XYdxdy. 

U    J f (WXT + trKXK" - WVX'Y*) XY dx dy, 

/,«f f (X^XT+rxn *y rf«^. 

/M-(U(*.y)XKd*^. 

Calculating these integrals for either form of fastening of 

edges and prescribed loads and then introducing them in equations 

(2.6) and (2.7), we will obtain a solution of the problem posed. 

Determining from (2.6) the value 

^_  EH, + EPU (2.9) 
Ii-U 

and introducing it in equation (2.7), we will obtain: 

o^ 
*■»%>. 
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if-it (2.10) 

Equality (2.10) yields the sought relationship between the load 

and the sag in the center of the shell. Subsequently we will term 

equality (2.10) the general solution in the first approximation of 

nonlinear problem of bend of slopine shells under any conditions of 

fastening of their edges on piecewise-smooth contour and under any 

loads, prescribed on its edges and acting in the normal sense toward 

its middle surface. 

For the case of a plane plate the equation (2,10) will assume 

the form 

n—it (2.11) 

which gives us ehe solution for compressed-bent plates of finite 

rigidity. 

Let us adduce 

crrrrnT 

,7CI=craa.' 
jr    6 --c 

LU-UJU 

Pig.  31. 

the solution of the problem in the case of hinged 

fastening of edges of the shelx panel, 

having in its plan the shape of a quadrangle, 

Let us assume that the shell is sub- 

I'.vi'      jected to the action of an arbitrary lat- 

eral load q(x, y) and stresses applied to 

the edges of stresses, distributed along 

the edges according to the linear law 

(Pig. 31). The solution should satisfy 

the following boundary conditions: 

(2.12) 
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.;-^-te)-.(i-,f). 

(2,12 continued) 

.where 

Here we examine a shell with Gaussian curvature r = k.kp, which 

is positive, negative, or equal to zero. 

As approximating factors we will select fundjimental beam functions 

U(x) = ün^~,  K(y) = sin-3L. 
* (2.15) 

X(jr)=sin-^. K(y) = sm-3L. 

corresponding to the fundamental tone of oscillations of a beam hinge- 

secured on its ends. 

Thus, solutions (2,5) and (2.4) will be written in this manner: 

f = ^[siii-^-sin^L-eW-X(y)]. (2.14) 

w^/sto-SLsin-»-. (2.15) 

.Here 

•"«"-rO-^f)- w-xO-vO (2-16) 

Calculations, performed by S. P. Timoshenko [52], showed that 

in plate the stresses from compression predominate over stresses from 

bending, i.e., if coefficients | and r]  do not exceed the value of 2/5, 

then the expression (2,15) reflects with sufficient accuracy the bent 

surface of the plate. Therefore, let us construct our solution 
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2      2 appllcably to values | § £., T] s T. For C and TJ, exceeding these values, 

we must use a large number of terms ot the approximating series. 

It is not difficult to be reassured by direct verificaticn that 

in the selection of functions qp and w in formula (2.14) and (2.15) 

all boundary conditions (2.12) are fulfilled exactly, except for the 

value of tangent forces, acting on the edges, which turns into zero 

on the "average," i.e., 

^   • J **      #»   * J   « (2.17) 

[ cp = av = average] 

on edges y = 0, y = b. We will have the same on edges x = 0 and x = a. 

Consequently, in the problem we assumed the presence of tangent forces 

on the edges of the shell, which fact has practical significance. 

The diagram of loading of edges by forces T, p(x) r(y), and 

q(x, y) is presented in Fig. 31. 

Determining derivatives (2.15) and introducing them in integrands 

(2.8), after integration and calculations we will obtain the following 

values of integrals I. : 

'--fCf+T)'-^- 
/, = 0. 

'--Jr('.T+*.f> 

'.--^ (^•18, 

/, = -^-1*^,(1 -0.5« + V.d "0.5T4)|. An* 

'•-TiT + TJir' 
,   8 r« 
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'. = --Sr [y M»-0^ +-?-p.(l-0.5)6|. 
4A 

» m (2.18 continued) 
-—-dxdu. ^-fj^.|f)«n-^sin-^ 

.Introducing the obtained vilues of I.   in (2,9), we will obtain: 

A_ ww+w-mp (2 19) 

The general solution (2,10) after substitution there of values 

from (2,18) and performance of calculations will assume the following 

form 

*« K« 
IVSO - 0.5« + .^(l - O^rJl + 

.      tH + **    r        m*i + *4   r« i 5I2        c* (2,20) 

-(^T)'"  -(^T)'   -('+TT ' 
[ji = a = any] 

*   4ab 
Here we introduce dimensionless parameters: q_ = —K—a- I^p, is 

a      ir^Eh1    ■LU 

the parameter of any transverse load. 

In the particular case of an evenly-distributed load: 

o 2 2 
r0b

d ^a      k2b 
j _   are parameters of compressing forces, K^ = —^—; K2 = —^— 

Eh 
f b are parameters of curvature; C = ^ is the relative sag; 7 = - is the 

relation of sides of the contour, close to a unity. 

In th^se designations expression (2.19) will be written thus: 

A* = afK + ^K-ISK« > (2.21) 

235 



where 

1 

Fonnula (2.20) yields the sought relationship between the trans- 

verse load q(x, y), compressing stresses, and the sag in the center 

of the shell, secured on a rectangular contour. 

In the case of a rectangular plane plate the general solution 

(2,11) after introduction of values I. from (2,18) into it will assume 

the following form: 

<+K(i-o>4)+p;(i-o^)K = 
 JÜ-~fY + JLY; + «2 v. (2,22) 

The value of parametex' A* for the plate will he 

ad (-T)" 
Now let us investigate the stahility of a panel of a cylindrical 

shell. 

Let us assume that on the edge of the shell, which has the shape 

of a cylindrical panel, act only compressing stresses r(y) = r0(l - 

- T] ^•), directed along the generator (Fig. 32). In this case 

3ic* 

Formulas (2.21) and (2.20) will turn into the following: 

(2.2H) 
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,- - ■-■^^ät^^La,=e^^liVKS^M ~ 

Assuming that C / 0# i.e., examining the panel after the loss of 

stability, we will obtain: 

r-s-  2 1_£ : j. 
•    12(1-^)  1-0.5», 

A 

512 

^('+f) I V 1-0.5^ 
c» + 

(2.25) 
l 

..(l+xr-.*    .(j+f) I V 1-0.5^ 

In the case of a square panel (7 = 1), compressed by an evenly- 

distributed load (TJ = 0), we will obtain from formula (2.25): 

«•  +JH.C.+_J1^J^C. 
3(l-^|   9rß 4R« 

(2.26) 

This formula of M. A. Koltunov differs little from the result 

obtained by A. S.Vol'mir [k]: 

r«  SO-*) ^ 8  ^ 4«»   3«« ' 
(2.26«) 

which is obtained on the assumption of the free slipping of contour 

points of the shell along the contour. 

In the interval of sags 0 s ^ g 4 formula 

(2,26) gives a somewhat smaller load for the 

achievement of the same sag, than formula 

(2.26'). 

Graphs of curves (2.26) and (2.26') are 

dravm in Fig. 33. Assuming that in (2.25) t,  = 0, 

we will obtain the value of -ehe critical stress: 

12(1 -*)VT 1/ i-o.5n "r 
A 1 

■(-f) 
I \i 1—0.5r, 

[B = u = upper] 
(2.2?) 

Pig. 32. 
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which, when ^ = 0, coincides accurately with 

the known S. P. Timoshenko's formula. 

Value r is termed the upper critical 
u 

stress. For the determination of the lower 

critical stress from equation 

*: 1024 I 
nlins to 
. Toudr 

c  Ife. 1 

(MW/     ! | ■O+T)* ,-•5,    K^f)' 
l-0.5ii 

i mi J m* 

Jig. 35. 
we find the parameter of the relative sag 

<.—-«* (2.28) 

which corresponds to the minimum value of the compressing load. Intro- 

ducing (2.28) into (2.25), we will obtain the parameter of the lower 

critical stress: 

r_ = ' 
12(1 

t-(y+±y   ' A i 

•K* ("TT 
l-0.5i; (2.29) 

[H = 1 = lower] 

For the square panel this formula, when T] = 0, gives 

(O« = A 
3(1-^»)   32e« ' (2.30) 

[KB -• sq = square] 

which is somewhat less than A. S. Vol'mir's result: 

(a» 3(1-v«) 
200   0.25 
9c«    ^ yv 

Permissible loads must be selected in such a manner that the 

safety factor would be assured with respect to the lower critical 

stress. With such a selection of critical stresses we remove the 
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possibility of appearance of flapping of the panel in the process of 

operation of the thin-walled structure. 

In formula (2,25) the plus sign of the parameter of sag corre- 

sponds to the sag in the direction of the center of curvature, the 

minus sign — to the sag directed from the center of curvature. Prom 

equation (2,26) it is clear that upon the loss of stability the sag of 

the shell should be directed toward the center of the curvature, since 

the increase of the dip of the sag in the opposite direction is con- 

nected with a rapid increase of the compressing load. In Pig. 33 are 

the graphs of r*(C). Formulas (2.26) for 7 = 0.4; 1.0 and 1.5 as 

applied to cylindrical panels with the parameter of curvature Ho = 12 

and for plane plates with that ratio of sides, with r]  = 2/5. 

Upon examination of these graphs we can see that in plates, after 

the loss of stability, the growth of the sag is connected with the 

increase of the load. 

For shells we have a somewhat more complicated picture. The 

least increase of the upper critical stress (when C = 0) is connected 

v/ith a very rapid increase of the sag, which is accompanied, after 

the loss of stability, by a decrease of applied external load. An 

abrupt sag obtains the value /;. / 0, to which corresponds a load, 

equal in size to value r .  The curvature of the shell meanwhile will u 

change its sign. Thus, we have here the phenomenon of flapping. Thus, 

for instance, a shell with parameters of curvature K2 = 12; 7 = 5/
2 

and T]  = 2/3 after achieving the upper critical stress ru = 6.364 + 

+ 4.662 = 11.03 loses stability, and the sag abruptly attains the 

value CM = 3.68, corresponding to point C of the curve. Further 

growth of sag is connected with an increase of the load. In the 

interval 0 g ( § 3.68 there exists a point C0 = 9/64, K2 = 1.692, to 
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which corresponds the minimum "load" r = 4.91 (point F of the curve). 

Deflection of sag in any direction from value ^0 is connected with an 

increase of the compressing load. The region, limited by horizontals 

3C and GF, is termed the region of instability of the shell. Its 

upper and lower boundaries correspond to the upper and lower critical 

stresses. 

Let us note that in the case of the plate (MO = 0) the critical 

stress, obtained from (2.25) and (when ^ = 0): 

[im = pi = plate; Kp = cr = critical] 

coincides exactly with the known formula of S. P. Timoshenko, 

Let us consider a shell of any Gaussian curvature under the action 

of an arbitrary transverse load. 

Let us assume that no external forces are applied to the edges 

of the shell. Then, assuming that p0 = r0 = 0, from formula (2.20) 

we will obtain: 

'   '2"-,''     -(l+f)' 
16 («■+«■) .. .   »n  .. 

(2.31) 

Fig. 34. 

This relationship yields the relationship between any transverse 

load q(x, y) and sag f = ^h in the center of 

shell, supported by a rigid contour with 

a rectangular plan (Fig. 34). 

In the particular case of an evenly- 

distributed load q = const 
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'»«fUsto-^sin-^d^-Ü*.». (2.52) 

H 
and formula (2.51) upon multiplication of both parts by  *■, will 

167 
assume the form 

192(1-N«)  T  16(1+fji 

_ ^(»i ± *i> rt 4.   32B«  r> 

d + f)»      9(1+1«)» V' 

Qn 2ab 
For linear load q(x, y) = --- x; I.Q = —^- q0, and solution (2.3 

TT 

in this case will be 

^ _      ^  + ''' ^  r I   **** + *& r 
'• 96(1-^«)        ^   8(1+TV 

o+iv        9(1+^ V* 

Formulas (2.51), (2.55), (2.5^) are true for shells of any 

Gaussian curvature F = k.kp. 

The shells of zero Gaussian curvature (cylindrical panel).  Let 

us assume that on such a shell acts a transverse load q evenly distri- 

buted on its convex surface. Assuming in formula (2.55) that K^ = 0, 

we will obtain the solution for this case: 

..  K1*^)'    -S  c (2.55) 
■ 192(1-v«)     16(1+fP 

«** r« 4.  '3^,;, rt 
(1+7«)«  ^ 9(l+tV 

For a square panel (7=1) this formula will assume the form 

« 
,C + J^_J!^C. + J£Lr.. (2.36) 

,«,   48(1->«)  •  64 

Let us find the boundaries of the region of stability in this 
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case. From equation 

<    192(1-^) T 16(1+TV   (I+TV 

3(1+ff 

obtained by differentiation of (2.35), we will establish the value of 

relative sags CQ 3:n^  Ci» corresponding to the extremum of the load 
« 

parameter q . Solving the equation, we will obtain: 

If the subradical expression in (2.37) turns into zero, then 

values ^0 and C.. coincide.  Consequently, shells with parameters of 

curvature 

_ *"(!+f)' (2.38) 
^  K««-^ 

have only one parameter of sag 

which corresponds to the extremum of the load.  It is not difficult 

to see that at point ^ curve q*(C) has a point of inflection. 

Introducing by turns values Cn and ^± ^rom  (2.37) in (2.35), we 

will obtain values of extreme parameters of load q0 and q., which 

coincide when £' = «#*• Ho» 

Fig. 35 shows graphs of dependencies q(C) in "the case of the 

square panel (formula 2.36) for certain values of parameters of 

cu rvature («-gQft; ■ 4r'1 —; 12Y  In Table 5 we adduce values of 

242 

•mwmum   .m.iMim.mim,    |i ,1 j    |iii     ■■ ^ || ll'Tillilirill'ilim iltBrT fi.-- "T— '"'•"' -.. ..-V-säifSÄi-^., _ 



t 6ß Iß   V  1.0 ifi  30  3}  *fl 

Fig. 35. 

Parameters of load q* for values of relative 

sags 0 « C ^ ^. 

The shell of positive Gaussian curva- 

ture. Let us examine the behavior of a 

spherical shell (k:,, = kp), which is under 

the effect of an evenly distributed load q 

and is supported by a contour rectangular in 

the plan. For the spherical shell (k. = k^ = 
p 

= k) we have Xp = 7 KA*  which ensues from the 

ka       kb 
fact K>. = -£-; K2 = -jp. Introducing this 

in (2,33), we will obtain solution: 

.  -('4T., gj 
192(1-*«) %'r 16 

_^*!_rf 

1 + 1* 
;■ + 32K' 

(2.^) 

Sd+fj» 
»» 

Values of parameters C* which correspond to extreme values of the 

load parameter q*, will be determined from equation -^f— =0, We 

obtain: 

0,1     32   " 32 f    I* ^ » '    2(1-*») 

fohl] 

v.'here for shells with parameter of curvature 

.>:fcE) (2.42) 
/6(l->«) 

point f0 and £, coincide. Such shells have only one extreme value 

for the load parameter q*, corresponding to the sag parameter: 

K ~ 32   * 

In the case of a square panel of a spherical shell (7=1) 
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formulas   (2.40)-(2#4l) will be transformed into the following; 

48U-V      16 ^       2   ' +   9 ^ 

^     16 *     16 K      '     I-* 
(2.44) 

(2.45) 

Introducing values C from (2.44) and (2.45) in (2.4^), we will 

obtain extreme load parameters: 

c 256(1 

1608 

'■  256(1-%*)  2S6L 2   3(1-^) J I'   '  l-vi 

1608 r V '  l-W 

(2.46) 

(2.47) 

For the shell with curvature parameter: 

%g  B3 
2s» 

1^6(1->») 
; 8.45 whwi v = 0.3, 

which corresponds to the radius of curvature 

(2.48) 

D  /6(l->«) *• ^,ni9 A» U __  _==o.I2T. 

sag parameters CQ a11^ C4 coincide 

{' = -^"1=1.584. 

and corresponding extreme value of the load parameter will be 

(2.49) 

(2.50) 

.• .«• -• 
*'•'" *■ *'f'=ä^rbi - 3*m <"■■■,=M)' (2 • 5 ■) 
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or, since q* = ^r-, then q    ^ 3^.9 ^5-. 
Eh^       extr       a 

Shells of such type are threshold cases between shell Is and plates. 

Their behavior under load, as it can be seen from Fig. 35, is somewhat 

different from the behavior of plates and cannot be characterized as 

behavior of a shell, which has a curvature parameter larger than that 

given by formula (2.48), Dependency q*(C) for such shells will have 

the following form 

In Fig. 35 graphs are plotted for dependencies q*(0 for values 

of parameters of curvature yi*  =  0; 6; 8,45, 12 (when v =  0.3). 

From the examination of these graphs we conclude that: 

a) Sags of plate (n*  =  0) increase with the growth of the load 

according to the nonlinear law, which is expressed by relationship 

where in the case of a square panel one should consider 7=1, 

b) Sags of shells with extremely small curvature (K^ < 8.45) also 

increase with th3 growth of the load. However curve q*(0 has a point 

of inflection, which corresponds to the change in the process of defor- 

mation of the sign of the shell's curvature. This change proceeds 

smoothly, without sharp increases of sags, when the load is increased 

slowly. In this case parameters C' and q*, corresponding to the point 

of Inflection, will be 

C'= 1,125; ?' = 24.76. 

c) Sags of shell with a curvature parameter (2.48) increase 

slowly with the increase of load to a certain limit (2.51). Upon 
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attaining value C' = 1.584, the sags begin to increase smoothly but 

rapidly in a certain interval even with an insignificant increase of 

the load. In point C,' =  1.584 there exists a state of neutral equili- 

brium. Further growth of sags of sucn a shell, which has already 

changed the sign of the curvature, is related to a rapid increase of 

the load, 

d) Sags of a shell with curvature parameter n*  > 8,45 (here on 

the curve of Fig, 35 n*  = 12) increase slowly with the increase of 

the load to a value ^Q = 1.33, which corresponds to the upper critical 

stress q, = 63.3 (see formula (2.46)), After attaining value C,Q  the 

growth of the sag can continue even with a decrease of load parameter 

q*. This indicates the fact that in point B of curve q*(C)* i.e., 

when ^0 = 1.33* the form of equilibrium of the shell becomes unstable, 

and the shell bulges. 

Upon the least increase of load q, = 63.3 sag C jumps from value 

C,Q to  value C-i , On  the graph this new form of equilibrium is marked 

by point C. This form is stable, and a further increase of load is 

accompanied by a gradual increase of sag of the shell, the sign of 

curvature of which has already changed. This is the phenomenon of 

snapping of the shell. If beginning with point C we will decrease 

the load, then the sag of the shell will gradually decrease to a value 

of C = 3.17 (qj = 35.75). In this case "load" q* = 35.75 will no 

longer be sufficient to preserve the center of the downward curvature 

and the shelx snaps upwards to the position, marked on the graph by 

point N. Thus, for spherical shells with curvature parameter %*   > 

> 8,45, supported on a contour which is square in the plan, there 

exists a region, limited in Fig. 35 (for n.   ~  12) by dotted lines 

BC and MN, Inside which the shell has two forms of equilibrium.  This 
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region gradually narrows with the decrease of curvature parameter K^. 

Mhen K1 = 8#45 line BC and MN merge, and when q =34.9 we have a 

neutral equilibrium. When H^. < 8.45 only one form of equilibrium will 

be possible. In Table 5 we adduce values of parameters of load q* for 

0 ^ ^ s 4 in the case of loading of a square panel of a spherical 

shell by an evenly distributed load. It is easy to note that these 

graphs for the spherical panel coincide with graphs for the cylindrical 

panel, the curvature parameter of which is twice as large as curvature 

parameters of the spherical square panel. 

Let us investigate compressed bent sloping shells of negative 

Gaussian curvature. 

Let us examine a shell with Gaussian curvature T  = kik2 ^ ^ to 

the edges of which compressing stresses p(x) = r, 

are applied, and an evenly distributed load 

q(x, y) = q acts normally to the middle surface. 

.Fig. 36. To be specific we will assume k. > 0, k« < 0 

(Fig. 36) while we assume that | k,, | ^ |k2| which 

in dimensionless parameter can be written thus: 7 \nA   $   JKoi • 

Let us assume that 

«f = 8T«x1.where8 = -^-<0. (2.54) 

We will introduce (2.54) into (2.20). Taking into consideration that 

r0 = £; = -Q = 0 we will obtain: 

16(1+ 7V       (I+T•),      9(1+7«)» 

.If the transverse load is absent (q* = 0), then we will have a case 

of compression of shell "by stress" p0, the dependence of which on 
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Table 5. Values of Load q. Parameters, 

Curratore«                     \f 
•.i M M M «J OS eylindrleal 

panel aphsrical pazwl 
0.7 

0 
12 

4e* 

0 
6 

2K« 

2.210 
4.134 
6.196 

10.500 

4.472 
7.729 

iI.60S 

19.829 

6.840 
10.837 
16.293 

28.158 

9.365 
13.511 
20.303 

35.421 

12.102 
15.803 
23.689 

41.710 

15.101 
17.766 
26.507 

47.078 

18.416 
19.452 
28.801 

24 
V6(j-^ 

51.578 

0 
12 
4«« 

Koo-v«) 
24 

0 
12 
4r.« 

1/6(1-*«) 
21 

0 
12 

Art 

)/6 M->«) 
24 

0 
6 

2K« 

V^I-H«) 
12 

0 
6 

2r.« 

K6 (I v«) 

0 
6 

2r.« 

V6 (!->•) 
12 

Continuation Table 5 

M e.t I* M ta I.S M 

32.100 
20.915 

36.904 
22.207 

30.783 
23.381 

41.571 
25.582 

54.887 
27.943 

62.723 
29,314 

71.150 
30.882 

30.633 32.052 33.111 34.359 34,«Q, _ 34.849 34.852 

55.261 58.182 60.392 62.889 63.177- 62.723 61.673 

Continuation Table $ 

14 3.0 2.2 2.4 24 24 24 

90.782 
34.821 

114.20 
40.181 

141.84 
47.a84 

174.10 
56.850 

192.10 
62.564 

211.42 
69.001 

254.21 
84.257 

34.938 35.478 36.895 39.608 41.583 44.039 50.609 

58.804 54.086 50.641 46.191 44.058 42.057 38.660 

Continuation Table $ 

3.0 3.2 3.4 34 3.8 34 4.0 

302.00 
103,04 

357.90 
125.77 

419.65 
152.87 

453.18 
168.19 

488,55 
184,76 

565.03 
221.86 

649.51 
254.60 

59.739 71.850 87.364 96.528 106.70 130.28 158.53 

36,421 35.761 37.101 38.643 40,862 47.466 57.334 
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e™* _„ ,-«.,«0», 

sags ^ will have the form (we assume that f ^ 0) 

^      a»-* -(I+Y) (2-56) 

In the case square panel of a pseudosphere, for which one should 

assume that 7=1; 6 = -1, formula (2.56) will be converted into the 

following: 

(2.57) 

^  «•V«  3(1-*) V^9«« 

If compressing stresses are absent (p0 = 0), then from (2,55) we 

will obtain: 

K'^T) C ^O+^V C f 1 g^C+ I^LZ^LL  C- (2.58) 
¥   192(1-^) ^ i6{i+^n, v 

_ «H^l -H^r« ,  32r«  ca 

For the square panel of the pseudosphere (7=1, 6 = -1) from (2,58) 

we have: 

f *—C + ^C«. (2  59) 

Formula (2.59) represents a dependency between load and sag in 

the center of a square plate (see 2.53). Consequently, the square 

panel of the pseudosphere loaded only with a transverse load, behaves 

as a square plate, independently of values of the shell curvatures. 

Setting up derivative -^ of function (2.58) and equating it to zero, 

we will obtain the equation, from which we will find the following 
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values of relative sags, corresponding to the extreme parameters of 

the load: 

^.»-Ml+^t-j/^l + W-^^^+Yy     (2.60) 

These points coincide for shells with parameters of curvature: 

From examination of formulas (2.55), (2.56) and (2.57) it follows 

that shells of negative Gaussian curvature, as well as shells of 

positive Gaussian curvatures, subjected to compression by forces 

applied to their edges, do not have a region of stable equilibrium. 

This is explained by the presence of a curvature of the shell in 

the direction of the action of external forces. In the presence of 

compressing forces a stable initial state of a shell can be assured 

by application of an appreciable transverse load. Some information 

on the shell of negative Gaussian curvature can be obtained in the 

book by V. Flyugge [53]. 

Let us make certain comments on classification of shells. Such 

terms encountered in literature as:  sloping shell and weakly distorted 

plate are sometimes treated as having the same meaning.  The above 

examined behavior of shells, subjected to the action of a transverse 

load, enables us to establish the difference between concepts of 

weakly distorted plates and sloping shells. Let us find points Cn 

and t,^,   corresponding to extreme values of an arbitrary transverse 

load q*  Proceeding from formula (2.31), let us construct equation a 

* 
dq 
-~ = 0, and then find the roots of the quadratic equation obtained. 
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We have 

11  ^    2(1-VO 
(2.62) 

Equating the subradical expression to zero, we will obtain the 

sum of parameters of curvatures 

+H= *(T+"r)' (2.63) 
14      K6(l-^ 

for those shells, point {,„  and ^ for which coincide. It is easy to 

see that formulas (2.58), (2.42), (2.48) and (2.6l) are particular 

cases of formula (2.65). We saw that for shells with parameters of 

curvature, given by these formulas, only one form of equilibrium is 

possible, and dependency q*(t) is a monotonously increasing function 

without decrease intervals. If, hov/ever, the sum of parameters of curva- 

tures K,, + M.-, is larger than the right side of (2.63), then function 

q*(C) has the decrease interval of "load" q* in a certain interval of 

change £ and such shells pop. In connection with this it is possible 

to classify shells according to their work under load. 

1, Shells, in which every curvature is equal to zero, are clas- 

sified as plates. Their behavior under load is characterized by a 

monotonously increasing curve, 

2, Shells, in which the sum of parameters of main curvatures 

c1 + «t<-4==J=r--. 
/6(l->«) 

should be related to the class of weakly distorted plates. Their 

behavior under load is characterized by a monotonously increasing 

curve, with a point of inflection, where curve q*(C) changes the sign 

of its curvature. The sign of equality pertains to shells which are 
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on the borderline between weakly curved plates and sloping shells. 

3. Shells, in which the sum of parameters of main curvatures 

should be called sloping shells, if at the moment of loss of stability 

on the boundaries of the region of instability no plastic deformation 

will appear. 

And finally, a few general considerations concerning the problem 

of the accuracy of approximate solutions. The answer to the question, 

how close to the truth are approximate solutions, can be obtained 

either by means of comparison with data from experiment, if they are 

set up with a sufficient precision, or by means of comparison with 

exact solutions, or, finally, by means of theoretical research of con- 

vergence, where we must also show the practical convergence of the 

solution if it is constructed by methods of approximation in series. 

Exact solutions of similar problems, in view of their complexity, 

are unknown. An exact solution in series for flexible round plates 

was obtained by Way [5^]* and also by M. S. Komishin and Kh. M. 

Mushtari [47] for the circular cylindrical panel under the action of 

external normal pressure. 

Let us analyze the solution of M. A. Koltunov [^9] for the problem 

about the bend and stability of rectangular panels or sloping flexible 

shells (Fig. 37) by the Bubnov-Galerkin method in high approximations. 

The problem of convergence of the method for such problems was studied 

by Kh. M. Mushtari [47] and I. I. Vorovich [50], from whose works it 

follows that solution of the problem in series by this method should 

be convergent.  Let us construct a solution of the problem about the 

bend of a sloping shell, taking one, two, three and four terms of 

252 



Fig. 37. 

series which are approximating the functions 

of the sag and stresses. 

Let us assume that boundary conditions 

of hinged fastening of edges are the following: 

» = ^- = 0   (x = 0. X = II). 

.. = -=--0.  - 
jß^ 

dxdf 
= 0 (* = 0. Jt = a), 

Jls approximating functions let us select the following; 

(2.6^) 

«r . «f 
tsm — an-^-. 

in solving the problem in the "first" approximation; 

w = /Isln-^sln-^ + /,sin^jin-^-, 

, « ^sin-^-sin-^-+ >l,sin^ sin-^L 

.for the "second"  approximation; 

W = /I5m-^sin-^+/.sin^LsinÄ+/.s|„i«Lsl„^ 
üb •      fl • 0 9 

_»_ _L ü sin sin —^—(-^.sin an —- 
a » a 9 

In  solving the problem in the "third" approximation; 

« = /1sln^-sin-^+/,sln^sin-^ + /.sln^sin^ + 
0 9 fl      9 •     V 

+ M„i2L8i„Ä. 

T*al(a    b a 9 

-f^sin^sin-^- 
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1 

for solving the problem in the "fourth" approximation. 

Such set of functions is selected for the purpose of more fully 

satisfying the operating conditions of a shell hinge-secured on all 

the edges under the action of a load evenly distributed on its convex 

surface,  (Here a symmetric snapping is assumed.) Approaching the 

solution of the problem on a more strict basis, in [55] equations are 

built for the full system of approximating functions. However, in the 

case of symmetric snapping of a sloping shell examined, the terms of 

the series of the type: 

do not have an appreciable influence on the solution, which is confirmed 

by subsequent research by M. A. Koltunov. 

It is not difficult to see that these functions satisfy all 

boundary conditions, where the last one is executed on the "average" 

^  • J äsdg 

Setting up the Bubnov-Galerkin operation: 

f f $ty da - 0. j{wiw da » 0, 

we will obtain a system of algebraic nonlinear equations. 

Let us give here only the last system, when the problem was solved 

in the "fourth" approximation: 

<('+f)'p'-fT14-H--h'-- 
*  r* "rr-i.324^  ^ r r   ^ v r J. ^ „J (2.65) 
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»0 392 ,   10 . ,648 648 ,2500«. 
~irx^-i^,riX' + ,2^+"ir^-"ir^+irXi+ 

.5000 9800 .324. .5000 .392 . 
«     * «9    * '        li    3 ^   91     ^ 3     ^' 

100   .       5000 ,    9604    ._0 

+-3-4 + -^-^+-TTT^-0' 
4)   M0|K*/T  I    LYa.        «(«t-f-H) ^        4    ,      392 
4)   -j-^T + YJP» ^ *'      «*•     1^XA 

9eOOrr,   19208 rr        324,      382,,,..   19208 
429    * '.        195     * '       13    *       3     ^ 187 

+    SI    i*+   171   V,+   3   ^     "' 

5) *      1920 =^ Xl + Tl—T-^^    T?'Xl + 

,392n.,8q^l200o 5000o       .9800. 

6)0  -        V        T/  „   ,9^ r9(«.-f«,)o    1    8 , 

.   648 Q       ,   200 o '648 0 8000 - 392 „       . 

,   392 -       .   648 D 392 0 19208 ft     T ,       ^ 
+ -j^-Mi + -^-Ma—r^*"!^^7]'     (2-65 continued) 

«24(k« 
7^ ^-*» + 

^o»        19208 a ^   ,    9800 Q ^       392 ft 5000 a ^ 

19208 0 ri9208 0 19208 &    -      19208 Q 392 
171 

Rv        »MMQ- ,9208ft_r-        ,9208ftr 3929rl 

Let us note that coefficients with squares of unknowns can be 

obtained from the general exprossion 
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1 

where i is index ß(ß..), n is index with x (x ), but with products 

xx they do not depend on the order of indices. Here vie  introduce 

^ii b 
dimensionless parameters: ß, = —^ is the stress parameter 7 = — is 

1  Eh^ a 

f. ^a 
the relationship of sides x. = -r- is the sag parameter, a, = —r — 

2 k2b' 
,, - —PJ— are parameters of main curvatures; and q. a^ = = 

(la \    is the 
Eh 

parameter of the evenly distributed load. 

Resolutions of systems of equations of type (2,64) for all four 

approximations in the form of graphs of load-sag relationship are 

shown in Figs. 38, 39^ and ^o.  Solutions are obtained on the "Strela" 

electronic computer. 

On all graphs the load-sag curves are built for the first (q,, ), 

second (qp)* third (q^) and fourth (q )approximations. In Table 6 

we give the values of loads c for sags x. and difference A. . between 

values of parameters of loads in i and j approximations. 

VT-* 

Value X^X-j for a «hall with ttj ♦ ^ ■ 36 

Fig. 38. 

Values X3X5X7 for shell with Oi »»2 " 36 

Fig. 39. 

256 



Values X,X_X7 for shell with «^ * «_ ■ 36 

Fig.  ^0. 

If the difference between the 

first and second approximations 

may be significant, especially in 

regions of adjoining the values of 

"upper" [a]  and "lower" (q,) criti- 

cal loads, then the difference 

between the second and third, third 

and fourth, second and fourth 

approximations is insignificant. 

while, as it is easy to see from the adduced tables, it decreases with 

the increase of indices i and J, Distinctions of solutions A2,, A^, 

&l2| and A22| are so small that almost in all graphs plotted for ratios 

of sides of panels 1, /?,,   and 2 with the sum of parameters of main 

curvatures from 0 to 60, curves q2, q,, q^ on significant sections cf 

change of sag merge into one. 

Table 6. Comparison of "Load" q^, Obtained in lst-4th Approxima- 

tions with Difference A-w Between Them for a^ +a2 =36. 

«1 <• «i «• «« &■• An '&« A.. 

M.6 163.53 160,48 160.46 160.48 1.87% 0.012% 0.012% 1.87% 
0 

ft = 1 6.0 14.69 1.338 1.134 1.132 9.22% 15.8% 0.17% 93.6% 

6.0 28.428 48.016 48.086 48.086 68.5% 0.14% 0,0% 69.2% 

[ 1.6 153.7 151.8 151.8 151.8 1,24% 0,0% 0.0% 1.24% 
0 

-yT   5.0 12.92 24.25 24.14 24.14 87.7% 0.45% 0.0% 86,8% 

15.6 26.92 42.32 42.23 42.27 57.2% 0.21% 0.09% 57,0% 

[2.0 142.1 141.2 141.2 141.2 0.64% 0.0% 0.0% 0.64% 
* 

-2 4.6 90.2 93.5 93.4 93.4 3.64% 0,018% 0.0H 3.63% 

[5.6 112.1 119.4 119.4 119.4 6.48% 0.02% 0.0% 6.5% 
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Hence we may conclude, that the Bubnov-Galerkin method for the 

given problem yields a convergent solution, while for practical cal- 

culations it is quite sufficient to be limited by solution in the 

second approximation. In this case it is possible not to resort to 

the help of electronic computers. It is sufficient, after transforma- 

tions, to use existing tables of solutions of cubic ec/'.ations. 

Taking into consideration the existing proof of convergence of 

the Bubnov-Galerkin procedure for these problems, and also extremely 

small values A., (i > 1, J > 1), obtained by M. A. Koltunov, we can 

consider the solutions practically exact. Let us note that M. A. 

Koltunov obtained solutions of the problem on bending of a round plncned 

plate in the second approximation by the Bubnov-Galerkin method, which 

coincide with Way's exact solution [5^]. 

In Fig. 4i we give the graph of dependence of parameters of 

"upper" and "lower" critical loads on the sum of parameters of main 

curvatures of shells with the ratio of sides 7 = ■/2. We also give the 

corresponding values of parameters of the depth of-the sag of all 

harmonics, included in the fourth approximation, which makes these 

graphs convenient for calculations of the stressed state of shells in 

their critical state. For calculation of shells in other states one 

should use separate graphs of the type (38-40) or special tables. 

From type 41 graphs it follows that shells will pop, if parameters of 

their curvatures will be larger than a certain value.  In Fig. 4la it 

is clear that panels of shells with the ratio of sides 7=1 will pop, 

if the sum of parameters of main curvatures 

«l + «. = ^- + -^>18. 

Let us note that in solving problems in the first approximation we 
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Fig.  41. Fig.  41a. 

obtained formula (2.63) 

/6(l-^ 

which for 7=1 yields value n*   + Kp = i?. Panels of shells with 

7 = /2,   will pop, if ^ + H2 ^ 20.4, and when 7=2, ^ + H > 30. 

The formula for the first approximation gives for these ratios 

of sides the values, which differ little from those adduced above. 

Panels with parameters of main curvatures, which are smaller 

than those shown, can be expediently termed weakly-curved plates, but 

with large values, they should be termed shells, moreover, if in the 

process of loss of stability on the boundary of the region of insta- 

bility plastic deformation does not appear, the shell must e called 

a sloping shell. 
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•ttie adduced solution Is true for shells with constant Gaussian 

curvature (cylindrical, spherical and others). 

Prom the solution it is clear that the first approximation gives 

an exaggerated value of "upper" and decreased value of "lower" criti- 

cal loads. One may also see that with the increase of the ratio of 

sides of panel the rigidity of the shell decreases. 

Thus, the first two approximations g:*. re a practically accurate 

solution, llie analysis of calculations showed that the subsequent 

third and fourth approximations do net ir«roduce essential corrections 

either in the magnitude of sags or in  Ihe magnitude of critical loads. 

Let us examine now the results of M, A. Koltunov»s solution on 

|   the stability of the panel of a cylindrical rigid sloping shell, sub- 

4   Jected to compression along [56]. Approximating functions were selected 

i 
I   li« the frrm of the sum of two, three and four terms of the double 

I   trigonometric series, satisfying conditions of hinged fastening of 
1 

edges, Bubno'.'-Galerkin's procedure was applied and the systems of non- 

linear algebraic equations obtained were computed by the method of 

iterations on a "Strela" electronic computer in the Calculation Center 

of Moscow State University. 

Results of calculations are obtained in the form of tables, which 

are transfered to graphs (load-sag), a portion of which is adduced 

here. 

Let us examine, for instance, the graph in Pig, 42, plotted for 

cylindrical panels with the ratio of sides 7=1 and the sum of main 

k a2 . k2b
2 

curvatures K^ + K2 = —rr— +  i  equal to 0, 6, 12, 18, 2k,  32. Thin 

lines are used for plotting graphs of the .'atio of parameter of sag 
f r»Vi2 

x,. = T- (f is the depth of sag) to the load parameter r* = —£- in the 

260 



i w*. H«I.I i. i. ■ ■ «^ ^ i.!!"—" i^imtmgmmm m&*m^^mii^mii^ opivm üiipuun"^ 

// 

51 
o   % 

BW-flfl® ßOÖS ^7? ^OJ 00^ --r, 

iii t i i «i i i i i 

•«»/ -yoob -am? -toooas-axxn. 
i fi i i » t i i t r i • iT 

*"' ' Aafa' * ' t i t i i i i^ A. 

Fig. 42. 
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solution of the problem in the first approximation, when as approximat- 

ing for sag w and function of stresses cp we selected one term of the 

double trigonometric series. The load-sag relationship in this case 

has the form 

'(*)*» 12(1-^ 
*»    x     

l6,,«   jr» |     Sl2    Jt» ,(T+±y    .(,+iy    ^+±y 
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k2l)2 

Here H« = —%— — the parameter of the curvature. 

The results of tHc solution of the problem in higher api i'oxima- 

tions (tiro, three and four terms of the serie ) in view of their small 

distinction from each other are plotted in a single (thick) line, 

which prior to values of the lower r, of the critical Fcress lies 

below the curve of the first approximation, and in the stage following 

buckling lies above the curve. 

It is clear that solution of the problem in higher approximations 

increases the value of the lower critical load; here the distinction 

between solutions in the fourth approximation and those in the third, 

and of those of the third from those of the second is insignificaii 

as one may see also from Table 7 given here, where for certain sags 

(x, = 0.2, 1,0, 2.0) we ' Lve values of parameters of load r. (i = 1, 

2, 3* ^)> obtained in various approximations, and the difference between 

r. - r± 
them A.. = " j  100^. It is clear that if A12 sometimes attains 

significant values of the order of 50^, then Ap,, A,^ and Aoh will 

not exceed 0.5^ anywhere. This indicates the convergence of the 

Bubnov-Galerkin process for similar nonlinear problems. 

Analytical load-sags dependencies for solutions of problems In 

higher approximations are not given here In view of their cumbersome- 

ness. 

It is easier to use graphs and tables. In Pig. 42a and Table 8 

we give solutions for cylindrical panels with the side ratio 7=2, 

We will now examine the results of solution by M. A. Koltunov of 

the problem on determination of normals, tangents, and intensify of 

stresses in the middle surface of a flexible sloping shell, using the 

same selection of approximating functions [57]. Normal and tangential 
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Fig. 42a. 

stresses in the middle surface of a flexible sloping shell are calcu- 

lated by the formulas (1.15) and have the following form: 

m   m 

JimisU   ab      m a * 
M  • 

(«1-1.3,5,7;   ii-l,3,5f7). 

.The Intensity of stresses is determined by formula 

.Using the former designations, we have: 

i4u = >,£»•. 
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Table 7.    Values of Load and Error Parameters with Various Approxi- 
mations to the Solution for 7 «= 1. 

i ••+«1 * 1   . r« r» '. *m AM AM 

0 
0.2 3.872 

8.068 
9.379 

8.673 
8.682 
9.252 

3.673 
8.062 
9.251 

3.673 
S.0S2 
9.251 

CM« 
0.07« 
1.35» 

0.00« 
0.00« 
0.10« 

0,00» 
0,OOH 
0.00» 

0.00» 
0.00« 
O.IOH 

• t 
0.8 e,l. 

4.097 
3.M3 
8.422 
3.S018 

4.098 
3.843 
8,4094 
3.5062 

4.096 
3.843 
8.4096 
3.5062 

4.096 
3.543 
5.4096 
3.5082 

0,02» 
0,28» 
0.24» 
0.18H 

0.00« 
0.00« 
0.003« 
0,00« 

0.00» 
0.00» 
0.00» 
O.OOH 

0.00H 
0,00» 
0.03» 
0.00» 

12 t 
s.l. 

6.347 
3.840 
3.300 
3.189 

6.346 
3.840 
3.329 
3.179 

6.346 
3.840 
3.330 
3.179 

6.346 
3.840 
3.330 
3.179 

0.015H 
0.00« 
0.87« 
0.63« 

0.00« 
0.00« 
0.03« 
0.00« 

0.00» 
0,00» 
0.00» 
0.00» 

0.00» 
0.00» 
0.03H 
0.00» 

18 2 

10.47 
6.1» 
2.997 
2.586 

10.41 
8.941 
3.012 
7.642 

10.41 
6.941 
3.012 
2.642 

10.41 
8.941 
3.012 
2.642 

0.57« 
4.02« 
0.50« 
2.16« 

0.00« 
O.OOH 
0.00« 
0.00« 

0.00« 
0.00« 
0.00« 
0.00« 

0.00H 
0.00» 
0.00» 
0.00» 

32 
0.2 
1.0 
2.0 
«.1. 

27.01 
18,01 
9.349 
0.3183 

26.96 
17.61 
8.835 
0.7160 

26.97 
17.61 
8.836 
0.7125 

26,97 
17,61 
8.836 
0.7125 

0.11H 
2,22% 
5.50« 
0,96H 

0,037H 
0.00» 
0.01 H 
0.56H 

O.OOH 
0.00« 
0,00« 
O.OOH 

0.037» 
0.00» 
0.01» 
0.56H 

Table 8, Values of Load and Error Parameters with Various Appioxi- 
mations to the Solution for 7=2, 

1 

•.+•1 «1 '. '• '• '. Ai. AM AM A« 

0 
0.2 
1.0 
2.0 

5,643 
6.371 
9,348 

5.643 
6.572 
9,312 

5.643 
6.572 
9.312 

8,^43 
6.b72 
9,312 

0.00» 
0.015» 
0.38H 

0.00» 
0.00» 
0.00» 

0.00» 
O.OOH 
O.OOH 

0.00» 
0.00» 
0.00» 

6 
0.2 
1.0 
2.0 
0.1. 

5.958 
3.598 
6.808 
5,576 

5.958 
5.602 
6.813 
5.580 

5.958 
5.602 
6,813 
5.580 

5.958 
5.602 
6.813 
5.580 

0,00» 
0.07» 
0,07» 
0,07H 

O.OOH 
O.OOH 
0.00» 
O.OOH 

O.OOH 
0.00» 
O.OOH 
O.OOH 

O.OOH 
0,00» 
O,0OH 
O.OOH 

12 
0.2 
1,0 
2.0 
0*1. 

7,397 
5.792 
5.447 
5.364 

7.397 
5.795 
5.464 
5.375 

7.397 
5.795 
5.464 
5.375 

7,3P7 
5,795 
5,464 
5,375 

0,00» 
0.05H 
0,31 H 
0,22» 

0.00» 
0.00» 
0.00» 
0.00H 

0.00» 
O.OOH 
0.00» 
0.00» 

r,oo» 
0,00H 
O.OOH 
O.OOH 

24 1.0 
2.0 
o,l. 

13.77 
9.683 
6,225 
4,482 

13.77 
9,667 
6,216 
4,545 

J3.77 
9.667 
6.216 
4.545 

13.777 
9,667 
6.216 
4.545 

0,00» 
0.16H 
0,14H 
1.40» 

0,00H 
0,00» 
0,00» 
0,00» 

O.OOH 
0.00» 
0.00» 
0,00» 

0,00» 
0.00» 
0.00» 
0.00» 

32 
0.2 
1.0 
2.0 
0.1. 

20,62 
14.87 
9.337 
3,533 

20.62 
14,82 
9,256 
3,706 

20.62 
14,82 
9.256 
3,706 

30.62 
14.82 
9.256 
3.706 

0.00» 
0.33» 
0.87H 
4.90» 

0,00» 
0.00» 
O.OOH 
0.00» 

0,00H 
0,00» 
O.OOH 
0,00» 

0,00» 
0,00» 
O.OOH 
O.OOH 
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where 

 5 (h±h.tl^±jfi\ 

In solving the problem in the first approximation we will obtain: 

-v[^iy(V*-|t)]-v--T- 
In the second approximation — 

.where 

«I«« p^F****^-?**"**]- 
and the formula for calculation of normal stresses will assume the form 

sinJSLdiO-SL- 
a », t(T + T)   a(T+T)  J 

+ l24]»ln^L8ln^. 

~^ + 

.Here 

Similar formulas will be obtained upon solution of the problem 

in the third and fourth approximations. 

Dependencies of tangents and intensity of stresses on the sag 

are constructed in an analogous manner. In Pig. 43 we give values 
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1 

xi y in various points of the square panel of the shell with param- 

eters of curvauure a.+a=?M with a sag f = 3.1 h. Here also we 

plot curves of equal stresses ^ and J. 

Fig. 43. 

Prom tables of functions en ', T^
1
-', according to which these 

curves were constructed, it is clear that in the most unfavorable 

cases the differences in values of stresses, obtained in the first and 

second approximations are not as big, as they are for the load-sag 

dependency. The difference between values of stresses, obtained upon 

solution of the problem in the second and third, third and fourth 

approximations, as can be seen from tables and graphs given here, is 

insignificant. With smaller sags this difference is still smaller. 

An analysis of curves and corresponding tables for shells with 
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curvature parameters from 0 to 60 enables us to assume that the solu- 

tion of the problem in the second approximation yields sufficiently- 

accurate values of normal and tangential stresses from the middle 

surface of the panel of a flexible sloping shell, working in the elas- 

tic region. 

Results of calculations of intensity of stresses in various points 

of a quarter of the panel with 7 = 1.5j a1 + a2 = 24 and with various 

sar.- x = 0.6 h; hj 1.25 h, 3 h, 3.1 h are shown in Fig. 44, 

From the graphs it is clear that for determination of the inten- 

sity of stresses it is insufficient to be confined to the solution of 

the problem in the first approximation, since values of stresses at 

separate sections differ noticeably from values of stresses, obtained 

upon the solution of the problem in the second approximation. The 
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Fig.  45. 

difference between stresses of the second and third, third and fourth 

approximations is insignificant and decreases with the growth of the 

number of terms of approximating functions. 

Let us consider the dependence of stresses af  T, and a.  on sags 

in various points (1-20) of a quarter of the panel (in the other three 

quarters the picture will be analogous). In Fig, 45 we give graphs 

of such dependencies. For instance, at point 15 with coordinates 

x = |-, y = jr curves are plotted for the dependence a, T, and a.   on 

the sag of this pclnt. 

From the examin«ition of curves in various points it follows 

that the biggest values of stress in these points are attained with 

the lower critical value of load. 

Let us note that for calculation of stresses in the critical 
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state of the shell It is convenient to use the above-mentioned formulas 

for stresses, where it is required to introduce values of sag parameters 

x, taken from graphs of this type in Pig. 41. 

Let us note that a large quantity of works on the dynamic stabil- 

ity of flexible shell panels is solved by the Bubnov-Galerkin method. 

In these solutions the force of inertia and damping is introduced in 

supplement to the external load and the same operations are carried 

out, as for instance, those which are given here with the subsequent 

analysis of solutions. Therefore, without dwelling on these questions 

in detail, let us give here one of the solutions on the dynamic sta- 

bility of the sloping cylindrical shell, given by G. V. Mishenkov [58]. 
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§ 5. Dynamic Stability of the Sloping Shell Panel 

The problem of dynamic stability of thin-walled elements and 

structures as a whole is of great interest for technology. It is 

especially important to know the character and magnitude of loads, at 

which displacement of points of a material system (body) begin to 

increase in time without a limit which can produce in the beginning 

a disturbance of given working conditions and later results in destruc- 

tion. 

For the first time the problem of dynamic stability in reference 

to elastic rods was considered by N. M. Belyayev [59] in 1924. A 
later/ 

quarter of a century/  M. A. LavrenMyev and A. Yu. Ishlinskiy [60] 

investigated phenomena, caused by the action of shock or sudden 

application of loads on the rod; they showed that upon a sudden 

application of the load, exceeding n-th critical static force, the 

appearance is possible of the n-th stable form of equilibrium, which 

has n half-waves.  This result was verified experimentally by its 

authors, A series of works of foreign authors (6i, 62), on the re- 

search of rod stability is known. 

In 1958-1959 V. N. Chelomey [65] considered a number of problems 

on the dynamic stability of aeronautical structures. A number of 

investigations of this kind of theoretical and experimental character 

was carried out by other authors [64-67], 

In 1955 A. I, Blokhina [67] solved the problem on the dynamic 

stability of the cylindrical shell, supported with hinge, edges. We 

knov: of the research of a number :>f other authors both Soviet and 

foreign. A sufficiently complete survey of contemporary trends in 

the field of diTiariics of plates and shells and a large bibliography 

are given by V. V. Bolotin; those interested should refer to his 
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article.* Below we expound the solution, obtained by G. V. Mishenkov 

[58]. 

Let us consider an elastic cylindrical shell with radius R, 

resting on a rectangular contour with sides a and b. It is assumed 

that sags of the shell are comparable with its thickness, but are 

sufficiently small as compared to other dimensions of the shell. 

It is also assumed that the natural frequencies of tangential oscil- 

lations are sufficiently Itxge in comparison with the frequency of 

external action. This allows us to disregard tangential inertia. 

Taking into account the assumptions given the deformation of the 

shell is described by the system of nonlinear equations, 

(5.1) 1 «%,«*,»/*• V 

3 Mr    *f          1   ** 
*xdg  «c*   '   *  *• 

*m 9m       1   *» »vVf-^j i* df       ft   d*  ' 

For the oscillative shell the normal load is calculated as the sum of 

forces of inertia, damping and external load, 

where PQ is the density of the shell's material, E — characteristic 

of damping, q^x, y, t) — external load. 

Let us assume, that the shell examined is supported along the 

contour, but at the ends is loaded by axial periodic forces p = PQ + 

+ p. cos öt, distributed evenly on the generator of the middle surface, 

Let us also assume that normal forces, acting on the longitudinal 

edges y = 0, y = b, "on the average" are equal to zero. Boundary 

♦Transactions II of the All-Union Conference on the Theory of 
Plates and Shells. Kiev, 1962. 
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conditions can be written in the form. 

p(«. $ = w(a, i^ » »(*, o) = »(jr. b) = 0. 
* 

rf^*-^"-«"'   • (5-3) 

Let us seek the solution in the form of series 

where ^..(t) are as yet unknown time function. Since we will investi- 

gate resonance phenomena, connected with the main form of oscillation, 

then we will take only the first term in the series: 

Placing this in the second equation of the system of equations (3.1), 

we write its solution in the form. 

f(f.y.0--^P(0[»<,cos^ + -Lcos^j + 

^ to? (i+i«vs,n „       b T 2*^     2™    ^'f*' (3.6) 

where m =* a/b. 

Parameters p and p are determined from the last boundary con- x     y 

ditions, and parameter p , characterizing tangent forces on edges, 

is assumed to equal zero.  We put the expression for the given 

function and (3.5) in the first equation of the system of equations 

(3.1)* by the Bubnov-Galerkin method and obtain the ordinary differen- 

tial equation with periodic coefficients with respect to l(t): 
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Here CD is the natural frequency of transverse oscillations, determined 

by the formula 

m Wtf^       D     mm 

^"TäT^^ (3.8) 

where through F(m, k) we designated the geometric characteristic of 

the examined shell 

f («. A) = (I + ä«J« + lüL^l^: (5.9) 

We reduce the equation (3.7) to another form. For that we 

introduce values of critical parameter p# for static loading of the 

shell by forces distributed longitudinally 

P.-'—FK*). 

of the coefficient of excitation 

(3.10) 

(3.11) 

and natural frequency, taking into account loading of shell by the 

constant component of longitudinal force 

If we also change to dimenslonless amplitude and 

(3.12) 

and designate through a and ß the coefficients, characterizing the 

geometric nonlinearity 

-- 8 '-^(l+m«). 

(5.15) 
4 f(«i.*r 

i*wn r i .  a i *m  led-^fa» r i ! 

then the equation (3.7) will be written in the form 

(5.14) 
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where 

*• (3.15) 

i—a- 
K 

Here and In the future the line above |{t) Is omitted. Equation 

(3.1^) differs from the analogous equation for the plate by the 

presence of a quadratic term, characterizing the asymmetric character 

of nonlinear!ty, inherent in shells. It should be considered as the 

first approximation for description of parametrically excited oscil- 

lations in shells. 

A further more precise determination is possible in examining 

a large number of terms of the approximating series, resulting in a 

system of equations of a similar type. As we know (14), the instabil- 

ity region, of zero solution (3.14) lie near frequencies 

• --f-  (* = I.V..). (3.16) 

The most dangerous is first (main) region of instability, the boundar- 

ies of which damping calculations excluded are determined by the 

approximate formula 

.1-2VTT?.' (3.17) 

Let us search for the periodic solutions of equation (3.14) in 

the neighborhood of the main region of instability, disregarding 

damping. If as the first approximation we would be limited by con- 

sidering the solution in the form 

|(0-*ico8-*. (3tl8) 

for the branch, adjoining the lower boundary of the region of 

instability, and 

|(0«fl,8ln-J- (3.19) 
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for the other brar ih, then for the amplitude of steady-state oscilla- 

tions e obtain formulas: 

i 

where n = 6/Q. These formulas coincide with corresponding formulas 

for plates [14], Meanwhile it is natural to expect qualitative dis- 

tinction in the behavior of shells during parametric oscillations. 

Apparently, for shells it is insufficient to be limited by harmonious 

approximation (5.18) and (3,19). In this approximation the quadratic 

term in equation (3.14), which reflects the specific character of non- 

linearity of the shell, is not considered. 

From combinational considerations it ensues that the second 

approximation should be sought in the form 

l(0«*« + *ka»~ + V«« (3.22) 

for the branch, originatives from the lower boundary of main instabil- 

ity, and in the form 

S(0 = «, + o1sin~-f<ijcos0/ (3.23) 

for the other branch. Terms, containing cos 9t, are added in order 

to take into consideration the deflection of solutions from purely 

harmonious solutions of the first approximation. The inclusion in 

solution of the free term is natural. Actually, if we place cos 9t 

in nonlinear part of (3.14), then the result of substitution will 

contain the constant term, having the same order as the coefficient 

of cos 9t. We place solution (3.22) in equation (3.14) and equate to 

6t zero coefficients of the absolute term, cos ■*— and cos 9t. The 

system of nonlinear algebraic equations thus produced is too bulky 
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1 

for research and is not adduced here. It can be significantly simpli- 

fied if we take into consideration that in solution (3.22) the term 

constaining cos -a— is the determining tem. Proceeding from this, 

we consider that b. » b0, b^ » bp which makes it possible to dis- 

regard degrees higher than the first and the product of values bQ 

and b«. Then the system of algebraic equations will be written in 

the form 

Excluding from this system of equations parameters b0 and bp, we 

obtain the following equation for b^, 

-|-^+(-f-^+1 W—f-??•—£-äw)ft|+ 

For solution of {3,23)  the system of algebraic equations has the form. 

a,—2iiat~ii,al+-|-«if(a1-a#) + ^.^-0. (3.26) 

1 +1» -f~ +'-| «^ - F(2«, - a,) « 0. 

For amplitude a. analogously we obtain, 

£*}+(^a-p, -1*--S-ä*).!+ 
+r-!pi--j-v--f?+s?i'+«,(--f ■i'+^-s)+ 

^ (^   P7 ^ 

As we should have expected, the coefficient of the quadratic terra is 
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included in the equation for amplitudes (3.2?) and (5.27). 

Further more precise determination cam be carried out, presenting 

the solution for corresponding branches in the form, 

I~IA...     »-*.«.... (3.28) 

6(0=^+ J]«^n^+ Ja.cos^ 
l-IA...        *-M... 

The system of nonlinear algebraic equations obtained thereby can be 

solved by approximate methods. 

Let us note that in solving equation (3.14) by the method of 

small parameter the first approximation coincides with formulas (3.20) 

and (3.21) for b. and a^. However the construction of subsequent 

approximations is very difficult, since as generating equation it is 

necessary to consider the equation of the lyapunov type. 

Equations (3.25) and (3.27) are easily solved with respect to 

n, if here the sought amplitude is considered to be a parameter. 

The stability of solutions obtained is investigated by known 

methods [14]. The solution, originating at the lower boundary of the 
db1 db1 

region of instability, is stable, if ^T- > 0, and unstable, if ^— < 0. 

Another solution, which in the case of the plate, is on the whole 
da,, 

unstable, will be stable, if -*-=• < 0. Let us assume, that the 

frequency of external load increases gradually, passing through 

regions of instability. Then on the lower boundary of the region of 

instability we will observe "hard" excitation of steady-state oscil- 

lations. Upon a reverse change of frequencies on the upper boundary 

of the region of instability we will have "soft" excitation. 

Calculations [59] performed show that the solution essentially 

differs from the harmonic solution. 
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§ 4. The Circular Cylindrical Shell 

t        Let us consider a closed circular cylindrical shell, subjected 

to the action of evenly distributed external pressure.* We will con- 

sider that by the hinged shell ends are fastened with rigid frames; 

frames can be deformed in their own plane, remaining circular. We 

assume that the middle surface of the shell has a certain initial 

bend. 

Let us investigate the behavior of the shell upon the increase 
sags/ 

of the load, considering initial and additionaV comparable with the 

thickness of the shell. Let us proceed from nonlinear equations of 

the theory of flexible shells taking Into account the initial in- 

correctnesses in the shape of the middle surface. 

t 

+ gHgjjfeJ ^y 

g gfe+aj »? . i *»? . ♦ (4.i) 

BJnrw    [    teig    }'        d* d*t 

[HU = in = initial] 

where w and w. are the additional and initial sags, <p is the function 

of stresses in the middle surface, h — thickness, R — radius of the 

middle surface and L — length of shell. 

Coordinates x and y are counted off along the generator and 

along the arc (Fig. 46), 

In selecting approximating expressions for sag we assume that 

the shape and location of initial dents correspond to the shape and 

location of dents, formed in the process of deformation. 

*The solution of problem belongs V, Ye, Mineyev [69], 
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The expression for the function 

of initial sag will be taken in the 

form 

«'„-»A«(»inwsiii^ + ^*i«»jr + x).   (^.3) 

for additional sag — in the form 

„, •«/(siii M.sin^ +♦sin« w + x).   (4.4) 
Fig. 4D. 

Pull sag is equal to 

»,=»»+»««. (^.5) 

We assume that 

The expression selected for additional sag (4.4) does not satisfr 

the condition of hinged support of the shell butts M = 0 when x = 0. 

This circumstance, however, should not show in the results of the 

solution of the problem with the selected parameters of the shells. 

The first term of expression (4.4) satisfies the form of wave 

formation of the shell during the "minor" loss of stability. The 

second term accounts for the preferential deformation of shell toward 

the center of curvature. The third member characterizes radial de- 

formation of butt frames; it is assumed that butt sections receive 

radial pressing not only up to the loss of stability, but also in the 

process of deformation of the shell. 

We substitute in the right part of equation (4.2) expressions 

(4.3), (4.4) and (4.5); integrating it, we shall obtain the following 

expression for the stress function. 

—y- r, cos2«jr + r,co$ % + ftsln aursln Py+ 

r        tEa        En 
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Here we introduce designation. 

(4.8) 

The terms p^ and p2 designate mean values of compressing forces, 

per unit of length of annular and longitudinal sections of the shell. 

They are equal respectively, to 

The strain energy of the middle surface of the shell is deter- 

mined by expression 

x[-5"$~(:5*)^l,ü^,'»• (4.io) 

Let us place in equation (4.10) expression (4,7)j after integra- 

tion we obtain; 

1    2  \  64    ^ 2 p L(I+i>V ^ (I+Wyj4^ 

« ÄL   (I + *H /V^ 2 Ä« (1+^ ' ^ 4 Ä» ' * + 

+ -^(Pj + /1-2^lA)}. (4.11) 

The strain energy of bend UU is equal 

(4.12) 

Placing in expression (4.12) expression (4.4) and integrating, 
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we will have 

"'—x^riTW+'W+vm']. (4.!,) 
The work of external transverse pressure is determined by expression 

^t^ftf f •Af^f. (4.14) 

After substitution and integration we will find, 

r.-ihw(x+±,). (415) 

The work of compressing forces along the gurerator of the shell is 

equal to 

»Mt I'.-fJ}{(-^■-£)-f{£), 

(4.16) 

We place expressions (4.3), (4.4) and (4.7) in equation (4.16) and, 

integrating, will obtain, 

rr«"B-^{^-^ + £ftA[-i-i,/a + 2/IM)+I«/(f + 2U]}.     (4.17) 

We replace in expressions (4.11), (4.15) and (4.17) P* and p^ 

with q according to (4.9). 

Further, we use condition of closure 

J^«0. (4.18) 

where v is the displacement of along arc. 

We set up the expression 

After substitution, integration and rejection of periodic terms 

will give the equation of closure the form 

^•(2+')--f^+i^+T*)830* (4*20) 
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I 

We place expression (4.20) In equation (4.15), first replacing 

in it p« by q, then we will have 

Let us introduce dimensionless parameters for energy, load, and 

sag. 

(4.22) 

Let us set up the expression for total energy of the system 

and use the dimensionless parameter 

$wm3 . 
mBJß 

for which we obtain expression 

where 

^       16 ll+  (I + cvP^50 2 l7rT^+   12(1-^) J' 

Ritz method equations in application to parameters £ and ? will 

be written in the form, 

4-0. 



"   Tflr"      iriirilli 

Upon perfonning necessary calculations, we obtain. 

(4.2?) 

^—<ia+2UC-a(l+«U+^- (4.28) 

In equation (4.28) we disregard term c,J| 4 1^, and in equation 

(4.27) — coefficient 2 with £. in the last component. 13ie assump- 

tions taken are insignificant and have a small effect on the accuracy 

of the solution. 

Thus, solving systems (4.27), (4.28), we obtain in the final 

form two equations, connecting the value ^ with parameters |. , £, t 

and the number of waves n along the arc of shell, 

?-*l«+SU+-*--l±|^.--ac+       (4-29) 

(4.30) 

If in equation (4,29) we put 4in = C = 0 and take only linear 

terms „vith respect to |, we will obtain the upper critical load. 

This form was for the first time obtained by Von Mises, 

If however, in initial relationships we assume p^ = 0, then we 

come to dependencies, obtained by A. S, Vol'mir in work [66] for the 

case of action of only one transverse pressure. 
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Let us adduce the results of calculations, performed proceeding 

from full nonlinear equations (%.29) and (4.30) for the case of 

smooth shell 1^ « 0 and shells with Initial dents of different 

magnitude £. , which changed from O.OOi to 2.0. For the purpose of 

comparison of the obtained results with the experimental data in 

addition to ratios B/h « 200, 500 and 1000 the ratios B/h » 112.5 

and L/R « 2.45 were also selected. 

In calculations the value £ was determined by the approximate 

formula 

and then was made more accurate with cubic equation (4.50), 

« « t 

Fig. 47. 

In Fig. 47 we represent envelope families of curves for different 

values of R/h, plotted with equations (4.29) and (4.30), for a smooth 

shell. The dotted curve pertains to the case of one transverse 

pressure. We see that the lower critical pressure ^   =*  0,022 for 

shell R/h » 112.5 for hydrostatic pressure turned out to be 15^ less 
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than for the case of one transverse pressure. In V. E. Mineyev^ 

experiment the critical load for the smooth shell was obtained close 

to the upper critical value tP   « 0.039 satisfying formula (4.51). 

It is also necessary to note that with the increase of relationship 

the critical value of pressure decreases, and the point, corresponding 

to the minimum of curve — to the lower critical pressure, is displaced 

to the right along the | axis. It is necessary to consider also the 

circumstance that with the growth of relationship B/h  the critical 

value of nuTbäTs of waves n  increases thus, for B/h = 112.5 n  = 6, cr cr 

and for B/h =  1,000 n „ » 10. 7 cr 

Calculations, performed for shells with initial incorrectnesses 

in the shape of the middle surface, are represented in Figs. 48 and 49. 

f 
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Wjf      * 
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1 2 J 4 t 1       1 i       7 t 1            4 )           « K 

Fig. 48. 

In Fig, 48 we depict envelopes Q = f(^, 4lnh Plotted various 

values n and satisfying minimum load values. Curves are calculated 

for the shell with parameters P/h = 112.5* L/R * 2^5 and various 

values of six symmetrically located dents ^in = 0,25, 0,5, 1,0, and 

2,0, A curve, corresponding to £. = 0 is built for comparison in the 

Hame place. As we can see from the graphic the upper critical load 
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decreases even with a comparatively small .ralue of the Initial 

bending 1^ « 0,25 or 0.5. Judging from the graph, when ^ = 1.0 

the load Increases monotonously, so that the process of deformation 

of shell should not be accompanied by a pop. 

I 

W 

Ui 

i 

i 
    ..:  

m ̂
 
^ 

^ R s 
«?i 7B9 W 

Fig. 49. 

In Fig. 49 we show the results of calculations of shells with 

parameters 101 = 112.5, 200, 500; L/R = 2.45 and the depth of initial 

bend ^in = 0.001, 0.01, 0.1, 0.25, 0.5, 1.0 and 2.0. 

Judging by the shape and location of curves, we can note that 

even an insignificant depth of dent |. * 0.001 lowers the critical 

load by 5-8^ as compared with the upper critical load. With the 

increase of the depth of bend the load decreases even more and when 

i.    = 0.5 it attains 65-70^ of the upper critical value of load 
xx* 

corresponding to the smooth shell. Dotted lines on the graphic 

mark the curves, satisfying the upper and lower critical values of 

loads for the smooth shell. It is interesting to note that all 
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curves, satisfying different initial dent values, with which a pop 

is observed, are located In the region between the upper and loi»er 

values of critical loads. Curves, satisfying the depth of the initial 

dent with which the pop is absent, are located in the region lower 

than the curve, corresponding to the lower critical value of load. 

§ 5. I>ynaiaic Stability of the Cylindrical Shell 

Let us assume that a thin-walled circular cylinder with radius 

r, constant thickness h, and length I is supported by hinges on edges 

so that one of the hinges has freedom of displacement along the axis, 

and let us assume that to the end which has the freedom of displacement 

in moment of time t « 0, load T = const is suddently applied, which 

is then maintained constant. The sudden application of longitudinal 

load will produce radial oscillations of the cylinder, where, if load 

T is less than a certain definite value, these oscillations will 

occur with non-increasing amplitude near the position of equilibrium, 

and conversely, if load T is larger than this value, then the ampli- 

tude of sag will increase in time and, consequently, the cylindrical 

shell loses stability. 

The problem consists of determining the load (critical), beginning 

with which the unlimited growth of the amplitude of sag occurs. 

Let us consider the axisymmetric loss of stability.* The 

equation of motion of the element of cylindrical shell has the form, 

Ar + r  7 &•  * ** * 

*The solution of the problem is given by A. I. Blokhina [67] 
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Here T » const is the external lot:.ä, per unit of length; T . T« are 

internal axial and circumferential stretching forces respectively, 

referred to one unit of length; N is the axial intersecting force, 

per one unit of length. 

Using known dependencies [15] and introducing them in (5.1)* we 

obtain the equation of motion in displacements, 

where u, w are axial and radial displacements. 

We assume that longitudinal (axial) displacement is small as 

compared with transverse (u « w) displacement* €uid, consequently, the 

dt^ 
from (5.2) we obtain the equation of motion with respect to sag in 

the radial direction. 

longitudinal inertia can be disregarded. Since hp —K -♦ 0, therefore, 
dt^ 

Bß       dßm   „Eh       . M SHe M* 

We search the solution of equation (5.5)* satisfying boundary condi- 

tions, in the form 

Here q(t) is the amplitude of sag, m is the quantity of half-waves 

along the generator. 

Putting (5.^) In (5.3), for function q(t) we have an ordinary 

differential equation of the second order 

«ty)-art/) = 0. (5.5) 

where 

^l i»    J m-*)   I«   #• J* (5.5») 
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The  solution of equation (5.5) will be periodic, if a < 0, or 

aperiodic, if a > 0. In the latter case the amplitude of sag will 

increase in time and, consequently, a loss of the shell stability 

will occur. Prom condition a » 0 we determine the value of critical 

dynamic force T , 

^ is(i~^ li""*"»« «iST* (5.6) 

[Ä a d = dynamic]       [np = cr « critical] 

It was established that upon a longitudinal impact with force 

T = const the cylindrical shell loses stability, when the applied 

st force attains the value T  « T° , where from a great number of 

possible axisymmetric forms of loss of stability the shell will be 

distorted with the formation of half-waves in number m , i.e., the 

nearest integer k 

tf 

«fr-*> 

(5.7) 

to which corresponds the least value T . This form of loss of 

stability is preferential. 

If any external causes will impel the shell to be distorted not 

in this preferential form, then the critical value of the dynamic 

d st load T , will be larger than the critical static T , where the 

possibility of regulating the number of half-waves corresponds to 

the possibility of increase of the dynamic load, which can be with- 

stood by the cylindrical shell without a loss of stability.  One of 

causes, forcing the shell to be distorted with the prescribed number 

of half-'waves, can be the imparting to the shell of initial small 

amplitude distortions. 

It is not difficult to obtain the expression of critical force 

for the case, when the force T = T.t, proportional to time, acts on 

289 



1 

the shell, and this expression will accurately coincide with (5.6). 

Indeed, for function q(t) equation of the type of Bessel^ 

equation takes place. 

f«-~f«»-0. (5,8) 

Here 

B-^r,-^. (5.9) 

The solution of equation (5.8) will be written in the form 

,w-c^/4(-|-4.4)+^,_4(J.4,4). (5.10) 

when z > 0, i.e., in the initial time interval and 

where »«« — 1—I 

with the time increase. Prom properties of Bessel functions it 

ensues that the she.ll in the initial moment of time when z > 0 oscil- 

lates near the position of equilibrium, and when z < 0 loses stability, 

i.e., the sag increases in time. From the condition z = 0 the criti- 

cal moment of time T , is determined and consequently, the critical 

force, i.e.. 

7^-^«--^--^+^- ' I»(I-f) I«   #• «•«•• 

similarly to the case, when T ■ const. 

Lastly, we consider the case when the cylindrical shell has the 

initial distortion 

«^sln-—-. (5.12) 
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where k Is the initial amplitude, m is the initial quantity of 

half-waves. Let us assume that on the end of the shell constant 

force T - const is applied momentarily. The motion equation (5.3) 

in this case assumes the form 

„fl-„ V
a"|-°'—tf+T-5—»-g-      (5.15) 

Let us assume that the additional sag occurs in the same form 

as the initial, i.e.. 

^-f(08ln-=p. (5.1^) 

Then, according to (5.12) and (5.14), 

w-«V + ^-I* + g(0|sln-52L. (5.15) 

For function q(t) after introduction of (5.15) in (5.13) and simple 

transformations we obtain, 

Jr(/)-.«rtO = -—7~!. (5.16) 

Here a has the same expression as (5.5f). 

Reasonings, similar to those used in the beginning, lead to the 

conclusion, that the initial sag does not have any effect on the value 

of critical dynamic force, if the initial quantity of half-waves m 

* st will coincide exactly with value ra , with which value T  is obtained 

If, however, m / m , then value T  > T , since here we apply, in 

a way, additional bonds, and the shell will be stabler. 

Thus, by prescribing a small bend we can make the shell stabler. 

.We also note that if T = T.t, then, reasoning, in a manner 

analogous to an earlier reasoning, we will also attain the equation 

of the type of Bessel's equation, 

«W + -£«(^ = -£-*. (5.17) 
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where z has the same value as before. The solution for 2 > 0 has the 

form 

-Ai(i4'4)j^(i4^H- (5.1S) 

where w is Wronskian determinant; w - fjfg - fg^, f1  and f2 are 

particular integrals of equation (5.17). 

Constants c^ and c2 are determined from initial conditions, 

when t » 0, q(0) » k, q(0) « 0. 

» 

t 
(5.19) 

.Here 

2 Z7'1 ' T  «, 

• 1     — 

-,-i(T4-)ls^(f4s>s]+*- 
T.i • 

+'-4(-f4)p'i(i4sV]- (5.20) 

With the increase of time t argument z becomes negative. Intro- 

ducing variable ««.j/—j , we obtain the equation of the type of 

Bessel's equation. 
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«ft-£«&?-£*. (5.21) 

The solution of this equation will be written through modified 

Bessel functions. 

* 

i        -1. » 1 i 

s 

^'-J^T"^-«*)^]- (5-22) 

Constants c^ and Co are det' ained from the condition, that 

when t = 0 and 'z = 0 particle velocities and sags have to coincide. 

Then we obtain that 

«i-=—«k. e^»^. (5.23) 

Thus, the amplitude of sag is determined fully. That moment of time, 

when the amplitude of sag of the shell passes from oscillatory motions 

to growth, we will term the critical moment, and the load, correspond- 

ing to it, — the critical load 

«\»""'V'ir (5.24) 

We should bear in mind that the obtained solutions are true only 

■jr small sags [— ^ wj. An analysis of the solution allows us to 

conclude thats 

1) the greater the speed of the load, the less the amplitude 
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I    of the sag, 
i 
f        2) the greater the speed of load and the smaller the Initial 

sag, the higher the overload factor vI/
T!!rJ 

3) the miniaum load, endured hy the shell, is obtained for the 

7    same quantity of half-waves for any speed of the load. 

We can indicate another method of setting up equations of motion 

of thin shells and solution of the problem of the dynamic stability 

of cylinder [47], proceeding from the Hamilton-Ostrogradskiy principle, 

u*= tiLdt**Q,  «.«jr+M+AE-er.        (5.25) 

From now on, 5T is the variation of kinetic energy of shells, 5A is 

the variation of work of external forces and moments, acting on the 
l 
}    shell, 5W is the variation of shell deformation work, 6E is the 

variation of work of force factors, which depend on speed and produce 

damping of the motion u^, u2, w are projections on directions of unit 

vectors; "e., e"2, m are vectors of load displacement which brings the 
0 1  *  * 

middle surface o    to surface a ;  e., m^, ... are values e., m., ... 

in the new deformed state; e.. üD., E., E, are angles of rotation of 

coordinate vectors r, I, m in the process of deformation, i = 4*-^ 

are partial derivatives. Vectors of speed and acceleration of points 

of the middle surface in the case of small deformations have the form. 

— m*w. —OL 

1 
(5.26) 
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Converting 6A and 5W, we obtain, 

-(C-0)2w,)i«SÄ = O. (3.2?) 

where 

Ml« (^M ii).t + iAiM&,),% + AOM—iW^.i + 

+ AlAl(L-~-ti). 

e is the experimental coefficient. 

The relationship (5.27) is the Buhnov-Galerkin method equation, 

which enables us to integrate approximately dynamic equations of 

shell motion. Hence, the shell motion equation, 

fl + Kl = 0; f,-rKf = 0: 
M. + Z^O (5.29) 

and static boundary conditions, ^=0, R, - 0, g=g. 

Let us consider particular cases, 
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1) Linear oscillations of shells with a slight bend. In this 

case displacements are small, squares of displacements and their 

derivatives with respect to coordinates can be disregarded, so that 

dynamic equations and static boundary conditions are simplified. In 

expressions P. and F, we replace curvatures of coordinates lines 
♦ 

k.. by their initial values k. ., and inertial terms and expression 

of unbalanced contour forces are linearized, 

^-•i-JJ1^*- *»~*i-»' + ~~' (5.31) 

Actually, considering (5.28), equation F, + Y, - 0 can be written 

in the form 

where terms, containing w., constitute the effect of longitudinal 

forces of inertia. For F^ and F. these estimates take place 

A* 

where r is max [n, X}; n is the number of transverse waves, X = 

= TTR —; m is the number of longitudinal half-waves. If w ~ h -^w-, 
4 IT 

p 
r » 1, then, as we see from the preceding estimate, it is possible 

to disregard ^w.F. as compared to F,. 

2) Nonlinear oscillations with average bend. The bend is called 

an average bend, if u. ~ e.k ~ e , but terms of bend origin w ~ w. ~ 

^—  2 ~ x.. ~ vep, Wj' « 1 during all the time of motion. F., F, and 

curvatures k.. . are replaced by their expressions according to the 
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linear theory. 

*«-*u(l+««)-*«%-—^--ri M, 
At an      44   4*  ' (5.32) 

*,««*l,(I~eil)~*u%-Jr^+J& Mt 

5 ♦- 

and are expressed by formulas (5.28), and in expression Y. terms, 

containing e.p and e^, are discarded, while Y, remains without cnange. 

3) Nonlinear oscillations of sloping shells with the average 

bend. Here following simplifications are possible; firstly we dis- 

regard the effect of tangential displacements u. on angles of rotation 

1 dw 
w., i.e., we consider that w. = x—'-g—; secondly, 1.1 expressions F. 

i ai 
♦     » 

and F2 we reject terms, containing forces N. and N2; thirdly we 

disregard the effect of angles of turn e., on bend deformations, i.e.. 

in expressions of curvatures (5.32) we discard terms, containing e^. 

The set up dynamic equations of nonlinear theory of shells are 

applicable to short shells and shells of average length. 

Let us turn to setting up of differential equations of the dynamic 

stability of shells. 

Let us consider two consecutive states of the shell. Let us 

assume that the middle surface a with the help of displacement 

•-  . — —' p-iauj (refuj ej-f ^'m  passes into surface a.. Knowning v , we can 

determine the values, characterizing deformation and stresses, which 

satisfy motion equations, 

F;+y;=o. AI;+Z;=O( /S-f-y^o. (5 ^) 

With a certain value of time or certain relationships of motion 

[14] parameters another state is possible along with the motion, 

designated with index " 1" . Motion equations, corresponding to this 
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state, are termed equations of indifferent motion, and parameters — 

critical parameters. Motion paramrters imply the external load, time, 

oscillation frequencies, etc. 

Let us assume that the vector of additional displacement v = 
_  _     _ i     ♦      —*  _i  _ 

* ulel + upep + w® changes surface o into a  , where v = v + v. 

Let us determine the values, characterizing deformation and stress 

during displacment of v , Let us assume that value v is the first 

order of smallness, and v is a finite value (for instance, of the 

order of a unity). In values, characterizing deformation and stress, 

we refain terms of the first order of smallness together with the 

finite terms: 

fn~k («Ii + T«n) - T'u + 7*,,:     f», - ft (t'„ + T«a): 
f;i-ft(«'ii+T4»);«u ««U—^+ei+w?)-«;,+•;,. (5-51*) 

where 

•ii * o+«'ii)«u+«'^w+w;«v 

Equations of motion in indifferent state, 

f;-i-W = 0. Fl + Yl = 0.  Zr + AfJ^O. 1 = 1.2. (5#55) 

Now, substracting from equation (5.35) equation (5.35)J we obtain 

the equation of dynamic stability. 

iVfT-u + .4,(1 + ^)TuU + (^n.),. + (T'nAu) - T'n(AfJ,t~~ 

- T'nlMl + «a)!.! + AMNWn + N\ (k« + xu) + iV^ + 

+ ^(*u + 4r«) + Jc;~Jr; + ^-^ + *lt^L + <- *!L + 

+«" v+-; j5L)]=w {^+'.. ^ +<.-*+ 

(5.36) 
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AV + 2,-0.  * (5-58) 

The static part corresponds to equations of indifferent state [47], 

Let us consider the dynamic stability of a cylindrical shell of 

average length, when I ~ TTR. TO such shells, we can apply the theory 

of sloping shells. Let us assume that the initial position is zero- 

1   t     1   • 
moment or almost zero-moment. Then — hx. . « w , aw., wi will be 

values of one order with elongations, i.e., we shall assume that 

speeds and accelerations of points of the shell are small and can be 

disregarded. 

We shall limit ourselves to considering linear oscillations of 

the cylindrical shell. The deformation components are expressed by 

formulas, 

x#4 = —»,!»; «j-tt.r, «t = «».i + ~: 2«It = tt„ + o.1.       (5.59) 

However, in the initial zero-moment state forces will be expressed 

by formulas, 

fi^-N;  rtt=T; r; = -p«, (5.40) 

where N is the intensity of axial compression, p is external pressure, 

and T is the shear force. 

Equations of dynamic stability in displacement have form, 

«ai + ^«.••+ ■Lp».,.'+-J«'.i + «i = pft/*«-- -£ «• 
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" (531 con't) 

where 

x. are certain perturbations with respect to axes, and p j^ A^J is 
Ir 

the term which appeared in veiw of calculation of the rotation inertia 

force w i = g^rj w » ^r. First, let us consider the problem of axi- 

symmetric oscillation, when v = 0, u = u(x, t), w = w(x, t). Expres- 

sing the motion equation through one displacement (see general case 

of oscillation) for different assumptions, 

1)2*0. »*0. S)«»0t »*0. 3)«V0. w«0 

we obtain respectively. 

I     \WP   3*        3* \k       d* ) 

J + ^LJ^ + j'L^i^N . 
JTI2Ä«    d*  ^  d*\k    d* )^ 

(5.^2) 

*•  l Ai« "' 12*«    Ai« 

H-d-Y.)^ ==0. (5-^) 

when 
l WÄ«      do« T *   Äi«    '   / * *«   l WÄ«  *   A»« 

o^. 

In each of these cases we define, as an example, natural oscillation 

frequencies for the hinged fastening of edges, selecting displacements 

in the form, 
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A and B we take in the form, mm 

I COS»! I OQSttt 

where A and 30 are constants, and ü> is a dlmensionless angular fre- 

quency. 

Then from {5,k2)-{5Ak)  we obtain for N = const. 

OAV      2    ~\\   2   J       I lap 
(5.^5) 

where ü)/, ^^ is the natural frequency of longitudinal oscillations 

taking into account transverse inertia forces; ü),., J.^ is the natural 

frequency of transverse oscillations taking into account longitudinal 

inertia forces, a)/ ^  is the natural frequency of transverse oscil- 

lations without calculation of longitudinal inertia forces; ci)/^ ^s is 

the natural frequency of longitudinal oscillations without calculation 

of transverse forces of inertia. Above we assumed that the inertial 

force of rotation can be disregarded, if «<(:?• Y* • It is known 
N  h N  2 

that t? ~ ?[. This enables us in (5.^2) to disregard g X as compared 

to X2. In expressions (5.^5), (5.^6) we leave ^, since for X ~ VR/h 

the preliminary compression and extension can have an essential 

influence on the frequency of natural oscillations. 
P 2  N ^ 

Expression oüf., ^ has an extremum for X = 0 and X * «• 

respectively; 

h 

•^--O-n^^-O-V")^--^)"].       (5.4?) 
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The load changes the least frequency in the direction of decrease. 

From (5.47) it is clear that the effect of preliminary tension becomes 

significant when N ~ N , and when N ~ Y^ N  its effect may be dis- 

regarded. 

Longitudinal forces of inertia affect transverse oscillations 

frequencies in the direction of decrease and become significant with 

the increase of length. For instance, when I - 120 cm,  m = 1 (i.e., 

for the least frequency) a)/, ^-ai,    ^ = 3.7666. If it is permis- 

sible to determine the square of frequency with the error up to 6^, 

then formula (5.1*6) can be applied when m = 1 to I = 2R, when m = 2 

to I =» 4R etc. In joint calculation of longitudinal and transverse 

forces of inertia the natural frequency of transverse vibrations may 

2 
be less 1 - 7 , Transverse forces of inertia affect longitudinal 

vibration frequencies in the direction of increase. 

Thus, in solving the problems of axisymmetric vibration it is 

not always possible to disregard the effect of longitudinal forces 

of inertia on transverse oscillations, and vice versa. 

We return to the general equation (5.41). We introduce auxiliary 

functions, 

*-s-+f :«'•••'* -!—£--/('•'•"■ (5.48) 
We multiply the first equation of (5.^1) by 7, differentiate with 

respect to x, then the second equation we differentiate with respect 

to s and add the results. We obtain, 

*,   i-Y gr ..£..»».,.1.-**.., 

» at» x  * ä 
x' 

Further, differentiating the first equation of (5.41) with respect 
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to s, and the second equation with respect to t and substracting the 

second from the first, we find. 

R   teds 

where 

« >-»< >-7^¥-S-« >+7^-5-< »•      (5.50) 

Applying operator (5.50) to expression (5.^9)* we obtain, 

«   A»  \V *(I-Y»   *« »(l-Y)   *l 

(5.51) 

where L^ is the new operator. 

-i\ /   vv\ /     I_Y  ft ap v\ /^ |_Y  »  Ä 
Vl ' 

Applying it to the third equation from (5.4) when x. = Xp = 0, we 

obtain, 

{-Jj-WW» + Y W* + 0 ~ T«) •——~ VV*«)+ 

T\*T*V ip  ^ ^ /p   a,,      *  |_7v*»|-t 

T   ft     Ä« \VV (I-T)     12 VVV *    I-7
V 

__ _L J5!l _ (3 + 2T)-^ + ~   ■^::1 vx.+ 

T v»; f» (i-T)vv ^v *; p*   i-i 

+  «•   l-T   *P l-T      *P V        V *  ^   l-T  P* ^1 

x  ft    ft   dr»l   i-T i-t   *      !-T «2 yv 

x_L..io L_/'2+ *!*>)+ .      (5.5?) 
l-T      » «,(I-T)A Pft   /    1 
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f 

» + JIVJL 
[i-i) v i V » / 

Equation (5.52) in dimensionless coordinates when e = 0 has 

the form 

(5.52) 
cont. 

-75t»*T-?-(3+JrtJS-l+17ls=0- 

(5.55) 

where 

www+~ W**+0 - V*)-^. 
(5.54) 

V(   ) *( ) . *( ) 
ft« 

Underlined terms express the effect of tangent inertial forces of 

rotation. Tangential forces of inertia transmit their effect on 

transverse vibrations mainly through the terms containing tangential 

d£ 
inertial forces separately, we find (5.53) when  « 

at2 

respectively. 

11 = 0 and ^ = 0 
at2 

f 

dt« \ A»« ^ 

3- -} . 
I- -T 
I * . 

I2Ä«    Ai* 

»   *» 
4»*-2(l+ T) 

l-T jS\ .  I-T  a» („rm 

a«» i __   2      a» # ^ 
8p j      l-f ' daß '   k 

Ai«        do*        <*« J +    2^A - U' 

8      «* 

M   _*»_ n    ft*     ifw 
12«* 

(5.55) 
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S^+^l+^K- 
1-1 W?    & )       k    d*        1-1 *  *«  J A*»'! 

+I^lS-0. (5.56) 

We estimate the terms, containing inertial forces of rotation, assum- 

ing that in time only the amplitude changes, whereas the number of 

transverse and longitudinal waves does not change. Let us assume 
p   p   2 IT R that r = n + m *■, where n is the number of transverse waves, m - 

ld 

p   'P 1 /p 
number of longitudinal waves. For average lengths r ~ (m -l- n~) / • 

The effect of inertial forces of rotation of the order of h/R, if 

r ~ (R/h)1//5, of the order of (h/R)1/2, if r ~ (R/h)5/\ and of the 

order of 1, if r ~ R/h. 

We consider the case, when r ^ (R/h)1/2. Then, inertial forces 

of rotation may be disregarded. Since we use the motion equation, 

where we have disregarded the shift as compared to unity, then we 

have already disregarded the values of the order of inertial forces 

of rotation. 

For thick shells the effect of inertial forces of rotation may 

b^ significant. 

Thus, disregarding the effect of inertial forces of rotation in 

equation (5.5?)* we obtain, 

+ 1=15-0. (5.57) 

The equation of such type when * = 0 was obtained by V. Flügge [53] 
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i&J*J*~ -  "--*■"■: 
**mj**-~mmm i ifflHii 1   - 'mtmm^rTw**^*,»*,*^?*^^ 

The equation (5.56) automatically includes the static stability 

equation [47] 

S»0. (5.58) 

Disregarding tangential forces of inertia., we obtain, 

•~Vyi» + «#-i-VVW + S—^W'J^O. (5.59) 
•«^ 9t If 

wh^re 

Let us consider the natural vibration of the cylinder of average 

length with hinged fastening of ends. We select the sag in the form 

• -J/^Wrfia.Mnft,. (5.6O) 

Choosing /.-^AMJ aln*l"*t and substituting expression (5.60) in (5.57), 

we find when $ = 0, 

<i-f«»« + f^L-f. = 0. (5.6I) 

(5.62) 

o 
where or^ is the immeasurable angular frequency, 

f4=B|+*ZLlf.t ^«iJZJ lr« + „«(3+2T))il. 

Determining üJ  from equation (5.6l), we find, 

Q^^J^.—J «». (5.63) 

p 
Designating ur^ = z, for determining z we obtain the cubic equation 

«•-f^ + ^-Vt-O. (5.64) 

First we will consider transverse oscillations without calculation 

of tangential forces of inertia. From (5.59) when e = 0 and x. = 0 

we obtain, 

«        1* (5.65) 
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—l-BSSSj".^ r- ■ „^X.     .fc 

p 
Extreme values ta „ are found from conditions- ran 0 

Vi   ft       o ii 
a) m = 1, and n from condition b)  * r » (1 - 7 )X . Condition "b" 

12Rd " m 

designates that with a certain oscillation frequency the energy of 

bend should be equal to the energy of extension of the middle surface. 

Taking "b" into consideration, the expression (5.65) can be rewritten 

in the form, 

V   ' (5.66) 

[HSLKU  = min = minimum] 

Formula (5.66) is very convenient for practical calculations. We 

find roots (5.64). Let us assume that z.   > z0 > z,, where z^ and z2 

express frequencies of natural tangential oscillations. Let us note 

that z. and z, could be obtained with a sufficient accuracy from 1     5 
(5.55)j and z2 and z — from (5,56). Comparing z^ and CD from (5.65j 

when m = 1, R = 20 cm, h = 0.1, 7 = 0.3, we are convinced that the 

effect of tangential inertial forces decreases rapidly with the 

growth of n. In determining the least natural frequencies we can 

disregard the effect of tangential forces of inertia. But they have 

a strong effect when there are oscillations with a small number of 

transverse waves. For instance, when n = 1 tangential forces of 

inertia decrease the transverse frequency to 40-45^, when n = 2 — 

12-16^, and when n = 3 — 6-7^. It would seem that with small n the 

equations of sloping shells cannot be used. However, for a circular 

cylinder of average length, with small n the term of bending character 
0   ? li h /    2\ 4 (X + h )    A is considerably less than (1 - 7 )X . If we take 

12R 

into consideration the intersepting forces in the first two motion 
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I. '  - '# . 

equations and changes of curvatures at the expense of tangential 

displacement, then we shall obtain an additional expression of the 

same order or less than (X + n ) —i-~, but, of course, considerably 
ISiT 

2 4 less than the term (1-7 )X (when n are small). 

Problems on the effect of preliminary load on natural oscillation 

frequencies do not present special difficulties. For instance, it is 

easy to find such an N, with which the cylindrical shell would have 

the required natural oocillation frequencies. 

Let us now assume that the closed circular cylindrical shell is 

subjected to the action of hydrostatic pressure rapidly increasing 

in time.* Let us assume that ends of the shell are hinged to circular 

frames. Let us assume, as before, that frames can be deformed in 

their own plane, remaining circular. 

We assume that the external-pressure q, which acts on the shell, 

changes in proportion to time t 

f-d. (5.67) 

Let us use the differential equations of the nonlinear theory of 

flexible shells. In the equation of equilibrium of the shell element 

we introduce an additional term, considering the force of inertia 

and corresponding to sag w. We shall not consider the forces of 

inertia, corresponding to displacements in the middle surface. 

In other words, here we do not examine the phenomena of propaga- 

tion of elastic waves in the middle surface of the shell. 

Let us also assume that the shape of the shell is not ideal and 

that its middle surface has certain initial dents comparable with 

thickness. 

«•The solution of this problem belongs to V. E. Mineyev [69] 
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In order to find the dependency between parameters of sag and 

the load variable in time we use the Lagrange equation. 

-s-{^)-^-+Q'-0- (5-68) 

ci where T is the kinetic energy of the system, q is the generalize 

coordinate, and Q. is the generalized force. For generalized coordi- 
Ü 

nates we select parameters of sag. Whether tolerances admitted are 

taken into consideration, the differential equations finally attain 

the form. 

g»fr-fwO »y . i »t  «  * a* (5.69) 
tedg    »gig Tie ««• ^ *  t *• * 

Kgg, y gg^ gH^, -j i_J^. (5.70) 
&% /  a««  ** J * *• * 

where 7 is the specific gravity of the shells material, g is accelera- 

tion due to gravity, and t is time. 

The expression for the function of initial sag we, as before, 

take in the form 

■»« = /« (an « sin py + ^ sin« « + yj (5.71) 

and for the additional sag 

V <» / (dn oxsin ßy + ^ «n* «x + x)> 
^„.»i. p-JL. (5.72) 

Further, integrating equation (5.70), we find the function of 

stresses in the middle surface, 

-j- f = rtoos2ax-f rtoos2^ + rssinaxsinftf + 
E 

+ f4sln«sinpy-^r4(*—^-1^. (5.75) 

Coefficients r,,  r2, r^, and r^ are determined by the correspond- 

ing expressions (4.8). 
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Determine the total energy of the system 

S«9k+9,~«k~«l. (5.74) 

which will be written in the form 

Coefficients c. = 1, ,,., 8 are determined according to (4.25), 

We find derivatives from the energy of the system by parameters of 

sag C and 4: 

The kinetic energy T of the syst-ift is equal to: 

T-TjJi-m^- (5-78) 

The expression of additional sag (5.72) we present in dimension- 

less values according to dependencies 

»**|sinajcsinpir-f Csitfox + X. (5.79) 

Further we use the condition of closure (4,l8), expressions 

(4.20) and define from it the parameter of sag, 

x--!^(2-v) + -L^a, + 26U--~C. (5.8o) 

Let us introduce expressions (5.80) and (5.79) and write the 

derivative Hi  with respect to time, 

am 
« 

I sin a.t sin $y -K sin»« + c,l {I + £„.,) — 

-f;+|(2-.)». {5-8l) 
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We present (5.78) in dimensionless values, introducing the designation 

f—asfT. (5.82) 

We now transform equation (5.78), substituting in it expressions 

(5.Ö1) and (5.82). Integrating, we obtain, 

+ ~(2~>jv+2iffa+u(2-v)c.]. (5-83) 

where through CQ we designated 

.^TTT' (5.84) 

We obtain the first Lagrange equation by putting in equation 

(5.68) expressions (5.76), (5.8l) and considering that 

then we have 

Mi+^a+u,ii-f4cfi«(tfut,+ 

(5.85) 

+2tW(2-v)(6+uH2<tfa+ua+25ll,)+ 
+«ia+2E.,)c«-2f,a+u:+a~ 

The second Lagrange equation for 

now has the form 

+c^-«Äa + U = 0. (5.86) 

We substitute in equation (5.85) values of coefficients c1  from (4.25) 
■ • 

and (5.84) and, assuming q = 0, we obtain. 
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. J5. 1 I4 + Ti,(l4-LJ,l—l-— + — 4- 

(5.87) 

Further, we introduce the dimenslonless time parameter t 

?-^-. (5.88) 

where through q, we designate expression (4.31). 

Considering the value of dimenslonless parameter of time, we 

transform the expression (5.8?), 

(5.89) 

,6(, + T>       (,+T)* 
yf t       +   t      1^ + 2^,«       !     V 

y »  ^ .   n   TPM / «n Y 

Now, we introduce designation 

H^)mm)'- (5.90) 
where V-1/ g^   is  the i'eloclty of propagation of sound in the shell 
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material. 

The first Lagrange equation novi has the final form 

(5.91) 

where 

u I + IBI 

Performing analogous trsinsformations with the second Lagrange 

equation (5.86), we have 

ni 

^[T+TT^+^'H (5-92) 

Thus, we have arrived at the system of ordinary nonlinear second- 

order differential equations (5.91) and (5.92), which connect param- 

eters of sag 1, C, load ^ and time t. 

Let us adduce the results of numerical integration. In the 

approximate solution of the problem Integration of the system of 

differential equations (5.91) and (5.92) will be replaced by integra- 

tion of the first equation only (5.91).  Parameter of sag C,  we 

determine by the equation, satisfying the solution of static problem. 

We take the following Initial conditions, 

~|- = 0, | =.0wh«ir= 0. (5.93) 

In calculations we assume: R = 9 cmi R/h = 112.5; L/R =2.2; 

E = 7.75'10£3 kg/cm2j v  = 0.3; V = 5*105 cm/sec, ^in = 0.001. 
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Results of calculations of the 

rates of growth of load C = 53^0 and 

C = 4700 atmospheres/sec for different 

values n are presented in Fig, 50. 

In conclusion, we will note the 

very interesting recent research of 

V. V. Bolotin, pertaining to the 

problem of shell dynamics.  He has 

shown that if the spectrum of random 

forces is sufficiently wide, then 

simultaneously oscillation are excited 

in degrees of freedom, and, conse- 

quently, the question on density of 

natural frequencies of the plate and 

shell is of Interest. Corresponding 

estimates for plates, as we know, 

were obtained by Courant; for shells, the oscillation of which are 

described by equations for states with large index of variability, 

analogous estimates were given by Bolotin.* The latter scientist** 

has also suggested a method for the study of the behavior of plates 

and shells with random loads which uses essentially the plurality of 

the excited degrees of freedom. Under specific, sufficiently broad 

conditions integral estimates for correlation functions and spectral 

densities of generalized coordinates were obtained.  The use of the 

Fig. 50. 

*PMM.  No. 2, Vol. 25, 1963. 

**News of Higher Educational Institutions, "Machine Building," 
No. 3, 1963. 
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theory of dynamic boundary "effect" enabled him to calculate average 

squares of stresses, appearing near lines of distortion in the shell, 

and to investigate their dependency on parameters, of the problem. 

Bolotin has also studied the problem of limitations, which have to be 

superimposed on shell properties and load properties so that the 

stationary distribution of dynamic variables of the system was de- 

scribed by Maxwell-Boltzman* distribution. He showed that delta 

correlation of the load in time is not a sufficient condition. The 

load should be delta correlated on the middle surface; moreover, 

certain limitations are imposed on damping forces. 

»Symposium "Problems of Dynamics and Dynamic Strength," No. 7, 
publicstion of the Academy of Sciences, Latvian SSR, 1963. 
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§ 6. Statistical Method of Investigation of the 
Stability of Shells 

The problem of stability of shells, namely, the determination of 

its forms of equilibrium — is connected with the solution of equations 

of the nonlinear theory of shells. Depending upon the value of 

parameter X of the load a certain form of equilibrium is possible. 

However, even if vire managed to solve with accuracy nonlinear equations 

of the theory of shells, even in that case the problem cannot be 

considered to be thoroughly investigated, since there remains a vague 

degree of reality of each form of equilibrium of the shell which is 

possible when X0 < X < Xp, 

For selection of the most real form of the shell's equilibrium 

we should Introduce in our examination certain additional considerations, 

I. I. Vorovich [70] considers it rational to take the measure of 

reality of a certain form of shell equilibrium the probability of the 

shell staying in this form. 

The application of the probability theory to the research on shells 

will allow us to advance the solution of problems on the establishment 

of permissible loads on the shell during research on stability, taking 

into account conditions of its work and errors in manufacture; on the 

establishment of tolerances in the fulfillment of basic shell parameters, 

Let us consider the approximate approach to setting up of the 

statistical theory of shell stability, offered by I. I. Vorovich.  Let 

us divide all factors, determining the random character of the flexure 

of shell, in thr-e groups:  1) scattering of elastic and geometric 

properties of the shell; 2) scattering of parameters, characterizing 

methods of sealing the shell; 3) scattering of external loads applied 

to the shell. 

316 

"V'^'.L'nUUMII 



Further, although in the groups shown functional parameters can 

also be included, as for example, an aberration of the shape of the 

middle surface of the shell, digression in the thickness of the shell 

etc., nevertheless we will assume that all the totality of factors of 

the first two groups may be described by the finite number of parameters 

a1, ..., a . Therefore, it is natural to consider that probability 

properties of the first two groups of factors will be given, if the 

law cp(a1, ..., a ) of distribution of parameters a^., ..., a is given. 

Let us assume now that parameters a., ..., a are fixed, and write 

equations of the motion of the shell under the action of load P(P, t) 

taking into account the dissipation of energy during motion of the 

shell. We have: 

W=2/:A[( JüLY 9m 

+ 4!L_^.+2 ^ 1 
*i  + 

(6.1) 

(6.2) 

df    tofi dxdy  dxdy 

In these equations p is the mass density of shell, referred to one 

unit of the area of middle surface of the shell; the dispersion of 

energy in the shell is taken into consideration by term 2-y  ^r. For 

simplicity, in equations (6.1) and (6.2) we disregarded the inertia 

of longitudinal motions of shells and considered that F(P, t) has only 

one component Z(P, t). All these assumptions can be discarded although 

this will bring about certain complication of subsequent computations. 

We assume that for w uniform conditions of support are fulfilled 

and, furthermore. 

T/rs=r(s), -fr'-qis). (6.5) 
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t 

where r(s)J q(s) are certain functions of contour s. 

We search for the approximate solution of the problem in the 

following fona: 

>»COf*(0. (6.4) -£ 
Here fk(p) is the basis in the space of energy of the flexure of 

shell. For determination of qk(t) we use Bubnov-Galerkin^ method, 

assuming that f. are orthonormal in L^. Kow we obtain the following 

system. 

Here v is the potential strain energy of the shell, expressed 

through q. . 

System (6.5) may be considered as the equation of motion of a 

I    certain point in n-dimensional space of coefficients q^, ..., qL. 
-1 This point of motion is in the field of forces with potential p v 

and urder the action of random forces p zk(t). From now on we will 

consider that 

*{p.i> = *l>{p,()-**>(p,i) + *»0>.n    (*n0>.f) = MjOZ0>.t). (6.6) 

Here z'2^(p, t) is the fluctuation term, producing the acceleration 

of point of the type of Brownian motion accelerations z^'(p, t) is a 

continuous random process. 

We shall assume further that with a sufficient degree of accuracy 

we can write 
»     Mt 

0>{p,O~y%atl,fk{p)Mf). (6.7) 

Here ^7(t) are certain fixed time functions. Let us consider 

that the continuous random process is given, if the law of distribution 

9(a, .) of parameters a, ? is known. In accordance with (6.6) we have: 
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M9-W+*f+£«M0 s (6.8) 

The problem now consists In finding the law of time distribution 

of q^ ..., c^. 

For its solution we will assume that groups of parameters a1, ..., 

am and a.  and the random process z' '(p, t) are statistically 

independent. Let us assume further that parameters a^, ..., a , i^. 

received a certain fixed value, and now we find the law of distribution 

of q^, .,., CL in this assumption. If we assume that z^ ' is white 

noise 5-correlated on the middle surface in time, then for time moments 

t » p/y the distributive law sought can be found from Smolukhovskiy 

equation: 

•-i #-i 

*f 
(6.9) 

In equation (6.9) parameter 6 characterizes scattering of impacts 

acting on the shell, and the smaller the 6, the less the scattering 

of impacts acting on the shell. The parameter characterizes conditions, 

under which the shell works, and should be determined from experiment. 

Inasmuch as f is a certain distributive law, then to (6.9) we 

must add the following conditions, taking place when t > 0: 

+• 
1) />0:    2)  J ...J/dfc....^»!; 

3)/-*0  as  flf+...+^,-»"00. (6.10) 

Furthermore, f(q1, ..., qn, 0) = f*^* •••^ ^ >  where f* is the 

law cf distribution of q^, ..., qn in the initial moment. 

Let us assume that we managed to find f from (6.9), (6.10). 

Obviously, f will also depend on parameters a1, 
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the absolute law of distribution of f for the conditions considered 

will be 

f ■s|»..|lCi^-...M.«i.^f(«»)tC«iiJ<i^i^M.     (6.11) 

Let us consider certain important cases, when a full realization 

of the above-stated plan is possible and when calculation formulas 

can be obtained. 

Let us assume that z' ' = 0, and z^ ' does not depend on time. 

In this case the distribution of t{q*,   ..., ci ), which will be 

established when t -♦ oo, will be determined from equation 

f|f-+|i[{^-*')'H- (6-12) 
We can easily check that function 

(6.15) 

t-i 

satisfies all conditions (6.10) and the equation (6.9). Distribution 

(6.13) is Gibbs distribution. 

The absolute law of distribution in accordance with (6.15) was 

determined by formula 

+•• 
Ttoi «.) = J • r• J Mi «.. «i- • «««»i)?(o») X 

^xeCo^daA.i- (6.14) 

The value f may be taken for the measure of reality of a certain 

form of equilibrium of the shell. 

Formula (6.14) gives a sufficiently full solution. 
(2) 

The condition of 5-correlaticn of the process zv ', taken in 

work [70], enabled us to obtain a closed solution in the form (6.13), 

(6.14). If we discard this condition, then the distributive law for 
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f from (6.9), and (6.10) will have to be found numerically. 

Let us note essential features of the recommended method of 

statistical analysis of the equilibrium of shells. 

1. Calculation by formula (6.14) does not require a preliminary 

solution of the problem on the shell equilibrium, an analysis of the 

number of forms of equilibrium, or a replacement of real dependencies 

between sags and external forces, by single-valued functions, etc. It 

is only required to know the expression of potential energy of the 

system through generalized coordinates. 

2. The calculation of the distributive law by formula (6.14) is 

reduced to taking of quadratures. Inasmuch as integrands in formula 

(6.14) are sufficiently smooth functions, these quadratures 

H      without any complications can be taken numerically, even 

J^     I    if for the increase of accuracy of solution of the problem 

1    we resort to the use of a large number of parameters 

ffffni     q^., ..., q . Here, naturally, no special questions arise. 

connected with the use of machines for calculation by 

formula (6.14). 

3. Formula (6.14) in principle considers all basic factors, 

determining the random character of bend of the shell, including such 

factors, as random forces, which change in time very rapidly, and 

forces with the period of change, comparable with the period of 

oscillations of the shell proper, etc. Moreover, it makes it possible 

to trace the process of change of probabilities in time. It is true, 

a resolution of the corresponding boundary-value problem for equation 

(6.9) will be also required here. 

But equation (6.9) belongs to the number of those equations for 

the solution of which numerical methods are very suitable. 

Fig, 51. 
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We consider the stability of a square cylindrical panel under the 

action of longitudinal conqpressing force Q (Fig. 51). In solving the 

problem we take into consideration probable deviations in the shape 

of the middle surface and the effect of random fast-changing external 

forces. 

The potential energy of the shell can be taken in the form [4]: 

+ ~-C«(S,-S)--|-«w}. (6.15) 

tr- s.-w+^. 

Here a is the side of the shell square, 2h is the thickness of 

shell, E is Young«s modulus, f is the sag of shell, f0 is the initial 

sag. 

We consider the shell with curvature parameters k = 12. In this 

case for the potential energy we obtain the formula 

8-1 (6.16) 
-2.3410,?). P-S/S«. 

In accordance with (6.13) conditional distributive law ^ (the 

distributive law for the determined ^0) is yielded by relationship 

m 

(6.1?) 

In equalities (6.1?) we introduce the designation 

^(C) = C«+ Ct(4g-4.36+ CM~ 3,86;, + 11.85(1-p)!- 

-23.41«^. 

The absolute distributive law will be given by formula 

/0G)=J7(c.gf «,)*,. (6-l8) 
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where q>(Co) ^s tlie iaw 0^ distribution of ^0. 

Let us determine, for instance, with the help of (6.18) the 

probability that the modulo displacement of C with respect to the 

modulus will not exceed one unity. Obviously, 

n-IVorf:»!' |fr«UfQ«M^       (6.19) 
—I        —I **m 

Results of numerical calculations by the formulas are given in 

Pigs, 52 and 55* for the case, when ^0 is subordinate to the triangular 

symmetric distributive law. 

In Fig. 52 p(D^0) is plotted, where D^Q is the dispersion of ^Q. 

Calculations were performed for the case when p = 0.5 (i.e., for the 

case, when the compressing force constitutes half of the upper critical 

value) and  for \k = 1;  0.5| 0.2; 0.1. Parameter \i  for a fixed shell 

depends on 5 the value, characterizing the working conditions of the 

shell. The larger the 5, the "calmer" the working conditions of the 

shell. From Pig. 52 it is clear that with a sufficiently small p., 

i.e., under not very "calm" working conditions of the shell, DCQ 

practically has no effect on p. 

In Pig. 55 p(D^0) is plotted whan p, = 1 and with different p. 

Prom Pig. 55 it is clear that P(D^Q) has a different character for 

different p.  If p < 0,5^ is the lower critical number for the given 

case, then an increase of D^Q 

results in a decrease at p.  If, 

however, p > 0.544., hen with an 

increase of D^Q the value P increases 

also. This circumstance paradoxical 

at the first glance, is fully 

explainable. 

t*0p 

Offl   40**4, ü 

P'M 

PH 

Flg. 52 

oflf msCg 

Fig. 55. 
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Indeed, the detailed analysis of a number of forms of equilibrium 

of the shell and the degree of their stability shows that when p > PQ 

(p0 is the lower critical load) with large positive CQ there  exists 

only one form of equilibrium, to which correspond ^, lying outside 

[-1, +13. 

With small positive CQ ^e shell has three forms of equilibrium, 

and one of these forms lies inside the segment [-1, +1]. 

However, to this form corresponds a higher level of potential 

energy of the shell than forms, lying outside [-1, +1]. Therefore, 

although with small positive ^Q there are forms of equilibrium inside 

[-1, +1], they give us little for increasing the probability of 

realization of inequality |C| < 1. However, with negative CQ there 

are also positions of equilibrium to which correspond £ from segment 

[-1, +1]. However, here for negative ^0 precisely these forms appear 

I     to be the stablest, and the larger the ^0, the stabler the corre- 

sponding form. Therefore, when we decrease dispersion of £0, 

decreasing thereby the probability of appearance of sufficiently 

large negative ^0, the probability p can decrease. 

If p < O.^kk,  then to every ^0 corresponds the only form of 

equilibrium of the shell, and the smaller the ^0, the less the value 

of ^, corresponding to the form of equilibrium of the shell. Here, 

of course, with the decrease of dispersion of £0 the value of p should 

be increased. We shall also note that if we decrease DCQ^ concen- 

trating the distributive law for ^0 on negative ^0, then we will 

always have an increase of p. Therefore, it is natural to pose the 

question of introduction of measures of technological, constructive 

and other order, by means of which we could create artificial 

dispersion., concentrating the law of distribution of CQ on negative 

values. 
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In Fig. 5^ we plot p against P for different Df0. Me can note 

that function p(P) experiences a sharp change when values of the load 

are somewhat larger than the lower 

critical number. These load values 

are characterized by the circum- 

stance that three forms of equi- 

p.  f-f- librium of shell correspond to it, 

and in two stable forms of equi- 

librium the shell has equal levels of potential energy. 

Graphs in Pig. 5^ are plotted for ji = 1 and, consequently, can 

be used only when the working conditions of the shell correspond to 

11=1, However, it is quite possible to plot a series of such graphs 

for various u« This would enable us by the given level of probability 

of the shell staying in a certain state under given working conditions, 

to determine the permissible scattering in the form of the shell's 

middle surface.  Figure 55 depicts the curve of the potential energy 

of the shell — external forces system. With a certain value of 

p > 0.544 the pop of shell will occur, if under the action of random 

impacts the potential barrier £* will be surmounted. Therefore, it 

is possible to assume approximately that for a fixed ^Q the proba- 

bility of pop p# will be given by the relationship 

P.-f/WdC. (6.20) 

Using the theorem of full probability, we obtain the following 

formula for calculation of the probability of popping: 

ft*- ]P»C;)T(W«.. (6.21) 

Further, if we take into consideration that popping can take 

place only when ^0, satisfies the inequality 

^<C.,(P). (6.22) 
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where ^^ is a certain number specific for every P, then formula 

(6.21) can be written in the for® 

-Tl- 
Results of calculation^ by the formula (6.25) are shown In Pig. 

56. Here we can also note the circumstance that with the increase of 

D£ö the probability of popping decreases. This is explained by the 

fact that by decreasing D^0, we render improbable 

large modulo values of £« (we remind the reader 

that the distributive law was assumed to be 

symmetric). But with large positive CQ popping 

does not occur at all, and for large negative ^0 

popping is unlikely, since the pre-popping state 

of equilibrium in this case has a lower energy 

level than the post-popping state. 

In conclusion let us note that in using the above-stated method, 

it will evidently be necessary to divide all possible real conditions 

of exploitation of shells into calculation instances according to the 

level of "calmness" of the work, and for every calculation instance 

to establish \i  experimentally. 
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CHAPTER  VI 

STABILITY OF SHELLS BEYOOT) THE ELASTIC LIMIT 

§ !• Formulation of the Problem 

Phenomena of Instability are characterized by the fact that wiM 

certain values of external forces, along with given (zero-moment) ot- 

of equilibrium of shell other states of equilibrium are found to be 

possible also. 

Let us investigate stability in the case of elastoplastic 

state of material of a shell. 

Following A. A.Il'yushin [2], let us examine a deformed state 

the shell infinitely close to the given state, and characterized by 

elongations exx + Se^, e  + 5e  and shift « ^ + 

+ 5e  in layer ABC (Fig. 57), located at a ilntan 

z from the middle surface; variations of ntr :.r 

5X . 5Y , bx ,  which can be calculatod on tlu- x'  y'  y' 

basis of laws of plasticity correspond to del. rma- 

>.. 

tlon variations 6© x* ^evv* 
öexv* Inasmuch as in this case we speak 

of real variations of deformations, and not about virtual ones, a;; 

in the variational equation of equilibrium, it is necessary to dis- 

tinguish two possible cases; the case of loading and the case of 

unloading, inasmuch as formulas, connecting stressed and deformed 

states arc different here. 
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The loading regton is characterized hy the fact that in it at 

the expense of variations 5e , ,,,, öX„ the intensity of deformations 

and stresses increases; in the region of unloading however, these 

values decrease. The surface, intersecting the thickness of the 

shell and separating the regions of loading and unloading, is 

determined, consequently, from the condition of equality to zero 

either of the variation of intensity of deformations or intensity of 

stresses. I» view of the fact that the variation of the work of 

internal forces in one unit volume of the shell is equal to 

i.e., is proportional to 6e., then the equation of the above surface 

will be 

*>„+*r,fe„ + Xyfc,,=0. (1.2) 

It may be obtained directly by using a variation of formula 

'^VfV ^+^+«a«+T^ t1-^ 

and simple transformations according to: 

and ^ 

{J.r0 o^YKl-Kfi + Yl + ZK],. 

In the loading region variations of stresses can be found by 

means of differentiation of formulas (1.^), since they take place both 

in the principal and similar states of the shell: 
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where a,  and e. are connected by a diagram of ertension 0. = *(e.), 

so that 

s(i)-i(i-f)<0- (-') 
In the unloading region variations of stresses and deformacionG 

obey the Hook's law, and the connection between them can be found 

from (1.6), if we assume that 0.  = Eei: 

As we did in the general theory of shells, we will proceed from the 

basic Kirchhoff»s hypothesis, namely; we assume that variations of 

deformation of a layer of shell ABC (Fig, 57) are expressed by linear- 

relationships through variations of defomations of the middle surfacr 

and through its distortions: 

fc«8*«!—»1. *?» = ««—ac* ^^(t,—«x,), (1.9) 

while here with e., £p, 2e,, we designate infinitesimal variations 

of deformations of the middle surface, and with n*t  K?, K = T — 

infinitesimal variations of its curvatures and torsion. 

For convenience of calculation we will introduce designation 

of dimensionless values; a IJne above the value of stress will be 

used to note the relation of this stress to the intensity of stresses 

v 
JLL^JI^V,, ii^iL^ii^s       (i.iü) 

These values are known; instead of distortions n* ,  Hp, H, and 

ordinate z we will introduce dimensionless values: 

~x,«^, Y*,«"^, Y*»****'  T^*" (1.11) 
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Let us now write formula (1.1) in the form 

le,««-»««-.^. (1.12) 
where v   ' 

If we now use zQ  to designate the ordinate of the surface, separating 

the regions of loading ar:d unloading, then according to (1.2) and 

(1.12) we will ohtain. 

*--•* = ■=- t1-14) 

To be specific we will assume that the loacing region adjoins the 

external surface of the shell z -+-^,    In this case for z > z0 there 

are formulas (1.6), where, according to the adopted designations of 

dimensionless values, they can he rewritten in the form: 

«•=(^-^)s'-«1-^+t<--^ 
*s.-(*;-ffi'C*--'.)+*:{-,-^. (1-15) 

Formulas (1.8), taking place in the unloading region z  < z0, will 

be written thus: 

W,-£K-v). (1.16) 

Mff=-|-£(.,-v). 

As we see from the comparison of formulas (1.15) and (1,16), on the 

boundary of loading and unloading regions (z = zn) variations of 

stresses, in general, are not continuous functions of z. Their 

infinitesimal Jumps are proportional to difference E - *, '..e., 
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they disappear, if the material of the sh.ll exceeds only very little 

the limits of elasticity with respect to the value of intensity of 

da. 
deformation e. (here, obvl^us7y, -?— may be as small as desired). 

The discontinuity of stresses disappears also, when the variation of 

the stressed state is simple, i.e., if the variations of stresses 

are proportional to the active stresses; in this case on the boundary 

of regions of loading and unloading they will turn into zero together 

with the variation of intensity of stresses 5a. (or intensity OJ 

deformations 5e.), since they will be proportional to 6a.. 

Thus, speaking in principle, the discontinuity of values 6X 

on boundary z = z0 will take place in those cases, when the loss 

of stability of nhell is acconpanied Try  complicated leading of 

elements of the material, i.e., either the discontinuity or continuity 

of stresses may be established after the problem on the stability 

of the shell is solved. Hence it is clear that the degree of 

accuracy of the solution of the problem of stability of shells, 

accuracy meaning the degree of conformity of mathematical solution 

with experimental data, will be fully sufficient, if values of 

jumps of stress variations on the z = z0 boundary v/ill be small in 

comparison with variations of stresses on the shell's surface 

otherwise, an experimental check of solutions is necessary. The 

difficulty, which we encounter here, is inevitable not only within the 

framework of the theory of small elastoplastic deformations, but 

also from the point of view of any other theory of plasticity.  Let 

us note that intermittent change of stress variations during transition 

over the boundary z = z0 is the inevitable result of continuity of 

deformations, their intensity and the intensity of stresses, inasmuch 

as transformation of material from the plastic state into the elastic 
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state with the constant intensity of stresses is connected with 

redistribution of stresses. 

Formulas (1.15), ^1.16) show that stress variatioij are Ji.^.ar 

functions of ordinate z, while, in contrasc to the caii of elastic 

loss of stability, they depend not only on deformatiais and mechanical 

characteristics of the shell's niaterial, but als^ on stresses acting 

prior to the loss of stability, and consequently on forces. This con- 

stitutes the specific feature of the phenomenon of loss of stability 

of shell beyond the limits of elasticity. 

In order to be able to write the differential equations of 

stability, it is necessary to find the expression for variations of 

forces and r jments, acting on the element of the shell, inasmuch as 

they ensure from equations of equilibrium of the element. 

For determination of forces and moments we have: 

T t 

2     J *     .J 

* 
T 

(1.17) 

* 
T > 

onr- zohe  zon* 

Fig. 58. 
[nJi = pi = plas- 
tic; ynp = el :- 
= elastic] 

Mf^^MI,» f ISfdz;    IH~ tiXfdz. 

~T T 

For calculation of these integrals firnt of all 

it is.necessary to divide the shell into the follow- 

ing three zones: in the first zone (Fig. 58) the 

shell is assumed to be in the elastic state,* and 

*If prior to loss of stability in a certain zone of the shell it 
is in the elastic state, then with infinitesimal variations, generally 
speaking, it will remain elastic. 
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therefore, according to (1.16), (1.17) for  this zone we have. 

JLiS~fv (1.18) 

30 3  ^ 

Here,  the cylindrical rigiditv is designated with D,  as before 

12(1-^ 

The second zone is characterized by the fact that prior to loss of 

stability the shell material in it was deformed plastically, and 

after the loss of stability a part of the layer converts into the 

elastic state, i,^,, in this zone there are both a region of active 

plastic deformation (loading), and a region of unloading. Each of 

the integrals (1.17) in this zone should be divided into two parts, 

from z = - | to z = z0 and from z = z0 to z = + |, where the first one 

should be calculated according to the formula (1.16), and the second 

one — according to (1.15), for instance: 

2 »i J 

-I 

Thus, during calculation we encounter the simplest integrals of the 

type: 

Let us use the adopted designations of the known values: 
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I   Then, calculating the first group of Integrals (1,17)* we will obtain 

I   expressions for variations of forces: 

^-(«r,—1-Wf) = 2(1-•+^) ., + •{! -^K+ 

+ (lk-«)%(l-.%)**. (1.21) 

After calculation of the second group of integrals we find the 

formulas for variations of moments: 

Ji.(MI>-XMf.) = 2(2-.+^h + 

1 +(^«)(l~^(2+^.--^(I-^).1. 

^(M^—l.M,1)ö>.2(2—-f^^H- 

^|^«-M2—f^K+ (1#22) 

+ 3(X-«)(I -^(2 +^) ^x -i|i (| -■ij)e,. 

In the third zone of the shell deformation of the shell which 

was plastic until the loss of stability remains plastic also after 

the loss of stability, i.e., the region of unloading is absent. 

Therefore, expressions of variations of forces and moments are obtained 

from (1,17) according to formulas (1.15), 

Jr4S = -|-(I-«).,_(X..ffl)Xy.. 

30 
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Formulas (1.18), (1.23), and (i.24) for t^e first and third 

zones establish linear uniform relations between variations of 

forces and moments, on the one hand, and deformation of the middle 

surface and its distortions — on the other hand. However, in the 

zone of elastcplastic deformations (second) these relationships are 

not linear, while they remain uniform. This can be seen fror, formulas 

(1.21), and (1.22), which include value IL, which is a linear- 

fractional function of the zero degree with respect to e and H : 

-  ^»-fFyH-fa.V, (1.14') 

It is very essential that in this expression at IL we can exclude 

deformations e , expressing them through variations of forces 6T,, 

5T2, and 5S. Multiplying the first equation of group (1.21) by 

X , the second by Y and the third by X and adding them up, we see 
»y »y 

that deformations e are included in the obtained equation only in 

the form of certain combinations of e; but since from (1.14) e = 

- ZJH, then, excluding this value, we will obtain: 

M,„7.).-1.^-4 fr*±%±gg -0. (1.25) 

Let us designate with cp the dimentionless value, included in this 

equation and depending on variations of forces and curvatures: 

v=Tnr—-w* "• (i.26) 

Solving quadratic equation (1.25), we find. 

t- 1 • (1.27) 
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I 

where C is the relation of the thickness of the plastic layer of the 

f    shell to its total thickness (Fig. 58): 

C = ip—-^-. i,«!-.^ (1.28) 

Thus, in formulas (1,23) and (.122) "z« means either the expression 

of this value (1.14!) through deformations, its expression through 

variations of forces and distortions (1,28), 

Expressions of forces and moments in the zone of elastoplastic 

deformations of shell are somewhat simplfied, if before the loss of 

stability the plastic deformation is small in comparison with the 

elastic äeformation. Rejecting in (1.2:L) and (1,22) small vilues of 

the order of cu in comparison with 1 and replacing "ZQ according to 

forruula (1,28), we will obtain: 

t 

J.«„^+^, 

-L^,—!.^ «, + ^(3-20«. (1 30) 

Fundsunental simplification of basic relationships (1.21) and 

(1.22) occurs in those cases, when from certain considerations value 

£,,   i.e., the relative thickness of the plastic layer in the second 

zone, can be considered a known function of coordinates of a point 

of the surface. Actually, here the relationships indicated, as 

well as relationships (1.25) and (1.24), become linear and uniform 

with respect to force factors of deformations and distortions, and 
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therefore, tne  problem on the stability of shells beyond the limit of 

elasticity in the mathematical sen:5e will be somewhat more complicated 

than the corresponding elastic problem. 

We will not write out here the differential equations of 

equilibrium of the element of a shell of arbitrary shape, inasmuch 

as they do not differ in any way 1 "cm equations, adopted in the 

theory of elastic stability of shells, and we will limit ourselves to 

certain remarks only. In the general instance this system of five 

first-order differential equations on forces 5T., 5Tp, 5S, moments 

6M^, 5M2, 5H and serving forces 6rL, 6N2; the first three equations 

are obtained from the condition of equilibrium of projections of 

forces 5T,,, ÖT«, 5S, OIL, 5N2, on directions of x, y, z axes of the 

basic trihedron (Fig. 57 )j the last two equation,- are equations of 

equilibrium of moments of forces with respect to x, y axes. In view 

of the fact that components of deformation e., e2, e, and distortiona 

ttj* *>t2, K-, are expressed according to the known Love's formulas with 

three components of displacement of the point of the middle surface 

u(a, ß), v(a, ß), w(a, ß]>  the above-derived formulas (1.18), (1.21), 

(1.22), (1.25) and (1.24) allow us to express values ÖT^ 5T2, 5S, 

and 5M,, 5M2 5H with u, v, w, and therefore, five equations of 

equilibrium will contain five unknown functions:  5N., &N2, u, v, w. 

To them we must add boundary conditions, of which static boundary 

conditions are reduced to the fact that variations of external forces 

on the boundary of the shell are equal to zero, inasmuch as the loss 

of stability of the shell should occur in the presence of constant 

external forces. Another formulation of the problem of stability 

consists of the fact that on the basis of relationships of type 

(1.21), (1.22) and expression of en, nn>  through u, v, w we set up 

differential equations of compatibility of deformations, expressed 
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I    |    through force factors 5T-, 5T2, bS, 6M., SMp, 8H; to the^e equations 

we add five equations of equllloriiun and boundary conditions. 

Finally, the third formulation of the problem consists of application 

of the variational equation of equilibrium of the theorem of the 

minimum of energy. 

§ 2. Closed Cyliridrical Shell 

I Let us examine the cylindrical form of the loss of stability of 

a cylindrical shell, compressed with external pressure q and axial 

f force P [2]. Let us select axes of coordinates 

x, y, as it was shown in Fig, 59. In view of the 

1 

* IM mir fact that external forces are constant along the 

* x axis and the shell is a circular cylindrical one. 
Fig. 59. 

stresses in it everywhere are constant and equal: 

*   v      P 
r,=_,-f. *•—ISP x'-0- (2-1' 

The problem on the stability of such a shell may be solved exactly: 

sag w is a function of angle 6 only, and therefore, 

-=-=0-   --F(5-+-)- 
Furthermore, from the equation of equilibrium of variations of forces, 

acting on the element along x axis, and condition of constancy of the 

stressed state along the x axis it follows that 

51^ = 6S = 0. 

Actually, in view of the fact that the shell in the direction 

of x is assumed to be sufficiently long, its cross section always 

remains planar, and therefore, shift E-,  is absent,- from the third 

equation of group (1.21) we have 5S = 0, Consequently, the equation 

of equilibrium of forces in the direction of x axis has the form 
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«Ti »40.  tr^o. 

Further computations are simple. However, they are significantly 

simplified in one particular case, when fore » F is equal 

.?. 
P = TTu q, 

i.e., when the very samp uniform pressure as on the lateral surface 

act on shell bottoms. In this case 

yv = 2X , S = X -hi   =0, (2-5) 
y    x' x   x  2 y   ' 

i.e., the strain before the loss of stability is plane, and thersfors, 

it will remain plane after the loss of stability also, consequently, 

the elongation of e1 will be equal to zero (e1 = 0). From the first 

equation of group (1.21) we have here: 

5T, 0, 

and from the second equation we can find deformation of e2, which, 

however, subsequently will be needed no longer. Equations (1.22) 

will be transformed to form: 

where it is designated that: 

(2.4) 

Cl + KT^P 
(2.5) 

»w   l~ 

(2.6) 
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1 

Equations (2.4) give the following expression for the tangential 

flexing moment. 

Ml, ©[l-f-Ad-^-.*)^«,. (2.7) 

or, since under the condition (2.5) 

then 

«.—«s. (2-ö) 

It is interesting to note that from all possible values of Y 

under condition (2,5) the least rigidity of shell is obtained. If 

the loads acting on the shell do not satisfy condition (2,5), then 

expression of moment 5M2, detennined by formula (2.7), can be assumed 

to be approximate. Furthermore, from the condition of equilibrium 

of internal moment 5M2 and moment of external pressure q in any 

section 9 we have: 

5M2 = qRw + c = c - hCTjY w. (2.9) 

Comparing this expression with (2.7), we obtain a differential equation 

1 -J — iWssC, 

D [•-♦--f-«-*-*)^ j 

where c and c1 are intercnanected arbitrary constants. The least 

value of the expression, enclosed in braces and corresponding to the 

periodic with respect to 9 change of w, will be T—. Thus, using 

expression of flexibility i and Felecting as the characteristic value 

of dimension of I the length of circumference 2TrR(z = 27rR), we obtain 

the critical value 

,/ 3£ 4(l-*)-3(I-*-»)V» 

(2.10) 
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In particular, under condition (2.3): 

In the absence of axial force (X„ = 0, Y„ = -a,) we have: 

'-«|/^0^+3*). (2.12) 

Now we will consider the axisymmetrical form of loss of stability 

of a cylindrical shell, compressed by axial force P and lateral 

pressure q. 

Stresses prior to the loss of stability are expressed by formulas 

(2.1). From the condition of symmetry and equation of equilibrium in 

the direction of x axis it follows: 

6S = 6^ = 0, E = x = 0. 

The exact solution of the problem posed will be obtained for that 

case, when the axial compressing stress is twice as large as the 

tangential stress: 

Xx = 2Yy, P = 4TrR
2q. (2.15) 

In this case S = 0, and therefore, from formula (1.26) we have 
if 

9=0, i.e., the relative thickness of plastic layer ^ is constant; 

formulas (1.2?), (1.28) and (1.25) give: 

z0 = 1 - 2C = -1 + Vk. (2.14) 

From (1.21) we will find 5T2 and e1 + -^e2: 

^- = 2(2-«)+«?,).,+-^(l-^)xt+ £-^* St(l-F,)««. 

-2(2-« + ^)(.l+-i.tt)--|-[«(I-'3)(«l + ^.H) + 

H.J.(x_tt)X,(l-?,)•«. (2.15) 
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These formulas are somewhat simplified when S = 0; when TQ = -i + 

+ Jk they can be considered as approximate for arbitrary values of 

S also. From the first equations of group {1.22)  we have the 

expression for the bending moment 5M1: 

46Mt 

D 

X(2+^)X>-^-(l-iö(e1+-lei). (2.16) 

We will designate the sag of the shell with W(X)J; then distortions 

n*,  Hp and tangential deformation e? will be expressed as: 

—XA+J'^-^(H+-J-».)+5/.- 

Excluding e. + ■^E-  from (2.16), we find the following expressions for 

5M1 and 6T2 through w; 

m»-(i-t.xxj)(^+^.)+xxÄ^. 

+ -l-A(X-»)(2-l^),Sf(x^ + f,^-). (2.18) 

Z-~^-«»)(2-V^ 

where function f  is expressed through (2.6), and x has the value: 

(2.19) 

Formulas (2.18) are significantly simplified under condition (2.15), 

when. 

HI + VS+—.—^—rl- I    4(.-.+-i-./r)J 

lMl ÄO^ + J^j. W',«-£Ä(l~fl,+ 

+ T^)f- (2.20) 
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For solving the problem on stability it remains to write the 

differential equation of equilibrium, 

-^+r»-£r+Jr's0- (2#21) 

It is easily integrated in the general case, when SM^^ and 5T2 are 

determined by formulas (2.18), and especially in the case when S = 0, 

Introducing (2.20) here, we will obtain: 

 '_> 

where with i we designate flexibility» 

^f~li£nr-£ + - i L-w=0-        (2.22) 

1 - TT- 

If the length of shell is great in comparison v/ith the radius and 

the ends are freely supported, then sag w can be assuired to have the 

form 

w = C sin ax, 

while the least value of the critical force is obtained from condition 

1= -l-|/3fe(l~«+-|-«Vr*). (2.25) 

The investigation of other cases of stability is based en 

application either of equation (2.22), or (2,21) with values ÖM^, 

5M2 according to (2.18)j it is entirely analogous to investigation 

of corresponding elastic problems. Inasmuch as differential equation 

(2.21) is linear and contains only even derivative of w. 

The problem of stability of the circular cylindrical shell was 

very comprehensively investigated by V. I. Korolev; he inspected the 

h 
♦Here terms of the order of •« in comparison with 1 are rejected, 
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stability of the shell under axial compression, during the s/jnultaneous 

action of internal pressure and axial compression, during axial com- 

pression and presence of preliminary internal pressure, etc. 

Recently A, A. Il'yushin [71] proposed a new formulation of the 

problem of stability of thin-walled structures containing rod elements, 

for the case, when it is in the elastoplastic state. 

§ 3. Approximate Method of Investigation of the Stability of 
Shells Taking into Account the Physical and  

Geometric Nonlinearity 

A study of the stability of the shell "in the broad view" con- 

siders only geometric nonlinearity which signifies, as was noted 

above, the retention of quadratic terms in the series for expression 

of deformations through transpositions, for instance: 

« ss   Hm-*- 
Here, independently of the value of load it was always assumed 

that the material, in the process of deformation remains elastic, 

i.e., the relationship between stresses and deformations is linear. 

However, depending upon the geometry of the shell and properties 

of its material, with certain values of loads deformations can 

appear, which cannot be described by linear relationships a - e, and 

then it is necessary in calculations to consider other (in general, 

nonlinear) relationship between a and e, which takes into account 

the change of physical properties of the material in the process of 

loading. Attempts were made to account for this nonlinear relation- 

ship between a and e by means of introduction in the calculation of 

Prandtl's diagram or diagram with linear strengthening. 

Of some interest to us, from the point of view of necessity of 

obtaining of a more complete concept of the work of shells, is the 
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allowance, in the theory of their calculation ir. corresponding stages 

of the stressed state ana deformation for both foms of nonlinearity 

— the geometric and the  physical. The complexity of the problem is 

evident even from the  fact that from the moment of appearance of 

plastic deformations It is already necessary to take into considera- 

tion the discrepancy between the laws of loading and unloading. Such 

an allowance leads to very cumbersome calculations. 

The problem is somewhat simplified, if one were to construct a 

theory based on the hypothesis of nonlinear-elastic material, 

assuming the coincidence of laws of loading and unloading. 

With such formulation of the problem the elastoplastic proper- 

ties of the material are not considered. Nonetheless, results of 

the solution can be applied to a broad class of materials (for 

instance, alloys, plastics, steel in th^ reinforcing zone in the cace 

of active deformation, and others). 

Let us give the results of research by I. A. Lukash [72], which 

assumes for calculation of sloping shells that Kirchhoffs'-Love's, 

hypotheses are Just, and assumes the material to be nonlinearly- 

elastic, and that the following laws: 

a = G(E) and a. = a1(ei), (3.1) 

coincide, which takes place, for incompressible material (v = 0.5), 

Relationship (3.1) may be written in a sufficiently general form: 

(3.1) 

l-l 
s^. 

where A. and k. are certain constants.  In examining particular cases 

of this relationship: 

a) a = Aek (3.2) 
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A and k are letermined experimentally from the examination of diagram 

of stretching (compression), 

b) a = ce(l - ae) (5.5) 

constants c, m and a can be found according to the conventional dia- 

gram of stretching. 

Geometric nonlinearity is taken into consideration, as in § 2, 

by introduction into the examination of quadratic terms in exprescions 

of defoliations through displacements of the middle surface: 

At       to       Um      im 

^ T At ^ dt  % ^--=- + -=-4 

On the basis of Kirchhoff-Love's hypothesis deformation of an 

element of a shell at distance z from the middle surface will be: 

*«# = 

•w~*w 

Introducing (3.^) and (3.5) in the expression for intensity of 

deformations (when v = 0.5): 

•*"sw/ti+i'+,j,,,+ ^,k (5.6) 

we v/ill obtain: 

where 

^rV*1 + ^ + ^. (5.7) 

i 
*; - 2eA + Vy + **** + V* + e'A»' (3.8) 
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Introducing dimensionless variable 

'«-f-. ("-1<«+I) (3.9) 

we have: 

where 

Further 

where 

c, .,-«,+«/; ty=«e, + «^; «^««i^. (5-10) 

«i-v-~: «t=«,|-; «i«««*A (3.ii) 

^—^V^ + V + V«. (5.12) 

(5.13) 

Deformation energy of nonllnearly-elastlc and elastoplastic 

body according to [2]  Is given by formula 

where 

V = JIJ[1^+V]^^ 

jk^iL+fS+iL.    6-^ + ., + «.. 

(5.14) 

For an Incompressible body the volume deformation 6=0 and 

(3.14) will be written as follows 

V-JJJ[j0i*i]^^ (5.15) 

or taking Into account a. = a^(ei) — 

•i 

V«JJJ[J,/(«<)rfe<]d*dy(fe. (3.16) 
o 

The work of external forces W Is determined by the formula 

W-[Uqjt + q/>+qMäxdy (3.17) 
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I 
*'   (qx» %r»  <lz are components of loads in the directions x, y, z). 

Equating the variation of external work to the variation of the 

work of internal forces, we will obtain the relationship 

5W = 5V, (3.18) 

which interconnects four functions, 

1. Function FQ of the middle surface of shell with an initial 

load (this function is included in (3.18) through curvatures of the 

sloping shell): 

which are included in (5.4) and (5.6)j 

2. Function F of the middle surface of the shell with load q, 

In equation (3.18) this function is included through transpositions 

of u, v, Wj 

5. Function of load q(x, y, z); 

4, Function ^(e^), which describes the physical properties of 

the material. 

Let us assume taat we are given the function a. = a(e.), the 

shape of shell prior to loading F0 = F0(x, y) and the function of 

load q(x, y); it is required to determine the shape of the surface 

of the shell after loading. Let us examine an approximate solution 

of this problem, assuming the exponential dependence of stresses on 

deformations. Substituting (3.2) in (3.15)* we will obtain: 

V^-A-Wet+idxdydz. (3,19) 

Here the triple integral extends onto the entire volume of the 

shell. When k = 1 and A = E we will obtain the deformation energy 

of a linearly-elastic body: 
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V-fJJJ<<Mufe. (5.20) 

When k = 0,  A = as we will have the deformation energy of a rigidly 

plastic hody 

V~9t^je,dxdydz. (5.21) 

Let us introduce in (3.19) the value of the Intensity of deformation 

from (5.12) and, taking into account (5.9), we will obtain the 

expression for deformation energy: 

^s f f f(ft| + V +W 2 dxdydi. (5.22) 

Introducing designations 

e2 = ^ + b2t + b t
2, (5.25) 

5 

we will write deformation energy in the following form 

(*+l)3 

^   IVL^..* (5.24) 
i 1  _« _» -| 

Integration with respect to t can be performed by Simpson's formula: 

j>Htf = |-[5I_pln J^HJ-±(3+1+ ,*+« +4«*+'). (3.25) 

where values 

«.-V^ + ^ + ft,.  t.-V^   *l( = Vr*i-*'t + *. (5.26) 

are obtained from (5.25) after substituting in it respectively 

t = +1, t = 0, t = -1, 

Finally for the deformation energy we will obtain 

V ^ "ET * TFT J J^1 + ^ + 4<$f,)<fc% (5 • 27) 
3 ' -m—k 
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here the double integral is taken with respect to the entire surface 

S of the shell. Executing the integration, we will obtain 

/-fJ^^--|.f. + -f(F1 + F. + F,+F4). (3.27') 

where F. are values of integrand in angular points of the square with 

side 2. For the shell, square in plan with side 2a, which is under 

the action of an evenly distributed load with symmetric boundary- 

conditions, we will obtain 

/--fW + F. + F. + f. + fJ- (5-28) 

If, for instance, 

2a   2a 

then 

■*•* 16«. (5.29) HJH^'*^ 
-a -a 

will be the exact value of the integral. According to formula (5.28) 

we will obtain 

which as compared to (5.29) gives an error of 3%,    Taking into 

consideration (5,27)* the expression for energy can be given in the 

following form 

V~ ^-^-AiM^. + ^ + f. + IV+f*)- (5.50) 
(fc + Da« 

Here 

^««t+' + ^+' + ^tH. l~0tlt2,3,A, (5.51) 

and values e^, eH, e0  are determined by formulas (5,26). If only 
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one transverse load is in effect, then the work of external forces 

will be equal to 

r« I \ qafdxdy. (5.32) 
—m -4 

Total energy of system 

U = U(u, v, w) = V - W. (5.33) 

Let us present displacements in the form of series: 

«=2Cä* «""S^* ""S^ 
where ü., v., and w. are the prescribed functions of displacements, 

satisfying boundary conditions, and c., cl and W. are the coefficients 

sought. Introducing (3.34) into (5.33) and setting up the conditions 

of extremum of energy U: 

at     ~    &ü     *    au 

(3.34) 

(,. ^_ = o. ^- = 0. (3.35) 

we will obtain systems of algebraic equations for determination of 

coefficients c., c. and w.. This system of nonlinear aquations with 

fractional indices may be solved by approximation or graphic methods. 

After determination of coefficients c., cl and w. it is not difficult 

to find from relationships (3.5) and (3.4) functions of displacements 

and deformations. 

Upon the solution of this problem it is very inportant to 

select suitable functions u., v. and w. in such a manner that they 

would satisfy kinematic boundary conditions and describe as well as 

possible the deformed surface of shell. It is useful to present 

functions TL, v., w. in the form of the product of two functions, 

each of which depends only on one coordinate: 
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For the latter we can select, for instance, beam fundamental 

functions, corresponding to the boundary conditions. The methoJ 

% presented is rather labor-consuming for the calculation of shells 

taking into account the physical and geometric nonlinearity. 

Let us examine a shell with displacing edges. In this case it 

is possible to construct an approximate solution, applying a simpli- 

fied formula for the intensity of deformations: 

Introducing here deformation values from (3.5), we will obtain 

I 4~y|:fo+v+^ + v')~-^|4*+K*): (3.38) 
I here 
« «-«*+'r   « = «, + V (3.39) 

Introducing (3.38) in (3.19), we will obtain the following 

expression for the work of internal forces: 

1 

+4 

( + 1)3* IX 
(3.40) 

or after integration with respect to z: 

„ **> fK-'-rr-G—r) *+» 
m- i »  dxdy' IF (3.41) 

where integration extends over the entire area of the supporting plan 

of the shell. Let us find the relationship between the load and 

sag. Being limited in (3.27) by one zero point, we will obtain 

(*+!)(* +2)3« 

tio 
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Here e0 and K0 are values of magnitudes (3.59) at point l-|, ^1. 

Further, taking into consideration (3.^), we will have: 

■2 

where a.Q,  w0, b_ and e are unknown coefficients. 

Here it is assumed that 

Further, let us assxane that the relationship between coefficients 

c, c. and w0 is the same, as in the elastic theory. Let us assume 

(3.^) 

that.: 

C — VtJtß, -— Oa. 
* (3.45) 

where a1, a?, h., b« are coefficients to be determined. From (3.^5) 

we have, 

c + Ci-»,(Mi+*A)—^-(«* + ft,). (3.^6) 

Introducing (3.46) into (3.44), we will obtain: 

*, = ».(*, + *f)S+-|-m; (3.4?) 

here 

g^a.CMi + Mi),^. ^-(^fft^fl,««; (3.^8) 

taking into account (3.1?) and (3.29) for the work of external forces 

and taking into consideration the relationships given, we will 

obtain the following expression for the total energy of the system: 

(*+l)(* + 2)3 * 

-qw™, (3.49) 
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taking the derivative with respect to w0, we will obtain the relation- 

ship between load and sag, which after substitution of values (3.^^) 

and (5.47) will assume the following form (the formula is written 

for a cylindrical shell square In plan, when ^ = 0. b = a)i 

 5r—     ^  
ü+l)(t + «3 

(5.50) 

where 

■2   * 

values s, m, b, c and WQ still remain unknown and will have to be 

determined. 

Let us introduce dimensionless parameters: 

>P0*. ■% 

(5.51) 

(3.52) 

In these formulas tQ  is the initial rise, and a is one half of 

the side of the supporting square plan of the shell. Let us assume, 

in accordance with their dimensions, that: 

„_i; ^i; ^.^ (3.53) 

Substituting (5.53) and (3.52) In (3.50), we will obtain: 

a-vK+T'+f]'-?»'6 

ff-v[*t.+ft-f]5-??,fc 

c-i^-ü^U+f)-?«*: 
(5.54) 
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After substitution of (3.52) and (5.5^) in (3.50) we will have. 

where 

p-i>AU*,)»+,|c#(* + 2)-6-|-(6-)*+,r?(* + 2)-Pß.5*. (5.55) 

(5.56) 

D.= i^.2*+« 

(i + I)(k + 2)3 « c^ 
^(f) 

a x»«!-« (5.57) 

Formula (5.55) expresses the general relationship between 

dimensionless load p and sag | with an accuracy up to the so far 

unknown coefficients m, b0, s, w0, "CQ. These coefficients will be 

found from the following two conditions. 

1. When k = 0, A = a and IQ = 0 formula (5»55) should yield 

the solution for the rigid plastic plate: 

^ 16/3«« 
(5.58) 

2. When k = 0 and A = E formula (5.55) should yield the solution 

for the elastdc shell: 

Setting up fron? formula (3.55) these conditions (1) and (2) 

and equating the corresponding coefficients, we will obtain a system 

of five equations for determination of five unknown coefficients. 

Solving this system, we will find the following values of coefficients 

m, b0, s, w0, c0: 
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M     .*„• 

(3.60) 

In these formulas 

fc.-l ±yii^ 4 (3.61) 

Since coefficient ß. 2 has two values, then there will be two 

relationships (3.55) also. Of these, the one which will yield the 

lowest load value for the same sag, will be used for the calculation. 

As a numerical example let us find a relationship (3.55) for 

the cylindrical shell, square in plan, with the following dimensions: 

a«20cJt; h*=0,7cM;   /9«la6c«; 

U = -^-2f29; 15 = 5.24. 

Physical characteristics of the material, determined by the extension 

diagram are: 

B-lJ&'l&ks/cm*',    A = 4.25810,Kg/cm2j    *-0.137. 

For a shell hinge-supported on the edges of coefficients a. for the 

elastic problem will be: 

«j^S.eS; 0, = —19.62; «, = 9.92; 

«,-22.12^- (i»«-0,5). 

Using formula (3.61) we will calculate coefficient 

! 

Pu-li/»-1!^-! ±0.332; 

?» = 1.332; p.»0.668. 

Using formulas (3.60) we calculate coefficients F0, m, s, wL, c"n: 

ft, = 18.5; in-0.266; 5» =-0.1066; 

i^, - + 0.02; 5 = + 3.0295; A, = - 0.0504; »„ = + 1,401. 
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Substituting these values first in (3.^6),  and then in (3.55), we 

will obtain 

for   ?, = 1.332 
A-DAI(0.133C + l.054),'w(3.822U~4.69l)- 
- (0.13%-1976)'.«» (3.822S-8.I35)|^ »; 

for?, = 0.668 (5.62) 
P. =* Dt 1(0.13% + l^)'-«»(3.8221 - 11,762)- 

-(0,1336-l^e)'«'(3.8226- 15.204)|^«». 

Value DQ *-.„  will be found by the formula (3.57): 

'•.w 
4.2S8-iy 

JI.IW,, 

I.I37-2.I37-3 « -3.02« 

^ f»Y,-t-,,,)= 3.1871. 

ma* 

Graphs of relationships (3.62) are plotted in Fig. 60 with 

solid lines ß. and ß-. 

The calculated shell was tested in an Institute of Mechanics, 

Academy of Sciences USSR for an evenly-distributed load. Sags in the 

center of shell were measured during 

the tests. Experimental p - ^ relation- 

ships for two samples were also plotted 

in Fig. 60 with dotted lines curve I, 

calculated by the formula (3.59) was 

plotted above them. 

As can be seen from the picture, 

curve I, calculated according to the 

linear-elastic theory, but with physical 

linearity, lies higher than the experi- 

mental curves. This is explained by the fact that in the given shell 

large sags are accompanied by large deformations, a significant part 

of which lies in zone of hardening. 

Relationships (3.62) yield curves ß. and ßp which, when 

tKeoreiiCal 
according to 

*"  of tests 

*■* 

Fig. 60. 
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1 

deformations are small, are located higher than the experimental 

curve and even higher than curve 1, calculated according to the 

linear-elastic theory. This is explained by the fact that when 

deformations are small formula (3.2) yields larger values of elastic 

modulus than those, which are obtained from Hooke's law. When 

deformations are large this curve is located lower than the experi- 

mental curve. 

Curves 1 and fL, 3p intersect in points a» and a". This part 

of curves ß1 and ß2, which is located to the left of points a' and 

a", must be rejected, since in this zone the material follows Hook's 

law; the behavior of the shell in this sector is described by curve i. 

To the right of point a' the behavior of the shell will be described 

by curves ß. and ßp. Thus, theoretically the behavior of the shell 

in the range of considered deformations examined is described by 

two curves: curve 1 and either one of curve ß. or ßp. 

Crosshatched zones abed for curve 1 and a'b'd'c' or a'^'d'c' for 

curves ß and ßp in Fig. 60 are zones of instability. Within the 

limits of these zones snapping of the shell should occur. 

Physically linear and geometrically nonlinear calculation 

(curve 1) yields a narrow zone of instability. According to this 

example we will find that the critical force, with which snapping 

of the shell occurs, should lie between p = 37.8 and p = 39.8. 

Calculation taking Into consideration both forms of nonllnearlty 

yields a wider zone of Instability; In this case the critical force 

should lie between p = 16.5 and p = 29.5 on curve ßp and p = 28 on 

curve ß,. The experimental value of the critical force for both 

shells tested, corresponding to the horizontal sections of dotted 

lines, proved to be equal on the average to p * 28.5. From the 

drawing It Is clear that this value lies within the limits of the 
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zone of instability, given not by curve 1, but by curve ßp, and 

differs from the upper value of the theoretical critical force by 

3.5^, and from the lower value, by 72,5*. 

Curve ß^ gives us the value of the upper critical force which 

is 1.5^ less than the experimental value. The average theoretical 

value of the upper critical force, calculated according to curves 

ß1 and ß?, equal to p = 28.75* is almost the same as the experimental 

value p = 28.5. It must be noted that according to the conditions 

of the experiment (through preparation of the structui i  and static 

load) it is more probable that the shell will change to a new state 

of equilibrium after achievement of the upper and not the lower 

critical value. 

This comparison with the results of experiments confirms the 

necessity of taking into account the physical nonlinearity, since 

this accounting yields a better congruence with the experiment than 

calculation according to the elastic nonlinear theory. 

Part of curves ß, and ßp, located to the right of point d', lies 

nevertheless significantly lower than the experimental curve, although 

it coincides with it in its character. These divergences are explain'. ; 

by the fact that in the given theory the material is considered to IT, 

nonlinearly-elastic; in reality steel in the strengthening zone is an 

elastoplastic material.  In other words, the divergence in lengths 

of the snapping sections and in the value after the critical load Is 

explained by the fact that the given theory does not take into 

consideration the influence of unloading. 
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§ 4. A. V. Pogorelov's Method for Investigation of the 
" Supercritical State of Shells 

1.  Presentation of Elastic Buckling of a Shell 
by Means of Geometric Mirror Buckling 

» et us assume that en the surface we can build a u, v coordinate 

network such that the vector-function r(u, v), giving the surface in 

these coordinates, is a regular (at least twice differentiable) 

function. Surfaces, for which linear elements, i.e., differential 

quadratic forms, 

are identical, are called isometric. This means that lengths of 

corresponding curves, plotted between corresponding points of the two 

surfaces, are identical. 

Surface F will be single-valued and definite, if among the 

surfaces of a given class every surface, isometric with F, is equal 

to F. 

2 
In surface deformation its linear element ds. m a general 

instance changes and is a function of parameter t; however there 

exist deformations, with which changes of linear element do not 

occur, and consequently, there are no changes in the length of curves 

on the surface. Such deformations are called deflections of the 

surface. A surface is called rigid in a given class (for instance, 

the class of convex surfaces). If any bending, which does not take 

it from this class, is reduced to motion of the surface as a ^olid 

body.  If edges of the surface are clamped or supported with hinges 

then there is inflexibility and a single-valued indeterminate form 

of surface F. We can easily prove [73] that the isometric trans- 

formation of a regular surface secured at the edge, in the class of 

piecewise-regular surfaces, is reduced to mirror buckling, i.e., to 

the reflection of its arbitrary segment in the plane, which cuts it 
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oil" (Fig. 61). 

Further, let us assume that the internal metrics of the convex 

regular surface F changes slightly, i.e., the deformation of its 

linear element is small, — 

t(0 4^-4» -»0 ««MB t-*0. 

In this case surface F is deformed into sux'face Ft similar to it. 

Whereas F consists of an internally convex region G^, convex region 

G^ adjoining the edge, and a certain ring-shaped band G.p, separating 

regions G^ and G«, located in 5(t) neighborhood of region G., then 

surface F, is similar either to surface F, or to the surface, obtained 

by mirror buckling from F. 

On the basis of these geometrical premises, A. V. Pogorelov 

examines the approximation of elastic buckling of the shell in 

supercritical deformation by meanc 

of mirror buckling. Here it is 

assumed that the shell is convex 

with secured edges, its thickness 

either slowly changing or constant, 

and the middle surface is suffi- 

ciently regular. 

The supercritical deformation of shell is such a deformation 

with which the shape of the shell differs significantly from its 

initial shape. 

Let us assume that a convex shell with thickness h is under action 

of certain load q, taking certain form of elastic equilibrium F . An 

increase of the load will result in its buckling, such a type of 

buckling that the middle surface can be imagined (this is actually 

observed) as composed of three above mentioned parts, G1, Gg and G.-^. 

Fig. 61. Fig. 62. 
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Let us decrease thickness h, and together with it load q in such a 

manner that the order of deformation examined is retained. Since the 

bending rigidity of shell decreases faster tnan tensile rigidity, the 

stress in the middle surface, and, consequently, its deformation will 

decrease.  Passing to limit (h-^O), we have to conclude that the 

elastic buckling of a strictly convex shell F is reduced to mirror 

buckling, and here the smaller the thickness of the shell, the better 

the approximation of mirror bucking to elastic buckling (Fig. 62). 

Such approximation of elastic buckling in supercritical deformations 

enables us to linearize the problem of determination of the elastic 

state of the shell outside the neighborhood of the rib of mirror 

buckling. Inside of which the problem is essentially nonlinear. 

2. Energy of Elastic Deformation 

Let us construct the energy of elastic deformation for the above 

mentioned parts of shell G^, G^» Region G^ is that part of shell of 

elastic buckling in which the shape of deformed surface is well 

approximated by mirror buckling. In this region the bend is signif- 

icant, the normal curvature changes its sign, and the middle surface 

is strictly convex by assumption. As we have already shown, region 

Gp adjoins the surface edge, is well approximated by the initial form 

and is significantly smaller than region G^, and the bend of middle 

surface in region Gp is small. Therefore, we can disregard the bendin 

energy in region G2 as compared to bending energy in region G^. Thus, 

the energy of elastic deformation, connected with the bend of the 

shell in the buckling region, is concentrated in regions G. and G.p. 

Since in mirror buckling of the shell the normal curvature changes 

from value k to -k, i.e., by 2k (in main senses the change of curvature 

occurs on 2k1 and 2kp), the energy of the shell, corresponding to such 
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a bend, is calculated by the formula 

With a sufficiently small thickness of 5jhell, region G,, converges 

to region G. In this case index 1 may be omitted, and the energy 

expression will be written in the form 

where 

K*~{kt + W~2{l-.v)klkr (4.2) 

Region G^ is the ring-shaped region, including the boundary 

of buckling. The area of this region is small as compared to the area 

of region G1, but the energy of elastic deformation will be signifi- 

cant because of the large flexure of shell and stretching (compression) 

of the middle surface. Let '-s assume that 7 is the intersection of 

plane a (Fig. 65) with  ^ middls surface of the shell. Let us weaken 

shell F with a hinge along 7 and apply to each of the shell's parts 

the distributed moment M, straightening the rib of the shell F .  In 

the proximity of 7 elastic states of shells F and F will be equivalent 

since in this proximity elastic deformations are caused mainly by 

straightening of rib 7. 

Consequently, the deformation of shell F along 7 are determined 

by its structure near the rib and depend essentially only on the rib 

curvature and the angle formed 

along it by tangent planes. 

Tnus, in order to find the 

energy of elastic deformation on 

the boundary of the buckling 

region for a sufficiently small shell thickness, we can take any other 

shell with the same geometric parameters of the boundary of mirror 
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I    buckling [75, 7^ and 75]. Let us take the conical shell (Fig. 64) FQ. 

The energy of elastic deformation of bulged shape F of the shell near 

line 7 consists of the energy of stretching (compression) of the middle 

surface along meridians and parallels and the bending energy along 

meridians (for a shell of small thickness the bending energy of 

parallels can be disregarded), 

Let us assume that p is an arbitrary point of mirror buckling of 
♦ 

shell FQ. The shape of F will be assumed to be the initial approxi- 

mation of the shape of F. Corresponding point p of shape of F is 

obtained in radial displacement p on u and axial displacement on v. 

Hence, the equation of meridian of shell F in cylindrical coordinates 

r and z will be 

I * 
I    where p is the radius of circumference; 7 is the rib of shell F j 

I    s is the discance on the generator, measured from 7; and a is the 
1 I 
I    angle, formed by generators and the plane of circle 7. 

I We introduce, 
t = cosa, T,—sina. ra«>p-|-soos3. 

The deformation of the shell along the parallel will be 

•_ 2*(V-M) —2rrt   a 
•t — = — • 

Jitr,       r. 

The deformation e^ along meridian will be 

4s 
ds 

1 

«1 

1 
In the region of elastic deformations -*— « 1 and, consequently, 

«• = 
2d& 

and since 

then 

The extension (compression) energy of the middle surface of the 

shell in supercritical deformation outside the small proximity of the 

zone of large flexure of the boundary buckling is equal to the energy 
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of elastic deformation of shell in precritical deformation, caused by 

th? same external load [75]. Referred to one unit of surface area it 

is, as we well know, calculated either by the formula 

to-*»*    ^ 

or 

The energy of the bend along the meridian, referred to one unit of 

surface area, will be 

cr« ***  , (n  in 

where H is the change of meridian curvature caused by deformation. 

dsl 
Since -3— ~ 1, then for n  we can use the expression 

Thus, the energy of elastic deformation of the external half- 

proxiraity of the boundary of the region of buckling of shell F will be 

lit» 

•0 

(4.5') 
-f ({w' + V + -^ + "*+** V + (I -vt) ^-jr.ibrf«. 

where e  is the width of semiproximity, in which basically the energy 

of elastic deformation is concentrated, connected with straightening 

of the rib of shell P . 

In view of smallness of e the expression for U will change but 

little, if we will replace everywhere r0(s) by p, the radius of 

circumference, limiting the region of buckling.  The relative error 

here will be vanishingly minute when h -* 0.  Evidently we can assume 

that the energies of internal and external semiproximity of boundary 

7 of the buckling region are equal. Then in (4.5') it is possible to 

3^5 



replace r0 by p everywhere, and we shall obtain the expression for 

energy of elastic deformation near the boundary of the region of 

buckling, 

c/»-~^JJ{-^a+«')-«>«+«OP+ 
At 

+ [Wv',+ -y4- ^^J + O-^jfds^. (if.5) 

From the condition of minimum of this functional in the class of 

functions u and v we can determine the form of elastic deformation of 

shell in the vicinity of 7. Let us clarify the conditions to which 

u and v conform. By definition the boundary of the region of buckling 

7 when s = 0, u = 0. Further, when s = 0, z =T) + V =0, i.e., 
1 

v = -r,. With withdrawal from the boundary of the region of buckling 

u and v tend to zero, since the energy of straightening the rib is 

concentrated near the boundary mentioned. For investigation on the 

minimum of functional U it is convenient to introduce new variables 
t 

instead of u, v and s: 

We introduce (4.6) in (4.5) and for simplicity omit the line over 

u, v, s. Then (4.5) will take the form 

2it£ 
T 3 

9KE ± LL 

(4.7) 

where 

/ = f {if' (6 + V«')-V«' (1 + v)]* + 
•• 

Thus, the problem of determination of elastic deformations of the 

shell near the boundary of the region of buckling is reduced to finding 

functions u and v, which realize the minimum of functional I. 
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Subsequently we will be interested in the case of small a (a is 

the angle of inclination of cone generators to the plane, perpen- 

dicular to its axis). For definiteness of the problem on minimum I 

let us also study its limit when h -♦ 0. This gives to functional I 

this form: 

where u0 and v0 are the first terms of expansion of u and v in a 

series with respect to powers of parameter e. A includes second terms 

of expansion of u. and v^. They can be arranged in such a manner that 

A is as small as desired. Then the limiting expression for I will be 

/.=JlKft+^--^;(i+^)p+«5ife. 

With a -♦ 0 (and consequently, TJ -* 0, £ -♦ 1) the functional will assume 

the form 

'+if)äs. (1(.8) /. = J«-" 
The problem of determination of main terms u0 and v0 of the expansion 

2 2 
u = u0 + eu^^ + e u2 + ..., v = v0 + ev. + e v2 + ... consists of 

determination of the minimum of functional (4.8) with nonholonomic 

constraint 

«' + » + --»• = 0 (4.9) 

in the class of functions, satisfying boundary conditions, 

«(0)=0. o(0) =1, «l(oo) = 0, l»(oo) = 0. 

The "zero" index for functions u and v is omitted for the simplicity 

of writing. 

Let us solve the problem about the minimum IQ which will enable 

us to obtain an explicit expression of energy of elastic deformation 

of the convex shell depending on parameters which determine mirror 

buckling.  Let us set up Lagrange function <t>  for this problem: 
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\ 

♦=»',+«•+3L(«)^II'+p+i?.y 

Etiler-Lagrange equations will be: 

3L(l+o)~2«/rr.O.   2B-r = 0. 

Thus, the determination of functions u, v, communicating minimum 1Q, 

is reduced to solution of the system of equations: 

x(i+»)-ar=o. (^.IO) 

«' + » + — =0. 

under conditions, 
«(0) = 0. p(0) « I;  ii(oo) « 0. »(OD) = 0. 

Integrating the last equation from (4.10), we have. 

-K- v + *\ds. 
2 / 

(4.11) 

From the second equation (4.10) it follows that X(oo) = 0, since v(oo) 
II 

= 0, and, consequently, v (03) = 0. 

We introduce (4.11) in the first equation (4.10).  Integration 

gives 

• *• 
(4.12) 

For functions v from the second equation (4.10) Me  obtain integro- 

differential equation 
MM 

» *i 

the solution of which can be sought in the form 

'J^S CDpS 
i-iheve x = e   "   ;  y = e '     and tu.,  'D,.. are certair.  -complex numbers with 

negative  real part.     Determining u and v,   which realize  the minimum 

'(ö) _ oi" functional I0, we find that min IQ 1.2, v 1, max u 0. 

Convergence of I to In when there is an independent tendency of h and ■Q 

 * 
a toward zero will take place, if £ -♦■ oo in integral I.  For that 
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limit we have. 

I2(|-*»|W (^1?) 

We assume e = = p, vfliere e Is the relative width of the zone of 
     * 

local bend on the boundary of buckling. In order to have e = —f~ 

sufficiently large, it is necessary that e were sufficiently small, 

i.e., that — were sufficiently small. Consequently, formula (4.7) 

for calculation of energy can be used, if -^ « 1. 
P 

From (4.7) it follows that the energy of elastic deformation per 

one unit of the length of the boundary of buckling of a conical shell 

is equal to: 

Ü*=eEhTa*p  «. c= ± '*   ±  «0.12. (4.14) 
12* (I-^4 

As we have shown above, in the case of any convex shell the 

energy of elastic deformation per one unit of the length of the 

boundary of buckling should be calculated by the same formula, but a 

and p have the value, 

a  is the angle, at which the plane determining mirror buckling 

intersects the surface of the shell, and p is the radius of curvature 

of curve 7, on which this intersection occurs. The energy of elastic 

deformation along all boundaries 7 of buckling is determined by formula 

U^IVds. (4.15) 
i 

In the case of small regions of buckling with small a according to 

Meusnier's formula, we have. 
I 

where i is the normal curvature of the shell surface in the direction 

of the boundary of buckling. Hence we have that 
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1 

and the condition of applicability of I— « 11 will be written in 

the form 

Thus, in all three regions G1, G2, and G12 the energy of elastic 

deformation of the convex shell with buckling has been found and is 

determined by the formula 

«/»f/. + f/o + tV (4.17) 

Energy U0 is found by solving the problem on the elastic state of the 

shell in linear approximation. 

Energy Up is determined by the formula 

ir.«(*i+jy,-2(i~v)*Jfta. 

Here the region of integration is the region of mirror buckling. 

Energy Ü is calculated according to 

V     VÄ/        I2T(I-V)* / 

3 
where ■$  is the normal curvature of shell in the direction of line y, 

the boundary of mirror buckling; p is the radius of curvature of 

curve 7.  Integration is performed on the boundary 7 of mirror buckling, 

When v ~  0.3 and IQ = 1.2;   constant c = 0.12, 

3.  Stresses in Elastic Supercritical Deformation 
of the Convex Shell 

Earlier we noted that outside the vicinity of the boundary of 

buckling stresses in the shell are similar to those, which appear in 

practical deformantion with the same external load. At a sufficient 
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distance from the boundary of the region of buckling inside it there 

are bending stresses as determined by the form of mirror bucklings, 

which can be calculated in the following manner: mirror buckling 

results in the appearance on the shell surface of stretching-compression 

stresses, equal to: 

•»•s±Tr5^ + ^ V-±735(*t+^       (4.18) 

On the boundary of buckling the basic bend occurs in the plane., 

perpendicular to the bo-mdary. 

A. V. Pogorelov [73] considers that the change of normal curvature 

of the shell is so big here that the initial curvature can be disre- 

garded. We now assume that it is possible to consider the stresses 

originating from such bending to be similar to those in the case of 

the conical shell in its deformation with buckling, which was studied 

here earlier. Bending stresses of the conical shell in the meridian 

plane near the boundary of buckling are determined by the formula 

c's±W^i', (4.19) 
(«-*ra+«')-«*to+io). 

Passing to variables u, v, "s (4.6) and omitting the line over them, 

will obtain for n  the expression 

which when h -•• 0 and a -»- 0 will be transformed into the following. 

my (4.21) 

where v is the function realizing the minimum of functional IQ. 

Introducing (4.13) in (4.21), and the latter into (4.19), we 

obtain. 

0 i-^T-P ,AW- (4.22) 
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1 
The expression of stresses through normal curvature «■ of the 

1 

shell In the direction of the boundary of buckling 

will assume the form: 

ä 1 

ii'f) 
(4.25) 

r* 

Maximum bending stresses in the vicinity of the boundary of buckling 

correspond to the maximum value of derivative v (s), which is attained 

when s = 0. This we can see from the fact that when s = 0, v =0, 

and also from the second equation of the system (4.10). 

When s = 0, v =1. Therefore, c = 1 (when v = 0.3). 

On the boundary of buckling of the shell the local bend is 

accompanied by the appearance of extension (compression) stresses of 

the mi lie surface of shell in areas, perpendicular to the boundary 

of buckling. With small thickness these stresses can be considered 

to be the same as in the case of a conical shell, for which they are 

equal to: 

-±*.= ±7- (4.24) 

Or in variables,  realizing minimum of I0: 

• = ±eTATp T.T:    c^     JHHT- (4.25) 
12* (I-^)4 

The minimum stress a will correspond to the maximum of value u(s) ~ 
ti 

~ 0.5. When v = 0.3, c = 0.25. Expressing the stress through normal 
1 

curvature ^•, we obtain: 
« 

•^id)2' (^26) 

In the case of small elastic bucklings of shells expressions for 

the energy of elastic deformation can be simplified.  It is known that 

the form of regular, strictly convex surface in the small vicinity of 

point P approximates well the osculating elliptic paraboloid. Taking 
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the tangent plane of surface at point P for the xy plane, and main 

directions on the surface in this point for the direction of coordinate 

axes, the equation of osculating paraboloid can be written in the form 

t^^ik^ + kj). 

Consequently, for a small height of buckling 5 the region of 

mirror buckling with center P can be prescribed by equation 

»—f(*.j*+*•/). (4.27) 

which describes ellipse with semiaxes 

/f. »-/f •        (^8) 
The area of buckling of shell will    e 

S-TSP (4.29) 
The curvature of the boundary of buckling (considering x = a cos t, 

y = b sin t) will be written so: 

I   «ft  
7"        4- (4.50) 

The normal curvature of the shell surface in the direction of the 

boundary of buckling 
i a 
R     ^sto«<+*•«»»< * (4.3i) 

In the case of small region of buckling main curvatures k,, and k- 

change little in the region of integration and they can be considered 

equal to values in the center of buckling. Then (4.1) will take the 

form 

Uo~itf~*;K'Se' (4.32) 

Introducing here value SG the area of region of buckling from (4.29)^ 

we obtain, 

^"ed-^/ÜST (4.32») 

For the energy of elastic deformation, connected with the local bend 

on the boundary of buckling. 
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! 

».-Jöfc [»-«*(-)V|. (4.15-) 

we find, considering (4.29) and (4.50), 

or, considering (4.28): 

which c?n be written through mean curvature K = oA^i + ^p^ 0^ tlie 

shell in the center of buckling, in this manner: 

tfT»-2«dS(»)7AT|f; (CSKO.12). (^.54) 

This formula can be used under the condition that 

~-(^-)«i; (*t>*.). (^.55) 

Fonrula (4.23) for stresses in the case of small region of buckling, 

1 
P 

will take the form 
Jl -L 

0B + -*iMl!LL 

i   i 
after introduction in it of values — and ^ from (4.30) and (4.31), 

(4.36) 

or, taking (4.28) into consideration, 

• = ± C£(2S)*?A"V*Ä- (^ • 57) 

Let us note that stresses along the boundary of bucklings are constant 

For extension (compression) stresses of the middle surface, 

caused by local flexure, formula (4.25) was set up which in case of 

small region of buckling will take the form 
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4. The Stability of Elastic Equilibrium of a Convex 
Shell with Buckling 

Let us assume that the load inside the region of small buckling 

is constant. The condition of equilibrium of the elastic state of 

shell can be written as an equality of work dA of external forces and 

change of the energy of elastic deformation: 

dA^dU.+dUo. (4.59) 

For determination of parameters of elastic deformation of the shell 

(center and height of buckling) we will find the elementary work dA 

depending on them. Work dA, produced by the external load q in the 

transition from buckling 1-1 (Fig. 65) to infinitely 

similar buckling 2-2, is equal to qdv, where dv is 

the change of volume caused by buckling. Conse- 

quently, dA is the differential of function A = qv. 

Fig. 65. where v is the double volume of the segment, cut off 

by the plane which determines the mirror buckling of 

the shell. 

Let us find the volume of this segment. We have. 

±.~{S(z)dz, 

where S(z) is the area of section, parallel to the base of segment at 

a distance z from the summit. Since the form of the section is similar 

to an ellipse with semiaxes 

2iu 
then 

sw= /is 
Hence 

and, consequently 

JL«f_|^dz=--5=-. (4.40) 

(4.41) 2RP 
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f 

Let us assume that the position of the center of buckling is known. 

Then the height of buckling will be determined from the relationship 

We introduce the load parameter 

and the parameter of height of buckling 

IT /? (4.44) 

Then formulas (4.41), (4.34), (4.51) for A, U and UG, as well as 

(4.42) will be transformed into the following formulas: 

A^j-EbWVkÄ, (4.45) 

£/, = 2tt£VA« -i-(*. + U (4.46) 

■^{*-Vj-~Vo)~0, (4.48) 

according to which we can ea.^ily set up the equilibrium equation, 

determining the height of buckling, 

inhere 

(r-Mi Ä = -i-(»,+*j). 
1  ? 

After determining T], we finä the height of buckling 6 = -^hr] , and then 

by formulas (4.28) — the dimensions of the region of buckling, 

..J/IL, ».^/T:. (,.28) 

The position of the center of buckling P can be determined from the 

following considerations.  The "height" of buckling T],   determined from 
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(^.^9), will be the function of P. To the true buckling corresponds 

such position of ?, with which the energy of elastic deformation 

U. + UG will be maximum. Introducing TJ from (4.49) into the expression 

of energy of elastic deformation U + Up, considered as a function of 

P, we find the position of the center of buckling from the conditions 

of maximum of this expression. The same result can be obtained from 

the condition of maximum of expression 

^—f^WF^: (4.50) 

in which we must introduce TJ, determined from equation (4.49). In 

the case of action on the shell of a concentrated force F, the point 

of application of which can be considered the center of buckling P, 

the elementary work dA = 2Fd6, where 5 is the height of the segment of 

mirror buckling. Assuming that 

| = -*£. „K,  P~.Z.EWYkfc  we obtain 

From condition (4.42), taking into consideration (4.46) and (4.47), 

we obtain the equation, which is satisfied by parameter TJ, determininc 

the height of buckling 6: 

and hence 

"--i-^—Mrbr)- (4.5?) 

If an arbitrary load q acts on the shell and the load is 

concentrated inside the region of buckling (near the boundary of 

buckling q = 0), then its action is equivalent to the resultant 

concentrated load F.  In this case r\  is determined by the formula 

(4.53). 

When a load, depending on the form of surface, acts on the shell, 

with a given position of the center of buckling P the acting load will 
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be a known function q(P, 5) of the height of buckling 6.  Consequently, 

we can find the work of external forces A(PJ 5), and the height 5{P) 

from the condition of equilibrium (^.42).  The position of the center 

of buckling is determined from the condition of maximum A[P, 6(P)] as 

a function of P. 

In the case of action of impact load (impact at point P) we may 

assume that the energy of impact T is transferred in full into the 

energy of elastic defornötion, connected with buckling (U + IL,), sirce 

the appearance of buckling lowers rigidity of the shell as an elastic 

system.  The height of buckling is determined from equality 

For example, in the ca;  of buckling of a spherical shell with the 

radius R and thickness h acted upon by the concentrated force F we have.. 

Iff* *   \   A   *T«" 
1   3c V «£**   30-')/       2 

Let us consider the state of elastic equilibrium to be stable, if 

and unstable, if 

rf"(i4-(/l-f/o)>0. (4.55) 

Let us assume that a continuous load q acts on the shell, such a load 

that A, U and IL, are described by formulas (4.45)-(4.47). We have. 

Hence 

±{A-V,~U0)~^{A-UX~V0){^)\ (4.56) 

Thus, the question of stability of equilibrium is resolved depending 

on the sign of expression 
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Taking the condition (4.48) of equilibrium of shell into consideration, 

we obtain 

(il|-^-l/e)-*E»*}^(6cr^+^-_). 

from which it is clear that 

Consequently, all states of elastic equilibrium of the convex shell 

with buckling acted upon by a continuous load, are unstable. 

The instability of the elastic state of shell in buckling is the 

cause of "snapping" of the shell, i.e., intermittent buckling without 

any increase of the external load. 

During the action of concentrated force F: 

or, taking the condition of equilibrium (4.52) into consideration, we 

obtain 

i.e., elastic states of the equilibrium of shell with buckling under 

the action of concentrated force are stable. 

5. Upper and Lower Critical Loads 

The upper critical load cannot be determined within the scope of 

A. V. Pogorelov's syntheses, since they pertain to the region of 

deformations with significant buckling. However, we can express the 

ideas on the effect of compulsory buckling, for example, the initial 

bending, on the value of upper critical load. Let us assume that the 

height of buckling of the shell, on which load q is acting, will be ö, 

Formula (4.49) gives us the relation q(5) in variables i,   T|.  Since 

elastic states of equilibrium under the action of continuous load are 

unstable, then with q < q(5) the buckling aisappears, and with 
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q > q(6) — conversely, the buckling increases and popping of sneil 

occurs. Thus, in buckling of shell to the height 5 the upper critical 

load is lowered at least to the value q{6). As an example of appli- 

cation of this result will consider the problem of desic-iing such a 

shell that the possibility of snapping of the shell within the fraiaes 

under the action of a given load was excluded. For the determination 

of distance between the frames we must determine dimensions of the 

region of bucklings, satisfying the given load, and after that dispose 

the frames in such a manner that not one of the mentioned regions 

could be placed between them. With such location of reinforcing 

elements any buckling, whatever its cause cannot develop under the 

action of load q, and consequently, disappears. 

The lower critical load in the continuous loading of shell will 

be the lower boundary of leads q, satisfying the stable states of 

elastic equilibrium with buckling.  From the point of view the theory 

presented here such a conception of the lower critical load has no 

meaning, since all elastic states of convex shell with buckling are 

unstable. 

Let us consider the spherical segment, fastened on edges, subjected 

to the action of continuously increasing external pressure q.  Under 

a certain pressure q the shell will pop, after which we shall 

continuously decrease the load. The region of buckling hardly changes 

until the pressure is lowered to a certain value q-, < q , when the 

reverse snapping of the shell will occur. The value q, is taken for 

the lower critical load.  On the samples, subjected to such tests, 

traces of plastic deformations were observed. According to the theory 

of elastic state of shell with buckling expounded here, the character 

of the course of such an experiment is explained in the following 

manner.  The buckling of shell, which began under the load q with the 
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unlimited elasticity of the shell material, cannot stop, since the 

work of external forces increases faster than the energy of elastic 

deformation connected with buckling. But in the case of appearance of 

plastic deformation on the boundary of buckling, further buckling is 

associated with a large energy consumption, which is not replenished 

by the work of external forces, and, consequently, the buckling stops. 

Thus, the determination of lower critical load q, ^or strictly convex 

shells is impossible without an estimate of plastic deformations. 

Within the limits of elastic deformations for q, w= can give an 

estimate from above. Indeed, in view of the instability of the elastic 

state of shell with buckling under the action of continuous load, 

snapping of the shell can be produced from any such state by any small 

perturbation. The critical load q-, does not exceed the lower boundary 

of loads q, which satisfy elastic states with buckling. Let us assume 

that load q corresponds to the appearance on the boundary of buckling 

of nonelastic deformations and corresponding stresses, which we consider 

to be equal to the yield point o . We find load q from the following 

considerations. 

Height 5 of buckling of the shell, with which on the boundary of 

buckling of shell local bending stresses appear, which are determined 

according to {k.31)  and equal in our case to a,, can be determined 

from the condition 

o,**erBi7XFh'*\nt& (4.59) 
1    2 Assuming 5 = -^n]  ,  we obtain 

•^tEhriYkJ^ (4.60) 

Introducing in  (4.49)   value ri,   expressed through a   .  we find the value 
o 

of parameter of load £, satisfying the load q sought (let us remember 

that q = ^Eh2k1k2): 
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^3aa#ft)-^+ 6(|^^ \4{*hr-2(l~W](j~y (4.61) 

(K = 2^1  + k2i is the avera6e curvature and T = k.k« is the Gaussian 

curvature in the center of buckling). 

In particular, for the spherical shell with a radius R 

p 
Thus, the experimentally determined lower critical load q^. = ^-.Eh k,k0 

does not exceed q = ^ Eh ^kp, where £ is from (4.61). This 

conclusion can be drawn, if the considered deformations are in the 

region of permissible theories, i.e., we should have 

-Mt)<'- 
from which it follows that formula (4.6l) can be used, if 

^>Ehku (4.65) 

where k^. is largest of the main curvatures.  Let us note that the 

requirement (4.63) can be [75] weakened to a > Ehk.. 

6. A. V. Pogorelov's Simplified Theory for the Supercritical 
Elastic State of Strictly Convex Shells 

If in the energy expression of elastic Reformation we disregard 

the bending energy of the shell in the region of buckling, then the 

theory of elastic state of convex shells in buckling is essentially 

simplified. At the same time such an assumption is possible on the 

basis that the bending energy of a shell in the region of buckling 

has a subordinate value in comparison with the energy, produced by 

the local bend on the boundary of buckling. 

Let us take for simplicity a spherical shell. We have, 

Ua==J^Z^'   "T = 2rc£(25)"MjL. (4.64) 
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Introducing in these formulas the radius p of the circle of buckling, 

instead of 6 we obtain. 

Hence 

.    6(1 ~»W«    »     '   \*J (^.65) 

(4.66) 

Rh 
Formula for U is derived in the assumption that ~ « 1. 

P 
Consequently, the theory pertains to such deformations with buckling, 

with which U^ « U . Therefore, it is perrissible to disregard term 

Ug in the energy expression of elastic deformation, considering its 

equal simply to the energy of local bend U on the boundary of buckling, 

Qualitatively the same result is obtained for an arbitrary convex 

shell. Further, everywhere here we will consider that the energy of 

elastic deformation of shell consists only of the energy of local b^nd 

on the boundary of buckling. 

Let us now determine the state of equilibrium of shell with 

buckling for different loading methods. 

In the case of buckling of the shell under the action of a 

continuous load, as we did earlier, we characterize the load q acting 

on the shell with parameter % -  —^—, and the height of buckling 6 — 
Eh^r 

-T—. Then we obtain the following simple 

relationship between ^ and TJ: 

Hence we find the height of buckling 5 depending on the active load 

 W * (4-68) 
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The positio"! of the center of buckling is determined from the condition 

of steadiness of the energy of elastic deformation, 

*/, = 2*cE(28)"» ä"? K, ( * • 69) 

where instead of 6 we must place the expression, determined by formula 

(4.68). 

In the case of buckling of the shell under the action of a 

concentrated force we characterize effective load F with parameter P, 

determined by formula 

F = ±-m*Vk& (4.70) 

Then the conuition of equilibrium of shell will be obtained in form 

Hence, for the height of buckling 6 under the action of concentrated 

force F we obtain formula 

&•*»£«*•/(« " (4.72) 

In the case of buckling of a shell under the action of an impact 

load the concentrated impact on the shell communicating energy A, 

produces buckling 5, determined from the relationship A = U , i.e., 
7 

as (h  731 
A~2*cE{2iyh*K, \   '^1 

where all values pertain to the point of the shell's surface, where 

the impact occurred. Thus, 

\ 2itc£A2IC / 

In all cases of loading, maximum stresses f-.opearing from local 

bending on the boundary of buckling, are determined by the formula 

a=±c'£(28)'=A"2"/V)F1 (c'^l). (4.75) 

Let us consider the problem of critical loads. 

The upper critical load. As it was shown earlier, the compulsory 

buckling of shell to the height 5 lowers the upper critical load at 

as: 
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least to the value q(6)t which is established from the condition of 

equilibrium of the shell under the action of a continuous load, i.e., 

from the relationship (4.68), where all values pertain to the center 

of buckling. 

Hence it follows that the convex shell, being under the action 

of a continuous load q and concentrated force F, satisfying the 

inequality 

cannot fail to snap. 

We conclude analogously that if the shell, being under action of 

a continuous load q, receives an impact, communicating energy A, and 

the condition 

T—ri >~v— (4.77) 

is met, then the shell snaps. 

7. The Lower Critical Load for Sloping Convex Shells 

A convex shell .s termed a sloping shell if in any buckling of 

it plastic deformations do not appear. We explain this on the example 

of a spherical segment. 
1 

Let the spherical segment with curvature K have the height 6Q. 

Any buckling of such a segment has the height ö < ÖQ. The requirement 

that the segment be sloping, is that with any 6 < ö0 

(r£(28)*3"Ä^J-<o,. (4.78) 

In other words, in any buckling to the height 5 < 50, the maximum 

stresses appear in the shell material, would be less than the yield 

*See classification of shells of M. A. Koltunov in § 2, Chapter V. 
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point and, consequently, would not produce plaotic ieformatioris.  Let 

us assume that the sloping spherical segment is fastened on the edge. 

In Fig. 06 we depict graphs of functions -rr and -r^, where A is 
O0O0 

the work, produced by the external load in buckling, and U is the 

energy of deformation.  Points of intersection 1 and 2 on these graphs 

correspond to states of equilibrium of the 

segment with buckling. Namely at point 1 — 

unstable equilibrium, and at point 2 — stable. 

dA Graph C depicts function -rr, corresponding to 

the lower critical load q,. 

In order to determine the lower critical 

load, it is sufficient to know straight line C. 
A, h 

Fig. 66. 

In connection with the determination of straight line C we note the 
An 

following. Up to values 5, sufficiently close to 50, -xf ~ £■*   ^6, 

For values 5, very close to 60, -r-g- increases strongly. We will not 
t 

made a large error, if instead of C we take straight line C passing 

through the point of intersection of straight line 0 = 50 with 

parabola -xz = c  ^5- Along the straight line C we find load q, close 

to critical q,. 

The analytically adduced consideration corresponds to the 

definition of the lower critical load as a load, balancing buckling 

to the height 50, and, consequently, is found from the relationship 

^^  [H = 1 = lower]   (4.79) 8,= 
2$?* 

Thus, for the sloping segment, fastened on the edge, the lower 

critical load 

/ 9C£W Y (4.80) 
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If instead of the height of segment 50 we introduce the radius 

of base p, then this formula takes form 

f, = 3CEA^V. (4.81) 

Analogous consideration can serve as the basis of determination 

of the lower critical load for an arbitrary sloping convex shell. 

Let us adduce the final result. 

Let us assume that the convex sloping shell with little variable 

average K and Gaussian r curvature is fastened on the edge. Let us 

assume that 5Q is the maximum height of the segment, which can be 

cut off from the shell by a plane, not intersecting its edge. Then 

the lower critical load for such shell is determined from the rela- 

tionship 

^"  2»J  • (if.8k} 

The earlier received estimate for the lower critical load q-, 

now, is now simplified when we disregarded the bending energy in the 

region of buckling. Namely, 

G.<3CC£(rA«)(/CA).£. (4.83) 

In particular, for the spherical shell of radius R and thickness h: 

KdCC'Ef-ty-Z-. (4.8^) 

We now face the problem, whether the above mentioned estimate 

has a value, close to the lower critical load? We can ansiver that in 

the case of a clearly expressed yield point for the shell material 

the estimate is close to the lower critical load. Let us explain 

this assumption. 

Let us assume that constitution diagram of the shell material is 

close to ideal plasticity (Fig. 67). We turn to the graphic portrayal 

of relationships ^ and -^ (Fig. 68).  Point E in the graph -^r 
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0 l 

corresponds to the moment of appearance of plastic deformations on the 

boundary of buckling. To point E the graph -^ is a parabola, beyond 

this point it sharply rises upwards because of plastic deforma ions. 

Straight line C determines the lower critical load, but straight 

line Cg — determines the estimate obtained for it. To have these 

straight lines near one 

another, it is necessary that 

the energy of deformation 

increase shnrply with the 

appearance of plastic defor- 

mations. And this will be 

the case when the shell 

material has a clearly 

expressed yield point. 

In conclusion let us note that the formula for the lower critical 
can/ 

load q-j^ /only be used for relatively thin shells.  Namely, we should 

have 

;>Ehku (if. 85) 

where k. is the largest of the main curvatures.  In particular, for 

a spherical shell 

~-<^. (4.86) 

Fig. 67. Fig. 68. 
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CHAPTER  VII 

SPECIAL PROBLEMS IN CALCULATION OF SHELLS 

§ 1. Varlatlonal Formulation of the Problem on the 
Elastoplastlc Deformation of Shells 

Stresses, appearing in a body during active elastoplastic 

deformation, have the potential, representing the work of internal 

forces [2], In the case of incompressible material the work of inter- 

nal forces, performed per one unit of volume, is equal to: 

r J 9I*I 
It is admissibl -• to expect that forces T and moments M, appearing 

in the shell, also have a potential, which presents the work of inter- 

nal forces, acting per one unit of area of the middle surface. 

"=1 r<fe. 
The variation of function U, corresponding to the variations of 

deformations be., 5e2, ös^g and distortions öH^, öng* ^ip' 
should 

be equal to the work of forces T., Tg, T^p and moments M., Mp, M12 

on variations of deformations and distortions, 

W - TVie, + rt?«t + 2r1,3tI1 - Af15x1 _ Af^x, - 2Allt?xlt. ^1 *1^ 

After calculating variation 5U by the formula 
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where 
-7 

P.^^ + ^+i + ^a. 

(1.2) 

II 

(i.3) 

(1.4) 

we have the method of expression of forces suid moments through defor- 

mations and distortions 

T =—     T *=*£-     T  =l  W 

*t *• 2 a^, * (i.5) 
Al -        ^      JU  _        ^        Af J*7 M, — .Af. —,    MU~~.T—. 

Now we will consider the possibility of formulating the problem 

without equations of equilibrium of the element in the form of varia- 

tional equation of equilibrium of the shell. For that purpose it is 

necessary to set up a variation of work of internal forces of the 

entire shell, 

«"-JJO/f. (1.6) 

where the integral is distributed throughout the entire middle sur- 

face z, and 5U has the expression (1,1), or 

tt/=4-ipj1--i8P.j,+45P./,. (1-7) 
3       3       9 

Here, 

M»,' 
V. 

/,= —^0+ yß+ -^-A 

w>t
2    2P,8 
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Here if the flexural strain predominaLes 

then we add index "O" to values A, B, C and calculate them by the 

formulas: 

en 

•ä    •*    'n 
'it        'it 

(izoi >!)' if however, extension — compression of the middle surface 

dominates, then to values A, B, C we ascribe index "1" and calculate 

them by the formulas, 

•a      (51 (1.10) 

Ci - f't V^f-t^de,sign(<?«-e«). 

Let us note that point ". = z0 is the point of minimum ei, since 

ei n=- > 0,  and, co'isequently, inequalities: 

(1.11) 

d e.. 

dz 

always take place; here we adopted designation. 
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1 

these formulas give values of Intensity of deformations in three 

points, located on axis z. 

Then it is necessary to set up the work of surface forces on 

variations of displacements 6u, bv, 6w and the work of generalized 

forces of the edge on their corresponding variations of generalized 

displacements, made up of 6u, 5v, 5w and their derivatives with respect 

to coordinates; designating this work through 5«A, we obtain the varia- 

tional equation of equilibrium 

the solution of which can be sought, for instance, by the Ritz method, 

§ 2, A. A. Il'yushin's Final Relationship 

Let us show that between forces and moments there exists a final 

(not differential) relationship, which was found by A, A, Il'yushin 

[76]. 

If the intensity of deformations ei of any layer of the shell 

is sufficiently great as compared to the yield point e , i.e. 

-^r V^P.- 2zPn + zV, = e,» e,. ^2>1^ 

and its material is not strengthened, then the law a. = ^(e.) coincides 

with Von Mises' condition of plasticity 

o, = a, = const, (2«2) 

or can be approximately replaced by St. Venant-Coulomb condition of 

plasticity, 
t. = -%r = const. (2.3) 

3918 



In this case there exists a final relationship between forces and 

moments, 

Actually, according to formulas (1.9) and (1,10), taking out of 

the integral the constant a., we can calculate values of functions 

A, B, C, Thus, in the case of dominating flexural strains, formulas 

(1,9) take the form, 

0t = o, in -= —-, 
* /  'I    I 

C. = -J(*nV^5+^V^^)--f^,. (a.5) 

and in the case of dominating elongations of the middle surface from 

formulas (1,10) we find. 

^ = 9, 

il1 = o,(e4t—«n). 

In 
«f. + V^1« «o (2.6) 

Ct-f|^v^=?0-^K^^|—f-B-- 

In both cases values e.., e.p, e.0 are expressed by formulas (1.12). 

Considering the latter as equations with respect to the three quadra- 

tic forms P , P . P , we copy them in the form, E   EH   M, 

P. + APo + Y^^-f^ 

P.-AP.. + ~-P. = ~4. 

The solution of these equations with respect to quadratic forms has 

the following results. 

393 



1 

'-H~*~$p* (2.7) 

In order to determine the sign in the last formula, it is necessary 

to consider dominating deformation. Thus, for instance, in the case 

of dominating flexural strain we have. 

It is easy to check that this inequality will take place, if in formula 

(2,7) for P, we take sign (+) in parentheses. Analogously we will be 

convinced that in the case, when dominate stretching — compression 

deformations of the middle surface predominates one of the inequali- 

ties, 

*-p. >T' 2,~i'. < 2' 

takes place. This inequality will he fulfilled if for P in paren- 

theses (2.7) we take sign (-), 

Thus, subsequently, in all formulas, having two sigrs, the upper 

sign will pertain to the case of the dominating bend of the shell, 

and the lower sign to the case of its dominating extension — compres- 

sion. 

We introduce two basic parameters X and \i  in the following 

manne r: 

X^JiL,    ^liL., (2.8) 

These parameters satisfy conditions 

0<X>ii<l, (2.9) 

inasmuch as e.0 is the minimum value of intensity of deformations in 
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a given point of the shell. Then formulas (2,7) can be rewritten in 

the form: 

n 

where A. and A designate the following functions: 

A.-IV'T^+VT^T'l. Acl^i". (2,11) 

The form of formula (2.10) for P will become quite intelligible, if 

we were to consider the identity 

V + A« = 1 + X» + 2|»« + 2/(1 —1»,)(^ —l»«). 

Using designations X, |x and the fixed rule of application of two-digit 

formulas, we can copy the expression of functions A, B, C in the form: 

il = o/llf(X. i»), 

(2 12) 

where functions <p, ^, and x are determined in this manner: 

f^X-I. 

•    H     j*   I (2.15) 

From fornulas (2.10) and (2,12) we can now see that quadratic 

P , P,, P , are functions of parameters X, p, only and do not depend 
S   JL   SJL 

on values e.. 

P, = /?P.-2/l/,P.ll+/|P.. 

PB = /lP.-2VfP.. + /|PI. (2.1^) 

P« - W*. ~ (V. + ll) P.. + V.P.. 

[H = 1 = lower] 
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Let us note that relationships (2,14) present three algebraic 

equations, from which forms P , P . P  can be expressed through 

Fs'  Pl, Psl: 

P.-MP.. P.. P-). 

P. = /t(P.. P.. PJ. (2.i5) 

P«-/.(P.. P.. PJ. 

Indeed, in the first equality (2,14) components have the common factor 
2 2 3 2 ah but do not depend on e., since 17 is reciprocal to e.^, and P 

p 
is directly proportional to e.^, Analogously, we will be convinced 

that in the second equality (2,14) components have the common factor 
2 4 ah , and e.^. in them is reduced, whereas in the third equality (2,14) 

2 3 components do not depend on e^ and have the common factor cjgh , 

In connection with this it is natural to introduce designations 

for the characteristic value of forces IV, Tp, T^o and moments M., Mo, 

M12: 

•A At,=a£. (2.16) 

Values T,, and M^ respectively, in problems on zero-moment defomations s     s 

of shells and problems on purely moment deformations play the same 

role, as the yield point aa in the problem on the plane stressed state. 

Therefore, it is expedient to introduce designations for dimensionless 

forces and moments: 

'l   T,'  '• r, • /M
-rT* 

m  «Ä  «.. *• «   **«« (2.17) 
"■* Ing Al, 

and instead of quadratic forms, 

P.-~(7l-AT. + 7l + 37^). 

PB = -f(A<i-^iAI« + A«i + 3Mu). (2.18) 

P« = -J (n«, + TtMt -±TtMt~ -LTM + WM 
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to consider quadratic forms from diraensionless forces and moments, 

Q.-^-m^+^+S»!^ (2.19) 

Q,. »1,1«» —~ /jm, - ~-^i + '^»t + ^itWi«. 

The latter are connected with P^, P1, P  (2,18) by evident relation- 

ships, 

«'=-5r ,}--^- ^"Ä- (2-20) 

Performing transformations of right sides of equations (2,14), namely, 

squaring the polynomials and multiplying, and thereupon assembling 

2  2 2 
coefficients of cp , V * <*>#* Xfs VX*  X t  we obtain the following equa- 

tions: 

<?/=4-(I»v+f,). 

^/««^r^Ä^ + A^ + iMpilH-fyJ, (2.21) 

Qm » -^-1^(1»* + A»)*« -f (4p« + Ä«)9« + 

+ VA^-2|i«*x + ZAvx + X'l- 

Inasmuch as the right sides of equations (2,21), according to (2,1 , 

and (2,13), are functions of only two parameters \  and p., then in a 

three-dimensional space with variables Q. , Q. Q.  they represent the 

surface 

m.Q.. <U = 0. (2.22) 

and (2,21) is the parametric equation of this surface. The connection 

thus obtained, between the quadratic forms (2,19) is called the final 

relationship between forces and moments, effective in a shell. This 

fundamental result was obtained by Il'yushin on the basis of Von Mises 

hypothesis a. = a and therefore, is a generalization of Von Mises 
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condition, we will also note that the final relationship will have 

the same form according to St, Venant-Coulomb flow theory also. 

We will mention three particular cases of final relationship, 

1, The zero-moment stressed state occurs when Hx= Mo = Kjo = Ci* 

and here P  = 0 also. Final relationship will be obtained from 

(2,21), if we assume that deformations of fibers are identical through- 

out the thickness of the shell. 

In formulas (2.11) and (2.13) it is possible to take the lower sign 

and then to open indeterminite forms in formulas (2,21). Then we 

find Von Mises condition: 

or in the expanded form: 

2, The purely moment stressed state takes place in the absence 

of elongation of the middle surface. Quadratic form P =0, and 

therefore, P  = 0, As it follows from formula (1,3), the intensity 

of deformations e. is the even function z, and according to (1,12) 

we have: 

In formulas (2,11), (2,13) we should take ti^ lower sign, since 

P 
z0 = ^

:— =0, thus, we obtain, 
K 

A! = 2, A = 0, <p = 0, ^ = 2 ln2, y. = 2. 

Final relationship (2.21) takes the form, 

or 

A«?-Al1Aff + M| + 3iM?2 = iMj. (2.24) 

3, The simplest complex stressed state of shells when P / 0, 

P / 0, takes place, if the bilinear form (P  =0) turns into zero. 
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ft.««»(«» + Y^)+^(«t+--«.) + «iAia=0- (2.25) 

It can take place, for instance, in cases, 

(a) «,,«*, = 0, ^#0. €»«--!-€,; 

(b) «„-,,-0. tj^O, «,---1-^ 

and many others. 

Prom (2,7) we now have, 

i.e., we have the dominating bending strain. We find, 

and after simple transformations the final relationship takes the 

form, 

o - -£-. U2JE2 Mt — 1 1 »•*   • 

^--0. (2.26) 

^- \ i -i*   t»   /i -H» y • 

It gives the line of intersection of surface (2,22) with plane Qtm = 0. 

Inasmuch as Q., Q are essentially positive, the entire surface is 

located between planes Qt = 0 and Q^ = 0, and line (2,26) — between 

positive directions of Qt, Q^ axes, i.e., in the first quadrant of 

plane Q.  =0, Point 0= 0, Q. = 1, corresponding to the zero-moment 

state of the shell, is obtained from (2,26) when y. = 1, and point 

Qt = 0, Ö = 1, corresponding to the purely moment state of shell, 

is obtained when p. = 0. The latter is obvious, inasmuch as ^ in p. = 0 

when |i = 0, 
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§ 3. Setting Ife the Problem of Determination of the 
" ^~ ^' ^ "~SupportIng PoweFT 

Having Illyushin,s final relationship it is possible to give the 

general fonmlacion of the problem of determination of the supporting 

power of shells. 

Indeed, if we assume that force?: and Moments or quadratic forms 

Q^* QJJ.* 0+- are given and satisfy th> final relationship (2.22), then 

with them any two equations (2.22) ena.ülc us to find parameters: 

'a     «it 

and then, according to (2,10) and (2,8), to find 1^, :Uj I,, In this 

the value e.^ will remain indefinite, and we will obtain. 

(3.1) 

'A 

where F will be fully definite functions of force and moments. 

If these values of integrals 1^., Ip, I, are introduced in formu- 

las of forces and moments, then one of the six equations thus obtained 

will be the result of five others, since forces T and moments M satisfy 

the final relationship (2,22). Solving these six equations with 

respect to six deformations and distortions, we will obtain, taking 

into account (2,27), relationships 

t|Sa:ert ^—7,   x,»^ ——s-, 

•   _,-  SuFf—HnFt    „   __.    SnFt~HuFi 
'u^'a ^7 • %ii — eu r; . 

(3.2) 

whe re A' = fjf,—f|> 

Si^^-^-T,,   5,-^-4-7,.   Sl^^Tlt. 

».«Afa-J-Af,.   H^M^-L-Mu   Hlt~±Mlt; 
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where in (3.2), if e.^ has the value (1,12), one of equations is the 

result of five others; we can easily verify this, if we set up from 

(3.2) the cornspondiri quadratic fomas. 

Inasmuch as six components of deformations and distortions are 

expressed by mtanü of differential operations on curvilinear coordi- 

nates through thr^e components of the vector of displacement w at 

the point of the middle surface, they have to satisfy deformation 

compatibility equations. In a general case, the compatibility equa- 

tion can be expressed only through forces T and moments M, but in 

the case (3.2) they will contain one more function of coordinates e.^. 

Thus, differential equations of equilibrium and conditions of compat- 

ibility of deformatioriE .111 "be Insufficient for Vie  determination of 

forces T., To, T^g, moments M., M«, M^p and unknown function e... 

The needed equation will be the final relationship (2,21) between 

forces and moments. In view of the fact that this relationship is 

not differential and from it, it follows that forces and moments and 

even their quadratic forms Q., CL* Q+ are limited in value, it is cleai 

that with arbitrary external forces the equilibrium of the shell is 

impossible, 

The supporting power of a shell is a term given to that limiting 

value of external forces, with which internal forces T and moments M 

satisfy the final relationship (2.21), equations of equilibrium, con- 

ditions of compatibility of deformations and boundary conditions. 

In certain particular cases owing to the final relationship the problem 

of equilibrium becomes statically determinable and does not require 

conditions of compatibility of deformations. Then the problem of 

the supporting power of the shell is resolved comparatively simply. 

It is simplified even more, if forces and moments can be expressed 

401 



fe^^MgpgffWIiPFW'BWIIIBWB'gW^g wpiinnuimj i.nwiil—PW»i<miii«ii.i-iJu..i mmmmm^m^a^^^mmi 

throxx&i  external forces cnly by means of equations of equilibrium 

which takes place, for instance, in the zero-moment theory of shells; 

in such case, the final relationship (2,21) determines the supporting 

power. 

Conditions of compatibility of deformations render the problem 

of determination of the supporting power very complicated and therefore, 

approximation methods of its solution are of great importance. The 

energy method of solution consists of the following: we prescribe a 

suitable form of deformed surface of shells and, setting up expressions 

of variations of the work of internal forces and work of external 

forces on variations of displacements, compare them. The approximate 

limiting value of external forces will be obtained either if hardening 

of the material is assumed to be equal to zero, but deformations are 

Increased without a limit, or which is the same, preserving the con- 

stant the yield point a_ = 5Ge , G is ma-ie to approach infinity, and 

e — to approach zero. 

§ ^. Determination of the Supporting Power and 
Work-Hardening of Snells. 

Let us examine following Il'yushln's relationship [2], the sup- 

porting power and work-hardening* of shells. We present external 

forces in the form of internal pressure p and the resultant force P, 

which stretches the shell in the direction of 00 axis, (Fig. 69}; 

force P is a projection on the external forces of the axis which act 

on the part of the shell located either on the right or on the left 

of the section. Since the stressed state of shell is zero-moment, 

meridional stretching force T. and tangential force Tp are connected 

*See below, p. 405 
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with corresponding stresses a^, an*  a,, with simple formulas: 

Equations of enUilibrium of vessels are known and have the form: 

and stresses a. and a^ are determined by formulas: 

(^.2) 

Äi 

The intensity of stresses is determined by the formula 

Thus, in the case of small deformations of shell, for the total 

determination of the stressed state it 

is sufficient to have equations of 

statics only. 

If the shell material does not 

have work-hardening, then from Von 

Mises1 condition 

9, = 9, 

Fig. 69. 

porting power of shell; 

we find the critical load, which the 

shell, will withstand, i.e., the stp- 

(W) 

If the load acting in the section is less than the critical load, 

i.e., the left part of equality (4.4) is less than the right part, 

then deformation of the shell in this section is elastic; otherwise, 

equilibrium of forces is impossible. 

For shells, the material of which has been work-hardened and is 

characterized by the diagram a. = ^(ei) 

403 



*vmmm*mm 

M 

•ill 

! 

so that with diagram CJ. ~ e. function <p(cri) is determined according 

to given forces p, P or stresses a*, dp  we can easily find the meridi- 

onal and tangential components of the deformation of the middle sur- 

face: 

or according to (^.2): 

*     \l     **) (4.6) 

Components of the vector of displacement of the point of the 

section considered in the directions of the external normal and genera- 

tor toward the growth of angle 0 we designate with w and u, respec- 

tively (Fig, 69). Then formulasj expressing deformations through 

displacements, will take the form: 

-4--*?-. 
(^7) 

«1 
*x 

+ du 

«. 
»sin e + ucosö 1 

/ 
We consider the displacement equal to zero in the section, where 

0=5-, i.e., where the generator of the shell is parallel to its 

axis. In such case, integrating the differential equation for dis- 

placement u, which is obtained from (4,7) by means of exception of 

w, we find: 

J  »ins  ao' 
* 

» = «i/?i —«ctg8. 

Introducing here values e, and ep, we obtain the final expressions 

of displacements; 
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m ' 
T (4.8) 

-^-M^i'O^^ 
Here function <p is assumed to be expressed through th^ intensity of 

stresses a*,  which , in turn, is detenained through knowii values by 

the formula (4,5). Inasmuch as the elastic displacements (in the 

case, when cr. < a )  are obtained by formulas (4,8), in which it is 

necessary to assume <p = 0, then it is clear that residual displace- 

ments u and w, which are retained after removal of the load, are also 

obtained from formulas (4.8), if in them instead of (1 + <p) we retain 

only the value cp. 

For shells, the material of which has linear strengthening, 

function q)(a.,) has the expression: 

f=o. vcv ♦-T=I(
1
-V> •<>'- ^'-i^ (4.9) 

If we use this expression of 9 and, replacing in it c^ according 

to formula (4,3), substitute it in (4,8), we can obtain general and 

residual deformations of shells in 0.  clear form. However, the inte- 

gral included in (4,9) can be calculated only after we are given the 

form and dimensions of the shell, as well as the load. 

If the shell material has a significant strengthening, so that, 

for instance, the true resistance in the break of sample is twice as 

large as the yield point, then by means of work-hardening,* we can 

significantly increase the durability of the shell. 

»Work-hardening is the term given to the process of hardening of 
the snell by giving it a preliminary plastic deformation of a compara- 
tively large value. 
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In the case of a spherical shell, the initial radius of which is 

RQ, the thickness of wall h0, and final dimensions are P and h res- 

pectively, we have, 

here p is the final value of internal pressure. Deformations e^ and 

e2 are identical and are determined by the formula 

..»^„-«^«L^p-I.  p«^.. (4.10) 

From formulas (4.5) we have, 

'-'-^(--T-)-^ (4.11) 

From the condition of permanency of the shells mass 

4«Ä«Ä = 4itlQft#f (4.12) 

and therefore, the expression of intensity of stresses a. can be 

transformed to form 

•i—|V- (4.13) 

Inasmuch as the characteristic of hardening of material 9(a.) 

is known, then equation (4,11) determines pressure p, which, the 

greatly deformed spherical shell, can withstand. 

Let us use the law of linear hardening (4,9) and determine this 

pressure, 

p-X '■♦■»-" p.. (4.14) 

where p,, is the pressure, at which yield of the blank begins, and s 

a 
m is the parameter, depending on the elongation e = ~ and on X: 
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Determining the maximum p according to p, we find that the correspon- 

ding value of deformation 

will be 
3 « — 1 
2 m     * 

and the maximum resistance of the strengthened shell is equal to: 

Further work-hardening is inexpedient because it is accompanied by 

thinning of the wall, which weakens the shell more than it is strength- 

ened through cold hardening of the material. Let us note that the 

maximum strength given by formula (4,16) is not always attainable 

for metal shells, since deformation pm can be larger than the defor- 

mation with which a break occurs. But formula (4,14) shows that 

work-hardening, even if it is insignificant, increases durability 

very effectively. For instance, for steel, having \  = 0,96, e_ = 2 x 

x 10 , we have m = 20, the inflation of spherical shell by 3%  only 

(p = 1.05) gives p = 1,7PR, i.e., increases its elastic limit by 70 

In the case of the cylindrical shell, which is deformed by uni- 
± 

form internal pressure, so that a.  = fyo^-« corresponding formulas 

have the form, 

where the most advantageous work-hardening is determined by formulas. 
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§ 5. Energy Method of Determination of the Supporting Power 

For determination of the supporting power of shells (and plates) 

we can successfully use the kinematic principle of determination of 

the breaking load, which was formulated and proven for the first time 

by A. A. Gvozdev [77, 78] and developed by A. R. Rzhanitsyn [79]. 

This principle consists of the fact that from all possible forms 

of destruction of an elastoplastic system the effective form of 

destruction will be that form, for which the value of the given ex- 

ternal load, balanced on this form of destruction, will be the least. 

As the possible forms of destruction we usually investigate mechanisms, 

in which the given system rotates when in it a certain quantity of 

elastic bonds are replaced by plastic bonds, which can be deformed in 

a definite direction without an increase of the attained critical 

binding force. However, as A, R. Rzhanitsyn [79] notes, it is pos- 

sible to proceed from a more general system of destruction, including 

all mechanisms and constituting a kinematic chain, displacements of 

which are determined, let us say, by k parameters. Making k - 1 of 

these of the mechanisms which correspond to the destructive state of 

the system. 

Thus, the breaking load can be approached by investigating all 

mechanisms, which are obtained from a certain common kinematic chain 

formed from the prescribed system by replacing in it elastic bonds 

by plastic ones by means of equating to zero of all but one displacement 

parar.sters of the kinematic chain. Generalizing this method, we can 

instead of equating to zero k - 1 displacement parameters of the 

kinematic chain introduce k - 1 relationships between these parameters. 

Let us assign the body under examination the greatest possible 

number of degrees of freedom, granting the existence of flow 
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deformation in any of its points. We will also consider volume de- 

formations in all points of the body to be equal to zero or to be so 

small as compared to plastic deformations of the change of shape that 

their work can be disregarded. For the condition of plasticity, we 

will adopt that formulated by Von Mises: 

«i i, = a, = const. (^»i) 

Unit work of internal stresses under a simple load according to 

[2] is equal to 

dr=[f •,&,+!: Y]^^*» (5.2) 

Here 6  is the volume deformation, K is the volume of elastic modulus. 

The second right-hand term (5.2), which depends on volume de- 

formation, according to what was said above, can be disregarded. 

Assuming that the material is not strengthened, from (5.2) we 

obtain: 

dr-a&dxdydz. (5.3) 

Total work of Internal forces is equal to 

T = ot^etdxdydz, (5 j^ 

where integration is performed over the entire volume of the body. 

The work of external forces is determined, as usually, by 

formula 
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A-fflVto+Ya+ÜQdxdydz, (5.5) 

where X, Y, and Z are volume forces; u, v, w are displacements of 

points of the fcody. To the volume forces we must add also the surface 

forces, which we can consider Included In the same Integral (5.5), 

considering the surface forces to be classified as Infinitesimal 

volumes, located Immediately next to the surface of the body. 

The work of Internal forces T can be expressed through transpo- 

sitions of u, v, w. If we use the well-known Cauchy formulas; substi- 

tuting these formulas In the expression of Intensity of deformation, 

and then in (5.^), we will obtain. 

 ft» gg   9B   im       ft* JLI -i-L IYJLVJ 
* Af *"* dr   dt   to y  2 [\ dg ) ^ 

'<*r+m+{Z),+{z)Ht)']+      (5•6, 

The problem is now reduced to finding such functions 

tt = u{x,y,2),   v = o(x,y,z),   w^w{x,y,z), 

with which expression (5.6), or, which is the same (5.^), would assume 

the minimum value under the additional condition: 

A - ff f (*« + Ko + Zw)dxdy(U = const (5.7) 

and the condition of the absence of volume deformations: 

-+'.+-~-s-+-|+ir-<»- (5-8) 
Solving this problem by the usual methods of variation calculus, 

after a number of transformations we will obtain a complicated system 

of three nonlinear partial differential equations, the solution of 
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which is very difficult. 

However, it is possible to apply here the approximation method of 

solution of variational problems, in which we must prescribe functions 

u, v, w approximately with the precision up to a small number of para- 

meters and to find these parameters from the condition of the minimum 

of expression (5.6) observing conditions of (5.7). Furthermore, the 

prescribed functions must satisfy (5.8) the condition of absence of 

volume deformations. 

The number of indefinite parameters of displacement functions in 

many cases can be reduced to one, if evjry time we prescribe successfully 

the form of these functions, for instance, assuming beforehand the 

picture of distribution of deformations and displacements in a plastic 

body under a given load. 

Using approximate expressions for displacements, we can obtain 

the value of the limit load from relationship 

A~T. (5-9) 

Here the limit load will be always somewhat larger than its real value, 

obtained from the exact solution, inasmuch as the minimum of T in the 

approximate solution is not fully attained. 

Let us consider A. R. Rzhanitsyn's example on the application of 

method [80]. Let us assume that a cylindrical shell open on one end 

is loaded on the free edge by evenly distributed radial forces q 

(Pig. 70). Let us prescribe a deformation, with which at a certain 

length c the shell is turned into frustum of a cone, while in it appear 

annular elongations e , equal to (c - x)q>i, and longitudinal elonga- 

tions e = -ie . Here x is the coordinate of annular section, read 
x   2 q) 

off the free end of shell, R is the radius of section of the shell, 

9 is the angle of inclination of generators in the deformed conical 

411 



part. We will designate the thickness of the shell wall with 6.  In 

section x = c during the given deformation, an annular hinge of 

fluidity and angle <p of break of shell generators 

appear. It is not difficult to calculate the work 

of internal forces in the given deformation. Annular 

elongations will yield: 

« 

Fig. 70. and the break in annular section x = c 

Thus, the work of internal forces will be equal to: 

r-«^^-^.). (5.10) 

The work of external forces is equal to 

4 = 2«%^. (5.11) 

According to (5.9) we obtain: 

--g('+77r> 
q will be at a minimum when: 

e~]/^ = 0J<>Vm; (5.15) 

it is equal to 

[np = lim = limit] 

If the free edge of shell will be loaded in addition to radial 

forces q, also with distributed moments m (Pig. 71), then the work 

of external forces will be equal to 

A = 2*li>f(m + qc). (5.13) 
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Here according to (5.9) and from (5.10) and (5.15) it follows that: 

M+*~£{'+Vf)- (5.16) 

For every value of c we obtain a relationship between m and q in the 

form of a straight line (in right-angle coordinates q, m) 

f 

^ ^^ VIS 6aS 
~t   -«5     i r   «5   / 
Fig.  72 Fig. 71. 

The envelope of the family of these straight lines will limit the 

region of limit values of q and m. In order to find the envelope, 

v/e differentiate expression (5.16) with respect to c: 

»A, 

and, having determined c from here we substitute in (5.16). We will 

obtain: 

2Ä \  t*'*  /3-j 

m + 

ts& 

2/3 * (5.17) 

2»^ 
«/» 

2/3 
2 M 

Thus, the region of limit values m and q constitutes a parabola with 

the summit on the m axis (Fig. 72). 

Let us modify the preceding problem, applying radial load q on 

the average section of a long cylindrical shell, as shown in Fig, 73- 

In this case we have the following expression for the work of internal 

forces: 
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-E T ? 
Pig. 73. 

The expression for the work of external forces remains the same as 

before (5.11). Hence 

(5.19) *-  ft lC+ c/f) 

The minimum value of load is equal to: 

(5.20) 

when 

'■'-Jty-H-"-l/7 

/3 

§ 6. Shells With Nonunlform Mechanical Properties 

Heterogeneity of mechanical properties throughout the thickness 

of the shell wall can appear through various causes and can be created 

artificially for the purpose of strengthening. For instance, at 

elevated temperatures the yield point a . weakening coefficient X, and 

elastic moduli G and K can be by variables depending on a significant 

temperature gradient; in the case of action of a neutron flux hetero- 

geneity of mechanical properties appears also; special heat treatment, 

resulting in variable distribution of hardness, can be used in a 
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number of cases to improve operating properties cf shell. 

V. Olszak [81-85] examined the effect of compressibility, gave a 

general setting of elastoplastlc problems for bodies of arbitrary shape, 

and solved a number of problems. 

The work of the author jointly with A.A. Il'yushin [41], gives 

a general solution of the problem on deformation of a cylinder with 

nonuniforra mechanical properties, it being elementary, on the assumption 

of incompressibility of the material. 

Here we will examine only the problem of the value of the biggest 

internal pressure p in a cylinder with field of temperature variable s 

with respect to the radius, and a yield point of material TC.(*) which 

changes depending on the temperature, where pressure p is determined 

so that with any r the deformation of the cylinder remains elastic and 

only on one circumference r = r (or on several simultaneously) the s 
* 

yield point T = T is attained. The method coincides completely with 

the method applied by us in work [861 in solving the problem on the 

influence of irradiation. Elastic moduli are significantly less de- 

pendent on the temperature than the yield point and they must be con- 

sidered constants for the range of temperatures, which is characteristic 

for the cylinder. 

Let us assume the * is the characteristic constant temperature, 

which is selected arbitrarily. Let us introduce designations: 

r  (Lzl« T- 0-*)-. 
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Here p is the Internal pressure, v Is Poisson's ratio, ot,. is the coef- 

ficient of linear temperature expansion, b is the outside radius of 

cylinder, and a is the inside radius, a = ^. On the basis of solution 

[87] we have the following expression T: 

'--i^i('+Jr-*)+iJr-«-Tr '62) 
• .     - • 

Yield point 1^(6.1) is a known function of temperature T(^, t), which 

is considered a known function of radius ((; = ,-) and time t. 

According to the condition of the problem when r = r , ^ = Cs = r— 

equality of values T (6,2) and T (T) is attained: 

c^c,. %(r)—t=o. 

where in tne vicinity of ^ = f* i.e., when C - £L* and ^ ^ ^L, we s ■   s     ■   s 
should have T (T) - T > 0. This means, that the full system of condi- 

tions when ^ = ^ has the following form: 

* (6.3) 
■^h.(T)-x|>0. 

and the system of two equations, determining an unknown circumference 
*"w     rs* 

£ = f and the sought highest pressure p = p , will be: 

Tr^(?+Jndr-)+Jnd;""c'(T' + "TT)==0, 
«   • 

I       c 

Hence, subtracting the first relationship from the second, we find 

(when C = Cs): 
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Hr+i) n-f + |'.-0. (6.4) 

'•--1vW'+TrHn'r-Hn*- (6-5) 
Equation (6.4) determines radius r (^ )j pressure p_ is determined by 

equation (6.5). 

The solution adduced loses Its meaning, if inside the region 

1 > C > a there is no minimum T - T and this difference is monotonously s 

changing throughout the section. Then its least value must be equated 

to zero, and from this we will find the value of force p. For instance, 

if this difference increases from the inner to the outer surface, then 

p is found, when C = a, from condition T  - T- =0: 

•B (6.6) 
p,=o -«') (^L. - - T') ""J^^ 

If the temperature field of cylinder is radial and stationary, then 

the distribution of temperatures will be 

r«=7\+ 7'~r* InC (6.7) 
In« 

Formula (6.4) for f assumes the form 

-#- + #i~+4-s=0-    r^-g. (6.3) 

Hence t    is found with the aid of curves of dependency of T on T, s s 

with a T prescribed with respect to f; (6.7); thereupon ps is found by 

(6.5). 

Formula (6.6) assumes the form 

P.-O—K+^V.-T.)-'-£ + '"" . (6.9) 
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§ 7. Shells Subjected to Heating by Radiation 

The problem of thermoelastlclty for shells (and plates) in the 

presence of radiation is of practical interest. We know the method of 

setting-up and solving this kind of problem, devised by V. V. Bolotin 

[88]. Let us present the consideration for formulation of the problem 

on deformations of plates and shells, subjected to sudden heating by 

radiation [891. Solution of these problems requires an examination 

of heat-conduction equations and equations of thermoelastlclty. Taking 

into account that in setting-up equations of thermoelastlclty in the 

theory of plates and shells essential use is made of the Kirchhoff- 

Love hypothesis on the preservation of the normal element, it is 

Justifiable to introduce a similar hypothesis in heat-conduction 

equations also. Let us assume that temperature T, measured from a 

certain constant level, is determined by expression 

r«r#(x1.jrJ)+^e(jr1.j^. (7.1) 

where x., x2 are curvilinear coordinates of the middle surface, x^, is 

the coordinate measured off on the normal to the middle surface. In 

order to work out the equation for the average temperature T0 and 

temperature gradient 0, we will use the variation principle 61 = 0 

for functional 

/"J{i'J[<,>(r^'~7,^) + XV,7'V'r"'*(r""r),<'0 + 

+ ^kiTr~-TmT-Tnr)ds\di.       [H = n]        ,,., ^ 

Here c is the specific he^tj p is the denisty of material; X is  the 

coefficient of thermal conduction; q is the density of thermal sources, 

equal to the amount of heat, produced in a unit of volume of time; 

k is the heat transfer coefficient of the shell's surface; T is the 

ambient temperature; v is the volume of the shell; s is its surface; 
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tQ and t. are two arbitrarily selected moments of time; 7. and V
1 are 

* 
symbols of covarlant and contravariant differentiation. With T we 

designate the temperature of the process, proceeding in the sense, 

opposite to the process considered. It is easy to verify that 

Ostrogradskiy-Euler's variational equations and natural boundary con- 

ditions for functional (7.2) coincide with the heat-conducticn equation 

and condition of convection heat exchange on surface s. 

Introducing expression (7.1) in (7.2), we will replace integration 

with respect to volume v by integration with respect to the middle 

surface, and integration with respect to surface s by integration with 

respect to external and internal surfaces of the shell, and also with 

respect to its ends. Besides we will consider that the thickness of 

the shell is minute as compared to the radii of curvature of the middle 

surface. The Ostrogradskiy-Euler equation for the transformed functional 

assumes the form: 

,ss ^r^*"^4"*-7,4, (7-3) 

-M*t+k+T+~k-T-): (7.4) 

?      i X 
where V    = V-V is the Laplacian operator, X = r— is the coefficient 

of thermal conductivity; T and T_ are the temperature of medium in- 

side and outside of the shell; k and k_ are the corresponding coef- 

ficients of heat emission; Q is the density of thermal sources per 

unit of area of the middle surface; z0 is the coordinate of "the center 

of gravity" of sources. Natural boundary conditions lead to the 

following conditions of heat exchange on the ends: 
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V^i + W-r^O. (7.5) 

XV^rij + ^e—e,)-©. (7.6) 

Here n. is the vector of the normal to end surface and h is the coef- i 7 

ficient of heat emission for this surface. 

Let us examine example [89]. Let us assume that an unlimited 

plate of constant thickness h, resting at t < 0, is subjected in 

moment of time t = 0 to the action of radiation, the intensity of which 

later drops jn time. The field of radiation is assumed to be axi- 

symmetric. Let us assume that between the surface of plate and the 

medium the conditions of convection heat exchange with heat emission 

coefficient k are realized, and temperature of medium T = T =0. 

Equations (7.3) and {7A)  assume the following form: 

f-^'+^-L. (r.r) 

f-^+d^)9^- (7-8) 

Equations (7.7) and (7.8) must be examined together with equations of 

thermoelasticity. The equation of two-dimensional axisymmetrlc prob- 

lems, written In displacements, has the following form: 

s.B_^+M^..a(1+y)^. (7.9) 

where u is the radial displacement; a Is the coefficient of thermal 

expansion] v and E are Poisson's ratio and elastic modulus. At the 

same time the equation for the flexure will be 

v^itt,_4.J^=sa(l+v)v.0. (7.10) 

where w is the normal sag; and D Is the cylinder rigidity. Equations 

(7.7)-(7.10) are Integrated under Initial conditions: 

n(r.O) = e^O)-«(r.0) = i^-tt>(r.O)--^fcJL^O or dt 

420 



T 

and under boundary conditions, requiring the limitedness of all func- 

tions when r = 0 and proper damping of all functions when r tends toward 

infinity. Here, of course, the density of sources Q(r. t) must be 

also subjected to the corresponding limitations. 

Solution of equations (7.7)-(7.10) is sought for with the help 

of Hankie's transformation [90]. The temperature field is determined 

by the formulas: 

where 

While 

tU *B —— , a S3 B    J- ■     ■   ■   , 

where 

if{p. Q^afiil +*) Un\gtpV--x)]r9{ptt)d*, 

i 
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(7.11) 

i 

«•(P.O-^fexpl-(xA,+fl)('-^Q,(P^)^. (7.12) 

(t{p,t)'~lQ{p,Ql9{pr)rdr. 

For the displacement field analogously, we will obtain: 

«(rf0-?tt
,(P.0/i0«')MP. 

(7.1M 



I 

1 

Here 

Parameters c, k, X» 2Q* p, E,  V  and a are assumed to be constants. 

Let us Investigate the instance, when a change of density of 

sources along the radii obeys the Gaussian law, but their intensity 

changes in time according to the exponential law: 

Ö(f.O-^eip[-(-^-+jr)]  t>0. (7.15) 

Here QQ, r0 and s are constants. Substitution in formulas (7.12) 

yields: 

«iiPt •)=■-' z ~n • 

j <5^')'= ^ i?T^ 
i 
i 

|   For functions u (p, t) and w (p, t), applying formula (7.14) we obtain: 

V(p.O « J*'(l t^1?" «K-"^ 
«pfctt^-fa,-^ & + * 

    fog  
&+&>*# (7.16) 

o) fl - CM ^p«/+ ^^^-J—»In £/»»/1 
 ß! 1. 
tV + W + W * 

(7.17) 

Conversion of Hankie's transformation in this case cannot be 

carried out in the final form, therefore, integrals 
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«(p. 0 « f«'(P. WtWpdp,   a(p, t)« f«TO».t)ltlpr)pdp 

must be determined numerically. 

Determination of conditions, under which it is possible to dis- 

regard the influence of inertial forces, considering the process to 

be quasi-stationary is of interest. Quasi-stationary solutions ^hen 

t > 0 are yielded by formulas: 

«tVn ft «r8^*^ %***-*% «i>fr-*)-«Pl-to'l + «J<l        (7.18) 

(7.19) 

As it is noted in work [89], calculations show that longitudinal 

displacements can be found with sufficient accuracy by the formula 

(7.18), if we carry out the following conditions: 

*• 

i.e., thermal processes occur sufficiently slowly as compared to the 

propagation of velocity of elastic waves. 

Quasi-stationary approximation is unsuitable for finding of normal 

displacements. Actually, the integral 

m 
■^(r. 0 = f w;(p, Qi9(pr)päp 

with function w0(p, t), determined according to (7.19), does not exist. 

At the same time the solution which takes into account inertial terms 

enables us to calculate the ultimate maximum of the temperature sag. 

Here it is essential that the plate is assumed to be of an unlimited 

magnitude.  If the plate has finite dimensions, then quasi-stationary 

approximation becomes suitable for relatively slow thermal processes. 
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§ 8. Shells Exposed to Irradiation 

First of all let us state several considerations, pertaining to 

the formulation of the problem. It Is known that exposure of solids 

to Irradiation Is accompanied by numerous effects, as the result of 

which volume deformation appears In the solid body [91-95], and elastic 

and especially plastic characteristics of the substance are changed 

[94]. 

A neutron, possessing sufficient kinetic energy, passing through 

a crystal lattice, will form on its way primary, secondary, etc. recoil 

atoms. Atoms, knocked out from a crystal lattice leave vacant places 

and finally come to rest in intemodes, which leads to formation in 

the lattice of paired Prenkel's "interstitial vacancy." An atom may 

be knocked out from a node, when it receives a certain threshold 

energy Ed.  If the atom receives an energy, smaller than E,, then 

this energy is dispersed for the excitation of lattice vibration 

(heating) without formation of displacements in it [95-98]. 

Interaction of neutrons with nuclei, in addition to elastic 

scattering can be accompanied by capture of neutrons and nuclear 

fission. With every act of disintegration energy is produced and new 

chamical elements are formed [99-102], 

We will consider an initially uniform Isotropie body, occupying 

a half-space z § 0. If neutrons fall on boundary z = 0 parallel to 

z axis with identical average energy and intensity I0 
ne^ ron^  then 
cm .sec 

through simple reasoning we can find the intensity of the neutron 

flux, reaching plane z = const: the fall of flux dl in layer dz is 

proportional to I(z) and dzj hence 

/(^»/.r-M?!^.. (8.1) 
om 'sec 
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Value ^i is called the macroscopic effective section. For any chemical 

element [98] 

p»«%~«-4£. (8.2) 

and is of the order of -—, where a is the effective section, referred cm ' 

to one nucleus; p is the density; A is the atomic weight; A0 is 

Avogadro^ number, and n0 is the number of nuclei in 1 cnP. 

If I0 does not depend on time, then by the momert of time through 

section z, will pass the flux 

«fCf)«//r-M. (8.3) 

In the rough approximation we may assume that the change of 

volume of a substance, i.e., the cubic expansion 0, is directly pro- 

portional to the flux tl(z) and, consequently, 

where B is the experimental constant. 

Value I0t gives the total neutron flux per 1 cm of the surface 

body. In reactors I0 is of the order of 10
15 - 10l4 negtrons, and 

cm «sec 

nvt = I0t attains values of 10
19 - 1025 neutg0ns while 9 attains values 

cm 

of the order 0.1. Consequently, depending upon the energy of neutrons 

23    21 
and irradiated material, value B may be of the order of 10 ^ - 10 

cm 
-—-r-—. Thus, for an estimate of the volume change we have: neutron 0 

e = BfK^-M. (8.5) 

The relationship between the elastic modulus, yield point, ulti- 

mate strength, and the entire diagram of extension from nvt of various 

energies was investigated experimentally after irradiation of samples 

in nuclear reactors. 
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As numerous experiments show, upon the exposure of materials to 

Irradiation, as a rule, the elastic modulus Is changed very little 

(increases by 1.5-55^ relative to the nonirradiated); with respect to 

the ultimate strength and the yield point, they are very sensitive to 

irradiation and especially the yield point [94]. 

For solid bodies with a plane boundary the number of neutrons 

passing at depth z under this boundary during the time t, will be 

expressed through flux nvt on the plane boundary according to formula 

|w^-i*r-. (8.6) 

and therefore, yield point a and shear modulus G will be variables 

according to depth z. 

Let us introduce the hypothesis that properties, appearing at 

depth z coincide with properties during exposure to uniform irradiation 

with a power (nvt) [86]. Then diagrams for G and 0 with respect to 

nvt, analytically recorded in the form 

G«»G(inO, ot = 9${nU)t 

yield curves of change of G and a_ throughout the depth z with a given s 

nvt = N on the surface 

If we subject to irradiation by power nvt = N, bodies with plane 

boundaries, a hollow cylinder or a sphere, the volume change being 

insignificant, then the distribution of stresses and deformations in 

them can be found by formulas of elastoplastic deformations of a 

heterogeneous body (see § 6 of this chapter). 

Formula (8.6) assumes that neutron scattering dN in layer dz 

is proportional to N and to the thickness of layer dz, dN = -^.N dz. 

In a radial flux from the inner surface, for instance, for a cylinder, 

this relationship is replaced by d(rN ) = -(irN dz, and for a sphere, 
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2        2 with a radial flux from within, by d(r N ) = -nr N dz. 

Thus, in the case of a hollow cylinder 

' r 
in the case of a sphere 

M,~N^e-*-*. (8-8) 

where N is the flux nvt per one unit of area of the inner surface of a 

cylinder or sphere (r = a). Consequently, for a cylinder 

0-0[i»f^r-^i], ..-9.[*Te-*--»]t (8.9) 

for a sphere 

0-O^Vj.r-*-»j, •,-•.[^«-^1. (8.10) 

If, taking the above into account, we consider that elastic 

properties of metals are little changed during irradiation and, on the 

contrary, the yield point is changed essentially, then to calculate 

stresses and deformations of various kinds of shells, subjected to 

irradiation from the external or internal surface, we can apply the 

usual theory of elastic shells. Its specific character will consist 

of determination of loads, under which, for the first time the plastic 

deformation will appear. I.e., in the strength criteria. 

Now we will set up the problem on exposure to irradiation of a 

shell and will Indicate the course of solution. Let us assume that 

(x, y, z) Is the accompanying Darboux trihedron on the middle surface 

of the shell, while x and y axes are directed along the main lines of 

curvature a, ß and z — normal] E., Ep, 7 -  2e12 are deformations of 

the middle surface; K,,, Hp* T = H.p are changes of curvature and 

torsion through the action of external loads on the shell. Then the 

resultant forces and moments will be connected with values e and H by 
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known linear relationships, while the intensity of deformations e. at 

a distance z from the middle surface in any  one point of it will be 

il~^fVP.~M>„+*P, (8.11) 

the intensity of stresses 

(8.12) 

while P , P,, P^_ are known quadratic forms for parameters e andH [2]. 

Let us assume that the neutron flux proceded normally to one of 

the surfaces of the shell (fox instance, to the inner surface), while 

the total flux N = nvt is known as a function of coordinates of the 

middle surface (for instance, it is constant over the entire surface). 

To he specific let us assume that flux N is directed from the part of 

the inner surface z « +■*, where h is the thickness of the shell. Then 

in layer z = const flux N according to (8.6) will be 

*r.-*^-). (G.13) 

Yield point a, which is a known function of N, s z 

is, consequently, a known function of z and curvilinear coordinates of 

the shell. 

Inasmuch as a. = 3Ge. as a result of elastic calculation of the 

shell is also a known function of coordinates, we can set up the 

difference 

(8.14) 

We will designate with letter p the parameter, characterizing the load 

on the shell (for instance, the pressure on the surface), while owing 
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to linearity of the problem values e and n will be proportional to p, 

and form P is proportional to the square of p. Let us designate 

p.-Ä. P.-/»?.. p.,-rPn. (8l5) 
so that V does not depend on p and they are known functions of curvi- 

linear coordinates. Then function T is written in the form: 

T-*tw/*{^\~2y^pVK^fc+*P. (8l6) 

and is a linear function of p and a known function ol coordinates 

a, &j  and z: 

Let us set up a problem: to find that value of load p#, with 

which in the shell, in some point M (z = z#, a = a*, ß = ß#) fluidity 

appears for the first time, i.e., a. = a . 

Inasmuch as usually a. in elastic shells attains a maximum when 

z = ±^, one would think, that fluidity also appears for the first time 

somewhere on the external or internal surface. But, on the other hand, 

radiation strengthening will be the greatest precisely on one of these 

surfaces, and therefore, the appearance of fluidity on the irradiation 

surface becomes less probable. 

In general, if point M is inside the body of the shell (i.e., 

|z| < •«• and a#, ß# not on the boundary of the shell), conditions, 

determining p# and point M , have to have the form: 

T n ~*i  =.£.„0 (8.17) 
fc    d?    M 

The problem is g eatly simplified, if flux N is constant on the 
ON .. ON 

<3a  öß 
surface, i.e., -M = — = 0. Actually, in this case condition 

£l = 2l = 0 coincides with condition —± =  —- = 0, I.e., with the 
öa  öß öa   ^ß 
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usual in the tneöry of shells condition of detecting the point of maxi- 

mum stresses, and, consequently a#, 0#, become known on the basis of 

the usual method for finding them. After this, it remains to find only 

the coordinate of layer z = z#, where fluidity begins. For that, from 

(8.13) we find z through N_: 

f„±+J.|nit. (8.18) 

Nov;, considering that in (8.16) z is replaced by this expression, 

ÖT /dz    1 \ 
conditions T = — = 0 are written in the form I™ = uM/*  first 

equations for z«: 

«=».. fW-^ITO. (8.19) 

where 

while z has value (8.18), and, secondly, expression for p#: 

If point M lies on surface (z = t-^j, the problem is solved by one 

equation T = 0. 

Equation (8.19) is solved graphically. Point of intersection of 

curves (p(N) and ^(N) yields N^ and «p(N#). After that we find cr (N^) 

and z# from equation (8.18), and then from (8.21) we determine p#, 

with which the plastic deformation of shell begins. 

It can happen that curves (p and ^ have several points of inter- 

section N*, Nil ...* and to each of them will correspond Its own p„, 

D" 
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Now the problem on where the plastic deformations appear for the 

first time will be solved by means of determination of the least of the 

values of p# found above. 

Formulas of calculation of the strength of bodies under the 

effect of exposure to Irradiation will Include the dimensional physical 

constant [u] "•' «jj* and therefore, geometrically and mechanically 

similar bodies from Identical material are absolutely unequally strong. 
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r,-—(«. + «,). r,--^ (,, + «,). 

In order to satisfy equation -^ = 0 and condltl -n ^ « 0 when 

X • ±1, we must assume that T. - 0 or f.A  - -vc2, from this It foi.lows 

that 

The third equation of equilibrium is reduced to the form 

and boundary conditions assume the form 

+ -^-■"0• -^r-O when*-±/. 
9* * «jfl 

Presenting c - w in the form of the sum of terms of type C6""* WP 
2 1 shall find that m will be a value of the order of £, and the solution 

will assume the form: 

.-c + cch^cos^+csh^jsln^). (2.17) 

where   

and 

— <     rt(^)+-.(^) '  ■ 

The solution shows that near the edges of values £>, e2, h^, and 

^tp are all of the same order; at distances from ends,, which exceed 

the value (ah)l/2, e, and e« become small as compared to h>ip. 

We can show that in a given static problem the potential c> 

tension energy will be of the order of the value equal o the product 
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•HCn' + n-S^L^-O. 

of (r)   multiplied by the potential bending energy.  In cace of 

oscillations we may conclude that extension, which ensures the ful- 

fillment of conditions on the edges, is limited in actual practice 

by a narrow ban along the edges. The chtnges in the total potential 

energy and oscillation period connected with this are so small that 

they can be disregarded. 

§3. The Spherical Shell 

The mathematical aspect of the investigation of oscillations of 

the spherical shell is rcn'U,/ to the irm;sti;
,,at*on of the cylindrical 

shell, and therefore, there is no tumb t» npradiusae the umjtaqmm 

formulas here. Let us examine the qualitative aspect of elastic 

oscillations of the spherical shell. 

Let us assume that oscillations are accompanied by elongations; 

they are divided into two classes, which are obtained by rejecting 

the radial component of displacement and the radial component of 

rotation,respectively. With every oscillation of the normal type, 

belonging to either class, displacements are exprs. Ged by means of 

spherical functions of any specific integral order. Witli oscillations 

of the first class the frequency fi— is connected with the order of 

the spherical function n by the relationship 

Ä-(n-l)(n + 2). (3.1) 

where a is the radius of the sphere. In oscillations of the second 

class the analogous relationship will be 

'B-*' 0.2) 
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