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FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH

DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS
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PREFACE
ITn modern structures of the most diverse types and purposes
shells are very widely used and therefore, are of interest to us.

In writing this book we used materials from lectures on the

course "Shells," read by the author at the Mechanical-Mathematical

Department of the Moscow State University, well-known monographs, con-
temporary periodical literature, mostly Russian, and also the latest
results obtained by the author in this field.

On the general theory of shells we have many good books: P, F.
Papkovich "Structural mechanics of the ship," Part II; V. Z. Vlasov
"General theory of shells," S, P, Timoshenko "Plates and shells,"

A. L, Goltdenveyzer"Theory of thin elastic shells," A, I, Tur'ye
"Statics of thin-walled elastic shells," V. V, Novozhilov "Theory of
thin shells,”™ A, S. Vol'mir "Flexible plates and shells," Kh, M,
Mushtari and K. Z. Galimov "Nonlinear theory of elastic shells,"*

S. A, Ambartsumyan "Theory of anisotropic shells and others. Hcwever,
the problems of dynamics and stability of shells are insufficiently
elucidated, and our book fills this gap to a certain degree,

In the book we examine problems of oscillations of shells: their
natural and parametric oscillations, panel flutter, and certain other

dynamics problems, in--it-we also examine problems of stability of

K
—
}
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-
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*

shells within and beyond the limits of elasticity of their material

and certain special problems of calculation of shells, among them the
effects of hardening of shells through cold-hardening, heterogeneity
of the material, and penetrating 1rradiatinn.|\

The book may be used as training aid for péstograduates and stu-
dents of universities and technical institutes, who are specializing
in the theory of elasticity and plasticity; it will be useful for
scientific workers and englneers, studying the problems on strength,

The author expresses his gratitude to Reader M, A, Koltunov for
his atteptive and thorough editing of the book, and also thanks for
their vaiuable advice the honored worker of science and technology of
RSFSR, Ductor of Technical Sciences, Professor N, I, Bezukhov and
Doctor of Physical and Mathematical Sclences, Professor V. V., Moskvitin,
The author expresses his gratitude to his colleagues of the Chair of
Theory of Elasticity of the Moscow State University, assistant I, M,
Tyuneyeva for the help,given in preparing and putting into shape the
manuscript; technician-experimenter S, A, Orlova and laboratory tech-
nician M, A, Trapp for participation in shaping of the book, The
author will be grateful to all who will find it possible to send their

wishes and remarks concerning the book.
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CHAPTER I
NECESSARY DATA ON SHELIS

§ 1. Definitions, Hypotheses, Geomeiric Elements

A body, limited by two curvilinear surfaces, the distance between
which (thickness h) is small with respect to its other dimensions, is
called a shell,

The surface, dividing it in half throughout its entire thickness
is called its middle surface., It is assumed that everywhere, excluding
certain points or lines on it, the middle surface is continuous with
continuously variable tangent and curvatures, while all its geometric
characteristics change very smoothly, i.e,, so that during the transi-
tion from one point to another point located at a distance of the order
of thickness h of the shell, they undergo a relative change of the
order of h/R (R being the radius of curvature) or less.

We shall consider cnly sihells of constant thickness, Depending
on the shape of the middle surface we distinguish such types of shell
as: cylindrical, conical, i.e., having the shape of developing sur-
faces; spherical, in the form of ellipsoids, and others, which have
the shape of nondeveloping surfaces, In actual structures the most
widely used shells are those having the shape of developing surfaces

and most frequently, cylindrical shells.
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Let us assume that we have separated an element of the middle
surface of a shell, having an arbitrary outline; in a certain point m
of it we draw a normal n to the surface, and if we draw through the
normal n a number of planes, then at the intersection with the surface
they will produce variously oriented plane curves — which are normal
sections,

Upon rotation of a certain plane S, containing normal n, around
its normal sections s are formed. Determining their curvature, we
find that for the two curves r and t, lying in mutually perpendicular
planes R and ¥, the curvatures have extreme values with respect to
| other normal sections. Directions of curves
r and t are termed main directions in the

given point of surface, and corresponding

curvatures are termed main curvatures.
Let us assume that we found the main

directions for all points of the surface,

end if now we draw lines, the tangents to
which in every point coincide with these directions, then we obtain
lines.

For coordinate lines o and B we shall select lines of main curva-
tures of the undeformed surface; they form an orthogonal grid on the
surface (Fig. 1).

For any point of the surface we may find the Gausslan curvature,

which 1s equal to the product of main curvatures:
T=lholy=bky= kb, (1.1)

The value

K= gt k)= 2 (h,+4) = (ki + 8. (1.2)

is termed the mean curvature of the surface at the point.




Shells can be classified according to the sign of Gaussian curva-
ture of their middle surface: thus, for example, the spherical shell
has a positive Gaussian curvature, constant for all points; cylindri-
cal and conical shells have a zero Gaussian curvature, since one of the
main curvatures turns into zero, etc,

A cylindrical shell, the cross section of which is a circumfer-
ence, is termed circular; where, if its section constitutes a full
circumference, it will be a closed circular shell, and, if its section
constitutes only a part of circumference, it will be an open circular
shell.

A shell of any shape, the rise of which H is comparable to its
thickness and is small when compared to its other dimensions, is
usually considered to be a slopihg shell.

The solution of the problem of shell equilibrium during elastic
and elastoplastié deformations is based on two Kirchhoff-Love hypoth-
eses, The first hypothesis states that the total material particles,

located on the normal to the middle surface of the shell before defor-

i)

mation, 1s located also on the normal to its middle surface after
deformation and, therefore, the deformed state of the shell 1s deter-
mined only by the deformed state of its middle surface. The second
hypothesis states that all stress components which have the direction
of the normal to the middle surface, are minute as compared to other
stress components. These two hypotheses are in ageeement with each
other and state that any thin elementary layer of material, parallel
to the middle surface of the shell, is under the conditions of plane
stressed state or, to be more exact, the stresses, effective in its
rlane, are significantly larger than other stresses,

In addition to Kirchhoff-Love hypotheses, in our research on

elastoplastic deformations we shall subsequently use the assumption




of the incompressibility of the shell material. The degree of accuracy
of this assumption is sufficiently definite, inasmuch as we know from
the theory of elastic shells, the effect of the Poisson factor on
strains and stresses. Meanwhile the incompressibility hypothesis
introduces significant simplifications in the theory of elastoplastic

shell deformations.

If we apply to the shell a certain relatively small distributed
lateral load, then first of all, as # result of the action of compres-
sing or stretching forces, chain stresses, evenly distributed through-
out the shell's thickness will originate in the shell. Since in this
case, bending stresses in the shell will be comparatively small, the

¥

! shell can be termed a zero-moment shell. This is the essential fea-

;? ture of the shell as compared to the plane plate, which reacts to a
lg lJateral load with smail sags mostly at the expense of natural bending
stresses,

1f the shell is sufficiently thin, then upon a further increase

of the load sags, comparable with the shell's thickness, may appear

N

in it., Then in addition to stresses in the middle surface we shall

have bending stresses wlith them in value, and the stressed state will

ey e g

be of a composite or momentum nature,

Consequently, two different stressed-states, which occur with
small loads In cases of the plane plate and zero-moment shell, for
flexible plates and shells become one composite stressed state. Hence,
differential equations of the flexlible plates and shells theory must
have a common structure. For sloping shells, the composite stressed
state 1s characteristic even with small loads.

1 When investigating, for example, the resistance of a cylindrical

shell, compressed along 1ts generatrix, we may assume that in the

6




initial equilibrium position the shell works as a zero-moment shell.
However, upon the loss of resistance significant bending stresses im-

medliately appear.

§ 2. Deformed State, Conditions of Compatibility

Let us select the main orthogonal system of curvilinear coordi-
nates €, 1 on the middle surface of the shell. At the point with co-
ordinates (£ and 1) of the middle sur-
face we draw the tangent plane. We dis-
pose of the mobile Darboux trihedron
(x, ¥, 2z) in such & manner that the
origin of coordinates ( x =y = z = 0)
coincide with point (£, 1), the x and y

axes are directed toward the growth of

€ and 71, respectively and the z axis

toward the certer curvature of line §. Thus, the x, y axes coincide
with main directions of surface at point (€, n). The middle surface
element of the shell is formed by lines € = const, 1 = const and £ +

+ d§ = const, n + dn = const, and the element of the shell — by draw-
ing normal sections through the above-mentioned lines (Fig. 2). We
designate the displacement of points of the middle surface along lines
X, ¥, and z through u, v, and w respectively. For initial curvatures
of lines x and y let us introduce the designations kx = ki’ ky é k2.

Elongations per unit length and the shift of the element of middle

surface resulting from the deformation of shell we designate:
. 1
6 = (€)z-00 &= (eyy)l-' 0 &= ‘E‘(egy)znm ( 2.1 )

and the change of its normal curvatures and torques, which from now

on we shall term shell distortions due to strains, we respectively

designate:
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S I SN NN WS I
RS R, R roo (2.2)

If components of the displacement vector of the point of the middle
surface x, y, z axes are given as functions of coordinates (£, 1),
then deformations €45 €55 €4, are expressed through them by known
formulas, containing derivatives from displacements not exceeding the
first order, and distortions s Moy Nyo — not higher than the second
order,

According to the first Kirchhoff-Love hypothesis, the normal
element of the shell before deformation remains also normal to the
middle surface after deformation, therefore, small deformations of
the layer, located at the distance z from the miildle surface, will be:

3“ =0 =8 — 2y,
Ay =ty =ty —21, (2.3)
23:’ = gy = 2(zyg —2219),

or, expressed through displacements:

du el
== g TV
ad *w
=ty =3y "V o
du & Pw
23"’:"’:2(7"'?—"’0:@)' (2.4)

Formulas (2.3) fully determine the rule of signs for distortions.
For instance, value "y is considered positive in the case when the
fiber, parallel to the x axis and located on the side of positive
values z, is shortened owing to distortion nys torsion 1 = Myo is
positive, if the angle between fibers, which are parallel to x and y
and located on the side of positive z, increases,

In examining the elastoplastic deformation problems we shall
require an expression for deformation intensity, which we write in

the form

=2 VP =t VP =3
c"‘" {?lpl y-j- V-Pl 2zpll+zzpl ’

(2.9)




where Pe’ P, %1 are quadratic forms:

En
P.Blf'i";‘g""g“l" ‘ft; (2‘6)
Po=xdtupy+ 4 + oy (2.7)
o = tgxy 4 gy 4 -;—‘;’:4' %‘s“n‘*"n"w (2.8)

Expressions for deformations of the middle surface when the shell

has sags comparable with its thickness, can be presented by formulas:

(2.9)

Deformations (2.9), similar to (2.4), are dependent, for them the
compatibility condition should be met:

&, %, o
- wte TEy T
(oY Yo P L Ow , Fo
"(oxay) W W T Tan (2.10)

Let us give short systematization of data on the deformation of
shells and consider the deformation during final displacements [1].

We shall determine the position of the shell point with Gaussian
coordinates a, B of the middle surface of the z coordinate, directed
toward the outward normal, Lamé coefficients for the system of coor-

dinates (a, B, and z) will be equal to

H, = A(l + ‘-;'—) H,=B(l + %,) H,y-- 1.

(2.11)
For a thin shell we can assume that
1+2=1, 14+ E=1,
+Rl : +Ra !
1.eo’
Hi=A H,=B H,=1. (P.il')

Values A, B. Ri’ RP are connected by well-known Gauss-Kodazzi




relationships:

s\ R, R, o'
@ ({1 0By, 8 (1 A\ __ AB
R ITA TR ML Al e (2.12)

2 (A )= 1 M
B \R Ry & °
In the instance of shell of rotation we can assume that the

length of the arc of meridian s, is the a coordirate and the azimuth

is the B coordinate, then
A=1, B= ro(s), - (2.13)

where ro(s) is the distance from the axis of rotation to the point
with the s coordinate., In this, if a 1s the angle formed by the tan-

gent to meridian and axis of rotation, then

1 o 1 - 81 o, -
R;g al.' Re Ty * o sina. (2°14)

If with the increase of S the value Iy decreases, then a > 0; with
the increase of r; the angle a < 0. We note that from (2.14) 1t
follows that

.l.(_'__)z.j. .'___L)_"_'.'_’._ (2.15)

Let us now assume that during deformation displacements U and v
change through the thickness of the shell according to the linear law,
but displacement w does not change

z(ﬂ.ﬂ.l,l) == “(¢-3-‘)“W(ﬂ.9.0-
v(2.8,2,0) = v(a,B, ) — 29 (a.. ),

= . 2.16
w(a,p,2,0)=w(s,B1). ( )
Deformation and turn parameters will be equal to
| 1l a7 ) A~ &
= —7 [T'&T+'A_B"5'.TD+R—,]'
1+
R
1 1 av 1 8 -~ g
1+ —
Ry
o 10




For a thin shell, considering (2.16), we have,

0 0 0 0 0
&= C?l — 2Zkyy, €gq == €22 — zky,, €y = €12 _an'

0 0
€y; = €z, €, = €2,

where
I e
aod ke s
b p (e )
' b= By L R (Fet )
k||=‘i"’:%+]%%€_w'
= o
11

(2.17 cont'd)

(2.18)

(2.19)




g In axisymmetric deformations of the shell of rotation its state

¥,

will depend only on one coordinate a, and the displacement v will be

equal to zero, therefore, €p = €5, = Wy = W, = 0.

z
For the axisymmetric deformation of thin shell we obtain

¢'|==-—+—- &= —(-—-usmu+wcosa) &_T_E.—Q,
2ﬁ=~9——5‘—-+ ku-—%, ka:—-;Slﬂ(l. (2.20)

Deformation components in large displacements will be expressed

by the following formulas:

— +—'—[¢!. +(—'—e..+ “) '+ (—;-e..—-.)'].

-mtat L [é+ (—e.. )'+(l¢u+ -;)'].

[ 4

TR

‘u‘:‘n'l' €1 (‘;—ﬁs-‘ - ) + ’u("‘"xs"l‘ "z) +

+(“;"¢u-"'t) (?¢u+‘x)- | (2.21)

= ten (g entom) He, (et o)
H(donte) (o).
o= ens e n— ) e (e — o) +
o) (Facte)

n=tut g [dt —e..+w,)+(—e, —a)]

RN R B e 33 3 &

Expressions €,,, €55, E4, through displacements U, ¥V, W can be

written in the form:

i 2 A -A-Faé Ry
Ry
1 1 'yl gu 1 A~ g\
‘ +7(l+_z_)[(7—,+ﬁ7°+7.,- +
Ry (2.22)
1 8% 1 A 1l ow a\
+(7r—ar—'ﬁ‘:ar“)+(,q T-””"k,‘)]'

P




l —
Ta
1 b \*ff1 a5, ! B~ B
+z( z)[('i?.%'TTET“""RT)"'
1+—
Ry
1 o |aa~)* (1,; ;):
B % AB RV 'B’Tai“"‘it;']
1 1 9% 1 9A .
M=—"7\7 & "% “)+
1 —
R,
1 1 9 1 8B ~
T3 (T?f"-irsr" + (2.22 cont'd)
l-I-‘R—
2

grearrealtEas ek
(

Substituting in (2.22) expressions (2.16) for displacements, we

obtain:

z 1 6u 1 1
O R [ e
14—
. R.

1 1 A w)] 1 A .
Vo, My B — L o~
x(AO:+AB FP +R| + 28 F7

1 1 1 Ou 1 _ei LB
x[l+— (TB,““LEE vt R')]+

2 2z

® L _ 1 (1 0w ) A, ®
+’—['+—2— (A ot e ]+

(G




: _—
- ]—Z{';-éa—x : (2.23 cont'd)

1 & 1 4B w

ABO:Q z(aaa

- Gww ) Gam )

(1+..£_ (|+_’_ ,,“-_-(._'__é:___l__ aA u‘)x

B K

N DI CEON

B & AB & R

(e )

- 14




taatmt (e a)
x[(l )+‘L-:'T+-—'-—3- +-—:'—]+ (2.2% cont'd)
R Ak

GRS (G352
(G- -2 o

Formulas for shear deformations in large displacements have the

form:

P UL (T A
= "5 Z \B % R

! 1 95 . | o8- ;;)
+?_"(TT;+HT“+T,

IR
+

After introduction of formulas (2.16) in (2.24), w2 obtain,
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In the future we shall consider deformations of the element of
shell with the dz thickness to be small as compared to 1, and, con-
sequently, the element of the shell with the dimensions of dadfdz
will only turn, as the result of deformation, but will remain to be
the rectangular parallelepiped, and will retain its dimensions: how-
ever, by virtue of (2.16) these parallelepipeds will shift with respect
to one another by the shell thickness, We will also assume cthat the
shell is so thin that h/R < 0,01; sags w will be considerea .mall as
compared to the thickness of the shell. Considering the possibility
that the shell material may exceed the elastic limits and its work
until reaching the tensile strength, we should assume that deformations
€ are of the order of 0.1 (e;, < 0.1).

Let us consider two of the most frequently encounte. -d instances:
1. Nonsloping shell, i.e., when the least radius of curvature

is of the order of linear dimensions of the shell.

2., Sloping shells, i.e., when the least radius of curvature is
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one order larger than linear dimensions L/R.S 0.1.* Moreover, in the
future we shall disregard the values of the order of w/L or less as
compared to 1, We shall also assume that components of deformation
throughout the thickness of the shell change according to the linear
law, i.e.,

o (@a.p.2.0)= ". (08,0 —2ky (1.3,0), ¢yg(2,0.2,0) = = (@, B.0) — 2kg (2, 3.1).
6 (2.8.2.0) = c’z(u. 8.0) —zkyg(2,3.0), &,(2.B.2,0)= ¢:, (2.8.0) —zk,,(2,B.1).
0, (1.8.2.0) = €2 (1,3, 1) — 2y, (2.3.9). (2.26)

1. Nonsloping shells. In this case w/R < 0.1, i.e., w/R = h/L

or w/R = 10h/L., Let us assume that angles of inclination of tangents

ow/ds, and Ow/ds, are such that their squares are of the order of the

2 1/2
deformation parameters (%W-) =~ 0.,1; consequently, (?_2{) ~ (R 5
s 0s L

i.e., the variability index for the derivative from the sag along the
coordinate is equal to (h/L)x/g. The angles of rotation ¢ and ¥ will
be of the same order. The change of angle of rotation along the coor-
dinate lines characterizes the bend of shell, We can easily note that
from expressions for deformation parameters it follows that ou/ds and
dv/9ds are of the order of (h/L), i.e., u < h, v < h,

Let us examine in detail the following three forms of bend:
s1ight, average and strong, included in the described case.

a) The slight bend of the shell occurs, when turns of its lineal

elements during bending are small everywhere as compared to unity.

This may take place for sags, which are small as compared to the shell

*The sloping shell can be defined, according to M. A. Koltunov
[48], as the shell, for which L/R = i10h/L, i.e., the shell, which can
snap without the appearance of plastic deformations on the boundary
of the region of stability.
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thickness, for which w < he;/a. In this case in the expression for
deformation of the middle surface it is necessary to retain members

up to (h/L)B/2 inclusive. Then we have

() 1 & 1 dA » 1 1 fodw\* a &
= utwe "+_E.'+T'i(37) RA &
=1 % 1 K
kll ‘a‘+”a?-
o 1 & , 1 o8 w , 1 1 e\
b atmattrtre(s
‘ s
R &'
_ 1 1 a8
ke na;i+naaa"
o1 ® 1L oA, Lo 1| 9B
i TR N
RN - SNy S
y,'ABézdﬁ RB 3  RA " .
I TN I SRS I SO O} (2.27)
k=74 B YT 3 Tt

Disregarding in the expressions for shear, the value (h/L) as compared

to 1, we obtain

"z’:"}‘%"”%“vo
k‘,=0.
g‘,"_-___._'_..al__'i__?'
B 3 R (2.28)
ky, =

b) The average bend of shell takes place, when the sag is of the

order of thickness, but significantly less than characteristic linear
dimensions of the shell. For the average bend we usually disregard
squares of turn of the element from the bend as compared to unity. 1In
this case 09/ds ~ 9//Ih, h (09/ds) = (n/L)i/e. Here in expressions
for deformations it is possible to be limited only by the terms of the
order up to (h/L) inclusive, and, consequently, nonlinear terms, con-

taining displacements of the middle surfac: u and v, can be disre-

garded, if, however, we take into consideration terms up to (n/L)i/g
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inclusive, then formulas (2.27) will remain in force, and deformations

of shear will be determined by formulas (2.28).

c) The strong bend of shell is a term given to such a bend, where

sags are large as compared to its thickness and are commensurable with
its linear dimensions. In this case turns of lineal elements will be
2
commensurable with unity, but 39/ds =~ ¢/h, h (d9/0s) = (h/L)m/ and,
consequently, with the accuracy up to terms (h/L), expressions for
deformations €112 €00 €45 wili be the same, as and in the preceding

case, In shear deformations it 1s necessary to consider values k

1z
and k,,, equal to
b= —[o(G ot w )
(-5 4)
k"—_[*(TTf rx )+ (2.29)
WIESETTY)

If, however, in expressions for deformation we disregard terms
(h/L)L/e ~ 0,1 as compared to 1, then it is possible not to consider
the deformation of the middle surface, and the shear deformation can

be coneidered constant throughout the thickness and equal to

e,
(2.30)

x*|e &lg

_—

The strong bend, as a rule, takes place only when the external

wﬂ

¢.==

load changes sharply on a small section of the shell surface.

It is permissible to consider, as we do for small sags, that the
shear deformation does not change throughout the thickness with any
variation of the angle of rotation of the normal. Thus, for sags of
the nonsloping shell, which are comrarable with its thickness, defor-

mation components will be calculated by the formulas (2.206)-(2.23).

19
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Calculation of values k,, and k,, according to (2.29) will not cause

1z
any complications.

With axisymmetric deformation of the shell of rotation components
of deformation €4o and 522 will be equal to zero, since the displace-

r ¥

ment vV = 0, and other displacements are determined by formulas:

9 du ® ] _Q_ '__:_;b_ =_Dl
'u='7;+‘;‘-'+7(a) Ak by, "
&n-—'—(weou——usina), ky=—Ysina, (2.31)
fe e
‘l:=.’t=%——;.—‘—v.

We can easily see that the effect of large sags shows only on the
values of meridional extension-compression deformations of the middle
surface of the shell,

2. Sloping shells., In this case the value h/R is minute, namely

h/R < 0.1(h/L), and here, if 1/R ~ h/l, then h/R ~ 1°/R° ~ ..°/1%,
Since deformation parameters of the middle surface are of the order of
h/R, the displacements of the middle surface will be of the order of
(L/R)h, i.e., higher than the sag. Nonlinear terms in expressions
for deformation components will be effective, if angles of inclination
of tangents are such that (aw/as)2 ~ h/R, i.e., 0w/ds = /h/R, where
ow/ds =~ h/L when L/R = h/L. Consequently, for the bend of sloping
shells 1t is necessary to change to nonlinear theory for smaller angles
of inclination of tangents than tor the bend of nonsloping shells,

In determination of deformations of sloping shells it is possible,
as in plates, to disregard nonlinear terms, containing displacements

of the middle surface,
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§ 3. Stressed State, Equations of Equilibrium

In Fig. 2 we represented the element of shell, on the edges of
which forces act in the middle surface, and in Fig. 3 we depict the
element of the middle surface of the
shell and the diagram of forces act-
ing on it; beinding forces are moments
and transverse forces: normally a
transverse load of intensity q is -
applied to the element.

Let u. constitute the equation

of equilibrium of the shell element, We write the sum of projections
of all forces on the direction of tangent to line x; considering that
in view of the smallness of angles, the forces in the middle surface

are projected in actual size, we obtain.

Xy
ox

(X4 Gzde)hdy — X pdy + (X, + 32 dy ) hx —
—Xhdx =0.
Projections of transverse forces are not included here, they give
terms of a higher order of smallness and therefore, can be disregarded.

After simple transformations we obtain

X,  ox,
ot =0 (3.1)

Analogously we will find in projecting of all forces in the direction

y, that

X, ¢ ayy — )
T+Ty.. 0. (3.2)

The equation of moments of all forces with respect to the tangent to

line y wlll have the form, as follows

(M + 252 dx Y dy — M, dy+ (T, + 235 dyYax —

ox

. d
—-Tde—qudy%—(N, + —agf—dx)dydx— d:; dydx—;— == 0.
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Leaving out small values of the highest order, we find:

M, , o, _
—k‘_-’. “ l_o' (303)

Analogously we will find the equation of moments for the tangent to

line x:

il —N,=0. 3.4

T"'T (5.4)
Let us now set up the equation of projections of all forces in the
direction of the normal, where we consider the element of the shell

in deformed state. Forces Xxh and Yyh will give additional components,

equal to
Pw Puw
X,h(k, +—-5;;-)dxdy.l’,h( k, + ———-)dxdy.

We can easily see that the final equation of equilibrium will have

the form
ON, oNy v
S 4 -3,—+x,h(k,+_(,_x,)+
P z

For the shell with initial deflections w from the ideal form we

in
shall have an analogous equation of equilibrium:

N, oW, K
e+ gl XA kot @t wd]+

Y bkt wd) +

+2X,h- —-—(w+w...)+q--0 [HY = in = initial] (3.6)

§ 4, Relationship Between Deformations and Stresses,
Differential Equations

Let us be given a shell with thickness h, which 1s acted upon by
a certain system of balanced forces, which cause plastic flows,

Stresses in layer o'mn (Fig. 2) will be:

|
sq -X,— TY' = '3’:_' (vy —24y),

(4.1)




1
S,=Y,——X,= 2L (s—2x), :
2 ” 4 {#,1 cont'd)
Sy= X, = —é(‘“—nf')'

_ 2 2
where Oi = \/Xx - Xny + Yy

04 is a specific function ei. Stresses Xz, Y

+ 3X§ is the intensity of stresses; where
79 Zz are small when com-
pared with basic stresses.

The entire simplification, introduced in the theory of shells by
the Kirchhoff-Love hypotheses, consists of the fact that, instead of
six stress components it is possible to introduce five force comgo~
nents and thiree moment coméonents, which act on the shell element as
a whole, and these eight values will be functions of only two indepen-
dent variables €, n; for their determination it is sufficient to have
equations of equilibrium of element only, if the relationship betwecn
forces, moments, deformations, and distortions will be established.

Five force components are determined, as resultants of all
stresses along two mutually perpendicular edges of the element,
lengths of arc of which in the middle surfaces are equal to unity.

If the shell is sufficiently thin, so that the ratio of its thickness
to the characteristic radius of curvature can be disregarded as com-

vared with unity, then we obtain the following five expressions for

the forces:

A A
2 3
TJ=T‘—- j X,dz, T’=T‘=‘: j y,dz’ ()'4.2)

~r A
2 Ty

Y A

2 )

N,=N,= '( Z,dz, Ny=N,= _"Z,dz
- h
2 )
23
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Intersecting forces Nx’ N in spite of the smallness of stresses, are

y!
not equal to zero, and they are determined only from equations of
equilibrium,

Analogously it is possible to write formulas for the bending

moments and torques:

-

(4.3)

Inasmuch as stresses, applied to the element, are thus replaced
by resultant forces and moments, it is possible to replace the very
element of the shell (see Fig. 2) by the element of the middle surface
(see Fig. 3). In Fig., 3, which shows the diagram of furces acting on
the element of the middle surface of the shell, we see that forces
T =T and T = T2, stretch it in the direction of x and y axes;

X i y

force Txy = T12 creates a shift inside the surface, and their positive

directions in x, y axes are the same, as directions of stresses Xx,
Yy, Xy. Positive directions of intersecting forces Nx = Nl’ Ny = N2
coincide with positive directions of stresses Zx’ Zy. Bending moments
Mx = Mi’ My = M2 are considered positive, if they strive tc give con-
vexity to the shell in the direction of positive z axis. Torque MXy =
= M12 is positive in the case when on the part of positive x axis it
strives to turn the element clockwise,

For simplification of calculations, following A, A, Il'yushin
(2}, it is recommended instead of forces Ti’ T2, T12, to introduce

their linear combinations:
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&
2
s.=r,—-;-r,- js,dz.
&
T
A
i 2
s.=T._TTl= J s.dz'
)

L3
P 2
Tslt=rxa= I S,y dz,
2
2
and instead of moments Ml’ ME’ M12 — values

H,= M,—--—;—M,=, S zdz,

(.4)

(4.5

(4.41)
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and from (4.5) we obtain,
r La
2
L] L7}
”‘—!' 5;—;1&—31 j:;z‘dz.
LN e
2 2
A L
2 2
Hy=1, J-f-'-zdz—z, J-’—'-z’dz.
&, [ ]
-5 -3
L LR
: 2
= 2 —_ 3 s
”.’ ',’ 5 : Zdz 1,’ py P4 dZ

(4.5")

In formulas (4.4') and (4.5') we encounter three types of integrals,

distributed throughtout the thickness of the shell:

A »
2 2
j' 54z,

_L /]

2

A

2

J—"—'—-zdz, Iy= j—’!-z’dz.
€ (7}

K} Ty

Through them forces

%1‘.= (c. + —;—t.)l. —,(t. + “;;"‘:)Iz-

3
Y Tyy= gyl — tyals:

M= (a + —;—e,) h=(n+ 5 u)h

e (ot o= (u )

3
2 My = eyly —ry4l,.

Since in (4.6) oy is the given function of ey where its

and moments are expressed as follows:

(4.€)

(%.7)

(4.8)

concrete form

for every material becomes known in particular problems, we naturally

avoid integration by z on the basis of relationship (2.5) change to

interration by ey Multiplying I, by P_, I, (by — 2P€%)

and adding the results, we obtain:

26
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’1P|"'2’gpm+’spx = %

o,edz. (4.9)

L e UL

Differentiating (2.5) by z, we find

%e,de,_: (@Px— Pu)dz. (4.10)

Now multiplying 11 by (-F 12 by Pn and adding the results, we

en)’
obtain:

)
3
— 1P+ 1Py = ‘5:' .‘- o, de,. (5.11)
A
T

Let us find expression 22 through ess for this purpose it is necessary

to resolve quadratic equation (2.5)
2Py — 2Py 4 P, = '::—C;o

the root of which, does not contradict relationship (4.10), and is

- Pa ;’5 ‘/ 4 PIP):"'P?: .
2= 3 4 2',’_’_._ Cf -3 —;:——Slgn(zpu""’m)- (4.12)

where it is necessary to take always positive value of the sguare

root, Differentiating (4.12), we obtain:

— V3 e;de;signde; .
2V7>:‘/2 T (4.13)
e — — -
3 p

Sign of value (zP, - P_ ),* according to (4.10), coincides with the

EN
sign dei/dz, and since in the intervals which interest us dz is alway=>
1 ositive when z changes from -h/2 to +h/2, then integration by dey
should be executed in such a manner that dei increase also, i.,e., we

must integrate by dei sign dei.

Let us examine values of intensity of deformations in three

*Designated by symbol sign,



points, located on z axis:

= ____i — A — zl
F 4 — ° 2= + » = 1.. ( . 1 4’ )

2y =

|

We designate them respectively:

2 L -k
C“=7§-‘/P.+hpu+ ‘ Pl ( N 2 ]

2 L -4 r
¢n=—ﬁ:l/f’.—hpu+ : P, z=+ 2)' (4.15)
2 ———————— — L
eu=-—';5——',.‘.;_l-VP-P--- ‘u ¢ z))

As we see from (4.10), point z = zy is the point of minimum e, since
dgei/dz2 > 0. Consequently, inequalities

ey >y (4.15")
always occur,

We assume that tensile and shearing strains of the middle surface
€15 Eps Eyp 2TE elther commensurable or small compared with flexural
strains of the shell #(h/2)n,, %(h/2)n,, *(h/2)n,, or that the latter
are dominating if point z

0 does not occur beyond the limits of the

thickness of the shell, i.e., if

[ P &
.—-;—<Z‘=—;'—-~<~;. (4.16)

Deformations of the middle surface are termed large, or domina-
tin:-, as compared with flexural strains, if point 24 is located out-

side the thickness of the shell, i.e., if one of inequalities takes place

P Pu j
2= ;>‘%- zo=7"<—';—- (4.17)

In case of commensurable tensile and flexural strains the
integral from any positive value R throughout the thickness of

the shell must be calculated by the formula
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In case of incommensurable or large tensile strains such an inte-

zral should be calcuiated by the formula

E2
Sgdz-_ l”sm(m—en)s Reide
V- (4.17)

We now introduce designations of' basic values in the theory of shells:

A=A, B=B, C=C, (—--g— <z.<—;-'-):
A=An: B=B|- c=cl (|20|>%')- (’4.18)

where values AO, BO, CO pertain to the case of dominating flexural

strains and are equal:

‘s
= o Iﬂlde"." I G‘de‘— j'c‘de‘.
‘i '
l' l"
: sy de; . sy de; , (4.181‘)

welvia tlvie
C;==S o ) & —é,de, + S‘%l/‘i:;;dq-

o )

and A Bi’ C1 pertain to the case of dominating extension of the

1,
middle surface and are Jdetermined by the formulas:

s

Al = Ao = “' ﬂ, de[, l == “' _V—g.g‘_‘_——' Slgl’ ‘._en)a

s b1

1=s "11/62 — e de; mgn(en_.e“) (4.18")

L1

Integrals Il’ 12, I3 can be expressed through basic values A, P,

<9



C, depending on main quadratic forms Ps’ Pn’ Pen according to the

formula (4.18). For this purpose let us note that integral 11 on the

basis of (4.6) and (4.26!'), (4.17') is expressed directly through

function B, after which from (4.11) we find I, through A and B and

2

then from (4.9) we obtain I, through A, B, C. In this manner we find

3
the following formulas:

L, =Yg Y3, 3 .

2p;* 2P, 4P,
_wi ., ViR ., (4.19)
ly= T30 ¢ 2P B+ —EPT"

where to values A, B, C we must either ascribe index "O" and calculate
them by the formulas (4.18'), if the flexible strain dominates, or
ascribe to the index "1" and calculate according to (4.18") if exten-
sion — compression of the middle surface dominates.

An exceptional case, when formula (4.13) and all subsequent cal-
culations lose their meaning, presents the zero-moment stressed state,
with which the value €y and consequently. oy are constant with respect

’ fa— [ 3] .

and integrals Il’ 12, I3 can be calculated directly. From formulas

(4.6) we have:

A,
12¢; (4.21)

I,=h-:—:. 1,=0, I,=

where, inasmuch as equality Pu = O is possible only when Ngs = Ny =

=Ny = O, then bending moments and torques are equal to zero

and forces are found from simple relationships:
| ' /
T‘—"‘E‘T”; S;= h-—}-‘,—l‘,

T."‘—;—szs.:h%‘p (4.22)
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T|’=_5'sl3=h—3-;‘£el" (u,?g Cont'd)

These relationships coincide with those that take place in plane

stressed state, where
T,=hX,, T,=hY, Tyu=hX, (4.23)

Relationships (4.47), (4.5) or (4.7), (4.8) express forces and
moments, acting on the element of the shell, through three quadratic
forms (2.6), (2.7), (2.8) F., P, P, and six deformation and distor-
tion components €15 €05 €405 ni, ng, and n12 and consequently, through
three components of the vector of displacement of the middle surface
point, inasmuch as deformations and distortions have specific differ-
ential exprecsions through u, v, w,

It is easy to show, that, conversely, all deformations and dis-
tortions can be expressed through forces and moments [2].

The set-up relationships, connecting deformations ané stresses,
take place both in the case of elastoplatic deformations,* and in

rurely deformations.

Actually, values O and e; are connected with one another by laws,

o= ¥ (¢) = 3Ge;[1 —w(e)) (4.24)
&=0"0)= 11 +9C. (4.25)

here G is the modulus of elasticity in shear. Wwith respect to curve

o; = ¢(ei) we will assume that it satisfies the inequality (Fig. 4)

Ay b
2 e S (4.26)
Function w(ei) (function of plasticity by A. A. Il'yushin) constitutes

the ratio of line segment MM' to line segment M"M!' (Fig. 4). It is

equal to zero, as long as deformation is elastic and satisfies the

*In the assumption that a simple or close to simple load is
realized, i.e., such a load, when all individual loads are proportional
to one parameter.
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following inequality, ensuing from (4.2€):

) dw
122+ ei-agz- >w 2 0,

—dd—:-’-i->o. (4.27)

The noted properties of functions o, and w

correspond to the experiment data. The func-

tion of plasticity w is expressed though oy

according to equation
3Ge;— 3
3Ge;
and analogous to it function ¢ has the expression

F—3 ”‘—" b ] had .
] l—w»

Designating by Og and eg the point, to which the deformation of

¢

material may be considered elastic (GS is the yield point and eg the

flow deformation), we have for function w:

e=0, ¢‘<¢,. a
w=u(e)>0, e¢>e, (4.23)
In the case, when curve o, = ®(e;) may be replaced with the

broken line OAMB, values Ogs € will correspond to the break point

s
doi/dei will be constant, but for function w we obtain:

0o=0, ¢<e,;

u=l(l—-:—“—) .c,j)/e,. (4.29)

where constant A (hardening factor) designates the value

1 dy

e
Relationship (4.25) does not have any meaning in the case when
the shell material was not hardened, i.e., Van Mises' condition of

plasticity takes place
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2 2 2 2 (4.30)
X = XY + Yo + 53X = ap.

Now we write the relationships between deformations and stresses

in the middle surface for the case of purely elastic deformations:

E E
o= E g V= b, (4.31)

I
Xe= 21+

where E is the elastic modulus, v is Poisson's ratio. Dependences
between moments and changes of curvatures will remain the same, as

for the plane plate [3]:

P o
M =——D(——+v—)-
o (.52
t~J
M.=-D(3,T+"5;e‘ '
F
Mx'.—.:—D(l _*)a‘av~
For transverse forces we have expressions:
N =—Div'w. N,=-D -iv’w. (4.33)
* ox U ] .
Here D is the cylinder rigidity:
ER (4.34)

T RI—w
Equations of equilibrium (3.1) and (3.2) are automatically fulfilled

upon the introduction of stress function according to formulas:

&

x;=“fﬂi Y ==£ﬂi,

b,
R (4.35)

T axdy’
where @ 1s the furction of stresses in the middle surface, or, in
short, the stress function,

We introduce (4.32) and (4.33) in the equation of equilibrium

(3.6), then we arrive at the following equaticn:
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Dvww_XJ(ki- +x¢( %;)—
—u¢——Tq (4.36)

Let us now transform the condition of deformation compatibility (2,10).

Expressing deformations €ps €us Y through stresses, we find:

y
X, —9 0')(, *X, .9 Xy |, &Y, _
o Gxay ( ) Gxay T |
-E[ d'w T ..
axay T o op oy v I’ (4.37)

We introduce in equations (4.36) and (4.37) the stress function ¢
according to (4.35). Then basic equations of the theory of flexible
sloping shells will take the following form, *

--v'v’w=L(..: @) + &, :’j’ -k, :‘:’ b (4.38)
- . o &
rAAA L TICU RIS (§.39)

Here through V 2y ( ) Laplacian operator is designated.

- _BC) L 2 L)
vivi( ) ot +2dx’0y3' P

In the particular case of circular cylindrical shell with the radius

R we obtain

—_—toY =
[ | vvwe oyt + Gy' ox? dxdy Oxdy
+ A+ (4.40)
st [ Fe )\ dwPw | Fw
AL (dxdy) o o R ot (4.41)

In examining only smali sags of the shell we can disregard non-

linear terms in equations (4.38) and (4.39). Here we obtain:

*These equations are applicable also in examining of shells of
an arbitrary outline, if deformation has the character of local loss

of stability [4].




%vzvzw-.;k'_a'_".{_k,.a_“ﬁ_.{.i.- (4.42)

o o A’
I ow *w
3 ke g B o

(4.43)
Considering that curvature kx and k_are constants and applying to

(4.42) operator v° v°, we find:

D =~ .
T IV = b (79D 45, 1 (TS + v

If we substitute nere v° v°® according to (4.43), then it is possible

to reduce system (4.42)-(%4.43) to one tolving equation of

the eighth
order with respect to function w:
_9- 2 y 0 zdlp .._a.'q o 2
= v’vv’vw+k.ay,+2k,k.a,ay,+kf,w Ehv’vq (4.44)

For the circular cylindrical shell the equation will have the
form

_l_’_:z:: _'__?'__.'ﬁ’_______ 2 4,45
TRAAR ARSI vivig. (+.45)

Let us now investigate the case, when we must take into consideras-

tion initial forces in the middle surfaces, constant in value, which

is necessary, for instance, in problems of stability of

f shells,
B __p FOm__p Fu_g ,
ay* nl ) V' oexdy ( 4 L6 )
ren equation (4.40) will assume the form (when q = 0)
h ve= P' Ox' P” ay? = dxdy +
0 e
b 2Oy 9

T T (4.47)

Taking into consideration (4.43), we obtain the solving equation

2 Mw
k2, Ox3 oyt +ky axt

e (i) o)+ v

-

D
MAARAA]

+

(4.48)




In the case of circular cylindrical shell:

-'VﬁfVK? 1'E;j;r-+ Wf(

){

risew(25) + e (35) -0 (29

Assuming that in (4.36) w = O, we obtain the equation of theory of

zero-moment shells:

kX, +BY, = — L

let us note that the transverse load is considered positive in the

direction toward the center of the curvature.

§ 5. Variational Formulation of the Problem of the Theory
of Shells With Geometric Nonlinearity Taken
Into Account

Let us examine geometric nonlinearity* of a shell, being in
equilibrium under action of volume F and surface ?h forces, ILet us
assume that bui, bug, ow? — infinitesimal variations of displacements,

vWiork of external forc=2s on variations of displacements will be

3= jﬁ{j FiudQ -- jzj' P dz, (5.1)
where df2 = A*¥B*dadBfdz is the element of (he volume of shell, = is the
~eneral boundary surface of the shell; a and B are curvilinear orthog-
onal coordinates, determining the position of the point on the middle
surface before and after deformation, asterisks mark the values, per-
taining to the deformed shell or its middle surface, ‘u is the varia-

tion displacement, equal to

(5.2)

&
I
&
+
NI
|

*Deformations are cexpressed as derivatives of disglacements taking
into account nonlinear terms. For instance, e, = Bu/

+ 1/2(6w/5x)2 - kW,
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Here ov is the variaticn of vector of displacement of points of the
middle surface; tn® is the variation of the vector of the normal to

the middle surface. The stress vector ?} on the area with the normal

n is expressed through stress vectors P,, P,, P_, acting on the arees

2 "z
taken on coordinate surfaces a = const, B = const and z = const,

according to the known formula of the theory of elasticity
P, =P, cos(n3) + P, cos (n3) + P, cos (n2).

Let us set up the expression of the virtual work of external
forces BA through the energy of deformation of the shell. Putting

expression P in (5.1), we obtain
1A= [[[Fiad@ + §§ (Pycos(ed + Pcos iy +
2 T

+ P, cos (n2)} 2u dX.
Hence, using formula of transformation of the surface integral into
the volume integral and taking into account equations of equilibrium,
we find:

2= [ §{ P8 Gas + PoA" i)z + PLA'B Gi) fdad3z, (5.3)
4]

P
n , where °,

— o s ¥ o — o —
where (E‘Ju),i = (ov),i + zfm,i = br,i + zbn’i, (ou),z =
below, before the index designates differentiation by a or B once.
This is the expression of the principle of virtual displacements for
the shell, considered as a three-dimensional body. Formula (5.3) may

be aiso written in this form:

M= [[awds,  (@Z=AB dady, (5.4)
s,
where
2
aW = Z {T”aE” + M.'/ (":1” — 2 k,-,"a!,,‘)}, ( 5 . 5 )
/] S}

this is the variation of the deformation energy of the shell, recferred
to one unit of area of the middle surface. If we use the simplest

variant of elasticity relationships — the Hooke's law, — and reject
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values cf the order of ki €1k (k. _ are curvatures ot coordinat: line:s

a and B, for instance, with small deformations in =.1/R;B) and take

* r~ - ~
into consideration th.eequahty"]?iJ ji (here begy = B€sq0 DEgp +
+ 0€,, = 20e,,), then (5.5) takes this form:
37=§(Tu5=u+MaBzu). (5.6)
where Eij and nij are expressed by formulas:
; i (5.7)
2,=¢,te,+ Ve, toe,  Gj=12), -
S}
0 A
1y = Ryl — u‘n‘—‘—(En u_ +Esae“ *‘Ez*a—:')‘— (5.3)
.__1_‘24_
AB 93’
X3 = Rysy, ‘kueu"“"'(En +E A-Es )‘*‘

B
+-———~5“—- (1,2)

Parameters eij’ w, , Ei’ E3 characterize angles of rotation of coordi-

— — ¥
nate vectors r o D in the process of deformaticn, for instance n =
2

+ e B, + nEB, here E; = e;,0, + e.,w, - (1 + egq egg)w

= eiE1

E:=(1+e

1+
3 e

11) ( 22) = €408
Thus, the variation of strain energy of the shell is composed of

variation of the stretch and shear energies:
W, = Thdey + Tz + 2T 0%, (5.9)
and the variation of the bending and torsion energies:
W, = M:.ag" + Maitgy + 2Miginy,. (5.10)
tutting in (5.6) forces and moments,
Ta=Ku+va) Ta=Th=K(1—ay Tn=K(enty),
My =Dy + vey), Miz= My =D(l —v)x,, M=

= D (xgq + v1,)

(here X = Eh/1 - v2 is the extension-compression rigidity and D =
= Ehé/lE(i - v2) is the cylinder rigidity) and integrating by
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deformatior. components in the ranse from zero state to the state with

iefornations Eik

of deformation of the shell:

and nik’ we find the expression of the specific work

W = K[(z), + 20 — 2(1 — V) (z1p20s — )1 +
+ Dy + 7' — 2(1 — V) (taytpe — "’,,)]-

P~
N
-
[
>
-

where €1k and nik are expressed through displacements Ay Ups W accori-
ing to formulas (5.7) and (5.8). Formula (5.11) is analogous to the
formula of deformation energy of the plate. Applying it to the thin
shell, we allow an error of the order of h/R as compared to 1,

Now, after a number of simple, but sufficiently labor-consuming
transformations, we find the expression for variation of the work of
all possible external forces, which may be recorded thus:

A= [ Ko + Lxn1ia0)ds +
4

+ | @0+ Gmrenyds + Hmio),, (5.1

AW

)

where T is the vector of external boundary force, G* and H* are the

external bending moment and torque on the contour of deformed shell.
The surface integral in (5.12) is the work of external forces on

infinitesimal variations of displacements and external moments on

infinitesimal variations of angles of turn, since

. 2
LX) = Y Lein', (5.13)
=1
Where 5;"5* are variations of angles of turn.

The contour integral in (5.12) 1s the work of external forces
and moments on variations of displacements and angle of rotation, since
mBn* is the variation of angle of rotation around the tangent to the
contour,

Outside-the~integral term ﬁ*ﬁ*ﬁ?lc is the work of concentrated

boundary forces on displacements, It disappears, if shell edges are
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either supported on hinges or rigidly fastened., It disappears also
when the contour does not have any angle points, and neither H* por v
can have discontinuities. If the shell contour contains angular
points, concentrated forces of the " n* type can appear in angles in
the form of reactive concentrated forces. Thus, the variational equa-
tion of the principle of possible displacements in the nonlinear theory

of shells will be expressed by the relationship

M= [[waBda, (5.14)

where W is yielded either by formula (5.5) or (5.6) and bA by formula
(5.12). Let us note that the variational equation of the type (5.14%)
is also true feor the general nonlinear theory of shells, where dis-
placements and deformations considered arbitrary.

Variational equation (5.14) may be interpreted in the following

manner, Let us assume that 3i is the potential strain energy of the
shell, 631 is its full variation in isothermal or adiabatic deforma-
tion processes:
3,={fwar, w3,=[{was.

I 3
Let us Turther assume that 62% = -bA 1is the variation of potential

load energy. Then it is possible to record (5.14%) in the form

29 = 83, 4 83, (

¥;)
[N
N

N~

where 3 is the full potential energy of the system,

Thus, the state of equilibrium of the shell diffcrs from adjacent
creometrically possible states by the fact that with any infinitesimal
virtual displacements of the system from the position of equilibrium
the increase of full potential energies 1s equal to zero., This is
Lagrange's variaticnal prin:iple., Geometrically possible states of
shell are such, states, with which displacement variations do not

disturb holonomic constraints, superimposed on the shell. Geometric
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couniary conditions, and also comparable in the Lagrange variational
principle values €4k and "y ko which have to present continuous iJefor-
rations, satisfying conditions of deformation continuity ~ar. serve as
holonomic constraints, This condition will be assured, if deformations
€5k and "y are expressed through displacements us and w through for-
mulas (5.7) and (5.8).

An increase of the work of external forces and moments CA is a
full variation only in certain particular cases: for instance, when
external forces can be considered to be independent of deformations
and, furthermore, parameters ey are small, i.e., ik ™~ ep (Ep is the
elongation per unit length at the proportionality limit of the shell

material.

Let us rewrite the variational equation (5.15) in the form

33, +3)=33=0. (5.1€)

This equation is also true for end sags under the condition that edges
of the shell are either supported on hinges or rigidly fastened and,

furthermore, external forces tolerate the potential

X=2L, X=-L, X=2L, wm=o.

o’ dug
Consequently, (5.16) can be formulated in this manner: from all

virtual displacements, congruent with holonomic constraints, superim-

posed on the shell, in reality only those take place for which the

potential energy of system 3 assumes the steady-state value, i.e.,
63 = 0.

From the variational equation (5.14) equations of equilibrium

and static boundary conditions ensue,

Let us note that earlier we obtained fundamental equations cf
the shell theory proceeding from the principle of virtual displace-

ments,
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On the variational principle of virtual displacements the Ritz
approximation method (energy method) is based, the essence of which
consists in the following. Variational equation (5.1%) contains the
equation of equilibrium and static boundary conditions. Therefore,
satisfying this variational equation, we thereby satisfy static con-
ditions inside the shell and on the contour. The latter conditions
will be executed in the process of resolution of the problem with the
exactness that will be the greater the higher approximation of the
problem's solution, Moreover, geometric boundary conditions are es-
sential, i.e., they have to be satisfied beforehand. Therefore, in
the approximate solution of specific problems with the help of varia-
tional equation (5.14) we shall prescribe approximating functions of

the form:

U= z Afe(0,8), 4= 2 Bu(2. ) w= 2 Cae (2. 3), (5.17)
=y

&=~ ']

where Ak’ Bk’ Ck are coastants to be determined , and fk, Py s ¢k are
given functions, which are chosen in such a manner that the displace-
ments U5 Uy, W, permissible in comparisons, satisfy geometric boundary
conditions., Then, putting (5.17) in (5.1%) and comparing factors in
variations 6Ak, ka, 6Ck, we obtain the system of algebraic equations
for determination of c(onstants Ak’ Bk’ Ck sought. 1In the general in-
stance the system of obtained algebraic equations will be nonlinear,
It will be linear only in linear problems of the theory of shells,

In concrete instances along with difficulties of selection of approxi-
mating functions (5.17) the resolution of the obtained nonlinear
system presents difficulties of a purely algebraic character. But,

in spite of this the Ritz method is the most widely used and reliable

method .,
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§ €. Improved Motion Equations in Moments
and Forces#*

Let us assume that s 1 is the projection of stress on the area,

(Y

the normal to which in undeformed state coincided with the direction
of coordinate line i, on the direction, which before deformation coin-
cided with the direction of coordinate line k. Let us introduce forces

and moments, with usual formulas

)
3 T
T'. = s. % dz, A’u = S Ol dz, Q, == S :,,dz

) i (€.1)

G k=1,2)

Formulas, by means of which forces, moments and intercepting forces
are expressed through deformation components, will coincide with kncwn
formulas for the shell with small sags and with formulas for the plate
with large sags.

Let us now write motion equations of the thecry of elasticity in
curvilinear coordinates in projecticns on directions 1, 2, 3 in unde-

formed body,
y OH,
L (HH:S) + s BaSu) + 5 (S + H B St

oH oH aHY &y
+ Ha?;"'sn"‘”a 61: Sy — H,y az: Syy = pH\H,H, “a—:“—-

é ] ad oH,
E‘(Hsﬂasu) +f‘:;(Ha”nsu) + 'a’—'(HxH:Su) + H, oy S+

g

oH oH i
+Ha'-%,:T’ Sy — H, 0:: Sy — H; 6’: Sy, = pH H,H, 6; '
‘NS 6.2
2 HH S+ 2 (HH Sp) + 2 (H,HSw) + Hy Z2s,, (6.2)
a!. a” a" az‘

oH oH aH Fw
+ Hx'd":"‘sn—ﬂz 6:: Su—H, "é:—: S.e = pH,H,H, "b‘g'-

*The material presented here and in §§ 7 and 9 was kindly offered
us by the senior scientific colleague of the Institute of Mechanics of
the Academy of Sciences of USSR, Candidate of Physical and Mathematical
Sciences, M. P. Galin [5].

The reader will find a survey of the contemporary state of the

statics theory of thin shells in E, Reysner's . ~ticle "Certain problems
of the shell theory. Elastic shells, Foreign literature {IL), 197,

43



Here the following designations are introduced
Sa=+es, +(Fen—w)it (5 et
Su=(geut o5+ e+ (3o —w)s,

(L LN e PO

Su=(1+en), +(% €1y — "l) Ipt+ (";:;' Ve Y EX

i
Su=(eut o) +0+e)s+ (o)
Su=(gau—e)h+ (geut o)+ +ads,
S =(1 + &) 3, + (—,:,— € — w,) i+ (% e+ -».) 3.
Sw=(gen+ o)l + 0 +e Lt (Fa— i

Ss ==(—%— e, — -,) a, + (—%— e, -+ m.) 3, t+ (1463,
Values

. s‘. au. * °

- 4. =g

i S |_|'_,I" ] i

constitute stresses, referred to initial dimensions of the element,

the dimensions of faces of which are increased by Ej and their area

*

becomes equal to Si instead of Si,aand here

'. E,=p2¢‘l+l "‘l.
(] : -5 = .
—s‘—'——— v(l +2!‘l)(l +23‘-“)'—ka (‘. l. k:; l' 2' 3). (6 .I.l.)
With small deformations 1 + e, = 1, G;J =~ Gij’ Subsequently we shall

consider deformation to be small and even in initial equations will

assume that Ozj = Oij‘ “trictly speaking, in differentiation of values

0. . we should bear in mi..a that

1J
a, S 1 oy [a(S:’) |
da, S |+El 01, d:, \ §; /14 b,
S, oE
_(‘) J ’] (r=1,2,73).
Si JU+Ep 0y,
since

651 1 63”
= ———— ’

a, Vi, o

14



_"( .)_ I |+ 2,)
o, \ S —V(|+2:”)(l,2;”,__£}. 1+ 3“)—5::-1.

d O
H 425~ - ]

then in small deformations

»;, & & o & a
D U} + % ( (73 —e, 73 )z 1) + 3 Saa )
0" a’, 01, a" 0" a"

In accordance with the expressions accepted for displacements

d¢, /oa = O, therefore

d, & &, &
iy _ U , e B + 0,
%, d, ' &, 9,

%y
o3,

G j=192. (6.5)

Taking into consideration that o,, = O when -h/2 < z < h/2, we shall

A
also have

o,
’ET—O (i-l. 2)-

Let us assume thau the shell is under action of external and
internal pressures r (h/2) and P (-h/2), and also of external and
internal tangert of loads P ,(h/2), P_,(h/2) and P4 (-/2),

Pso(-h/2). In the case on surfaces z = th/2 the following conditions

must be fulfilled:

i
|
N

|
SN
g
I

&
—
S

[
|

.'D
e N

|
b’!"
o’

(6.6)
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We shall first integrate motion equations by z from -h/2 to h/2,
and then multiply the first two equations by z and also integrate
them within the same limits; then, disregarding the effect of moments
of stress on the conditions of equilibrium of forces and the effect

of moments of tangential stresses and moments of the highest orcer
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on conditions of equilibrium of moments, after simple transformations

we will obtain:

o BT+ [B(5 5 — 5 5 )ru]—;,"-‘-(vao.) -
1:“’”-”—‘[ (5%~

35 o
+ 2 (' .14 ) u+7'u—(w|)]—
“r
o
B

% \4 %, ~ 4B oy

aa[xau__l oA
aa. A%, AB o

o
x[P,,(-—;-) +P..(—';-)——("L5,i,_i'§:: ¥) x (6.7)

_‘?_(Ar,‘)+i[4(.l__‘1';__!_ﬂu)r"]_

— e A+ (BT + -8 (4 S |

— e B+ - [( =5 or?) T Tu— (501 —

——"-‘-[(7',-;’,—“.—-;%%‘4’- ) T+ Tu—(6Q)] +

el —R) et (e =) v e+

0 [ (3) +7a(— 4 )] (22
(8 )
<[ra () =pa(= )]0 =2(3) +7(-2))-

—y8= pfuwe,;

X
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rE(G SR G )
2o () e
— A [rat (5o =5 o) Tu— Q)] + e
(5 ) (3) (4]

Here value A is caused by the second component of the right sicde of

the second formula (6.5) and is equal to

a‘z’z &S,
.OT,_ + AQ,

al. :

A =BQ,

—~
(@)
e}

~—

Frcm equations (6.7) it is clear that in the first two equations
we can disregard values @A and ¥4, which are of the higher order of

smallness, in the last equation from (6.7) the value A is of the same

order as, for instance, the component B(-L-El--ﬂ-)fﬁl.
A al‘ R‘ a’l
Now we write the equation of moments:

Lo+ & o e+
S A
() -
] (CE e RIS
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P[4 )
(3

A &, AB o1,

(1/B)(0w/3a,).

(6.7) and (6.9) assume the form:

t [ —

1 ov 1 o
.._Q‘.... (..._.__._..._._A_u

A &y

= llre=—e

JA[(1 d« 1 OB

E "aa.[\'ia:.“/w"i-?
S (e (55— ) et

‘:T (reT31) — '% (rePQ) + Tyysina

nflra3) el o) 4]

By
= ok

48

)] -
w5) 9 3 ([P (3)-

u) M..] +
v) My, + M,.] +

Ja}+ 3 48{[Pa(3)-

_phb_%)]+(luﬁu_753:u P

A — cn—

R, )T||+Q] +

- P——— T D TR

(6.9)

cont.

In equations of moments (6.,9) nonlinear terms, containing displacements
1 of the middle surface, can be disregarded and for sloping shells we
may disregard also nonlinear terms containing angles of rotation of

normals @ and ¥ and angles of inclination of tanger.ts (1/A)(ow/da),

In the axisymmetric deformation of the snell cf rotation equations

(6.10)




Lo+ Lo (Z-2)n]-n|t lru—ww-’-ﬁ} +
e PR I A R
BN v -

- oMu) + Mysina + r.[— (— —-—)M,,—Q]+
o Pa(F) a3 o[ -A3) R (-2 )]}

Disregarding values of the order of h/L and higher as compared to 1,

the motion equation can be reccrled in the form:

.a_ri‘_-.-.}._‘-*f” g — - (d"}.L_.(qﬂ\e n(;+

tPa(F )+P..( t)] o[-~ )+p.(__%)]=
| sl (6.12)
%—iqs‘nu-’-%(%T“)—%(%Tn)sina—.

- mms ] () (-]

12 o

§ 7. Equations of Motion In Displacements
In Axisymmetric Deformatlion

We 1ntroduce abbreviated designations:
- ]
E,=¢ + —;—e‘,’g. Lgy = ¢32+7 &, Ky=ky+

/
+—;—ku' Ku'_—ku';'—l-ku' (7.1)

RS
~—

Fo= —:—;—(:l, w) — w, (¢, 4), Fp = — ——-(’- , ) —kyy: (7 .




D, ---—-=-——-|S|lu¢(s° —- &) — cusa (W, — =, 4)}; (7.3)
b, - --—=-—-;.-ls-nn(ku—-kn)+z.vcos¢lz (7.4%)
E“':-‘ W, — xu. (7-5)

In this case derivatives from quadratic forms PO, Pi’ P2 on coordinate

s along the meridian will be equal to:

.3-‘- =2E,u,, + (25,.5., +- e.,) w, +
+ 2E,\F,, + 2Eq D, + —;-c..F...
Pt e Koty + Ko + Entis+ (7.6)
+ KyFop + KuD. + EnD;,
24 = 2Ky + 2K:aDs

Therefore, derivatives from integrals I, (k =1, 2, 3) on coordinate

s can be determined by the formula

= @Enlso + Kula) 2,5 + [\25 Ey, +— ;,,) I, +
+ KyEelu|w,, + (Endus + 2Kl ) G.s + 2l,, (E,.e,,, + (7.7)
+ ExD. + + uFu) + I Koo + KuDo + EuDi) +
{L 213K 33D,

After substitution of expressions of moments, forces, intersecting
forces and their derivatives with respect to coordinate in motion
equations (6.11) and simple transformations we obtain a system of three

quasi-linear second-order equations with respect to @, w and u:

Pu = OQPys -F B30, + agu, L,
Wy = bl?u + biwss + biuu + M'

(7.8)
Ugg= €, P, + W, + Caldy, + N.

Let us note that equation of moments is linear with respect to




ccefficients B9 cees bi’ cees Cqs ons L, M, N, and the force equation
with respect to these coefficients is nonlinear. Nearing in minu that
in motion equations in projection on the directicn of meridian with

small intersecting forces we can disregard nonlinear terms, it is

expedient to present coefficients b1, b2. b}’ M ana c,. Css c3, N as
consisting of two pairts:
b=8+b, by=8+b, =815, M=M+M :
7.9)

a=d+c. a=q+c G=4+q N=N+N,

where strokes designa.e components, deprndent on nonlinear terms in
force equations,
We introduce the following designations for the sake of brevity

in writing:
- A= 2( EuFuy + EnD.+ - uFus) (Bubae — Kulu) +
+ (KisFuw + KD + E6D) (Enlsy — Kyuly) + 2K3aD, (Ey s —
— Kuly) + 1y (F,, + % b.) - % 1,0,
Bo= tre [2 (EuFuo + B+ euFu) o+

+(KuiFpn + KD+ ExD) 1y + 2Dl is | + 1F
Ar=2 (E“F,, =P E,,ﬁ. + ':“alxru) (Exilro — Kulao) -

+ (KuFuw + KD, - EnD)IE 1y — Kuls) +
+ 2Kn5h(Eu’u—Kn’zz) + 1/ (Fw + '7}5.) —-%-Igbg- (7. 10)

Then for coefficients of the system of equations (7.8) we obtain the
following formulas:

4
@y = Uy — Euy (Bulsy— Kuls) — 2K, (Bulis — Kuhill—
4
@y = — '5"[’:51: +2 (EuEn + —}"'-u\; (Enla — Kulso) +

+ KIIEII (Ell’n b Ku’u ’J‘pLh "
Gy = —"g" [l: + 2E,, (Eylzo — KiyIso) 4- Kiy (Enid —Kiilyy) ]:;l— '
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Lx—-{—(M“-M,.)smc+Q A, — (7.11)
Tont,

"""" [P '“) '-'_ J} ¢

o= %‘_u(Eu’u +.2Ku’u) —'_“ .

B L1420, (EuEu+ o) hot KuEulu |~ .
(7.12)

$= —l" e (2Ep/yy + Kiuly)

! (T'Qsmu'i"nru +"2Tu) +

= — {—

+ [=A %)*P'\f‘{)]“'"“'l‘

A= 1=t EuEul — Kulad +2K0 (Bl — Kulull -

Q= -g— [I,E,, +2 (EuEu + —‘L‘u) (Eu’ol“‘ Ku/s) +

+ KuE;. (Eylyy — Ky lyy) ]‘L

= 3t 2 Buy — Kunl) + Kuy by — Kulull -

”'f"“ [ (T“._r,,)sma_x,Q] [P( )+P (——)]+ (7.13)

+— Ar]Th-.

b—— b-— Tll
w,cl, uyﬁ&-rh
) , a
b, = w,el, M=—§—w,—‘}.
G=—ofh G=—ob (7.14)
:_____w- .
W=~ K@+ L (@sina—o[p,(

~fel

) *+P(=3)]- )
(7.15

For elastic-deformations integrals Ik (k = 1, 2, 3) are constants

I) = Eh, I, = 0, I, = En’/2, and therefore, thelr derivatives e

=0 (j =0, 1, 2),
Thus, the first motion equation will be linear, the other two -

quasi-linear, where

{e) {
8] = — = EWD,, A =INF,, A7 =Eh(F,, +D). (7.16)



Coefficients of motion equations for elastic deformations will
be equal:

1
1—v

6= ‘f‘t Gy = a,

+Q—-TEWD; (7.17)

,'. My, —My)sina+

!
vi-o' "g=-;-' ”i::ov

~[L Qsina 4- «,T,, - 1,1‘,,] +-

[/

=P () + (=) R A

__1_E
‘:ocg_l—v’p'

= [—".-(T,,-T,,)sina—z,Q]+[P,(-g-)+ P(-5)]+

| (7.19)

Eh .

+ 728 e D

¢ =0, Q=—Q%.q=m
b=0, b=, (7.20)
b‘= _l_.f_yl-wt' M,"—'_'(F-w+‘Dl)ws'
W= (=K@ L @Qsina—g[—Pu(L)+P(~4)]-

' (7.21)

c 1 1
5 q,mr,,} =
For the unloading throughout the entire thickness of the shell
made from incompressible material motion equations will have this form:

Qu= 0,9, + L+,
wll = biwu + b’“u + M‘t ,

‘ . (7.22)
u,,=c,w,,+c,u,,+N‘.
where
4 E ~ ~
al”"‘j‘.";'v L‘-Q,,-a,tp“-l-l-,-—f,;
b.=—+ Tll =.;_w"
M‘==w,,—b,w,,—b,u,,-}-M,—}Tq,; (7'?3)
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G 2 — T

= —ot c_LE

=—9 . = . (7.24)

N* =i, — e, — oy + N, —N,. (7.25)

Here Le, Me’ Ne are coefficient values for elastic deformations when

t's'f + 0, and sign (~) marks values of corresponding functions in the

moment of the beginning of unloading t = t - O.

§ 8. 1Initial and Boundary Conditions

If on the surface, which 1limits the body, external forces f* are
given, projections of which on coordinate lines Oy, Ao, a3 are equal

*

f f;, f3, then the following conditions should be fulfilled on the

1
surface:

Sy €08 (k) + Sy, cos(nky) +- Sy cos (nky) =},
S13 008 (nky) + Sy, 05 (nky) - Sy 05 (nky) = [},

513 €08 (nh,) + S5 €08 (1;) + Syq C05 (nky) = [, (8.1)

Here (nki), (nk,), (nkB) are angles, formed by the normal to the unde-
formed surface with directions Ay, Op, aj.
If however external forces "watch" the deformed surface of a body
(for instance, pressure of liquid or gas) and projections of the ex-
ternal force f* on directions 1', 2', 3' of axes 1, 2, % after defor-
mations are equal tc¢ f!, fé, fé, then condition on the surface will
have this form:
(1 + 2¢5)) 0}, + &340], + #5090, ] cos (nky) + [(1 4 2¢,) o} + 1933, +
+ t103 1008 (1) + (1 + 2613}, + €135}, + epo] ) ces (nky) =
S, e (1 e, (] -
= [0 +edfi+ (et )it (Fa—w)i=T,
11+ 2en)a, + 20,95, + €019, ) cOS (nke) + (1 4 2¢40) o3, + €509;, +
+ eq05, 1 cos (k) -+ [(1 + 2e00) ), + 2,49}, + £}, ] cos (nky) =

-%§[0+4Qn+(%4u+%)ﬁ+(%¢u—“0ﬂ]=ﬁ'

—
o
[

g
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((1 4 2500) o], + €,49], + 247,) oS (nk,) + [(1 + 224,) 3, teas +
+ tn7l cos (k) + (1 + 2009) 3 + 2,49}, + a7 lcos (k) = (8.2 cont'd)

- & [0+t (Sea ) (eamn)] 5

For small deformations relationships (8.2) will be simplified and will
assume this form:
O11 €08 (k) +- 945 €08 (nky) +- o), COS (nk,) = [,

01 €05 (R,) -t 04y CO8 (nky) + o4, COS (nky) = s
05 €08 (rky) + 0.4 COS (nky) 4 o, €OS (k) = ;. (8.

\oid
S

On the surface of a body displacements can also be given
u=u(t), v=v(t), w=w(t).
In solving dynamic problems in points of boundary surface we may
be given, speeds and accelerations, and not displacemenc.:.
Let us first consider the unclosed shell, the contour of the
middle surface of which is described by equation F(a,, a,) = 0, Let
us assume that to this contour force K* and moment G* are apolied.

Let us expand vector K* in the directions Qy, Qp, 23
K*= Kk + K* ks + K. (8.4)
The connection between internal forces Tik and Qi and components Ki,

K, K% of k* can be obtained by integrating (8.1) with respect to

thickness, in this we should take into consideration that
& A
T 3
Ki= | Fd. K= Wz K; = jr,dz.
A .

]

as a result, for a small deformation, we obtain (a1 =a, ay = B):

8 & AB
1 u
+[Tu+ -5-73———‘;0— )Tn §Q, | cos (nky) = K, (8.5)
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[T,,-l- (lA %—_4'3 %:’ “) Tu-*vQ.]cos(nk,‘!, +
+ [Tu‘l' (%%-Tls' ‘gg' )Tu Wa]cos(nk,) =K,
[Ql (""—'— R u+(‘ln‘%;-—ﬁ;) Tu]cm(nkl)_{,;

ot (3 gt Bk (5 e

If the shell is limited by lines a = ¢, = const and B = ¢, =

i J
* * *
= const (i, i =1, 2), to which forces Kii’ K21’ 310 Kpg0 Kogo
K;J, are applied then on Jines a = ci = const these conditions must
be fulfilled
1 ou 1 0B
Tut (35~ o) Ta =5
1 & 1 aA o
’"*(77—753"‘)’"’*"" o (8.6)
' h 8 1 ow _!_ = K°
and on lines B = cj = const — conditions:
1 du 1 B
Tut (35 950 ) oK
1 & 1 0A — o=
Tat (45 2575 ) Tn— Yo=K
ow v 1 ow
Ot (5o =)t (G w) T8 (8.61)
* * *
Here Ky, KQJ’ are normal forces, K2i’ ‘2J’ are tangent forces,

*
K;i’ K3J’ are intersecting forces, acting on the contour. For sloping

shells nonlinear terms, containing displacements of the middle surface
.. and v, can be disregarded.

If surface forces, in the process of deformation "watch" the
direction of the normal and tangent to the contour and are ecual re-
spectively, to Ki, Ké, K; in small deformations from (8.3) we obtain
boundary conditions for the forces in that same form as in small sags,

namely:




Tu C(B(ﬂk;) + Tl‘COS(nk’) = K;.

Tyycos (nky) -+ Ty, cos (nk,) = K,

Q, cos(nk,) + Q, cos(ak,) = K;. (8.7)
For moments in small deformations we do not have to distinguish between
projections of the vector of moments on the deformed and undeformed
contour of the shell, and therefore, boundary conditicns for moments
will be written in this manner:

My, cos (nk;) + M,y cos(nky) = G,

Myy s (nky) + My, cos (nk,) = G, (8.8)
I the shell is limited by coordinate lines a = cy = const and B =
= cj = const, then along a —
Mu=6:p Mn=6.. (89)
and along lines B —
My =G}, My=G,,. (8.10)
Here Gii’ Gﬁj are bending moments; Gﬁi’ Gij — torques, acting on

the contour of the shell,

Along the entire contour of the shell or its part, instead of
forces and moments we can be given displacements of the middle surface
u, v, sag w and angles of rotation of normals ¢ and ¥ or their first
or second derivatives.,

Thus, on every section of the shell contour five boundary condi-
tions have to be given, which is in full conformity with the availabie
five motion equations with respect tc five unknown functions u, v, w,
?, V.

If the shell presents a ruled surface with a closed directrix,
where a is the coordinate along generators, and B is the coordinate
along the directrix, then when a =c¢, (1 =1, 2) ten conditions of

the single-value of displacements and their derivatives with respect to
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B must be fulfilled, and for the shell of rotation, when coordinate w

is the azimuth, they will have the form:
u(e) = u(w + 2x), v(0) = v(w + 27), ww) = W+ 2z),

0(0) = (e +2z), $(o) = V(0 +21), G
) 4 8 = 10+ 22), 0(9) = 0; (@ + 29,
W} (@) = w0} (@ + 25),

¢;(0) = g, (@ + 2=), H;(v) = ¥; (o + 2=).

For dynamic problems it is sometimes expedient to use the condi-

-

tion of single value of derivatives from time and B coordinate dis-

placements.
The remaining ten equations will supply immobilizing conditions

when a = c1 and a = Co.
ﬁ_ If the deformation of the shell of rotation is symmetrical with

respect to the plane, passing through points w = O and w = 7, then it

will be possible to consider only the section 0 {w < m, and instead

of conditions of periodicity to use ten conditions of symmetry, when

- R L

w=0and w =11

=0, =0 -2 0 X _o % _
0—0. ﬁ—O, a;’ 0; a;’ 00 a;’ 0. (8.12)

where instead of the third condition, taking into accouut the second
condition it is possible to take condition of symmetry Q2 = 0, TFor a

shell, closed on both coordinates a and B, conditions of single value

both for a and B must be fulfilled.



CHAPTER 1II

ELASTiC OSCILLATIONS OF SHELLS

§1. Natural Oscillations. Formuiation of Problem

Let us set up a problem on thin-shell oscillations according to
Love [6]. It is known E;;zations for shell equilibrium are obtained
bty means of equating to zero the maln vector and the moment of zll
forces, applied to any part thereof. Equations for shell oscillatiocns
can be set up by means of addition of expressions for forces of

inertia and their moments to external forces and pairs, which enter

in equations of equilibrium:#*

Pu (" o) w
—Uh o U ¥

where p is density of material.

In setting up the equations we reject all products of values u,
v, w by their derivatives; since forces and moments are linear func-
tions of these values, we wil. simplify the equations, referring them
to the undeformed state of the shell. Equations of moments we will

write in the following form:

¥*Damping forces are not examined here.
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I (3MuB) UMM PA __py 9B
AB{ Fe 5 M M“az}"v’ 0.

I (OMB) , Mgl .0 A . B N
F{ "o & i Mua‘.’ Mad,} N, =0,

eSS (1.1)

and the three equations for forces will be:

L (3B . (S 9A _p 9BY Ny _ g,
u{a-- — S T S

B L Ry ’
|_(O65:B) , O A) o A o OBY My o, %0
AB{ FN + F) T‘a:s F Ry 2"‘"0:-'

| (ONB) , ONA) . Ty  Ts _o4 %
AB{ o + a }+R|+Ra 2:""3"

(1.2)

Equations (1.2) constitute a system of oscillation equations,
where some of the values included are connected by relationships (1.1).
These equations must be transformed into a system of partial
differential equations for determination of displacements u, v, w by
means of replacement of velues Ti’ .o+ » Dy expressions using u, v, w
and their derivatives, while the third equation from (1.1) should
turn into identity.

Let us note that, as a particular case, the theory of oscillation

of plane plates is included here. Actually, if one were to assume

that'%— = %—-: 0 in all equations (1.1) and (1.2), then these equations
i 2
. 3% 3%
will fall into two groups: one of them will contain -5 —% and
ot ot

2
force T, 5, the other g—g, the elastic force N and moments M. Further,
t

in this case T, S are expressed through Egs ooy and the lattar in

turn through u, v according to known formulas,



OB L fy e e sy i T S e TS, AT e WSW«MMW X, F areyh-argy g

Thus, one of the groups, into which equations (1.%1) and (1.2)
are divided, ics identical with equations of longitudinal oscillations
(deformations are reduced to elongation in plane cf the plate).
Further, moments M are expressed through Ngs oees and the latter —
through w according to known formulas. Components Nl’ and N2 are

exoressed through moments M by the formulas:

oM M oM, oM
N,=2M . oMy = My oMy
1= T M= ,

This second group of equations is equivalent to the equation for
transverse oscillations of the plate.

With such a rendition of the theory of oscillations we make
assumptions, similar to asumptions, applied in the theory of thin
rods. We assume that the deformed state in the thin oscillating
shell (or plate) is of the same type, as that determined in setting
up equations of equilibrium., For instance, in the case of the plane
plate [%], subjected to transverse oscillations, we make an assump-
tion that internal deformation in a small part of the plate is very
close to that form of deformation, which this part would have, if it
were kept in equilibrium with the same degree of distortion of the
middle plane. Let us consider the state of cylindrical or prismatic
element of plane plate, inserted in a corresponding hole in it. Let
us assume that during transverse oscillations such an element of the
plate in any moment of the period of oscillations is practically in
the same state, as in equilibrium. If this takes place, then cefor-
mation component in this section during transverse oscillation:s will

be equal to:

v

= _hp Cyy = —Z‘:p exyz —22“. ell == z(tl +!3)'

yy | R
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and when the plate oscillates in its own plane,

—— Y

Caxg =8 Cy =285, &, = @ €, = (e, + &)

{—v

In bcth cases e, is such that stress Z, is equal to zero., It is
clear that our assumption is justified, when the period of os~illation
of the plate is great as compared to the period of those free oscil-
lations of the prismatic element of the plate, with which the defor-
mation is of the assumed type. Actually, the period of all transverse
oscillations of a plate is directly proportional to the square of
the linear dimension of the area, included in the outline of the plate,
and is inversely proportional to its thickness; the period of any
kind of longitudinal oscillations is directly proportional to the
linear dimensions of plate and does not depend on its thickness. The
period of any free oscillations of the prismatic element, accompanied
by deformations of the type adopted here, is proportional to the
linear dimensions of this element or approximately proportional to
the thickness of the plate. 1In this reasoning there is nothing which
specially pertains to the plane plate only. Hence, we conclude that
in an oscillating plate or shell the deformed state in the small
section must be considered to be practically the same, as if the plate
were in equilibrium, during which the middle surface would have such
stretch and bend, as in any moment during coscillation. It should be
borne in mind also that these reasonings, which justify the assumption
made, become invalid when oscillation frequency increases.
Displacement component must satisfy equations (1.2), which are
transformed, as it is indicated above, Furthermore, they must satisfy
the boundary conditions. On the free ends the bending pair, and the
three linear combinations, composed of forces and the turning pair,

must turn into zero.
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Let us note that expression for moments M, of forces N contain

Eh’ 2 End
factor D = x— Or 3T and expressions for the forces
12(2 - v7) 1 -v

consist of two members, of which one is proportional to h and the other
to h°. Each of equations (1.2) we shall divide by h; then terms de-
pending on €45 € and w, will not contain h, while others will con-
tain factor h2. Further, we assume that we can obtain a correct
approximate solution, rejectihg terms, containing hg. If we do this -
then on the free edges two boundary conditions, namely, Mz = 0 and

oM, .
R —S§Q-= O become superfluous; the system of equations will be of
a sufficiently high order to satisfy the remaining boundary con-
ditions. But, now h is left cut of the equations and boundary con-
ditions and, therefore, frequency will not depenc on thickness,
Lengthening of the middle surface will be the most important feature
of the deformation, and, furthermore, deformation is necessarily
accompanied by a bend.

Oscillations of thin shells, accompanied by elongations, are
analogous to oscillations of this type for plane plates. Examination
of shells with slightly bent middle surfaces shows that an open shell
can accomplish such kind of oscillations, which are analogous to
transverse oscillations of plane plates., The frequency of these
oscillations will be significantly lower than the frequency of
oscillations, during which elongation of the middle surface occurs,
The existence of such kind of oscillations may be established by
means of the following reasonings.,

The upper 1limit for the lowest pitch frequency can be found, if

we set out to achieve a certain suitable type of oscillation, since

in an oscillating system the frequency, obtained for an adopted type
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of oscilletions, cannot be less than the lowest frequency of natural
oscilletions. 1If, for instance, we adopt such a type of oscillation,
with which lines, drawn on the middle surface, do not change their
own length, we can calculate the frequency with the help of a formuls
for the kinetic and potertial bending energles. Since the kinetic
energy is proportional to h, and potential energy is proportional to
hB, then the frequency should be proportional to n., Frequency of
similar oscillations, not accompanied by elongations in a shell of

a given shape decreases indefinitely together with h in contrast to
longitudinal oscillations. It follows from this that the frequency
of longitudinal oscillations cannot be the lowest. However, let us
note that the case of the closed shell, for instance a spherical
shell, is an exception, since here oscillations without elongations
are absolutely impossible: similarly a shcll of small thickness,
which is almost closed and has only a small hole is also included in
this exception, but only if this hole is sufficiently small. 1In
order to force the shell to oscillate in such a manner thet there
would be no elongations, it will be necessary to apply forces to its
edges and its surface, If these forces are absent, then the displace-
ment differs from the displacement, which satisfies conditions of
deformation without elongations. However, this difference for low
oscillation frequencies should be insignificent, since otherwise we
would have to deal in actual practice with longitudinal oscillations
and the frequency in reality could not be sufficiently small, to
correspond to the given case. As we can conclude from the form of
motion equations, the elongation, which we are discussing, on the
creater part of the surface is extremely small; only near the edges

will 1t be such, as to satisfy the condition on these boundaries.

-k
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§2. The Closed Cylindrical Shell

Let us sssume that a is the radius of a shell, and a = X, 8 = Q.
Let us assume that the edges of the shell are formed by two circum-

ferences Xx =t Elongations and change of curvatures are determined

by values:

. _L(i"_.. ) e GG

! ' g\ % ’ o ' a 3 '

*v L f&0 | 1 0 fd ,
= —, £ e ——)y = —_— —- /]
LA @ w+a;) aax(o;'“)

The displacement is a periodic function with respect to @ with
period of 27, It is assumed that normal oscillaticiis of the shell
have a frequency of %F' Therefore, we assume that u, v, and w are
proportional to sines or cosines of arcs, multiple of ¢, and also
cosines pt + €, After that oscillation equations are transformed irto
a system of linear equations with constant coefficients, determining
u, v, and w in relationship to x. Let us establish these equations,
but first let us examine the order of this system, Expressions Vg s
«nd T include only second derivatives, expressions €15 Eos and w

‘ﬁg:

include first derivatives. Thus, M1 and M2 contain second derivatives,

but N1 — third derivatives. The third equation (1.2), consequently,

contains g;%- in those terms, which are lowered, when an equation of
oscillations with elongations is formed. Thus, full equations will be
of a significantly higher order than equation of oscillations with
elongations, the first ones will be of the eighth order, the second
ones — of the fourth order. Lowering of order upon the transformation
from the full system to equations of oscillations with elongations

hhas a fundamental value and in general, is quite independent of the

special cylindrical shape of the middle surface,
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In accordance with the above, we shall write that:

u = Usinng cos (pf 4 ¢),
v =V cos ng cos (o - 2),
w = Wsinng cos (X -} 1),

where U, V, W are functions of x. It follows from this that

5= -:‘Lsinnqcm(pl +4-3),

_ V 4aV
e

8y == sinngcos(pl + :2),

o=(gr+n —‘;’—)mmwé(pwe):

3y = %sinnwcos(pl+c).

__a-is¥W
-

%= Sillnvcm(“'i' ‘)n

Af:: -'_-4_(V+nW)coanC(5(Pl+3)n
s dx
and, consequently,

M,n—Dslnnq-cosm-{—c)(‘:: — "v":.”" ) .

M.s--—Dsinnq-cos(pl-l-z)(v ‘:: - nV.;a:.sw )'

|
a

Mys = D cosnp cos (pt -} 2)

daw dv
(e + %)=~ M

(2.1)

The first two equations from (1.1) of this chapter will have the form,

. M, 1 oM
hl= '+_—"

ox a &% '
Ny= L M oMy
a 0; ox
or, which is the same:
- _Ds NT. ey Sy 3
N, = sznmpcos(pl+.)w a'(n dx-{-n d‘)].
- — RY LA T Ll B A
Ny= Dcosmpcos(pl-i-.)“ = - W+ —
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Further we have:

T,-:D[—:;(z, gy 22z 2ot u]

2('—*, a ?‘J—':, a

3, . 2

Ta=Dgta+md—gi=s 2 - i 2]
! HLer
Si=5 D0 - e+ ]

Si=3 DU =3[~e+1].

where €4, ..., %y, ..., have values, given by formulas (2.2). The

oscillation equation will be,

M43 gp o,

ax E ] 6¢
8 1AM N g o
= +- p L T aapy
Wy VW T o 0,
Tor + e Og a + 2uhpie =

or, introducing U, V, and W, we will obtain:

W[(d(d _ WaaV\ _1—v n(dV ;"9_\1 2,
'Fix’(ax a ) 2 a(dx+ +2pU +

__2 —2/—38 OV 128 n v w]__o 23
+ 2(1—v)a dx? +2(l-—‘) a? dx( %) @3

o[2(a rim), AN e
f%[_ ;(;f:) :1‘4:'*27!” w
+_;_|;v ds LW tn /)+_Z;ﬂ—£-:-w+
+';'{‘¥‘”§V]‘°‘ (2.4)
+ 2w (2—-')—,',';"”- "7'%'%?"
— iy W] =0 4o
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Conditions on the boundary with X = #1 will be as follows:

T‘co' sl,+ M‘“ =ou Nl—%%=0n M1=00

where all the left-hand parts of equalities are linear functiong of
J, V, and W ard their derivatives with respect to x.

Toe system of equations for determination of u, v, and w depend-
ing upon x constitutes a linear system with constant coefficients
of the eighth order. This system contains an unknown value p2, and
also known values h and n, where n is an arbitrarily selected number
of wave lengths, which can be laid along the length of the circum-

ference, Let us assume that u, v, and w in addition to factors,

mx mx

containing ¢ #and t, are proportional to values eemx, ne , e,
where €, 7, {, and m are constants, Constant m will be the root of
the equation, obtained by means of equating the determinant to zero;
this will be an equation of the eighth degree with respect to m or
the fourth degree with respect to m2 and will not contain terms with
odd powers of m. The coefficients of this equation depend on p2

If m will satisfy this equation, then relationships £:n:f will be
determined depending upon m and p2 from any two equations of motion.

Not taking into consideration the factors, depending on ¢ and t, we

can write:
[}
u=VEM +Ee ™),
[}

v=Y (ue™" + ne ") (2.6)
i1

. .
W= 2 Le™ 4 Lie ™),

=1
'
where £, and &i are arbitrary constants, and Mys eoes will be propor-

tional to the first two constants. Boundary conditions x = #]

- P T T a7 S~ -
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yield eight linear homogeneous equations with respect to ei and &;. g
Exclusion of these constants leads to one equation for determination |
of p2; this will be the equation of frequencies.

Let us examine longitudinal oscillations (oscillation of elonga-
tions). Equations of longitudinal oscillations are obtained by means
of rejecting in equations (2.3), (2.4), (2.5) terms, containing factor
%. The equation for determination of m2 becomes a quadratic equation.
Conditions when x = *1 are reduced to equalities:

T,=0, §=09,

or

_d_U_ W +aV =0,

-y

dx
L7

Since h is not included in these equations, then the frequency wil
not depend on h.
Under the condition of symmetrical oscillations, when u, v, and

w do not depend on ¢, we have:
u -:Ucos(pl-]-e), U= Vcos(p[+ ;)' W= Wcos(pl uE _);

substituting in oscillation equations, we will obtain:

E daw v dw
:_»\'JF"T‘&?)"""”U‘O'
E _a&av Y — (2.7)
2"+”“,+WV—Q
E v dU ] .
a(T V) rev =0

Boundary conditions with x = *; will be,

w v av
g o 0. _=0-
= dx

dx a

(2.8)
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~al cueillations. In the first

There exists two kinds of symmetri-.
U end W disappear, so that the displacement will be tangential to the

normal section of the cylinder. In this case we have,
/x E &:_ (2.())

V=neos ==, p'gip(l-!-v) I

where n is an integer. In the second kind of oscillations V disap-

pears so that displacements occur in the plane, passing through the

axis; here:
" Aex . REX
b= ' T (2.10)

where £ and { are enterconnected by equations,
: Ev Rt .
[p'-— »l) p ]E p—) la (2.11)

Ev ns
]t_ pI—") 7'-§==0

) [p' - r(l—v') o

The equation for the frequencies will be
1 atxs \ Etntza

- p'",'u—':;)' Y w ) hi—men

If the length of the cylinder is great in comparison with its diameter,

(2.12)

W

i.e., % is small, then there are two types of oscillations, 1) almost

purely radial with frequency
}

[E_?
pﬂ~¢J

2ra

2) and almost purely longitudinal with frequency
]

" )
n ———
A AV A
A
The latter are similar to longitudinal oscillations of a thin rod

(oscillation of elongations).

{ Let us now examine oscillation without elongations Such oscil-

laticns along the generatrix are determined by formulas
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u=0, v=_Acos(pt 1 ¢,)cos(ngp+ 2,),

w= —nA,cos(pl + ¢,)sin (np + 2,), (2.13)
where
P D Ru—1p (2.14)
3kt wp

If oscillations occur in three dimensions, displacements will have

the following form:

u=——B,cos (st + z)sin(ng + 3,),

v = xBycos(pt + ¢,) cos (ng - 3a). (2'15)
w == — nxB, cos (Pl + 2,)sin (@ + 3a)
where
' 6(] — v)a?
gD mw—n "t em (2.15)
* ket ar+1 - 3ot )
Tawo e

As we can see, values p and p' here are proportional to h.

In the latter case, when we introduce the assumption of the pos-
sibility of oscillations, not accompanied by elongations, an inaccuracy
is admitted, owing to which the equations of motion, and boundary
conditions are not fully satisfied. Besides, it turns out that in
order to satisfy different equations, it is necessary to introduce
a correction which contains small changes due to displacement, while
to satisfy boundary conditions the correction for displacement should
be more significant than the one, which is necessary to satisfy
differential equations.

Let us clarify the character of the corrections, which must be
introduced into the deformation without elongations. The existence
of oscillations, not accompanied by elongations is connected with the
fact that the order of the system of motion equations is lowered
from eight (oscillation with elongations) to four. In the frequency

equation (in the case of oscillation with elongations) terms,
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containing m~ and m~, have factor h~, and, thus, two values of m

will be large numbers of the order %u In order to show, how with the
help of the solution, depending on large values of m, it would be
possible to satisfy conditions on the boundary, we will examine Lamb's
example [7].

A cylindrical shell, limited by two generatrices and two circum-
ferences of normal sections, is subjected to action of forces, applied
along the generatrices (circumferences are free from forces); it is
distorted, turning into a surface of revolution, in such a way that
the displacement, tangential to the circumference of normal section
v 1s proportional to ¢. Let us find this displacement.

We have v = cp, where ¢ is a constant and displacements u and w

do not depend on ¢. Hence:

du c—w _ _ Pw -
.] 'a‘ * .j a ] .‘-oo ']— “""'0 t’ ,. T=0.
Forces Si’ 82 and moments M12’ M21 disappear, and Mi’ Mg, hl, N2

will be equal:

Me - (5543 e —o(5 4 3F),

Ny=—-D22 N, =0

Equations of equilibrium will assume the form:

———

ox )

and the condition when x = *1 will lead to equalities:

My _o M _o _p¥e  ih_
0, D = +-a.—0.

Ty,=0 N,=0, M =0
In order to satisfy these equations and conditions, we assume
that €1 and €5 wili be values of the same order as hnl and hng. If
this takes place, then the forces can be expressed, with a sufficiently

close approximation, in the following manner:
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If n > 1, then two normal oscillations of the second class correspond
to each n, and the lowest tone corresponds to the slowest of the two

oscillations of this class when n = 2, Its frequency will be

"‘%V -f-(l.ns). (3.3)

if Poisson's ratio v = 0.25, the frequencies of all these oscillations
do not depend on the thickness of the shell.

In the specific case of the plane plate oscillations are divided
into two main classes: one of them corresponds to deformations with-
out elongations with displacements, which are normal to the plane of
the plate; the second — to deformations, accompanied by elongations,
when displacements are parallel to the plane of the plate. Here we
can have longitudinal oscillations, when displacements are perallel
to the plane of the plate; oscillations of this class are divided
into two subclasss<s, the first subclass includes such oscillations, in
which the middle plane does noi undergo deformation; the seccnd in-
cludes oscillations, in which displacements are analogous to the
tangent displacements in a closed thin spherical shell. Oscillations
of the second class, with which displacement has both the normal com-
ponent to the plane of the plate and the component, lying in tnis
plane are also possible; if the plate is thin, the first comporent
will be smaller than the second. The normal component of displacement
disappears on the middle plane, and the normal component of rotation
disappears everywhere, so that these oscillations are analogous to
oscillations of the second class in a closed thin spherical shell.
There is, further, still another class of bending oscillations, when
the displacement has a normal and a tangential component, where the
latter is smaller than the normal one in the case, when the plate is

thin. The tangential component disappears on the middle plane, so

e



that the deformation can be approximately considered not to have

any elongation. With these oscillations linear elements, which at
the beginning were normal to the middle plane, during the entire
movement remain rectilinear and normal to the same plane. The fre-
quency of the oscillation is approximately proportional to the thick-
ness of the plate. Similar oscillations without elongation, as

noted earlier (see §2 of this chapter), in a closed spherical shell
are impossible.

Among these extreme cases there is an open sphere or a spherical
arch (dome). If the hole is small and the shell is almost closed,
then its oscillation closely approaches the oscillations of the closed
shell. If however, the s0lid angle, under which the hole in the shell
is seen from a pole, located on a part of the sphere, locking the
shell is small, and the radius of the sphere is large, then oscilla-
tions approach those of the plane plate. 1In intermediate cases we
will find oscillations, which for all practical purposes belong either
to the type of the oscillations which proceed without elongations or
to the type of oscillations with elongations.,

Investigation of oscillations without elongations of thin spheri-
cal shell with the boundary contour in the form of a circumference
was performed for the first time by Rayleigh [8]: he applied the

energy method. 1In the case of a hemisphere the frequency of the

o= (2))/ Tem o)

When angle a which determines the size of the hole approaches 7, the

lowest pitch is equal to

sphere will be almost closed and the frequency of the lowest tone of

these oscillations will be equal to

A
at(x —ap

-‘:- (5.657). (3.5)
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Let us assume that angle (v - a) becomes sufficiently small;
leaving h constant, we can obtain for the frequency cf the lowest
pitch of oscillations without elongations, a value larger by any
amount than the lowest frequency of oscillations of a closed spheri-
cal shell (the oscillations of the latter, of course, will be with
elongations). Thus, in the case of an almost closed shell the princi-
pal argument, with the help of which we verify the existence of
oscillations, which have practically elongations, becomes superfluous.

When fundamental equations of oscillations are set up by the
method, which is shown in §2 of this chapter for the cylindrical shell,
we take the displacement components in a form, containing two factors,
the first is the sine or cosine of an arc, which is a multiple of o,
the second constitutes elementary harmonious function of t; after
that, equations are reduced to a linear system of the eighth order,
which serves us to determine the dependency of displacement components
on width 6. Conditions on the free edges are expressed by equating
to zero, for a specific value of 6, certain linear expressions, con-
necting displacement components and their derivatives with respect
to 6. The order of the system is sufficient to enable us to satisfy
these conditions., If the solution of the system of equations sub-
ordinate to boundary conditions, was found, this would lead to deter-
mination of the type of oscillations and their frequency.

Oscillations of elongations are investigated by the method, which
is expounded in the problem on the cylindrical shell. The system of
equations in this case will be of the fourth order, besides it will
be necessary to satisfy two boundary conditions. With any form of
oscillations, movement is composed of two mowions; in the first, the

radial component of displacement is absent; in the second, the



radial rotation componerit. Each of these motions is expressed with
the help of the spherical function, but the order of the latter in
general, will not be a whole number. The order of the spherical
function, expressing the oscillation without radial displacement, is
connected with the frequency by relationship (3.1) which has a instead
of n; order B of the spherical function, expressing displacenent,
when the radial component of rotation equals zero, is connected with
frequency by relationship (3.2), in which n is replaced by B. Both
a and B are connected by a transcendental relationship, which con-
stitutes an equation of frequencies. Oscillations are not divided
into classes, as in the case of the closed shell; as the shape of the
open shell approaches the shape of the closed shell, its oscilliations
of elongations are transformed into analogous oscillations for the
closed shell.

The existence of oscillations, practically approaching oscilla-
tiﬁns without elongations, obviously, are intimately connected with
the fact that upon assuming the presence of elongation oscillations
we lower the order of the system of motion equations from the eighth
to the Tourth, As in the case of the cylindrical shell, it is pos-
sible to show that oscillations cannot be entirely unaccompanied by
deformations of elongations and that the correction, necessary to
satisfy the conditions on the edges, is greater than that, which is
needed to satisfy motion equations. Hence it may be concluded, that
on the free edge elongations are comparable in value with bending
strains and that to all purposes these elongations are limited only
by a narrow band near the edges.

If we imagine the gradual changes in the character of oscillations,

appearing with the growth of curvature, starting with the plane plate
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and finishing with the closed spherical shell, the class of oscilla-
tions, which proceed practically without elongations, will disappear
completely, The basis for this should be sought in the rapid growth
of the frequency of all oscillations belonging to this class, upon

a significant decrease of the hole in the shell.

§4. Asymptotic Method of Investigation of Oscillations

For investigation of natural oscillations of plates, sloping
shells, and also unsloping shells during oscillations with high
indices of changeability ol shape, V. V. Bolotin proposed an effective
asymptotic method [9-11], the essence of which in the general formu-
lation can be presented thus.

In a certain retangular (in a generalized sense) spatial region
of variables Xgs Xps wees Xpo (0 = X, 5 8y, i=1, 2, ..., m) we seek
functions Prs Pos e Pps satisfying the system of differential
equations

[ ] ‘s
Y La(@)—1 Y Mia(ga) = 0

&=l = G=1.2....0 (4.1)

and, on every border of the region, satisfying conditions:

N (91, g0« - -, 90/0) = 0, N(P1 Ps-...Pnla) =0

(‘=l. 2,...,"; a=l, 2v---.f). (}4,2)

Where Lja’ Mja’ and Nia are linear differential operators, and 2r is

the general order of the system (4.1). It is assumed that the bound-

ary value problem is self-conjugate. It is necessary to determine

for this problem the eigenvalues cf A and eigenfunctions of wj.
According to the author [11], let us introduce the classification

of the border self-conjugate problem. The problem, the eigenfunctions

of which permit their presentation in the form of the product of
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functions, depending only on each of the argum- nts individually:

o=[luEx) (=12....a), (4.3)

f=1

we will call a boundary value probiem with separable variables. Solu-
tion of such problems, as a rule, is sought in the form of the product
of trigonometric functions.

We shall term the self-conjugate problem (4.1)-(4.2) a boundary
value problem with quasiseparating variables, if either the system (4.1)
permits a generating solution in the form (4.3) owing tc the cor-
responding selection of conditions (4.2), or system (4.1) permits a

solution in the form

[
=0 2lx) G=12,....m je=12,..,n), (4.4)
B 1A ’ .
where ®ji are certain functions of one variable X5 - Consequently,
0 0

substitution (4.4) transforms (4.1) into a system of differentisl

equations with respect to functions jS ; or substitution (4.4) in
0

conditions (%.2), which correspond to i = i,, transforms them into

conditions, containing only jS .
70

An example of boundary-value problems with quasiseparating veri-
ables are problems, described by systems of differential equations
with constant coefficients, which contain derivatives of even o:.ders;
boundary condition for every boundary must contain an operation of
differentiation with respect to every '"transverse" coordinate of the
same parity.

V. V. Bolotin's asymptotic method for toundary-value problems
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with quasidividing variavles is based* on the assumption of possibility
of the use of solution (4.3)** as a generating solution also for those
problems, which do not permit an exact solution in this form; in
addition we should consider it only as an approximate solution for

an internal region, sufficiently removed from the boundaries. Near

the boundaries the exact solution will differ from the generating
solution; this phenomenon is termed by dynamic edge effect. Here if
for every boundary we will manage to construct a solution, satisfying
all the conditions in it and tending to a generating solution as it

is removed further from the boundary, then asymptotic expressions fcr

"gluing" operati-n.

eigenfunctionrs can be found by means of a

In setting up the solution one should bear in mind every function
T (Xi) in (4.3) in the corresponding selection of conditions for
normalization contains two constants: the wave number ki and certain
phase response. These constants can be found only after "gluing"

of solutions., After substitution of (4.3) in (4.1) we will find a

bond between eigenvalue A and wave numbers ki’ k2, 5000 km:

[y
~—

A=Ak k..., k). (.

Actually, we will examine, for instance, boundary X, = 0.
0

Assuming that parameter A in equations (4.1) is determined according
to (4.5), we will look for their solution in the form (4.4). A
system of ordinary differential equations obtained in such a way will

have, as it was already noted earlier, a solution of type wji (Xi )
o

*Only qualitative consideration: are adduced here.

**Solution (4.3) possesses asymptotic properties of eigenfunctions,
which are maintained also when boundary conditions are changed.
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which depends on two arbitrary constants. If this system, furthermore,
admits r - 1 linearly independent solutions, possessing properties

of the boundary effect, then we will have r + 1 arbitrary constants.
And, consequently, we will satisfy r conditions on the boundary and

the normalization condition. Analogously we will construct a solu-
tion also for the opposite boundary xio = aio‘ Requiring that in the
internal region both solutions coincide with the azcurecy of the
solution of the edge effect type, we will obtain condition of "gluing"

o 2

containing as unknowns wave numbers k k2, coo0 km. In all we may

1°
obtain m such conditions, after which eigenvalues are determin=d by
for formula (4.5).

It is possible to expect that the error of operation of "gluing"
has an order of values, which i1s adopted by functions of dynamic edge
effect in the internal region. Consequently the faster the edge
effect damps the smaller is this error.

The investigation of solutions shows that with the growth of
wave numbers the error decreases raplidly. However, in certain in-
stances, when for a certair region of wave numbers the solution of
the type of edge effect; in general, cannot be constructed. In such
cases, according to the author, we will discuss the degeneration of
dynamic edge effect resulting from the strong influence of the bound-
ary on the behavior of eigenfunctions in the internali region, in these
cases the asymptotic method becomes invalid and, consequently, cannot
be used.

Solutions, obtained by means of the asymptotic method,* can be

considered to be approximate expressions for eigenfunctions, which

*Differential equations and boundary conditions are satisfied
exactly here, however singleness of solution is attained only by the
"gluing" operation, which needs a mathematical foundation, as also,
does the entire method.
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can be used everywhere, except in the vicinity of angular points of
the region. It would be a sound nractice to examine separately the
solutions for the internal region and the solution for every boundary,
as we dc when we examine separately the moment and zero-moment solu-

tions in the shell statics.

Let us apply V. V. Bolotin's asymptotic method to do research
on natural oscillaticns of the sloping shell [11] and the circular
cylindrical shell, using Yu. V. Gavrilov's resolution [12].

First, we will examine the natural oscillation of the sloping
shell cf constant thickness with radii of curvature R1 = const and
R2 = const, supported on a rectangular frame [11]. Equationc on

sag w and tangential forces ¢ are recorded thus:

L& 1 % -
Dyivre Ry o Ry 0g it (4.5)
- Lo, 1 ¥ _o

" Yt at e
The generating solution has the form,

w = sink, (x, — x%) sin &y (xy — 1J),

.73
' ( /
9 =(?|TW (F'.+ %)sink, (x1 — x9)sin &y (x, — x0),

0 0
where k, and k, are wave numbers, X and x2 are phase responses

1 2 1
(1imit phases).
Solution for edge X, = C we take in the form of:
W= Wl(xI)Sink’(x’_xg)t (A 8)

@ = Dy (xy)sin ky (xy — 2Y).
Substitution (4.8) in (4.6) leads to a system of >rdinary differential

equations with constant coefficients with respect to Wi(xl) and @1(x1).

The dynamic edge effect does not degenerate, if the characteristic

equation of this system, set up with the additional condition that

[ (kf kg)’]

‘-—-+.--—-
1 L2 2 Eb ARy R 4.9
i (R e e | (4.9)
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has three roots with negative real parts. Let us note, that the edge

effect does not degenerate with any values of k, and k if R1 z R

1 2’
it aiso never degenerates for plates). With R, < R, degeneration
1 2

2

is possible only with sufficiently small k, and k,. For instance,

1 2
for the asymptotic edge in a shell of zero Gaussian curvature the

edsre effect degenerates, if
Ex
*f+’§<‘/,,—kg-
"Gluing" together the solutions, which originate at the boundaries

Xy = 0 and Xy =ay and at boundaries Xp = 0 and Xy = a5, We will

obtain two equations for finding k, and k After that frequency p

1 2°
is found by the formula (4.9). Let us note that with large wave
m, 7 myT
numbers k, A — and kK, ~» —, where m, and m, are positive integers
1 ai = a2 < 2
and formula (4.9) is turned into an estimate of the type cof well-

known appraisals of Courant-Weyl.*

Now let us investigate the spectrum of natural oscillations of
circular cylirdrical shells [12].
Let us combine with the middle surface of the shell an orthogonal

curvilinear system of coordinates x X~ so that line Xp = const

1’ 72

coincide with the generatrices.
Forms of oscillations for normal sag w, are determined from the

resolving equation

1y o _Eh Owy WP ele .
V’V'V’V wo DR ax: lD V V wc 0‘ ()4 o 10)

*With large wave numbers the equations of the classical theory
of shells (and plates) become insuitable and must be replaced by equa-
tions, which take into account deformation of the shift and rotatioun
inertia, The asymptotic method may be applied to this class of prot-
1ems also,
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Here 7y is the specific gravity of the shell material, g is the
acceleration of the force of gravity.
Solution of cquation (4.20) near the circular edge is in the form
w, = W, (x;) sinky(x3 — x3)
and analogously near the rectilinear edge
w, = Wy (x))sink, (x, — x9).

Function W,(x;) is determined by expression

3
Wa(xd) = Cyy sinkyxy + Cyycos kyx, + 3! Cayine™™. (4.11)
=1

Here s2J are negative roots of the characteristic euqation for edge

effect near the rectilinear edge. Function Wl(xi) has the form

—~
=
.
[BEN
N
A

: 3
Wi(x) = Cy sinkx, + Cppcosbyx, + Z Cijs2e™r=,
i=1

if all roots of the corresponding characteristic equation assume real
values, and

W, i) = C,, sinkyx, -+ Cyycoskyx, 4 Cppesnm 4

+ Cyasindxye®n - Cys 008 2xyes, (.17

if roots S40 and 513 are complexly conjugated, 512, 13 = a t iB.

The first two terms in expressions (4.11), (4.12) and (4.13) cor-
responé to the asymptotic exp.ession for forms of oscillations, but
the three remaining ones describe the dynamic edge effect.

Values of ng are expressed in the explicit form, but Sij can te
represented graphically or determined from the characteristic equa-
tion directly.

Wave numbers k, and k, are determined from conditions of "gluing"

together, which, for cylindrical panel, in the case of identical con-

ditions on opposite edges are recorded in the form:

85



. P - .
Y e s e i el A S S — a— . - A e - R TN N S

gy 2 Cie
. ""r‘l"?m‘G(—i.::- 5
!
M g4 2 retgl—Cn), (4.14)
® \

where n,, n, = 1, 2, 3, «..5 24 and 8, are sides of panel.
After determination of wave numbers it is easy to calculate the

frequency of oscillations,

=L Ex K
4 " [‘*H@’*'m- (kf-'rk;r]‘

Let us now determine the parameters of the dynamic edge effect
near the circular edge. Let us examine the edge effect near the
fastened circular edge and near the circular edge with sliding fasten-
ing.

In the first case boundary conditions have the form

'"."":f'”-"-=".=° when x, =0 (4.15)

and in the second

o e _ By, _ B,
¢ Jxl Gx§ ax@x’

=0 whenx, = 0. (4.16)

Here u, and v, are tangential displacements, which can be determined

from relationships,

()= Gl +9%):
1

v %:.) - -—7—‘%— [v’w, + (1 + V)%].

(4.17)

where ¢, is a function of efforts in the micddle surface, for the
determination of which we can use the second Mushtari - Vlasov

equation [13]. Then
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From (4.17) and (4.18) we find,

u, =U, (x,) sin &, (x; — 1Y),
0, = V; (x)) cosky (x, — x3),
?. = @y (x)) sinky (x, — 19,

where in the case of nonoscillating edge effect,

3
. 2 5 "
U' = %K(Cncmk‘x;-—cuﬂnk‘tl)-— cm’,‘i”slﬂ‘. »

-1

- L .
Vi = 2 [K Cusinkns + Cueostir) — Y\ CuseanSie™ ).

I=1

3
¢, = L rK' *(Cusinkyx, + Cyycoskyxy) — 2 Cig4251e™ "] c

R =
Here we introduce designations
xe=.fi:5i . 3
@8 T @ e
L S N L k.
&G+er ™
Kcn k’ s ‘fl

=2t 8 =—=I_.
"+ By VT sk — e

Further, assuming that C,, = 1, from (4.15) and (4.16) we find con-

stants C1k (k = 2, 3, 4, 5). For determination of wave numbers we will

C
be interested only in ratios Eig’ which for a clamped circular edge

11
"re equal to:

3
P,
.9a==k.£i:i
€ '3

A

and for edge with sliding fastening

P.’
G _p 1=V
Cn o
2Py
7=

(4.19)
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Here,

Py, = 5, (Siz— S} (K + Sy).
Py = 513813 (Su — Si) (K” + Sha).
Py = 5,4 (Sa— S} (K™ + Si)).
Py = 2483 (Su— Si2) (K™ + Sia)s

and expressions for ij (k =1, 2, 3, 4; j =1, 2, 3) are obtained
from ij by cyclic permutation of second indices.

In the case of the oscillating edge effect the corresponding
expressions are obtained analogously.

With the help of (4.19) and (4.20) from equations (4.14) we
calculate wave numbers for closed cylindrical shells with rigid and
sliding fastening at the circular edge, as well as for panels with
the same conditions at the circular edge and with free support at the
reétilinear edge.

The solution of system (4.14) presents certain difficulties.
However, the first approximation may be obtained by the graphic method
relatively simply.

After the wave numbers are determined, cscillation frejuencies
are easily calculated. Furthermore, calculating all roots uf charac-
teristic equations Sij and ng (i = 1, 2, 3) and all constants Cik
and C2k (k =1, 2, 3, 4, 5), we obtain expressions for function of
forces, as well as for forms of oscillations and for bending moments
and forces. Thus we can determine the stresses near the edges.

The asymptotic method may be applied also to problecws on forced
oscillations which is based on making use of expansion into series
with respect to asymptotic expressions for forms of natural oscilla-

tions. This method can be successfully applied for the analysis of

vibrations of plates and shells during high-frequency excitation.
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Since in this case simplifications are possitle, because with larece

wave numbers the influence of the edge effect is localized in narrow
rezions near the lines of distortion. Consequently, it is permissitle
to resort to expansion with respect to eigenfunctions of the generating
soluticn (under the condition that phase responses are found, taking
into account boundary conditions). After all coefficients of de-
compositions are found, we can calculate bending moments, severing

forces, stresses and so forth in the dynamic edge effect zone.

§5. Parametric Oscillations. Formulation of Problem

In preceding paragraphs we examined natural oscillations, when
an oscillating body is isolated from any external influences. Such
oscillations appear after an external action, which determines the
initial deflection and initial speed, i.e., initial conditiosns, tut
the latter simply determine the subsequent process in the elastic
system. An elastic system itself from the point of view of natural
oscillations, in general, is determined by two parameters, which
characterize the oscillatory process: natural frequency p and decre-
ment & (or damping coefficient).

Forced oscillations in the body. i.e., oscillation under the
action of external forces, are determined not only by the physical
properties of the pody and by the parameters of the elastic system
(p and ©), but also by external forces; mathematically this is ex-
pressed by the fact that into the equation a term enters which, depends
explicitly on time. However an external influence of another form
is possible, when an external force does not act on a body. and at
tiie same time either parameters of the system (included in the coef-

ficients of the equation) depend on time, or the external influence

changes the parameters of the elastic system. Appearance of an
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oscillatory process due to variation of parameters is called para-
metric excitation of oscillations, and oscillations are called para-
metric.

Thus, parametric oscillations are oscillations, appearing in an
elastic system as the result of periodic change of those of its pro-
perties, which remain constant during free oscillations. And con-
sequently, among oscillations, appearing in the presence of external
periodic influence, we must distinguish two forms: forced oscilla-
tions and parametric oscillations. Forced oscillations are caused
by the action of prescribed external forces on the elastic system,
the properties of which are constant, i.e., the values (parameters}),
characterizing these properties, are constant. Parametric oscilla-
tions, on the contrary, appear owing to the periodic change of the
elastic system itself,

The phenomenon of the build-v» in time of the intensity of para-
metric oscillations of an elastic system is called parametric reso-
nance, Parametric resonance appears with a definite relationship
between the frequency of change of a parameter during external in-
fluence on the body and frequencies of its natural oscillations; it

can arise every time, when the ratio

t = average natural frequency

frequency of change of parameter
is close to one of the following values, %, i, 2, 3, .... The condi~
tion for appearance of parametric resonance is fulfilled easier tne
larger the magnitude of the change of parameter, the less the loss
of energy in the elastic system (friction or resistance), and the
less the value £, Therefore, it is observed most frequently when

= %. The essential specific feature of parametric resonance is the
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fact that it can appear in the presence of even an insignificant
initial deflection of the elastic system from the state of equilibrium.
In actual practice such deflections are always possible,

Let us outline the formulation of the problem cn parametric
oscillations of shells.*

Let us investigate the behavior of a shell under the influence

of external surface load, variable in time according to periodic law:

x.(a' p' ‘)' Y.(G, p' t)' zl(’o pv t)' (5 ‘1)

Let us assume that load (5.1) induces in the shell a momentless
state of strain and let us assume that in this state displacements
of points of middle surfaces are egual to Uy VO, W A change to

the moment state will produce transpositions:

—~
-

[y
)
~——

U=uy+u, v=0,+0 w=w,+w,
satisfying equations of the moment theory. Components X, Y, Z of the
surface load consist of the reduced external locad (5.1), forces of
inertia and an additional induced load, appearing upon deflection of

the middle surface from the initial momentless state:
F )
x== X.-{-Ax——m—o%,

Y}
S~

Y=y.+Ay-m.%:;, (.
Z=-Z.+Al—m%.
Here m is the mass of the shell, referred to a unit of area of
the middle surface.
Introducing (5.2) and (5.3) in equations of the moment theory
in V. Z. Vlasov's [15] form and taking into account that undisturbed

parameters are connected by equations,

*Here and in subsequent paragraphs of this chapter V., V. Bolotin's
[14] results are expounded.
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Lyy (ug) + Lyy (0g) + Lyg (w) + —— bﬂ.(xo —m "'—) =0,
Luu (4) + Ly (09 + Lya (w9 + ';“'(v.—m—,,.—)-o.

L@+ L (00 + L@ + 15 (Z — m 22 ) =0,
we obtain "eguations in variations."

L, (;)4‘ Lu(;)‘f'l-u(i’) =M (AX-—— m—\ =0,
;.,(‘i)+tu("o)+L.(w)+—--(AY— =i,

Ly, @) 4 Ly (0) + Lyg (i) + —> """ (Az—m%‘:-) =0,

bars atove U, Vv, w are subsequently omitted. Here Lygs Lyps -eo,
are linear di ferential operators, referred to lines of the main
curvatures: h is the thickness of the shell.

Regarding determination of components of e reduced load AX, AY,
and AZ, it may be carried out in the following manner. :t us assume
that the zero-moment state is characterized by normal forces T1
(a, B, t) and T, (as B, t), which will be considered positive, if
they cause compression., Disregarding forces of inertia of the zero-

moment state, we can calculate the internal forces from equations of

equilibrium of the shell element in this state:
+ BT —T, % - 4pX,

-—4ATJ Tr—;-—ABYm
lTl + kaTa = Z..
k

where k are the main curvatures.

1’ 72
Let us assume that, as it was earlier, €4 and €, are relative lon-
gitudinal deformations, nland Mo is the increase of main curvatures due

to moment deformation. The first quadratic form assumes the form
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ds® = A (1 -+ ¢,)2da?  B(1 4+ ¢ )*d38.

Now, if in equations (5.5) instead of coefficients of the first quadra-
tic form A and B we intrcduce A(1 + 52) and B(1 + a2) respectively;
furthermore, if in the last equation we replace k1 and k2 by k1 + oy
and k2 + Nos then in this case they are not satisfied identically and,
consequently, it is necessary instead of XO’ Y., ZO to take XO + AX,

Y, + &Y, Zo + OZ, where AX, AY, and 4Z are the additional (reduced)

load. Thus, equation (5.5) should be written in the following form:

? 3 ip-o _

S B0+ T =Ty 1B + )l =
= AB(1 + &) (1 + &) (X, + AX),

%—mn + )T —T, %mu +e)l=

=‘.B(l +4) (1 + ¢ (Y0+ AY),
By + )Ty + (ks + 2 Ty = Z, + AZ.

Taking into account (5.5) and disregarding values of the second order
of smallness (products of type €1€0s €4 AX), we arrive at the follow-
ing formulas:

d d
[ ©BT) —Ts - B = Ko (e + 00

[—%— (AT —T, ais (21 A)]"‘ Yo(ea ¢,
AZ = Tz, + Tyry. ’ (5.6)

Let us introduce in formulas (5.6) instead of €15 €05 Ny expres-

No
sions:
|

1 0u
“= Tt

oA
73-0+k,w.
1_ o8 1 o _
an o YT a e TR (5.7)
O u Ok v 2

n= g at oy hw

b ._'_2)___' 0] 0w,
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Now it is easy to note that the terms in equations (5.4), con-
taining AX, AY, AZ, are linear with respect to internal forces Tj

and T., and also with respect to displacements u, v, w and their

03
derivatives. In the case of a periodic external load, of forces T1
and T,, are also periodic functions of time; system (5.4) in this
case has periodic coefficients. Assuming that
u(2p.0=Zu, ()0 (23
v (e, B.0) = Zu, (D0 (2. 9) (5.8)
ST YT X PACKY
where functions are selected so that corresponding boundary conditions
are satisfied, and putting them in (5.4), we will reduce the problem
to a system of ordinary differential equations with periodic coef-

ficients. Methods of solution of such are sufficiently well developed.

§€. The Closed Cylindrical Shell

Let us assume that a circulsr cylindrical shell with a radius
of the middle surface R and thickness h is loaded with an evenly
distributed radial load qy + qt cos 6t end is compressed by a longi-
tudinal force PO + Pt cos 8t. We shall use the system of coordinates
in arcordance with Fig. 5, introducing a dimensionless longitudinal

coordinate a = %. We will designate the displacement in the direction
of the generatrix by U, the circumferential displacements by 7 and

the radial displacem:nt by w.




------

In equations (5.4) of this chapter, within tolerance limits

assumed with respect to a cylindrical sheil, one should write:

L“=___a__+l—-v_0_l_ L”=’+l-"

dut 2 o’ F2 g o’

1ty & L. =2 6.1
by=Ly= 3" 55 Ly=Ly=v—-. (6.1)

la=Ln= 5 La=c''v*

Here,

= . e, &

o= 128’ v=ost F7 N
a a & o
Ve=v= ot mt e (6.2)

Noting that internal forces corresponding to the initial zero-

moment state, are expressed in the form:

T’ = ;‘-%-(P.-{-P,COSOI).

(€.3)
Te=R(qe + q,c0s01),

and that in the case under consideration A = B = R, kl = 0, RE = %

and according to the formula (5.7) of this chapter,

1 o ! do
8) =3 =y %~”;(;;+w)

R o
. . (O
BT TR T T e +w)'

it is not difficult to write the expressions of components of the

reduced load AX, AY, AZ using formulas (5.6):

_Ti=Ty (&
AX I (33 +w),

AV = _Th—is Fu
R a®' (6.4)
sz [n g en ()

Thus, for a cylindrical shell equations (5.&) of this chapter

assume the form:

5
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. »
cae P - S - . e e e o m b shoibl’ - ’T.-;_..-d' -

Py J—v & I4v &
w T wmt s
=W T=Ts @ [ ., .\ v
+ st[ ® a\emTY)T" }
Tiy M B 1k
2 a® a2 o &
- [T;--T. ‘Py
Eh
&
»

n () en ) -0

u 1— | Py
A revves 1

We seek the solution for the system of equations (6.5) in the form:

u = U (f)cosna cos k3,
v == V () sinnasin k3, (6.6)
w = W (f) sinnacos 43,

where n = E%E, where 1 and k become positive integers. Here i indi-

cates the number of half-waves in the meridional di.=ction (1 is the
length of the sheil), k indicates the number of half-waves in the
circumferential direction. The solution in form (6.6) corresponds
to the case, when on the ends of the shell (z = 0 and z = 1) both
the rcdial and the circumferential displacements (u # O) disappear.
We can easily prove by direct substitution that equations (6.5)
are identically satisfied, if functions U(t), V(t), W(t) are deter-

mined from a system of ordinary differential equations:

e Y A S E L AP W P A R
EN  dp +("~+ 2 k)U 2 RV

—_—W—t=2 LTy -
wnW o = a(kV 4+ W) =0,

m(l—v) @Y 14y l—v
s : nkU-l-(k’-{- - m)v+

I— Ty—T,s _
+AW -+ En, R L=l

m(l —+) d‘:V —wl + kY + c*(n® + kW —

Eh di

—t "g,‘ Tyt + Ty (k2 — 1)] = 0.

En
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The system of equations (6.7) may be represented in the matrix

form
mEL  R—T,8,—~T,S)f =0,

vihere f is the vector with components U, V, and W,

3 f—v _l+v _
. n-+—1r-k' : nk /]
R= EES A=y .
1—w —5 k4 ——n k
- & & (nt + &%
0 nk n 0 —nk n
1 =1
&——R;——nkoo.sa—”nkoo'
0 0 nt 0 or—1|

Frequencies of natural oscillations of an unloaded shell are

determined from equation
|R—p*E|=0,

and critical parameters of longitudinal compressing, and radial loads

are determined from equations

|R—-2%s,|=o # |R — gRS,| = 0.

The problem of dynamic stability leads in the first approximation

to the equation
|R-——2-:-E(P.i —%—P,)S, —
—(% £ a) RS, — - #E| = 0. (6.€)

In case it is possible to disregard the effect of tangential
forces of inertia and tangential components of the reduced load, then
thie problem about oscillations of a cylindrical shell is reduced to
one "resolving" equation. For a nonsloping cylindrical shell it has

the form:

97



@+ 1Peve—0—) oo (55— 35 VO +
1—v 0 R
t e 0 (6.9)
here
Vo =w.

Using (6.9) and the last formula (6.4), we obtain,

@+ IPo—d )2 (- =) ve+

PP
1—v 0 uk‘i .
+ e &t + D a-v vio+

B L+ eve-o .10

Let us assume that A is the length of a half-wave in the meridio-

nal (or circumferential) direction, Then the first term in equation

8 6
(6.120) will have the order ~(§) ; the second term ~(%) ; the third

R6 If the length of a half-wave is small as compared to the

A*n?
radius, then the second component in (6.10) can be disregarded,

~

Disregarding on the basis of similar considerations the other terms

of the similar order of smallness we arrive at equation

I—93#0 R (T, & T, &
vvve+ Tttt S a T T

+m5) e =0, (6.11)

This equation completely corresponds to the known equation for mildly
sloping shells.
Thus, returning to the general equation (6.10) and assuming that
in it
@ (a, B. 1) = f (f) sinnz cos k3,
which corresponds to case (6.6), we arrive at an ordinary differential

equation

_!'_&‘_ﬂf_.,.g(n,k);_—g'-(r,n'+T.(k’--l)lf'= 0, (6.12)

D dn
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where
O B4 1P 4 B3 (1 — At — 1 ¢ T T e s
'(ﬂ.‘)= ¢ (b..L))
¢+ &y
Let us introduce designations:
“akt = pt, u'R’ = Ties (k'-—l)R‘ = Tyq- (6.14)
Equation (6.12) may Le now recorded in the form
-l-p'(l-—-—————)f-o (6.15)
0
where P, = QWRTi*, qQ, = “*. Consequently, the problem is reduced

to a known equation.

In conclusion let us note that these results are easily genera-
lized for the case of the orthotropic cylindrical shell, Really,
let us assume that Ei’ E2 and Vys Vo, are moduli of elasticity and

Poisson's ratio in directions B = const and a = const respectively;

G is the shear modulus, Let us introduce the following differential

operators:
v’=£.-%+£,—"—
VimEge +Egagat B (6.16)
Vi=E, L +E'0:'33’+’33
where

« Eg=2G (1 — v, vy) + Eyv,,
E,= 4G (ll:‘;;; vy) + Epvg + Egvy, (6.17)
E,= G Eyvy— Egy,.

The equaticn, analogous to (6.11), for the orthotropic shell assumes

the following form

V’V;‘D-}- E\Es (1 — vyvy) e +

& aa‘
1= (p & g & 0, 5,18
+ ah'(r‘aaa“LT’as’ + R )v,q) (6.19)

99

Ao



where ¢ is the function, connected with the radial displacement by
relationship (6.9).

Further transforms again result in equation (6.15), the coef-
ficients of which for the case of a supported shell are determined

without difficulty.#*

§7. The Spherical Shell

Let us investigate oscillations of the spherical shell under

the action of a radial load evenly distributed on the surface:

2, = — (g + g, c001). (7.1)
Let us designate with R the radius of the middle surface, with
h — the thickness, and adopt geographic coordinates ¢ and B (¢ is
the angle of latitude, B — angle of longitude, Fig. 6). Displace-
ments of points of the middle surface will be disignated by u in the
direction of line ¥ = const, by v in the direction of line B = const,

and by w — the radial displacement, positive in the direction of the

external normal.

We know [15] that in the case of a
radial load only, the system of equations of
a spherical shell is reduced to one resolving

equation

G+ D1 (7 + o= T (7 — 1 =) (7.2)

Here v2( ) is a l.aplacian operator on the sphere

oL [ gy 2yt &
V=<3 [a'f (’i" r»)* iy aa']'
h‘
120 —wRs (7.3)

€2 =

*See A. N. Markov [16].
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In tne zerc-moment state tre internal forces of the shell are

reduced to compressing forces
1 b
T.=T.==-’—R(¢l.+¢¢°05°‘)- {_;"")

In the case of a spherical shell

bh=b =,
A=R, B=Rsiny,

and formulas (5.7) of this chapter assume the form:

(e ).

k(e )

Where, according to (5.6) cf this chapter an additional given lcad,

appearing upon deflection of the shell from the zero-moment state,

will be
AZ = - R(g, + 4, 0580 (1 + %),

or
AZ=—-;';(qo+q,m§0l)(v’+2)'w- (7.

Components AX and AY are equal to zero. In addition to the external
pressure (7.1) and reduced load (7.5) the shell is acted upon 'y

forces of inertia

Rejecting, in accordance with the adopted approximation, the tancential
components of the forces of inertia, we will find that forces, acting

upon the shell, are reduced to a radial lcad

z"""’(‘lo‘i'qicose’)——;k‘(%'."q‘cosoo X

F .
X (v +Dw—m . (7.
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The first ccmponent produces a uniform compression of the shell and
may be discarded if we understand that w(¢, B, t) is the deflection
from an undisturbed, momentless state. Then eguation (7.2) assumes

the form

W' +1r+ U +o+

+ Bt EEIR G +1-0 G+ Do+

+ 2 @+ 1—=0) =0, (7.8)

Let us look for the sclution of equation (7.8) in the class of

functions

©(4.0.0 = (OF (2.9, (7.9)

where r(t) is an unknown function of time, F(y¥, B) are solutions of

the differential equation

VF+1F=0, (7.10)

satisfying the boundary conditions for w (i.e., conditions of con-
tinuity and the single-valuedness on the sphe:e). Substitution in

(7.8) after reduction on F(y, B) yields:

(0.~ 1P+ 116 — 2)f — L LUDNR _j 4y

X(‘l.-—2)f+.-";—r—().-—l-l-v)%=0. (7.11)

Let us introduce designations:

= mp o T e DL
o~ _ 2Eh —1n
= iy I (7.12)

and, introducing them in (7.11), we will obtain;

~:—,'f-+p'(l-——"!-’£ﬂi‘9‘;'1)f=o. (7.13)
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Formulas (7.12) give natural frequencies and critical forces, depend-
ing on the still unknown parameter A. However, one practicaliy im-
portant question may be solved to the end even without determination
of A, Boundaries of main regions of instability can be found by

known approximate formulas. In particular, the iowest boundary

1
+——
Bf=4p'(l—--—-————'. '2 v ) (7.1%)

For practical applications it is interesting to know the envelop«
of the lower bounds of regions of instability. Let us assume that
parameter A can assume any real pcsitive values, i.e., let us assume
that equation (7.10) has a continuous spectrum of values. For a
limited region, such as the sphere, spectrum of values is discrete,
But in the vicinity of values of > which are of interest to us the
spectrum of equation (7.10) is, nevertheless, sufficiently "thick,"
so that the error, following from the assumption made, is small.

Subsequently let us designate,

2=, (7.5%)
where
1
_ _ “0_1),+| _ (QO+TQl)R] j(—’-.:

For determination of envelope let us assume that %% = O, hence,
we will obtain an equation for A, Let us consider the case of suf-

ficiently large values of X >> 1., Then

(w+ 5 a)R ) (7.17)
2ER N

Q) =ch 4 1 —
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and the root of equation g§.=

1
(q.+—,-¢c R
T (7.15)

and consequently,

gl tdm]

(7.19)
Let us introduce designation:
R Qoo oy n.
Formula (7.19) assumes the form
.1 s
' % el /]
2
o:=4p?.[l-( s ) ] (7.21)

Certainly, one should take into account that q,, constitutes an ap-
proximate (in the sense of the assumptions made) value of the minimum
critical pressure. Actually, considering that

X
¢t= 120 (1 —w) °

we will obtain a well-known formula

- JEm ! .22

Finally, let us determine parameter A in the general case.

Equation (7.10) on a sphere

A 9 (urw OF 1
v Loy (s av)]+sin'+7.=7+'F ~30 (7.23)

leads, as we know to spherical functions,

We find the solution of equation (7.23) in the form:

F (4. 8)= P Sin &3 (7.24)
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The condition for single-valuedness of F(¥, B) on the sphere reguires
that k be an integer or a zero (k= 0, 1, 2, ...). Substitution in
(7.23) yields:

5o 21 ()0

7 .25
*k=012..) (7 )
Assuming that x = cos ¥, we reduce equation (7.25) to the form:
4 dp —*® \p_
.‘_‘_[(l_x!).i‘_]q-(). —)P=0. (7.26)

This is a known equation for associated Legendre polynomials. Equa-

tion (7.26) has eigenvalues

h=n(r+1) (1=0,12..). (7.27)
Every eigenvalue A  corresponds to (N + 1) eigenfunctions:

L 3
Py)=(1 —x9® ::. P.(x), (£=0,1,2,...,n), (7.25)

where

Palt) = o (2 — 111

Now it is possible to record for equation (7.23) a system of its

solutions:

k=0 F.('P. p)=Pn(c°5‘:‘)-

k=1 F_,(4.B) =P (cos)sin3, (7.29)
Fy (%, 8) = P (cos§) cos B,
» >
H 4 H 4
k=n F_p(}.B)= P (cos¢)sinng,
Fa($,8) = P (cos §) cos nd.

We know that Legendre polynomials P, (x) have in the interval of change
¥(0, m), exactly n zeroes. Associated functions P(k)(x) have accord-
n

ingly (n - k) zeroes,
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Since sin kp and cos kB turn into zero on 2k meridians, and

P(g)(x) in view of that what was just now said — on (n - k) latitudes,
then the entire sphere is partitioned into "cells" inside which

F(¢¥, p) retains the constant sign. This means that number A deter-
mines the form of the oscillation formula and, in particular, dimen-
sions of "half-waves" in meridional and latitudinal directions. The
smaller are the dimensions of half-waves, the larger is, consequently,
the parameter A. In this case the difference between two neighboring
eigenvalues becomes small compared to their magnitude, which justifies

the assumption about the continuity of change of A.
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CHAPTER III

FLUTTER OF PANELS AND SHELLS

§ 1. Formulation of the Problem

In the preceding chapter we investigated natural oscillations of
parametric character. Other types of natural oscillations of plate:z
and shells originate in their interaction with liquids and gas flow:.

Here we examine a phenomenron, very interesting and essential - v
‘the technology of high speeds, which is termed panel flutter and ~or-
sists of the fact that sheathing or other thin-walled elements of
structures of the type of plates and shells, around which there ic a
supersonic fluid or gas flow, during specific critical speeds attailn
oscillatory motion with intensely growing amplitudes, which can bring
the structure to destruction.

Theoretical research of panel flutter in a setting that 1is corrc::
in the physical and mathematical sense, became possible after the law
of" plane sections in the aerodynamics of large :zupersonic speeds [17]
was established in 1947.

Analyzing ti.2 motion of thin solid bodies with great supersonic
speeds in various media, A. A. Ilt'yushin discovered the following

general property, which he termed the law of plane sections, "If the

speed vector of any point of a body of a regular aerodynamic
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form,* is V and 1f transverse speeds of its other points are of the
order not exceeding eV, then in either the establisked or transient
motions the body produces in its environment only transverse pertur-
btations, and the pressure at any point of the body surface, calculated
according to this 13w, can differ from the true pressure by the value

of the order not exceeding

ET I W
7 (*+ )

226
" 2 ye eV .
as compared to unity. Here == >» 1 is Mach number, e = v 1s
\' 0
0

I1'yushin's parameter,expressed through the body speed V, slope of the
normal to area g, and speed of scund in undisturbed medium Vgs i.e.,
speed of sound in gas at infinity; this parameter has fundamental
value, inasmuch as both in linearized and nonelinearized theories in
the presence of vortexes and shock waves the pressure on the body
surface 1s determined only by these parameters and the form of the body.

Consequently, if before the body we separate by two neighboring
parallel planes a layer of physical particles of the medium, perpen-
dicular to the speed vector V of the body, then in calculating the
prassure with the shown degree of accuracy, one may assume that
particles of the medium willi wake motions, parallel to the planes, so
that for them the plane would be like hard impenetrable walls.

The law of plane sections enabled us to give a new setting for
supersonic aerodynamics problems (and the method of aerodynamic model

studies); at the same time it made it possible to reduce the problem of

*This is the body, for which during the motion in a gas medium the
normal to its surface deviates irom the plane, perpendicular to the
vector of speed V, by a small angle ¢ in all points of the surfaces
with the exception of singular points or lines, However, inasmuch as

in supersonic aerodynamics the state of flow in a certain cross section

of' the body degends only on the form of the front part of the bod¥, all
calculations, true for regular bodies, are also true for other thin

bodies, having a regular front part, i.e., for plates and shells cf
various forms,
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calculation for the established and transient mctions to the simplest
problem on the motion of a piston in a pipe of constant sectiorn,* where
the pisiton moves according to the given law v = v(t), and this is the
cpeed, with which in a motionless column the surface cutting it,
compresses the gas; for any point of the surface it is equal to the
precjection of the vector of absolute velocity of the surface element

on the normal to this element.

Thus, it became possible to investigate theoretically in a correct
and convenient for practical applications form the important problems,
pertaining to motion of thin-walled structures in gas, determine
pressures, and consequently all aerodynamic forces, acting on the
supporting surface during great supersonic speeds, presence of :zhock
waves and variable entropy of gas. The calculation is especially
simple in the linearized thecory,** in this case, for instance, over
pressure Ap on any area of the surface is equal to the pressure in
motionless gas Pgs multiplied by politropy n index, and the relation
of normal component of the speed vector of this area v(t) to the speed
of' sound in undisturbed gas Vo
o)

Ap = %P,

In 1949 A, A. Il'yushin for the first time expressed the idea
on the possibility of investigation of the panel flutter on the basis

of these regularities and give a correct formulation of the problem.***

*This theory is true for M > 1.5 and small angles of attack ¢.

*¥*T, e, when with M2 >» 1 parameter e < 1 is nevertheless small
at the expense either of the angle of incidence e or thickness of the
profile »f supporting surface and the gas entropy can be considered
constant,

***¥The model of supporting surface in the form of a beam with a

rigid chord, considered in the theory of bending-twisting flutter (M. V.

Keldysh, Ye. P. Grossman, A, I. Nekrasov and others), is replaced by
model in the form of elastic plate and shell.
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The first solution of the problem cn plate flutter in this formulation
took place in 1950 and belongs to A. A. Movchan; they also introduced
the effective concept of the "stability parabola," which is widely
uced, and offered the method of obtaining exact solutions for the class
of problems on rectangular plates, two sides of which, directed along
the flow, are supported by hinges, and two remaining sides have
arbitrary boundary conditions [18~22]. After him a number of authors
— abroad and in our country have examined problems of this kind [23-28]
as well as numerous other authors.

Problems on flutter as applied to shells for aerodynamic forces,
considared in the form of overpressure [17], were studied by R. D.
Stepanov; to him belongs the solution of problems on the flutter of
cylindrical, spherical shells, and panels and the attempt of investi-
gating plate flutter in nonlinear setting [29-321]. We know of research
on critical speeds in nonlinear theory of aeroelasticity performed by
V. V. Bolotin [32-33] and others.

Now we will give a formulation of the problem on the flurter of
shells [34]. The principal layout of formulation of the problem,
without lowering the general character of reasonings, can be suffi-
ciently distinctly comprehended with the example of cylindrical shell
flutter,.

It is known that in the case, when a load, directed in every
point along the normal to surface (X = Y = 0, Z # 0), acts on the shell,
the basic solving equation for sloping cylindrical shells, without

calculation of tangential forces of inertia, has the form [15]
1— 39 Rt
10 4 -2 99 X 2
LA A A A al v > 2 (1.1)
Eh
12(1-v°)

2
Here c2 = h

5 is the constant, R — radius, D = — cylindrical
12R
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rigidity, h — thickness, a, B are dimensionless coordinates of the
point on cylindrical surface of the shell, constituting, a — distance

along the generator expressed in fractions of radius R, B — central

2 2
anigle, ve = é—- + é—-, and, lastly, #(a, B, t) — scalar funztion,

da® 362

determined by ihe formulas;

5 4 o
8= —y .
»d» )

-—[—-——-+(2+ )a_,aa]
w = yiy*d = ¢'d.

Internal forces are determined through function b with formulas;

(1.2)

Ex 3@ Ex oo M,

1 %= 2

» »
R a"a;,," ‘= R a" ] -—+V;") v‘°’

ﬂ?(ast

”=Mn="'Mn="'297;2)" -;a—;’—v‘@.

D D 3
Nl"' R’ v’@ N"=—--E.—-3’— *

Generalized transverse forces, determined in the Kirchhoff sense

and necessary for the formulation of boundary conditions, are calculated

by the formulas;

Nl=—'-——[ +@— W]V‘m

(1.4)

=—-_.2. s e I ‘
N [a‘,, +@ ")oz-aa] @.

In the system of dimensionless coordinates a, B when X = Y = O,
and Z # O the basic sclving equation for average-length* cylindrical

shells has the form

90 La 1o R
ax¢ + I-—-v’ [0',1' +l] ¢ Eh 2 (1.5)

Here function @1(a, B, t) is determined by formulas,

*From now on we use the agproximate theory of calculation o/
cylindrical shells of average length [35]
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Y 3 » (1.6)

Internal forces in this case through functicn ®1 are expressed by

relationships;
M= s PR [ ()
D R e
- D e
Wom B[ENN] mem B[S ]

To differential equations (1.1) and (1.5) in every particular case
we must add boundary conditions prescribed on edges of the shell.

Let us assume that the shell moves in the gas flow with constant
speed V under the action of aerodynamic and other forces, originating
from loads on the structure, and is in the state o relative
equilibrium, which we call undisturbed equilibrium. Let us assume
that u*(a, Bs t), Ve, W, Tl*(a, By «e.s Q*(a, B, t), @1*(a, B, t)
will be displacements and other corresponding functions in undisturbed
motion. Then force Z , included in equation (1.1) or (1.5), according

to [17] will be equal

22=py X _p ¥ 1.8

v B (1.8)
Pon

Here B = —— = const is the coefficient of swaying and B1 = const —
o 8

coefficient of daﬁ;ing, which reflect properties of the medium, in
which the shell moves.

For greater generality it is of interest to study the boundary
value problem for values V, included in the internal O { V { o, which
we propose to do subsequently.

et us assume for states, other than stationary;
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8=u'440=040, =0t u,. O=0*4P,

=019,
Then force _
z2=2"+2,
while on the bacis of [17] and D'Alembert's principle
P TP (1.9)
%W ., . . ,
vwhere ph 5 5 1s the force of inertia, p — density of the shell material;
t

and, consequently, eguations (1.1) and (1.5), as well as the corre-
sponding boundary conditions will become linear and uniform.

Equation (1.1) taking into account (1.2) assumes the form

Cﬁf“F+ = 4-——- -—-v“D—--E;~7;-v*D+-

(1.10C)
+_aur ? vﬂb 0.

In its turn equation (1.5) taking into account (1.£) assumes thl6s

fform*

R

BYR O, 4 AR *__ g
Ek 3133 Eh 33 ’

(1.21)

In equation (1.10) and (1.11) we introduced a new dimensionless

value

_ s L
= = - (1.12)

Relationships (1.10) and (1.11) are equations of small oscillation:

of cylindrical shells. Together with corresponding boundary conditions
they form the initial boundary-value problem of the shell flutter.

This problem has the solution
@ p.0=0. (1.13)

)

*From (1.11) we can easily obtain an equation, describing plate
I'lutter. .
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The flutter prcblem consists of clarification of conditions,
under which the undisturbed motion, responding to trivial solution
(1.13), is stable in the sense *hat the given smallnessc of perturbed
motions at any moment of time t > tO will be guaranteed by the sufri-
cient smallness of initial perturbations, given in the initial moment
of time to-

Let us investigate the class of solutions of the type

@, 8.0) = ¥ (o, e, (1.14)
where w = p + 1q is the constant complex number (complex frequency),
and y(a, B) = y,(a, B) + iy,(a, B) is a continuous together with
eight derivatives, complex function of real values a, 8. It is obvious
that in the class of solutions (1.14) condition Rew > O will be a
sufficient criterion of instability.

Let us give the name of critical speeds to those values of speed
V, which separate regions of stable and uncstable states of the shell.

The question of the relationship between the stability in class
(1.14) and stability with respect to a broader class solutions of
equations (1.10) and (1.11) is not considered here,

After introduction in equation (1.10) expression (2.14) instead

t

o' & and reduction by factor e®" we obtain for functions of Y(a, B)

the equation

e+ :: —)'W—!EVTR'%V“P:Q (1.15)

Here we assume that B = B1 and introduce designation

_1.=9_R;“’;+£.g‘l. (1.1%)
Adding here the given boundary conditions on the edges of the

shell, we obtain the boundary-value problem, the solution of which

gives values of X and eigenfunctions of ¢(a, B). From the relation-

ship (1.16) we can easily find for every X two values of complex
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In investigating the stability in class (1.14) those values of
speed will be critical durling transition through which the boundary-
value problem acgquires solutions of the form {(1.14) with positive real
part of the complex frequency w. One of the roots (1.17) always
has a negative real part, because the sum of roots

==—-L 1.:‘(,\..
® + 6, e (1.28

is negative. Let us assume that for a certain X\ one of the roots of

Ne?

(1.17) is a purely imaginary number; Rew = p = 0, w = igq. Then from

(1.16) we find,
R ; BRs
Relz“-p—g—q" lml.—_-_l‘—_;._.___q. (1.1<,;)

Equations (1.19) on the complex plane A s Xe depict points of a
square parabola (Fig. 7)

ER® .

which is called [18] parabola of stability. The region, lying inside
the parabola of stability, corresponds to proper values, for which
both roots of (1.17) have a negative real part, but the region, lying
outside the parabola, corresponds to proper values, for which the
real part of one of roots (1.17) is positive.

Thus, the problem of finding the critical speed in class (1.14)

is reduced to the study of location of eigenvalues of X of the boundary-

value problem (1.10) or (1.11) with respect to the stability parabola

(1.20).

§ 2. Flutter of Panel

Let us assume that a slender body of aerodynamic shape moves in
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a stationary gas rectilinearly and evenly at a high supersonic speed V.
On the surface of the body we will examine a part of its sheathing —
the rectangular panel, which in the undisturbed state, being plane,
moves parallel to two own edges without an angle of incidence with
respect to the gas* (Fig. £). 1In the plane of this undisturbed motion
of the panel we introduce a rectangular system of x and y coordinates,
moving together with the body rectilinearly and evenly with speed V
along axis x. Edges of panel at any moment of time t coincide with

sectors of straight lines x = 0, x = a, y = 0, y = b.

Imp
{ _"'
0 5 ¥
axp
/] -
'/
‘r
‘J
Fig. 7. Fig. 8.

Under the influence of certain causes the undisturbed motion of
the panel in its own plane may be disturbed, and the panel will begin
to perform a perturbed motion with sag w(x, y, t), the positive value
of which is determined by w axis in Fig. 8. Considering the panel to
be thin and isotropic, we use Tor the description of its small sags

w(x, ¥y, t) the equation of bend of plate [3],

e Lad w Fw *w Pw
D(Ox‘ t25mp T ar)“"” el b b bl

where y is the mass, per one unit of the panel area, g — trarnsverse

load, forces Ni’ N2, being the result of heating or some other caucses,

*Here are expounded the results of research by A, A. Movchan [19].
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are assumed to be constants in the entire pasnel and not changing with
a change of sag w(x, y, t). .

Sag w will produce over pressure Ap ~n the upper streamlined
surface of the panel from the side of the gas, in which the body moves,
and over pressure Ap' on the lower surface from the side of the medium,

which adjoins the panel from within the body,
do= - ~(va—u) (bo+n ).

Here Py is the pressure, Vo — speed of sound in the gas at inrinity,
k1 and k2 — non-negative numbers, characterizing properties of medium
(kl-— elastic support factor, k2 — damping factor). The transverse
load q is the result of pressures shown, q = Ap' - Ap.

Subsequently instead of x, y, w we use valuec %u %-and gﬁ for
which designations x, y, w are retained.

With the above assumptions for a panel supported along its entire

contour we obtain the following perturbed motion equations,

o’'w a' Mw ¢’~| fw C‘N. h

—+ l'éx'ay’-'-_ay'-— D ar D op
R CRe e R
00,50 = ZOED _y(1,y 0= Toled '
w(x.0.0=£';;-:.}-(—”—i=w(x.l.l)=£5%"-ﬂ--0.

For obtaining sufficient criteria of instability of undisturbed

motion let us study the class of solutions
w(x, . ) = X (x)sinnzye, n=12.),- (2.2)

where w = p + iq is a complex numter, X(x) = |X(x)|e1¢(x) is the
comnle: function of real value x. Putting (2.2) in (2.1) and intro-

ducing designations,
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= N, - Ny =_l'_ﬂ_‘_ _l_
M=ap’ M= Eewtam
=Y A e & ; 2.3
A==p=. "t > (sa* + Bo), (2.3)
l-:‘[-:—nf«l--"—:f-(n.-n,)]—!:—'. i m) 4d,

we find the function (2.2) is the solution of initial problem (2.1)
when and only when X(x) is the eigenfunction of the bw.indary-value

problem,

XV — 20zt XV 4 BrxtX — AXT == (A 4 d) X = 2°X,

X =X"0)= X ()= Xv(1) = 0, (2.4)

and complex frequency w is determined by fcrmula

-8 1/ Da c
® ’FillV4 T (2.))

Let us note that to the complex solution (2.2) correspond real proper

motions of panel with sags,

w(x; g, ) = | X (x)| sin nmges 0 (9 (x) + at) (2.2)"

The actual solution (2.2) is subsequently termed a complex proper
motion.

Value A in equation (2.4) is called the reduced speed of undis-
turbed motion of the panel, X and XO are called eigenvalues,

Complex frequencies (2.5) will be designated as w and ®' in such
a manner that Rew' < Rew is fulfilled. Frequency ®' has a negative
real part with any X, and for frequency » Rew < O, Rew = O or Rzw > O

is fulfilled depending upon whether » 1is inside or outside the

parabola (Fig. 7),
Rek = "":;: (Im))e. (2.6)

Thus, to the eigenvalue X\ of the boundary-value problem (2.4)

correspond two complex proper motions w'(x, y, t) and w(x, y, t), the
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first of which damps with the flow of time, but the second, while
damping, either has a conctant amplitude or deviates without a limit
depending on the fact whether X is incide, on, or outside the parabola

of stability (2.6).

2.2
For every k = a g + O.5n1, (n=1, 2, ...) equations (2.4%)

b
determine own boundary-value problem. Considering a great number of

values of all these boundary-value problems, let us use the term of

the instability of undisturbed motion of the panel for the number ¢

of eigenvalues A, located outside of the stability pa_-abola., Obviously,
inequality s > O means that there are proper motions of the panel,

the amplitude of which grows with the passage of the time without any
limit; equality s = O signifies the absence of proper motions of the
panel with the growing amplitude. Let u. ote that we do not affirm
here that when s = 0 the undisturbed motion is stable. If in addition
to proper motions (2.2) we -onsider the "apparent additional motions”

of form

X, (x) + tX (x)} sin n=ye™,
[x, () + X, (1) + —;-t’X(x)] sin nxye=, ...,

which can appear for multiples of XO, then it can happen, that even
with s = O there are deflected perturbing motions (this is possible,
when the multiple X 1is on the parabola of stability).

Let us investigate eigenvalues of the bhoundary-value problem.

The characteristic equation
Fik A9 =0, (2.7)

connecting values k, and A with eigenvalues XO, may be, rv applying

119



W g

T

TR T

variables* a, B [18], reduced to equations;

_ ikt VI TR T B cn)
P b= et

o

2 [P — 3ot ke 4 4ad3t) ) B3R L T B ) (2.8)
A= da (P — ot 4 k=Y (2.9)
A m B30 - (28 4 BY) (3t — 320  2kxY). (2.10)

The characteristic system of two equations (2.8), (2.9), in which k,
and A are considered to be given, and a and B are sought, has the
specific property that to its every solution
e=ok, A), P=Pik A | (2.11)
according to the formula (2.10) corresponds the eigenvalue
A® = AS(k, A), (2.12)
i.e.,, the solution of equation (2.7); to every eigenvalue (2.12)
Jorrespend several solutions (2.11) of the characteristic system. With
the fixed k and changing A solutions (2.11) and (2.12) can be treated
as curves, which we shall term "branches! Using analytical properties
of equations (2.7)-(2.10), we can show that branches (z.11) and (2.12)
are continuous and "indestructible," if we consider them both in the
real, and complex regions [i8].
The elementary analysis of characteristic system shows that when

A = 0 all eigenvalues of XO are ylelded by formulas

Went(m 44, (m=12..) (2.13)

*Transition to parameters a,P may he carrizd out in this manner:
let us assume that z,(k, A, XO) are roots of a characteristic equation.
At first, we will consider certain two roots, for instance 24s Zps aS

basic parameters from parameters 295 2o by uieans of transformation 7=
=qa+1iB, Z, = Qa - ip we pass to parameters a, B, and through them express

the remaining roots and all characteristic values of the boundary-value
problem.
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and each eigenvalue (2.13) gives the beginning to a certain branch
(2.12). Hence and from the preoperties of indestructitility follows

the existence of a denumirable set of continuous branches
1'==)-:,(k.A). (m=12,..), (2.14)

which we number in suct 2 way, that branch (2.14) with number m passes
througn point (2.13) with the same number m when A = O,

Let us prove that with any fixed k and A # O any real eigenvalue
xo(k, A) is strictly larger than the least eigenvalue Xo(k, 0), avail- g
able when A = 0. Multiplying equation (2.4) by ﬁ(x) and integrating
by parts with the use of boundary conditions, we can easily obtain
the relationship

1*953,4} - Bty L Shrt! |+I'—A’3

] - [ | ax ‘ | 4
(l,u!d:XX. l.-s 8 l,..‘[dx-‘g%.

l.-!dx-‘—f-f).

connecting eigenvalue Xo(k, A) with the corresponding eigenfunction
X(x). Hence

Re)®(k, A) = ""’04";':'5"14-’: |10 (kA) = l"al

In the class of functions X(x), which are continuous together
with derivatives of the fourth order and satisfy boundary conditions
(2.4), the minimum Rexo(k, A) is equal to the minimum with respect to

m[minmwu(mz + k)2] and is attained for the solution X(x) = sin mwx

of the boundary-value problem (2.4) when A = O; for any solution when

A # 0 the absolute inequality is fulfilled.

Re) (k, 4) > min,, =* (m* + k)t = min 8, &, 0). (2.15)




Hence follows that which was to be proved.

The examination of the real plane a, f and lines, determined on
it by equations (2.8)-(2.10), allows us without the fulfillment of
any approximate calculations to establish the following.

For any fixed value A and for sufficiently large m all points

Y )g(k, A) are real and positive, and with the growth of

of branches A
m they asymptotically come near eigenvalues (2.13), available when
A =0,

On the real plane A, XO there exists a denumerable set of finite
ovals Umk isolated from one another (.1 Fig. 9 parts of these ovals

are shown in the right half-plane), consisting of real pieces of

a° . branches (2.14). 1In a general instance the
A= AQ (K, A)

straight line A = O intersects every oval

in two certain points (2.13). For certain

|
%= A% (K A) |
| negative values k ¢ -2.5 a certain oval
A°=28(K.4) !
| 1 can be pulled into a point, lying on axis
v 4, 4, 4
Fig. O. A = 0 (for instance, the lower oval whren

k = -2.5; -6.5; -12.5; the second oval
when k = -8,5; -14.5, ...). When m2 > =0.5k on each of ovals Lok there

is a point '
M =t [08 + B2+ - Gmt ],
" ' (2.16)
Au (k) = —===(5m* + &) Vim +k,
Yy
2
corresponding to the solutionag = r igm?ft&l B = 2mw, of the char-
acteristic system.
Let us prove the existence of complex eigenvalues XO in the

investigated boundary-value problem. Let us assume that A = A (k)

is the upper limit of those values A, with which oval L mk has real

intersections with straight lines A = const. Lel us consider any one
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>f these ovals, and for simpliclity's sake let us assume that it is the
lower oval and that in a certain n=ighborhood of the value A = A, fer

A < A1 parts of the oval are formed by two branches,
M=) (k, A), 29=10 s (k A). (2.17)

In its

When A = A, branches (2.17) cross at the point (Ai’ kiu).

neightorhood the equation (2.7) is presented in the form
F(k, A,)9) =[(* —)9)* — 2¢, (k, A) (:*—29) +
+ @5 (k, A)) D (&, A, i) =0,

where the analytic function ¢(k, A, xo) coes not vanish in the neigh-
borhood examined, and analy:ic functions mi(k, Aj, ¢2(k, A) turn into
zero when value A = Ai‘ Hence for branches (2.17) we obtained the

presentation

=k A+ VEEA—GE A+ (2.18)
which proves the existence of branches (2.17) in a certain neighborhood
of value A = A1 as well as for A > Ai‘ Inasmuch as by virtue of
determination of numbers A = Am(k) in the neighberhood of value A = A;
for A > A1 branches (2.17) cannot be real, they are complex.

In those cases, when the oval is pulled in point (Am = 0), complex
eigenvalues XG exist with any small A # 0. For instance, with k = -8.9,

0 0

when the second oval is pulled into a point,branches A~ = xmj(k, A),

xo = xﬁu(k, A) are complex with any small A # O. This example shows,

incidentally, that with a monotonous growth of A not necessarily those
branches, may become complex for the first time which glve the least
real eigenvalues.

Considering the inequality Am(k) >

L

A (k), it is possible to show
that for the given k > -2 and for any A !:om the interval

2E+HY2 Tk (2.19)
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all eigenvalues of lﬁ(k, A), m=1, 2, ... are real.

Real parts of branches, forming ovals Zlk’ lzk’ ..., and also

coiplex parts of these branches can be built by points, finding of
which by the method of successive approximations does not present sny
fundamental difficulties. For the series of values k from interval
-16 < k < 16 such calculations were carried out, and for the treatment
of their results presentation (2.i8) was used. Here, for all k

< ramined it was possible to select such values of constants a, = ai(k),

b, = b,(k) that the expression

1‘_=a.(-‘7—l):tb.l/1 o (2.20)
obtained from (2.18), when
%gal("' "'l) ¢ -9"{“’:(——'1).

with an accuracy sufficient for practical calculations, approximates
branches (2.17), which form the lower oval L1k’ evenly on the entire

interval 0 < A < Al’ and also in a certain interval A <AL A1 ’

*
where A1 is determined by conditions of accuracy. A good illustration
to the above is Takwle 1, adduced below where k = -1 true magnitudes of

eigenvalues (2.17) are given, and under them for comparison are adduced

-

values, found with the help of (2.20)

Table 1. Magnitudes of Eigenvalues )\~ for
k= -1

A 0 80 ]100 | 150 A l’O.’Sl 200 250 300 400 500

A* 877 | 867 & 760 pe 2o 519,65 528 | 578 | 714 % 1011

- 877 | 867 I 760 519,65 827 | 517 | TN 9%

T
&° 0 J20,7(86,6| 216 ma| 0 137 | 374 685 | 826} 1104
0 [20,987.2| 217 0 136} 370] 673 | 8071 tosl




Lumber t, and combiration (Xio - al) included in (2.20) are found

immediately;
] b, — %p.:.(k. 0) — &, (k, O)1

=@ = P2, (£ 0) + 1, (£, )l (2.21)

inasmuch as we know Xg (x, 0), Xg (k, 0) ordinates of points of inter-
"1 2

section of the oval Lik with the straight line A = 0. The expression
(2.20) becomes definite, if in addition tc (2.21) we know either the
pair of numbers Ai’ xio (coordinates of the right most point of the
oral) or Ay, ay.

When k = -4 the following iormulas yield value of numbers ays A1

with an accuracy sufficient for practical calculations;

0= 2 5+ 2P,

;= o CLBP 19/ §6T+ 1640k -+ 408" -- 679 — 204—20k). (2.22)
In every concrete problem parameter k passes through a sequence
_ 2.2
of valiues k = —2 an s, n=1, 2, ... Fixing n, we fix k, and also those
b2+ 5

branches, XO = Xg(k, A), m=1, 2, ..., which are available with this

k. Subsequently, branches, corresponding t» the fixed numbe: n, will

. 0 0
be designated 1~ = an(A).

To eigenvalues Xgn according to the formula (2.3) correspond

eigenvalues
)
lm(‘)=lg“(A)—r:‘ —?—4——?—(’!;—0,)]4—-’—'0&—. (2.23)
{mn=1,2.)

The degree of instability of the unperturbed motion of the panel
is equal to the number of eigenvalues (2.23) situated on the complex

plane beyond the stability parabola (2.6). To every such eigenvalue
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= ey,

situated beyond the stability parabola, corresponds a deviating motion
of the panel: the divergent motion (bulging) corresponds to the
riegative ), and fluttering motion to the complex A,

With fixed va_ues of the parameters included in the problem only
a finite number of eigenvalues [2.23] can be situated beyond the
stability parabola. Beyond the stability parabola only a finite number
of eigenvalues (2.23) can be situated. Actually, by virtue of the

information, obtained on the asymptotic behavior of eigenvalues Xgn(A),

all an(A) with sufficiently large figures m or n are real, and
an(A)-» an(O}, if at least one of the figures m or n tends toward

infinity. From (2.23) by means of (2.13) we obtain:

(R
(mn=12,.)

Hence it is clear that for sufficiently large m or n eigenvalues
an(O) and an(A) which approach them are positive and are located
inside the stability parabola. Corresponding proper motions of the
panel are oscillations with a damping amplitude.

Let us prove that in the adopted formulation of the problem, the

flutter of panel exists. For proof we will examine the total parameters

n]ln’l-':_l ""‘g"'o Ar (2.21')

which determines single-value by a great number cf eigenvalues (2.23).
Let us assume that this totality is such that among eigenvalues there
are complex eigenvalues (as we established earlier, there always exist
such A, for which the boundary-value problem (2.4) has complex
eigenvalues). Without changing parameters (2.24) and, consequently,
the location of eigenvalues (2.23) on the complex plane A, let us

begin to increase parameter
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D »D .
o o(L4a) (2.25)
[N

This is attained, for instance, either by means of increasing the
mass p or decreasing the damping factor k2(~B1) of th2 medium, adjoining
the panel from within., With the increase of parameter (2.25) branches
of the stability parabola (2.6) come near to the real axis, and it is
clear that, with any fixed complex (immaterial) eigenvalue, it will
exceed the stability parabola with a sufficient increase of pgrameter
(2.25) and the corresponding proper motion will be a flutter. Thus,
with any forces Ni’ N2, whether compressing or stretching panel flutter
is possible,

These reasonings give useful information about the influence of
mass p and damping k2(~Bi): loading of the panel and a derrease of
damping increase the danger of flutter, lightening of the nanel and
an increase of damping decrease it. Iet us note that lightening of
the panel and an increase of damping cannot destroy either its
divergent proper motions, or those flutter motions, which correspond
to eigenvalues X with non-positive real parts.

Let us examine the effect of the elastic support factor k1(~B)
and forces N,, N,. As we can see from formula (2.23), an increase
ky (with other parameters unchanged) transfers all eigenvalues an(A)
on the complex plane to the right. Here the degree of instability
cherges, only in the direction of decrease if it changes at all. With
a sufficient increase of ki we can render the degree of instability,
equal to zero, removing the danger of all divergent and flutter
motions. The same effect is produced by an increase of force N2.

This can be easily derived from formula (2.23), if we remember that

Xgn(A) does not depend on Ny. Conversely, decrease of N, produces a
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displacement of all eigenvalues an(A) to the left, which increaces

the danger of appearance of deflecting proper motions of the panel,

fhe large stretching force N1 renders the degree of instability equal
to zero, Indeed, whatever the fixed values of the remaining parameters,

an increase of N1 can produce such an increase of parameter k that all

eigenvalues A (A) will be real and close %o A (0), which with a

sufficiently large k are all positive.

We shall prove that if with A = O the compressing forces do not
exceed critical forces of opuckling, then for the same compressing
forces with any A # O divergent proper motions are impossible. We car

easily obtain prool from the inequality

Redo (A) > min ). (0), (2.26)

which in the corollary of (2.15). Really, from the fact that with

A = O compressing forces do not exceed critical forces, it follows
that 2 (0) >0, m, n=1, 2, ... But then from (2.26) we obtain
Rexmn(A) >0, myn=1, 2, ,.,, which is a sufficient condition of
the absence of divergent to motions., Let us note that for such a
panel the deflecting proper motions in flight can only be motions of
the flutter type. They cannot be detectedhby static research, since
in the static research it would be necessary to put A(A) = O in
equation (2.4) which is erroneous, since it contradicts the inequality
Rex(A) > 0.

Inequality (2.26) also enables us to substantiate the possibility
of such cases, when the panel compressed by supercritical efforts, and
known to be unstable when A = O (s > O when A = 0). has neither the
divergent nor flutter proper motions during flight with a certain

speed A # O (s

O when A # 0). Such possibility of instances of




"stabilizing" of undisturbed motion with the growth of speed of flight
will be illustrated by an example. Let us now use formula (2.16) fer
6btain1ng of certain estimaces, and information, pertaining to forms

of proper motions. According to (2.16) to the value of a given speed

.8 Mad 1
e DI T RS

corresoonds, along with an lafinite set of other solutions, an exact

solution of the characteristic equation
(O
3 (smigy 2 L LV — (2.28)
-{_—3(5m+ a +2n,)] d.
It is not difficult to find the corresponding eigenfunction,

X (%) = sinmzx sin (mzx 4 1) x

SN =re = 9)
1 = arclg {3"' [2+'# (_"”2 + o )]-:} (2.29)

It is possible to show that when m = 1 and k = &5~ + = > -1

formulas (2.27), (2.28), (2.29) give the least real eigenvalue Xin and
corresponding eigenfunction Xin(x), which are available for the given

t
n, and A = Ain‘

Let us compare expression Xin’ Xin(x) with expressions.
1.,;(0) =t (1 + —'"—:-+ -"g-)'—d. Xia (%) ;sinax.

giving for k > -1 the least real eigenvalue xin(o) and corresponding
eigenfunction Xin(x) when A = 0. We notice, first, the fact of an

!
increase of Xin as compared to xin(o) and, second that, whereas with
A = 0 the eigenfunction Xin(x) does not have any zeroes in internal

1
points of the internal 0 < x < 1, with A = A1n the eigenfunction

' .
X1n(x) always turns into zero in the internal point of the same internal,
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Consequently, in flight, proper motions of panels, responding to the
least eigenvalues, even before these motions become flutter motions,
éan significantly differ both in form, and in frequency from those,
which exlist when the speed of undisturbed motion is zero. It is
especially important to remember this, when approximation methods

are applied to flutter problems. In connection with the application
of approximation methods it is also useful to remember that in the
presence of a sufficient compressing force with the monotonous growth
of A, complex eigenvalues and flutter cannot appear for the first
time in those branches A = an(A), which with A = O give the least

elgenvalues.
L]
in’

then, as it ensues from the sense of inequality (2.19), for those n,

If the given speeds of undisturbed motion does not exceed A

which satisfy the inequality
L L P
s T3 >-2
all eigenvalives an(A), m=1, 2, ... are real and flutter of corre-

sponding proper motiors is impossible. Hence, taking into account

(2.3), we obtain the formula of "pre-flutter" speed

»_ %D 8 n’n’.‘ _a'N; ata® o'y, 2. 30
A X7 3*/'5'(5+ »” +2:'D)l/2+ » +2:'D' (d 30)

In a number of cases formula (2.30) enables us to clarify an
¢ssential part of the region with the zero degree of instability.

For instance, if N2 >0 (divergent to proper motions of panel in this
1

case are absent) for any speed V in the internal 0 { V Vi, where V1

is derived from (2.30) when n = 1, flutter proper motions are
impossible and the degree of instablility of the undisturbed motion

is equal to zero,
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Formula (2.30) enables us to make a useful forewarning remark
about the method of calculation of panels, greatly st.etched in the
direction of undisturbed motion. Departiug somewhat from the adopted
formulation of the problem, we will only assume here that around the
rectangular panel, free from forces in its own plane, gas flows on
two sides. Then, applying (2.30) with factor 0.5 before the right-hand
rart, we find that, no matter how great the length of a the panel in
the direcition of undisturbed motion, its critical flutter speed will

always be larger than

Vi= v wi—w (+) (2.31)
On the other hand, if in the initial problem the panel is pre-
considered to be infinitely long and at the infinitely remote end of
panel we set no condition, except the condition of arbitrary smallness
of initial perturbations, then we can prove for it the existence of

rlutter motions, when the speed exceeds the value

el T (3) (- 5) =

The value (2.32) may be less than value (2.31) which evidences

the inapplicability of formula (2.32) for limited panels. The example
given shows that the results, obtained by studying panels, cylinders,
etc., theoretically infinite in the direction of undisturbed motion
are not always applicable to the case of finite dimensions, even if
these dimensions are sufficiently great.

All the features of panel behavior in a flow which have been
clarified so far, were obtained by means of qualitative research of an
exact characteristic system (2.8), (2.9). In future conclusions,
pertaining to branches X = Xmin(A), X o= xmzn(A), which give for every

fixed n the least eigenvalues, we shall use the presentation of these
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branches by approximate formula (2.20), from which we obtain

’ 14-.(%—0:“/«(!—%)“..
o (2.33)
(m-_- -;i- hy=1—d )
With any A from the interval 0 { A { A, eigenvalues (2.33) are
real. In this interval such values of A are critical, in transition
through which one of the eigenvalues (2.33) changes the sign. These

values A, termed the critical divergence speeds, turn into zero the

right side of (2.33) and are easily determined by the formula

&',q[,_ v:m’il?T.r]_

Hence
tVF 0,
S 4 + 1)' (2.34)
When A > A1 formula (2.33) gives complex conjugate values
1=a i_] + { / _‘_’__ .
s(g )_ rV a‘(af l)+¢.,, (2.35)

disposed on the complex plane aiong the second order parabolic curve
ReX -—"T(Im).)'-i- iy (2.36)

*

In the interval A1 < AK A1 » where expression (2.35) with suffi-

cient accuracy approximates pieces of branches X = X __(A), » = x_ (A),
myn mon

such value of A is critical, in transition through which eigenvalues
(2.35) intersect the stability parabola (2.6). This value termed the
stalling flutter speed, is derived from the condition of intersection
of parabola (2.6) and (2.36):

a=altws ] (R=48)
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v »nA,D V iL
. = l+-’__-'-._-b-:-l-.. (2.37)
Ly
To every n =1, 2, ... corresponds a definite value of values of
Ai’ ays Xi, r, depending only on the argument k = ES%E +'%% and,

consequently, the specific value of stalling flutter speed (2.37), of
course, if value (2.37) is real.
Let us adduce the examples which give a certain idea of the oraers

of stalling speeds. In all examples the following values of constants

are taken v = 0.3, n = 1.4, k1 =0, E = 2.1-1010 555, Py = 103'102 553,
. mm mm~
2P 1 '
B=—o, L= 7885938 - 30 Betels
0 cm
Example 1: Square panel (a = b), free from forces in its own plane
(N1 =N, = 0). Results are represented graphically with solid lines

(Fig. 10), depicting for n = 1, 2, 3 the dependency of stalling
flutter speed (2.37) in m/sec on the value of the ratio %u The dotted
line gives the value of pre-flutter speed V{, found according to
formula (2.30). 1In regions, limited by so0lid curves, the degree of
instability s is shown. For a panel with the thickness h = 5'10-3 a
we have, for instance,
50 <V <2900)=0, 5{2900<V < 6300) =2,
$(6300 <V < 13300) = 4.
Example 2: Square panel (a = b) with the thickness i = 5.-1077 a,

4W2D 72D .
compressed by forces N1 2 -5 N2 = -5, with V = O such a2 panel
a a

is known to be unstable, and bulges after the least initial perturba-
tion. Buckling becomes impos=ible after the achievement of stalling

speed of divergence Vg, = 600 m/sec, found from (2.34) when n = 1,
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Formula (2.37) gives for n = 1, 2, 3 stalling tlutter of speeds 1100,

4000, and 10,500. The degree of instability is given by realtionships,

4

30 <V <600)=1. (500 <V < 1100) =0,
s{(1100 <V < 4000) = 2, (4000 <V < 10500) = 4.

Comparing the above with the case of a panel, free from forces in
its own plane, we see that compressing forces not only made possible
ithe appearance of divergent proper motion, but also significantly
lowered the stalling flutter speed.

The example examined is remarkable by the fact that in it the
unstable state of the stationary panel, compressed by supercritical
v n/sec forces, 1s stable for the same forces in a
flight at supersonic speed (from the interval
600 < V < 1100).

Lastly, let us note that the expounded

method of investigation of the rectangular

panel, supported along its entire contour

is transferred without a change to those

cases, when two sides of the panel, parallel

Fig. 10.

to the speed of undisturbed motion, are
supported, and the other two are either secured arbitrarily or are
free.
In the case, when sides x = O, x = a are fastened, characteristic

equation (2.8) assumes the form

\_ ko —chy/ FT T Thicos
F(k. a, P. = (59— 328 4 .‘" + ‘,l",s +

+ bt — 3t AYF—T LTS sy _ o
[ R Y R B e T )

Adding to it relationships (2.9), (2.10), it is possible, as in

the case of panel supported along its entire contour, to clarify
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basic properties of branches A = ) A): coatinuity and indestructi-

LN
bility, asymptotic behavior (A _(A) = App(0) when m, n - m), existence

[ 4

of complex elgenvalues and possibility of flutter; properties of
strengthening of the motion, determined by inequality (2.26), we note
that the latter property in problems with other boundary conditions
may not be fulfilled. Conclusions concerning the effect of parameters

ki’ Ni’ k2, N2, u on the degree of instability remain in force. As

before, to the value of a given speed (2.27) corresponds the exact
solution of characteristic equation (2.28), where the corresponding

eigenfunction has the form

X (1)= sin? m:xexp(——'-;s_- l/2m‘ + l‘;;‘;'- +-§Lx).

Formulas of critical speeds (2.34), (2.37) are also retained.

In Fig. 11 curves are shown, analogous to curves in Fig. 10, allowing
us to judge of the degree of Instability of square panels of different
thicknesses, free from forces in their plane. For a panel with a
thickness h = 5.1077 a we have, for instance, s(0 < V £ 4600) = 0,
s(4600 < V ¢ 8100) = 2, s(8100 < V ¢ 15200) = 4, Comparing with the
case of the panel, supported along its entire contour, we notice that
in the example considered fastening of two sides resulted in a
significant increase of critical flutter speeds.

Lastly, let us note that not only solutions of the examined non-
selfadjoint problem, but also the solutions of corresponding self-
adjoint problems carn be reduced to form (2.2)'. In the latter case,
as a rule, the condition y(x) = const will be fulfilled and solutions
(2.2)' will have the character of standing waves (when flutter y(x) #

# const). An analysis of the concrete-form functions |X(x)|, ¥(x) and
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of the character of corresponding traveling waves (2.2) during flutter

is given by Movchanami (results were reported in August 1962 in the

V n/sec ] city of Stockholm and in Octoter 1962 in the
| city of Yerevan). They marked a strong
irregularity in the distribution of sag
along the length of the panel, growth

of concentration of maximum sags near the

tralling edge of panel with the growth of

flight speed, which agrees with the results

h ni
s Tl of experiments [36]. It was determined

that for panels, which have a practical
significance, the speed of waves, traveling downward along the flow
(it is precisely for them that the case of p > O is possible), is small
as compared with the speed of sound in gas, which is in accordance with

assumptions of applied aerodynamics piston theory [17].

§ 3. ©BExperimental Investigation of Panel Flutter

Experimental investigation of natural oscillations of a sguare
flat plate in supersonic flow when values of Mach number M = 1.7; 2.3,
and % for the case, when two edges of the plates, perpendicular to the
flow are fastened, and two edges, parallel to the flow, are supported,
was conducted by G. N. Mikishev [36]. Results of the experiment are
in complete accord with the theoretical solution [19]. We give a
description of the experiment.

Samples were prepared of steel 1Kh18N9(0b = 80 - 120 kg/mmg) and
from duralumin D16AT (ob = 40 kg/mmg) of 300 X 300 and 250 X 250 mn.
size, of different thicknesses.

The device for bracing of samples in the wind tunnel consists of

a slab, two edges of which are fixed to the walls of the pipe, the
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two other edges are wedge shaped, {or streamlining, the slab has a
square cavity in the center. In the bottom of the cavity drain holes
are made for fast levelling of pressures and for decreasing the air
damping in the cavity. The sample tested 1s secured above the cavity.
By adjusting the bracing screws of the rear cover plate and upper
fulcrums it is possible to select such a position, in which edges of
the plate during oscillations can converge with sufficient ease freely.
The plate 1s blown at a zero angle of incidence. From the lower side
in the attachment cavity there is motionless air. Pressure in the
cavity is practically equal to the pressure in the flow. The pressure
was measured in several points both in the flow and inside the cavity
by mercury ma.onet. rs, as well as by rheostat gauges.

For the determination of the moment of the beginning of natural
oscillations, and alsc for the determination ¢f the frequency and shaje
of oscillations resistance tensometers were used. Tensometers were
glued on the lower side of the plate. Wires frum tensometers were
broug!:t out through the body of the slab beyond the pipe wall.

Before every blowing frequency tests of the plate were performed
by the resonance method. For this purpose the device was suspended on
rubber shock absorbers. Excitation of oscillations was created by a
directed mechanical vibrator, which was braced on the device. The
resonance frequency was determined by the tachometer and according
to the oscillogram recorded with strain gauges. The form of oscilla-
tions was determined with the help of sand. For tests in the wind
tunnel only those plates were chosen, for which values of natural
frequencies deviated by not more than 10% from estimated values.

The introduction of the plate into self-excited operating condi-

tions was carried out by selecting the plate thickness and the smooth
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change of pressure in the flow with the constant number M.

Observations showed that even long before the entry of the piate
ufider intense self-excited conditions, the spectrum of natural
frequencies is greatly deformed. For instance, the basic natural
frequency of the plate by the moment of beginning of natural oscilla-
tions increases mcre than 1.5 times as compared to the frequency in
motionless air., At the same time the shapes of occillations also change.
For instance, the profile of the pre-flutter shape of oscillations of
the basic type in contrast to the profile in motionless air is
asymmetric, and the summit of the profile is displaced toward the
trailing edge. In the region of stability weak oscillations of the
plate in the flow are observed. In crossing the boundary of the
stability region, random oscillations are replaced by intensive natural
oscillations. In natural oscillations of the plate standing waves are
the form of oscillations, but under self-excited conditions plate
oscillations resemble traveling waves.

Certain time plate oscillations occur with a constant amplitude.
Then near the trailing edge a fatigue crack is formed, and the destruc-
tion of the plate begins. The destruction of the plate proceeds
against the flow. The largest amplitudes and the fastest destruction
occur for those plates, the edges of which can converge during
oscillations. Limitations, set on the edge, convergence decrease the
amplitudes of oscillations and sharply increase the time, necessary
for the destruction of the plate.

Different methods tried for bracing of plate edges did not change
the character of destruction.

Theoretical boundary of the region of stability is determined

by the expression
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The value of parameter A\ for the basic region of stability,
calculated for the square plate, 814, In Figs. 12 and 13 we give the
comparison with the experiment of calculating the boundaries of the
basic region of stability (the dotted curved line corresponds to the .
value 61, the solid curve, to 62). In Fig. 12 the comparison is

given for the constant number M = 1.7.
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Fig. 12. Fig. 13.

Along the X-axis the ratio between the plate thickness and its
length is plotted, along the Y-axis — the ratio between the pressure
and Young's modulus of the plate material. Experimental points
correspond to the moment of beginning of natural oscillations. Every
experimental point 1s obtained as the mean from several tests. The
first two points correspond to steel plates; the third point — to
Duralumin plates.

In Fig. 13 we show the comparison with the experiment of calculat-
ing the boundaries of the region of stability depending upon number
M. Curves are plotted for Duralumin plates and pressures corresponding
to the sea level.

Experimental points were also obtained by means of recalculation

a9




for these conditions., Every experimental point corresponds to plates
of such a thickness, with which natural oscillation are still produced.
For thicker plates natural oscillations were not observed.

As we can see from the given comparison, the computed curves

quite satisfactorily agree with the experiment.

§ 4. Unlimited Closed Cylindrical Shell

We shall seek the solution of the basic differential equation of
small oscillations (1.15) for the case under consideration in the

form*

P =T 3] Cuerttin, (4.1)

R} k=)
where Ckn is a certain constant number, n, k designate the number of
half-waves in the meridional direction and in the direction of the
generatrix of the shell respectively.
Placing (4.1) in equation (1.15), we obtain the characteristic

equation, from which for X\ we obtain the following expression:

& VBR
M=CHk*+ ')+ P 1|=——Eh- (4.2)

On the complex plane X,, A, equations (4.2) derict points of

parabola of the eighth degree:

Ewy [ _pw -
1’"0’[”% Nt n ] t wmv | pen x;'”'] ' (8.3)

For determination of the stalling speed of flow let us investigate
the relative position of the parabola (4.3) with respect to the
parabola of stability (1.20) in the case when n = 0 and n # 0. When

n=20 (i.e., for the case, when the contour of the cross section of

*Solutions belong to R. D. Stepanov [29].




the shell remains a circle in the process of deformationj equations

(4.2) take the form:
)= CUA 4 1, x,=—-E":—v-k. (4, 4)
For points of intersection of the parabola (4.:!) by the parabcla of

stability these qualities are true:

i SO SR = BRY
P =CH+1, =7 9=k (4.5)

Excluding from the firsi equality (4.5) parameter g, we obtaiu one
equation for the determination of pcints of mutual intercsection of

two investigated parabolas:

Ec? (4.¢6)
the solution of which will be
huuﬁi{géi:(gé 2—&]7ﬁ (4.7)
From (4.7) it follows that when
v>(£fpi) (4.8)

paraboia (4.4), crossing the parabola of stability in four points,
exceeds the bounds of the region of stability. Hence, when the speed

of flow is larger than (EL%gz):L/Q’ the shell motion may be unstable,

For the study of mutual intersection of the parabola of stability
with the parabola (4.3), in a general instance when n # O we obtain

the equation

U 1 A
k'+k'(4n'—p-E3-)+k‘(6n4+?.——2p e )+
+k‘(4n‘-—p 'zg + n® =0, (4.9)

the solution of which will give eight roots,
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k= + 2 {—a + (a®—4b | 81%)7) +

+ l(—a + [a® — 4b + 8a*[")* — 16a%) ", (4.10)
where
Gwu=dnt __V:_
P B’
_‘=M+_;_~_w (4.11)

Similarly to the manner in which we worked it out for the instance,
when n = 0, it is possible to show here that the necessary and adequate
condition, under which parabola (4.3), crossing the parabola of
stability, exceeds the boundaries of the region of stability, is
reduced to the determination of conditions of appearance of complex
roots (4.10).

Analyzing expression (4.10), we can set the following two condi-
tions, which are essentially different, necessary and adequate for
parabola (4.3), crossing the parabola of stability, to go beyond the

limits ot the region of stability:

—4b =g V4
a® —4b 4 8a* p’aq a >0,
~a + (a® — 4b 4 8a%)"s < 4nt, (4.12)

For (4.12) the inequality should be fulfilled

a=dnt—p—ro>0. (4.13)

Inequalities {4.12) and (4.13) enable us to determine critical

speeds
(4.14)

2 (B a3 denen,
(4.15)

J[E 0
Vo> [ tenc+ 1y
Formula of the critical speed (4.14) identically coincides with

the critical speed of the flow, found for the closed cylindrical shell

when n = 0, and, as we can see from inequality (4.13) it can be used
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for all values n > n,, which for the class of thin shells corresponds
to the number of half-waves n > 30 to 50, i.e., to such a large number
of half-waves, with which the shape of the cross section differs 1little
from the cirecle.

The minimum of speed (4.15) with respect to = occurs when

n = %C? and ~oincides exactly with the stalling speed, found above

for n = O,
Thus, the analysis performed shows that the flutter of a closed

cylindrical shell of unlimited length, being in supersonic flow, can

2EC,

take place when the speed of flow V >[ o

]jJ%, when the shape of the

cross section remains a circle.
Using formulas (1.17) and (4.2), we can obtain two values of

frequencies, which essentially depend on the speed of flow,

+

B B \* E
U 23k {(2:1) m'-‘ +')+(l'+u')‘
BVE )\
~— i} 1
+=39 (4.16)
The solution of differential equations for small oscillations of

sloping shells (1.15), adduced in the form
@ (o, F. () = eistiaeti, (4.17)

means that along the generatrix of the shell waves propagate, running

with the velocity

0= —-1-. (4.18)

Separating the real part of the complex frequency (%.10) from the

imaginary part, we find,

‘“‘i[_'z:e"[i ([('5% _?E'—m(k'+ ST
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Using formula (%.19), we determine the propagation velocity of

the traveling wave when V = O:

e e AR

The minimum propagation velocity of the traveling wave will be

when
=) -4 (4.20)
and is equal to
e = —’g&-",{—, " (4.21)

Omitting all intermediate calculations, we reduce the formula
of critical speed of the flow for the unlimited closed cylindrical
shell, found from the examination of differential equations for small

oscillations of cylindrical shells of the average length (1.11).
’Ec‘ -_'- '-.l
v [= (i Ik (4.22)
We can use formula (4.22) for all n > 2. From (4.22) it follows
that when n = © the critical speed of the unlimited closed cylindrical
shell of an average length coincides with the speed of the unlimited

closed cylindrical shell, which was found by proceeding from the

theory of sloping shells.




§ 5. Closed Cylindrical Shell of Limited Length

Let us investigate a series of boundary-value problems, on the
basis of the differential equation of small oscillations cof average-
length shells (1.11).

Iet us introduce a new variable £, connected with a by the formula

=2t (5.1)

where 1 1is the length of the cylindrical shell.
Then the resolving equation of small oscillations (1.11) will

be written in the form

LB

R‘(a." l)'a.Ol +95:' 3::;‘— (5.2)

v

— o [Vaw )=

To equation (5.2) in every particular case we must adjoin boundary
conditions on ends £ = 0 and € = 1.

Determining by the formulas (1.6)-(1.7) displacements and inter-
nai forces of the shell through @1, we can present the boundary con-

ditions for boundary-value problems in the following form:

a) the shell is supported by means of hinges on ends £ = O and

£ = 1:
“' D
”-7}7.:0' M'g-l?'[ T ]go' (5.3)

b) the shell is clamped on ends £ = 0 and £ = 1:

o= =0 =T wa =0 (5.4)
(mnf=0 sd t=1])
. 2 o, . ) ’
c) the shell (when € = O and € = 1) is Sﬁﬁportéd by hinges oft

end £ = 1 and is rigidly clamped on edge £ =



oy

D 9P, ¥e, 1 _
.= _‘:.;_go. M.=-R—v[7'-+7]—0: (stn £ = 1) (5.5)

d) the shell is clamped on end € = 0 and is free on end £ = 1:

£ eeme— — PE m—— as—— -
» ”‘I' 0, = 'I * ”‘I' 0, (ﬂ-ﬁ 0)
U e mee rP 25 (shenf=1) (5:6)

(from the second group of equations it is clear that boundary condi-
tions on the free edge are partially satisfied);
e) the shell is supported by means of hinges on end £ = O and is

free on edge € = 1:

~BR ¥, . o EWR ¥, _ - ]
s » mes 0, S Y 0. (nl=1)
In the class of solutions*
®y(0.8.0 = 3 Y CuXe () e cosn3 (5.8)

equation (5.2) after a series of simple transformations will be written

in the form

where

ERS

= Br
A= EARRY V.

r " [ 5.10
Gi=C RO 12m(i—w ° ¢ )

#The solution belongs to R. D, Stepanov [29].




The equation of the stability parabola will have the following form
—pNER s ) o B =
b= (=gt h=— ). (5.11)

With fixed C;, n, A, A the solution of equation (5.9), when roots

of characteristic equations are different, has the following form

Xy () = Cretd 4 Cr et + Cr i 4 Cete, (5.12)

The subsequent problem is reduced to determination of nontrivial
solutions of Ci; for this puarpose it is sufficient to subordinate
solution (5.12) to boundary conditions and to request conversion into
zero of the corresponding determinant A(ki). Dropping the question
about the form of the determinant A(k,) with different possible com-
binations of multiple roots, we will introduce into the examination a

function

¢ A
F(k;)=_7%. (5.13)

where

B(k) = (ky — ky) (ky — k) (y — Ry (kg — k) (ky — k) (ky — k).
From expression 6(ki) it follows that all zeroes of function A(ki)
will be zeroes 6(k;), and F(ki) will be an analytic function in the
entire region of variation of variables.

The solution of equation (5.9) in the most general case is con-
Jugate with appreciable mathematical difficulties. We will apply here
the method of investigation of eigenvalues {18, 19].

The essence of the method consists of the fact that instead of

solution of equation (5.9) the parameters of problem A and A and the

two sought roots, for instance, kj’ ku, are expressed through two
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» R, ke o

other roots kl’ k2 of the equation,

Am — o 100 1%, B 4 )

L =Cl(at—Ip— Wil (5.14)

by — A28 [l — L+ 2]

and instead of finding the eigenvalues of the equation (5.9) we inves-

tigate the system of two equations, of which the characteristic sys-

tem is composed:

A+ B @—1m=0, (5.15)
Aty 7)
F(s 1)=-W‘H’- =0,

where n and y are values connected with roots of the equation

by =+,
by=g—i7, (5.16)

besides

80 1) = 160717 — 211" — 390) + 42yl (5.17)

The left part of each equation (5.15) presents the analytic func-

tion of variables n and 7y, and the problem consists of finding such

a solution

= "%(1 A), -
T="1(nA) (5.18)

of a system, which would enable us, using formulas:

4n
A-‘.—;%' '\"’l’_T’)o

kyg= —m & [1% -~ 292",

b= — 1y AT (e gy,




fer every boundary-value problem to calculate corresponding eigenvalues
of A and to establish that value of A, with which the eigervalue
becomes complex,

The easiest way to obtain a solution of the characteristic sys-
tem is by the graphic method; if we plot on one drawing in a
rectangular-angle system of coordinates n and y graphs of the curves,
determined by equations (5.15). The general appearance of curves of

the characteristic system is adduced in Fig. 14; graphs of curves,

¥ corresponding to the first equation of the system (hyper-
" bola), are plotted for different values of A = const,

: :j u‘ The subsequent problem is reduced to establishing of

] - Finl such values of A,;, with which the point of the first
ARty and second real branches (5.18) coincide and we cannot

, draw any conclusion concerning the elgenvalues of the
.F;.g., 1!: ." boundary-value problems examined.

Equating A = A_,, according to (5.10), we find the

*1
the speed of the flow, with which the stablility of undisturbed motion
still exists, but above which the motion can become unstable. Con-
sequently, for every particular boundary-value problem it is necessary
first of all to construct an expression of the second equation of
characteristic system A(n, ¥) = O.

Let us construct a characteristic system A(n, v) in the case of
the hinge supported shell, To determine non-zero Ci(i =1, 2, 3, 4)
we will subordinate expression (5.12) for X, (£) to boundary conditions
(5.3) and equate zero determinant of the system obtained:

| I |

|
k2 k2 k2 k2
Ak, kg, by, k) = ! ? 3 !

e~h ek gh ek
Beh Berh Beh B
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Opening the determinant and performing in it the replacement of

wy

k, through n and y according to formulas (5.16), we will obtain:
&) A(n 1) ={—2%"111* — 29" ch 2%+ 247 [1* — 297" X
X cosy chy® — 2P — 3y — v* — 281" sin 7 shly* — (5.20)
— 2337} 16{ = 0,

expressions A(n, y) for different boundary-value problems are obtained

in an analogous way,

b) the shell is clamped on ends € = O and € = 1:

A% 1) = {1 1y* — 29" [cos 7 ch (18— 298" —ch 2x) +
+ Srtsin ysh[y* — 2T 8 = O (Do)

c) the shell is clamped on end € = O and is hinge-supported on

end € = 1:
A 1) = (297 [1v® — 2931 8A2y + (1 — 3®) [1* — 29[ X

X sin7ch[y® — 298} — v (1® + 7% cos ysh[7* — 2497} 8i = 0; (5.22)

d) the shell is clamped on end £ = O and is free on edge € = 1:

A (% 1) = 8Y (2 + 7 1* — 29]e ch 25 +-
+ 41 (26%* + 27" — 45517 [7* — 247 scos y ch [y — 292 + (5.23)
+ 8% (29%* — 1* 4 379 sin ysh(1? — 29*'s — 169y (v* — |
—nf)cos 7 sh{y? — 2920 — 167, (49372 — 3¢' — )32 — 29%) X
Xsinyeh{y*— 203 — 3293 (P — )P — 2 1 e} i = 0;

AR Wt

e) the shell is hinge-supported on end £ = O and is free on end

£ = 1:

A(¥) = {— 2w (v* + W) [V — 29}’ ach 2y +
+ IV — 200 — P + (v — I
+ 8y Iy — 207 (v* — 73 cosych [y — 29" 4 (5.24)
+ 40 B9yt — y* + 3n® — Sv'y?) sin ysh [y — 293)' 4
Y IBUY — v — 195y + 2308 cos ysh[y* — 2471+ +
+ ¥ — 290" (v* + 1y'y* —22y* —3f)sinych [y*—292 o} i = 0.

, Let us note that when n = O equations Aln, y) = O degenerate

15




into characteristic equations of beam fundamental functions for cor-

responding boundary conditions.

§ 6. Effect of Aerodynamic Damping

In certain examples of calculation of panel flutter in a super-

sonic flow with the use nf the piston theory formula [17]

— h_&o
ap v.(vdz C

P ow

aerodynamic damping -5 E;-exercises a weak effect on the value cf the
0 =

critical flatter velocity Vfl‘ This served as the cause for recom-
mendations in favor of the quasi-stationary theory, which does not
take aerodynamic damping into consideration [27,28]. However, dis-
regard for aerodynamic damping does not allow [22] to investigate in
full measure the influence of the elastic base and forces acting in
the plane of the panel on the value of critical velocity and can lead
to appreciable errors in its determination.

Let us show using an example of z problem on axisymmetric flutter
of a circular cylindrical shell, that even in the absence of elastic
support and tangential efforts, disregard for aerodynamic damping can
cause incorrect results,

Let us assume that a circular cylindrical shell moves in a gas
with supersonic speed along x axis directed along the axis of the
cylinder (undisturbed motion), and performs additional small axisym-
metric motions (perturbed motions). Applying the law of plane sections
[17] in its linear formulation and the resolving equation of circular
cylindrical shells [15], it is easy to obtain for dimensionless normal

displacement w(x, t) of shell points the equation




+2,. 2% +-—-{ 12095 +l]u—

R'
L (i) O

.Here R 1s the radius of the cylinder, x is a dimensionless coordinate,
referred to length a of the cylinder. Let us consider natural motions —

the perturbed motions of the form

w(x, 1) = X(x)e~. (6.2)

Substituting (6.2) in (6.1) and introducing designation:
b ooV L3
':—.——. A--—-——' Bg q
g Doy ky + o
A — 2 (But put), X=dd,. (6.3)

=SB (05 1),

we arrive at the boundary-value problem, for the case of a cylinder

freely supported (clamped) on the edges:
XV — 2kxdXU + BxtX — AXV = )X,
X(0) = X#(0) = X{1) = X*(1);=0, (6.4)
(X(0) = X*(0) = X (1) = X' (1) =0).

Comparison of equations (6.1)-(6.4) with corresponding equations
(2.1)-(2.4) of this chapter shows that the problem examined about
cylinder flutter is equivalent to the plane problem on the plane panel
flutter of iInfinite amplitude, the parameters of which and condition
of fastening coincide with those for a cylinder (except, of course,
for the radius), while the curvature of the cylinder is compensated
by an additional fictitious force, compressing the panel in its plane,
and an additional fictitious elastic base. As we should expect, when
2 - 0 the identity of both problems (cylinder of infinite radius and

R
panel of infinite amplitude) does not require the intrcduction of any
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additional fictitious factors. If % # 0, formula (€.3), determining
value k, gives with v # O a negative value, which is interpreted as a
fictitious compressing force; in equality (6.3), which determines vealue
d, an additional term appears, which ic interpreted as an additional
elas*ic base, With the decrease of radius R both fictitious factors
are strengthened, which is formally expressed in a decreasse (in alge-
braic sense) of values k and d,

As in the problem on plane panel flutter, when B > 0 one should
distinguish twc characteristic values of dimensionless speed A.

The first value Ai(k) corresponds to the resonance (to the coin-
cidence at least with respect to frequency of two different natural
motions when A < A,(k)) (6.2); when A = A, (k) two coiciding eigenvalues
A° of the boundary-value problem (6.4) become, when A > Ai(k) complexly
conjugate; corresponding real natu- .l motions cease to have the shape
of standing waves and take the sliape of waves traveling on tiie shell;
the amplitude of these waves damps as long as the complex eigenvalues

o

2% = Rer® + 1Im\® are on a complex plane A° inside a second degree

parabola

Re).‘-=d+—"—(lm).')’.(r= %). (6.5)

The second value Afz corresponds to the output of complex eigen-
values of A° on parabola (6.5); the amplitude of corresponding travel-
ing waves ceases damping; it begins to increase (flutter appears),
when with A > Afz complex eigenvalues of A% exceed che limits of the

“rabola (6.5).

The determination of speed Ai(k) usuaily consists of proving

that with A < A,(k) all eigenvalues of A® are real, but with A > A (k)

there exist complex values, Determination of the critical flutter
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velocity Afl 1s aporecisbly more complicated, since it 1s necessary
ectially to find complex eigenvalues of 2° which is a very labor-
consuning work,

When B = O, i.e., in the absence of damping, both branches of
parabola (6.5) merge with the real semiaxis, and consequently velocities
Al(k) and A, coincide. We arrive at such an essentially simpler case
{as compared to case B > 0) usually in connection with the use in flut-
ter calculations of quasi-stationary aerodynamic thecries, which do
not take into account aerodynamic damping [37, 38] into account,

Subsequently it 1s assumed ti.:t k1 = k2 = 0, i,e,, damping of B
is entirely aerodynamic, and value d is completely dependent on the
curvature of the cylinder,

Obviously, the error in the appraisal of the critical flutter

velocity A,., which appears if we disregard damping B, consists of

f1
replacing value Afl by a smaller value Ai(k)’ which in no way depends
on B, In the problem under consideration this error can be large
owing to the following caus~- As we have already said, with the

decrease of the radius of cylinder R parameters k and d decrease simul-

A

taneously. The decrease of k in the interval between 2,5 s k G

(-5 = k = O for clamped edges) monotonously lowers velocity Ai(k) from
value Al(O) = 343 (A,(0) = 636 for clamped edges) to zero [20]. On
the other hand, the decrease of d displaces on the complex plane A°
the apex of the parabola (6.5) to the left; its branch in the right
half-plane, where all eigenvalues A% are located, move away from the
real axls, which is accompanied by an increase of the least critical

flutter velocity A Consequently, by the selection of radius R it

fi°
is possible to lower velocity Al(k) to zero, simultaneously increasing

the critical flutter velocity Afl' Under these conditions replacement
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of Ag, by Ai(k) is not permissible. The same may be said also about

velocities sz and Vi’ obtained by the formula

=D, % E (Y
v p.:a" Pet l2(|—1-'y(a)“l
by substituting in the right-hand part values A = Ap, and A = Al(k)
respectively,

The above is illustrated by Fig. 15, in which we give the graph
f~r the critical velocity sz of axisymmetric flutter depending on

the value & for an aluminum cylinder clamped

3. .® R
6 vn-n~;;; > on the edges with the relative thickness
b4 ‘/j,/’F” _ %-: 2.1077. The upper curve gives the criti-
IF//é f ! %, cal velocity sz taking into account aerody-
0 ; ; ; azj:= namic damping, caused by air at the elevatcr
Fig. 15, of 11-12 km above the sea level, The lower

subsonic curve indicates the value of velocity

Vi' It is clear that disregarding aerodynamic damping.(replacement
of sz by Vi) would lead in a number of practically interesting cases
to erroneous conclusions concerning the possibility of axisymmetric
flutter of the cylindrical shell during any supersonic velocities (in
region of applicability of the lew of plane sections),

In the plotting of graphs the results of numerical resolution of
exact characteristic equations of the boundary-value problem (6.4)
were used, For values of parameters c¢i the problem, which is of
interest, the first branches Xi(k, A) are located in region O s Re A’
s 105,Iﬁnko 2 0, In this region parabola (6.5), cutting off on an

imaginary axis segment Y-dr, is located above the straight line

Im X° = Y=dr = const, which is parallel to the real axis, and differs

| A g
wred



little from it, if the distance (-d) of its summit from the center of
the coordinates is sufficiently great (-d 2 105). In the latter case
the critical flutter velocity Afl can be estimated from the condition
of intersection of branch Xi(k, A) not with parabola (6.5), but with
straight line Im X° = Y=dr which will lead to somewhat low results,

Values (-d) and J/-dr can be conveniently calculated by approximate

formulas:
—d=12(1—) —;- (%)
V=a- N5 .f'.‘:“"%(%)

§ 7. Approximate Method of Investigation of Flutter.
CylindrIcal Panel,

Let us examine the application of the Bubnov-Galerkin method to
the solution of problem on the flutter of a circular cylindrical shell
of open profile, moving in a gas with supersonic velocity. It is
assumed that the shell on its limiting longitudinal and lateral edges

has hinged fastenings in mobile in the planes of these edges.

b » Let us assume that the shell has dimen-
§=Rp K sions in the direction o1 generatrix i and
i s, ‘ ' M Ra along the arc of the transverse circle s
— rea,R —— (Fig. 16). Dimensionless coordinates a and
Fig. 16. B will be counted off from the point of inter-

section of the longitudinal edge of srell with
the lateral edge., Since the shell is supported on hinges on all edges,

then function ¢(a, B, t) should be determined so that, firstly, equa-

tion be satisfied (1.10) and, secondly, on edges a = 0, a = ay =-%,

B=0Cand B = Bi the following boundary conditions be fulfilled:
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L F il F wen a=0a=g9, ( )
F7Y _ »® _ 7.1
o ” = q" = ,.’ ‘“p"o'palel’

Differential equation (1.10) jointly with boundary conditions
(7.1) constitutes the initial boundary-value problem,

Repeating the reasoning of § 1 of this charter we arrive at equa-
tions (1.15), (1.16) and (1.20) also, which must be examined furt!er,

Let us apply the Bubnov-Galerkin to the solution of this boundary-
value problem. Particular integrals of equation (1.15) under boundery

conditions (7.1) can be determined in the following form:

sc)

h

Qhac.,sln—?-:-sln ' (7.2)

where ¢ (k =1, 2, ...; n=1, 2, ...) are the coefficients sought.
Substituting (7.2) in equation (1.15), we will require that the
obtained function be orthogonal to all functions wsm (when s = 1,
2, vees m=1, 2, ,..).
If in equations (1.15) and (7.2) we change over to a new variable
€ by the formula (5.1) and substitute (7.2) in (1.15), then after

series of simple transformations we will obtain:

k-1

1@+ A+ a* — .6 + al] Ycysinkel -

—Ak:(a‘-{-nf)’Zc,cosk:ﬁ-—-O. (7.3)
kot ‘
where
=R L . BYR )
G m M AT (7.%)

In Galerkin's variational form equation (7.3) will be written in

the following form:



- » ]
22&.{[@%@' +n‘—l(a'+nf)’|55ink:§sinst§d€ =
B=iimi

' (7.5)
—Ah(a‘+n{)’5ask:§sins:§d&} e= 0.

Integrals, included in expression (7.5), have the foilowing values:

A vhen s=£&

[ ]
Jsink:&sinu&d&=[ 2
wien S + &,

! 2 when k4 s 18 odd
5@0&&:&3&13:&4&= e
0 when k| s1s even,

For determination of solutions of a system of linear uniform
algebraic equations unequal to zero (7.5) it is necessary and suffi-

cient to equate to zero the determinant of the system:

1 4 : 8
+F—0) —3+a 0 — 24

4 1 12

-S-A 7;1L-—l) -—-;—A 0

12 1 . '
0 . TA ?(Kl—‘l)"-‘?—o‘ .« =20,
s , / 24 " (7.6)
=4 0 A M-, .

. To every eigenvalue of equation (7.6) corresponds to the zero
value ¢, . of system (7.5) and an approximate solution (7.2) of the
boundary-value problem examined. 1In equation (7.6) we introduce the

following designations:

a 24g¢
F"f("'+"9’+m- L=C:(4a'+"f)'+m.
i _ gt
3' K= c(9a 4 nlp + (90,_'_;.?7,
440t
S AN T (7.7)
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During calculations by the first approximation, equation (7.6)

assumes the form:

(F—1)=0. (7.8)

It follows from this that all eigenvalues of the boundary value prob-
lems examined are positive and real and, consequently, independent of
tne speed of flow, the undisturbed motion of the panel in class of
solutions (1.14) is stable, and the critical flutter velocity of a
cylindrical panel is equal to infinity,

Turing calculations in the second approximation from equation

(7.6), being limited by determinant of the second order, we will have,
l'-l(F+L)+FL+%A’=0. (7.9)

Solution of equation (7.9) will yield two roots:

by Fa;-L +[(F—‘-LP —%‘-At]”, (7.10)

From formula (7.10) it follows that eigenvalues in calculations
in the second approximation depend essentially on the speed of flow,

anc. with the following values of the speed of flow
LT
A=t >0
eigenvalues become complex, where

Re =), =L (F +1), lmx.—.a,-.:[{‘—m—ﬁ—}‘-"-]"'. (7.11)

Substituting values kl and xg in the equation of the stability

2
parabola (1.20) and taking into account that A = g%%—, after a number

of sinple transformations we will obtain the formula for determination

159



of the critical velocity in the second approximation, i.e., of the
speed cf flow. When this speed is exceeded, there appear compiex

eigenvalues, lying beyond the boundaries of the stability parabola:

3 I (E Er ¥
> 2 {E[2F+ 0+ e D) (7.12)

In calculations in the third aporoximation from equation (7.6)

for eigenvalues we will have

-4l —lp 41, =0. (7.13)
Here
’|=F+L+K.
Iy=FL +n(+xu.'-m[ —’5‘—)’ (%)’] (7.14)

I, = FKL 4 A’[F (—’51)’1'- K(%)’] :

Assuming that A = x1+ 1X2 and separatirg in equation (7.13) the real
portion of complex eigenvalues from the imaginary we will obtain a
system of two equations:

—N+302 4+ h63-1H— 1), + 1, =0, (7.15)
C =334+ 200, —1,=0.

For further computations it would be more convenient to present

the equation for the stability parabola (1.20) in the form

Ny =22 (r:::;’f;). (7.16)

Substituting (7.146) in equations (7.15), we will obtain the following

system:

3’""‘11(211'!")'*":’“'0- (7.17)
M (s + 8) =2y @1y + 3r1,) + 31, = 0,

e+ o i
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Fr ¢ determination of the common root of two polynomials (7.17)

it is necessary to equate the resultant of these equations to zero:

3 —@L+0 1, 0
0 3 —@h+0 kL [_,

L,+8& —@l,+3r) 3y 0 (7.18)
0 1,48 — (@2, +31) 3,

or

(s + 8) (2, 4- 1) =321, + 31130, 2, + 1) —

— 1,21, + 3eL)1 + Iy (I, + 8) — 9L, =0. (7.19)

Equation (7.19) enables us to investigate the character of the
change of complex eigenvalues in the boundary-value probiem examined
in the third approximation depending on the speed of flow and to trace
their location with respect to the stability parabola,

In calculations in the fourth approximation eigenvalues are

determined from an equation of the fourth degree
M—IDS 1D — [ 4T, =0, (7.20)

Here

| —F+L+K+M,
I, = MF + KT + FL + MK + ML 4 KL +

R (R C eI

I, = FKM & MLF + MKL + KLF + 44 {[(i‘)’+ ( ’; )’]r+

HE) ()M [ F)+ () ]+
)+ E)) (7.21)

l;=er(L+4A-[(—':—)’MF+( )FL+\3) KM +

+(ag) ke )+ e[ () (5)+ () ()"
Substituting in equation (7.20) value X = A+ 1x2 and separating
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the real portion from the imaginary, we will obtain:

M— I3 — 63+ 8- 00 I~ I —
. — I+ 1=0,
03— 4103 — 3103 4 12 - 205, — 1, = 0.

(7.22)

Replacing in equations (7.22) Xg with rA, according to (7.16), we will
obtain a system of equations:

M, + 207) — 22 (17T, 4 4rt 4 20) + by (4l + 30;) — 4l = 0,
43— @I 4+ 4r) + 1y (I + 26) — 1} = 0. (7.23)

Constructing the resultant of system (7.23) end expanding it, we will
obtain an equation, which will enable us to determine the critical

speed of rflow in the fourth approximation:

(0,0 — hd)* + (ak — ,y)* (¢,0 — kd) +2(,d — 0,0) (c,0 —
— kd) (af — bl,) + (fd — 80) (ka, — c,1,) (0,0 — Iy d) — (7.24)
— (fd —b0p* (bl; — a,f) + (c,0 — kd) (b — ¢, (B, — a,f)=0.

Here we introduce the following designations:

0, =1,+20r, b=A4rt 4 11ef, 421, ¢, =4, + 31,

(7.25)
d=4l, =4, [=30+4r, k=rl,+20, 0=1,

Formulas (7.12), (7.19), (7.24) enable us to calculate according
to Galerkin's method (in the second, third an¢ fourth approximations)
the critical speeds of flow for cylindrical panels, supported with
hinges on all edges and moving in a gas with supersonic velocity, if
we know the geometric dimensions of the pancl and the constant, charac-

terizing the gas medium,

§ 8. Sloping Spherical Shell

Let us investigate natural oscillations of a slopiug spherical

shell in the case of support with hinges of all edges and in the case
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of rigid clamping along the entire outline.*
In the class of solutions (1.14) the equation for small oscilla-
tions of a sloping spherical pzanel, lc:ated in a supersonic flow of

gas, assumes the following form:

l-»! h, BV & B, _
VO O+ e — Tt o=+ e =0 (8.1)

~n B
Introducing designation %@-w‘ + T%-w = -X(i), we will obtain the equa-

tion for the stability parabola:

In a system of aew dimensionless coordinates x = a€ and y = by equation

(8.1) can be written in the following form

. BN . ] (1 P
e e 2 e v mm Tyt @
DV ® ,e_0 (€.3)
aD & *
(1), 2 B,h'
where the new =\ = A _ﬁﬁ a%, A, _TT—'q'

Conditions of hinged support of shell on the edges will be iden-
tically satisfied, if we look for the solution of equation (8.3) in

the form

@ = sin k= sinnr, (8-4)

Substituting (8.4) in equation (8.3), we will obtain:
[u(-.-*:-‘kwi'-nt —>.]smk.-.§+!ﬂ'-:;-_l"-"-1sinkx§— (&.5)
— 0 b cos ket = 0.

Applying to equation (8.5) the Bubnov-Galerkin method for determination

*The solution of the problem is credited to R, D. Stepanov,
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of eigenvalues and nonzero solutions of a system of algebraic equations,

we will obtain a determinant

] 4
TE=) —3A 0

4 1 - 12
ERAE Bl i S B )
12 I
0 —5_ .-’-(L-—l) o o

.where

= A - e
F AL‘.+“]'+12(1 "=,

) PR L
K=A .4'+“] +1201 - .

o M, MY »
L=”P;+7]+m0—ﬁF.

Without reproducing here the computations, which are analogous to

o

those which were made for the cylindrical panel, we will obtain a
formula for determination of critical speeds of flow in the second

approximation according to the Bubnov-Galerkin method:

Vg%%‘/%ﬁ:_[ mru K)'] (8.6)

The critical speed in the third approximation is determined from equa-

tion
Us(ly 4 8r) — Q0,8+ [(1, + 8r) (2], + r) — 3
"‘3(2’: + 3”1)“313(2’1 + ’)"“’:(2’: + 3"|)| =0, ( o0 )
where
L=K+F+L,

h=FK+ KL+ FL+ 2[5 +(3)]

L e {3 (3]

and r is the parametcr of the stability parabola: rxi = A

2
20
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Let us note that from the salution, obtained for the spherical
panel, it is not difficult to obtain a solution for plate hinge-
supported on 211 edges; for that purpose it 1is sufficient in (8.6) to
make R — m,

Now we will examine the case of natural oscillations of spherical
panels rigidly clamped along their entire outline,

Here, as we did earlier, we applied the Bubnov-Galerkin method,
where as approximating functions we use fundamental beam functicns,

It is known that team functions, the orthogcnal nature of which is

well studied, do not retain this property with respect to their deriva=-
tives of the first, second and third orders, and therefore certain
authors introduce the idea on quasiorthogonality of these functions,
i.e., they consider integrals from the product of second derivatives

of beam functions multiplied by the same function as a negligible
value,* Let us note the necessity to exercise caution in postulating
the property of quasiorthogonality of fundamental beam functions.

To solve this problem let us use equation (8.3) as the point of
departure in which A = xi + 112 are complex eigenvalues, Coordinates

of the stability parabola iIn this case will be:

BAS
h=le =2,

For convenience in recording let us introduce designation:

12(01—)At 1 —v2 A \
T (8.8)

We will present the resolving function ¢(€, 7n) in the form of

the product of beam functions

*A number of new quadratures from beam functions, encountered in
the investigation of flutter in plates and shells, was calculated by
R. D. Stepanov [39].
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o(&'l’=x-a)y.(’t). (8.9)
each of which satisfies both, the differential equations

Xa (®) =20X, (), Y& (@)=Y, ()

and also the conditions of clamping of the spherical panel on the edges

E=0,€E=1andn=0, n=1,
Substituting (8.9) in (8.3), we will obtain:

LY M xy+ & g
Xy, +2-2 i+ Kxvats -~

+ [——"""—:-‘- —).] XY, — AXY, =0.

If we multiply all the terms of (8.10) by Y, and integrate with

respect to i from O to 1, we will obtain:

Mo Mo M.
“Tlux.'i'”—;‘.—x-'i";;'-:X.-i- 5
s a8 ‘ (8.11)
+H[ )X a0,
where
' ®
: [Yaad (8.12)

jl’z ds

If now we multiply (8.11) by X, and integrate with respect to £

from O to 1, then for determination cf nonzero solutions of algebraic

equations
. Moo Mg 1= A
C, —imt et —— =2 | X X, +
.2-| "{[c‘ b ¢ R ] (8.13)
At . .
+ 2? :;;;' xﬂx:— Ax"lx:} =0

it 1s necessary and sufficient to equate to zero the determinant of

this system of equations, i.e,.,

1(6
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Y meE Eas B SRR M..-M%;‘.— P N R et ok IC DAL S Y RY SR Fe

At
R e 25V
[
I L e -0. (8.14%)
At .
Ve = A (i Vo A
Here
N VY ey
Feil +t.' = + =
L 4__ J=0 P
K= '-z Y KL = R {8.15)
At 1—- &
L“':-'l" :.. +—;—-‘E;
' ' L ] ' ] (8 16 ]
u,,=§x,x,dg. o,,=5x,x,d;. w,,=5X,X,dE. =

In the case investigated these integrals have the following value:

Uy = 10359, wyy=—3399, uy=09984, w,=—5512,
V= — 12,775, 0,,=9,9065, vyy= —45,977, w,,— —9,9065, (3.17)
w,, =0, Wy =339, w,=0 w,=55I2

Every eigenvalue A of equation (8.14) corresponds to nonzero value Cm
of system (8.13) and to an approximate solution of the boundary-value
problem examined,

In calculations in the second approximation equation (8.14)

assumes the form:

IF "‘”“n‘*‘za a’b’ — Awy, — Aw,,
o At |=0 (8.18)
— Awy IK—)-l"n'l'z?';;"a_""n

Expanding the determinant, we will obtain for the eigenvalues a

quadratic equation
M1 4 1,=0, (8.19)

where
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+ A4

Wu"u “"nwu] + 43 .’::. ::::: ( 8 ,20-)

During calculations in the third approximation for determination

of eigenvalues we will obtain a cubic equation

— 4 N3— =0, (8.21)

where

AmK+FiLen-Cfm
1

caeal-aR e

h=FL+KL+FK+2% L K+ D+ F -+ 4
FEH02]—A[K+ D02y
oy Hey

-y
+F+R ]+ 40

A [ oyon Uullyy , Wby , Upw, InWn , Uty
—23A n. : e 1
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Uy lgy Uy lix Hgglizy Uy Uy Hligglisy )

[vnvu + m....ﬂ&-!:.&]_
a'd* Lsyyuy, Upgliy  Upliy Hystiss

(8.22)
1;=FKL—A[KL::_:_+FL3_+K,.- Wa]+
s Ugy [

+A,[L'm"u+'("n"'q '-_F"'n"’n_L‘,‘,'!lﬂ! _-F”"_"”!].}.
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’-u=-’,‘-:t[—?——l.]%. (8.23)

From (8.23) one can determine at what speed value do the the eigen-
values of the boundary-value problem investigated become complex and

the motion of the shell in a flow of gas becomes unstable:
Y%
SR P

Substituting Xi and XE in the equation of the stability parabols

and replacing A by its value

BYk

D "
after a number of simple transformations we will obtain a formula for
determination of the critical speed of flow in the second apprcxima-
tion,

The critical speed of flow in the second approximation can be
obtained by another method also.

Substituting in equation (8.19) X = A, + i), and separating the
real portion of the equation from the imaginar;,, we will obtain:

M—N—1)+1,=0,

Bou—tinmt. (8.24)

Equation of the stability parabola is more conveniently presented 1n
the form

where

1¢:9

L and



r-!’-“-‘-"i:-‘?-. (8.25)

Substituting (8.25) in (8.24), we will obtain the follcwing system of
two equations:

l:-'ll—llll + l’ = oo

%1 0. (8.26)

For determination of a common root of two polynomials it is neces-

sary to construct and to equate to zero the result of these equations:

1 —¢+h) &L

0 =1 —g+ny b |1 A

o 2 —1 o|T{2 K O '
o 2 -

0 0 2 -~
After a number of simple transformations we will obtain an equa-

tion, from which we can determine A:

4,—2r—1=0. (8.27)

Speed YV now can be easily determined by the formula

V-2, (8.28)

By similar means we can obtain a formula for determination of

the critical speed of flow in the third approximation also:

(an— ed® -+ (ak — ce}? (cn — kd) + 2 (ed — an) (cn — kd) (of — be)+
+ (fd — bn) (ka — ¢f) (an — ed) — (fd — br)* (be —af) + (8.29)
+ (en — hd) (Bk — cf) (pe —af) = 0,

Here
a = I} + 20r, e= 4,
b= m.+ llfli +2h,  f=3l+4r, (8.30)
¢ = 4rly - 31,, k=rl + 20,
d =4l n=1,

'« )




Formulas (8.27) and (8.29) permit us to calculate the critical
sreed of flcw for spherical panels clamped on all their edges, in the
second and third approximations, if we consider as known the geometric
dimensions of the panels and the constants which characterize the gas-
eous medium, Let us note that if fundamental beam functions possess
the property of quasiorthogonality then in all computations it is suf-
ficient to make integrals of Vij equal to zero,

§ 9. Nonlinear Setting-Up and Solution of a Problem
on Plate Fiutter

It is of interest and at the same time extremely difficult to
investigate flutter of shells in a nonlinear setting. So far we know
of solutions of problems of this kind for shells, We know of the works
by R. D. Stepanov [31] and B. P, Makarov [4G] on the study in arcroxi-
mate setting of natural oscillations of a plate taking into account
factors, characterizing geometric and aerodynamic nonlinearity. By
analogy with determination of the critical speed of flow for problems
in linear setting (see § 2 of this chapter) here we conventially con-
sider the critical speed of flow to be such a speed, at which the
envelope of perturbed solutions of a system cf nonlinear differential
equations of flutter in the interval of time examined constitutes a
curve, which is continuously increasing in time,

For considerations of a methodical character, wishing to pay
attention to the possible settings of this type of problems and methods
of sciving them, we adduce here a problem cn the flutter of plates in
a nonlinear setting [31].

Let us assume that elastic rectangular plate with sides a, b and
thickness h is hinge-supported over its entire outline in such a way

that the possibility of convergence or displacement of its edges is
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excluded, and that a supersonic flow of gas passes about it from one
side,

For the case of final sags of the plate, commensurable with its
thickness h, deformations of the plate are described by the known

Kédrmén equations:

(9.1)

where w is the sag, & is the stress function, D is the cylindrical
rigidity, and E is the elastic modulus,

For an oscillating plate, taking into account the forces of excess
pressure, determined according to A, A,Il'yushin's theory [17], the
normal component of the load may be written in the form

—q=ph 22 g gy gyl
(9.2)

ow
+ev ()
Here
We _xx+lp,
b=y B=—wm

Po is the density of material;pm, VOO are pressure and velocity of
sound for the undisturbed gas; V is the speed of flow on the surface
of the plate; n is the index of the polytrope.

Equations (9.1) together with boundary conditions:

= e——— —— T = = f— -— A
w= 2 +va'." u=v=0 wemx=0u x=a, (9.3)
Pw *w
”=_ay_a+' wy=p=0, mmy_—.OHy::.b

constitute the initial boundary-value problem,

Let us examine here an approximation method for the solution cf

| ot L
87+




this problem, which will enable us to obtain the solution of the sys-
tem in the closed form,

Upon bending, the following forces appear in the middle surface:

T, =

e ). Toy = T2 (e + 02

" (9.4)
Ta= 3049 ™

where e s € are components of the ultimate deformation, deter-

xx?* Syy* Cxy
mined by formulas:

tv(5) (5.5)

If we substitute (9.4%), taking into account (9.5), in equations
of motion of a two-dimensional problem
ar.l’.l’+ _J‘_____

Moy m, (9.6)

and to study the form of the bend of a plate during oscillaticns in

the form

w(x, g, 1) = [ () 4 (x, ), (9.7)

then we can write out equation of the bend of a plate for the case of
ultimate sags (9.1) in the form of a system of equations, connecting

u, v and w,

_____ N P o M [6’0 Fo B0 Pw B0 Fw 9
+2% 0”01, t o K== ww w T am e 2 %o, @on T w:]
Py , B(l—v) Bdu A(l+v) P alp(l—¥) P u
mt e e S B, (9.8)

u—» Po , k(1Y) Mu  a%e(l— V) Mo -
a'-+ 1) E ac-+F"_°‘

R
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The equations are written in variables £ and n, which are connected

with the o0ld variables x and y by relationships,

3 o A= k=—m.

In system (9.8) we introduce designations

F= l-m [g_(w +mlz-~) w)+vu"+~) :; :]'

-__L[_ﬂ‘_( b=y (l-*) 3‘1')_‘_(!-;-');; ::]

(9.9)

where ¥(€, n) is a function, selected in such a menner that we would
know that boundary conditions (9.3) are satisfied, and f(t) is an
unknown time function,

If in system (9.8) we drop the terms which take into account the
longitudinal forces of inertia, and represent function w in the form

of a series

ot 9= ZZI_,,sinmtEsinnuy,

then the solution of the two last equations of system (9.8) will have

the form:

u(. %

[cosz'm'-l+ “w]+ > (9.10)

ok v 1) =_IGTSin 2nzy [oos2m1r£— 14+ ;—;.;-] + v,

where Uy, and vy are the solution of a uniform system, For axial

forces in accordance with (9.4) and (9.5), with (9.10) we will obtain:

Ta= 221+ 257 +(v=—l)eo52nm.]+1°'

1—v 8a°

Ty = 1o S P [ +—'¥:T'—(l—v’)cos2mr§] (9.11)
Ek Ou. —

Ta= 2u+~)[ b a«r] T

Here




&7
25 j —® ”'.
_9_[ gy O
Sk df
Taking into account Airy's relationship T h 32 h aa¢
L4 = N =
T

2
Txy = =h %?2— and expression (9.2) for a normal component of load, we
on
will represent the first equation of equilibrium of the Kdrman system

of (9.1) in the fcrm

E el TR T MDY B

+—-——+(v‘-l)eos2m]-—-—+22k‘n’f’ [|+ =t
(9.12)
— —pa'h Pw g ow
+( l)eoszme] e e L
BVe* ow , 2BVe® o v BV [dw)
t %t 0 wE b (de)'

Equation (9.12) is correct for plate which is hinge-supported all
over its outline on immovable supports, within the limits of the approx-
imate solution proposed, The degree of approximation of the solution
obtained consists of the fact that, everywhere the solution of the
uniform system U, and Vo is assumed to be equal to zero while the
boundary conditions of the two-dimensional problem are satisfied not
continuously, but at separate points of the outline of the plate,
Actually, from expressions (9.10) with the above assumption it follows
that if on edges n = O and =1 (€ = O and € = 1) v(u) is identically
equal to zero, then component of displacement u(v) turns into zero
only in separate points of the outline of the plate, although the total
displacement u(v) on the corresponding edge is equal to zero,

For the case of a two-term approximation of function w with

respect to variable £ and its monomial approximation with respect to 7,

pois -
NS

b = oyt Tt



-.€., for the case of a cylindrical bend of plate with respect to
variable 1, applying to the equation (9.12) the Brbnov-Galerkin method,
we will obtain the following system of nonlinear second-order differen-

tial equations, describing tlic phenomenon of plate flutter
- 2 8 ,V 8 .,V -
'1"'“9:"‘"{“791"'9(‘ +*’)’%‘-?Mv— 01Ps +
* *

+3§-M.%v¥+ -:-0(7.x+k‘z.m=9-

- *(9.13)
Bot Moot M7 o+ QU+ PR+ o My Y00, —
5 ° [ o
~"":'n(”h""lx)ﬁ+_“;’w(3:7.s‘—3111’1’q?°-
Vot
Equations (75.13) are written in dimensionless variables £, 3, T = -
Iy o
P =T % = | Here we introduce designations:
= Da =B o £ =8
AV, ° My r 0= 12(1—¥) Vy a8’
3 2w 3, ¥
n=ei(g—5+#) a5+ T -7). (9.10)
1
Y & B izl =% )
w=el(g—F+a)ta(1+ ) k=5
5 & w 15 5y
yo 2R T t¥Ee-
A ’ - A L]

A-:(v’-'—l)(-—l:—-v’—!- -”}*1)
. 94
Further the system (9.13) by replacement of veriables = =
= ui(i = 41, 2) is reduced to a system of four nonlinear first-order
differential equations, the integration of which can be carried out on
a computer with specific initial conditions, which was done with the

4 at the interval of dimencionless time O = 1 s 40,

precision of 10~
For the above accuracy the magnitude of the step of integration

did not exceed 0.2, Automatic selection of step in the Runge-Kutta

method was produced in the following manner, 1In the initial step h
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was calculated by solution of system.%i at point EO + h, then the step

i

was divided in half and?ﬁi was calculated at point €. + =. By value

™~

61 and step g'we found a new solution $i at pointg(.+-rionce again.

The accuracy of the solution was checked by two values 51 and Ei’ cal-

culated at one noint &O + h. If difference of solutions does nct exceed

the prescribed accuracy, then a recalculation of the solution is per-
formed with 2 nalf step, if however the required accuracy is attaineaq,
then we check whether it is possible to perform the further computa-
tion with a doubled st¢p of whether the step should remain the same.
Solution of the system of differential equations by this method was

conducted for a plate, having the following relative dimensions:

» e 400

with constants of problem:
o = - b - . ———
l"l 14 E=2 10’—‘5&. Pe 78-10? g' g

- K&, Y V. =34.100-%
po=1014—5; V,=V.=34.100 2%

and with initial conditions:

I @0 =9, (0)=0:
@0 =0l {%M=M bw%m-l

pRCED =t #(0) =1 (9.15)

2. 1 (0) = @,/0) = ¢, (0) = 0:
a) 9.(00=004, o ¢;(0)=04. (9.17)
The problem consisted of the fact that, with specific initial
conditions of the boundary-value problem examined, we were to find the
perturbed sclution of system (9.13) for various values of gpeeds of
flow and to establish the speed, at which solutions continuously

increasing in time first appear in the time interval under considera-

tion,
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Results of calculations show tha*t other conditions being equal,
the value of the critical speed for a plate in nonlinear setting is

essentially dependent on initial conditions,

:al .
g,. G0 g oy BAY)

In Figs. 17 ana 18 we adauce graphs of perturbed solutions of the
initial system of differential eguations (9.13) for speeds of flow of
800, 1000, 1200, 1400 and 1600 m/sec and under initial conditions, pre-

scribed in the form of the initial sag (9.15), changing with respect
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Fig. 18.

to variable € according

An analysis of the
character of amplitudes

their increase (9.15a),

V:1000 %/300 ) %)

1}

Y

V:1600 »/sec %(T)

A

% s 25 7
[ . mqu‘“m“i

to the law:

w = @, (0 sin <t + @4 (0) sin 2xt.

calculations shows that with a change in the
of the initial deflection of the plete and

(9.15b), (9.15c) the frequency of oscillations

and the value of the critical speed of the plate increase noticeably.

Calculation of nonlinear factors in problems of aerostability of plates

for the above-indicated boundary ‘conditions shows that even in the

supercritical region no rigid excitation of oscillations is observed;

oscillation amplitudes are increasing slowly,
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During sufficiently small initial perturbations plate flutter in

a nonlinear setting appears at flow rates which differ little from

the critical flow rate for the same plate in linear setting. However,
with an increase in value and a change in the character of initial
deflection of the plate surface, prescribed in the form of the initial
sag (9.15), the possibility is revealed of the existence of established
motions in flow rates, somewhat exceeding the critical flow rate for

a piate in linear setting.

Thus, if the critical flow rate of the plate in linear setting,
found by the Bubnov-Galerkin method wlth a two-term approximation of
functicn of sag with respect to variable €, constitutes 952 m/sec, then
for the same plate in a nonlinear formulation of the problem of aero-
elasticity under initial conditions, established by formulas (9.15a),
(9.15v), (9.45c), the critical flow rates are equal to 1000, 1050,

1600 m/sec respectively,

The envelope of perturbed solutions of system (9.13) in flow rates,
significantly smaller than the critical rate, for all cases of initial
conditions (9.15) has the character of a curve, envelc:ing oscillations
rapidly damping in time, With an increase in the flow rate of the
envelope, of the curve which outlines the periodic oscillations with
a certain increase of oscillation amplitudes at intervals of the first
period and only with definite values of flow rates, corresponding in
given determination to the critical rates, is the envelope of perturbed
solutions ¢1(T) and @2(7) in the interval of time under consideration
and assumes the form of continuously increasing curve ror all T > O,

The investigation of solutions of a system of differential equa-
tions of natural oscillation of plates in nonlinear setting for the

class of initial conditions (9.15) and under boundary conditions, which
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present a definite practical interest, show that the sensitivity of

a plate to excitation of its flutter sharply decreases with the increas=
of the initial perturbation, prescribed in the form of the initial

sag (9.15).

Of the greatest interest are the results of investigation of
perturbed solutions of a system of nonlinear differential equations
(9.13), which were conducted for a plate of the same dimensions and
with boundary conditions examined earlier, but under initial condi-
tions (9.16). Physically these initial conditions mean that in the
moment of time T = O the surface of the plate develops a sag, the rate

of variation of which with respect to variable £ is written in the form

:’ = q:‘ S‘ﬂ RE.
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Calculations were pertformed for values of the maximum initial
speed in the center of plate ¢1(0), equal to C,04; C,4; C.6,

Results of calculations (Fig. 19) show that a change of maximum
iritial speed in the center of the piate by one and a half order does
not lead to any noticeable change of the value of the critical speed.
From the graphs (Fig. 19) it is clear that a change of value of initial
perturbation, prescribed in the form of initial speed (9.16a,b), leads
only to a change of plate oscillation amplitudes, while the freqguency
of oscillation of the plate at the initial moment of time remains

constant,
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CHAPTER IV

CERTAIN OTHER DYNAMIC PROBLEMS OF SHELLS

§ 1. Radial Elastic Deformation

If a cylinder of average thickness is under the action of internal
pressure p(t), which is uniform along its length, which changes accord-
ing to the given law, and the pressure front moves along x-axis with
a given speed, the problem of exact calculation even of elastic

L

stresses and deformations beccmes very ccomplicated with respect to
calculations and we cannot find simple formulas, from which we could
obtain a clear idea of dynamic effccts [41]. In the simplest case of

a plane problem the radial and tangential stresses are expressed

through € = éﬂ, e, = % with the formulas:
r dr 6 r
- 2 ' w — w lﬂ 1.1"
“l 3K(&+V ')n L) 3K('+V &)! ( d
where K is the modulus of volume deformation; v' = I—%—;, where v is

Poisson's ratio. The dynamic equation for radial motion

& —% =p Sw
r on

o

Pluid 4

roale
on the basis of (1.1) is reduced to the form

w1 e\ _ O o
ettt L (1-2)

Here p is the density of the material, and c is rate of propagation of

volume waves
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‘C_‘/$- (1.3)

General solution of problem with the initial condition

(=0 w=uw,(r), —;—-ma'(r)‘ (12T
and boundary conditions
r=a, o =—p(f)
R I1
r=8, o,=0 (1.377)
is obtained by the known method by means of substitution
w=f(r) e,
Now equation (1.2) assumes the form
! t\,_
Ft—F+(2—3)f=o0
which is satisfied by function
w = [Al, () + BN, (w)) &4, (1.4)

where I,(nr) and N,(ur) are Bessel and Neumann's functions.
Eigenvalues of parameter n (frequencies of free radial oscil-
lations of cylinder cw,) are found, according to (1.4) and (1.1),

I,ITI.

from conditions (1.3 }» in which it is assumed that p = O; the

uniform system with respect to A and B results in the frequency equa-

tion which has the form [42]
D (xa) = D(sb), (1.5)

where it is designated (when v = 0.25)

o= 20N, (x0) — 2Ny (xa) 1.6
e = Satvca =100 0l

*From now on the point above the. letter designates differentiation
with respect to time,
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Here IO, I1 are Bessel functions, and N N

o Ny are Neumann's functions.

The first five roots of equaticn (1.5} of values of magnitude (ub). =

= (%E)n for the relation a = 5- 0.75 (—'v 0. ;\ are adduced in Table 2.

4
There are also tables for higher numbers of natural frequencies

(nb),. Frequency n is equal cny, = (ub) %3

For every root n, of the equation (1.5) the relationship of
constants A and B becomes fully definite, and formula (1.4) gives an
expression for the n-th eigenfunction

Table 2. Roots of
Equation (1.5) for oy

the Ratio a = a/b = ,la""Da’l('n')"'Nl('a')' (1'4-’-/
= 0.75
Now, substituting w (r), (r) in tie
series
Mumber of (xb) form of esigenfunction/ from initial conditions
frequency I
: l;gﬁg (1.37) we find values A}, A, i.e., we obtei:
:‘s g_llfg the solution for the problem on free oscil-
5 2799 lations for given initial conditions,

For the solution of problem on forcec
oscillations of a cylinder under the action of pressure p(t) we replace
p(t) with the volume radial force q, applied in thin ring a < 4 <r +
4 B, so that boundary conditions become uniform (i.e., 0. = 0 when

r =aand r =b), and equation (1.2) becomes nonhomogenous.

st e ti=F. (1.7)

Let us select g(r, t) in such a way that when & — O

q = P(’) zau,n (‘n')- ( 4. ); |

Decomposing q in an eigenfunction series fn(nnr):

e I
fadr=pq. (1.57)
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the solution of equation (1.7) we present in the form

.-i'l(ofl(‘l')' (1'9)

where for functions g (t) we obtain from (1.7) the system of differen-
tial equations:
';""‘"-‘:- '?'P(‘)-

each of which has a particular solutiocn
1 [ J
%Ipﬁ)sﬂnlu.(t —)}dz. (1.20)

Inasmuch as with t = O the expression (1.10) gives ®, = 0 and $n =IO
the (1.9) with values ?, (1.10) formally presents the solution of
problem on the action of pressure p(t) on the initially undeformed
cylinder,

The series, included in expression (1.8I),constitutes an expansion

of the discontinuous function A(r):

2¢J.=A(r). (1.11)

which may be written in the form

.
— a<ratd
A= ® (1.12)
0, a43<Lr.
the Ji
Here unction q (1.87) will satisfy condition (1.8), if the final

result will have meaning when & = 0O,
Considering the orthogonality of functions fn’

»
fff.f.dr-l:," ::: (1.13)

multiplying by rf dr both parts of (1.11) and integrating from a to b,

we will obtain:

| 4
“=-3hta), &= (R LY
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This means, that the general solution is fully detsrmined by

formula (1.9), which will be written in the form

- [ 4
b f.('-'_)f p@sinler, ¢ — N (1.15)

This expression is too complicated for analysis and requires
bulky numerical calculatiocons. In the simplest case, when in the moment
t = 0 constant pressure p = const is applied, formula (1.15) assumes

this form (taking into consideration that pC2 = 3k)

0= %2?!;?[.(:.0),.(1{)“-—(@(&.0]. (1.16)

The coefficient of dynamics factor, showing the ratio of dis-
placements (and stresses) in dynamic calculation of cylinder (taking
into account forces of inertia of substance) to their values in static
calculation, depends strongly on the law of application of pressure
p(t) and can not only f.il to take value 2, but also to be essentially
less than unity in the case of brief actions. Cylinders can sustain,
while remaining elastic, pressures exceeding many times the maximum
permissible static pressures, if the time of action of the pressure

b ; &  through

is less than the time of double passage of sonic wave 2
the wall thickness, which fact is essential and should be taken into
consideration for very thick-walled cylinders. This effect, conse-
quently, first of all, pertains to large elastic masses with cylindricel

cavities [41] and therefore is not examined here.

§ 2. Plane Elastoplastic Deformation

The dynamic problem for the cylinder in the case of plane elasto-
plastic deformation is somewhat simplified, inasmuch as the cylinder
may be considered to be a mechanical system with one degree of free-
dom [41].

Let us assume that when t = O the cylinder with radii a, b is at
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rest, but when t > O the internal pressure pa(t) and external p, (t)
pressure, act so that the initiel coordinate of any particle r,

changes to value r(ro, t), and the internal radius a becomes equal to
R(t). Let us assume that v = g% is the rate of expansion of the cavity.

The condition of incompressibility of material:
f—R=rj—a, RB—R=—a (2.1)
enables us for small and ultimate deformations to write expressions

dv
dr r
of shear v, rate Ve = I%° and acceleration —3IF

r (L e RB—at
T ‘. ’VF—R‘-‘" '

o=2o Sl g (-T2 (2.2)

d r & (o

The dynamic equation in the case of ultimate strains is written in the
form

bt [£@- 22420,
where T = F(y) 1s the material strengthening function, which on the
basis of (2.2) is expressed through R and r.

Integrating this equation with respect to r from the internal

surface (r = R) to external R = r surface ard taking into considera-

tion boundary conditions, we obtain:

R
do R, v R R 2 t p
£ Rl ——(l__!. ---1) 20 2dr=2, 2,
o R & T3 nm+R§ +-1 . (2.3)
where p = P, - Py is the difference of pressures, which determines

the motion,
In the beginning let us examine small elastic deformations.
In this case, designating w(t) = R(t) a and discard in (2.2) small

values of the order of g with respect to 1, we obtain (R

b, = bs Ry = a):

7--2—:'—, < = Gy.
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In equation (2.3) in addition to this simplification it is also

necessary to discard small values of the order of v2

P and 1, after which, designating the wave velocity of the shear c

i F 1
and parameter »n according to formulas:

l/ L 1 2(0—
G = —'—. x=T]/( :’). (2.2;)
a

we obtain the equation in the fora

with respect to

_0‘_"5__'_*,”_____ -p(ob ) (2.5)
!!hj;

the solution of which, analogously to (1.10), will be

]
w= —-'-T p(Dsinfeyx (t — D) ds. (2.€)
€xpaln o :

The dynamics factor ko can bte determir 3 with the definite degree
of authenticitiy on the basis of the solution (2.6).

Let us assume that p(t) has with a certain t = t_ a maximum P

m

the static estimate for the action of pressure Pp yeilds the value of

maximum tangetial stress

= —o Pu-
The dynamic estimate gives for r = a
t=26-2,
a

while w is determined according to (2.6). This means, that the
dynamics factor ka is determined as the value biggest in time with

respect to the modulus of ratio ?1, i.e.,
m

-
~

. ¢

[0 = d = dynamic] k,amaxl —;‘ijp(;)sin[c,:(l—;)ld; . (2.
(]

For the constant pressure apgearing instantly

0, t<0

pm=|p=amhl>o
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from (2.7) we obtain:

&, = max |fan(:—;)£|=-2.

In the case of constant pressure effective in a definite interval

of time t1:

_]0  t<0,i>t,
PO=1, o<t

the dynamics factor will be equal to the biggest of the expressions:

h;-mul fﬁn(t—ﬂﬁl-m(l—ml),}(t,.
® .
t;amlj'dna—ijdq-mulm(t—t,)—mq. i>t,.

where t, = c,ut.
Now we wiil consider elastoplastic small deformations. In one-
ciucd iynamlc process (expansion or compression) the dependency 1 = F(7)
o) allows us to express the integral included in (2.3), through w., Pre-
senting F(y) in the form T = Gy[1 - w(y)], we obtain:

» ¥,
< dr 23 ;
23"—'— = !Tay=w(x — oY) -:- —26 }»(y)dy.
®

»

Designating,
' 23
Ya-"?-- Y.”‘"‘:-ﬂ'. S= |l ’ (2.8)
pain—
[}
we convert the dynamic equation (2.3) to form
Y,
(e
- tero—s [omdy = L0 (2.9)
pain—

»
This quasi-linear differential equation has a small parameter,

inasmuch as function w < 1. Therefore, the solution can be found by
the method of small parameter, for which it is possible to take s.
Here we examine th: monotonous solution w, either increasing or
diminishing in time. Therefore, following the method of elastic

solutions, for the f'irst approximation we must take the solution of
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elastic problem (2.6). The second approximation is also obtained by

the formula (2.6), if in it p(t) is replaced by

.
PO +2 [ w(v)dy.
K'Y
where
Yo, = Yot
end
2 .
- 5 p@)sin [l —1d5. (2.10)
crpetln —

Thus, in the second approximation we obtain:

' o
. s -~ . N -~ -
o= —— (1 p@+2% ( oter I=siope—dc (2.11)
Graln — ]
e
Let us examine large plasiic deforwsticy~, IF jressure pft, =

= Py = Py depends only on the volume of the c¢ylindert's cavity, i.e.,
= p(R), then equation (2.3) has the energy integral, and is linear

ve
with respect to R

m-—%(ﬂ)+(mf‘—+<:-;-—n)%=

31 o (2.12)

Disregarding elastic deformations and material strengthening, i.e.,

%
assume that 1 = — = 1, we write the integral of equaticn (2.12)
from the condition of energy conservation, The internal pressure Pgs
necessary for surmounting plastic resistance of materiali, in this case

is equal to

o R’
Py = = ln -2 (2.13)

Thus, part of the effective pressure p(R), which will increase the

kinetic energy of the cylinder, will be equal to p(R) - pS(R). The
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corresponding work will be

.4-=2-‘-p e nBlrm | (2.14)
Jlr—F5 ]

The kinetic energy of a cylinder on the basis of (2.2) will be written
thus:

R
r~.=-pl'o;m-wm-%-. (2.15)
From the law of conservation of energy we have:

T=T,+A {2.16)

where TO is the initial kinetic eneiryv of the cylinder

Tc"wmi. (2.17)
. .

The rate of expansior. of the cylinder'!s internal surface from (2.1€)

is found in the form of function of radius R:

R . R ¢ (2.18)

If T, = O(vg = 0)and pressure p decreases with the expansion of
the cavity, so that beginning with certain R the expression in brackets
under integral (2.14) becomes nsgative, the rate v will have the maxi-
mum v, . Designating with R (R, ) the radius, with which the maximum
rate 1s attained, we obtain the relationship between Vi ard Rm from

equation (2.12), in which we must assume that

7%(%)"0' (2.17)

Radius Rm is found from equation

a1 ¢ R— i RiR) =0, (R=R
TR—"N_R-_.—S[P( ——'75_- n';.—'] ]" ’ = R,) (2'20)
R

Let us consider the barticular case of compression of the cylinder's

cavity at the expense of initial kinetic energy To. Assuming that
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in (2.14) p = 0, we find:

R

——atln -f:—+(b’-a’-)lnkz]. (2.21)

A-.ﬁ[ In hal
- vy 1 R »

The movement according to (2.16) will cease with the R, determined
frcm condition TO + A =0, We find the least kinetic enevgy Tcr’ when

the cavity will be clused. Passing to 1imit R - O, we obtain:
"3 » »
[kp = cr = critical] r.,a—‘;-;_-[a'ln:+(v—aﬂ)ln7]. (2.22)

and the corresponding initial rate will be fouud from equation

e Tep
. = . 2.2
2 Wl (2.23)

When To > Toap the cavity will be slammed closed with the speed, which

with R = O tends towarda infinity:

e L J— (2.24)

2 B—a ~
a5 =)

§ 3. Action of a Moving Load on a Cylinder

It 1s possible to give an estimate of the dynamics factor with
a mobile load, on the basis of the theory of oscillaticns of a cylin-

drical shell [41].
We give the equation of radial oscillations of the cylindrical

shell:
P o'w ND P\ Ow
'h*+Ddr‘+-(R-' m)w"’
2@—wD_ P
T VTP e (3.1)
En’
Here: h is thickness of wall, R is radivs, D = s is cylindri-
12(1 - v7)

cal rigidity, P is constant axial stretching force, p is internal

pressure.
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Let us examine forced oséillations of the cylinder under the
actlion of cons-ant pressure p and annular pressure Q = gc, moving with

constant speed v along the cylinder to

the right. where we shall assume th-t

.
VY I II NP L (L L4 L EeL LN
My Sy, 11/4/// ///// d; r72977

pressure on the right of Q is equal to

| zero (Fig. 20).

T’ The stationary solution, constant in
Fig. 20. axes, moving together with the load is of
interest. Let us assume that the origin ¢f coordinates is at the
point of application of annular pressure Q. We examine, consequently,

the solution of equation (3.1), depending on the difference

t--‘—u’ (3'2)
then
& &' & & '

and therefore, {3.1) assumes the form

o (32 By B, )

where a stroke signifies the derivative with respect to £. From the
comparison of the first and last component of the right side (3.3)
it is clear that the characteristic size of the region of variation
of deformations will be of the order of

Vr— (3.4)

and therefore, in the order of values, the equation (3.3) has the form

(Mv'+——--,{§-)-—+0-—~p

{ =

The ratio of the second component to the first and third is determined

by values
. e P e
s, R 8 2R
Tl v ' .
ow % °w

i) R TOPERTS e



With very large rates v the first ratio may be large, and therefore,

it cannot be Aisregarded. The second ratio equals

J‘_..._____’.'___ A
Yig—#a R’

i.e., the corresponding term in (3.3) can be disregarded with an error

not exceeding %»as compured with unity. The third ratio 1s equal to

_ _ L P12 R (
[cp = av = average] D S Bp =4)Y3(1—

- P )
where (03)av = 5Th is the average stretching stress from axial force
P; the ratio shown is a minute value, and the corresponding component
in parentheses (3.3) can be disregarded.

Thus, the dynamic equation (3.3) has the following approximate

form:

ol dw

.
# D & +4w'—(p— (3.5)

&«

+e

We introduce new designations, simplifying the formulation of the

problem, namely, the dimensionless coordinate:

4
(=t V30— (3.6)
! YRk °

the static sag of shell according to the zero-moment theory
[ct = st = static] W, ) (3.7)
and dynamics parameter:

]

1=%.=V“3(|—T) -‘f-(%-)’ (3.8)

-V E

where ¢ is the transonic speed in material. From (3.5) we obtain:

+4; >+ 4w = 4w, (3.9)

Since L is a function, which has a break in one point x = 0, then,

dividing the region into intervals x < O and x > O, we will obtain for
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X<Ow=w The general solution in the form ekc leads to the

st’
characteristic equation

K+t 4=0,
having roots:

bgems, tis,
byym=—s tis (3.10)

n=Vi—x s=Vi+y

The sag w for the left-hand part of cylinder x < O nas the form

[# =1 = left] w = w, + €< (A, cos s’ 4 B, sin £), (3.11)

and for the right-hand part (x > 0)

[m

r = right] W = m, 4 ¢4 (4, cos 5% + B,sin<’), (3.12)

where A, B are arbitrary constants and
',—-.-%-ai. (3.13)

Conditions of conjugation of solutions in cross-section x = O

require a continuity of sag, and angle of inclination of generator, a

bending moment and intersecting force N = %%, which in cross section

X = O should have a break by a value Q, Designating

q=—- =4V30_$"“R]/T- (3.14)

and satisfying conditions of conjugation, we find constants in (3.11)

and (3.12):

Ax=—";—;+'.—:;i Bx“—-;-;
M= 5P+t B=—

I

| ~
V 1 """."—Q
~ ' ~
P +”—”Q
8 (3.15)

From (3.11), (3.12) and (3.13) it 1s clear that X = 1 determines the

critical speed of motion of the load, with which a strong influence of
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the dynamic load is possible. Wien x= 1 we obtain from (3.8):

..__"__]/"n‘_= ) /& "
= y3i— L3 ! l(Pl R se0 (5.16)

(the number is given for E = 2.1-106 kg/bme, Vv = %5 g = 7.8).

When v < 1 the sag at the expense of the load dynami:s will be

larger than with its static application (X = 0), and therefore, we

can determine the dynamics factor as the ratio of maximum sag w

max
when ¥ > O to the maximum sag when X = O:
(Waar); >0
b o —— 212
f ®ndy g (5.47)

where Whax is determined for the left-hand part of the cylinder, i.e.,

by the formula (3.11). Peoint Cpax < O» in which sag is the biggest,
dw

is determined from the condition — = O which gives
d¢
'g(":-u)“ ’/I+1 -; (3 18)

Let us examine the first example, when annular pressure Q spreads

at the rate v, so that p = 0, @ # O. The maximum dynamic sag will be

‘-n’:‘lg—"!—‘.
8YT—y
and therefore, the dynamics factor is equal to kd = ——2———n
=X

We consider the second example, when the axizl force and annular
load are absent (P = Q = 0, g = 0) and only the internal pressure is

active, The biggest sag 1is obtained in point ¢ < 0, for which

tg (fme) = J/TEL.

max

so that, if we designate

® T+1 I3
— <A=arclg (— 1:_:')<T"A0'
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then for the maximum sag we obtain the expression

'-.;-—L—[2V’+¢-‘
x (VT=x+ ,—i;ﬂ‘ﬁ)] (3.19)
and therefore, the dynamics factor
:Vf+c"‘(p’f_'+———l’l‘3rl) (3.20)
°= Y X

The dynamics factor of the annular pressure turns out to be signi-
ficantly larger than the dynamics factor of internal pressure., For
instance, when X = 0.45 we have Kda'= 1.35, Kd5'= 1.035; for shells
with the relationship %&: 0.2 this corresponds to the load speed
v = 1200 m/sec.

§ 4. On the Propagation of Elastic Waves in a Shell

Of interest 1s the research on propagation of perturbations 1in
thin-walled structures in connection with the problem of their dura-
bility and rigidity. Let us consider propagation of elastic waves in
shells,

In the beginning let us write the system of differential equations
[43] for symmetric oscillations of the circular cylindrical shell with
the thickness of 2h and radius of the middle surface ros which will
then be used in the study of propagation of elastic waves in a shell.

Proceeding from general equations of the theory of elasticity
without any hypotheses about the character of deformation, on the basis
of N. A.Kil'chevskiy's [4U4] algorithm, by excluding from matrix
operators all displacement functions, wlth the exception of one or

several, I, T. Selezov constructed generalized differential oscillation
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equations* [45]:

{lin.+s'a.1-£'a.—"— + (6 + Bl g + By g —
— Py E’d.——-}vo+{l§ﬂ1+§'a.l

z'a.;;,;-wa.. Yuo= {12+ e*d.l-—e'd.;,;.,— +

ﬂ"d:‘

+{i§+§'d.l5—‘,— +¥dy s +

‘+Eﬂk3;;}

+ By o) T+ { s B — B+
. * :+ .
+§'du‘%;}"'—;ﬁ'i ()'hi)
& » (o
“F‘u%+'?hlig;'+1§1~?ﬂd—"—-+E%E}E;"-
—§%, FryyT +§'br——}“o+

+{i= e — W01 % — Bl —

e }"5

'=(l2+i’l,l-—vl,——-+§a.w,] 2 LIS
"I'[lvc'!-ﬁ'l.]——g'l..ﬁ._!_gq’ ma‘.] '|+"n+
P-+5
v e e ) (4.2)

where x* is the variable, counted off along the shell axis w; and ug

are the radial and axial displacement, qI > {s the radial load on
3

internal and external surfaces of the shell, pI 5 is the axial load on
2
the same surfaces, and aJ and bj are constants, depending on Poisson's

number %. Here the following dimensionless parameters are taken:

gt =B g X e, Sy
P ' rn' P
-, L a2t 2.t

¢ - o p* == ) t e o=

*With the accuracy up to terms of the order of &3.
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Here, as the author [45] thinks, the developed method leads to preser-
vation in differential equations of all terms up to a definite order
of smallness and presence of all possible partial derivatives, and
therefore, he is of the opinion that the limits of applicability of
equations are determined by the order of remaining terms.*

We investigate the infinite cylindrical shell, to which at a
distance x* = 0 a concentrated axisymmetric momentum Qo(t*) is applied,
where o(t*) is Keaviside's function. We will solve the problem, ex-
cluding points of application of concentrated momentum., Then we arrive

at differential equations of the form:

{H—baa + 0 + B (— 0y + biay + 0y +ap-Z 4
+lay 4 B0+ bl + Ulody + by + oy +apd T+

_ Hi— b+ (88 — 0y — bty + by + aby + bl o +

B0 b+ B — B0, o+

+ U, + 0+ bl e — U100+ 0+ b s +

+ Blay+ bl = 0; (4.3)

1=t 200 5 H1 400 - + B —

9x%¢
. — £, ‘:;‘,, +§'bs'—:f:‘-}u3+
+{i—be— Bl o — B o — By | 0. (4.4)

These equations are obtained from (4.1) and (4.2), and terms of the
order higher than &3 are rejected,
We assume in points of application of concentrated momentum con-

‘ dition of conjugation are fulfilled, which ensue from general conditions

*The method needs a strict mathematical foundation.
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of continuity of displacements and deformations:

oo
R R

dL-dL=a

(4.5)

24 (2X + 3u)

Three conditions are satisfied at infinity. HereX =

A+ 2u

2

where A and p are Lamé constants. In moument t* = 0, if we accept

the zero initial conditions, such initial conditions are fulfilled,

which also ensue from the exact formulation of the problem:

o =

(4.€)

The solution of equations (4.3) and (4.4) in the Laplace image

space, satisfying conjugation conditions (4.5), conditions at infinity

and initial conditions (4.6), has the form:

2s Agexp(—nalx®D)
R 4 (x*,p) = & eXp ] _
e .;.;, P} — 1) Ay +(n} — nd) A))
A+ Adexp(—ns| D)
s [(n? — D A, + (a3 —nd) 4,)

x ‘ hArexp(—na [ x°))
—U@*p)=— '
Q. .;.;, per lin} — a'Ay + (15— ) A4l

Iy(Ay + A)exp(—ny| 2 i)
Pl —nd A, + (a3 —nd A °

(4.8)

where nk(k =1, 2, 3) are roots of characteristic equation Re n, > 0,

W, (P =§ " wp (x°, 1 ) di*

Uy (%) '.f € up (x°, (%) di* —
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of Laplace transformation,

A, = gl(leg3 - 13g2), A, is obtained from A, by cyclic permutation of

1
indices:

b, = B3 by10 + [0 + B°8y) + E200%)
&~ U] —[(8, — E%,) + £00% 1, + [(1 + E26) 7* + EW0u0").

According to the conversion theorem [46] we obtain solution of the

problem in the form of contour integrals:

.E_,;(,-mp) ‘j' Aepl —mis)) 4,
PRl A ]

'94:‘*'(": ‘bﬂll
i A+ Adexp (pt® — 3| 2° 1)
) -t (%.9)

o __hMepP—m)2*))
= u( )= — — dp +
L ,_% PO (] — & A4y + (0 — D) 44)

[ltht Moo —nisl) g4, (+.10)
Pel 1 peslsl— o) A+ (03— ) M)

§ 5. On the Propagation of the Elastoplastic Loading Wave
in the Shell

Recently we heard of attempts to develop the dynamic theory of
shells for elastoplastic deformations, which considers the possibility
of large sags which fact is important for the calculation of structures
and buildings [5].

Let us examine the action of moving axisymmetric load on free
cylindrical and conical shells.*

Let us assume that on the cylindrical free (loose) shell with a
length L at the moment t = O an external pressure begins to act, which
is symmetric with respect to the axis of rotation and spreading on

the shell surface at a certain rate v, which may be either less or

*The solution was obtained by M. P. Galin by the method of
characteristics.
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larger than the propagation velocity cof extension and bend elastic

/ E .
waves in shell kiC = 253777:75' Let us also assume that the width

of load 1 s w, i.e., the load, either is removed at a moment tz =4%
from the shell, or remains on it.

When v < k10 deformations in the shell will spread at a rate ki’
and when v > k1 the entire shell behind the front of load will be
deformed, i.e,, deformations will spread at a rate v, Consequently,
when v < kiO it is necessary to solve the second mixed problem, and
when v > k1 — the third mixed problem.

Let us note that real shells are usually reinforced on ends with
sufficiently powerful ribs, preventing the end sections of the shell
from turning and shifting in radial direction, i.e.,

¢=0,ven x=0, r=1, (5.1)
WeO,men x=0, reL, (5.2)

In the axial direction shell ends can have either a rigid (immobile)

sealing

u=0 (5.3)
or a siiding (mobile) sealing
T, =0. (5.4)

We will reprcduce briefly the course of solution of the problem

for different load speeds. In the case of subsonic speed of load

v < kj, (Fig. 21). On line x = k,t we have zero conditions: ¢ = w =
= U = 0, Py = Py = Wy = Wy = U = u = O. Reaching the cpposite edge
of shell x = 1L, the elastic wave x = k, .t will be reflected from the

10
edge. The reflected wave will travel in the opposite direction accord-

ing to characteristic dx = —k(i)dt,separating the traveling wave region
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(1) from the reflected wave region (Fig. 21); the initial velocity

reflected wave will be equal, of course, to k

10°

Solving the second mixed problem, we shall first determine the

solution in region (1), limited by straight lines x = k,.t, x = O and

10
by characteristic dx = k(f)dt, including boundaries of this region:

in 2 similar manner we will determine the region (2), limited by
straight line x = L, characteristic dx = -k(f)dt, on which functions

u, w, ¢ and their first derivatives will be continuous, and by charac-
teristic dx = k(z)dt, emanating from the point of encounter of charac-
teristic dx = -k(i)dt with straight line x = 0.

In the zase of supersonic spzed of load v > kiO (Fig. 22). Here
the solution in the region, limited by characteristics of the first
family dx = tk,dt, emanating from point O (O, O) (line OM) and point
L(L, %) (1ine IM), will not depend on boundary conditions at the shell's

’ ends, and in order to find it, we must solve the Cauchy problem accord-

ing to the data on the sector of straight line x = vt(0 = x s L,
0=t s %) in the triangle, limited by this straight line and
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characteristics OM and LM (see Fig. 22).

From the analysis of motion equations of the cylindrical shell
we see that with a load of constant intensity the solution of the Cauchy
problem along straight lines, parallel to the front of motion of load
x = vt, will not change. This circumstance significantly decreases the
laboriousness of calculations in the solution of the Cauchy protlem,
since it will be required to determine only those points which lie
directly on characteristic OM.

For the beginning of integration we will take on straight line

x = vt a point O sufficiently close to point 0. Now, solving the

1’
Cauchy problem according to data on the segment 001, we will define

point M1 on characteristic OM, of the positive direction, of the first

1
family. In point N1 lying on the intersection of characteristic of

the first family of positive direction emanating from pecint 01, with
segment M1N1 of the straight line, parallel to line x = vt, the solu-

tion will be the same, as for point M Therefore, the next point M2

1°
on characteristic OM, as well as all the remaining points on this
characteristic can be determined either by a general method, solving

the problenm of Gurs according to data on characteristics Mio1 and OiNl’
or, using the constancy of solution along segment M1N1, to solve Cauchy's
problem according to data on segment MiNl' In both cases basic initial
points 1 and j will be identical; however, auxiliary points, lying on
characteristics of the second and third family, will be different.

The preceding point (m) sought will serve as point i. In the solution
of the Gurs problem the old point j will serve as point 1. New point

j will be determined from equations:

xp—x= Ry (1, —1)),
y—x=u(l;—1)
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by formulas:

oy —kyt 5 —x

o —ky (5.5)
xp= ;4 0(t)—1,).

‘l=

The remairning values, characterizing the state of the shell, such
as the displacements, deformations and speeds in point j — will be
the very same, as in point 1i.

In the determination of point m from the solution of Cauchy!'s

problem, coordinates of point j with the given interval Ax = xJ - xi

are determined by the formulas:

3["33""&
=+, (5.6)

Along characteristic LM the solution is determined in the same
" : manner, as on characteristic OM, and here the solution on characteristic

IM will be equal to solution on characteristic OM, but with the time

L

shift by tL = 3 i.e., for any function f we will have:

A v

Fun(® = fou (1 — -:—).

In the particular case of instantaneous application of uniform pres-
sure along the entire length of the shell the solution in the corner
between characteristics OM and LM and axis x in every given moment of
time t = t  will be equal in all points of the segment of straight
line t = t*, enclosed between characteristics OM and LM.

Let us examine the problem of the same type for the conical shell.
If an external load acts on the free conical shell then the component
of the resultant of external forces appears, directed along the axis
of symmetry of the ccne which will produce a motion of the center of

' the cone's mass, However, until the entire shell is deformed, i.e.,
until perturbations reach the end x = L, it will not start to move as

a rigid body, and the center of mass will be motionless.
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After the perturbations reach the edge of shell x = L, the latter
will begin to shift in the direction of the shell's axis as a rigid
body, simultaneously having, of course, the displacement due to defor-
mation. Consequently, in order to have the possibility to apply the
equation to the shell in its motion with respect to the center of mass,
it is necessary to stop the center of the shell's mass, and for this
purpose we must apply to the center of mass d'Alembert!s inertia,
equal to the axial (in the considered case — horizontal) component of
the external load resultant, d'Alembert'!s force will act on every
element of the shell's mass, Therefore, acceleration of the center of

mass (overload) will be equal to

P 2
0“7‘. (5.7)

where PX is the horizontal component of the external load resultant:
M is the mass, for instance, of the entire structure. A portion of

d'Alembert's inertia will act on the shell (separately), equal to
P.-QM‘. (5.8)

Here M* is the mass of the shell. If ro concentrated masses, located
inside the shell are connected with the shell, then the intensity of

this load can be written in the form

p‘m.-:—.o (5‘9)

where S is the surface of the shell's area., Let us note that if a
tangent load will act on the cylindrical shell in addition to the
external pressure, then the character of the shell's motion will be
similar to the mction of the conical shell just described., Let us
introduce instead of s the variable x = s - s, (so is the distance on
the generator from the summit to intersection with radius ro), then for

the new variabtle the boundary conditions with x = O and x = L for the

207




conical shell will have the same form as for the cylindrical shell.

In solving Cauchy's problem for determination of solution on the
OM characteristic (Fig. 22) we no longer will be able, in the case of
a constant load, to determine all values on this characteristic, not
knowing thelr values in the entire triangle OML, because the solution
along straight lines parallel to line x = vt, will no longer be constant,
since coefficients 1n motion equations will now depend on s(rO = 8
sin B).

However, for the conical shell of small conicity the radius of
cross section Ty will change 1little, but in lergth, and therefore,
without any large error, for simplicity of calculation, when the length
of the shell is no. very great, this change can be disregarded.

We may assume that in narrow bands Ax' wide which are adjacent to
characteristics OM and LM, the solution along segments, parallel to
line x = s - 85 = vt, will not change even with great conicity.

Thus, in the case of the conical shell, on which a uniform load

travels with the speed v > k the solution on characteristics OM

10’
and LM can be found with a great degree of accuracy, without determing
it in the entire triangle OML; where, in contrast to the cylindrical
shell, in the actual triangle OML the solution along straight lines,
parallel to OL, will change the more the larger the angle of conicity
of shell and the longer the actual shell. We also note that with the
small conicity of the shell, when only external pressure acts on it,
it can be replaced without any great error (which essentially simpli-
fies calculation), by a load, directed perpendicularly to the axis of
the cone (without introducing d'Alembert's inertia).

Let us show an example of numerical calculation of a truncated
r

conical steel (steel 3) shell with half-angle g = 11°, for —p = 136,

The calculation is performed for external pressure p = 112 kg,/cm2 and
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tangential load Pg = 22 kg/cmg, spreading along the shell with the

speed of 10 kg/sec in the direction of growth of r. in a band, with

0
the width 1 = 200h, where the tangential load 1s directed also in the
direction of growth r'ye In the calculation it was assumed that the
mater.al of the shell is not compressible.

The solution was found on characteristic OM. We assumed that at
the distance Ax = 0.85h in the direction of the streight line x = vt

the state of the shell does not change. Results of the calculation are

shown in Fig. 23 and Table 3.

Ly £ _
| TN - &

3
&
63
Q
: <l
0 1 2y v 8 13
Fig. 23
It transpired that when t = ts = 11,1 — ) in section
B
——
\[pu—v)

X = Xg = 11.1h plastic deformations appear for the first time in the
shell opening. It was assumed that sliding stopping is used on the

end Xx = 0. Results of the calculation are given in the same Fig. 23

and Table 4, as referred to above when to.= 0.565 I
E

—

‘/'p(l - v7)




deformations in the stopping were still elastic.

Teble 3. Change of Values Along the Charac-
teristic of the First Family dx = kldi,

Originating from Point (0, O) and Line
;('-X=V(T’:-t)

LJ [
Point | % ..'_‘/ E_ ‘s b sz n “
mmbersl & | a ¥V i) "7; 1ok o wT.' 0, "7;
1 3 3 . s | 1 '
00 10 1) 0 . 0 0 1) 0
1.1 0,85 0,88 -0,11 ] 0,521 0,312 0,457
22 |1l 1.0 | —0231] o027 19 | 1,9 | 107
3.3 |28 2,56 —0,3871— 1,08 2.47 1,74 1,44
44 (3.0 3,40 -—0.451|— 3,06 2.8 2.9 2.5
55 142 4,9 -—0,6201— 5,92 4,28 4,73 | 3,14
66 15,10 5,10 —0,785{— 9,98 5.4 7.% 6,03
7.1 s.“ 5.“ . "'o. — |5.7 1.” lo.’ 9.‘3
.8,8 16,80 6,80 -—1,06 |— 23,9 10,7 16,0 14,3
9.9 |76 7,65 —~1,19 |— 35,4 14,8 23,1 21,3
0,10 ] 8,50 8,50 —},30 |— 61,7 20,6 3.2 31,2
1,11 ] 9,35 9.3% -1,37 |— 4,7 2.8 47.4 45,2
2,12 |10,20 10,20 -1,40 |—107,0 40,4 67,6 65,1
3,13 11,14 11,14 —1,35 1—1569,0 62,1 100,0 97,2
4,14 11,60 11,58 ~1,71 |—200, 109 14,0 130,0
5,16 12,04 12,07 ,72 1—-287,0 130,0 | 174,0 167,0
6.16 |12,93 13,13 —~12,1 |—441,0 33,3 | 270,0 24,0

Table 4. (Continuation of Table 3)

' 2 3 . s s ? .

0.1 0 0,142 | —c,0000382| —0,663 | —1.16 | 0,773 | 0,773

0,21 0 0,555 | —0.000139 [ —1,08 | —1,77 1,2 1,20

Calculations performed show that the deformation of transverse
shift in its value 1s approximately equal to the flexural strain
(elongation-compression in external layers); now, the elongation-
compression deformaticn of the middle surface is by a whole order
smaller than flexural and shear deformation. The velocity of the
elastoplastic wave of the load, appearing at point (xs, ts) of the OM
characteristic at moment t = ts will be approximately equal to the
velocity of load v. Along the LM characteristic the solution is found

in a manner analogous to finding it on OM.
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CHAPTER V

STABILITY OF SHELLS WITHIN LIMITS OF L 'ASTICITY

§ 1. Formulation of Problem

Let us assume that a sheil is acted.upon by a load, which is
increasing in proportion to certain parameter A; conditions of fasten-
ing of the shell are such that with a certain A, for instance A = 1,

a zero moment state of strain exists,

In process of loading changes in the forms of equilibrium of
shell are possible, For values of A, smaller than a certain XO’ tnere
exists only a zero moment form of equilibrium of the sheli, which
corresponds to a minimum of energy of the "shell-external forces" sys-
tem, Further, there exists a load to which corresponds rumber Xi 2
z XO which is such that when XO s A s Xl along with the zero-moment
form of equilibrium of the shell has a moment forms also, but the
zero-moment form will have a lower energy level than any moment form,

Further, we can mention number xg F4 Xi, which is such that although
the zero-moment form of equilibrium of the shell has a relative minimum
cf energy when xi <A K Xg, there is at least one moment form of ecui-
librium, to which corresponds a lower energy level., Finally, when

A > A, the zero-moment form of equilibrium of the shell, in general,
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ceases to be a minimum of energy point.*

Such a change of the forms of equilibri.m is established 1n a
number of investigations of the shell behavior by solving equations
of nonlinear theory of shelis by approximation,

In deriving [55] of such equations of the nonlinear theory of
shell stability we assume that curvatures along ox and oy axes certaln

constant values, which phenomenon exlsts near second-order surfaces

P;%w+—§-by'+cxy+dx+ey+i-'o.

Consequently, the nonlinear theory undsr consideration 1s applica-~
ble to chells, the middle surface of which may be expressed by a
second-order equation.

Let us direct oz axis to the normal to the middle surface in the
direction of the center of curvature; we willl select the origin of
the coordinates in a point of the middle surface of one of the angles
of the rectangular contour of the panel of the shell. Let ox and oy
axes coincide with directions of the lines of the main curvatures of
the shell, Let us designate the thickness of the shell with h, its
dimensions along ox and oy axes with a and'b (Fig. 24),.

Let us assume that k1 = const 1s the curvature of the shell, which
retains the constant value along the ox axis; k2 = const is the curva-
ture, remalning constant along the oy axis., We willl designate with
u, v, w the displacement of points of the middle surface along ox, oy,

oz axes respectlvely. Displacements w will characterize sags of the

*Expounded here 1s a wide-spread point of view on the stablility of
shells: in the author'!s opinion there can be other points of view, The
reader will find a survey of the contemporary state of problem on the
shel? stahllity in the article by Feng Yuan Chien and Ye, Ye, Sekler
"Instability of thin elastic shells," Elastic Shells, Foreign Litera-
ture, 1962, Interesting results in the USSR belong to the Kazan!
school, See "Nonlinear theory of plates and shells," Publishing
House of Kazan' University, 1962,
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shell, the positive values of which currespond
te their direction toward the center of the
curvature. Sags w are not small in compari-

son with thickness h,.

0 0
ILet us assume that further €yx and eyy

are linear relative deformations in the
middle surface along ox and oy axes, egy is a relative deformation of

shift, %%'= Nys %§-= ny are the change of curvature of a deformed

shell along ox and oy axes; Ny is the torsion of the middle surface,
For components of deformation of the middle surface, changes of
curvatures of a shell and displacements of its middle layer we obtain

the following approximate relationships:
-t ()
hem 2+ (‘:) kyw,

4-%}+%(%y-um (1.1)

o da (1.2)

Let us find deformations e for the layer, located at

xx’ yy* Cxy
a distance z from the middle layer,
According to the hypothesis of straight normals we can assume

that for nn~ints of this lajyer (Fig. 25)

U=0—-Zb-. 10
Since the thickness of the shell h is small as compared to the radius
of the curvature, we can consider here and subsequently that the sag

of the middle layer wo is equal to the sag of any other layer of the

shell,
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N ' In view of that fact that sags w are con-
ow ow
. M o sidered so significant that ( 5—;)2 and (Ty are
dug
:- & values of the same order of smallness as S
ov
Fig. 25. and 5—95 then (13) can be rewritten in the form
Yy
o .
=l

and by ar.alogy:

(o d
el (1.4)
(o d
ty=d— 20,
where values eo e and €2 are determined by formulas (1.1)., More-
xx? YY’ Xy . .
over on the strength of the hypothesis of straight normals e__ = e =

yz zZX
= O, According to Hooke law, component of deformations and stresses

are connected with one another by relationship:

Y

=l —v@,+o)l e,= .!1‘.:_"’ e
i | , ; (1.5)

%u?lc,—-v(c,-l-a,)], e, = -.’.(_lét_).f,"

1
sy = 3 lo;—v(o, +o))l. e,= 'ﬂlsii Tam

where Oys o] To.s T

y.' GZ, Xy yZ,
these equalities it follows that:

and T,y are components of stresses, From

C‘B ‘f" “n“"‘”)-

" - 1 _B‘(en + "‘l)l

(1.6)

w0

Here v 1s Poisson's ratio, E is the elastic modulus. Introducling here

value e ... from (1.4), we have:

xx?
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where it 1s designated that:
=t )
'_' z - 3 i

o) (e + el
E 1—v oo

€ - &y

T e 2

are components of stresses in the middle layer,

(1.7)

(1.8)

Let us separate the element of the shell by planes, parallel to

the coordinate.

tion of the element, will be (Fig. 26):

LA
J
Tl = S c‘dz,
[
2

A

3 ..
Hy = s; t,}:dl. Hy

K}

&
-sL %y, 242
3

Forces, acting on one unit of the width of the sec-

These forces are cuasidered positive, if their directions coin-

cide with the positive directions of external ncrmals towards
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and +0y. By virtue of relationship

Txy = Tyx,

known from theory of elasticity, one
- may assume that

S,=5,=S, Hyw=H=H. (1.10)
Let us introduce in (19) value o_, Oys Ty, from (1.7). We will obtain
for M1:

s s
B ol
My = q;dz- }: o — -+v——- d2 =
o Jole-ta@e3)
R ] i
s
H E (¥ ! H Pw K ol
- .["3"”_“7:.\3+"5;-') .[""'"“"(z-“"“:“‘
-3 -
3
where D = )

> is cylindrical rigidity,
12(1 - v°)

Analogously we will
find M2 and N, Consequently:

My=—D -——+v-—-——)

m-_0(2+'_) (1.11)
H=—D(l-v)z-—-.

Substituting now in expressions (1.9) for Ti’ aC) Ni’ N2 values
Oxs Tys wees Tyy from (1.7), taking into account (1.8} and (1.1), we
have:

R ]
e f - s% [«s—-,—‘—'-(%w’%)]a- § -
l
'(° 2(l—~'; :: ’ dv') '""")”
8._‘5’1:'(4,-“.;”).
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Introducing here values e? and eO from (1.1), we will obtain:

XX yy
=15 "1 [g.' 'r"l"\_ —he+
R e(E) (g

SIS EHORES!
Analogously we will find T, and S = S1 = Sg.

Thus we obtain important formulas:

Bl (B) ()]
e[ )5 (5)-

| -k.-—vt.-]. (1.12)

=R (% 0 N
e T a T a

which produce a relationship between tangential forces, effective in
the middle layer, and its displacements, Shearing forces will be
determined below,

Excluding unknown displacements of the middle layer U and Vo

from equalities (1.12), we can express forces T,» T, S through sags

W,
First let us ncte that from (1.12) we can obtain the following
relationships:
T, —T, = Eh [%“"— + -‘;(%)' —k,w] .
To—Ti=EA[ 32+ +(&) ~kw]. (1.13)
“ssaa tatE )

Using these equalities, let us set up equation

21’




N

T RISy

(Ti=To+ o Ty — T —2(1+9) o "’
- B .._.['..‘!9. _-(—- -—k,.]
rELE ATl 2 Es)-

- S5

—h -}

L
»

But, according to rules of differentiation

S-S ()
BLE)-HES)-C ~++:-a,.,-

*‘! u\axdy oy
e o

=;.-f,;-,;,—+(.,,,) w '5.-"+%

Introducing this into the preceding equation, we will obtain:

M= Ta+ = T)—2(1+9) 7 =
’_.___ ey Ll 11.14
Bh[( ™ k"u]' (1.14)

.Equation (1.14) gives us the sought relationship between forces,

effective iIn the middle plane of the shell and its sag w.

Introducing the stress function ¢ by formulas:

r‘-h_"_'l r,ah.;‘i, Su—hﬁ (1.15)

equation (1.14), after substitution of values (1.15), will assume the

form:
1 O Ow o Pw [ Fw \*
FUTeth ISt hie - TR (), (1.16)
where
2 ,__°_v_ 9. %% L 9% 1.1
Vo= oi + 200+ 22 (1.127)




VQVE( ) is a biharmonic Laplacian operator,

Now let us turn to the construction of the equation of equilibrium,

Let us assume that on the shell act the following losd: trans-
verse q = q(x, y), effective normally to middle surface; compressing
or stretching forces hp(x) and hr(y), applied normally to the edges
of the shell; and shear forces ht, acting along the edges.

Let us separate element hdxdy from the shell by two pairs of
mutually pervendicular planes, parallel
prior to the deformation of the shell,
to planes xoz and yoz,

Forces, acting on the edges of this

' element, are shown in Fig. 27.
Fig. 27.

When the middle layer is bent these
forces turn in space, Projecting them on mobile coordinate axes and

rejecting small values of the higher order, we will obtain:
Ty _ 35, —S.dx —
(1'.+ a‘dx)dy r.dy+(s,+ dy)dx S, dx
—N.dy—-——dx-(n.+-"1'-dx)dy.-—-dx=o
-r.dx+(r.+-"-"-'dy)dx+(s.+ %dx dy—S,dy —

(~.+ dy)ax?— y——N,dx— 7dy=b

oy

‘?‘.

+(S. -——dx+8.)dy—,ﬁ+
+(s,+'%”s!dy+-'s.)dx-;mdy+( .+Qg—“—dx-—N.)dy+
+ (Mot St dy—Ny)ds +q(x. y)dedy = 0.

Performing reductions in the first two equations and rejecting

terms of the third order of smallness, we have:

... <19
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L > ta =My 7

The third equation after opening of brackets will be

oWy + I Tededy + Trdrdy o +

+%’-dx’ o dxdy+21'dx +2r.¢x-—dy+
oy Sy +”“’”‘z‘7;a“;“+ (1.19)
+-‘§1my : m'dz+“'my——+zs.¢x-;;;;ay+
+.‘_’1¢,¢;_‘L+:'dydx; ::'dy+ . drdy +
+ 5 dyas + qaray=o0.

Taking into consideration relationship (1.10) and rejecting

values of this third order of smallness, after reductions we will

’ obtain:
| r- -_.. ! sl Po
: aio-+Ty '+7; -FTQQ' +!hdnh'+s'a@'4—
i Ny, Ny
o+ G He=,
or
W Wy Ty, Ty _p o dw_
x t R TR Tion T'ay- (1.20)
_gq ¥
axdy

Comparing equation of moments of these forces with respec* to

the ox axis (Fig. 28), we have:

(M. +-%g!-dx)dy—-M,dy——H,dx+ (H, 4 dy)dx—

(N.+"”'dx+N,)dy dx =0, (1.21)




which, after simplification and calculation (1.11)
yilelds

™, M 2
”-=~,,—'+;-—-D;;v‘v- (1.22)

Analogously we will obtain:

Relationships (1.22) express equality to zero of the main moment of
all forces, acting on the shell element examined, With the help of g
equalities (1.22) we can exclude from (1.21) the severing forces N,

and N For this we will introduce N, and N, from (1.21) into (1.22).

2‘
We have:

1 2

2 a2l 4 B i r(h+ )b+ 52) 4

=y (1.23)

Pw
+?3';;;'+0-°-

Equations (1.18) and (1.23) give us the sought totality of funda-

mental equations of equilibrium, The right sides of equations (1.18)

2 2
can be assumed to be equal to zero, since values 9—33 é—% have the
X y

order of -, and N, ~ h3w N, ~ h3w then the right sides of equations
2 » s 'y -
b2 1 i; 2 aS
3.2 il oT
(1.18) have the order of Ll 3 8 N, whereas —-15 %é-and others will
hw2 hw2

have the order % %
b a

Introducing according to formulas (1.15) the function of stresses,
we can easily see that equations (1.18) will be identically satisfied,
Taking into consideration expression (1.11) for moments, after intro-

ductior of function of stresses, equation (1.23) will be rewritten

thus:
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will be written in an abbreviated form thus:

DV'V'”"*(M% +*a%)‘—

(81T R ¥ & 1.24

where V2V2( ) 1s a biharmonic Laplaclan operator,

The equation of equilibrium (1.24%) is the second fundamental
equation of the theory of flexible sloping shells,

We must note that in setting up fundamental equations (1.16) and
(1.24) ox and oy coordinate axes were assumed to coinclde with the
main curvatures, In the more general case, when there is no such

coincidence, equations (1.16) and (1.24%) will contain component

&F
kyy = .
™ oy

where F = F(x, y) 1s the equation of the middle surface of the shell,
This term takes into account the influence of the curvature of tor-
sion on defcrmation and stressed state of the shell, Assuming that in
(1.16) and (1.24) the initial curvatures are k, = O and k, = 0, we

will obtain equations for plates with a large sag:

voo=£[(55) — o)
thvtw_qgh[.ﬁ;’ﬂ+_iﬁ._2 *; _ _Ow ]

*
op It ' At o dxdy oxdy




The problem ci the bend and stability of plates and shells, as
we can see from the preceding facts, is reduced to integration of the
system of consistent nonlinear partial :lifferential equations of the

fourth order:

.%’W”"’ +k‘;’_!’_+.’_".l';_ ._._) =0; (1.16)

DV'V’"’“"(‘:% + .n"f‘;.!') —

Py Bw B Pw P Fe\ (1.25)
(Jf ax-+o;- o 2 arey 0:6') g9=0.

The relationship between forces, acting in the middle layer,

and the displacements is determined by formulas (i.12):

e G e ]

9
2[5 e T ]

r"‘l—»' dy o
Ek | M , d0p , dw o (1.26)
L]
§= 200+ 0r+ox+ax av)’

In the case of the spherical shell (k;, = k, = k) equations (1.16)

and (1.25) will assume the form:

£ Ve + byt S22 — (Y o,

| *y Fw @-M_ *y Fw) el
Dy*vw — hiy'e — h(ay' ot ax:om 2,0:0, doxdy 9=0.

For the cylindrical shell (for instance, k, = 0, k, #£ 0) the

equations will be as follows:

| Pw , Fw Mw FPw \t
FIVeth I+ 02— (%) =0,

£
Dv’v'w—hk,-g- (a'f [d a'v a-u 9.9 "")—q-o.

op ax' ivz Iy dxay

If signs of curvatures k1 and k2 are different, for instance

k1 > 0, k2 < 0, then these equations can be used as fundamental

N
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equations of the theory of flexible shells of negative Gaussian curva-
ture,
Dropping the nonlinear terms in equations (1.16) and (1.25) we

will obtain fundamental equations of shells with small sag:
Y AAART R NP
Dy'yw—h(k Tt +4 22 ) —q=0,
to which the linear technical theory of shells is reduced.

If in the classical theory bends of plates are usually prescribed
by two boundary conditions with respect to w on edges, then in the
nonlinear theory these conditions are already insufficient. 1In addi-
tion to two conditions about sags here we must prescribe two more con-
ditions on every edge with respect to the function ¢.

Instead of boundary conditions relative to ¢ we can prescribe
displacements u and v, which are connected with w and ¢ by conditions

- a’Lf 13

(1.26). In the nonlinear theory of bending

a;P) of plates concepts of hinged support, rigid
-ZE==:?=f§L clamping, and others require a somewhat more
Fig. 29. precise definition. For instance, diagrams

of fastening of edges (Fig. 29) in the linear
theory correspond to the idea of hinged fastening of edges. However,
working conditions of these plates with large sags will be different,
Boundary conditions of diagram (a) can be recorded thus. Sag w and

moment on edges x = const turn into zero:

Wm0, M.-—o(%“:+v§§)-o,

where, by virtue of the first of these boundary conditions, the second

one will turn into a simpler
P
-a-;-f=0.
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Furthermore, since no external forces are applied on the contour

then normal and tangent forces on the edges are equal to zero:

In diagram (b) nothing can be said beforehand about forces on

B . edges, but about displacements one may

Fig. 30,

assume that they turn into zero on the
edges.
Consequently, boundary conditions for fastening of edges accoraing

to diagram (b) will be written thus:

.-:%-::0, u=v=0.

These conditions indicate the fact that the geometry of the shell's
edges when it is bent remains the same and they are not displaced.

In the third case (c¢) of fastening of edges the boundary condi-
tions will be:

w:...—'-—-no.

4 = cunst, v = const,

which expresses the fact of displacement of the panel's edges during
deformation of the shell parallel to themselves,

Combinations of these methods of hinged fastening are also pos=-
sible,

We can reason analogously also in the case of clamped edges (Fig.
30).

Boundary conditions, corresponding to the diagram (c), can be

written thus:



and boundary conditions of diagram (d) will be

.--:— wmi=p =(,

In the first case (c) upon deformation of plates the edges are
warped., In the second (d) the edges remain rectilinear and are not
displaced.

In the linear theory there is no necessity for such distinction
and diagrams (c) and (d) can be considered equivalent.

In the case, when on plate edges displacements u and v are pre-
scribed after integration of fundamental equations (1.16) and (1.25)
according to the function found ¢ and w we should set up general
expressions of displacements u and v, which we should then subordinate
to the prescribed boundary conditions on the edges. Other conditions

are not considered here.
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§ 2. Panel of a Flexible Sloping Shell

Let us examine problems cn the bend and stability of panels of
flexible sloping shells (geometric nonlinearity).

The term flexible is applied to such shells, for which sag is
comparable with their thickness. For that we take into consideration
geometric nonlinearity, expressing the deformation through displace-
ments in the middle surface by relationships (1.1) of this chapter,
i.e., in the series for components of deformation we retain terms of
the second order of smallness with respect to sags w(x, y). The
problem may be reduced to integration of a system of two nonlinear

equations (4.16) and (1.25):

¢

i Py Yol [(Fe 1
FVVe L 2k R+ 2 on () =0, (2.1)

V=Dyvo—h (bl +h o)~

h[(Fr B S B, ¥ Fe

o T ap Zarey amey) IO

aunder corresponding boundary conditions.,

The majority of problems of the nonlinear theory of elastic shells
is solved by approximation methods, while, in view of their complexity,
we usually limit ourselves to a solution in series in the first approx-
mation. We can acquaint ocurselves with many solutions in books by
A, S, Vol'mir[4] and Kh, M, Mushtari and K. Z. Galimov [47]. Usually
we apply Ritz and Bubnov-Galerkin methods.

Let us give here the solution of problems on the bend and stabil-
ity of a flexible sloping shell, constructed by M. A. Koltunov in the
first [48] and higher approximations [49] by the Bubnov-Galerkin
w.othod,

Solutions of such problems present an interast from the point of

view of possibility of establishment of a region of instability of

e



shells. The linear ctheory of shells enables us .. establish only the
upper boundary of this region. Experiments show that values of cal-
culated critical stresses do not coincide with experimental values and
exceed them significantly.

Examination of the problem on the bend and stability of shells
in the light of the nonlinear theory enables us to foresee the behavior
of the shell after loss of stability and to establish not only the
upper boundary of the region of instability, corresponding to critical
stresses, obtained by the linear theory, but its lower bound also.

Let us present certain considerations of s general character
about the solution of problems of this type. Let us assume that to
the shell, which is somehow secured on hard piecewise smooth frame, we
apply an arbitrary transverse load q(x, y) and compressing or stretch-
ing stresses normal to edges, the components of which along oy and ox
axes will be p(x) and r(y). It is required to determine the relation-
ship between external forces acting on the shell and its sags, not
considering the latter to be small, For the solution of this problem
it is necessary to integrate equations (2.1) and (2.2). In view of
the fact that methcds of exact integration of these equations so far
have not been found, we will look for their approximate solutions in
the form of series:

9= Ann [Uu (X) Vn (y) —0 (X) -2 (y)'-

0= VY aaXa (DY, 1)

where A and f = are unknown constants, but functions U (x), V (y),
Xm(x), Yn(y) are selected beforehand in such & way, as to satisfy all

static and geometric contour conditions,
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Applying the Bubnov-Galerkin method, we will enter these expres-
sions for ¢ and w in equations (2.1) and (2.2), then, multiplying in
accordance with their physical sense the first one by the variation
of function of ¢, and the second one by the varlation of function of
w and taking into consideration the independence of variations of
parameters GAmn among themselves and variations of parameters 6fmn
among themselves, we will integrate the expressions obtalned with
respect to region, limited by the contour cf the shell. From the
system of nonlinear algebraic equations obtained we will find unknown
parameters Amn and fmn'

The feasibility of application of the Bubnov-Galerkin method to
operators ¢ and W was studied in the works of I, I, Vorovich [50C] and
other authors., The same subject is related in [51], where the procof,
proposed by A. R, Rzhanitskiy 1is adduced.

According to the physical sense, continuity equations of deforma-
tions (2.1) and equilibrium (2.2) must tolerate one solution each and
be the conditions of extremum of a certain function Q(w, ¢). Let us
assume that such a functlional exists. Necessary conditions of extremur

of functional Q(w, @) with respect to w and ¢:
1.Q(w, 9) =0, 3Q(w,¢)=0,
must coincide with equations (2.2) and (2.1) i.e.,
W, @) =0(w, 9), 3,Q(w. ¢)=W(wg)
Modifying these equalities, we will obtailn:
W R @ )l = 3.0 @) &B,Q(@ )] =2W (w,¢).

Subtracting one equality from the other, we willl obtain the necessary

condition with which equations ¢ = O and W = O are conditions of

extremum of functional Q,

l;
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,0(w, 9) =3,W(w, )
It is not difficult to verify that for equations (2.1) and (2.2) this
equality is fulfilled.

Indeed, Euler's equation gives for the first one of them:

30 = a-"ax (a-,) dn(a-y)+;(‘:‘)+

= am av,,)+ (aw,,)* ' ['“' )+
+2,¢kh( )t~ 257:73»7

.Analogously we will obtain:

=_:>'[ ( )“axa.( —25a)t
(2] - 24

.Consequently, this equality is fulfilled with an accuracy up to a

constant factor, Multiplying (2.1) by é%, we will obtain the exact
fulfillment of the condition of appiicability of the Bubnov-Galerkin
method to the solution of nonlinear probtlems of elastic shells,

Let us examine the solution of the problem in the first approxi-
mation, We will assume that functions U(x), ..., Y(y) are selected
so that all boundary conditions are satisfied, We will write the
solution in the following form:

¢ = AU (x)V () — 6(x) — . (4)], (2.3)
w =X (z)Y (y). (2.4)

where functions 6(x) and A(y) are selected so that

O(x) = p(x). W)= +r () (2.5)
Setting up the Bubnob-Galerkin equation:
,( OWU.V.X.Y,A [.p.r)UVdxdy =0,

&[W(U. V.X.Y, A [ p.r.q)XYdxdy=0,
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where (G) is the region, limited by the contour of the shell, and

integrating, we will obtain:

A L= A 1%+ pli=o, (2.6)
— ANl AR, + Dfly,— Afkly + Afkl, — I,y = 0. (2.7)

Here Ii are constants, depending on the dimensions of the shell,
its curvature, external forces, and boundary conditions, and are

determined by the following formulas:
I, = L; (U 4 2U"V" + UVV) UV dx dy,
Py ‘Lj [0V 4+ W)UV dxdy,
1= &5 (kX"Y + & XY")UV dxdy.
= Jﬂf (X"YXY” — X' UV dxdy,
1.;£‘§(k,u~v+ kUV") XY dx dy, (2.8)
I, = Q‘ (#,0” + k") XY dxdy,
Iy = L,[ (XY 4 2X"Y” 4 XYWV)XY dxdy.
ne L‘g UV XY 4 UVXY" —2UV'X'Y") XY dxdy,
I,= ﬁ (' X"Y + @XY”) XY dxdy,

Iy = ’\;‘f q(x, y) XY dxdy.

Calculating these integrals for either form of fastening of
edges and prescribed loads and then introducing them in equations
(2.6) and (2.7), we will obtain a solution of the problem posed.

Determining from (2.6) the value

A=_5_";-_i"_"i'£& (2.9)
179

and introducing it in equation (2.7), we will obtain:
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-

Iu"D”"‘H"f‘{—?ﬂ(’c"'&—”rl‘”o). (2.10)

Equality (2.10) yields the sought relationship between the load
and the sag in the center of the shell, Subsequently we will term
equality (2.10) the general solution in the first approximation of
nonlinear problem of bend of sloping siiells under any conditions of
fastening of thelr edges on plecewlse-smooth contour and under any
loads, prescribed on its edges and acting in the normal sense toward

its middle surface.

For the case of a plane plate the equation (2.,10) will assume

the form

lolly—Iy)

which gives us the solution for compressed-bent plates of finite

rigidity.
Let us adduce the sclution of the problem in the case of hinged
yrnir o) fastening of edges of the sheli panel,
having in its plan tiie shape of a quadrangle.

Let us assume that the shell is sub-

Jjected to the action of an arbitrary lat-

“p (6 5)

eral load q(x, y) and stresses applied to
the edges of stresses, distributed along

the edges according to the linear law

(Fig. 31). The solution should satisfy

the following boundary conditions:
U-%—::O, when x=0, r=gq;

» (2.12)
W=-3§-=0. when Ym0, y=0b,
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(2.12 continued)

where

Here we examine a shell with Gaussian curvature I' = kikg’ which
is positive, negative, or equal to zero,

As approximeting factors we will select Ffundimental beam functions:

U@)=sin==., V(y)=sin—L,
(%) Z (¥) = sin— 1885

X(x)_=sin—':‘—. Y(g)=sin—“:—.

corresponding to the fundamental tone of oscillations of a beam hinge-
secured on its ends,

Thus, solutions (2.3) and (2.4) will be written in this manner:

9=A[sin€'—sinl:——-0(x)—l(y)]. (2.14)
w=fﬂn—§‘—s§n{1. (2.15)

Here
o"(x)=-!;-(|—;—:-). ':.;',=-a?-(l—-q—:-). (2.16)

Calculations, performed by S, P. Timoshenko [52], showed that
in plate the stresses from compression predominate over stresses from
bending, i.e., if coefficients £ and n do not exceed the value of 2/3,
then the expression (2.15) reflects with sufficient accuracy the bent

surface of the plate. Therefore, let us construct our solution
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applicably to values € < 33 n s 33 For € and n, exceeding these values,
we must use a large number of terms ot the approximating series,

It is not difficull to be reassured by direct verificaticn that
in the selection of functions ¢ and w in formula (2.14) and (2.15)
all boundary conditions (2.12) are fulfilled exactly, except for the
value of tangent forces, acting on the edges, which turns into zero

on the "average," i.e.,

,”g-_j'—“f-dx---;ms" cos —dx =0 (2.17)

[cp= av = average]

on edges y = 0, y = b, We will have the same on edges x = C and x = a,
Consequently, in the problem we assumed the presence of tangent forces
on the edges of the shell, which fact has practical significance.

The diagram of loading of edges by forces t, p(x) r(y), and
q(x, y) is presented in Fig. 31.

Determining derivatives (2.13) and introducing them in integrands
(2.8), alfter integration and calculations we will obtain the following

values of integrals Ii:

"= »
e b a
by=—= (k,a +k,b),
l.=_;__;'i, (2.18)
L. L a
'l—" 4 (kﬂc +kl‘)-

Io= S5 apy (1 = 058) + kyry (1 — 055)],

ne g (E+4)S

s

‘ab

8
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l.-«--—-[—-r.u—-osv.u Pl —05i].

qu(x. ”)s'ﬂ—sm-—dxd, (2.18 continued)

JIntroducing the obtained v~lues of Ii in (2.9), we will obtain:

A= 3EI(‘.¢'(+M—I)GEP (2.19)

The general solution (2,10} after substitution there of values

from (2,18) and performance of calculations will assume the fcllowing

form
0. — L5 19y (1 — 0.50) + 1y (1 — 0591 +
. * ) .___._._.." .-l_ W
050 —050 + 7,01 — 05t = = (v+ YU+
+ (x + 20 7 — 16 (2 4 %) o+ $12 0. (2.20)
ﬂ@+—) ﬂ@+—) 9#@+—0
[ = a = any]
. * Lab
Here we introduce dimensionless parameters: _37_1' 10 1
T Eh

the parameter of any transverse load.

In the particular case o7 an evenly-distributed load:

* qa* | o__Poﬂ'
QG =— Y’q‘ q* =g mile =g
. b’ k,a° kb°
To = Eh2 are parameters of compressing forces, Ny = {5 Mo = |

are parameters of curvature; { = ﬁ-is the relative sag; v = g-is the

relation of sides of the contour, close to a unity,

In these designations expression (2.19) will be written thus:

A* = 35(‘1'*“3){.—"65(’ (2.21)

w(rg)

=35

I e R N e TG e TN, S R gy P YT TR T A b _— -
Eae j pi ¢ =
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where

A
A.=-'-.-’-.

Formula (2.20) ylelds the sought relationship between the trans-
verse load q(x, y,;, compressing stresses, and the sag in the center
of the shell, secured on a rectangular contour,

In the case of a rectangular plane plate the general solution
(2.11) after introduction of values I
the following form:

4 from (2.18) into it will assume

0, +175 (1 — 059) + (1 — 0SB =

-—— AV 512 (2.22)
20— ('+ 1) +"'(l+‘£‘)'t

The value of paramete. A* for the plate will be
A% = — 16ED ]
(e 7y
|
Now let us investigate the stability of a panel of a cylindrical
shell,
Let us assume that on the edge of the shell, which has the shape
of a cylindrical panel, act only compressing stresses r(y) = ro(i -

-1 %), directed along the generator (Fig. 32). In this case

q;=P;=‘x=o-

Formulas (2,21) and (2,20) will turn into the following:
g - Ent—16ED
1\’
3x? =
(r+7)

® e ! x? _!_. .__.._._._._.._._!’ —
AU —05)t= 2 (v LYy v (2.24)
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Assuming that { # O, i.e., examining the panel after the loss of
stability, we will obtain:
1 512 1

(L)

r;-..-= o+
120—+) 1—0,5, w(ﬁ--;—)' 1 —0,51,

, | (2.25)
+ 2 1 1624 1 4

a(ieb) TR (e Ly T

In the case of a square panel (y = 1), compressed by an evenly-

distributed load (n = 0), we will obtain from formula (2.25):

L] =t lﬂ ‘: "l. -~ L
f.-: - + P C’.’. v — = o (5.20)

This formula of M., A. Koltunov differs little from the result
obtained by A. S.Vol'mir [4]:

L. P N .. N
h=3a—= t30t = (2.261)

which is obtained on the assumption of the free slipping of contour

points of the shell along the contour,

In the interval of sags O = £ £ 4 formula

.

()]

(2.76) gives a somewhat smaller load for the
achievement of the same sag, than formula

(2.261).

>
-3
\
\ \
\}
— — — =M\

[B = u = upper] (2.27)

Fig., 32.

<37

|
i :
1 : " Graphs of curves (2.26) and (2.26') are
: | : drawn in Fig. 33. Assuming that in (2.,25) ¢ = C
' : | l we will obtain the value of the criticasl stress:
{ y -
. = 1\s 1 X3 1
= e— — .
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which, when n = 0, coincides accurately with

the known S, P, Timoshenko's formula.

Value r: is termed the upper critical

stress., For the determination of the lower

critical stress from equation

; : &y - 1024 - |
« 1\ 1— h—o&
it (+7) ='( il
N"’: (7:1. 9:0/ : I T 1 +
¢ 1 2 . T T
we find the parameter of the relative sag
Fig. 33

= (2.28)

which corresponds to the minimum vaiue of the compressing load. Intro-

ducing (2,28) into (2.25), we will obtain the parameter of the lower

critical stress:

':=.|2u‘:-ﬂ (H'—:-)' l.—io.Sn B ..-(1’-,:..'_)' '-:’-5‘5 ' (2.29)
1

[H =1 = lower]

For the square panel this formula, when 1 = 0, gives

(Da= 55— 5 (2.30)

[KB = sq = square]
which is somewhat less than A, S. Vol'mir's result:

(e - (B 22)s

Permissible loads must be selected in such a manner that the

safety factor would be assured with respect to the lower critical

stress, With such a selection of critical stresses we remove the
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possibility of appearance of flapping of the panel in the process of
operation of the thin-walled structure.

In formula (2.25) the plus sign of the parameter of sag corre-
sponds to the sag in the direction of the center of curvature, the
minus sign — to the sag directed from the center of curvature. From
equation (2.26) it is clear that upcn the loss of stability the sag of
the shell should be directed toward the center of the curvature, since
the increase of the dip of the sag in the opposite direction is con- s
nected with a rapid increase of the compressing load, In Fig. 33 are
the graphs of r*(f). Formulas (2.26) for y = 0.4; 1.0 and 1.5 as
applied to cylindrical panels with the parameter of curvature N, = 12
and for plane plates with that ratio of sides, with n = 2/3,

Upon examination of these graphs we can see tnat in plates, after
the loss of stability, the growth of the sag is connected with the
increase of the load.

For shells we have a somewhat more complicated picture. The
least increase of the upper critical stress (when { = O) is connected
with a very rapid increase of the sag, which is accompanied, after
the loss of stability, by a decrease of applied external load. An
abrupt sag obtains the value Ci # 0, to which corresponds a load,
equal in size to value r:. The curvature of the shell meanwhile will
change its sign. Thus, we have here the phenomenon of flapping. Thus,
for instance, a shell with parameters of curvature Ny = 12; v = 3/2
and § = 2/3 after achieving the upper critical stress r: = 6,204 +
+ 4.662 = 11,03 loses stability, and the sag abruptly attains the
value Ci = 3,68, corresponding to point C of the curve. Further
growth of sag i1s connected with an increase of the load, In the

interval O s ¢ s 3,68 there exists a point Lo = 9/64, Ny = 1.692, to
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which corresponds the minimum "load" r; = 4,91 (point F of the curve).
Deflection of sag in any direction from value EO is connected with an
increase of the compressing load., The region, limited by horizontals
3C and GF, is termed the region of instability orf the shell. Its
upper and lower boundaries correspond to the upper and lower critical
stresses,

Let us note that in the case of the plate (u2 = 0) the critical

stress, obtained from (2.25) and (when { = 0):

Y= =t [y LY —L
(e ma-—a_("" 1) 1—0,5¢ '
[n@ = pl = plate; Kp = cr = critical]

coincides exactly with the known formula of S. P. Timoshenko,
Let us consider a shell of any Gaussian curvature under the action
of an arbitrary transverse load,

Let us assume that no extern~l forces are applied to the edges

*

of the shell. Then, assuming that pg =Ty,

= 0, from formula (2.20)

we will obtain:

e :l('!‘l’"_:—). e (xg + xy)* ¢ —
T TRa—w ﬂ(1+7%)" (2.31)
— 180y 4%) S

= (3-:--%-)' ,C"*' 91:'(1'!"%‘)'('

This relationship yields the relationship between any trarsverse

load g(x, y) and sag f = th in the center of
shell, supported by a rigid contour with
a rectangular plan (Fig. 34).

In the particular case of an evenly-

distributed load q = const
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| X'}
l,.e--s."qsin—:isin—?—dxdy-%q, (2.322)
[ N

a
and formula (2.31) upon multiplication of both parts by-—-—§ will
16y
assume the form
..-(.+——) :
:!(u.-c-:.r C— (2.33)
1921 —w) 16(1 477
_ =00+ o4 =,
a+m T Saepr

d¢ .
For linear load q(x, y) = ?? x; Ijg = 2%? 9y, and solution (2.2

in this case will be

o= "(|+-!:) L+ b e el

%6(1—) 80 + 1 (2.34)
" (xl"'*l,(:_' “ﬂ’ rs
0+ o +9Pp

Formulas (2.31), (2.33), (2.34) are true for shells of any

Gaussian curvature I = kikg-

The shells of zero Gaussian curvature (cylindrical panel). Let

us assume that on such a shell acts a transverse lcad q evenly distri-
buted on its convex surface, Assuming in formula (2.33) that ng = C,

we will obtain the sclution for this case:

Wﬂﬂ-— lsu-+fv
. YT 32xt
Tt P eaer

For a square panel (y = 1) this formula will assume the form

xt e B3 g 5 3G
e e St el o 3, (2.20)

G =

Let us find the boundaries of the region of stability in this
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case. From equation

"(”1-)_,_ w, =
a 192(1— ) SA+PPF O+ 7P
X _u_o
T

obtained by differentiation of (2,35), we will establish the value of
relative sags CO and Qi, corresponding to the extremum of the load

parameter q*. Solving the equation, we will obtain:

l/ 1+—) (2.37)
t..l'*""—":"" 3 — 20—

If the subradical expression in (2.37) turns into zero, then

values CO and §i coincide, Consequently, shells with parameters of

curvature
L)) (2.38)
= y%u-
have only one parameter of csag
3
f= 2.3
U=o (2.39)

which corresponds to the extremum of the load. It is not difficult
to see that at point £, curve q*(t) has a point of inflection,
Introducing by turns values {, and ¢, from (2.37) in (2.35), we
will obtain values of extreme parameters of load qg and q;, which
coincide when ' = é%-ng.
Fig. 35 shows graphs of dep-=ndencies q(ﬁ) in the case of the

square panel (formula 2,36) for certain values of parameters of

curvature (y =0,6; ——=

). In Table 5 we adduce values of

VB(I-—»')

e



»  parameters of load q* for values of relative
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sags O = f s U4,

The shell of positive Gaussian curva-

&

ture, Let us examine the behavior of a

=l e=e

spherical shell (k; = k,), which is under

the effect of an evenly distributed locad g

and is supported by a ccatour rectangular in

the plan. For the spherical shell (k1 =k, =

= k) we have Ny = yaui, which ensues from the
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0 G50 IS 2025 105 ] ka2 kb2
fact N =R Mo = R Introducing this
Iig. 35.

in (2.33), we will obtain solution:

- 2.1‘;'\- ¥
“('+ ) "'f C— =ty ™y 32-2 w1 ( /
192(1 — ) 16 X AR TR

Values of parameters ¢, which ccrrespond to extreme values of the

load parameter q*, will be determined from equation %%: = 0, We

obtain:
pe
& (2.41)
. =.3_ﬂ_(.‘iﬂ.+_’_l/ 2 ne ( ) .
tﬁ.i 12 = 32 3 (1+7) 2(1_'.) »
where for shells with parameter of curvature
1
: ] —
o (1+5 (2.42)
Y6 —w)

point CO and Ci coincide. Such shells have only one extreme value

for the load parameter g*, corresponding to the sag parameter:

CI _ 3"'1" + 1')
32

In the case of a square panel of a spherical shell (y = 1)
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formulas (2.40)-(2.41) will be transformed into the foilowing:

° =t ""' “‘Iu =t 2.43
9= “(l—v')c-'- l6c + C’ ( )
t.:-——g‘_.._V (2'44)
az_ 24 (2.45)

R e et

Introducing values ¢ from (2.44) and (2.45) in (2.43), we will

obtain extreme load parameters:

356(1 955[ 3 3('-—-")] l/
e (246)

L o= —'—m—v')]l/

256(1—) 256| 2

—w VP (247

“=

For the shell with curvature parameter:

o

!‘B——E{"T-_v;,—ga.45 wh.n'=0.3. (2'48)

which corresponds to the radius of curvature

_ V=" @& 16
R=12020 L0022, (2.49)

sag parameters CO and 51 coincide

;=‘%11-—l.584 (2'50)

and corresponding extreme value of the load parameter will be

8,
256 (1 —

q;:q;:—-'q.—- ==34876 (for V—03) (2.5'3)
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or, since q* = %EE, then qextr‘g 34.9 %?r.

Shells of such type are threshold cases between shells and plates,

Their behavior under load, as it can be seen from Fig., 35, is somewhat
different from the behavior of plates and cannot be characterized es
behavior of a shell, which has a curvature parameter larger than that

given by formula (2.48)., Dependency g*(f) for such shells will have

the following form

..- t‘
? T 1601 —w)

8r® , -
(—4,224*’:'-}-—9—'..- (205)2)

In Fig. 35 graphs are plotted for dependencies g*(¢) for values
of parameters of curvature n, = 0; 6; 8.45, 12 (when v = 0.3).

From the examination of these graphs we conclude that:

a) Sags of plate (n1 = 0) increase with the growth of the load

according to the nonlinear law, which is expressed by relationship

LY APTI A\ L PSP (2.53)
! mﬂ-*’)(H' 1') tSarer

where in the case of a square panel one should consider y = 1,

b) Sags of shells with extremely small curvature (n1 < 8.45) alsc
increase with th> growth of the load., However curve g*({) has a point
of inflection, which corresponds to tne change in the process of defor-
mation of the sign of the shell's curvature. This change proceeds
smoothly, without sharp increases of sags, when the locad is increased
slowly. In this case parameters €' and g*, corresponding to the point

of inflection, will be

U =1125; ¢°=24,76.

c) Sags of shell with a curvature parameter (2.48) increase

slowly with the increase of load to a certain limit (2.51). Upon

<45
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attaining value ' = 1.584, the sags begin to increase smoothly but
rapidly in a certain interval even with an insignificant increase of
the 1load, In point {' = 1,584 there exists a state of neutral equili-
brium, Further growth of sags of sucn a shell, which has already
changed the sign of the curvature, is related to a rapid increase of
the load,

d) Sags of a shell with curvature parameter ny > 8.45 (here on
the curve of Fig., 35 ny = 12) increase slowly with the increase of
the load to a value CO = 1,33, which corresponds to the upper critical
stress q; = 63.3 (see formula (2.46)). After attaining value {; the
growth of the =ag can continue even with a decrease of load parameter
q*. This indicates the fact that in point B of curve gq*(¢), i.e.,
when CO = 1,33, the form of equilibrium of the shell becomes unstable,
and the shell bulges,

Upon the least increase of load q; = 63,3 sag ¢t jumps from value
CO to value 51. On the graph this new form of equilibrium is marked
by point C, This form is stable, and a further increase of load is
accompanied by a gradual increase of sag of the shell, the sign of
curvature of which has already changed. This is the phenomenon of
snapping of the shell, If beginning with point C we will decrease
the load, then the sag of the shell will gradually decrease to a value
of ¢ = 3.17 (q; = 35.75). In this case "load" qj = 35.75 will no
longer be sufficient to preserve the center of the downward curvature
and the sheli snaps upwards to the position, marked on the graph by
point N, Thus, for spherical shells with curvature parameter nq >
> 8,45, supported on a contour which is square in the plan, there
exists a region, limited in Fig. 35 (for ny = 12) by dotted lines

BC and MN, inside which the shell has two forms of equilibrium, This
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region gradually rarrows with the decrease of curvature paraneter Nyge
When n, = 8.45 line BC and MN merge, and when q* = 34,9 we have a
neutral equilibrium. When ny < 8.45 only one form of equilibrium will
be possible., 1In Table 5 we adduce values of parameters of load q* for
O st =4 in the case of loading of a square panel of a spherical
shell by an evenly distributed load. It is easy to note that these
graphs for the spherical panel coincide with graphs for the cylindrical
panel, the curvature parameter of which is twice as large as curvature
parameters of the spherical square panel,

Let us investigate compressed bent sloping shells of negative
Gaussian curvature,

Let us examine a shell with Gaussian curvature I' = k1k2 < 0, to
the edges of which compressing stresses p(x) = r,

¥

are applied, and an evenly distributed loac

a(x, y) = q acts normally to the middle surface,
Fig., 36. To be specific we will assume ki > 0, k2 < C

(Fig. 36) while we assume that |k4| s |k2] which
in dimensionless parameter can be written thus: v° |y ] s Inyl .
Let us assume that

t,=37’1,,where3=-%:—<0. (2.54 )

We will introduce (2.54) into (2.20). Taking into consideration that

rg =£ =1 =0 we will obtain:

= « 1\
* — 8x,p0 —_— P —— =) T
¢ —¥p+ o P = (l+ 1,) - (2.55)
:‘:f(l+?ql)’__ w1+ s 32r8 .
16(1 + 9 (+ 9(1+ pp

If the transverse load is absent (gq* = 0), then we will have a case

*
of compression of shell "by stress" Pys the dependence of which on
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Table 5, Values of Load q; Parameters,

Curvature » \\il
ol [ X 03 0.4 o5 o8 0.7
cylindrical
panel spherical panel .
0 0 2,210 | 4472 6810 9.35| 12,02 15,101 | 18,416
12 ¢ 4134 | 7.79| 10,837 | 13,511, 15,803 | 17,766 | 19,452
At 7_35_'_. 6.195 | 1.608{ 16.23! 20303| 23,609 26,507 | 28,801
Veu—w 6(l—+)
24 12 10,500 | 19,820 | 28.158 | 35.421| 41,710 47.078 | 51.578
Continuation Table 5
[ X ] (% ] 10 1.2 i3 (¥} 18
0 0 22,100 | 26,204 | 30,783 | 41,571 54,887 | 62.723| 71.150
12 6 20,915 | 22,207 | 23,381 | 25,882 | 27.943 | 29,3141 30.882
= = 30,633 | 32,052 | 33,111 | 34,359 | 34800 34,820 | 34,852
Vs (11— Vﬁ(l - )
24 12 55,261 | 58,182 | 60,302 | 62,880 | 63,177-| 62,723 | 61.675
Continuation Table 5
[F ] 20 2,2 24 2.5 2.8 24
]
0 0 90,782 l 114.20 | 143,84 | 174,10 | 192,00 | 210,42 | 254,21
12 6 34,420 | 40.181 | 47.384 | 56,850 | 62,564 | 69,001 | 84,257
. L. . L 34,938 | 35,478 | 36,805 | 39,608 | 41,583 | 44,039 | 50,609
Ve (—w Ve a—w
2] 12 59,804 | 54,986 | 50,641 | 46,191 | 44,058 | 42,057 | 38,660
Continuation Table 5
3.0 3.2 34 38 3.6 Jn 4.0
0 0 302,90 | 357,90 | 419,65 | 453,18 | 488,55 | 565,00 | 649,51
12 6 103,04 | 125,77 | 152,87 | 168,19 | 184,76 | 221.86 | 254.60
A 2L __ | s9.730| 71,850 | 87,364 | 96,528 | 106,70 | 130.28 | 158,53
16 11— V61—
24 12 36,421 | 35.761 | 37,100 | 38,643 | 40,862 | 47.466 | 57,334
|
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sags { will have the form (we assume that ¢ # 0O)

oly+— o2
P;"’%h"npi IS:l— ) E:;I,)’ - (2.56)
164 (1 + %) '

ECaC=

In the case square panel of a pseudosphere, for which one should
assume that y = 1; 6 = -1, formula (2.56) will be converted into the

following:

6 .__ = 128
PRt o=ttt o

(2.57)

_16_ . = 128 .,
Py ..’*”0‘3“_..-,""'9,:(‘

If compressing stresses are absent (pg = 0), then from (2.55) we

will obtain:

_ “('+-,'.-)' d (1 + 4y

7 192(1 — ) 16(1 + 7P (2.58)
_ Pl +u, 2,
(0 +yP ¢+ 9a+1'r"

For the square panel of the pseudosphere (y = 1, & = -1) from (2.58)

we have:
o g Mg,
= wa—w Tt " (2.59)
Formula (2.59) represents a dependency between load and sag in
the center of a square plate (see 2.,53). Consequently, the square
panel of the pseudosphere loaded only with a transverse load, behaves

as a square plate, independently of values of the shell curvatures.
Setting up derivative %%; of function (2.58) and equating it to zero,

we will obtain the equation, from which we will find the following
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values of relative sags, corresponding to the extreme parameters of

the load:

= 2at+mm: L)/ g0 +ar— o (+1) (2.60)

These points coincide for shells with parameters of curvature:

o1+ (2.61)
BT

From examination of formulas (2.55), (2.56) and (2.57) it follows
that shells of negative Gaussiar curvature, as well as shells of
positive Gaussian curvatures, subjected to compressiéh by forces
applied to their edges, do not have s region of stable equilibrium,

This is explained by the presence of a curvature of the shell in
the direction of the action of external forces. In the presence of
compressing forces a stable initial state of a shell can be assured
by application of an appreciable transverse load. Some information
on the shelil of negative Gaussian curvature can be obtained in the
book by V. Flyugge [53].

Let us make certain comments on classification of shells. Such
terms encountered in literature as: sloping shell and weakly distorted
plate are sometimes treated as having the same meaning. The above
examined behavior of shells, subjected to the action of a transverse
load, enables us to establish the difference between concepts of
weakly distorted plates and sloping shells. Let us find points CO
and Ci' corresponding to extreme values of an arbitrary transverse
load q;. Proceeding from formula (2.31), let us construct equation
*
dqa

TQT = 0, and then find the roots of the quadratic equation obtained.
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We have

I \*¢
{14+ —
c.;.=%(a+x.)t§l/3(=,+z.)——£;,—:j;)—. (2.62)

Equating the subradical expression to zero, we will obtain the
sum of parameters of curvatures

L ]
ﬁ+u=:-————l,(;ﬁt:_13,) (2.63)

for those shells, point CO and C1 for which coincide. It is easy to
see that formulas (2.38), (2.42), (2.48) and (2.61) are particular
cases of formula (2.63). We saw that for shells with parameters of
curvature, given by these formulas, only one form of equilibrium is
possible, and dependency g*(¢) is a monotonously increasing function
without decrease intervals, If, however, the sum of parameters of curva-
tures u, + n, 1s largsr than the right side of (2.63), then function
q*(t) has the decrease interval of "load" q* in a certain intervel of
change { and such shells pop. In connection with this it is possible
to classify shells according to their work under load.

1. Shells, in which every curvature is equal to zero, are clas-
sified as plates, Their behavior under load is characterized by a
monotonously increasing curve,

2. Shells, in which the sum of parameters of main curvatures

should be related to the class of weakly distorted plates.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>