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ABSTRACT.

The purpose of this paper is to describe and illustrate a program,

written for the IBM 7090, which defines a model for a finite collection

of algebras for the computer. It is shown that the program contains a

structure broad enough in scope to allow one to perform operations on

such diverse mathematical concepts as differential equations, infinite

series, and differential forms in a simple yet comprehensive manner,

while also serving as a foundation upon which a variety of higher-

level symbolic manipulation languages can be developed.
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Introduction

It has become increasingly evident in recent years that the intri-

cate numerical procedures that have been designed for the computer have

not been adequate for handling mathematical and physical problems requir-

.....ing extensive symbolic analysis; what has been needed is the/Aevelopment

of highly sophisticated symbolic techniques treating various analytical

problems in a variety of ways. Studies have been made regarding this

problem, but because of the many inherent difficulties involved, much'

confusion has'arisen regarding not only the nature of the computational

procedures that could best be handled using the computer, but the structure

that would be necessary for the development of any higher-level language

which would be designed to manipulate such data. In the present paper,

we shall attempt to rectify this situation in part by defining a model

for a finite collection of (associative) algebras. It will then be

seen that the program, called ALGEBRA, will provide us with a structure

broad enough in scope to allow us to perform operations on such diverse

mathematical concepts as differential equations, infinite series, and

differential forms in a fairly simple yet comprehensive manner. More-

over, the model will serve as a foundation upon which a variety of

higher-level languages dealing with symbolic manipulation can be con-

structed, depending only on the types of mathematical computational

procedures desired.

Before we proceed, however, several remarks should be made regard-

ing the type of programming language that is appropriate for developing
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symbolic computational procedures of any type. In general, assembly

languages are unsuitable because of the complexity of even the most

elementary operations on complex data structures that are generally

required, whereas the algebraic languages, such as FORTRAN and ALGOL,

are excluded-because-6f their relatively primitive scorage allocation

capabilities. The list processing languages, however, are quite adequatt

for this purpose because of their ability to store and manipulate exceed-

ingly complex data structures. Of the systems in this category, the

LISP 1.5 language (see reference 1 or 6) was used in the development of

ALGEBRA because of its simplicity and generality.

Initial Formulation of the Model

Let R = [R1 ,...,R] be a set of commutative rings and rt =(A I , . . . , 4

a collection of algebras, each of which is operated on by a ring in R

(see reference 3). It will be assumed that the rings and algebras have

a multiplicative identity "1" and that each algebra A is an algebra of

some module generated by a recursive set Xv. For convenience of refer-

ence, the algebras will be indexed by the variable v and the rings by

the variable r. Moreover, for each ring R of R, a computable function-

s- scalarr (s) will be assumed to exist which evaluates expressions s

of the forms a, + ... + ap, a, ,.. ap, and aq , where a,al,...,a, re

scalars (i.e., elements of the ring),and q is a non-negative integer.

In general, the definition of this mapping will be extended to evaluate

'A set A will be said to be recursive if for any expression x, the

predicate x eA is computable (see reference 4 or 5).
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re elaborate expressions containing the scalars, but this will neces-

rily vary with the structure of R,. and how we wish to use it. In any

se, the function will always serve as the s;ole criterion for whatever

sumptions are being made regarding this ring.

Consider now an algebra- -A--defined over-the -ringR. the elements

which will be called vectors. We shall find it useful for a variety

reasons, including input-output and uniqueness considerations, to

sume that there exists a linear ordering relation-" of the set A,..

may also wish to presume that the algebra is either free or semi-

mple, though this will not be necessary. It will be convenien,, how-

•er, to be able to represent the vectors in various forms, but this

so occurs whenever the theory is developed from a mathematical view-

.int.

Now any non-zero vector x in A., can always be written -in the form

= c"+ c! ( o) " 3)'(n.)n, where each

# 0 is a scalar, *jj is a ositive integer, and P0,X,,V (1). If the

.gebra A: is conmnutative, it Lill be presumed that the terms of the

-oduct (; i .. (sxt) .: a e ordered so that cp < 92e < ... < ;

"herwise, t ir ordering wil have to be specified in th~e hypothesis

.ven concerning the algebra. In any case, with the further assumption

iat () X  
1  ) XQ)1  . < (. . ).< .. (Fpr) ., it follows that

;sociated with every vector is an expression of the form x = ((c 1 ,(p1)X11,

,(c X1,...,(Trn ) n)). This form will be called
II
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the canonical representation of x and will be denoted by part(x.xj.).

For completeness, we shall also require part(O,X,) to have the value

~((0,1)).

V - Whereas the mathematical form of a vector may or may not be useful

for an analyst, depending on the nature of the problem under considera-

tion, the form will always be found to be awkward for a computer be-

cause of the partitioning that necessarily will ensue. Consequently,

* . the usual procedure for manipulating these elements is to first

partition them into their canonical representations, use these repre-

sentations for carrying out the operations that are needed, and then

return the answers in their mathematical forms. In so far as the

uniqueness of the canonical forms is concerned, and this will.be

discussed in detail later, let it suffice to say for the moment that

this will most certainly depend on., among other things, the assumptions

made regarding the basic structure of A.

We now cunsider the addition and multiplication operations for the

vectors of A,, which, for convenience, will be denoted by the; symbols 0

and * respectively. The addition function is particularly easy to de-

scribe, being- defined as follcws:,

1. For any vector x, x 0 0 0 0 x = x

2. If x is a non-zero vector having the canonical form

,..., y is an arbitrary non-zero vector

having the canonical form ((bl ,( )1  ,

4



(bn,(cpi)" 1  "( n)rr)) and = ( 05)X .(qOl)) t

(i =l,...,n), then

bi~1 + ... + b + a .* y. + bi+i1 +1 + + b+ n

if < Tyi ~

b1 i  + ... +b,_ .. + s.alarr (a+b)* , + bj 1  I + bgn n

if -= .•. and scalar. (a+b,) 4 0

b + ... + b 1 1  + bt~j~ 1 + ... +

if P ... TjIx and scalar (a+b,) 0

3. If x is a vector having the canonical form ((ai,(YD)11 ,...,

,.. )), y is an arbitrary vector,

=() ' " then xO y aO t 0 . (a, F fy)...)).

lilarly, using the associative and distributive properties of the

!ration *, it is clear that the definition of x * y reduces to the case

!re x has the canonical form ((a,', '...,T )) and y has the canonical
'm ((b, 1  %

.. ,. ) However, since the definition of this product

:ies with the algebra under consideration, it is evident that it will

ie to be given by a function x,y -. vector, (x,y). This map will always

assumed to be computable, of course.

kMPLE:

Let R be the standard fixed point arithmetic indexed by the value

0, so that the function s -. scalaro(s) has as its value the sum

:oduct) of the numbers al,...,a whenever s C + ... + a

a...ap) and the exponentiation of the number a to the non-negative

5



integral power n whenever s = a'. If A is the. polynomial algebra of

the set X = [x) over the ring R (see reference 2), it is then evident

that the mapping X,p -.vector1 (X,p) can be easily defined by assigning

the value scalaro(a.b)x s c a l a r o ( k + ) if scalaru(k+j) 0 0 land scalar,.(a.b)

'- if scalaro(k+A) 0, where X ax and p = bx . Consequently, it

follows that the'expressions K + L and K.L easily reduce to the respec-

tive values 7 + 4x + 3x2 and 12 + 16x + 9x 2 + 12x s for K = 3 + 4x and

L 4 + 3x2 .

Functions

Let A, be an algebra in h defined over a ring Rr. A collection of

vector-valued functions (with vectors and/or scalars as arguments) is

generally associated with this algebra, some resulting directly

from the algebraic structure of A and others depending on whatever

further restrictions are placed onA.A,. In any case, since the choice-

of these maps will necessarily vary with the algebra under consideratic

and how it is to be used, it follows that the model ALGEBRA will have

to contain-a general procedure for storing and manipulating any

assumptions that will be required.

Before the vector-valued functions are considered, however, certair

remarks should be made regarding the structure of the algebra. In par-

ticular, although it is true that in certain cases we shall be interest

in A, for its algebraic properties only, it is also clear that at othez

times the topological aspects of the algebra will be of dominant im-

portance. For example, the assumption that the algebra is a Banach spa

6



is a fairly common requirement, in which case, we would most certainly

be interested in the bounded linear operators of this space. In fact,

we might even be interested in the vector-valued Borel functions. In

many cases, however, the functions that we shall be interested'in,

whether they are continuous or not, will not be computable. And for that

matter, we might be interested in using a computable function for its

representation only, and not its value.

Heretofore, it has been assumed that A.. is an algebra of some module

,, where M, is generated by the set X.. If, however, we wish for our

algebra to have a topological structure, this assumption may be relaxed

by requiring that &. be a set that is dense in K.. The set , can be

modified in other ways also. In particular, consider a function f

associated with A,. Then for any expression i s of the form ,

where each x: is a vector or scalar, if it isn't desirable to compute

s for the arguments under consideration, or it is not possible to do so,

the expression will be regarded as being irreducible relative to the

hypotheses being made, and hence will be treated as an element of X,..

1 An expression in A, is defined to be (1) a scalar or vector in A,, (2)

a representation of one of the forms x, + ... x or x, ... x., where

each x1 is an. expression, (3) a representation of the form x-,. where

x is an expression and n is a positive integer, or (4) a representation of

the form f(xl,...,x,), where f is an associated mapping and each x, is an

expression.
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In general, if no assumptions are made concerning the function, we

have no choice but to regard it as being irreducible whenever it is

used. If, on the other hand, f is to satisfy certain hypotheses, a

function h is associated with f. This mapping, called the axiom or

hypothesis function of f, acts as a partial evaluation function for f,

stating which properties of the flnction are to be assumed, and how

they will be used. In particular, if f has the property e.(x,...,x.)

whenever the condition pI(x 1 ,...,x=) is fulfilled (for i = 1,2,...,n),

then h is the function of the variables xj,...,x=, having for its value

ej(xj,...,x.) if the predicate p:(xl,...,x') is satisfied, and the

irieducible expression f(xl,...,x) otherwise.

Let f1,...,fn be a collection of functions which are to be associat

with A, and which will satisfy the axiom functions hl,...,h, respectiv

These functions and their properties are referred to in ALGEBRA by a

variable, called AXIOM, whose value is the list (f1 ,hjf 2 ,h2 ,...,f,h1)

If no assumption are to be made,.AXIOM will have as its value the

empty set 0. In a'ny case, whenever a vector-value expression f(xl,...,!
is encountered, it is not a sum, product, or exponential expression

of the form xy w ere x is a vector and y is a non-negative integer,

ALGEBRA first checks to see if f is a member of the set AXIOM. If it

is found to be in AXIOM, the expression is evaluated using the corre-

sponding axiom mapping of f; otherwise, s is regarded as being irreduci

and hence, a member of X,.
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EXAMPLE:

Let A be the polynomial algebra defined in the example on Page5

and'assume that the trigonometric functions sin and cos are associated

with A. if they are ass~igned the respective axiom functions hsin and

hcos, where

-if -0

(-l)*hsin[(-l)*s] if s n or n (n=-l,-2,... and a vector)

hs ()ho[n1 fho~)hi[nlt

hsi'n(s)' if s = nt (n=2,3,... and t a vector)

if s .+ (each tj a vector)

(sin(s) otherwise

and

I if sO

hcos[(-l)*s] if s = n or n (n=-I,-2,... and a vector)

hcos(s)= if s= nt (n=2,3.... and t a vector)

if s = 1+. . +t (each tj a vector)

cos (S) otherwise
T [ipx)

it then follows that any expression s of the form ZaI a,~i~px]

[cos(qix)]"' (a1,p, and q, are arbitrary integers and in1 , n, 0,1,2,...)

9



easily reduces to a vector of the form E bj[sin(x)] [cos(x)]h3.

Moreover, if it is also assumed that sin 2 (§) + cos2 ( ) = 1 for every

vector in A (i.e., the mapping X,p - vector(X,p) is modified by letting

vector1 [cos(Q),cos(§)] = I - [sin(§)]), then s completely collapses to

an expression of the form £ ar[sin(x)] + E8,[sin(x)] 'cos(x). Thus,
r

we see that the trigonometric polynomials over the scalar ring R are

easily manipulated whenever this algebra is used.

Definition of the ALGEBRA System

I n the previous two sections a procedure was developed for first

formulating the basic structure of an algebra A,, and then associating

with this algebra an arbitrary collection of vector-valued maps, along

with any associated assumptions that were required. The generating set

X, of this algebra was seen to be well-defined, consisting entirely of

explicitely defined vectors and irreducible expressions of the form

f(x1 ,...,x). Since these elements were evaluated to themselves, it

followed recursively (by the definitions of the *,*, and axiom mappings)

that every combination s of expressions of these elements would reduce to

anunique value, the form of which would vary only when the underlying struc-

ture was changed. We now define the ALGEBRA system to'be this reduction

procedure, in which case it is then representable as a function of

-the form s,X,-fr,v,AXIOM - ALGEBRA(s,, ,r,v,AXIOM). .

Let s be an expression in A, having the value ALGEBRA(s,X,r,v,

AXIOM) = x. Since x and s obviously represent the same element of the

algebra, it is clear that the mapping defines an equivalence relation

on the set of expressions of A,, requiring any two, say s, and s2) to

be equivalent whenever ALGEBRA(s,,X,,r,v,AXIOM) = ALGEBRA(s,X,,r,v,

AXIOM). Consequently, since the hypotheses concerning the structure

10
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of the algebra have been imbedded in the functions a - scalar, (o) and

-- vector,,(X,P) and in the variable AXIOM, it follows that the

function ALGEBRA does indeed characterize the structure of A, as we

have defined it. Moreover, since the values of this mapping are unique,

they serve,. in effect,, as representations for their equivalence classes.

Thus, if the definition of the canonical form of a vector s is modified

to be that of the vector ALGEBRA(s,X4,r,v,AXIOM), ve then note

that the canonical form of a vector will always be unique.

in reflecting on the structure of the mapping ALGEPRA, it should

first be emphasized that all we have succeeded in doing is implementing

a model for a finite collection of algebras on the computer; no

techniques have been developed for proving theorems about these algebras.

The question of theorem-proving in general is a distinct problem, re-

quiring the formulation of various techniques for handling the learning

and choosing procedures that are necessarily involved. Secondly, many

of the restrictions that were placed on the collection of sets h were

not really necessary. It is evident, for example, that ALGEBRA could

have easily been defined to handle a collection of groups or monoids

instead. In any case, having actually formed a simple but comprehensive

model of a collection of mathematical systems, each of which contains a

fairly complex underlying structure, we have, in effect, provided our-

selves with an extremely powerful tool for treating a vast array of

problems in a systematic manner which could not even have been considered

otherwise.

11



Polynomial Algebras

Let R be an arbitrary ring indexed by the value v = vo and described

by the mapping s - scalarr (s), X a recursive collection of non-numerical
0

atoms or indexed variables designated by the value v = vo (see reference 1),

and A an extension of the polynomial algebra defined on the set of

variables X over the ring R (see reference 2)., allowing in addition any

appropriate associated functions that are desired. It then follows.that

A wiibe well-&i ed whenever the product mapping x,y vector, (x,y)

is evaluated. But this function is easily defined, having for the non-
= rI ' rm  l

zero vectors x aCPj .... YM' and y = bTj ... Y the value

scalar, ab T
0

where

.'1 S 0-1Ti "... ° Yo P fC ... ye if TU-1 < CP <

~~~~ * * 0 i cif (P~ <o

•a ' - c+i ,''n if cp and

ALGEBRA(r+sa3,x,ro,vo,AXIOM) = 0

scalarro ( . .. lya+1 '" if

r* (TrSl y) = Ti, cp and r + s. are scalars,

and y r+sY is an expression in our

ring of scalars

Y •Y+ 1 ... if (p0 @ and

Sr + s 8, is irreducible.

ALGEBRA(Pr+I 0,Xro ov ,AXIOM)*

"-I 01+1 " i

and rY+S0c is reducible

We now consider several useful applications of this algebra.

12



1) The SIMPLIFY Algebra

This algebra is the algebra most generally used for manipulating

symbolic mathematical expressions, having for its scalar ring the stand-

ard fixed and floating point arithmetic and for its generator set X the

collection of non-numerical atoms which are not being used as vectors

for other algebras. For convenience, we shall denote the value of its

implementation mapping s - ALGEBRA(s,X,ro,vo,AXIOM) by SIMPLIFY(s).

Assume that the standard differentiation function diff:s,x

is now associated with SIMPLIFY (see reference 2). If AXIOM 0 (the

empty set), it is then clear that although SIMPLIFY(K + x) 5x + 5y + 3xy

for the vector K 4x + 5y + 3xy (where x < y < xy), since no assumptions

are being made regarding the differentiation mapping, SIMPLIFY [diff(K,x)]

has for its value diff(4x + 5y + 3xy,x), considering this expression as

being irreducible and hence an element of X. If, on the other hand, h(s,x)

is the standatd axiom mapping for diff' and AXIOM = (diff,k), then

SIMPLIFY [diff(K,x)] would have as its value h(K,x) = 4 + 3y. Thus, if

the two trigonometric functions sin and cos are also associated with

SIMPLIFY and h[sin(x),x] is defined to have the value cos(x), it is evident

that whereas this algebra is appropriate for computing expressions of the

form cos(x) + diff[sin(x),x], it is totally inadequate for handling either

differential equations or polynomials with symbolic coefficients.

2 h(s,x) is defined for any expression s and any atomic vector x by requiring

that (1) h(s,x) = 0 whenever s is a scalar or atomic vector different from x,
(2) h(x,x) = 1, (3) h(s,x) = h(sl,x) + ... + h(sp,x) for s = s i + ... + sp,
and (4) h(s,x) h(s,x)s 2 "'s P + ... + s''sp_, h(sp,x) for s =s,''sp .

13



2) The MULT and MULTILINEAR Algebras

The MULT algebra uses as its scalar ring the SIMPLIFY algebra and

as its generator set a finite collection 1x1 ,...xJ of non-numerical

atoms or indexed variables. The standard differentiation mapping
• bs

diff:s,x ". is again associated with this algebra, being defined

as before whenever x = x, for some xi. The definition of diff, however,

can be extended to also cover the case where x is a non-numerical atom

in' the ring SIMPLIFY. This is done by requiring that: (1) i-f s is a

. .--- sc-ar ,- thendiff (s,x) will be computed as an expression in SIMPLIFY, (2)

diff(s,x) will be regarded as being irreducible for any irreducible

vector s in MULT, so that in effect, each xi is a function of x, (3)

diff(s,x) = diff(sl,x) + ... + diff(sp,x) for any s = si + ... + sP,

and (4) diff(s,x) = diff(sj,x)s2..-sp + ... + sI .-. sp_ 1 diff(sp,x)

for any s = s, ... sp. Noting then that the expression xxi +

diff[sin(x)xi,x] reduces to [x + cos(x)]x + sin(x)diff(x,,x), it is

evident that any differential equation with numerical coefficients is

easily handled by this algebra.

In order to manipulate differential equations with symbolic

coefficients, the MULTILINEAR algebra must be used. This algebra is

a modification of the MULT algebra, having as its scalar ring the

MULT algebra (with generating set [xl,..,x.)) and as its generator set

a finite sequence [yl,...,y,) of non-numerical atoms or indexed variables

each of which is assumed to be a function of the variables fx1 ,...,x =I.

The definition of the differentiation mapping diff(s,x) is ti an modeled a:

that of the MULT algebra, allowing x to be either Y. or yj and requiring

that the expression diff(s~xi) be irreducible for any irreducible

14



expression s in the algebra. Thus, it would fol-ow that the expression

diff[axjsin(yj),xj] + diff[y,,y3 ] would reduce o aosin(yj) +

axlcos(yj)diff(yl,xt) for j # k.

Series Algebras

Let R be a commutative ring with multiplicat ve identity 1, Z the

ring of integers, and A the collection of all fu ctions f:Z - R such

that for some integer nf, f(n) = 0 for all n < n (the value of nf will

necessarily vary with the choice of f). Denotin the value of f(n) also

by fitthnsathat A is an algebra ove R whenever .(af)D,
(f + g),. + g., d (fg)9 = .fig, for any scalar a and any vectors

9) fn++j=n .' -

f and g. This algebra is, of course, isomorphic to the algebra of series
. CO

of the form E anxr for some variable x.
r!-k

Regarding n now as-a fixed variable, represent the elements of A by

the expressions f(n) instead of f. A can then be considered as a mcdifi-
I

cation of the MULT algebra (whenever R is taken to be the SIMPLIFY algebra:

having as its generating set X the collection of maps f. such that f(z-[o"

£03 and as its basic product the value E. f1 gj instead of fng." However.
±+ .7

if A is considered aI an algebra over the polynomial ring defined on the
, C k

set {xj, in which case [(ax )f]. = af, for anyiscalar of the form ax an

any vector f, it is then evident that the algebr4 is.a modification of the. .

MULTILINEAR algebra with generator saet X, whose icalar ring is the MtULT

algebra with generating set [x}. In either case! since the notation being

used to represent our series will most likely di.fer from that of the elemo

f(n) of A, a short input-output package will havl to be supplied to conver'

from one system of notation to the ether. But this is always the case, of

course, whenever we deal with isomorphic algebras.

15
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d
Assuming that the standard differentiation map -- f (n + l)fn+1

is associated with A, it then follows that the algebra will provide a

direct procedure for reducing ordinary differential equatiins (in x)

to their difference equation components. Moreover, if A and MULTILINEAR

are used in conjunction with one another for handling these equations, .

first transforming them and then reducing them, we shall find that we

have developed a highly useful procedure for examining their underlying

structure...

Differential Forms

Let*R be the MULTILINEAR algebra, having as its generating set a

sequence of the form [y1 ,-.-.,y 3 , the choice of which may vary with the

problem under consideration, and as its scalar ring the MULT algebra with

generator set (x1,...,xj. Assuming also that the functions being

associated with MIJLT and MULTILINEAR are differentiable, we then con-

"sider the exterior algebra A of the free module M generated by the set

[dx 1 ,...,dx,) over R, where (dxl,...,dxj] is a collection of n atoms or

indexed variables ("ee reference 2).

Noting that the non-scalar elements of this algebra are of the form

w =  <...< r a1, ... ir dx1  -.dxir (r may vary), it follows that the

algebra is a model of the algebra of differential forms for some n-manifold

(see reference 7). This in turn implies, of course, that the differential
n ba

d(a) 2 ax, dxi of an expression a in R is an element of this algebra.
1=1

16



We now extend the definition of this differentiation mapping in the

standard manner so as to have the value d(v)- = E d(ail... 1)

Adx 1 ...-dx. for any vector of the form w = a 1"''Irdx 1 1
-r 11< ... <I

..... dx, in which case:
r

(1) d(ow, + 8w 2 ) cyd(w 1 ) + Od(u)) for anyvectors w, and W2. and

any elemerts a' and 0 which are in the SIMPLIFY ring.

(2) d(d(w)) = 0 for any vector w of classc r (r > 2).

(3) d(w1' w2) = d(w1 )-.w + (-l)rw 1^d(u2) for any vector a, of the form
dx1 -. d

.. dx a . .(r fixed) and any arbitrary vector

This algebra is an extremely important application of the MULTILINEAR

ring R, allowing us not only to be able to transform many highly complex

partial differential equations in a systematic, yet simple manner, but

to transform and in many cases reduce multiple integrals also. Moreover,,

if the collection of algebraic homomorphisms of the form f:A - A,where

f(M) .Mare associated with A, we then have a direct procedur- for studying

the collection of matrices associated with the corresponding restricted

...... .........1 inear- trans formations-- f-- M:M ---- M.

17



" On the Nature of Symbol Manipulation Languages

During the last few years a number of studies have been made on the

structure required for higher-level languages designed primarily for an

analyst desiring to manipulate various mathematical expressions in a

variety of ways (e.g., See-reference 3). From these studies it has become

evident that the general list processing languages (such as LISP) are

not appropriate for processing complex mathematical data. This is due

not only to the extreme complexity of the coding that necessarily ensues

in'the analysis of an intricate problem, but also to the fact that the

input-output procedures most ideally suited for these languages are

totally inadequate for the individual primarily interested in the analysi

of a problem and not the underlying mathematical and input-output

structrue involved. On the other hand, it has become equally clear that

in order for such a symbol manipulation language to be constructed, a

list processing language, or equivalently a set of list processing routin4

will necessarily have to be employed, along with a highly sophisticated

input-output procedure for allowing the analyst to communicate with the

machine and a mathematical structure which would be broad enough in scope

to interpret a diverse collection of expressions in a fairly simple manne:

We shall now consider briefly the underlying mathematical structure that

any such language would need.
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In general, any symbol manipulation language must always contain

at least two modes of computation, namely the ring of rational numbers

and a polynomial algebra over a set of variables using only numerical

coefficients (in which case, we have just an application of the SIMPLIFY

algebra, of course). However, because of the diversity of the mathematical

concepts encountered and the techniques that are needed, these modes will

obviously never suffice. On the other hand, since SIMPLIFY was found to

be a very simple application of an extremely general model, namely

ALGEBRA, and such a model in some form will always be needed for defining

this algebra, it is evident that one can implement the model itself

so that we then have at our disposal not only the SIMPLIFY algebra, but

a host of other mathematical procedures also. This being the case,'an

experimental programming language called FLAP (for FORTRAN-like algebraic

list processor) was developed, using the ALGEBRA system as its underlying

structure.

The FLAP language is a higher-level language (written in LISP) which

contains not only the model ALGEBRA but also a complete system of input-

output routines for intrepreting the data under consideration. The

language contains many computational modes, including the standard fixed

and floating point arithmetic and the SIMPLIFY, MULT, and MULTILINEAR

algebras. Its format is similar to that of the FORTRAN system, in that

it makes use of the same notation of the statements and formulas, the

major distinction being the existence of a mathematical mode setting

statement, appropriately called the MODE statement. This statement,

which has for its argument the name of an algebra, in effect tells the

interpreter that until another mode statement is made, every statement
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is to be regarded as being dominated by this algebra. If however, no

MODE statements are made, the standard fiied and floating point

arithmetic will prevail throughout the program so that, in effect, we

then have a FORTRAN-like program.

The language FLAP, though still in the experimental stage, has

already been found to be extremely useful. This is due not only to the

list-processing capability which it inherits from LISP, but also to the

fact that it has been formulated on a general analytical structure

(namely ALGEB Father than a set of distinct computational procedures.

Using the model we then have the capability of being able to easily define

any other computational mode (by setting the arguments X, r, v, AXIOM,

etc.> as well as beiaxg able to modify any existing ones.

EXAMPLE:

Suppose that we wished to write a FLAP program for computing the

expression [ay.sin(xy)], where y is a variable depending on the

variable x and ,is aconstant. Since we qould then be using the

MULTILINEAR algebra with the generator set! [y} and the scalar ring

MULT (which would, in turn, have the generator set lx)), the program

could be written as follows:

20
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CALCULATE

INPUT A,X,Y

DUMMY K

MODE MIJLTILINEAR (X), (Y)

K =DIFF(A*Y*SIN(X*Y),X)

RETURN K

END

- CALCIYLATE(A,X,Y)

The following value would then be printed:

A* X*Y*COS(X*Y)*DIFF(Y,X)+A*Y**2*COS(X*kY)+A*'SIN(X*,'Y)*DIFF(Y,X)

The three statement cards beginning with the MODE statement contain the

instructions f.or computing and Printing the expression; the other cards

are used only for declaring and binding the variables concerned.
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