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ABSTRACT.

" The purpose of this'pape: is to describe and illustrate a program,
written for the IBM 7090,lwhich defines a model for a finite collecﬁion
of algebras for the compuger. It is shown that thg program contains a
structure broad enough in scope to allow one to pe;form operationé oﬁ
such diverse mathematical concepts as differential equations, infinite
series, and differen;ial forms in a simple yet comprehensive manner,

while also serving as a founda;ioniupbn-which a variety of higﬁer;

level symbolic manipviation languages can be'deQeloped.
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FOREWORD

The work described in this report was performed in the Programming

Research funds (R360FR103/210-1/R0110101).

This report was prepéred for presentation by the author at the ACM
SICSAM Symposium on Symbolic and Algebraic Manipulation held in

Washington, D, C. in March 1966.

" APPROVED FOR RELEASE

/S/ BERNARD .SMITH
Technical Director
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Introduction

It haé become increasingly evident in recent yearé that the intri-
cate numerical procedures that have been designed for the computer have
not been adequate for handling mathematical and physical probl%ms requir-
_ing extensivé symbolic.analyéié; what has been needed is the/dévelogment .
of highly sophisticated symbulic techniques treating various anaiytical
problems in a variéty of‘ways. Studies have been made rega:ding this
problem,_but because of the many inherent difficuigies involved, much’
confu;ion has arisen regarding not only the nature of the comphtational
procedures that could best be handled using the computer, but the“strucfure
. that would be necessary for the development of any higher-level 1angu$ge '
which would be designed to maﬁipuléte such data. In the bresent pﬁper,
we shall atteﬁpt té rectify thié situation in part by defining a model
for a finite collection of (associative) algebrasf_ It will then.be
seen that the program, called ALGEBRA, will provide us with a structure ' s
bfoad enough in scope to allowAus to pérform operations on such diverse
mathematical concepts as differential eqUations,:infinité series, and
diéferén;iai forms;in a fairly simple yet comprehensivéihanner; More-
évér, the model wili serve as a foundation upoh which a variety of
higher-level languages &ealing w;#h symbolic manipulation can be con-
-vstructgd, depending only on the types of mathematical éomputational
propédufeé de§ired.

Before we proceed, however, several remarks should be made regard-

ing the type of programming language that is appropriate for developing

1 }
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.are excluded because of their relatlvely primirlve Scorage allocatlun‘

symbolic computational procedures of any type. In general; assembly
languages are unsuitable because of the complexity of even the most
elementary operations on complex data structures that are generally

required, 'whereas the algebraic languages, such as FORTRAN and ALGOL,

capabilities. The list processing languages, however, are qu1te adequatl

for this pnrpose because of their ability to store and manlpulate exceed-

ingly complex data structures. Of the systems in this category, the

LISP.1.5 language (see reference 1 or 6) was used in the development of

ALGEBRA because of its simplicity and generality.

Initial Formulation of the Model

Let R = {R;,...;R,} be a set of commutative rings and N = {Al;...,Am}
a collection of algebras, each of which is operated on by a ring in R

(see reference 3). It will be assumed that the rings and algebras have

" a multiplicative identity "1" and that each algebra A, is an aléebra of

some module generated by a recursive set Xv For convenience of refer-
ence, the algebras will be 1ndoxed by the variable v and the rings by

the variable r. Moreover, for each ring R, of R, a computable function

s = scalar, (s) will be assumed to 2xist which evaluates expressions s

' of the forms a; + ... + 3, a1 see a#,‘ and al, where a,al;...;a, are

scalars (i.e., elements of the ring) and q 1s & non-negative integer.

" In general, the definition of this mapping will be extended to evaluate

1A set A will be said to be recursive if for any expression x, the
predicate x ¢ A is computable (see reference 4 or 5).




re elaborate expressions containing the scalars, but this will neces-

rily vary with the structure of R. and how we wisﬁ to use it.. In any

se, the function will always serve as the sole criterion for.whatever

sumptions are being made regérding this ring.
~ 7 Consider now an algebra A7 "défined over the ring R., the elements
"which will be'calléd vectors. We shall find it useful for a variety
‘reasons, including input-output and uniqueness coﬁsiderations, to
‘sume that there exists a linear ordering relation ™ of the set A . |

may also Qish to presume tﬁat the algebra is either free or semi-

mplé, though this will not Be necessary. It will be convenienc, how-
er, to be able to.represent the vectors in vérious forms, but this

so occurs whenever the theory is developed from a mathematical view-

iint.

Now aﬁy non-zero vector x in A, can always be written «in the form
= C](¢i)h11;..(¢}gklfl + ...+, (¢§)K“i"‘(¢§n)ln’n, where each
~# 0 is a scalar, ', is a positive integer, and @}ngtl{l}. If the
.gebra A? is commutative, it Lill be presumed tﬁat the terms of the

. i
‘oduct (¢i)A‘1...(¢}ﬁ)lzr: arL ordered so that @i < gf < ... < m}i;

-herwise, their ordering will' have to be specified in tke hypothesis
v.ven concerning the algebra. In any case, with the further assumption

A
1.1

X A : A
at (@) M eee @MY <Ll < (@) teh) "Ta. it follows that

ssociated with every vector is an expression of the form k = ((ch(¢i)l11,

A . Py
--:(¢¢1)K1r1),...,(cn(m{) “1,...,(¢;rn) ""n)). This form will be called

W..-. T g e g “_’.;v.{,ﬁ'”...;#_ et - WO 3 S B b T e -
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! the canonical representation of x and will be denoted by part(x.X,).
E ' : For completeness, we shall also require part(O,x;) to have the value

((0 1)).

Whereas the mathenatxcal form of a vector may or may not be useful

' hition, the form will always be found to be awkward for a computer be-

 cause of the partltlonlng that necessarily will ensue. Consequently,
5 B the usual procedure for manipulating these elements is to first |
partition them into theirrcanonical representations, use these‘repre-
é' ‘ S  sentations for carrying out the operations that are needed, and-then
return the answers in their mathematical formse‘ In so far as the
uniqueness of the canonical forms is eoncerned,”and this‘willjbe“
discnssed in detail Iater, let it'suffice’to say for theﬁmoment_that
this will most cetteinly depend on,'emong other things, the‘essumptions
i EE _nadertegardingbthe‘hasic‘sttucture>of A;. | -
.Webnow‘considef the edditton’and multihlicetion operationsvfor'the
Lo h';:‘t S | vectors of Av, which - for ﬂonvenience, will be denoted by the symbols &

'and * respectively.' The additlon function is particularly easy to de-

. PR
K

v._scribe, being defined as follcws'

"w'I;».For any vector x, ® G 0=08& x=x
2. 1f x is a non-zero vector having the canonical form
M1 My
((a,? seeey ¥22)), y is an arbxtrary non-zero vector

- o having the canon1ca1 form ((b1s(¢d) ,...,(w )Al’l),...,

Tl

v

.vfor an analyst, dependlng on the naturn of the problem under con51dera-mwum




: A . An,n _ i Aqy { Airi
(bn:((P?) ""’((frn) '))) and gi - (<P1) “'(CPri)

(1 =1,...,n), then

= v Mz
( bl)sl + LRI ] + blgf + aYZI LN ‘yn + b£+1.gi+1 + L] + bngn
-t . '
if § < nto... YS' < Eyay

biSi t v + b8, + s»alar,(a+b,)*§,+ biy18441 + b §,

if €,

b€ + ... + b8, + bis1Bis; + o0e + b E.

YTI ....Ysz_and scalar. (atb,) # 0

if € = ¥{ ... ¥¥* and scalar, (atb,) = 0

3. If x is a vector having the canonical form ((al,(Yi)“11,...,

" ,
MI,...,(sz)u"'M)), y is an arbitrary vector,

by . .
DM, e ()
= ML @, )t

1ilarly, using the associative and distributive properties of the

, then x ® y = a,£,8 (a,6,8(...0 (23, €,8y)...)).

rration *, it isiclear that the definition of x * y reduces to the case
ire x has the canonical form ((a,??‘,...,wf°)) énd y has the canonical
m ((b,q?l,...,mﬁﬂ)).. Howvever, since the definition §f this product‘
*ies Qith the algebra under consideration, it is evident .that it will
/e to ﬁe given by a function x,y — vector, (x,y). This map will always

assumed to be computable, of course.

CMPLE: | ' 4 -

Let R be the standard fixed point arithmetic indexed by the wvalue
* 0, so that the function s - scalar, (s) has as 1§s‘value the sum

roduct) of the numbers a1 544058, whenever s = a; + ... + a

= al"'ap) and the exponentidtion of the number a to the non-negative

L T i T i e . e e N R
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the value scalaro(aJﬂx

integral power n whenever s = a". If A is the polynomial algebra of

the set X = {x] over the rlng R (see reference 2), it is then evident

that the mappxng Asu = vector; (A,u) can be easily deflned by assigning

scalarg (k+2) . scalaru(k+£) # 0 and scalar (a b)

N 4 1
if scalaro(k+2) 0, where A= axk and po=bx . Consequently,‘it

-follows that the expressions K +L and K- L easily reduce to the respec-

tive values 7 + 4x + 3%° and l2 + 16x + 9x° +A12x for K = 3 + 4x and
=4 + 3. |

Functions

Let A, be an-algebra in h defined over a ring R,. A collection of
vectot-valued functions (with vectors and/or scalars as arguments) is
generally associated with this algebra, some resulting directly
from the algebraic structure of A, and othets depending on whatever
further restrictions afe placed on A, . In‘any'case, since the choicep;
of these maps will necessarily vary wlth the algebra under conslderatic

and how 1t is to be used, it follows that the model ALGEBRA w1ll have

" to contain-‘a general procedure for storing and manlpulatlng any

g assumptions that will be required.

Before the vector-valued functions are considered however,'certair

lremarks should be made regarding the structure of the algebra.: In par-
.'ticular, although it is true that in certain cases we shall be 1nterest

in A, for its algebraic properties only, it is also'clear that at other

times the topological aspects of the algebra will be of dominant im-

portance. For example, the assumption that the algebra is a Banach ‘spe

6
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is a fairly common requirement, in which case, we would most certainly

be interested in the bounded linear operators of this space. 1In fact,
~we might even be interested in the vector-valued Borel functions. In
‘many cases, however, the functions that we shall be interested 'in,
whether they are continuous or not, will not be compufable. _And fof that
matter, we might'be interested in using a compﬁtable function for its
_representation only, and not its valué.

'Here;ofore, it has been assumed that A. is an algébra of some module

'M,, where M, is generated by the set X .. 1f, howevér, we wish for our

algebra to have a topological structure, this assumétion may be relaxed
by requiring that X. be a set that is dense in M.. The set X, can be
modified in other ways also. In particular, coﬁsider a function f

assocliated with'Av. Then for any expression® s of-theAform f(x=,4;.,k-),
where each x; is a vecﬁor or sca}ar, if it isn't desirable to compute

s for the arguments under consideration, or it is not possible to do so,

the expression will be regarded.as being irreducible relafive to the

hypotheses being made, and hence will be treated as an element of X..

! An expression in A, is defined to be (1) a scalar or vector in A,, (2)

a representation of one of the forms x; + ... X. Or X; ... x., where

each x; is an expression, (3) a representation of tﬁe form x-, where

x is an expression and n is a positive integer, or (4) a representation of
the form f(x;,...,%,), where f is an associated mapping and cach x; is an

expression.

-



. 1f no aééumptionf

In general, if nd assumptions are mede concerning the function, we
have no choice but to.regard it as being irreducible whenever it is
used. If, on the other hand, f is to satisfy certain hypotheses, a
function h is associated with f. This mapping, called the axiom or
hypothesieHE;;EEfge of f;‘QEE§”5; a partial evaluation function for f,

stat;ng which properties of the function are to be assumed, and how

they will be used. 1In particular, if f has the property e.(x,,...,x )

whenever the condltion p,(xl,...,x ) is fulfxlled (for i i = 1 2,...,n)

then h is the function of the variables x;,...,%:, having for izs value
ey (XyyeeesXy) if ehe predicate p; (X;,...,X,) is satisfied, andlthe
irteducible expression f(xl,...,xzj otherwise.

Let fy,...,f, be a collection of functions which are to be associat
with A, and which will satisfy the axiom functions hy,...,h,, respectiv
These functions and their properties are referred to in. ALGEBRA by a
veriable, called AXIOM, whose'value is the list (fl,hl,fg,hg,...,fn,hn>

lare to be made, .AXIOM will have as its value the

empty set @. Infapy case, whenever a vector-value expression f(x;,...,
. ! _ .

is encountered, if it is not a sum, product, or exponential expression

of the form x’ whHere x is a vector and y is a non-negative integer, .
ALGEBRA first checks to see if f is a member of the set AXIOM. 1If it

is found to be in AXIOM, the expression is evaluated using the corre-

" sponding axiom mapping of f; otherwise, s is regarded as'being irreduci

and hence, a member of X, .



EXAMPLE:

Let A be the polynomial algebra defined in the example on Page 5

and assume that the trigonometric functions sin and cos are associated

with A. If they are assigned the respective axiom functions hsin and

hcos, where

(-1)*hsin[(-1)%s]

hsin(s) = <

Lsin(s)
and
(1
hcoé[(-l)*s]
hcos(s) = <

\cos(s)

anwmrb;mwzn__wﬂmWW R

ifs=0 -

if s = n or n§ (n=-1,-2,... and £ a vector)

hsin(€)*hcos[ (n-1)E]@hcos (E)*hsin[ (n-1)E]

if s = n§ (n=2,3,... and § a vector)

hsin(gl)*hcos(§2+...+§n)@hcos(§l)*hsin(§2+...+§n)

if s = € +...+E  (each §, a vector)

otherwise

if s =0

n or nf (n=-1,-2,... and € a vector)

if.s

if s = nf (n=2,3,... and € a vector)

hcos(gl)*hcos(§2+...+§n)®(-1)*hsin(§1)*hsin(§2+...+§n)

if s = §,+...4€,  (each §; a vector)

otherwise

T =
. 4 . L
it then follows that any expression s of the form i;131[51n(p1x)] .

[cos(qix)]ni (a;,py, and q; are arbitrary integers and m;, n, = 0,1,2,...)

T

hcos(E)*hcos[ (n-1)EJ@(-1)*hsin(E)*hsin[(n~-1)E]



<o st

- the form s,X,sr,v,AXIOM — ALGEBRA(S,X, ,r,v,AXIOM). - -

easily reduces to a vector of thé form ? b,[sin(x)]rj[cos(x)J.’.
Moreover, if it is also assumed that sin® () + cos®(E) = 1 for every
vector £ in A (i.e., the mapping A,p — vector; (A,u) is modified by letting
vector, [cos(E),cos(§)] = 1 - [sin(€)]?), then s completely collapses to

an expression of the form g a,[siﬁ(x)]xr + P B,[sin(x)]u’cos(x)., Thus,
we see that the trigonometric polynomials over the scalar ring R are
easily manipulated whenever this algébra.is used.

Definition of the ALGEBRA System

" In the previous two sections a procedure was developed for first
formulating the basic structure of an algebra A,, and then associating

with this algebra an arbitrary coilection of vector-valued maps, along

with any associated assumptions that were required.' The generating set
X, of this algebra was seen to be well-defined, consistiﬁg'entirely of
expliéitely defined.vectors and irreducible expressions of the form
f(xl,...,x,). Since these eleﬁents were evaluated to themselves, it

followed recursively (by the definitions of the @®,*, and axiom mappings)

. that every combination s of expressions of these elements would reduce to

anunique value, the form of which would vary only when the underlying struc-
ture was changed. We now define the ALGEBRA system to’ be this reduction

procedure, in which case it is then representable as a function of

Let s be an expression in A, having the value ALGEBRA(S,X,,r,v,
AXIOM) = x. Since x and s obviously represent the same element of the
Ialgebra, it is ciear that the mapping defines an equivalenée relation
on the set of expressions of A,, requiring any two, say s; and §,, to
be equivalent whenever ALGEBRA(s;,X,,r,v,AXIOM) = ALGEBRA(sz,X,,r,v,

AXIOM). Consequently, since the hypotheses concerning the structure

10
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of the algebra have been imbedded in the functions o ~ scalar, (&) and
A,u = vector, (A,p) and in the variable AXIOM, it follows that the
function ALGEBRA does.indeed characterize the structure of A, as we
have defined it. Morcover, since the values of this mapping are unique,
they serve, in effect, as representations for their equivalence classes.
Thus, if the definition of the canonical form of a vector s is modified
to be that of fhe vector ALGEBRA(S,Xv;r,v,AXIOM), ve then noteﬂ»WMHWWNMWMM;”MNMN“M;MW
that the canonical form of a vector will always be unique.

In reflecting on the structure of the mapping ALGEPRA, it should
first be emphasized that all we have succeeded in‘doing is implementing
a model for a finite collectionvof algebras on the computer; no
fechniques have been developed for proving theorems about these algebras.
The'question of theorem-proving in géneral is a distinct problem, re-~
quiring the fcrmulation of various téchniques for handling the learning
and choosing procedures that afe necessérily involved. Secondly, many

“of‘the restrictions that were placéd on the collection of sets N were
not really necessary. It is eQident, for example, that ALGEBRA could
have easily been defined to handle a collection of groups or monoids
instead. In any case, having actually formed a sihple but comprehensive
model.of a collection oflmathematical systems,'each of which contains a
fairly complex underlying structure, we have, in effect, provided our-
selves with an extremely powerfui tool for treating a vast array of

problems in a systematic manner which could not even have been considered 0

otherwise.

11
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Polynomial Algebras

Let R be an arbitrary ring indexed by the value v = v, and described

by the mapping s — scalar, (s), X a recursive collection of non-numerical
o

atoms or indexed variables designated by the value v = v, (seg reference 1),

" and A an extension of the polynomial algebra defined.on the set of

variables X over the ring.R (see reference 2), allowing in addition any'

appropriate associated functions that are desired. It then follows.that

>'A4wi11‘bé”bé11;dgfiﬁed whenever the product mapping x,y - véctorvo(x,y)

is‘evaIUAted. But this function is easily defined, having for the non-

= afl T = pytl o S
zero vectors x = ap; ...y and y = b¥;” ...¥,  the value
scalar, (a*b)qil#*(pi2% (.. ¥ (@u®* (Y31 -+ *¥1%))...)),
. o

where

YT oYL HE Yy, <9 < ¥y

Bl et Lyt if ¢ = ¥y and

ALGEBRA(rts,,X,rg,Vo ,AXIOM) = 0
. : s .
scalarrc(¢r+sa)Yi1...%;211%;{{1...Ynn if
o =Yy ¢ and r + s, are scalars,

r+sq

and ¢ % is an expression in our

ring of scalars
‘y‘;l LI Oﬁg.i.ltpr.’-aaysag;l - ...Y:n"”' if (p = Ya a.rld

@*t?a, ig irreducible.

ALGEBRA(G ** ¥, X, 10 5 Vo , AXIOM) *

(] 8y —1. ..8 [] R _
(. XTI L) LE g = Yy

L and " *°Y is reducible

We now consider several useful applications of this algebra.

12
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1) The SIMPLIFY Algebra

This algebra is the algebra most generally used for maﬁipulating
symbolic mathematical expressions, having for its scalar ring the stand-
ard fixed and floating po1nt arithmetic and for its generator set X the
mcollection of non-numerical atoms whlch are not being used as vectors
for other algebras. For convenience, we shall denote the value of its
implementation mapping s - ALGEﬁRA(s,X,ro;vb,AXIOM) by SIMPLIFY(s).

Assume that the staedard differentiation function diff:s,x — %ﬁ
1is now associated with SIMPLIFY (see reference 2). If AXIOM = § (the
empty set), it is then ciear.that although SIMPLIFY(K + x)l= 5x + 5y + 3xy
for the vector k = 4x + 5y + 3xy (where x <y < xy), since no assumptions
lare being made regarding the differentiation mapping, SIMPLIFY [diff(K,x)]
has for its value diff(4x + 5y + 3xy,x), considering this expression as
being irreducible and hence an element of X. If, on the other hand h(s, x)
is the standa¥d axiom mappir{g fo‘r diff! and AXIOM = (diff,k), then
SIMPLIFY [diff(K,x)] would have as its value h(K,x) = 4 + 3y. Thus, if
the two trigonometric functions sin and cos are also associated with
SIMPLIFY and h[sin(x),x] is defined to have the value cos(x)? it is evident
that whereas this algebre is appropriate for coﬁputing expressions of the ’
form cos(x) + diff[sin(x),x], it is totally inadequate for handling either

differential equations or polynomials with symboliec coefficients.

! h(s,x) is defined for any expression s and any atomic vector x by reqﬁiring
that (1) h(s,x) = O whenever s is a scalar or atomic vector different from x,
(2) h(x,x) =1, (3) h(s,x) = h(s3,x) *+ «voo + h(s;,x) for s = s, + ... + s,
and (4) h(s,x) = h(s;,x)sp°"*s, *+ ... *+ sy7°*s,y h(s;,x) for s = ;5.

13
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2) The MULT and MULTILINEAR Algebras

The MULT algebra uses as its scalar ring the SIMPLIFY algebra and
as its generator set a finite collection {xl,...x,} of non-numerical
atoms or indexed variables. The standard differentiation mapplng
d;ff:s,x - %i is again associated with this algebra, being defined
as before whenever x = x; for some x;. The definition of diff, however,

can be extended to also cover the case where x is a non-numerical atom

in' the ring SIMPLIFY. This is done by requiring that: (1) if s is a

“"géalar, then diff(s,x) will be computed as an expression in SIMPLIFY, (2)

'diff(s,x) will be regarded as Being irreducible for any irreducible '

vector s in MULT, so that in effect, each x; is a function of x, (3)

diff(s,x) = diff(sy,x) + ... + diff(s,,x) for any s = s; + ... + s,

and (4) diff(s,x) = diff(sy,X)sze*s, + ees + 53 ==+ 5,_; diff(s,x)
for any s = sy *** s,. Noting then that the expression xx; +
diff{sin(x)x, ,x] re&uces to [x + cos(x)]x, + sin(x)diff(xx,x), it is
evident that any differenﬁial equation with numerical coefficients is
easily ﬁandled by this algebra. |

In order to manipulate differential.equations with symbolic

coeff1c1entg, the MULTILINEAR algebra must be used. This algebra is

a modification of the MULT algebra, hav1ng as its scalar rlng the

MULT algebra (with generating set {xl,..,xﬂ}) and as its generator set
a finite sequence {yl,...,yn} of non-numerical atoms or indexed variables

each of which is assumed to be a function of the variables {xl,...,x }.

The definition of the dlfferent*atlon mapping diff(s,x) is t!an modeled a
that of the MULT algebra, allowing x to be either y. or y, and requiring

that the expression diff(s,x,;) be irreducible for any 1rreduc1ble

14
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expression s in the algebra. Thus, it would follow that the expression
difflax,sin(y,),x,] + diff(y,,y;] would reduce to assin(y,) +

ax;cos(y,)diff(y,,x,) for j # k.

Series Algebras

Let R be a commutative ring with multiplicative identity 1, Z the
ring of‘integers, and A the collection of all functions £:2 — R such
that for some integer n,, £(n) = 0 for all n < n; (the value of n, will

necessarily vary with the choice of f). Denoting the value of f(n) also

-“1 By fn, it then is clgar that A is an ;Igebra over R whenever (af), = af,,

‘ N . oo
(f + é) =f +g, dd (fg), = £ . f,.g, for any scalar a and any vectors
f o n [ {F1= 18]
. «™n

f and g. This algebra is, of course, isomorphic|to the algebra of series

. ® .

of the form L a;x for some variable x.
. n_k . ’

Regarding n now as-a fixed variable, represent the elements of A by

the expressions f£(n) instead of f. A can then b? considered as a modifi-

cation of the MULT algebra (whenever R is taken éo be the SIMPLIFY algebral
having as its generatfﬁg set X the collection of méps f, such that f£(z-{0};
{0} and as its bagic product the value 1§4=nf1g3 iﬁstead.of‘fngn. However,
if A is considered as an a{gebra over the polynomial ring defined on the
set {x}, in whichvcaéé E(axk)fjn = af,_, for any|scalar of the form ax® an
" any vector,f, if'is”then evident that the algebra is a modification of the

MULTILINEAR algebra with generator set X, whose scalar ring is the MULT

algebra with generating set {x}. 1In either case;’since the notation being

used to represent our series will most likely differ from that of the elem
: } i

f(n) of A, a short input-output package will hav% to be supplied to conver

from one system of notation to the cther. But this is always the case, of

course, whenever we deal with isomorphic algebras,
’ |

N
1
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Assuming that the standard differentiation map E%r T fy = (n+ D)fo
is associated with A, it then follows that the algebra will provide a
direct procedure for reducing ordinary differential equatiuns (in x)

to their difference equaticn components. Moreover, if A and MULTILINEAR

- are used in conjunction with one another for handling these equations,

first transforming them and then reducing them, we shall find that we

have developed a highly useful procedure for examining their underlying

structure. . - BT N SO

Differential Forms

. Let R be the_MULTILINEAR algebra, having as its generatiﬁg set a
sequence of the form {Y15¢++3Ya}, the choice of which may vary with the
prbblém under conéideration, and as its scalar ring the MULT algebra with
generator set {xl,...,xn]; Assumihg also that the functions being

assoclated with MILT and MULTILINEAR are‘differentiable; we then con-

" -sider the exterior algebra A of the free module M generated by the seat

{dxi,...,dxh} over R, where {dx;,...,dx,} is a collection of n atoms or
indexed variables (“ee reference 2).

Noting that the non-scalar elements of this algebra are of the form

w = 211 <rerca, e, dxgla...Adxir (r may vaFy), it follows that the

algebra is a model of the algebra of differential forms for some n-manifold

(see reference 7). This in turn implies, of course, that the differential

n 3a o : r
d(a) = 12 5;: dx, of an expression a in R is an element of this algebra.

=1
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" We now extend the definition of this differentiation mapping in the

standard manner so as to have the value d(w) = I d<a‘i°--1r)
$<0eo<ty
~ " . = a .o
Adxg,~... dx. for any yector of the form w §1<...<’P;1. 1,dx11

a...Aax;‘,rin which case:
r

(1) d(ow, + Bw,) = ad(uﬁ) + B8d(w,) for any vectors w; and w, and

.any eleme-~ts o and B which are in the SIMPLIFY ring.

- (2) d(d(w)) = 0 for any vector w of class c’(r = 2).
(3) d(w~wy) = d(wy)~w, + (-1)Tw,~d(w,) for any vector a, of the form

o«

L a
T, € vue <1, floecty

dx,la...»dxir (r fixed) and any arbitrary vector
1 A .

w, =

Wwoo ‘
This algebra is an extremely importapt apblication of the MULTILINEAR

ring ﬁ, allowing Qs ;ot only to be able to transform.many ﬁighly comﬁlex

partial differential equations in a systematic} yet simple manner, but

to transform and in many cases reduce multiple'integrals élso; Moreover, .

1f the collection of algebraic homomorphisms of the form j:A — A,where

f(M) .M, are associated with A, we then have a direct procedur. for studying

the collection of matrices associated with the corresponding restricted

s~} inear- trans fotinat»i‘ons—— f- ‘-vM:M =M : - — — T T

Where

e g
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On the Nature of Symbol Manipulation Languages

During the last few years a number of studies have been made on the

"”§££ﬁéfafé'fequirédwf6r higher-level languages designed primarily for am

analyst desiring to manipulate various mathematical expressions in a
variety of ways (e.g., See reference 3). From these studies it has become

evident that the general list processing languages (such as LISP) are

. not appropriate for processing complex mathematical data. This is due

not only to the extreme complexity of the coding that necessarily ensues
in’ the analysis of an intricate problem, but also to the fact that the
input-output pfopedﬁres most ideally suited for these 1anguages are
totally inadequate for tﬁe individual primarily interested in the analysi:
of a problem and not the underlying mathematical and input-output

structure involved. On the other hand, it has become equally clear that

in order for such a symbol manipulation language to be constructed, a

list processing languagé, or equivalently a set of list processing routim
will'necessarily have to be employed, along with a highly sophisticated
input-oqtput procedure for allowing the aﬁalyst to communicate with the
machine and a mathematical structure which would be broad enough iﬁ scope
to interpret a diverse collection of expressions in a fairly simple manne
We shall now consider briefly the underlying mathematical structure that

any such language would need,

18




In general, any symbol manipulation language must always contain
at least two modes of computation, namely the ring of rational numbers
and a polynomial algebra over a set of variables using only numerical
coefficients (in which case, we have just an application of the SIMPLIFY
algebra, of course). However, because of the diversity of the mathematical
concepts encountered and the techniques that are needed, thgse modes will
obviously never suffice. 'On the other hand, since SIMPLIFY was founa té
be a very simple application of an extremely general model, namely‘
ALGEBRA, and such a model in some form will always be needed for defining
this algebra, it is evident that one can implement the model itself
so that we then have at our disposal not only the SIMPLIFY algebra, but
a host of other mathematical procedures also. Thi; being the c#se,'an
éﬁperimental programming language called FLAP (for FORTRAN-like élgébraic
list processor) was developed, using the ALGEBRA system as its underlying
structure.

The FLAP language is a higher-level language (written in LISP) which
contains not only the model ALGEBRA But also a complete‘system'of iﬁput-

output routines for intrepretingthe data under consideration. The

and fleating point ariﬁhmetic and the SIMPLIFY, MULT, and MUﬂTILINEAR
algebras. Its form;t is similar to that of the FORTRAN system, in that
it makes use of the same notation of the statements and formulas, the
major distinction being the existence of a mathematical mode setting
statement, appropriately called the MODE statement. This statement,
which has for its argument the néme of an algebra, in efféct tells the

interpreter that until another mode statement is made, every statement

19
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is to be regarded as being dominated by ih
MODE statements are made, the standard fix
arithmetic will prevail thrqughout the pro
then have a FORTRAN-like prograﬁ.

The language FLAP, though still in the

. already been found to be extremely useful,

list-processing capability which it inhert

fact that itAygg_been formulated on a gene

rather than a set of dist
.'6

Using the model' we then have the capability
any other computational mode (by setting t

etc.) as well as beiug able to modify any

EXAMPLE: e

Suppose that we wished to write a FLAP

is algebra. If however, no
ed and floating point

gram so that, in effect, we

experiméntal staée, has
This is due mot only to the
té from LISP, but also to the
ral aﬁalytical structure
inct»computétioﬁal p;§cedurés.
of being able to,easily define
hé arguments X, r, v, AXIOM,

existing ones.

program for computing the

expression -9 [ay.sin(xy)], where y is a'variable depending on the

Oxj
variable x and Exis a constant. Since we

MULTILINEAR.algebra with the generator set
MULT (which would, in turn, have the gener

could be written as follows:

would then be using the..

{y} and the scalar ring

ator set {x}), the program

L.
.
.i! N
|
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CALCULATE
INPUT A,X,Y
DUMMY K

MODE MULTILINEAR (X), (Y)

K = DIFF (A*Y*SIN(X*Y),X)

RETURN K

END

CALCULATE (A, X,Y)
" The fdilowing”§a1ﬁé ﬁou1d then bé'bfintéd:
A*X*Y*COé(X*Y)*DIFF(Y,X)+A*Y**2*COS(X*Y)+A*SIN(X*Y)*DIFF(Y,X)
The three statement cards beginning with the MODE sgatément contain the

instructions for computing and printing the expression; the other cards

" are used only for declaring and binding the variables concerned.

21
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