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This volume is devoted to problems of structural mechanics and 

mathematical design methods for modern statically determinate and sta¬ 

tically indeterminate airframe structures consisting of rods, thin 

walls and shells. Variational and finite-difference methods are exam¬ 

ined as they apply to calculations for structures of this type. Engin¬ 

eering methods are presented for the design of solid wings and fuse¬ 

lages for aircraft with large cutouts. A special section is devoted to 

calculation techniques for structures operating under conditions of 

high temperature as a result of kinetic heating. 

A table of conversions between the units of the MKGSS [meter, kil 
ogram-force, second] and SI [International] systems for the references 

is given at the end of the book. 

The book is intended for design engineers working in other fields 

of mechanical engineering as well as in aviation, and may also be help 

ful to students in the higher educational institutions for aeronautics 
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FOREWORD 

The present volume represents a further development of the author's 

books "Raschety tonkostennykl konstruktsly [Calculations for Thin- 

Walled Structures] (Oboronglz [State Publishing House for the Defense 

Industry], 1953) and "Streitel'naya mekhanlka tonkostennykh konstruk¬ 

tsly " [Structural Mechanics of Thin-Walled Structures] (Oboronglz, 1958) 

and stands as the author's creative contribution to the development and 

systematization of modern structural-mechanical methods for aviation 

structures. 

The book begins with an examination of the analogies between rod 

and thln-walled structures with a skin that works only In shear, and 

examines the general theorems of the structural mechanics of rod and 

thin-walled structures. 

In setting forth the variational methods, the author has succeeded 

in clarifying the physical significance of some of the complex mathe¬ 

matical relationships encountered, with the aid of a number of Judi¬ 

ciously selected examples. 

The book considers the stressed and strained state of various 

low-aspect ratio wing designs, stress concentration at points where 

there are abrupt changes in tjhe transverse sections of cylindrical 

shells, thermal stresses, strains and other problems In the strength 

of airframe structures. 

The current Importance of the problems examined, the engineering 

approach to their solution, with Invocation of the variational methods 

and equations in finite differences are a credit to the great experience 
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of the author, who was able to set forth the complex problems of contem¬ 

porary airframe structural mechanics In simple and accessible form. 

Prof. Doctor of Technical Sciences I.F. Obraztsov 
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AUTHOR'S PREFACE 

The present volume, "Structural Mechanics of Airframe Structures" 

represents a further development of our work "Structural Mechanics of 

Thin-Walled Structures" (Oboronglz, 1958). 

The main content of the volume breaks down Into four parts. 

Part One treats rod systems, thin-walled structures with skin 

working only in shear, and composite structures - thln-walled + rod 

systems. The theory of rod systems is examined here only to the extent 

that It is necessary to show the intimate relationship between thin- 

walled structures and rod systems. 

In Part Two, variational methods of solving problems in structural 

mechanics are examined on the basis of the principle of possible dis¬ 

placements. To supplement the approximate methods that are set forth in 

the work mentioned above, the Ritz-Timoshenko, Bubnov-Galerkin and Kan- 

torovich-Vlasov methods and the method of finite differences are anal¬ 

yzed and illustrated with examples. 

In Part Three, the Kantorovich-Vlasov method and equations in fin¬ 

ite differences are used to make separate investigations of the stressed 

and strained states of aircraft-wing and aircraft-fuselage-type shells , 

and the method of displacements is examined as it applies to the design 

of the wing. 

Part Four is concerned with thermal stresses. It begins with cal¬ 

culations for systems with a thin wall, and thereafter the principal 

attention is devoted to determination of thermal stresses resulting 

from aerodynamic heating of solid and hollow wings. The thermal-stress 

- 3 •• 
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calculations are made using the method of forces, the Kantorovich-Vla- 

30V method and equations In finite differences. At the end of this Part, 

we examine the effect of thermal stresses In which they lower the tor¬ 

sional rigidity of wings. 

The author expresses his gratitude to I.F. Obraztsov, V.M. Strlgu- 

nov, S.Q. Yelenevskly, A.A. Belous, V.I. Flgurovskly and V.I. Klimov 

for the advice and recommendations that they rendered during preparation 

if the manuscript, to P.D. Grushin, L.I. Balabukh, I.A. Sverdlov and S. 

a. Makarov for the valuable comments made during the review, and to 

\.I. Sverdlov for his meticulous editing of the manuscript. 

A. Feofanov 
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Part One 

THEORY AND DESIGN OF ROD SYSTEMS AND THIN-WALLED STRUCTURES WITH SKIN 

WORKING ONLY IN SHEAR 

Chapter 1 

FORMATION OF SYSTEMS AND INVESTIGATION OF THEIR GEOMETRICAL 

INVARIABILITY 

INTRODUCTION 

The mathematical schemes of the structures considered in Part One 

may be represented as systems having Y hinged nodes connected to one 

another either by rods only (rod systems) or by rods and walls (thln- 

walled structures). Each rod and each wall represents a single coup¬ 

ling - in the form of a rod axial force or the tangential force of the 

wall. 

As a point, each link has two degrees of freedom in a plane and 

three degrees of freedom in space, since two of its coordinates (for 

example, the cartesian coordinates (x, y) may vary Independently during 

free motion in a plane, while three (x, y, z) may do so in space. 

Consequently, if the nodes were not connected to one another by 

the couplings, the degree of freedom of a system consisting of Y free 

nodes would be W = 2Y in the plane and W = 3Y in space. But the coup¬ 

lings reduce the freedom of the nodes by as many units as there are 

couplings C. Hence for a system consisting of Y nodes and C couplings, 

the degree of freedom is : 

in a plane 

r-2y-c, ^1,1^ 
in space 

r=3y-c. Í1-2) 

If the system is secured to a support and has the necessary mini- 
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mum number of couplings C to confer geometrical Invariability upon the 

system. Its degree of freedom W = 0. According to Formulas (l.l) and 

(1.2), we obtain the smallest necessary number of couplings for this 

case: 

for two-dimensional systems 

(1 • 3 ) 

for three-dimensional systems 

c-ay. (i.'O 

If the system Is free (a geometrically In¬ 

variant system separated from Its supporting 

couplings), Its degree of freedom W will be 3 in 

the plane (only three coordinates — x, y and an¬ 

gle - can be varied Independently) and 6 In space 

(x, y, z and three angles). Consequently, we ob¬ 

tain the number of necessary couplings for free systems from Formulas 

(1.1) and (1.2): 

for two-dimensional systems 

(1.5) 
for three-dimensional systems 

C-3y-6. (1*6) 

It will be shown below that Formulas (1-3)-(1.6) express only ne¬ 

cessary and not sufficient conditions for geometrical invariability, 

by which we mean the ability of a system not to permit relative dis¬ 

placement of its parts without deformation; here, the deformations . r 

the system must be commensurable with the elastic deformations of U,, 

component elements (rods, walls). Thus, for example, if we dispense 

with rod 3-7 (Fig. 1.1), the system will become geometrically variable, 

i.e., in this case its rods 3-2, 3-4, 3-6, 4-6, 4-5, 5-6, and 6-7 may 

displace kinematically with respect to one another due to tran .format ; ( 
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of the rod rectangle 2-3-6-7 Into a parallelogram. 

1. FORMATION OF SIMPLE FREE SYSTEMS 

Formation of Simple Two-Dimensional Systems 

Let us take a rod (Fig. 1.2a) as the starting element In the for¬ 

mation of two-dimensional free systems. Two rods are required to at¬ 

tach one node to It as a base, according to Formula (1.3). This require¬ 

ment Is necessary but not sufficient to ensure geometrical invariability 

of the attached node. Indeed, if the two rods securing the node lie on 

the same line (Fig. 1.2b), wc obtain a geometrically variable system in 

which large displacements of the attached node correspond to small de¬ 

formations of the rods (see dashed lines on Fig. 1.2b). Such systems are 

known as Instantaneously variable systems. These systems are not rigid 

and are not used in engineering, since finite forces applied to the 

nodes produce infinitely large or altogether Indeterminate forces in 

the rods of the system. 

Thus, Formulas (1.3) and (1.5) express neces¬ 

sary but insufficient conditions for geometrical 

Invariability of two-dimensional systems. These 

conditions are sufficient only provided that each 

node is connected by two couplings forming a finite 

angle a (Fig. 1.2c). 

Consequently, to secure the node geometrically 

invariably In the plane, two rods may not lie on 

the same straight line. By connecting each subsequent node with two 

rods not in the same straight line in the plane of the triangle formed, 

we obtain the so-called simple free.truss (Fig. 1.3a). 

A simple truss can be disassembled (broken up) by removing, one 

after another, the links and the two rods connecting them. The disas¬ 

sembly must begin with the node that is connected by two rods. The re¬ 

al 
OcnOñHOÚ 1 

Í) h ^ ' ^ f¡nuÉ/n»ií» fipuirpenjmeMuä 
j/Mß 

;. 1.2. 1) 
n rod; 2) 

Fig. 
Main 
tached node. 

at- 



mainder will be a rod, l.e., a free but ge¬ 

ometrically Invariable system. 

Simple trusses possess the smallest 

number of couplings necessary for geometri¬ 

cal Invariability. Actually, to connect 

nodes 1 and 10, a single coupling Is expend 

ed, while two couplings are required to at¬ 

tach the remaining Y - 2 nodes. Consequent¬ 

ly, the system as a whole a number of coup¬ 

lings equal to 2(Y - 2) + 1 = 2Y = 3, which 

according to Formula (1.5)> corresponds u 

the minimum necessary number of couplings. 

Further, by definition, each node is con¬ 

nected by two rods not lying on the same straight line. Consequently, 

the secondary condition Is also satisfied, and hence the simple truss 

is a geometrically invariable system. 

Figure 1.3b shows a two dimensional system in which the diagon¬ 

al members have been replaced by walls. Thus, the number of coupllnr 

corresponds to the necessary minimum. The secondary condition is also 

satisfied. Actually, we connect to the original rod 1-10 not node 9, 

but rod 2-9, which, as a system consisting of two nodes and one coup¬ 

ling, has three degrees of freedom (W ^ 2Y - C = 2«2 - 1 = 3).This means 

that a minimum of three couplings are required to secure the rod 

geometrically invariably in a plane. These couplings deprive rod.. 

of three degrees of freedom only in the event that the resuralnin : 

couplings do not intersect at a finitely or infinitely distant point 

(the point will be infinitely remote if the couplings are parallel to 

one another); otherwise, the rod will be able to rotate about th< point 

of intersection as an instantaneous cent.or of rotat ion. 

- 8 - 
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As will be seen from Fig. 1.3b, rod 2-9 is attached to the main 

rod 1-10 by three couplings. Here the secondary condition is again sat¬ 

isfied, since the directions of the couplings in the form of the axial 

forces of rods 1-2 and 10-9 and the tangential force 2-9 of wall 1-2-9- 

10 do not intersect at the same point (see arrows on Fig. 1.3h)« Conse¬ 

quently, rod 2-9 is secured geometrically invariably. By connecting 

each rod (3-8, 4-7, 5-6) successively by three couplings that do not 

intersect at the same point to the geometrically invariable wall (disk) 

1-2-9-10, we obtain a thin-walled system (Fig. 1.3h) that is equivalent 

on the basis of geometric invariability criteria to the rod system 

shown in Fig. 1.3a, which is indicated by the symbol • 

Formation of Simple Three-Dimensional Systems 

A rod triangle, e.g., 1-2-3 (Pig* 1.4a) is usually taken as the 

starting element in construction of a simple three-dimensional system. 

The remaining nodes (4, 5, 6..., etc.) are connected successively by 

three rods. This formation ensures the minimum necessary number of 

couplings, which is expressed by Formula (1.6). Actually, to connect 

the first three nodes, three couplings are expended, while three coup¬ 

lings are used for each of the remaining Y - 3 nodes. Thus, the total 

- 9 - 



number of couplings Is equal toC = 3(Y“3) + 3 = 3Y-6 which corres¬ 

ponds to Formula (1.6). However, both Formula (1.6) and Formula (1.4) 

express necessary but insufficient conditions for geometrical invaria¬ 

bility. These conditions are sufficient only provided that each node is 

attached by three rods not lying in the same plane. 

2. INVESTIGATION OF GEOMETRICAL INVARIABILITY OF SIMPLE FREE SYSTEMS 
BY THE DESTRUCTION METHOD 

In investigating the geometrical invariability of simple system.:, 

recourse is taken frequently to the method of destruction, which con¬ 

sists in successive removal of individual nodes or parts of the system 

that are definitely known to be geometrically Invariable. Thus, if v/e 

succeed in ''destroying" the entire system down to a single rod in the 

o.* s of two-dimensional systems or a rod triangle in the case of three 

dimensional systems, the tystem is simple (separable) and geometrically 

invariable and has the minimum numbe ’ of couplings. 

Let us employ the method of desl net ion to study the geometrical 

invariability of the free system shown in Fig. 4a. Dissassembly of the 

three dimensional system must begin at the node at which three rods 

meet. In the system under consideration, node 1 is such a node. Having 

satisfied ourselves that this node is secured by three rods not lying 

in the same pls.ne, we remove it together with the three connecting rods. 

Then, in exactly the same way, we may remove nodes 2, 3, 4, 5, and 0 

one after the other. The remainder will be the rigid triangle 7-8-9, 

which has six degrees of freedom (W = 3«3-3 --=6), which corresponds ¡ 

the number of degrees of freedom of a geometrically Invariable free sys¬ 

tem in space. 

From this It is evident that the system 1.-, separable and, conse¬ 

quently, simple and geometrically invariaole, since we have s. ttl ils d 

ourselves that each node Is attached by tnree rods not lying In the 
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same plane and, as we ascertained earlier. It has the minimal number of 

couplings. The thin-walled system composed of rods and walls (Fig. 1.4b) 

also satisfies all of these criteria. 

3. FORMATION OF COMPLEX SYSTEMS 

binonslona1^SystemsX 3ySternS by Connecting Two or More invariable Two- 

If the system has the minimal number of couplings, but they are 

arranged In such a way that any node of a two-dimensional system is 

connected by more than two couplings, or by more than three in the case 

of a three dimensional system, the system is said to be complex, since 

it cannot be dissassembled (destroyed) by removing one node after an¬ 

other with the two rods connecting each of them in the case of a two 

dimensional system or with the three rods in the case of the three di¬ 

mensional system. 

Fig. 1.5. A) 
Rod; B) hinge. 

Fig. 1.6. 1) 
Wall; 2) hinge. 

Fig. 1.7. 1) Hinge. Fig. 1.8. A) Fic¬ 
titious hinge. 



Several definitely Invariable systems are Joined together by means 

of rods, walls and hinges (Figs. I.5-I.8). A point (node) of Intersec¬ 

tion of rods In structural mechanics Is also known as a hinge, which Is 

assumed to be ideal, l.e., to work without friction. Figure I.5 shows a 

real hinge (point 4), while Fig. l.b shows a fictitious one (point 7). 

A hinge in a plane is equivalent to two couplings, and In space t three 

couplings. Indeed, if an invariable system is connected with a fixed 

hinge axis (Fig. I.9), it will lose two degrees of freedom In a plane, 

since only the angle a remains as an independent parameter of the mo¬ 

tion, while a three dimensional system attached to a ball Joint will 

lose three of the six degrees of freedom (in the directions of the 

three coordinate axes x, y, z). 

Suppose that D invariable two dimensional systems, 

which will he referred to as disks. are connected with 

one another by C couplings. Let us determine the number 

of degrees of freedom of such a system. If the disks 

y 

Fig. I.9 
were not connected to one another by couplings, then 

the D disks would possess a degree of freedom W = 3D In a plane. ßu< 

the couplings lower the degree of freedom by C, so that the degree 

freedom of a system of disks connected into a single system by C com - 

lings is 

r«3Æ-C. (1.7) 

If the disk system is attached to a support and has mily h- m- 

mum necessary number of connecting couplings C that endow, it will - 

ometrical invariability, then W = 0. From Formula (I.7), we obtai h 

minimum necessary number of connecting couplings for this case: 

r=.vz (1.8) 

grees of linear displacement and one degree of rotation. u s ■ n ■ ;¡í 



minimum necessary number of couplings f< r free systems from Formula 

(1.7) for this case: 

f«3Æ-3. 

Formulas (1..8) and (1.9) express condit ions that are only neces¬ 

sary and not sufficient for geometrical Invariability of two dimens.1« ri¬ 

al systems consisting of D disks. These conditions are sufficient only 

provided that when two disks are connected, the directions of the c< n- 

necting couplings do not Intersect at the same finitely or Infinite! 

remote point. If the directions of the three rods intersect at the s ■: 

point, the disk may rotate about this, m In». < f îni crsect l. n as about .• 

Instantaneous center of rotation (see Fig. 1.8); If the directions • t‘ 

all rods are parallel to one another (Fig. 1.10), they Intersect at 

single infinitely remote point. On th> other hand, In the caso in vm ’ s 

three disks are Joined together, the? three htma s (real f»r flctlti»!,,) 

may not lie on the same line; otherwise, t h< . ss <m will be found t . 

instantaneously variable, in the same way as that cents Me? red ear! U. r 

(see Fig. 1.2b). By way of example, Figs.. 1.1! ans I.id slew t>t'.> - 

hinge instantaneously variable two dlmon. lonal s.yst.oms, and FI -.;. 1. •; 

and 1.14 geometrically invariable systems. 

Example. 

Investigate the gecmatrl ial ins. tab II it y <■!’ 1 li ’wo • Ilmen .leral 

system shown In Fig. 1.15* 

We isolate the three definitely geométrica 1 l,v Invariable disks, a, 

B and C (Fig. I.I6). The number of rods, connect ing these disks is. s.l . 

According to Formula (1.9), the smallest necessary number r rods. 

r-3JZ-3-6. 

Consequently, the condition regarding lie minimum number of r< 1. 

necessary for geometrical înv u*iabi 1 It y 1.-, .00. is.fled. The secondar, 

condition is also satisfied, ;lnce "hi t h reo h Ingos 1, a nr:d •; d< r 



F1« 1.14. 

Fi« 1.15 
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lie on the same line. 

Thus, the system shown ln Fig. I.I5 Is geometrically invariable. 

If a system of three dimensional bodies T is attached to a support 

and has only the minimum necessary number of couplings C that endows It 

with geometric. 1 Invariability, It becomes obvious that 

Cm6T, (1.10) 

while for a free but invariable system 

f-67'-6. (1.11) 

Formulas (1.10) and (l.ll) express necessary but not sufficient 

conditions for geometrical invariability of complex systems. These con¬ 

ditions are sufficient only provided that the directions of the con¬ 

necting rods do not intersect the same (finitely or infinitely remote) 

axis; otherwise this axis will be an instantaneous axis of rotation. 

Figures I.17 and l.lö show examples of the connection of two three 

dimensional geometrically invariable systems A and B. According to For¬ 

mula (1.11), the minimum necessary number of couplings is 

¿ver—6-6-2—6-6. 

In Fig. 1.17, the six couplings connecting systems A and B {cj rod.-, 

and one wall) do net Intersect the same axis and, consequently, the 

three dimensional systems A and B r *e connected geometrically invar¬ 

iably. 

In Fig. I.I8, six couplings (four rods and two walls) intersect the 

same axis at infinity, and, consequently, systems A and B are connect< ¡ 

geometrically variably. Figure I.I9 shows the top view of the ..ystem 

shown in Fig. I.I8 and the relative displacement of the connected ;y. - 

terns A and B that is possible in this case. 

Formation of Complex 3\ ■•t ■. m • by Koplacemer.i jf Ccupl ! nos 

Examples of complex '-ysterns obtained by replacement of c uplings 

are shown in Figs. 1. 0 and ]. !. 
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The complex two dimensional t i'inv. u‘ Fiir,. I. K) !.. ubi/iinod fi* ■; 

the simple truss of Fig. 1.22 by sub:;1 itiit lnp: fed 1 -.1 ft r rod ;-c;. 

The complex truss of Fig. 1.21'1 i.; obluined from Hu1 Inifdo tru 

of Fig. 1.23 by subotituting rod 6-2 for rod 1-/. 

More detailed investigai Ions » f Hie foi'm-i' Ion and goumetrical 1 - 

variability of rod systems may be 121:11), f< r example, in the ws.'k . 1' 

A.Yu. Romashevskiy and V.I. Klimov [20]. 

^1. ATTACHMENT TO SUPPORTS 

All structures arc attached lo supports of ..orne sor». Thus, fur 

example, the support for the stabiliser and fin Is the tall scctlor f 

the airplane's fuselage; for an engine- nact.lle or undercarriage mounted 

on the wing, the support is the wing; th< ..apport u* the wlnr; is. » he 

fuselage, and so fort tu 

- 1Y - 



Tc attach a structure to its supports Immovably , it is neeess; 

to use couplings to deprive it of all degrees of freedom that it po: 

sesses in free motion. 

It is known from the above exposition that a minimum of two sui 

porting rods are required to ensure Immovable attachment ot a nod- 
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Flg. 1.28. A) Cutout at bottom. 

Fig. 1.29. 1) Axt.-, of For. 1.30. l) Axl.; of 
rotation. i'oi at ton. 

a plane, and three In apace . The gf. inetrîciJ ly invariable ay:;tent ha.; 

three degrees of freedom In t lie plane and six In space; o< nso juen* ly, 

a minimum of three supporting rod.; are required 1 o fix H In a plane 

(Fig. 1.24) and six In space (Fir;. l.?9)* 

The two dimensional system of Fig. 1. ’b has. three degrees of free¬ 

dom In the plane (W =- 2*4 - 5 = 0» and seven In .-.pace* (W - 3*4 — 9 

= 7); consequently, a minimum of thre(. couplings Is required to secure 

It to a support In a plane and sovei In spneo (Figs. 1.27 and 1.28). 

The placement of the no cos..; ary mit. I mum < f couplings mus.t be ;uch 

that they actually do deprive the sys.tc.Ti of all degrees of freedom, 

1.0., the secondary requirement regarding 1 ho- placement of the couplings 

- 19 - 
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must be satisfied. Figures 1.24, 1.27 and 1.28 show one of the correct 

arrangements of the supporting couplings, while Figs. 1.29 and I.30 

show incorrect placement (the supporting rods Intersect the same in¬ 

finitely remote axis). 

Manu¬ 
script 
Page 
No. 

[Footnotes] 

19 This system has six degrees of freedom in space, as a rigid 
body, and an additional degree of freedom is provided by tli¬ 
ability of the system to change its configuration freely from 
plane 1-2-3-4 (to fold on axis 2-4). 

Manu¬ 
script 
Page 
No. 

[Transliterated Symbols] 

12 JI = D = disk = disk 
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Chapter 2 

INTRODUCTION TO CALCULATIONS FOR STATICALLY DETERMINATE SYSTEMS 

1. GENERAL PROPERTIES OF STATICALLY DETERMINATE SYSTEMS 

A system la said to be statically determinate If the forces that 

arise In its elements on application of a given load are finite and can 

be determined on the basis of equilibrium conditions assuming an abso¬ 

lutely rigid system. It follows from this definition that the forces do 

not depend on the cross-sectional dimensions of the elements or the ma¬ 

terial of the structure. 

On cutting out nodes of a system secured to a support, we may 

write for each node: two static equations In the case of a two dimen¬ 

sional system and three static equations in the case of a three dimen¬ 

sional system; these express the equilibrium conditions for the node 

under the action of known external forces and unknown [internail forces. 

There will be a total of 2Y such equations for two dimensional systems 

and 3Y for three dimensional systems. For a free system, l.e., a system 

separated from its support, the numbers of equations will be ?Y - 3 for 

two dimensional systems and 3Y — 6 for throe dimensional systems, since 

in the absence of the excessive supporting couplings when two dimen¬ 

sional systems are released from their supports, three equations arc- 

written for determination of the forces in the supporting couplings, 

and six in the case of three dimensions. 

In accordance with Formulas (1.3)-(1.6), we state that the number 

of equations, obtained from the equilibrium conditions to determine he 

unknown forces in the couplings is equal to the smallest necessary num- 

21 - 
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ber of couplings that confers geometrical Invariability upon the system. 

It follows from this that a system that Is geometrically Invariable and 

does not have excessive couplings is always statically determinate and, 

conversely, a statically determinate system is geometrically invariable 

and has no excessive couplings. 

If one coupling is removed from a statically determinate system, 

the system becomes variable and the panel that was connected by the 

discarded coupling may freely change its configuration. Consequent]y, 

if the discarded coupling is replaced by a coupling with new dimensions, 

no forces will arise In the system. It follows from this that no Inter¬ 

nal self-equilibrating stresses (for example, thermal stresses) can 

arise in statically determinate systems. And once this Is so, external 

forces are compensated by a uniquely possible distribution of Internal 

forces. 

2. CALCULATIONS FOR SIMPLE TWO DIMENSIONAL STATICALLY DETERMINATE SYS¬ 
TEMS 

Calculations for simple two dimensional statically determinate r\d 

systems are treated In courses on theoretical mechanics and the otreniO. h 

of materials, so that we shall indicate here only a calculation for.a 

specific two-dimensional system in which one span has.. Instead of a di¬ 

agonal member, a wall that works only in shear from the rods framing It 

(Fig. 2.1a). 

Fig. 2.1. A) P 1000 kgf. 

— .V — 
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It Is clear from Fig. 2.1a that the ayctem under consideration has 

the minimum number of couplings, is geometrically invariable, and, con¬ 

sequently, statically determinate. Let us analyze it in greater detail 

on the basis of the conclusions drawn In the preceding section. Node 8 

is secured geometrically invariably, since it is connected by two rods 

that do not lie on the same straight line; rod 6-7 is also secured geo¬ 

metrically invariably by three couplings that do not intersect at the 

same point. Consequently, system 4-6-8-7-5 may be regarded as a disk 

secured by three supporting rods 1-4, 2-4 and 3-5 that do not intersect 

at the same point. It follows from this that the system has the smal¬ 

lest necessary number of couplx.igs and is geometrically invariable. 

We begin the calculation with determination of the support reac¬ 

tions (forces in the supporting rods). 

We pass section I-I. Considering the equilibrium of the right-han i 

part and assuming that the unknown forces in the rods are tensile, w< 

obtain 

V Mm = + />226 - RfiO - 0; /?, - - 2830 kF; 

2 A1a—P22—#,42=0: /^-^-^-=523 kF; 

2;W4-P101-f#328=0; #3^--00^° = -3570 kF. 
- ¿O 

Here we shall use the method of moment points, which will enable 

us to obtain each equation with a single unknown. 

We pass to determination of the forces in rods 8-6 and 8-7 and the 

elements of the disk 4-6-7-5* 

We pass section II-II. We denote the forces N acting on nodes 8 by 

the subscripts 8-6 and 8-7; the first figure of 1 he subscript to N In¬ 

dicates the nude in question, while the second indicates the node to 

which the tensile force 

V M6 -^ />50-;-A;_r30 -0; A',_7--1670 kF 
3o 
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is directed. 

From the equilibrium conditions for node 8, we obtain 

Consequently : 

1670 - Nt_6 0,86—0; A'._6 =-- ^ -= 1950 */\ iC • 0<ti6 

A force of 19f^ qr-ts upon node 6 from the direction of node 8. 

The components of this force on the x- and y-axes are equal respective¬ 

ly to 

^-1950-0,83-1670 «f; ^,-7 = -1950sin a=-1000 kF. 

A force » - I67O kgf acts upon node 7 fror, node 8 (Fig. 2.1b). 

Assuming the action of a tangential-force flux PK3 ^ from the .;kin 

on rod 6-7, from bottom to top, we obtain from the equilibrium condi¬ 

tions for this rod 

¢30-1000=0; ¢=,+ -i + 33 kF¡ch. 
30 

The plus sign in front of % indicates that the assumption made re¬ 

garding its direction was justified. In accordance with the law of 

pairs for PKS, vie also apply the disturb¬ 

ance £ to Fig. 21b for the remaining three 

rods. 

Then it will not be difficult to d< ^ r- 

Fig. 2.2 mine the forces N;ug and as well, fol¬ 

lowed by and , 

AY-b = 1670 + ¢50 = 1670 d 33 • 50 = 3320 kF; 

A'5-7“-1670—¢50--3320 «F\ 

-^4-5 = -523 sin y. 

Remembering that 



v/e obtain 

^4-5--281 kF. 

Consequently, 

JV*-4«—281—33-30--1271 kF. 

A check of the equilibrium of node 4 serves as a control: 

V A'—3320 - 2830 - 523 cos y=48. 

The error of -1.5# is withii the limits of measurement error; con¬ 

sequently, the calculation has been performed correctly. 

The stressed state of the system is shown in Pig. 2.2. 

3. CALCULATION FOR SIMPLE THREE DIMENSIONAL STATICALLY DETERMINATE SYS¬ 
TEMS 

In the design of rod systems, particularly in three dimensions, it 

is helpful to remember the following propositions (lemmas) that prc --.--- ^ 

from the equilibrium conditions. 

1. If no external force is applied to a two-dimensional hinged 

node at which two rods converge, or to a three-dimensional hinged node 

at which three rods converge, the forces In these rods are zero 

2.3 and 2.4). 

2. If three rods of which two are situated on the same line con¬ 

verge at a two dimensional hinge node, or no external force is applied 

to a three dimensional hinge node to which rods lying, except for one, 

all in the same plane, the forces are equal to zero in the rods stand¬ 

ing alone (rod 1 in Pigs. 2.5 and 2.6). 

On the basis of the first lemma, it is easy to prove, for example, 

that the forces in the rods of the truss shown in Fig. 2.7 will all be 

"zero," except for rods 4-1', 4-4' and 4-3'• 

In determining the support reactions of either three dimensional 

or two dimensional systems, the action of the supporting rods is re¬ 

placed by the reactions corresponding to the initial assumption, made 



‘ihf 
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in writing the static equations, that all rods exert tensile force 

(Fig. 2.8). The magnitudes of the six unknown support reactions R, 

R^, R^, R^ and can be determined from six static equations: 



5 -1» ^.miâtÊÊâÊilíim » 

Usually, however, the solution Is obtained In a simpler manner, writing 

the equations of the moments about axes Intersecting the largest number 

of rods. 

Let us determine the support reactions 

and of the system shown in Fig. ro 

The axis A-B intersects five directions. With 

respect to this axis, the sum of moments 

ZAfx-a-O will contain only a single unknown, 

R^. The axis A-C also intersects five direc¬ 

tions. From the equatU ZMA-c—0 we find R^. 

Axis A-D intersects four directions. We find frsni the equation 

(since R¿^ has already been found). However, cases may be en¬ 

countered in which one or another reaction can also be determined sim¬ 

ply from the projection equation. 

Let us consider a method for determining the forces in three di¬ 

mensional rod systems (method of cutting out nodes). 

In determining the support reactions, the entire system is separ¬ 

ated from the support, while in determining the forces in two dimen¬ 

sional trusses, part of the truss is separated — it does not matter 

which part, as long as no more than three rods the forces in which are 

of interest to us are cut. The cutting out of nodes is based on the 

- 27 - 
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method of sect lens. It Is characterized by the fact that a definite 

part of the truss - a node of a three dimensional truss - Is partitioned 

off. Needless to say, this method can also be used for two dimensional 

trusses, but It Is frequently found more cumbersome In this case than 

the method of moment points. For three dimensional trusses, however, 

this method Is one of the basic ones. 

Fig. 2.10 

If a three dimensional girder is geometrically Invariable and has 

no superfluous couplings, an attached one has 3Y rods and a free >n< 

3Y - 6 rods. 

Cutting out nodes from the three dimensional attached tru..;s, we 

may write three static equations fer each node: 

2X«0; ZY-O; ZZ-0. 

expressing the equilibrium conditions for the nude under tiiu actien - v 

the known external forces and the unknown forces In the re o.. /Jo .lu 

have a total of 3Y such equations. If, on the other hand, the true- ' 

free, the number of equations Is reduced to 3Y - 6, since when the 

three dimensional truss is released from Its supports, six equation., 

serve to define the forces in the supporting rods. Thus, we may once- 

again satisfy ourselves that there are many ,ndependent ¿tal le equa- 
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lions a.; there are rods and, consequently, as many Independent forces 

to be determined. 

Let us use a concrete example to explain the calculation procedure 

used In the node-cutting method. Suppose we are given the system shown 

In Pig. 2.10. Using the "destruction" method, we satisfy ourselves that 

the system Is geometrically Invariable and has no superfluous couplings, 

since, by discarding noies 9, 5, 8, 7 and 6 in succession, we find that 

each node Is bcoured by three rods not lying in the same plane. 

In determining the forces in the rods by the method of cutting out 

nodes, it is necessary to pass from node to node in the same order In 

which the nodes are discarded in Investigating geometrical invariabil¬ 

ity by the destruction method. Otherwise it will be necessary to solve 

more than three equations simultaneously. 

Thus, we begin with node 9* Passing the section A-B and removing 

the left part of the truss, we replace the action of the truss on node 

9 by tensile forces. The first digit of the subscript to N indicates the 

node being considered, and the second indicates the node to which the 

tensile force is directed. Then we write the conditions of equilibrium 

for node 9 on the x, y and z-axes. These conditions will take the form 

2 X AVsJcosO—5, W9-6cos (9—6. *)+A»-? cos (9 - 7, jc) + ( 2.1 ) 
+ P9co'(P9,x)=0; 

‘V»-5 cos (9 - 5. y)+A 9-6 cos (9 - 0, y)+AV-7 cos (9-7,y)-f 

-|-P9cos(Pl,y)=0; (2.2) 

V Z JV9_5 cos (9—5, z) -f iV9_6 cos (9—6, z) 4- .V|_7 cos (9 — 7, z)-f 

+ P9cos(P*z)=0. (2.3) 

The cosine of the inclination of the rod (force) to any coordinate 

axis is equal in magnitude to the projection of the rod onto this axis 

divided by the length of the rod; the signs, on the other hand, vary, 

depending on the node being considered. Thus, for example, cos (9-5i 2) 
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is a positive quantity, but cos(5-9, z) is negative, as becomes clear 

from examination of the z-axis directions of the projection of force 

N9_5 at node 9 and the projection of force ^ at node 5 (see Fig. 

2.10). 

It is convenient to calculate the direction cosines In the form 

known as the geometrical proportions table. In compiling this table, 

the individual coordinate axes are thought of In each case as having 

been transferred to the node under consideration at the moment. The 

values of the geometrical proportions for the rods going to nodes 9 and 

5 are shown in Table 2.1. 

Let us determine the forces in the rods of the truss due to a force 

= 1000 kgf, the situation of which is shown in Fig. 2.10. 

Substituting values of the cosines into Eqs. (2.1), (2.2) and 

(2.3)* we obtain 

2*= -0,955^,-0,82^-0.632^,+0.5-1000 -0: ( 1 ) 

yy= -0,632^-0,865.1000=0; ( 2 ) 

2* = +0,275^,.,-0,574^,.,-0,443^,.,= 0. ( 3 ) 

TABLE 2.1 

1 

« 
c. 

‘•S 
0 

J.IHHA npOCKUHH 
- CTepÄHeft 

KnaapaiM a.niHu 
0 npoeKUHH 5* M n 

as 
•u 
lie. 

*x 
V 
* 

2 » 
X 

=1 u- 

KocHHycu yraoB 

X » i *2 y* /2 *n ylt 

9-5 

9-ft 

7 

5-1 

5-6 

5—8 
M T. a. 

-1.0 

-1.0 

-1.0 

-1.0 

0 
0 

0 

0 

-1.0 

0 

0 

-1.0 

0,3 

—0,7 

-0,7 

0 

-1.0 

0 

1.0 

1.0 

1,0 

1.0 

0 

0 

0 

0 
1.0 

0 

0 

1.0 

0.09 

0,49 

0,49 

0 

1.0 
0 

1,09 1,045 

1.491 1,22 

2.49’ 1.58 

i.ooj 1,00 

1,00 1,00 

1,00 1,00 

1 r 

—0.9S5 

—0,82 
-p.m: 

-1,00 

ft 

0 

0 

0 
-0.6'2 

0 
0 

-1.0 

+0,275 

-0,571 

-0,441 
0 

-1.0 

0 

A) Hodj B) length of projection of rod; C) squart 
jf projection length; D) square of rod length; E) 
rod length; F) cosines of angles; a) etc. 



Frum Eq. (2) 

Substituting the value of the force In Eqs. (l) and (3)# and 

noting the sign of the force, we obtain 

Í11 ) 
-0,955^,-5-0.82^+865+ 500 -0. V ’ 

+0,275^-0,574^+606-0. ( 3 ' ) 

From Eqs. (I1) and (3')* we obtain 

A^,-s— +370 kT; 

^,- +P.35 kT, 

Let us go on to node 5. We cut It out and replace the action of 

the discarded part of the truss by tensile forces N^_1# and 

Nr- Then we write the three static equations fpr node 3* Remembering 5-9 

that N^ g = 0 (rod 5-8 stands alone), we obtain 

Dr 

2 Jf = -1,0^.,+0,955^=0: 

J»'“0: 
2Z =^-5-0,275^,=0. 

From the first equation, 

^8-,-+0,955.370 - 354 kF. 

From the third equation, 

^8-8=-0,275.370--104 kT. 

We can also determine the forces in the other rods in a similar 

manner; here, If walls replace the diagonal members, the PKS g in these 
walls can be determined by the calculating procedure Indicated in the 

preceding example for determination of the PKS £ of a wall. 

4. CALCULATIONS FOR COMPLEX STATICALLY DETERMINATE SYSTEMS 

Twu Dimensional Systems 

In calculations fcr complex rod systems, the method usually employed 

Is that of replacing couplings, in which we proceed as follows. The com- 
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Fig. 2.11 

plex system Is transfcnnea ^ simple one by replacement of couplings 

Thus, In the case of the complex system of Fig. 2.11a, rod 1-2 may be 

replaced by rod 3-5« As a result of this substitution, as Is easily 

seen, we obtain the simple system of Fig. 2.11b, In which the forces 

Np(k_n) due to external loads are easily determined. The subscript v 

on N will be used here arbitrarily to denote forces due to external 

loads. In stage "p," the force in the substituent rod is equal to 

NP(3-5)' 

In state "1" (unit state) of the transformed system (Fig. 2.111), 

forces equal to 1 kgf are applied in the direction of rod 1-2 tovnrd 

nodes 1 and 2. The forces in the rods due to the action of the. n ¡v 

the force in it must be equal to zero. On this basis, we multiply all 

loads in state "l" (see Fig. 2. lid) by a coefficient X that :,at! fl/ 



the equation 

Wp(S-5) + MV I ( J-5) “ 0. 

From this equation, we obtain the value of the unknown coefficient 

X: 

Y_ 

Multiplying all unit forces of state "1" by X, we obtain the state 

"l.X" (Fig. 2.11c). 

Adding the forces of states "P" and "1»X" (see Figs. 2.11b and 

2.11c), we find the forces Nk_n in all rods of the given complex system, 

i.e., 

Nh-nmNp{k~n)+XN Kfc-n). 

Specifically, for rod 1-2, 

Af|_a*»0+1 ’X^X kF. 

Thus, the calculation by the coupling-substitution method proceeds 

as follows: 

1) by replacing couplings, we transform the complex system into a 

simple one; 

2) in the simple system, we determine due to external for¬ 

ces (state "PM); 

3) in the simple system, we determine the forces due to a 

unit load applied to the nodes in which position and direction of tho 

substituted rod; 

4) vie determine the value of the coefficient X; 

5) adding, we determine the true forces Nk_n. 

The coupling-substitution method is applied in calculations for 

complex rod systems despite the fact that it is extremely laborious, 

since the system must be calculated twice. However, the basic defi¬ 

ciency of the method consists in the fact that it is limited to rod 
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systems only. In the case of complex thln-walled structures (see, for 

example. Fig. 2.13b), It Is not possible to use this method. Consequent 

ly. It is necessary to find a method for calculation of complex systems 

that will be simple and at the same time suitable for design of both 

complex rod systems and complex thin-walled structures. The following 

procedure may be recommended for the design of complex systems. 

The difficulties encountered in calculations for complex systems 

consist in the fact that there is no node in a two dimensional system 

that is connected by two rods, and no node in a three dimensional sy. - 

tern connected by three rods; consequently, there is no node from which 

the calculation can be begun immediately. But this difficulty can be 

circumvented if cne of the forces is assigned at the outset. 

Thus, for example, we denote the as yet unknown force in rod 1-r 

by N1_p (Fig. 2.11a). Then, from the equilibrium condition fwi.cie , 

we can determine the forces j4 and ^ as functions of the external 

force and N-, _2. Then we use the equillbiium conditions for node h 1. 

determine the forces In rods ^ and as functions of the external 

forces and the force Nj Then we go on to noue 5, to which am dim¬ 

ed the unknown force and the two f *jes ana expressed 

as functions of N- and the external f. rces. Consequent ly, -. have fu r* 
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two unknowns N^, and that can be determined readily in explicit 

form from the equilibrium conditions for node 5* After the force 2 

has been determined, no difficulty is encountered in determination of 

the forces in the remaining rodst_ 

Let us follow this calculation procedure in a numerical example. 

Juppose that we are given the complex girder of Fig. 2.11. We begin the 

calculation from node 1. We separate it from the entire system by sec¬ 

tion I-I and replace the action of the discarded rods 1-4 and 1-5 on 

the node in question by tensile forces ^ and ^ (Fig. 2.12). Then 

we write the equilibrium conditions for node 1 on the x- and y-axes. In 

the general case, these conditions will obviously take the form 

y X—cos (1 — 2, x)+A',.4 cos (1 — 4, x)+ 

-f Ar,_8 cos ( 1 — 5, *) -f P, cos (P„ a) - 0; 

=JV»-« cos (1 - 2, y)+Wi_4 cos (1 - 4, y)+ 

+A4_j cos (1 - 5, y) -f P, cos (P,, y )=0. 

The values of the direction cosines are given in Table 2.2. 

TABLE 2.2 

,-, i 
*» 
U 

gü.iHHa npocK- 
min cTepwHeH 

Ksaxpatu aan- 
Q hu npoeKUHÜ ¡1° 

Ik 

E* 

"5 S cL 

SL 

F KocHHycu yraoa 

X y t A* *5 *// >// •/i 

1-2 
1-5 
1- 4 
2- 6 
2- 3 
3- 6 
3-4 
5-4 
5-6 

100 
20 

-50 
-50 

0 
-50 
-150 
-70 
+30 

0 
-70 
-100 
-30 
-100 
+70 

0 
-30 
+40 

0 
0 
0 
0 
0 
0 
0 
0 
0 

10000 
400 

2500 
2500 

0 
2500 

22 500 
4900 

900 

0 
4 900 

10000 
900 

10000 
4900 

0 
900 

1600 

0 
0 
0 
0 
0 
0 
0 
0 
0 

10000 
5300 

12500 
3400 

10000 
7400 

22500 
5800 
2500 

100 
72,8 

112 
58,3 

100 
86 

150 
76 
50 

1.000 
0,275 

-0,447 
-0,857 

0 
-0,582 
-1,000 
-0,922 
+0,600 

l
i
s
t
s
 

0 i f
 i ï +

 
a

 

0 
0 
0 
0 
0 
0 
0 
0 
0 

A) Hod; B) length of rod projection; C) square 
of projection length; D) square of rod length; 
E) rod length; F) cosines of angles. 

(a) 

(b) 

Substituting the values of the cosines in Eqs. (a) and (b) for 
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0, we obtain the equilibrium conditions for node 1 in the form 

2^=^,.,-0,447^4-0,275^,.,-=0: (a ) 

VK= -0,892^,.,-0,96^,.,=0. 

From the solution of these equations we obtain 

AT,1,425^; 

We pars on to node 4. 

2^- 0.447A7,., 4- 0,922^.,4-1^,.,=0: 

2^=0.892^,., 4-0,395^,.,-667=0. 

From the solution of these equations, we obtain 

^4-1-2,354^-1158; 

^,.,--3.22^,.,+ 1,688. 

We pass to node 5- 

2^--= -0,275^,.,4-0,600AT,.,-0,922^,.,=0: (a ) 

2^=0,960^,.,4-0,800^,.,-0,395^,.,=0. (b ) 

Substituting in these equations 

^-^,.5-1,325^,-8 and ^-4=^-5--3.22^:-8+1688, 

we obtain on solving 

^»-.-830/cf, 

^,-8-315 kF. 

Consequently : 

tf,., —1,325-315—418 kF; 

AT,.,-1,425-315-449 kF; 

^,-5=2,354 • 315—1558«—817 kF- 

yV4-5=-3,22-315+1688 = 675 icF. 

We pass to node 6. 

V.Y= -0,600-8304-0,582^.3 + 857^,.8 0; 

2K = - 0,800-830 - 0,815^,.,+0,514Nt_8 = 0. 

(a) 

(b) 

(a) 

lb) 



From the solution of these equations we obtain 

iV«-*-795 kT, 

-- 315 kT. 

Frt/m the equilibrium conditions for node 2 on the y-axls, we ob¬ 

tain 

-0,514-795-1^,.,=0 

or 

Nt-i"*—408 kT. 

As a check, we verify the equilibrium of node 3. 

2^=0; 817 -f0,592 • 3] 5 -1000= 1004 -1000^0; 

2^=0; -815-315 — 408 + 667= -665 + 667^0. 

Three Dimensional Systems 

In exactly the same manner, we can make the calculations for e m- 

plex three dimensional systems. Thus, Figs. 2.13, a and b, show a com¬ 

plex system In the form of a wing compartment attached geometrically 

Invariably to a support by the smallest necessary number of rods. Now 

determine the stressed state of this system under the influence of a 

force Q = 1000 kgf. 

In the calculation for the rod system of Fig. 2.13a, we assign the 

force Then from the equilibrium conditions for rod 1-1', 

2*-srr°- 
From this 

Ar,_r=Ar,-_4 ÜÜ-4—2500 
107,7 100 

From the equilibrium conditions for rib 1^21-3’-4', we determine 

the value of N-^, 

The sum of the moments of all forces acting on the rib about axis 

3-3' (see Fig. 2.14a) is 
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Fig. 2.13. A) Q = 1000 kgf. 

l'mû 

Fig. 2.1^1 

1^3-3. ~Nv^j.m + N^r Ä40«0. 

Substituting the value uf N1_2, ar, . functiun of Nj , ^ intu Mil 

- - 

^r- 



equation, we obtain 

2^,.-4-^-2500=°. 
107,7 

From this 

AT,..«=,1348 kP. 

Consequently, 

AT,_r =, 1348 ^-2500 111^=-1770 kF. 
107,7 100 

Given the value of N-^,^ and the fact that rods 1-4, 2-3, 1^21 

and 4^31 stand separately (are zero rods), determination of the forces 

at the remaining nodes gives rise to no difficulty. The magnitudes of 

the forces on all rods are shown in Fig. 2.14a. In determining the 

force factors in the compartment of the thin-walled structure (Fig. 

2.14b), we assign the PKS qi.11.41.4 by analogy with the calculation 

for the rod-bounded compartment. Then we have from the equilibrium 

conditions for rod 1-1’ 

From this 
2500-^1-1^^-4100-Vi-2- s-** ^ ^ 

Vi-t-r-i' — Vl_|*_4'-4 + 
2500 

100 ' 

(a) 

Fig. 2.15 

From the equilibrium conditions fcr rib 1^21-31-4' we determine 

the value of qi i, 4, 4. The sum of the momenta of all forces acting 0 

the rib about node 3 (Fig. 2.15) ^ 
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—^i„l._v_440-100-f Vi-2-2’-,' 100-40=0 

or 

^1 —1'-4'-4 = I . 

Applying Eq. (a), we obtain 

ii_i'_v_4= 4-12|5 kFIcm. 

It Is easily proven from the equilibrium conditions for the rods 

that thePKS will also be 12.5 kgf/cm for the remaining walls. 

5- DETERMINATION OF DISPLACEMENTS OF STATICALLY DETERMINATE SYSTEMS 

Principle of Possible Displacements 

If external farces are applied to an elastic system, each point of 

the system must necessarily be displaced. Suppose, for example, that 

node 1 of the structure shown in Fig. 2.16, which 

had the coordinates x, y, z, has been moved to 

point 1' with the coordinates x', y* and z' after 

application of the force P. 

The increments in the coordinates, which we 

shall call displacements, are so small within the 

limits of elastic deformations that they may be regarded as very sim i 

quantities compared to any of the system’s linear dimension:,. 

To determine the magnitude and direction of the total d’ .-o]-'cerner 

it is necessary to know its three projections unto the coordinate axe.:, 

but it is most often necessary to determine only the projection of 1 he 

total displacement onto a specified direction, for example L-L. 

To determine the displacements, we shall apply the prineii i • ¡ • 

possible displacements: if a system is at equilibrium, then the . am if 

the work done by external and Internal forces to accomplish any pos.; L- 

ble small displacements Is equal to zero. Here the forcer, (and d 1- 

placement s) must be regarded as generalized, i.e., they may represent 

\P 
Fig. 2.I6 
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various groups of forces or moments. For generalized forces having the 

dimensions kgr, Kgr»cm, kgf/cm (force, moment, PKS), the corresponding 

p 
generalized displacements must have the dimensions cm, rad; cm (de¬ 

flection, angle of turn, area). 

Determining Displacements of Statically Determinate Systems 

Suppose that, as a result of action of external forces P2,..., 

P^ on the system as a whole, internal forces qp and Np have appeared in 

the elements of the system. This state of 

the external and internal forces will be 

referred to as the "PM state. 

The work Mp of a certain external 

force P to accomplish the displacement 

Ap corresponding to it will be expressed 

as 

The force P is not halved in the right member of this equation be¬ 

cause the possible displacements are very small and, consequently, the 

force P remains constant over their path. 

The work of the internal forces is, by virtue of their physical 

significance, always negative, since the internal forces oppose the 

displacements caused by the external forces. Thus, for example, in ac¬ 

complishing the displacements due to the PKS qp, the external force r 

(Fig. 2.17) performs a positive work 

AAP*=Pbp-P\h, 

while the PKS qp performs the negative work 

-qpl\h^ « 

where F is the plan area of the wall. 

The work of the rod internal force when the rud is connected to 
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the skin is 

) V ' 

where l is the length of the rod and f is the cross-sectional area of 

the rod. 

The work of the internal force in a rod not attached to the skin 

is 

V \ 

According to the principle of possible displacements, the work 

done by the external and internal forces of state "p" in accomplishlr 

the corresponding displacements of the same state is equal to zero; 

consequently 

V a4 V- Y Í —dl 

(lt JJJ £/ ¿-J Ef 
=0. 

Here the summation extends over all elements forming the structure, in 

eluding even the support rods. 

However, according to the principle of pos¬ 

sible displacements, the sum of the work' of o 

state-"?" forces is equal to zero not only for 

displacements of the same state, but al ;o for un 

other possible displacements, so that w ¿u¡ 

termine the displacements as. follows. 

Let on? of the states of the given struo1 

be the true state of equilibrium under the • >i * • 

of a system of external generalized forces i , 

..., ?n (Fig. 2.18) and the internal iV'co 



example 2, In the direction 1-1. We have called this state of the sys¬ 

tem the "P" state. 

As another possible state of this structure, we take the state of 

equilibrium (Fig. 2.19) under the action of a unity external force (a 

force coinciding in location and direction with the unknown generalized 

displacement and the corresponding internal forces q1 and N-^. The 

subscript 1 Indicates that the internal forces result from the action 

of a unit force (the unit state or state "l"). 

Expressing the work of the state-"lu forces in accomplishing the 

displacements of the "P" state, we obtain 

From this, the unknown displacement i 

The subscripts on the A indicate that the displacement is deter¬ 

mined from the external forces of state "P" at the point 1 of force 

application (see Fig. 2.19) in the direction of the same force. 

The value of the Integrals dL may be determined from Vereshag- 

in's rule [30]. 

Example 1. 

In Section 2 of the present chapter, we determined the stressed 

state of a system due to a force P = 1000 kgf applied to node 8 (see 

Fig. 2.1). Let us determine the vertical displacement of node 6 of this 

system for the following data: cross-sectional area of any rod f, skin 

thickness Ô, supporting rods 1-4, 2-4 and 3-5 absolutely rigid. 

To employ Expression (2.4), it is necessary to determine q^ and N-^ 

from a force equal to 1 kgf and applied vertically to node 6. Under the 



Influence of this force from above, we obtain (see Fig. 2.1) 

2^01=1-176-^,80=-0: /?,-=ïï=2,20; ' 

— 1 -28—/?j42=0; ¢,= --^=-0,667: 

2-M,= 1-50+/7,28=0: ¢,= -^=-1.78. 

From the equilibrium conditions of rod we determino the PK 

of the skin: 

«, 30-1 = 0; Vl = ¿. 

Let us determine the forces in the rods framing the skin: 

^«-«-0; 1,67; 

^*0; -1; 

AVs-0; Aj.,— —1,67; 

A;., n 667 sin y — 0,667 • 0,537 = 0,357; 

AT^»0,357— ISO- -0,643. 

The stressed state of the disk (panel) 4-6-7-5 due to a 1-kgf 

force is shown In Fig. 2.20. 

Applying Formula (2.4) and Vereshchagin's rule, we obtain the ur 

known displacement 

, _ 1 33.30.50 10 1 Í.67(2.3320 4-1070)50 , 

U ‘30 "ÕT ' “ *6 ST-+ 

+-^---^-+- 10,643(2-1271+281)-0,357(2-281 + 1271)] “ = 

1650 , 238785 

Gf ' £/ * 

Example 2. 

There is a triangular compartment in the ;tructure or th 

section of a pictureframe sweptback wing with ribs perpendicular to 

spars. Let us consider this compartment In isolation (Fig. . >1 , u ir. 

b) under the action of a group of self-compensating forces r (kn< v,-n a 

a bimoment ) applied to the sect ion 1-5-0-4. Determine the anrlt if d< • 



H 

planation* of section 1-5-6-^ (the relative turn angle of struts 1-4 

and 5-6). 

In the "P" state, we determine from the equilibrium conditions of 

rod 2-5 

p _ JL. 
T2- 5 6- 3 £ Ig 0 ’ 
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and from the equilibrium conditions of strut 5-6 we find the FKS in wall 

1-5-6-4: 

Btge * 

Examining the equilibrium of strut 2-3, we find the PK3 in wall 

1-2-3-4: 

B tg 0 

Thus, in the walls of the compartment, the i’K3 is 

Further, we determine the longitudinal forces ND, examining the 

equilibrium of the rods. The results of the calculation are shown Lt 

Fig. 2.21a. 

To determine the "1" state corresponding to the definition of the 

deplanation angle of section 1-5-6-4, a force group 1/H in the form of 

a bimoment (Fig. 2.22), i.e., two moments each of which is equal to 1, 

in this section instead of the forces P. In this state, therefore, 

F : "'"-‘’“¿Tie 

<h 

I 
HB tg 6 

If the wall skin thickness is uniform and the cross-sectional ur 

of the lower framing members are equal to those of the upper one.;, 

apply Formula (2.4) to obtain the sought deplanation angfc In * he l orn 

Y —-—-— ( tg 8 4" Ä -) 4* 
HB tg 6(71 \ * 1 rosO / ' 

4.2.1 Lp 1 I L JL _±_ 
^ E {-ï w A' -, 3 ttr« //tRf) /.-5 

or 
+ 

P_l_ 
sin 6 // sin 6 cos 8 

l 
tg* 0 I Bin 

/.-i/ 

1^+1+^,)+ 
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Manu¬ 
script 
Page 
No. 

i. jLfJliLa.-!_L_1_ 
3 //£ V/2-. /1-, /1-3 C0»M 

[Footnotes] 

It will be recalled that deplanation Is the deviation of 
points in the system's cross section from their plane. 

Manu- 

PagePt [Transliterated Symbols] 

No. 

24 riKC = PKS = potok kasatel'nykh sil = tangential-force flux 

- 47 - 



Chapter 3 

INTRODUCTION TO CALCULATION FOR STATICALLY INDETERMINATE SYSTEMS 

1. DEGREE OF STATIC INDETERMINACY 

If a system has a number of couplings C larger than the necessary 

minimum C that confers Invariability upon it, such a system is said u 

be statically indeterminate, since the number of unknown force factor', 

in the C couplings of such systems is larger than the number of static 

equations. 

The number of excess couplings above the necessary minimum, 

K-C-C (3.1) 

is known as the degree of static indeterminacy. 

Substituting the expression for C in (3.1) [see Formulas (1.3)- 

(1.6)], we obtain the values of the degree of static indeterminacy: 

for two dimensional attached systems 

K-C_2y; (3.2) * 

for three dimensional attached systems 

«■'„C—3y; (:>*3) 

for two dimensional free systems 

/C-C~2y+3; '>.<!) 

for three dimensional free systems 

/i~C-3y+6. (3.3) 

The number C in attached systems also includes supporting coup¬ 

lings, * 

2. CANONICAL EQUATION.'; OF THE METHOD OF FORCEC 

Any statically indeterminate (G.N.) system jan be reduced 4 < 



statically determinate (S.O.) system. To do this, it is sufficient to 

count the internal forces X in the excessive couplings as external fen¬ 

ces. For example, let a monocoque consisting of two compartments with 

an rods attached to the skin except for the rib diagonal members (Fig. 

3.1) be at equilibrium under the action of external forces M and 

the unknown internal forces N and g. This structure is doubly statical¬ 
ly indeterminate (K = 2). 

To reduce this system to a S.O. system, 

it is necessary to eliminate the two excessive 

couplings. For this purpose, we might pass sec¬ 

tions in the top flange of the forward spar, as 

indicated on Figs. 3*2 and 3*3* The S.O. system 

obtained in this manner will be referred to as 

the basic system. 

Let us apply a given load P,, M to the ba- 
«L • 

sic system. Obviously, gaps will appear in the 

sections, and we shall denote them by A^p and 

A^p (see Fig. 3*3)* Now we apply forces and 

X0 (see Fig. 3*2) to the flange in the sections such that the gaps van- 

ishj thus we obtain the original system. 

The conditions for the absence of gaps may be written as follows: 

for the gap in section 1: 

Fig.3-2. a) Section 
1; b) section 2. 

for the gap in section 2: 
*A»+Ai*—0; 

■^1*11 - o* 

(a) 

Here 8iils the change in the gap in section 1 due to a force X^ equal 

to unity (for example, 1 kgf. Fig. 3*Hence the product is 

equal to the change in the gap in section 1 due to the total force Xp. 

The change in the gap in section 1 caused by the force X0 * 1 (see Fig. 
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3.2) Is denoted by ô12, and so forth. The first subscript on A and Ò 

indicates in each case the position (and direction) cf the displacement, 

while the second indicates the cause of the displacement. 

The directions of the forces X-, and X, are 

taken arbitrarily. If, as a result of the sulu- 

tion, any of the forces is found to be negative, 

this will signify that the direction of this 

force is actually opposite to that assumed. 

Equations (a) are the so-called canonical 

equations of the method of forces, from which 

we can find the unknown internal forces X-j and 

X2; in this case, they are the flange forces 

at the places of section 1 and section 2 (see 

Fig. '.2). 

The displacements A and ô are determined by the formula 

(3-G) 

where the subscript 1-=1, 2,..., n pertains to unit states and the 

subscript k = 1, 2,..., n, p applies to both unit states and the P 

state. The summation extends over all elements forming the structure, 

even Including the supporting rods (see further Example 1, Section t). 

In the presence of elements working in flexure in the calculation scheme, 

i 

the right member of Eq. (3.6) has the additional term 2J 

For systems with two superfluous (excessive) couplings 

- Cocnto»Mi/e„l" 



> i V* (**> _l *1L. 
0,‘Ä2d“ör+2d^ £/ ’ 

^v-îlL-uv r^f i y h*1 - 
^ i 08 j £/ £/ ’ 

^=2^+21^+2^- 

Here Np and qp are forces produced In the 

basic system by the fçrces P1 and M (see Fig. 

3*3)* and N2, q2 are the forces of tine 

basic system in the unit states "1" and "2," 

respectively (see Figs. 3»^ and 3*5)* 

Summing the internal forces due to the 

separate disturbances on the basis cf the prin¬ 

ciple of independent force effects, we find the total internal forces: 

Fig. 3«5* a) State 
"2. " 

N •*Np+N\Xi+NiXi', 

q*mqp+qiX\+qtXt. 

We have considered the case of a doubly statically indeterminate 

system (K = 2). 

In the general case with k = n, the canonical equations assun. the 

form 

Mi+*Ai+*A>+ • • • 

*Ai+*Ai+*Arl- • • • +*A.+*aj>=0’ 

*^i%» + ^a*»+^3*»+ • • • + ^ ifi**+^ (3.7) 

^1^1+^810+^(3^13+ • • • +^(^»«+^«p 

Here ôij*ôai, ôu“ôii, ôai™ôai and so forth. 

The forces X^, X2, etc., are known as excessive unknowns, since 

they are the reactions of excessive couplings. They are generalized 

forces, i.e., they may also be moments and even whole groups of force;;. 
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3. SIMPLIFYING THE CALCULATION IN THE CASE OF SYMMETRY 

Given geometrical and elastic symmetry In the system, we may, by 

fortunate selection of the basic system, appreciably reduce the number 

of unknowns In the canonical equations and, consequently, the number of 

equations. 

Fig. 3.6 

For example, the engine mount shown In Fig. 3.6, a and b. Is dou¬ 

bly statically indeterminate, 'ince two geometrically invariable bod¬ 

ies (fuselage and engine) arc attached by 8 couplings, while the mini¬ 

mum necessary number of couplings 

£-67-6-6. 

Consequently, the number of excessive coupling 

A—8—6-2. 

If, however, the structure of the engine mount and the external 

loads are symmetrical with respect to the y-axis (Fig. 3.6b), then X-j = 

= X^. If, on the other hand, the structure is symmetrical but the » - 

ternal forces are antisymmetrical (for example, a torsional moment M) 

then X-L = Xg. Thus, symmetry of the structure enables us in this "i. 

to solve the system as a singly statically Indeterminate case. 

4. EXAMPLES OF CALCULATION FOR STATICALLY INDETERMINATE SYSTEME BY THE 
METHOD OF FORCES 

Exanple 1. 

Let a torsional moment in the form of a force couple (Fig. 1./) bo 



applied to the root section of a plctureframe a monocoque having a uni¬ 

form thickness t of of the spar webs and skin and uniform rod areas f. 

Now determine the axial forces, assuming the ribs to be absolutely ri¬ 

gid in their plane. 

According to Formula (3«3), the degree of static indeterminacy 

/(-(7+18)-3-8-1. 

On releasing node 1 from the horizontal supporting rod, we obtain 

the statically determinate basic system. 

In state "P" (Fig. 3.8), we obtain from the equilibrium condition 

of rib I'-S'-S’-^ with respect to axis 3-3' 

(a) 

II III 
From the equilibrium conditions of rod 1-1', the PKS qp = qp 

Consequently, we obtain from Expression (a): 

Remembering that node 1 has been released from its support and on 

ly the torsional moment M = P»B acts on the compartment, we can easily 

prove that the axial forces are equal to zero in nodes 2, 3 und 4 as 
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well. Thus, from the equilibrium conditions for rod 2-2», we obtain 

I III 
Qp = Qp > and from the equilibrium conditions of rod 3-3', we obtain 

IV I IV 
qp - qp* Here, qp Is the PKS of the lower skin. Finally, from the 

equilibrium conditions for rod l'-2', the PKS of the butt rib aT-Ü. 
2//’ 

and from those for rod 1-2, the PKS of the root rib 
ip 2H- 

Consequently 

or 

where P.B = M Is the torsional moment and fi is twice the area of the 

compartment's cross-section outline. 

Check. From the equilibrium conditions for rod 1'-^', 

flH+fpH-P 

or 

The axial forces and the PKS of state "P" are shown In Fig. 3.8. 

In state "1" (Fig. 3-9), from the equilibrium conditions for ..par 

1-1»-4-4', the PKS 
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From the equilibrium conditions for struts and 2^31 

«y-ÿ and 
The force factors of state "1" are shown in Fig. 3*9* 

Fig. 3.9 

We determine the unknown value of X from the canonical equation 

Xôii+Ai*"®. (b) 

We determine the values of the coefficients A^p and for abso¬ 

lutely rigid ribs and G = const : 

L p 2 J F Hl __ PIB-H) — 

H 2// 01 2// 0» 2H0b 2HGI 

1 Bl 2--+2^--+411.+4^ 
W 0»+ 4/i 0» + 3 £/^ £/ 

U 

2/01 

From Eq. (b), we obtain 

-(-¾ 
»IT.’gfr*-)! 

- 55 - 



As will be seen from this last expression, X = 0 when H = B. 

To obtain the actual state, it is sufficient to multiply state "1" 

by X and add it to state HP." The actual state "D” is shown in Fig. 

3.10, where 

ç*=q ut. ,iv JK 
fi 

X_ 
21 

and 

g'=q"' 
Q 21 

Let us determine the value of X for the following data: B = 100 cm 

H = 20 culi i|, «= 50 cm; t « 100 cm; f = 5 cm'", ô = 0.1 cm. The material 

is duralumin; E/G = 2.6; M = 300,000 kgf»cm. 

3.10s 
.V (-1) 0.8310S 

20(1,2+ 2,05 + 3,08) 
1900. 

LlOJr2.6 5 \ 3 T )\ 

If the supporting rods are regarded as absolutely rigid. 

0,8'3<10S 

20(1-2 + 2.05) 
=3700. 

Example 2. 

Determine the internal forces in a bulkhead due to t h< < n . 1* 
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a pair of forces P = 1000 kg applied to nodes 1 and 2. The working dia¬ 

gram of the bulkhead is shown in Pig. 3.11. The flux of tangential for¬ 

ces transmitted to the bulkhead by the fuselage skin is regarded as 

constant. 

First we determine the PKS acting on the bulkhead from the fuse¬ 

lage skin., 

From the familiar formula for singly closed sections (Bredt for¬ 

mula ), 

Since 

31 s* 1000-25 - 25000 kF-cm 

and 

Q—2(72*57—2* 16 • 16) —7184 cm*. 

25000 = 3 48 Kr¡CM' 
H 7184 

Due to the fact that the external loads are antisymmetrical with 

respect to the bulkhead's vertical axis of symmetry, the internal for¬ 

ces will also be antisymmetrical with respect to the same axis. On this 

basis, we conclude that the axial forces at the points of intersection 

of rods 1-2, 9-10, 12-11 and 6-5 with the bulkhead axis of symmetry 

have zero values. Thus, passing a section through the bulkhead along 

the axis of symmetry at the top or at the bottom (i.e., through panel 

1-2-10-9 or 11-5-6-12), we obtain the basic system. As the superfluous 

unknown, we select the PKS ¢^2-10-9 ln wal* 1-2-10-9. 

We determine the force factors in state MP" (Fig. 3*12). As was 

shown earlier, Nq 2 = 0. It will be recalled that the first subscript 

indicates the point at which the force N is applied, while the second 

indicates the direction in which it acts. Taking point 0 of rod 1-2 
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(Nq_2 *“ as origin from which axial forces are reckoned, we go on 

to determine the forces In the rods entering nodes 2,10, 3, 4, 11 and 5. 

^a_o-3,48 12,5=43,5; 

43,5.11,3=0; JV,_,=„61,3; 
11,3 

1000 - 61,3 0,707 - JVj_10=0; 

1000 - 43,5=-1043,5. 

Node 10. 

A4o-î—1043,5. 

As was shown earlier, Nq_10 = 0 and, 

consequently, we also have ^ 0. 

Node 3« 

.Vj-3 - N¡-3+3,48 • 22,6 « 61,3+3,48 • 22,6 -140; 
iVj_4» 140* 0,707=99; 
A'3-10 -—140 • 0,707——99. 

We find th« PKS of wall 10-3-4-11 from 

the equilibrium conditions for rod 10-3: 

QO 
9)0-3-4 11 = --=6,18 kF/cm. 

The direction in which this PK.’> act.; cn 

the rods is shown in Fig. 3*12. 

After determining we may s° on to fiCjter,|II1ine ihe fire« . 

In the rods coming into nodes 4, 11 and 5* 

The axial forces and PKS of state "P" are shown In Fir. 3.12. 

The force factors in state "1" are even easier to determíne (F’ . 

3.13). 

The unknown value of the PKS X| Is determined from the canonioai 

equatIon 

Xi6n +Aip™0. 

Here Is an unknown abstract number whose magnitude is equal to 

Node 2. 

2y- 
*»-io - 

a 

Rî 

Il li 

12, 

• Snipes, 1’ 
11 

57 

Fig. 3-11. a) 1000 
kgfj b) cutout. 
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Fig. 3.12. a) 1000 kgf. 

Fig. 3.13. a) 1 kgf/cm. 

ql-2-10-9* 

The values of 
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Pig. 3-14. a) 1000 kgf. 



and 

N\dx 

~~ÊÍ 

are listed In Table 3*1* 

From Table 3*1 

£Aii>«-1890,57; £0,,-60.08. 

Consequently 

Knowing X^, we determine the actual values of N and ^ (see last 

column of Table 3.1) and construct diagrams of N (Fig. 3»l^i which also 

indicates numerical values of g). 

Example 3» 

Determine the forces In the rods of an engine-nacelle pylon (Fig. 

3.15) under a lateral load P = 3000 kgf. The cross-sectional areas of 

the duralumin rods are ~ **3-7 * ^ cm^* The areas of the other rodt. 

are assumed equal to 3 cm2. Figure 3*16 shows the projections of the 

eight rods suspending the pylon (dimensions In cm). 

In determining the forces In the rods connecting the wing and the 

engine nacelle, both the wing and the gondola may be considered as ab¬ 

solutely rigid bodies. 

According to Formula (1.11), the minimum necessary number of coup¬ 

lings is 

£-61-6-6.2-6-6. 

Hence the system is doubly statically Indeterminate. 

The basic system is taken with sections of rods 1-5 and 3-6 (Fig. 

3.17).* The geometrical proportions are given in Table 3*2. 
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TABLE 3.1 

A 
CîepwHN 
061UMBKH 

B 
/ CM 

F rjr* 

U 

H 

11 

11 

U 
10 

10 
0 

10 
3 

10 
2 

0-2-10-0 

10-3—4—11 

0-11-5-0 

25 

2 

22,6 

40 

22,6 

25 

2 

16 

25 . 

2 

16 

40 

25 

2 

16 

r 
f CM* 
I CM 

16 

12,5.16=200 

40 16 =640 

12,5-16=200 

f 

2.6 T 

Np kf 
f p kFIcm 

E 
nx «r 

f i' KFjCM £A|p 

0,1 

0.1 

0.1 

12,5 

22,6 

40 

22,6 

12,5 

fill NjXx kP 
fi*i kP¡cm 

N—n pi ; 
KP 

q~qP\ 
H qxXx kI ¡cm 

12,5 

16 

20 

12,5 

16 

5.200 

16 640 

5200 

■+43,5 

H 61,3 

+ 140 

+99 

+ 486 

+668 
+766,6 

+542 

-542 

-1291 

-585 

,585 

486 

1291 

-1043,5 

-99 

-1043,5 

-1043,5 

0 

+6,18 

+46.8 

12,5 

•17,5 

17,5 

12.5 

-12,5 

-17,5 

-17,5 

12,5 

H 12,5 

+ 28,5 

+12.5 

H 12,5 

+ 12.5 

+28,5 

+28,5 

+12,5 

+ 12,5 

+12,5 

+28,5 

+12,5 

+ 1 

0 

-1 

2,27,101 

39,8.10’ 

146.103 

-288 10’ 

282-10’ 

158.10’ 

30,4.10’ 

107.10’ 

-666-10» 

9,9 10’ 

171.10’ 

0 

0 

244 10« 

0,65-10’ 

6,92-10’ 

5,0103 

6,92.10’ 

0,65 10’ 

3,53.10* 

0,65.10» 

2,49.10’ 

16,2.10’ 

0,65-103 

2,49.10’ 

3,53.103 

5.2 10’ 

0 

5,2.10’ 

1890,57 

b 2 

-393,5 

-550 

550 

393,5 

-393,5 

- 550 

-550 

393,5 

+393,5 

+900 

+393,5 

-I 393,5 

+393,5 

+900 

+900 

4393,5 

+393,5 

4 393,5 

+900 

+393,5 

+31,5 

0 

31.5 

488 

350 

410 

294,5 

492.5 

+138 

+216,6 

4 148,5 

148,5 

391 

191,5 

191,5 

92.5 

391 

143.5 

4 393,5 

4 393,5 

+291.5 

143,5 

650 

4 31.5 

4 6,18 

. I *. 1 

60,08 



A) Rods, skin panels; B) i 
Np ln kgf, qp ln kgf/cm; E) 

q1X1 In kgf/cm; G) N = Np + 

2 P 
In cm, F In cm ; C) f In cm , ô In cm; D) 

ln Qi in kg/cm; F) In kgf, 

N1X1 In kg, q = qp + q1X1 In kgf/cm. 

Fig. 3*17* a) Section. 

A) Rod; B) rod projections; C) cosines of angles. 

road™lna3uuü £gfF0r^-^P ln R°dS °f BaSlc Systeni Under an External 

We pass a section through each rod and replace the action of the 

rods on the pylon by tensile forces (see Fig. 3-17). Then we determine 

these forces from the equilibrium conditions for the pylon In space as 

a solid body. 

1) From the condition 2^*-i=0 w© obtain 1 = 0. 

2) 2^ = ^-3(-0,287)-3000 = 0, h 

.. ^.-3--10450ifr. 
3> ¿i = j0,866 • 30 - 3000 -150= 0, when. r 

+17300ir/\ 
4)¿^3-5= -^7-30.866-30 - 3000.150= 0, 

^7-3 = -17 300 kA 



-K* 

*) 2^4-7- +AT,.,0.5 • 30+ 

4-^-^,96 30- 3000-70= 0, whence A^.j = 8330irr. 

«) 2^=^,+^-,+^.98+ 
+.V|_^),5+-V,.jO,5—0, wirNc .V4_,= 1670*r. 

Determination of Forces 

Vie apply a unit load X1 = 1 kgf In section 1 (see Fig. j.17) and 

determine the forces In the rods of the basic system from this unit 

load. 

From the static equations, which we also used In determining F , 

we obtain 
N4«i*»0; AT*-,--0,517; A^_j—0; 

Arr_3--0.988; tfs-j-O; JV«.,-0,495; 

Determination of Forces 

We apply a unit load X2 = 1 kgf In section 2 (see Fig. 3.17) and 

determine the forces In the rods of the basic system due to this load 

In this case, the forces In the rods are 

JV4-1--I; ^-3--0.522: ^1-2«—0,998; 

JVj-s—0,998; Af|_2—0,5; #4-3—0,02; 1 — I. 

We determine the unknowns X-j^ and X^ from the canonical equations 

Xjôii+X2Ô12 +A|j>—0; ^ 1 ) 

^i5*i+X2622+Ajp—0. (^) 

Values of the displacements ó and A are listed In Table 3.3. 

We find from Table 3-3 

2*,.==124.0; 2*,,= £*2,=-29,65 2^=231^ 

2^,,-898.5-10»; -105MO*. 

From simultaneous solution of Eqs. (a) and (b), we fino 

X.--6360; 

X,-3370. 

The actual forces in the rods 
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TABLE 3-3 

-T\ CTepwHH Bci 
/ 

CM /// *. JVa £>u £Bta £«a 

6-2 

6- 3 

7- 3 

4-3 

4- 1 

5- 3 

5-2 

5-1 

200 

202 

200 

100 

200,5 

104.4 

100 

200.5 

5 

3 
5 

3 

3 

3 

3 

3 

40 

67,4 

40 

33,3 

66,8 

34.8 

33,3 

66.8 

+17300 

0 

-17300 
+1670 

0 

-10 450 

+8330 

0 

0 

+1.0 
-0,988 

+0,495 

0 

-0,517 

0 

0 

-0,998 

0 
+0,998 

+0,02 

-1.0 

-0,522 

+0.5 

+1.0 

0 

67,4 

39,0 

8,15 

0 

9,3 

0 

0 

0 

0 
-39,5 

+0,33 

0 

+9,4 
0 

0 

+39,8 

0 
+39,8 

+0.01 

+66,8 

+9,45 

+8,4 

+66,8 

1' 

+ 124,1 J—29,8 +2*1,0 

A 
CTCPWNN £A,p NiXi N 

C KoHTpOXb 

NiNllf NiNtlf 

6-2 

6- 3 

7- 3 

4-3 

4- 1 
5- 3 

5-2 

5-1 

0 

0 

+683-103 

+27,5103 

0 

+ 188.10» 

0 

0 

-690.10« 

0 

-690.10« 

+110,0 

0 
+ 189,5-103 

+139.10» 

0 

0 
-6360 

+6290 

-3140 
0 

+3290 

0 
0 

-3720 

0 
+3720 

+74.5 

-3730 

-1945 

+1866 

+3730 

+13580 

-6360 

-7290 

-1396 

-3730 

-9105 

+10195 

+3730 

0 
-430.103 

+289.10» 

-23-10* 

0 
+163,5-10» 

0 

0 

-540.10« 

0 
-290-10» 

-1000 

+249.10» 

+165.5-10» 

+167.10» 

+249-10» 

+898,5-103 -1051.103 
1 • 

-453 103 
+452,5.10» 

1 -831-103 
+830,5.10» 

A) Rod; B) cm; C) check. 

are listed in Table 3-3 and indicated on Fig. 3.18. 

A check based on the conditions of zero gaps in sections 1 and 2 

Indicates that the forces in the rods have been determined correctly 

(see last two columns at the bottom right of Table 3«3)« 

65 



5. DETERMINING DISPLACEMENTS OF STATICALLY INDETERMINATE SYSTEMS 

Foiroula (2.4) may be used to determine the displacements of static 

ally indeterminate systems, only in this case qp, Np and q1, N1 relate 

to a given statically Indeterminate system. However, since q-j^ and Nj 

pertain to a statically indeterminate system, determination of a dis¬ 

placement requires solving the statical] indeterminate problem of a 

unit force applied in the position and direction of the disp]acement 

sought. 

We may satisfy ourselves by simple reasoning that in determinin ; 

the dlopiacements of statically indeterminate systems by Formula (2.4), 

we shall obtain the correct result even if we substitute values of q, 

and ^ that pertain not to the statically Indeterminate system, but to 

the basic statically determinate system into this formula. Indeed, as 

soon as the forces due to the external loads in all elements of the 

statically indeterminate system have been determined, the forces in the 

excessive couplings may be included among the external forces and the 

given system may then be regarded as a statically determínale structure 

Since there are no external forces in the absence of the unit force 

(this also applies to sections through the superfluous couplings), the 

force factors q1 and N1 will belong to the statically determinate sys¬ 

tem. 

Thus, to determine the displacements in a given statically Indetcr 

mínate system, we first evaluate the static indeterminacy and find th 

unknown force factors. Then a force Pk = 1 is applied to the basic 

statically indeterminate system in the position and direction in which 

it is necessary to find the displacement. Then, substituting the values 

of g and N from the solution of the statically Indeterminate system and 

the values of q^ and frum the solution of the basic statically de¬ 

terminate system into Eq. (2.4), we find the magnitude of the lisplac- - 
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ment. 

Hence the followT ^ formula may be used to determine the displace¬ 

ments In statically Indeterminate structures: 

^i*>— S*îi^4-V l /V|/Vfl< i V 
0» -¿Jj) £/ Ef * 

f JV?Arrf/ N^Nt 
(3.8) 

Example. 

Determine the displacement of the point of application of the 

force P (see Fig. 3*15) In the direction of this force. 

Applying the unit force in the direction and position of applica¬ 

tion of force P, we obtain the forces in the rods: 

fc,o Np 

' 3000'' 

Applying Formula (3.8) and Table 3-3# we obtain the unknown dis¬ 

placement : 

/-2 
<A7 1 17 300-13 560-200 

Ef 3000 E \ 5 

17 300-3720-200 1670-13%-100 
+ 

10450-9105-104.4 . 8330-10 195-100 

3 

128,7.10« 

3000-7-2-106 

3 

■0,6 cm. 

l)- 

Manu- 

!cript [Footnotes] 
Page 
No. 

48 Determination of the degree of static indeterminacy for a 
large number of couplings in aircraft structures is considered 
in [291. 

61 In calculations for statically indeterminate systems, a con¬ 
sistent basic system is usually selected for various design 
cases. We have also adopted such a basic system, since in 
determining the forces in the rods of the pylon, we have pro¬ 
vided a series of tneoretical cases of loading for the engine 
nacelle. If, on the other hand, we orient ourselves only to 
the particular case of a lateral load, the force at node 1 
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acting In the direction of the z-axls might be taken as the 
unknown. 

Manu¬ 
script 
Page 
No. 

48 

49 

54 

54 

54 

[Transliterated Symbols] 

C.H. = S.N. = statlcheskl neopredelennyy = statically In¬ 
determinate 

C.O. = S.O. = statlcheskl opredelennyy = statically determin¬ 
ate 

$ = f = fyuzelyazh = fuselage 

FIKC = PKS * potok kasatel'nykh sll = tangential-force flux 

T = t = tortsevoy = butt 

K = k = kornevoy = root 
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Part Two 

VARIATIONAL METHODS OF STRUCTURAL MECHANICS 

Methods based on the fact that for any possible deflection from 

an equilibrium position, the variation of the system's total energy is 

equal to zero are us 3d effectively for solving problems in structural 

mechanics. 

The value of the potential energy can be expressed either in dis¬ 

placements or in stresses. In the former case, the variation of the sys¬ 

tem's potential energy gives equations of equilibrium, and in the lat¬ 

ter case, equations of consistency. 

These equations may be either algebraic, or ordinary differential, 

or partial differential, depending on whether the potential energy is 

a function of unknown parameters or a functional of unknown functions 

that depend on one or more coordinates. 

However, the principle of virtual displacements can also be used 

directly to solve problems in structural mechanics; here. If this prin¬ 

ciple is applied to a strip of infinitesimally small length, we natural¬ 

ly obtain differential equations [4], while if the strip has finite 

length we obtain equations in finite differences. 

If integration of the differential equations encounters great 

mathematical difficulty, we may limit ourselves to an approximate solu¬ 

tion Instead of solving them exactly, approximating the unknown func¬ 

tion in the form of a series with the unknown parameters. Variation of 

the parameters yields a system of consistent algebraic equations. 

Another way of approximate solution consists in substituting the 

approximating series directly into the potential-energy expression and 

minimizing it to obtain a system of equations from which the unknowns 
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may be determined. 

For approximate solution of the two dimensional problem, the solu¬ 

tion of the unknown function is represented in the form of a series in 

which the functions are assigned in one direction and unknowns In the 

other. Thus, the two dimensional problem Is reduced to a one dimension¬ 

al problem. 

The questions touched upon here will be treated in greater detail 

in the following chapters of the present division. 

- 70 - 



Chapter 4 

ENERGY PRINCIPLES. 

EULER EQUATIONS OF THE VARIATIONAL PROBLEM 

1. BASIC EQUATIONS OF ELASTICITY THEORY 

Before turning our attention to the variational principles, let us 

recall the basic formulas of elasticity theory [24]. 

1. Stress components. Let us Imagine an Infinitesimally small rec¬ 

tangular parallelepiped of volume dV * dx dy dz to have been cut out of 

the body. We replace the action of the removed parts of the body on 

each face by normal stresses a and tangential stresses t. To Indicate 

the direction In which and the parallelepiped face on which the stres¬ 

ses act, a single subscript indicating the direction of the normal to 

the face on which they act Is sufficient for normal stresses. Two sub¬ 

scripts are necessary for tangential stresses: the first indicates the 

direction of the normal to the face on which the tangential stresses act 

and the second indicates the axis parallel to which these stresses are 
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pointed. In accordance with this rule. Fig. 4.1 shows all stresses act¬ 

ing on the Isolated parallelepiped. 

To represent the stresses acting on all six faces of the parallele¬ 

piped, It would be necessary to have three symbols for a and six for 

T. However, bearing In mind the law of pairs for tangential stresses, 

we can obtain only six Independent stress components at a given point: 

*.rj 

2. Differential equations of Internal equilibrium. Before turning 

to the differential equations of equilibrium, let us recall that it 1 

customary in elasticity theory to distinguish between two types of ex¬ 

ternal forces: surface forces and volume forces.* The components of the 

surface force referred to a unit area will be denoted by X, Ÿ and Z, 

while the components of the volume force, which are referred to the 

unit mass, will be denoted oy X, Y and Z. 

Since the element dx dy dz is inside the body. It is subject to 

the volume forces X, Y and Z and stress components which, as continuous 

functions of the coordinates x, y and z, have the corresponding incre¬ 

ments along these axes. 

Concentrating our attention on the forces acting along the x-axi 



(Fig. 4.2), we obtain 

[9t-j£dx)dydM-osdydz+\r1s+Z**dy^dxd*-mXi*dxd*+ 

-f (T„+^) dx dy—ru dx dy+Xdx dy dz—0. 

After rearranging and canceling the dx dy dz, we obtain the first 

of the following three equations (the other two are found in the same 

way on projection of the forces onto the directions of the y- and z-ax- 

es ) : 
. dXyjt 

dx dy 
dxx<f 
~dx 

íf! 
dx I 

íy 
dty. 

ày 

dx. tx 
dz 

-\‘X=0, 

f?l2+K=0, 
dz 

^-+2-0. 
dz 

(4.1) 

Equations (4.1) are the basic differential equations of internal 

equilibrium in cartesian coordinates. 

3. Equilibrium conditions on the surface of the body. If the stress 

components <f*. t«w-v, are known for a given point, the 

stress components at this point may be calculated on an arbitrary area 

with a normal N. These stress components along the x, y and z axes are 

equal respectively to 

jc = /ojr-l-mTyjt + «T,jr. 

Z=/T„ + mT,f + /IOr 

(4.2) 

where /-cos(Af, *); m~cos(N, y)\ n-co%(N, *). 

The stress components vary throughout the volume of the body and 

must be compensated on its external surface by forces X, Ÿ and Z applied 

to the surface. 

Hence on the basis of Formulas (4.2), the equilibrium conditions on 

the surface of the body will take the form 
X -- hj, + //it,, + /it,,, 
F* +«a,+/11,,, 
¿ = + WT„+ /10,. 
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4. Strain components. If a body Is subject to strain and the dis¬ 

placements u, V and w (parallel, respectively, to the coordinates x, y 

and z) are the components of the total displacement of point A (see 

Fig. 4.2) and continuous functions of the coordinates, then a seement 

AB of length dx will acquire an increment *±-Ux and, consequently, a 
dx 

relative elongaticn In the direction of the x-axls. 

The formulas for e and e are analogous. 
y ® 

Prior to deformation, the two segments dx and dy were at a right 

angle to one another. After deformation, this angle has changed by an 

amount 7 . Since the end point of segment dx will have moved in the 

direction of the y-axls by 

and the end point of segment dy will have moved parallel to the x-axl, 

by 

we obtain on the whole 

du « dv 
+dx * 

the formulas are analogous for y and 7^. 

Thus, the strain components c*. ev, Ci, Ydv Yv* and 7, are expressed Z, X 
as follows in terms of the displacements: 

du 

dx 

dv 
dy ' dx ’ 

Y„=" + 
du~ , chw 

dy dx dx^dy' IJM ~U 1 

dx [ dx 

(4.4) 

5. Strain consistency equations. The strain and displacement com¬ 

ponents, which are related to one another by Eqs. (4.4), are function, 

of the coordinates x, y and z. It follows from this that the trains 

are Interdependent as functions of the coordinates. To ascertain this 

relationship, it is necessary U eliminate u, v and w from j . (4.4). 
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Following this elimination, we obtain the following six strain consis¬ 

tency equations: 

***** 

(Ply 

dit» 

dî.f 

Hfl 

4 

4 

4 

da», 

Ãr* 
dUt 

djä" 

ifltj 

Hifl 

^Y-ry . 
djfdy ’ 

<**Yv* 
dyd# ' 

à*yga 

d*djr ’ 

2 d***_^ / ^Yy* i ^Y,jr i ^V*y\ 
dy d* djr \ d* dy d* /' 

2 *****   d idvy, dyu dyry\ 

di dx dy \ dx dy d* / ' 

g I**«« ** /^Vy« ■ ¿Vt* **Y-ry\ 
dxdy dt \ dx dy dx/‘ 

(4.5) 

If the strain components satisfy Eqs. (4.5)# the displacements u, 

V and w, which are related to the strains by Eqs. (4.4), will be single- 

values continuous functions of the coordinates x, y and z. 

6. Relationships between stresses and strains. On the basis of 

Hook's law the following relationships obtain between strains and stres¬ 

ses : 

•*—j [0.-^(^4-^)1. Y*r— y- 

and the inverse relationships 

where 

E is Young's modulus, 

ratio. 

o,=»XA+20«^ T,f*Y,,0. 
«,=XA-f20«r tH=»v^O, 

o-*=XA4-20tr t„=y«0. 

(4.7) 

(1+1*) 0-2^) 

A-«,4-«y4-v 

2(1 + 1*) 
is the shear modulus and u is Poisson's 

7. General remarks on the basic equations of elasticity theory. In 

solving problems of elasticity theory in stresses or displacements, the 

necessary conditions for continuity of the material will be ensured on¬ 

ly provided that the displacements u, v and w are continuous functions 

of the coordinates. 
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In solving elasticity-theory problems In stresses, this condition 

will be satisfied if the strain consistency equations are satisfied. 

For this purpose, to determine the six unknown stress components, the 

six equations of the system (4.5) are transformed by application of 

Eqs. (1.1) and (4.6) into differential relationships between only the 

stress components and the volume force. Together with the boundary con¬ 

ditions (4.3)> the resulting six second-order partial differential equa 

tions fully determine the six stress components and continuity of the 

displacements u, v and w. 

The equilibrium conditions (4.1) must be satisfied in solving prob 

leras in displacements. For this purpose Relationships (4.7) are substi¬ 

tuted in Eqs. (4.1) and then the strain components are replaced by 

their expressions (4.4). As a result, we obtain three differential 

equations with three unknown functions of the displacements u, v and w. 

These equations, together with the boundary conditicns (4.3), expressed 

in terms of u, v and w, fully determine the displacemen s u, v and w. 

Here the consistency equations will be satisfied automatically, since 

solution of the differential equations in the displacements ensures 

single-valuedness and continuity of the displacements u, v and w. 

Thus, elasticity theory yields a number of equations equal to the 

number of unknowns. However, integration of the system of partial dif¬ 

ferential equations encounters great mathematical difficulty and is 

feasible only in simple cases. In determining the stressed and strained 

state of engineering structures, therefore, extensive use is made . i 

approximate methods that are based on elasticity theory but embody as¬ 

sumptions that simplify the partial differential equation system ap¬ 

preciably, reducing it to a system of ordinary differential equal ion ; 

or even to a system of algebraic equations. 
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2. PRINCIPLE OF POSSIBLE DISPLACEMENTS 

Let ul dweil on the principle of possible displacements in greater 

detail than was the case in Section 5 of Chapter 2. 

As we know frc^n theoretical mechanics, this principle, set forth 

for a material point, consists in the fact that if a point is at equi¬ 

librium, the sum of the works done by all forces acting on the point in 

accomplishing any small real or nearly imagined kinematically possible 

displacement is equal to zero. 

The remark concerning the smallness of the displacements is ac¬ 

counted for by the fact that when the principle of possible displace¬ 

ments is employed, the external forces acting on the point are regarded 

as constant in both magnitude and direction. In general, however, this 

assumption is justified only when the displacements are assumed to be 

so small that the forces cannot vary during the time in which they op¬ 

erate to produce the corresponding displacements. 

Since a free point may move unimpeded in any direction, all dis¬ 

placements are possible for it. If, however, the motion of the point is 

subject to certain conditions that restrict its motion in some direc¬ 

tion, the possible displacements in this case are only those that arc 

consistent with the assigned conditions. For example, if the material 

point M (Fig. 4.3) can move only on the plane curve AB because of the 

couplings imposed upon it, it is this curve that will describe the real 

displacements of point M. The possible displacement of the point M, 

however, is an infinitesimally small displacement ôs along the tangent 

t. Hence, according to the principle of possible displacements, verify¬ 

ing whether point M is at equilibrium requires that all forces act¬ 

ing upon it be projected onto the tangent t; then the resulting projec¬ 

tions of the forces ?i cos^, t) are multiplied by ós and added. If 

this sum is equal to zero, i.e.. 
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cm (/>„()»»-= O, (a) 

then point M Is at equilibrium. 

Bearing In mind that ós / 0, we obtain from Eq. (a) the familiar 

equilibrium equation for forces applied at a point: 

«V 

S' 
P, coi (Pf,/)-0. (b) 

Now let us turn to the elastic body. Let us assume that the parti¬ 

cles of the elastic body completely fill its volume. This means that 

possible displacements within the body must be consistent with contin¬ 

uity of the material, while those at its surface must be consistent 

with the assigned boundary conditions. Thus, In the case of bending if 

a freely supported beam (Fig. 4.^), the boundary conditions require 

that the transverse displacements be equal to zero at both ends of the 

beam; In this case, therefore, the possible displacements must be taken 

equal to zero. The condition regarding continuity of the material will 

also be satisfied If the possible displacements are expressed u. rr . ^ 

of continuous functions. The selection of possible displacements is m.i 

restricted in any other respect, so that there is a broad range of op¬ 

tions regarding these displacements. Consequently, returning to the ex¬ 

ample of bending of a freely supported beam, we may state that the var¬ 

iation ÓW (possible infinitesimally small change in the real. Jlsplace- 
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ment w) has an arbitrary value as x varies from x = 0 to x = ¿, and is 

determinate and equal to ôw » 0 at points x = 0 and x = i. Thus, where 

the displacements are assigned, their variations are equal to zero. 

Suppose that the body is in a state of rest under the action cf ex¬ 

ternal forces. If from this true state the elastic body is brought into 

a neighboring infinitesimally nearby state by means of possible dis¬ 

placements, the internal and external forces will perform a work that 

is equal to zero on the basis of the principle of possible displacements. 

Let us denote the work of the Internal forces of the entire elas¬ 

tic body, that performed by these forces in accomplishing the possible 

displacements, by ôA, and the work of the external forces by <5W. Then, 

on the basis of the principle of possible displacements 

M+íUF-O. (4.8) 

Equation (4.8) expresses the Lagrange principle of possible dis¬ 

placements. 

Thus, if the possible displ? jments are continuous functions oí 

the coordinates and satisfy the boundary conditions, satisfaction of 

Eq. (4.8) will be a necessary and sufficient criterion for equilibrium 

of the elastic body. 

3- POTENTIAL ENERGY OF DEFORMATION 

As we know, the potential energy of deformation is the energy 

stored within an elastic body as a result of its deformation under a 

static load. 

To determine the expression for tne potential energy of deforma¬ 

tion, we isolate an elementary parallelepiped of volume dV = dx dy dz 

(Fig. 4.5) from the body and impart, for example to the displacement u, 

an Increment óu. Then one of the faces dy dz will be displaced by ôu, 

while the other face dy dz which is at a distance dx from the former, 

will be displaced by ôu+-^-- dx. Forces ax ¿y dz which are external for 
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the isolated element, correspond to these displacements. Consequently, 

denoting by U the potential energy 

of deformation, we obtain 

l(dUs)*= — agdy dz^u-\-9g dy dz{lu-\- d~ dxj 

or 

HdC.)^o^dxdydz. 
* dx 

Let l/0 
dU 

dx dy dx 
denote the poten¬ 

tial energy od deformation related 

to the unit of volume. Then 

Í*ÍL 
^ ' dx 

or 

«¿/c (4.9) '<¡a=9Mr 

Por the linear deformable body in Pig. 

‘¡.6, the value of ôUqx is represented in the 

form of a rectangle accurate to quantities 

of high order of smallness. 

The work of the forces from all stress 

components in accomplishing the possible 

displacements Ae„ ôe„, 6c,. ôy*„, ôyw. 6y:t, 

referred to the volume unit, is equal to th 

total variation of the specific potential on 

ergy of deformation: 

= °xAx + »/*1 + 3«íe* + 
+T*/Vo+Ti»*V>«+T«*V„. (4.10) 

Since the stress components are considered tc be constant durinr 

variation of the deformations, the total differential of the sp-cirt ■ 

potential energy as a function of the strain components will be 

0“ f,tM 8i| 4* 
0*1 0*y 9 

0*1 atjy W 

i>\ yt 0}rt 

(¡t.ia) 
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On comparing this equation with Eq. (4.10), we note that the par¬ 

tial derivative of specific potential energy with respect to the strain 

component is equal to the corresponding stress component: 

r *. g' 

MJo _ . */o ,_T . «/q - 
¿Vx, " ¿V,. “ V ¿V« “ 

(4.12) 

The variation of the energy of deformation for the entire volume 

of the body 

Ät/=| UJçdV. (4.13) 

On the basis of Formula (4.9) and Hooke's law o = exE, we obtain 

Uu-jV»«,. 

The sign Ò applied to the possible change has the same signifi¬ 

cance in integration and differentiation as the sign d. Therefore, 

U " o*®* « * 2 

or 

u0t— 2 * 

Hence the energy is equal \-o the area of the triangle shown in 

Fig. 4.6. 

Taking account of the work of all stress components, we find 

Uq — —* (0,1, -f V,+V«+x*yY*t++TwrY«)- (4. 14) 

The potential energy of deformation of the entire elastic body is 

obtained by integrating U0dV over the entire volume V: 

■it/.rf-t'- 
K (4.15) 

2 ^ (°x*ji 4“ af*f “I" 4- jry 4” 4* tx) • 

Substituting the values of the stress components from (4.7) into 

this expression, we obtain, after rearrangement, U0 as a function only 
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of the strain components: 

y. - ŸX4’+o«+•;+•;>+-f +v;.+o ( ^. ie ) 
To present as a function only of the stress components, we in¬ 

troduce the values cf the deformation components from (4.6) into (4.1^). 

Then we obtain 

¿'o=¿ (oi++0î) - 7 (v,+V«+V*)+ 

+ ¿(T0+TÍ. + TÍr)- 
(4.17) 

4. LAGRANGE VARIATIONAL EQUATION - PRINCIPLE OF POTENTIAL ENERGY 

T* btain the Lagrange variational equation, it is necessary t 

find the expressions for the terms appearing in the equation of the 

possible-displacements principle: 

M+W-O. 

It became clear in th- foregoing Section 3 that <5U is the total 

work of the forces of interaction between elementary volumes of the 

elastic body. These forces, being external with respect to each ele¬ 

mentary volume, accomplish deformation. During the deformation, tho ex¬ 

ternal forces are at all times compensated by internal forces, but the 

directions of the Internal forces are opposite to those of th« deitmu¬ 

tton taking place. This means that the work of the internal forcer. cA 

is equal in magnitude and opposite in sign to ôU, l.e., 

M = -8£/. (4.18) 

The variation of the work of the external forces 

W=UXw-\-Ylv+Ztoc)flV + 

• (4.19) 
-f \ (Vu + riv+IWdF. 

Since the variations óu, ôv, éw are equal to zero on those parts 

of the surface where the displacements are assigned, integration ex¬ 

tends only over those parts of the surface on which the surface fore- 



are assigned. 

iiubi'.tituting the expressions for ÔA and óW in Eq. (4*8), we obtain 

^(Xlu+V*v+Ztw)dV+ 

+j^(Xlu+Ylv+Zht)dF—UJ**Q. (4.20) 

This is the Lagrange variational equation, which expresses the equili¬ 

brium condition of the elastic body. 

Let us show that the equilibrium equations of an element isolated 

from the body and the static boundary conditions on most parts of the 

surface where displacements are not assigned (see [13]) can be obtained 

by using the Lagrange variational equation. 

In order fully to clarify the content of the Lagrange variational 

equation (4.20), it must be rearranged to some degree. 

Since the problem is being solved for assigned external forces and, 

consequently, they are not varied, the variation sign ô in Expression 

(4.20) may be taken outside the integrand. Then 

l^(Xu+Yv+Zw)dV+*^Vtu+?v+2w)dF-tU=0 

or 

Here 

4/= ¡U'dV, 

where U0 is defined by Formula (4.16); 

(Xu+Yv+Zw)dV (Xu+Fv+I:.)dF. 

Thui 

(4.21) 

(4.22) 

IJ-U-W 

represents the potential energy of the system of external and internal 

forces, expressed as a function of u, v and w. The potential energy of 

the system of external and internal forces is the work that can be ob- 
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tained In the reverse process, l.e., when the elastic body is relieved 

of load. Hence the potential energy Is equal in magnitude and opposite 

In sign to the work of the internal and external forces, l.e.. 

n—A-w, 

where -A = U Is the potential energy of deformation and -W Is the poten 

tial energy of the external forces. 

The equality 

(^.23) àn-ò(U-w) -o 
indicates that if the elastic body is taken from the actual strained 

state that prevailed at equilibrium, in which it had a potential energy 

IT = U - W, to a neighboring state, its potential energy will not change 

l.e., the potential energy has a stationary value at the equilibrium 

position of the body. 

Taking the second variation of n, it can be shown [I3] that it 1:-. 

essentially positive, i.e.. 

ô*/7>0. 

This means that the potential energy of the system of external and In¬ 

ternal forces has a minimum value in the equilibrium position. 

Thus, among all of the displacements corresponding to the a _sa 

boundary conditions and consistent with continuity of the materlai, u 1 

actual displacements that also satisfy the equilibrium conditions 1m- 

part the minimum value to potential energy. Herein consists the princi¬ 

ple of system potential energy. 

To Illustrate the application of the Lagrange variational < ¡u • '*n 

(4.23), let us determine the deflection w(x) of a cantilever beam being 

acted upon by a uniformly distributed linear load j (Fig. 4.7). 

Disregarding the shear energy, we find from (4.1b) 
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i 2flff 

Kememberlng that tj = Z-ÿ=Z~, we find 

d*w 

or 

U^UnTfix. 

The potential energy of the external load 

-W. 
i 

i qwd'x. 

Emrmxn 
l-X 

Fig. 4.7 

Consequently, the total potential energy of the system 

i i 
n=u-W: f j j 

The variation of the expression for n is 

qwdx. 

i i 
8/7 j 2w"lw" dx—J qlwdx. 

(a) 

(b) 

Integrating the first term of the expression for 611 by parts, we 

find 
i 

EJ j wnW dx=[EJw"W ] - £7 J wmW dx* 

gml Mmt I 

—[EJit/W] -lEJw"'lw] +[EJw'nwdx. 

Thus, the condition 6II = 0 assumes the form 
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M-t jr«l I 

[EJ w"ííc'J ^—[EJw'Mlw)^ -f j (EJwlv—ç)fa'dx=cO, 
JtmO 4f-0 

(o) 

or 

lEJw“&w'] - IfyaT'iic;]+[£ya."8^'l - [EJw'"tw]+ 
JT-0 Í-0 Jt-l s~l 

I 
■j- j (£ya,,v —q)lK'dx=0. 

(d) 

For the restrained end of the beam at x = 0, we have two given ge¬ 

ometrical boundary conditions: 

M=0; 
x-o 

Cw]=0. 
x-0 

(D 

(2) 

Hence, the first two terms of Eq. (d) vanish. 

In the remaining sections, the variation <5w is arbitrary, so that 

Eq. (d) can be satisfied only provided that 

[£yan=0; 
x-l 

[EJw')~0; 
Mml 

(3) 

(4) 

EJw"-q^0. (e) 

Thus, we have obtained from the Lagrange variational equation the 

differential equation of an elastic line, which is an equilibrium equa¬ 

tion, and two boundary conditions for the free end of the beam, the 

latter indicating that the transverse force Q and the bending moment M 

are equal to zero here. 

The boundary conditions proceeding from the energy variation for 

those parts of the surface where they are not assigned are known as the 

natural boundary conditions. 

Let us turn to integration of Eq. (e). 

l—X 

EJil1'" = -[qdx+C^qx+C^ 
I 

Applying boundary condition (3). we obtain C = - qü. 
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Hence 

EJw’"—q(l-x)-Qa. 

Subsequent Integration using the boundary conditions (4), (1) and 

(2) leads us to the familiar equation of the elastic line of a uniform¬ 

ly loaded cantilever beam: 

w- 
q ll*X* 

ÏËJ\ 2 3 12/ ’ 2£J V 2 3 

It should be noted that for simple bodies, the equations of equil¬ 

ibrium and the natural boundary conditions can also be derived firectly 

from examination of the equilibrium conditions and continuity condi¬ 

tions of deformation. For complex systems, however, writing the equili¬ 

brium equations and boundary conditions in differential form becomes 

an exceedingly difficult problem, while it is easy to obtain them by 

variation of the energy. 

5. CASTIGLIANO'S VARIATION EQUATION - THE ADDITIONAL-ENERGY PRINCIPLE 

An elastic body is a statically indeterminate system, since static 

investigation of the problem of elasticity theory gives only three 

equilibrium equations (4.1) for six unknowns ff*, o«, o», t*v, tw, t„ : 

d** j àtfj, j dt <r 
dx 

dr,, 

dy dt 
•*=0; 

dx T dy^ dt T 

dx dr. *.+z_o. 
dx r dy ^ dt^ 

Consequently, an infinite set of solutions, each satisfying the 

equations 'of equilibrium (4.1) and the assigned boundary conditions 

(4.3) on the surface, will be possible: 

X=19,+mx1t-\-nxu\ 

P=/T,,-f mo,-f in,,; 

To answer the question that arises here as to what distinguishes 
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the actual stressed state from this set of statically possible solutions. 

It is necessary to determine the variation corresponding to the transi¬ 

tion from the actual state 

G*» Off,.i. . 

to a statically possible state Infinitesimally removed from It: 

Gs^ÔGx* Oy^bOff, • t 

Let Uo denote the deformation energy by U and the enerry of the 

external forces by W. The bar signifies that new the energy is a func¬ 

tion of the stress components and che external forces. 

Let us assume at first that there are only stresses o . ün varia- 

tion of these stresses. 

bUox * ¢(09(. 

The value of ÒÜüx is represented in Fig. 4.8 in the form of a rec¬ 

tangle accurate to quantities of the second order of smallness. Obvious- 

part ui' the book. 

iy 

‘.r53. (4.24) 

Is the area that complements the area U0v it 

the area of a rectangle with sides a and r 
X X 

(see Figs. 4.6 and 4.8). 

If the material if subject to Hooke's 

law, then obviously ÏÏüx = Uüx. When the body 

is nonlinearly elastic, UQx ¿ UQx. We shall 

consider this case briefly at the end of this 

On variation of all stress components, we obtain the variât lor» ol 

the specific deformation energy in the form 

—*/3, -f V3» 4- 'Z3*+ 
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Comparing this expression with the total differential of the spe¬ 

cific energy as a function of the stress components. 

If; — Wo » ¡ >j I w0 »a I 
7o_ ^ h ^ da, ,+ 

dOo 

Wo 

+ + STyi -f ^ it 
dt,y ' dtv dr. (4.26) ‘y* v'im 

we note that the partial derivative of the specific deformation energy 

with respect to the stress component Is equal to the corresponding 

strain component: 

àP0 . . *ijL = |. 
dax *’ day J'’ da, 

dOo__ "O0 . _■ :y„; dr. ^ dt 

(4.27) 

dt,y ‘/‘y* 

The variation of the additional energy of deformation of the entire 

volume of the body 

+Yx,5t„+Y,,5t,,+ Y„St„) dV. ( 4. 2Ö ) 

Applying the Cauchy equations (4.4) here, we obtain, for example, 

du 

or 

* * dx dx 

Performing such transformations of the other terms in Expression 

(4.28) as well, we obtain two volume integrals as a result. After modi 

ficatlon of the second of these Integrals by the Green-Ostrogradskiy 

formula, we obtain 
— rr ,d5ax . dJty, , dixgx \ 

jOttjgy ÔÜ3y dbXgy 

■v(o* 
ûlr 

i. tJy 4 gBT<y 
^ dy^ dz j-1" 

dlXyg dta. 

+^+^+^+ 

+ j I« (V+òrfJ[m -f 5Tlxrt)+ 
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+tfl«V+íyn+&Tt,n)+ 
+«’ (^+St„m+o,«)] dF. ( ^ • 29 ) 

In the first integral, the expressions In parentheses are equal to the 

variations of the volume forces ÕX, óY, óZ, which are equal to zero, 

since the volume forces are assigned; consequently, this integral van¬ 

ishes. In the second integral, the expressions in paranetheses are 

equal to óX, ôY, ô2 in accordance with the variations of the surface 

forces X, Y, Z. Consequently, Eq. (4.29) assumes the form 

lÛ=*^[uïX+vl?+wïZ\dF. (4.30) 

Since the variations ÔX, ÔY, ÔZ are equal to zero on those parts 

of the surface where the surface forces are assigned, integration ex¬ 

tends only over those parts of the surface where the displacements u, 

V, w are assigned; their values appear in the integrand. 

Since the displacements u, w and w are not varied, the sign of the 

variation ô may be taken outside the integrand and Eq. (4.30) may be 

written in the form 

Í(£7-W)«0. (4-31) 
He re 

V-¡ü,dV, (4.32) 

where UQ Is determined by Formula (4.17); 

W^^uX+vV+wlWF. (4.33) 

Equation (4.31) is the Castigllano variational equation, which 

gives the equations of strain continuity [13]. 

Thus, 

n=C7-w 

Is the additional energy of the system of external and Internal forces 

or variation of the stressed state. 
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Taking the second variation of IT, we can show that it is positive; 

consequently, the actual stressed state Imparts the minimum value to 

the additional energy. 

Equation (4.31) expresses the principle of additional energy and 

may be formulated as follows. Of all statically possible systems of 

stresses, the actual stressed state that also satisfies the consistency 

equations is distinguished by the fact that the additional energy ÍI has 

a minimum value for it. 

We note once again that the strain continuity equations are ob¬ 

tained from the minimization of potential energy. This becomes under¬ 

standable when we remember that the statically possible stresses differ 

from the real ones only in that they do not satisfy the continuity 

equations. Consequently, to distinguish the actual stresses among them, 

it is sufficient that the latter satisfy the continuity equations. If 

the body is nonlinearly elastic, 

ÛtoïUH. 

as is clear from Fig. 4.9. Hence in the Lagrange equation 

8(¿/~\F)=0 

the quantity U — ^U^dV must be determined with recognition of the fact 

that in the general case of a nonlinearly elastic body 

and in the Castlgliano equation 

8(D-W)~0 

the quantity O^^U.dV is determined taking account of the fact that 
ir 

V V ** ’jfy ’>* twr 
¿7o = j «/9* + J e*Í3i+ j Y,/*,, -f j j Yu*rtx’ 

From this it is clear that 
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Fig. 4.9 

Figure 4.10 shows areas proportional to 

the quantities WQ and WQ referred to the unit 

volume. Hence Wq Is not equal to Wq. 

Professor A.Yu. Romashevskly [deceased] 

[20] devoted a great deal of attention to the 

problem of applying the Lagrange and Castiliano 

variational equations to the nonllnearly elas¬ 

tic body. Other scientists, both in our country 

and abroad, have also given this problem much 

study (see, for example, A.A. Umanskiy, Stron- 

tel'naya mekhanika samoleta [Structural Mech¬ 

anics of the Airplane], Oborongiz [State Pub¬ 

lishing House for the Defense Industry], 1961; 

Sovrenennyye metody rascheta slozhnykh statich- 

eski neopredelimykh sistem [Contemporary Methods 

for the Design of Complex Statically Indeterminate Systems], Sudpromgiz 

[State Publishing House for the Shipbuilding Industry], I96I and others) 

To Illustrate the application of the Castigliano variational equa¬ 

tion, let us examine the problem of twisting of a prismatic rod. 

In applying the Castigliano variational equation, it is necessary 

to select in advance a stress distribution that satisfies the equilibri¬ 

um conditions. This condition will be met if the stresses 0 , a , 0 X* y* z 
and T , are assumed equal to zero, while the stresses t and x are xy zx zy 

expressed in terms of a stress function ^ in the form (see [24]): 

(4.34) 

In accordance with Formulas (4.32) and (4.17), we obtain the a cm '- 

tlonal energy of deformation per unit length of the twisted rod: 

t and t =-^-. 
*jr — fa • dy 

‘'“¿T If 



4S v ‘Ji**- '3L,nM„ , iiMüWiitiiâäsmxr-««ar. **■> 
V ^ i 

...ar'*»-).''“ u: 

Now let us turn to the calculation of W. Since the surface forces 

are assigned (equal to zero) on the lateral surface, W = 0 for this 

part of the surface. For the end surfaces 

r = [jj (TIxa+T„t»)rfxrfy],:o. 

The displacements 

u= —6Zy and v=0Zjc. 

Consequently, 

for Z—0 u=v—0; 

for ¿asi u-- — 6y «mí v*=8x. 
Hence 

W=-- 9 jj(-yxu+XTg9)dxdy** 

Using Green’s formula, we obtain 

20 J J 0 rf* </y — 0 jj $6 [je et» (AT, jc) -f y c°s (AT, y)] ds. 

Since the function may be assumed equal to zero on the contour, 

Xp=20 jjfdxdy. 

Therefore 

(«.35) 

According to the Castlgllano variational equation (4.31), 

ÍÍ [(^î+{t)'-m&xiy\=0- <4-36 > 
To show that the strain continuity equation Is obtained as a cor 

ollary of the Castlgllano variational equation, we find the variation 

of Expression (4.36): 

srtf[’£‘£+2^-4Hrf*,'y-0- <a> 
We integrate the first term of this equation by parts: 
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The values of fr ñ x , pertain to points on the contour, but 

ince bfi = 0 there, 1^-lóY'. 0 and 
'dx Jj, 

'HZ'*“*“» - 
Similarly, 

2 jí%> 
Hence Eq. (a) assumes the form 

-55{^+^+2O,)¥äxJ,l=0- (t) 
Since the variation is arbitrary within the cross-section con¬ 

tour, Eq. (b) can be satisfied only provided that 

TT + TT“-20*' (4.37) 
djr* dj* 

which is precisely the continuity equation. 

6. CASTIGLIANO'S THEOREMS 

The first and second Castigliano theorems have found extensive ap 

plication in engineering calculations; thus it would be appropriate 

here to show that they are particular cases of the basic Castigliano 

variational equation (4.31)* 

First theorem of Castigliano. 

The first theorem pertains to the case in which the work is done 

not by surface forces, but by lumped generalized forces , P-)...íJ¡ , 

which accomplish corresponding generalized displacements f^ , . 

Assuming the displacements f^, f2...f to be given and the lumped 

forces Pj, P0....Pn to be independent unknown quantities, we obtain Eq 

(4.31) in the form 

(i) 



where the variation ôU is the total differential of the deformation po¬ 

tential energy as a function of the external forces P-^, P2....Pn, i.e.. 

—òP.-f . . . -f 8P,. 
dPx |TdPa T d/», 

aî7 (2) 

Consequently, 

or 

^_îP 4-^-îp -(. . . . +i£Up _ 
dP, '^dPj ^ dPñ m 

-(/1^«+/*^+ • • • +/W-0 

• • +(^-/.)^ (3) 

Since the forces P1, Pg...Pn are statically independent and their 

variations are completely arbitrary, all variations save one may be as¬ 

sumed equal to zero. Then we obtain from Eq. (3) 

dU 
dPj 

dU 
dPt 

:/l* 

(^.30) 

This is Castigliano's first theorem. 

Thus, if the additional energy of the elastic system is expressed 

as a function of the statically Independent generalized forces P1, P^, 

...,P , the partial derivative of the additional energy with respect to 
* n 

any of these forces is equal to the corresponding generalized displace¬ 

ment . 

It will be recalled that the forces P^ P3,...Pn will be statical¬ 

ly independent if none of them can be obtained by linear combination of 

other forces from among the P^, where i » 1, 2, ...n. 

Castigliano's second theorem is the theorem of least work. 

If the surface forces are assigned, their variations are equal to 
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zero and, consequently, Eq. (4.30) assumes the following form In this 

case : 

M7-0. (^-39) 

This Is the expression of Castigllano's second theorem or the theorem 

of least work. 

The second theorem of Castigllano gives rise to the familiar meth¬ 

od of calculation fcr statically Indeterminate systems based on the fact 

that If X-j^, X2, ... ,Xn are the unknown forces of the redundant couplings, 

the values of these statically indeterminate quantities can be deter¬ 

mined from the condition that the additional deformation energy, ex¬ 

pressed as a function of the unknowns, takes a minimum value. 

Indeed, if we cut the redundant couplings to translate the unknown 

internal forces X1# •••Xn to external forces, we obtain Expression 

(4.39) with consideration of (?) in the form 

From this. In view of the arbitrariness of the variations ôX^, 6X ,, 

•••jôXn, we obtain a system of n algebraic equations containing one 

equation for each of the unknown forces: 

dU 
dXx 

= 0. 

SÜ 
dX7 

= 0, 

0) 

(2) 
(4.40) 

dU_ 
dX* 

-0. («) 

Thus, If the potential energy of deformation Is a function of un¬ 

known forces Xj, X0, ..., Xn that do not depend on the coordinates, l.e.. 

then the unknown constants X,, X., ..., X are determined by simultan- 
X <1 I* 

ecus solution of the algebraic equations of System (4.40). 
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In calculations for airframe structures and other complex engineer¬ 

ing objectives, unknowns of this type are frequently compounded by un¬ 

known functions, usually of one or two coordinates. In this case, mini¬ 

mization of the potential energy as the functional of the unknown func¬ 

tions results In a system of n differential equations, one for each un¬ 

known function. This system Is most simply obtained with the aid of Eu¬ 

ler 's equations. 

7. EULER'S EQUATIONS. EXAMPLES 

To resolve a real displacement or stress function In the precedí!. 

sections — a function that we shall denote by v for the sake of gener¬ 

ality — we converted to other functions v + ôv Infinitesimally close t^ 

the true function v but completely arbitrary In form. It was then shown 

that the actual function v minimizes the potential energy. Determina¬ 

tion of the potential-energy minimum as a functional of unknown func¬ 

tions Is, as we have seen, a problem of variational calculus. In apply¬ 

ing energy methods, it is convenient to have the variations of frequent¬ 

ly encountered functionals In ready form. 

For greater clarity, let us begin with the elementary problem of 

variational calculus In which the unknown arguments of thefunctlonal 4> 

are the coordinate x, varying in the Interval from x = n t' x = b, the 

unknown continuous function v = v(x) and its derivative v'-£. -e., 

<l> = j F(jc, *,>') dx. (^1) 
a 

The variation of Functional (4.4l) will be 

t * 

= f [F(x, v+k S+fo')-F(x, v, tFdx. 
ë a 

Remembering that W, we obtain 

M> = I (F»8v -(- F,‘fc’) dx, 
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^ • > 

where F,—— and F,.=*-^-. d* d» 

Integrating the second term In the Integrand of this last expres¬ 

sion by parts, we obtain 

«-» » 

-f 
« 

rfjr 
Fihdx 

or 

#-» * 
lQ=sF, fo I +j ^F<,-~-" Ft'^dx. 

i-a m 

The unknown function v(x) Is Isolated from the Infinite number of 

possible nearby functions v(x) + <5v(x) by virtue of the fact that It 

causes the variation of the functional to vanish. 

Consequently, 

Í0>=/•.*< 
M-a a 

(4.42a) 

Let us first examine the case In which the variation õv of the 

function v(x) Is given for x = a and x = b, i.e., 

8v(a)*=ív(¿)=0. 

Then the term of Expression (4.4?a) outside of the Integrand will 

be zero. Consequently, 

Hence 

(AvHr-6«0 and 

i_ F A 
dx I 

Due to the arbitrariness of tv, the last equality is valid only provid¬ 

ed that 

/\— r F, =0. (4.43) 
dx 

The resulting differential equation is known as the Euler equatltn if 

the elementary variational problem. 



... ; >.., . ■ <wm «ttrr.* PP ‘': 
- 4»:i*. , • ;»4 

11' the value of óv Is arbitrary at x = a and x = b, the term out¬ 

side the Integrand In Expression (4.42) will be equal to zero for 

(/7,),..=0and (/^),^=0. (4.44) 

These conditions are known as the natural boundary conditions. Together 

with the two boundary conditions, Eq. (4.43), which contains two arbi¬ 

trary constants, fully defines the value of the function v(x), which 

realizes the extreme of Functional (4.4l). 

We note that the two boundary conditions may occur In the form of: 

1) two natural boundary conditions. If ôv Is arbitrary everywhere, in¬ 

cluding the points x = a and x = b; 2) two assigned boundary conditions. 

If 6v is arbitrary everywhere except for the points x = a and x = b, 

where its value is assigned; 3) one natural and one assigned boundary 

condition. 

In the case of several functions depending on a single coordinate, 

for example, v1(x), v2(x),.vn(x)' we ot)taln the functional 

<D = jF(jc, V, (x), vi (X), V, (X), vi (X)... V* (•*).y* («*))dx- . 
Minimization of this functional gives a number of differential 

equations equal to the number of unknown functions n: 

/^--7-^=°. 0) ' äx »I 

F,.—i-F'=0. (2) 
dx 

(4.45) 

(«) 

Together with the boundary conditions, the equation system (4.45) 

fully defines the n unknown functions. If the functional also depends 

on the second derivative of the function v(x), i.e., 

(4.46) <J> = jF(x, V, y', *) dx, 
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then W == 0 is equivalent to two conditions: 

¡{F--~hF'‘+^F-')hdx~0'' <4'47) 

» » 

/v)U +^'1 =*o. 

é* l • (4.48) 

With arbitrary variations ôv in the interval [a, b], these two 

vfiditions give rise to a single fourth-order differential equation snd 

four natural boundary conditions: 

(4.49) 

(4.50) (F--7T {F-77F-Ï.r°' 
(F (F »*)=-*—O* 

If there are several . for example n, unknown functions, they are 

determined, with consideration of the boundary conditions, from the 

following system of fourth-order differential equations: 

—*- F.(1) 
äx »i ' tf** »i ' 7 

F .+-50 f.=0, (2) 
dx »a rfjf* »a 

F,—1-F.+-ÍL (/1) 
" dx », 1 rfx* »« 

Let us write the functional once more for the two dimensional 

problem, when we have v(x, y). The functional takes the form 

where 
* y* V V *„) dxdy, (4 

dv 
’M-T—. - dx > ay 

It follows from the condition = 0 that 

L (>) dxdy 0, 
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where 

dF d dF d dF 1 dF + 
'V dt dx dvj, dy dvy dx* 

■ d» df . d» df _ q 
dx dy d**, ' dy* dxyy 

(4.54) 

Expressions (4.42b), (4.4?) and (4.53) can be combined to form a 

single equation, which may be written In the following form for the n 

unknown functions: 

jj[J¡¿,v,Wy=°. (4,55) 
where Li are the left members of the differential equations and ôfj^ are 

the arbitrary variations of the various functions. 

The solution of partial differential equation (4.54) encounters 

major mathematical difficulties and Is possible only In particular ca¬ 

ses. Hence In the design of complex structures. It Is necessary to adopt 

reasonable assumptions reducing the two dimensional problem to a one 

dimensional problem described by Eqs. (4.45) or (4.51). 

a 

s.— -k rn 
1 ? 

a 
4 . p 

a L = I » - I- » - = a 

L—_L-- 

Fig. 4.11 

To Illustrate the application of the potential energy minimum 

principle, let us examine two examples. 

Example 1. 

Figure 4.11 shows a two dimensional system consisting of three 

longitudinal strips, closely spaced vertical struts and a thin wal]. 

The strips have a cross-sectioml area f and the sheet material has a 
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thickness ô. Determine the stressed state of this system under the ac¬ 

tion of three forces P applied at the free end of the system. 

•* N + dN 
f 

dx 

N'dN 
T 6 

N*<tN 

T1 
♦ 7* 

i.xJ 

PJL 
N 
X 

Fig. 4.12 

When systems are loaded in thi manner, the stressed state may be 

represented as composed of two states: "a" and "au " (Fig. 4.12). 

In state "a" the forces in the strips are constant over their en¬ 

tire length. 

To determine stressed state "ou," it is necessary to ascertain how 

the self-compensated group of forces applied to the left end of the 

system decays over the length of the strips (along the x-axis) under 

the condition that the skin operates only in shear, while the strut.; 

are absolutely rigid axially and absolutely compliant in the direction 

perpendicular to their axis. 

We determine the potential energy of deformation 

i 

where V is the potential energy of an element of the system having unit 

length. 
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To determine one of these unknowns, for example, t, we apply the 

equation of statics. 

Isolating an element of the panel with length dx (Fig. 4.12), we 

find from the equilibrium conditions for any strip ¢- 
dN 
2dx 

The potential energy of the unit-length element 

tN\* w, (fr 
T 20» 4 EJ ” 40» \dx ) 2£/ 1 2Ef ' 2EJ 

The system’s deformation potential energy will have a minimum val¬ 

ue only If the unknown varied function N = N(x) satisfies the Euler 

differential equation 

A dl dT 
dN dx dN' 
—— ——0, 

where 

AT'. 
iU dT 3 AT ar a dN 

dx ’ d.V 2 £/ ’ dN’ 20» dx * 

In our case, the Euler equation takes the form 

3 N a d*N 
2 £/ 20» dx* 

=0. (a) 

Multiplying the right and left members by we obtain 

dW 30» AT=0. (b) 
dx> «£/ 

The following characteristic equation corresponds to this differ¬ 

ential equation; 

r*—A7=0. 

where 

**= 
30» 
«£/ 

The roots of this equation are r-^ = k and r2 = - k. 

We write the solution of the differential equation In the form 

A^=C,e^-fC,d-*x. 

In the present case, the following are given at the boundaries : l) 
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at z = 0, the force N = — P; 2) at x = i, the force N = 0 (since, by 

definition, the strut at x = Í is absolutely compliant in the direction 

of the x-axls). These static boundary conditions are what determines 

the values of the constants instead of Conditions (4.44), which are 

identically satisfied, since the value of the unknown function is known 

at the boundaries and, consequently, its variations in the sections •>! 

X = 0 and x = £ are eaual to zero. 

From the condition N = - P at x = 0, 

—P-C|+Ct. 

From the condition N = 0 at x = i, 

0-C,ew+C,e-*'. 

v/e obtain 

Substituting 

From this. 

C,-C, i-jp. 

the value of ^ in Eq. (c), we obtain 

= -C, i-jp+0,=0, ^ 1---3- 

Consequently , 

A.- / —>oo we obtain e-w~>0 and ew->oo. Therefore 

Taking the numerical data G = E/2.G; ô = 0.1 cm; f = !j cm ; a - 

= 60 cm, we obtain 

/^1/^0,0196 —; A’-— Pi.72 o01*'. I aEf , tM 

In sections ] and 2, the force A', = -^2,72 O0l9r •‘’«—o.aOTP; iVa«0. 



IKiilHiití r .* T',y,. 1#, 
i'iijf < 

Diagrams of the variation of the forces N in the strips are shown 

in Fig. 4.12, "a>. " As we see, the forces produced by the self-compen¬ 

sating force group decay on a length approximately equal to the height 

of the wall. 

The resultant axial forces of states "a" and "u>" are shown in Fig. 

4.13. 

The value of the PKS 

* 2dx 2 

The direction of the PKS Is shown in Fig. 4.12. 

Since the stressed state has been varied, the differential equa¬ 

tion (b) is the continuity equation. To grasp the physical significance 

of the terms of this equation, we write the strain continuity equation 

directly for a panel of length dx in section x (Fig. 4.14a). The tan¬ 

gential-force flux q = dN/2dx produces a deformation of the panel under 

consideration (Fig. 4.l4a), with the result that point 6 of the middle 

as 
strip is displaced along its axis through a distance . 

Point 3, which is situated at a distance dx from point 6, will be dis¬ 

placed through a distance \+-£dx, and, consequently, the elementary 

displacement due to the PKS along the axis of the middle strip will be 

J» j a B*f¥ j di =—- dx——-—r dx. 
• dx 20» dxi 

d*N 

The elementary displacement dóc (Fig. 4.14b) along the axis of the mid- 
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mmm 

die strip due to the deformat loi of the rods on the segment dx Is equal 

to 

Ndx N4x ^ 
Ef 2Ef = 

From the continuity conditions 

</8,+rfíf=0 

_3^ 
2 

N 

Ef 
dx. 

or 

LJLWx.0. 
\ 2G6 dx* 2 Ef ) 

Dividing this equality by dx, we obtain the deformation continuity 

equation, which agrees with the original Euler equation (b). 

The strain continuity equations can 

be written in this direct manner only for 

simple calculating models, while these 

equations can be obtained easily even for 

complex systems by minimization of the 

potential energy. 

Example 2. 

Figure 4.15 shows a pictureframe 

monocoque to one end of which is applled 

a twisting moment M, while the other end is secured to an absolutely 

rigid support. The cross-sectional area of the framing members is f and 

the skin thickness Is 6. The ribs will be regarded as absolutely rigid 

in the plane in which they are situated, and absolutely compliant out¬ 

side of this plane. The skin of the monocoque is assumed to be working- 

only in shear. 

Determine the stressed state in the root part of tie monocoque. 

The unknown stressed state is created by the PK3 of free torsion 

and by secondary stresses. 

We know the law of distribution of the secoMary-state axial for- 
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ces in the cross section of the monocoque: it is a self-balancing group 

of four axial forces N (see, for example, [30])« Let us determine the 

law of variation of the forces N along the z-axis: N = f(z). 

Fig. 4.15 

We write the Euler differential equation from the conditions of 

minimum deformation potential energy: 

where F is the potential energy of an elementary unit-length compart¬ 

ment of the monocoque. 

The stressed state of this compartmeni 

(Fig. 4.16) is decomposed into two simple 

stressed states "a" and "o>. " In state "a," the 

PKS along the spar webs and the skin is 

. R 
MB • 

From the equilibrium conditions for any 

framing member, the PKS along the spar webs in 

state "œ' is 

gm= dN 
2d* 

and on the upper and lower skin panels 

dN 
qm=r. 

Idt 
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Consequently, 

r— 4Ar> i 

1Ef ' 2CI + 

2(9n-9jU 
+ 20» 

r“f+^- (^)1 +¾ <"- fl) £+ +fl>]- 

Substituting In the Euler equation (4.43), 

we obtain 

Æ—*»JV=0, (a) 
di* 

where 

r 801 
* (H + B)Ef‘ 

We write the solution of Eq. (a) in the form 

N= C, sh Äz -f ch **• 

From the assigned boundary condition z = 0 and N =- 0, we find 

C , = 0; consequently, 

N=C,shfer. (b) 

Since the forces are not given for z - i, their variation here 1 

not zero; hence we shall employ boundary condition (4.44), which as¬ 

sumes the form 

or 

\ dz lt-l 

from which 

10b 
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(dN\ = 2(fl + //)_ TO (B-//) 

V ää /«-i qn H + B HB (B + //) * 

From Eq. (b) we have 

—= CjtchJkz 
/X d* ' 

or, (for z = £) 
riï.j ^sssC,* chJk/. 

Equating the two results for Í^L) . v/e find 
\ dg 'i-i 

Consequently, 

C 1*<B-//) 
1 //fl (B+//)*chW* 

v_ TO(fl-//)»h»i 
//fl(B+//)*ch«* Va; 

Let M = 1000 kgf-m, B = 100 cm, H = 30 cm, 6=0.1 cm, f = 10 cm2, 

£ = 400 cm, G = E/2.6. Then 

*=i/——=|/-8:M  =0,0154. 
y (fl+ //)/£ J,7 13010.2,6 ’ 

For z = £ = 400, according to Eq. (d). 

A^.<oo= 100000-70 

3000-130-0,0154 
= 1170 icr. 

Fig. 4.17. a) N, kgf. 

For z = 300, 

Ar,.!M= 1170 2^=264 *A 
220 
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For z 200, 

Fig. 4.18 

Af,.2oo= 1170 ^^=56 kT. 

A diagram of the axial forces along one fram¬ 

ing member appears In Fig. 4.17. 

The physical significance of the boundary 

condition at z = Í consists In the fact that In 

this section, the cross-sectional distortion (de- 

planation) Is ^ro because the support Is abso¬ 

lutely rigid. 

Let us determine the value of the displace¬ 

ment associated with the distortion angle of the monocoque In a section 

Immediately adjacent to the support. For this purpose. It Is sufficient 

to "cross-multlply" states "a” and "au" Indicated In Fig. 4.16, by the 

unit state shown ln Fig. 4.1Ö. 

In the unit state, the PKS ¢, = --. The direction of this PKS Is 
ids 

Indicated on Fig. 4.18. The unknown diaplacement 

„ ^ 1 dNds , VI q'q-F X 9xqiKF _ 
a, 

4 dNds 

3 

_<) 

Ef 

1 

-4-2 
1 dN Hdi 

'ids 'ids M 

, o 1 
ids Oí ' ids 

, // -f a rfv ^ i 

q^Hds 

~~gT 

Gl 

1 dK Bds 

2d* 2ds Gl 

4 dNds 

Ef 
*f- 

2GI ds ' Gl 

Disregarding quantities of the second order of smallness, we ob¬ 

tain 

A,p — 

dr 

where the right member Is equal to ./d\ (f) 
Satisfying the condition that the displacement = 0 at z = £, 

we obtain 
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which i 

earlier 

only to 

Manu¬ 
script 
Page 
No. 

72 

Manu¬ 
script 
Page 
No. 

105 

109 

109 

equivalent to the condition l~ zir~\ which was obtained 

H 1 

in a very simple manner. The other route has been indicated 

bring out the physical significance of this boundary condition. 

[Footnotes] 

The surface forces include the pressures of liquids, gases 
or one body on another. Volume forces are gravitational md 
inertial. 

[Transliterated Symbols] 

ITKC = PKS = potok kasatel'nykh sil = tangential-force flux 

sh = sinh 

ch = cosh 
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Chapter 5 

CERTAIN APPROXIMATE METHODS OF SOLUTION FOR PROBLEMS IN 

STRUCTURAL MECHANICS 

1. THE RITZ METHOD 

Major mathematical difficulties are frequently encountered In de¬ 

termining unknown functions from the condition of zero variation of 

potential energy; they arise in integrating the differential equations. 

The idea of the Ritz method consists in representing a function v(x) 

that realizes an extreme of the functional in the form of a series 

¡-i 

with arbitrary parameters Then the functional <t> is transformed into 

a function of unknown parameters b^. These parameters are so selected 

that the function 

reaches an extreme. Consequently, the bi must be determined from an 

equation system of the form 

(/=1, 2, 3,.«) 

Without loss of generality, we shall set forth the Ritz method In 

an example in which the potential energy Is represented by a functional 

of the form 

» 
<1» — \ F (X, V, v', v") dx. (5.1) 

a 

The solution of the function v that appears in this expression Is ob¬ 

tained in the form of a series containing arbitrary parameters b1, 



where 1=1, 2, ..., n : 

*(*) =2 *,•>,(*). (5.2) 

Here ^(x) are functions that satisfy assigned geometrical boundary 

conditions. 

Substituting the adopted function (5.2) and its derivatives into 

Expression (5.1), we obtain a function 

» 

4>=j/(x, bt, b.. 

Integrating with respect to x, we obtain a function that depends 

only on the parameters: 

¢-0)(6,. 6a,...6n). (5,3) 

The parameters must be selected such that the function ^(b^ 

reaches an extreme. 

This presupposes that 

d*, 

d* 
db2 

9 

d» 
àb,, 

=0. 

=0, 

=0. 

(5.4) 

Thus, we obtain n algebraic equations, from the simultaneous solu¬ 

tion of which we can determine the n independent parameters. 

It can be shown that an infinite series incorporating a complete 

sequence of functions actually minimizes the functional (5.1).* But we 

shall take a series with a finite number of terms. Consequently, the 

solution (5.2) will not contain all of the b^ Hence the static bound¬ 

ary conditions will be satisfied approximately. Thus It Is desirable 

to select in advance such functions as satisfy both geometrical 

(deflection, angle of turn) and static (transverse force, bending me - 

ment) boundary conditions. 
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Analysis of the physical aspect of a problem frequently enables us 

to postulate a possible type of variation for the unknown function. It 

is this assumption that should be taken into account in constructing an 

approximating series of the form (5*2). Use of the Ritz method usually 

involves a large volume of computing work, but the calculations are 

simplified when the series converge rapidly. A practical estimate of 

the rapidity of series convergence is made during the calculation. Pro¬ 

gressively increasing the number of parameters, we calculate the errors 

between one solution and the next. If these errors diminish rapidly and 

tend tc zero, then the approximating series was well selected, deries 

with functions that satisfy both geometrical and static boundary 

conditions usually converge rapidly. 

This method and other methods that do not reduce the variational 

problem to differential equal.' ns are known as direct methods. 

By way of example, let us determine the maximum deflection w and 

the maximum bending moment M that arise when a uniformly distributed 

load £ acts on a hinged beam of length l (Fig. 5*l)* 

We represent the elastic line in the form of a sinusoid with only 

a single arbitrary parameter b: 

a*—&sln 

Its derivatives are 

br. TJT — cos — 
/ / 

r.x . — sin — ; *0 — 
/* / 

♦is1 *jr 
-COS - 
I* l 

The selected function satisfies not only the geometrical bound r\ 

ound it ions 

at X - 0 and x = 0 the deflection w - 0 (a) 

but also the static conditions 

atx = Oandx=£ the moment M = — EJw'' ^ 0. (b) 

The potential energy of the system is 



Z 

Fig. 5.1 

According to (5*^)* 

from which 

Consequently, 

dfJ EJbn* 2ql _n 

db 21* * ’ 

w 
EJrfi 

4gl* . nx to——— sin — 
EJ*> l 

The maximum deflection (at ¿/2) is 

w, mai 
Il* 

76,5 EJ 

According to the exact solution 

w -A- 1l* - ll* 
" * 384 EJ 76,6EJ ’ 

Thus, the error is less than 0.5$. The bending moment 

A1=; — EJw" — sin sin —. 
/* / K* / 

The maximum bending moment 

M mat ' 
Q‘± 

T.3 7,75' 
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According to the exact solution 

M «/* 
mi' 

The error is approximately 3$* 

The intersecting force 

Q= — £Ju"' — EJ cos cos-if 
EJtll* t l 

at X = 0, 

Q—= 0,407ql. 

Here the error is now about 20^ as compared with the exact value. 

Thus, good accuracy is obtained for the displacements and poorer 

accuracy for the force factors when the problem is solved in the dis¬ 

placements. However, the calculation can always be refined by increas¬ 

ing the number of terms in the series. In the case under consideration, 

the error of the calculation can be reduced by increasing the number tf 

parameters, i.e., by taking 

,(.^V»,Siniíí. (5-5) 
j-1 

If we assign a series that satisfies only the geometrical boundary 

conditions (a), for example, 

(5,.6) 
i-i 

the reader can verify independently that it is necessary to keep a con¬ 

siderably larger number of terms to obtain sufficient accuracy in the 

series (5.6) than in the solution (5.5), which also satisfies the sta¬ 

tic boundary conditions (b). 

2. torsion of a prismatic wing with a rhomboid profile 

Let us apply the Ritz method to the problem of twisting of a pris¬ 

matic wing with a rhomboid profile. In accordance with (5.2), we tain 
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a twisting stress function in the form of a series 

Mi. (1) 

where ^2, are that vanish on the contour [24]. 

We show the solution for only one term of Series (1). 

Fig. 5.2 

Thus, we assume in first approximation 

(2) 

To determine the function we write an equation describing the 

contour of the rhomboid profile (Fig. 5.2). 

The equations of the straight line forming the boundaries of the 

contour are 

for line 

for line 

for line 

for line 

The function 

members of Eqs. (3): 

7-2 7+y-l=0. 

J—1=0, 
« b 

4-7-- + —1=0. 

which consists of the product of the left-hand 

Hf+i-' 
^ _2x1 2y\ 

* ~ H «2*2 «2 *t 

vanishes on the contour. 
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M** »r 

Hence the stress function 

satisfies the boundary condition on the contour. 

We find the parameter b, from the condition — 
1 ¿»i 

Ing to (4.35), 

(4) 

=0, where, accord- 

(5) 

Introducing (/ from (4) and the values of (ÍÉ.)* into this expres¬ 

sion, we obtain 

”-t|Íí«[5 , x*y* , *3 2jt«y3 2*« , 2jr»y» 
a* aW + «3** 

ye Jt<>3 ya 2jr3y< 2y< ■ 2x3y«1 
' *• ' (4 4JÎ*« *« ' «3(4 J 

-^+^-^-^+1)}^ 

On integration of this expression, we obtain 

" = -5-h?i(t+T)-f 0,H 

From the condition 

¿n_ 
dt, 

+ 06^1=0 
G I 45 \ t ^ a / 45 j 

we find 

A 
8 

na«* 

(i + T) 

(6) 

(7) 

(Ö) 

(9) 

Hence the stress function 

CiOat _ / ■’[i 4 _2jf3y3 _2x2 2y2 
/ g ( \ \«4 ' M «2(2 

\ » + « / 

V «2 (2 ' / (10) 

According to Formulas (4.34), we find for the tangential stresses 

*># 5G6at 
dy 

( 
+ V*4 **/’ (11 ) 
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, -i m*é -«»'im.. '“Tl** 4rf" ^ • ■ .«•*. , ,J 
. V- -»w 

T»>“ 
d* 
Ax 

50M_Mfi_i«ji_j£\ (12) 

•(t+t) 
We determine the angle 6 from the expression 

(13) —2JJ # dxdy*. 
Substituting the value of from Formula (10) into (13)# we find 

on integration 

From this. 

where 

301 = 4- 
8 

Gtab 

(f^T) 

80 

45 
ab 

JO 
9 

G6aî*ï 

(t^) 

0 = 
9(t+t)* « 

lOGa^s GJ 

(14) 

(15) 

Consequently, 

10 «3*3 

(i+7) 

•*jr 

T.,= - 

i. 
4 a» \ «3 «3 

/xj xy3 \ 
U »■ /■ 

JL JL / *3 ^ 
4 «»» 

On the horizontal axis of symmetry (y = 0), we have 

(*mV“0~Q &nd 
9 m_ /X* 
4 a*b (!-*)■ 

For 

x=° (»v),-o=0; 

X d: & -o ^ 

We find the extreme value of (t ) 0 from the condition 
fcrf jr Jr 

(1») Uo. 
\ d* ),.o 4 ai* \ *2 ) 

From this, x at the extreme value is 

(16) 

(17) 

(IB) 
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Consequently, 

(,"U|— (i7Er-7i)=.T 7^* 
On the vertical axis of symmetry (x « o), 

(S-4 T =0 •nd (T«r)jrH>3 4 «4» 

(19) 

(20) 

Pig. 5.3 

We conclude from compai*' on of Formulas (18) and (20) that 

Since b « a, ^zx)mx » 

The variations of (Tzy)y=0 and (tzx)x=0 are shown In Fig. 5-3. 

For b = a (Fig. 5.^), we obtain from Expression (14) 

W ~ CWa4--0,555500a4. (22) 

Fig. 5.4 
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The length of a side of the square is 

2C-a V2. 
According to the exact solution for the square [24], 

== 0,140606 (2c)4 --- 0,140609 (a j/l)4 0,5624COa«. ( 23 ) 

The value of the moment according to Formula (22) Is 1.25# smaller than 

the exact value according to (23)« 

To obtain a more exact solution, the functions ^3* *•• oi' the 

series (l) may be taken In the form 

Substituting these values In the series (l), we obtain 

^ V«« ' M «»** «* *« / (24) 

X • •]* 

Here we have included only terms with even powers, since the stress 

function ^ must be symmetrical about the x- and y-axes for symmetrical 

sections about these axes. 

3. THE BUBNOV-GALERKIN METHOD 

The Bubnov-Galerkin method is used In approximate solution of dif¬ 

ferential equations* obtained In the usual manner or by minimization 

of potential energy. 

Without compromising the generality of the method under consider¬ 

ation, we shall illustrate it, as we did with the Ritz method, on a one- 

dimensional problem, when its solution reduces to a differential equa¬ 

tion of the form 

L(x, V, vf, v") »0. (5.7) 

Here, as in the Ritz method, the function v is represented in the 

form of a series: 

*(•*)=2 M*/ (*)• 
i-I 

(5.0) 
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where are assigned functions that satisfy the boundary conditions. 

Substituting the expression for Function (5*8) and its derivatives 

into Expression (5*7), we obtain 

M*. &i. ...ft»)'»M). (5*9) 

The left member of Eq. (5*9) will be equal to zero only provided 

that the series (5*8) is an exact expression of the function v; Other¬ 

wise, this member will only approach zero as the function v approaches 

its true value, which is brought about by proper selection of the para¬ 

meters b^ For this purpose, we multiply the left member of differen¬ 

tial equation (5*7) successively by the functions ^(x), Ÿ2(x),...,ÿn(x) 

and, integrating with respect to x, obtain a system of n algebraic 

equations î 

bM)hdx*=0, 

bJftdx—O, 

(1) 

(2) 

(«> 

(5.10) 

From the simultaneous solution of these equations, we obtain all 

n parameters, which determine the approximate value of the unknown 

function. 

This simple metnod of approximate solution for the differential 

equations can be justified as follows. As was shown in Section 7 of 

Chapter 4, the minimum condition for the functional of the two dimen¬ 

sional problem reduces to the equation 

dxdy 0. (5.11) 

For simplicity, we have taken a differential equation in the f wt 

(5.7). In this case, Fq. (5-11) will assume the form 
» v 

$L(x, V, V\ v")îvi/jr^o. (5.11) 
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Taking, as before, the expression of the function v in the form of 

a series (5*8)* » 

.. + ft.+aO*). (a ) 

we obtain the variation of the function v(x) in the form 

or 

8v .=^,80, -{-^86, +... (b) 

Substituting the function v(x) of Expression (a) with its deriva¬ 

tives and Expression (b) into Eq. (5»12), we obtain 

j £ (-»i» ¿i. ¿a. +^a*f- • • dx—Q 

or 

» » 

j L (x, blt b3... bM)í¡lbl (fx-r JI (x, blt bt... b^l^dx-^ 
ë « 

+...+j ¿ <*, M,... ».)♦.». ( « ) 
a 

Remembering that the variations ób1, ób2, ... 

val (a, b) are arbitrary, Eq. (c) is satisfied only provided that 

,0b in the inter- n 

j¿(x, fr|, b3... bJtyxdx^Qí 
9 

j¿(x, bv b3...bj^dx^Ol 
ê 

% ••••••••••••* 

• •••«• »•••••* 

J L (x, bx, bt... ¿„H, dx=0. 
I 

Thus we have arrived at the Bubnov-Galerkin equations (3.10). Let us 

perform the calculation by the Bubnov—Galerkin method for the hinged 

beam considered in Section 1 of Chapter 5* 

We know that for the system under consideration (see Fig. 5*1)» 

the differential equation of the elastic line takes the form 
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We recall once again that this equation Is an equation of equilibrium. 

Taking, as before, the deflection function In the forni 

w=b¡ sin 

and applying Expression (c), we obtain 

i 

j(EJ 
a*w 

dx* 
g ] ib/ sin 

The Integrand Is the work of the external and Internal forces (i.e., 

g )dx In accomplishing the possible displacements 

Remembering the arbitrariness of the variation ôb^ and taking one term 

of the series, we obtain 

Remembering that 

we find 

i 
sin* dx—q J 

EJb*< 

/« 

From this 

b~*S!L andW-- 

The same solution was obtained by the Ritz method. This agreement 

Is accounted for by the fact that the approximating function satisfied 

not only the kinematic boundary conditions w = ü at x = 0 and x ~ 

but also the static conditions - the moment M = EJw" = 0 at x = Ü and 

x = £. 

4. THE MIXED METHOD 

To avoid having to Integrate the partial differential equation; 



(4.5^), which the unknown functions satisfies In the solution cf the two 

dimensional problem, we may follow the same procedure as In solving the 

one dimensional problem, representing the approximate value of the un¬ 

known function In the form of a series with assigned functions that de¬ 

pend on the coordinates x and jr, l.e., 

(* y)- (5.13) 

In numerous cases, however, it is difficult to assign suitable 

functions In two directions. Thus it Is sometimes more convenient, and 

the results more accurate, if we use the so-called mixed method, the 

sense of which consists In assigning the functions In one of the direc¬ 

tions, In which the variation of the true function Is known quite re¬ 

liably, while the functions remain unknown in the other direction, 

which is usually perpendicular to the first, and are determined from 

solutions of ordinary differential equations. Thus, If the functions 

are assigned In the direction of the y-axls, an expression for the 

function v(x, y) may be found In the form of a series 

v (*. y)“ ^ (5*1^) 

where ^(y) is an assigned function, dependent only on the coordinate 

y and ^(x) is the unknown function, which depends only on the coordin¬ 

ate X. 

Substituting the value of v defined by Series (3*1^) Into the ex¬ 

pression for the functional of the two dimensional problem [for example, 

(4.52)], we obtain the functional of the one dimensional problem on 

integration with respect to y. 

Minimization of this functional with respect to the unknown func¬ 

tions yields a system of ordinary differential equations that, together 

with the boundary conditions, fully define the values of the unknown 
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fur.otlons qp^x) and, consequently, the approximate solution to Expres¬ 

sion (5-1^) will have been found. 

The mixed method was proposed by L.V. Kantorovich [10] In 1933. 

Owing to a series of monumental studies by V.Z. Vlasov, this method 

came Into extensive use In the design of complex engineering structures. 

Thus the mixed method Is frequently known as the Kantorovlch-Vlasov 

method In Its technical applications. Further development and general¬ 

ization of V.Z. Vlasov's theory for the design of airframe structures 

by the mixed method may be found ln I.F. Obraztsov's book [16J. 

5. FINITE-DIFFERENCE EQUATIONS OF THE MIXED METHOD 

To solve problems of structural mechanics by the mixed method, it 

is necessary to find functions that depend on a single coordinate, for 

example, x from a solution of differential equations. 

If the system is regula:’ along the x-axis (sections perpendicular 

to the x-axis are similar to one another as regards rigidity and geo¬ 

metrical characteristics) and the external forces vary simply or art 

constant along this axis, no particular difficulty is encountered in 

solving the differential equations describing the stressed and strained 

states of these systems. Otherwise, analytical solution of the differ¬ 

ential equations might be found too complicated for practical use. Then 

equations In finite differences may be employed as an approximate solu¬ 

tion to the problem. 

The equation in finite differences for some section m (Fig. ij.b) 

rnay be represented in the form 

1* ^»1. «i—I “1” r‘m, «+l'V«,4|, . 

-1-¾ x 4-a -0 (5.1b) 

If the rods in the direction perpendicular to the x-nxia (:--1 ruts, 

ribs, bulkheads) are absolutely rigid, the extreme term.: A,„ .2.Y,B.2 and 

0.n.»HaA’m+J of Eq. (3*lbt) vanish. Then we obtain an equation with only 



the three unknowns Xra ana Xra+1, i.e.. 

ftiP» f m-t m m+f_* 

c.sp. 

/t 
a 

f 
a 

- - - » 

Applying Eq. (5*15) or (5*16) to all sections m = 0, 1, 2, 3, 

...,n (Pig. 5*6), we may obtain a system of algebraic equations for 

determination of the unknowns X1, X2, X^, ..., Xn. 

Since the sections m = 0, ., 2, 3# •••> n are separated from one 

another by a finite distance Ax, the complex law of variation of the 

rigidity characteristics of both the individual elements and the exter¬ 

nal forces acting on the system may, in determining the coefficients 5 

and the absolute terms A for equations of the form (5.15) or (5*16), be 

replaced on a distance Ax by their constant averaged values, as opposed 

to the variable coefficients of the corresponding differential equa¬ 

tions. As a result of the substitution, we obtain, instead of the var¬ 

iable coefficients and absolute terms, constant coefficients and terms 
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for any section m. 

The following example will illustrate casting and solution of the 

equation in finite differences. Figure 5.5 shows the system that was 

analyzed in the example of Section 7, Chapter 4 in determination of the 

"œ" state; the only difference consists in the fact that the middle 

strip has a vrriable cross-sectional area. In this case, therefore, we 

are dealing with a nonregular system. To determine the V state, we 

shall use equations in finite differences. 

We shall assume that the cross- 

sectional area of the middle strip f 

is varied nonlinearly along the x-axls. 

We mark a series of cross sections 

i.‘r, 0 » < 1*54/ 

p, s! 
• “I 

sl 
fc i X M at ' r ’* $0 

Fig. 5.6 

separated from one another by finite 

distances Ax so small that „0 may assume the cross sections of the mid¬ 

dle strip to vary linearly on the segments between sections. 

We write the finite-difference equation for some section m (Fig. 

'j.5a)* Figure 5* 5b shows the stressed state of the segments m, m - 1 and 

m, m + 1 with external forces Nrn acting in section m and linear varia¬ 

tion of these forces on segments of length Ax, 

The strain consistency equation of section m may be written on tho 

basis of the condition that the sum of the works done by the forces in 

accomplishing the displacements in section m is equal to zero. 

Let us determine the work of the forces Nrn on the displacements in 

section m: here we shall take averaged values of the cross-sectional 

areas for the middle strip, i.e.. 

f —. 
r i— “ — ' m, «1—1 • /m m * 1 

+/<n4l 

where f^, i'm+: are the cross-sectional areas of the middle strlf 

in the respective sections m - 1, m, m + 1. 
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The work of the forces on the displacements In section m Is' 

0.5VwAjr 2.0,5 . Nmlx 2 1 . Nmlx 1 
2 3£/ ^ 2 •> 2 3 £/«.«+, f 

+4 

-f 

N. aAx 
7Ax 2lxQl 3 Ef 

Nm* 

1 NmAx . 1 NmAx I 
- -a-+T nr (r. 

1 

• -I /«. M + l 
) + 

AxOt “-Isff+'rirr+TnT'+iá;! 
The work of the forces Nm-1 and Vi (Fig. 5*5c) on the displace¬ 

ments In section m Is accordingly 

AA* m-t “ -V--, + 2/*|W_i ) ” 2AJK}* ] ’ 

áAm' *4 [_3£ ("V + 2fmm+i) ~ 2AxGl ] * 

Thus, the equation In finite differences for section m with Q - E/ 

/2.6 takes the form 

Here, as In the example of Section 7, Chapter 4, the struts are 

assumed to be absolutely rigid. If the elasticity of the struts Is ta¬ 

ken Into account - something that represents no difficulty - the left 

member of Eq. (5*17) will consist of five terms. 

For numerical calculation, the data taken earlier (6 = 0.1 cmj 

f = 5 cm2; a = 60 cm) Is complemented by the following additional data: 

1) Ax = 60 cm; 2) cross-sectional areas of center strip In sections 0 

2 2 2 
and 1 respectively fQ = 15 cm and ^ = 10 cm , but 5 cm In all subse¬ 

quent sections (see Fig. 5*6). 

First we perform the calculation with the assumption that the for¬ 

ces = 0 In Section 3* We begin with Section 1, for which Eq. (5-1/) 

acquires the form 
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Remembering that 

yi o=HH!?=12,5 cm2 and /, ,.=10=7,5, cm4 

we obtain 

or 

-'•[r(S+,^-i&]«[MT+!i+rJ+ 
'SÍ]+»’[T(",+,-râ)-iê!]--'.[í'>+»«-“]+ 

+^,[ÿ(12+4,8+8)+26]+/V,[i-(3+4)-ls]- 

=^,(1.8-13)+^,(8,3+26)+^,(2.34-13)-0 

+ 11,2^,+34,3^,-10,7/^=-0. (a) 

Then we consider Section 2, for which Eq. (5.1?) assumes the form 

MTfê+£)-13MT(7+£+£)+í#H 
Remembering that 

r 

/1.1=/1,1=7.5 cm and/M=5cm< 

we obtain 

or 

-io,7^+*,[-r(ir+7«5+f)+26]= 

— lOJAT.+N, [-1. (12+8+12) + 26 ]-0 

—10,7 +36,7 A1, =-0. 

From Eqs. (a) and (b), we obtain 

(b) 

N, --^ N.-OWN, and TV,- —= -0.358P.. 

Thus : 

,V,-= -0,358/Y, 4Vt=-0.0104P0; N^0. 

It is clear from the calculation that in the present case, the 

forces decay more slowly than in the calculation performed previously 

with constant and uniform areas of all strips. Here again, however, the 
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self-balancing force group decays very quickly and the assumption that 

we adopted to the effect that the force = 0 In Section 3 was quite 

Justified. If a few more sections are Introduced Into the calculation, 

we may once again satisfy ourselves that It does not Introduce any ap¬ 

preciable correction Into the calculation performed If we assume that 

the force = 0 In Section 3* 

Manu¬ 
script 
Page 
No. 

113 

120 

121 

127 

[Footnotes] 

A number of works by Soviet scientists have been devoted to 
this problem [10]. 

The derivation of this equation may be found In [24]. 

The equilibrium or strain-continuity equations. 

V.N. Belyayev's equation of three axial forces [3] proceeds 
from this equation as a particular case. 
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Chapter 6 

APPLICATION OF APPROXIMATE METHODS TO CALCULATIONS FOR 

RECTANGULAR PLATES 

1. POTENTIAL ENERGY OF THE PLATE 

A plate Is a flat body whose thickness is small as compared with 

its other linear dimensions. The plane that divides the thickness of a 

plate equally is known as the median plane. We denote the thickness of 

the plate by h and Its sides by a and b. As a convention, we shall set 

up a rectangular coordinate system In such a way that the xoy-plane is 

in the median plane of the r.deformed plate, and the z-axis is directed 

downward (Fig. 6.1). 

The calculating model for elastic plates Is based on the following 

hypotheses. 

1. Kinematic hypothesis. Any element that is rectilinear and nor¬ 

mal to the median plane of a plate before deformation remains rectilin¬ 

ear and normal to the deformed median surface of the plate. 

Henceforth the deflections of the plates will be assumed to be 
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small. 

Au. i#!»**««“!*1*11 : ■fÿj, 

2. The static hypothesis. As in the elementary theory (f bending, 

we shall disregard the normal stresses a perpendicular to the median 

plane of the plate. In adopting this hypothesis, we shall regard the 

plate as under conditions of the plane stressed state. 

Consequently, the expression for the deformation potential energy 

of the plate will take the form 

« »♦t 

S (v*+dz- (6.1) 

In accordance with the second assumption, we obtain the strain 

components for the plate in bending from (4.6): 

‘jr =1 -jr (°X - H°,)î «>— ~ («, - 

Y 
r*y 2(1 -f- (â) 

*y Tjrjf* (6.2) 

Substituting these expressions for the strain components In (6. ), 

we obtain 

♦ *- n /> * 3 
v--- (f j i 1=1+^-+2(1 + riT\,]dxdydt. (6.3) 

0 0 A 
~f 

Now let us express the stress components as functions of th. ol i ' 

deflection w. We obtain fram Expressions (6.2) 

1 —t*: 

T.v — Oy £ 
Yx 

(6.4) 

2(1+^) 

The relationships between the strain components and the dîspla a - 

ment components take the form 

du 

dx 

dv 

dy 
; y *y 

du i dv_ 

dy dx 
(6.b) 
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Fig. 6.2 

To establish the relation between the displacement along the x-axi: 

and the deflections w of the plate's median surface, we refer to Fig. 

6.2. 

The rotation angle of the tangent to the x-axis 

a%tga: 
dw 
dx 

Consequently, the displacement u along the x-axis of a point of the 

plate at a distance z from the median surface is 

Similarly, 

dw 
dx 

dw z. 
dy 

Consequently, the strain components 

Y** — — 2*0' *r 
where a* MS' 

d*w 
dx* 

etc. 

(6.6) 

Substituting the values of the strain components (6.6) into Eq... 

(6Jj)* obtain 

El 

Em —.— K. 
1 + f* * 

(6.7) 



Substituting Expressions (6.7) into Formula (6.3), we obtain 

[w\x f w],y f -n)ic'ly) dydx, (6.8) 

where D— — — - Is the cylindrical rigidity. 
12 (1 "■*' H / 

We determine the total potential energy n = U - W for the plat 

acted upon by a transverse load p(x, y) and tensile forces per unit 

length uniformly distributed along sides x = 0 and x = a (Fig. 6.3)- 

For the initial state we take the plate loaded only by the foro 

N . Then we apply the transverse load p(x, y). Under the influence <4' 
X X 

this load, the plate will bend and the external forces p(x, y) and N 

will perform a work 

\V~W,+WNt 

where W is the work of the external forces p(x, y) and Wls¡ is the work 

of the external forces Nxx* 

The work of the external forces p(x, y) Is 

a b r =* f ( p(x, y)wdxdy. 
ÒÔ 

¿x Tu determine the work of the external i r- 

ces f , let us examine the strain of elem r‘ 
XX 

A.B ur. bending v f the median plane (Fig. 6. 
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When only the forces Nxx were operating, element AB was on the x-axls 

and had a length dx. After bending of the plate, element AB will have 

shifted to position A'B•* and point B will have been displaced In the 

direction of the x-axls by an amount 

^dx—l-( —Y dx—dx^s 
2 \dx J 

Hence the sides x = 0 and x - a of the plate will have drawn together 
I a 

by —--y^dx and the work of the external forces applied to these 

sides Is 

a t 

irv_—Lf 

Thus, the total potential energy In the present case Is 

« » 

J J {y Kr+w}, 

+ y NÂJfwl - P (jf, y) w ) dy dx. ' (6.9) 

From the minimum condition of Expression (6.9), we obtain the dif¬ 

ferential equation equilibrium for the plate element. 

Actually, according to Expression (4.54), we get 

£(«•)= -/>(«.,, (2w„+2|.t»w)+ 

or 

D (V'xx** + 2^,, + ,,y) - .. = 0. (6. 10) 

If, In addition to the forces N , tensile forces per unit length 
X A 

Nyy and t'anSential forces per unit length Nyx act In the median plane 

of the p]ate, the differential equation of the bent surface of the plat»' 

-: - 



«ti ;W- .■ímMMêWj: íüÍÍS’V ' 

will assume the form 

^ faxtXX"4" 2®**tyt “l" Pix.y)~~ NjifWjx — 

— 2NXf Wj, — NVJwJf=0. (6.11) 

When only the transverse load p^x is operating, we obtain Eq. 

(6.11) in the form 

D (Vxxxx -f 2 Wxx„ + - Pi*, y (6. 12) 

2. BENDING OF HINGED RECTANGULAR PLATES 

1. Let us use the Bubnov-Galerkin method to find an approximate 

expression for the deflection of a hinged rectangular plate under a un¬ 

iformly distributed transverse load p^. 

The deflections w must satisfy the equilibrium condition 

™xxxi + ^Wxxyt-f ~ =0 ( a ) 

with the following boundary conditions: 

«•=0, «>„=0 for jc=0 »nil x—a; 

w—0, ic'yy—0 for y=0 »nH y —a. 

These boundary conditions will be satisfied if we express the de¬ 

flection in the form of a double Fourier series 

W: 
(t0 

i-i a-l 
In the approximate calculation, we assign the deflection function; 

in the form of only a single term of series (b), i.e., 

w -- A sin *— sin . 
« t 

(c) 

Substituting this deflection expression in Eq. (a), we obtain 

or 

+ M\in*JLsin5L_^=o. 
\«* 1 *»/ a b D 

Then, using the Bubnov-Galerkin method, we get 
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or 

On Integration, 

A*(±-iïj*>± ** 

.-fjtoZ-iujtln'-f-dy-O. 

"(i+jrÎT-^ï-* 
from which 

A = ~ 
16 £L 

Ok* (W 
Therefore, 

«I: 
16 ijsin »In -- 

•_L. 
1 1 \* 

The maximum deflection at the center of the plate 

O'. ÜA. 

In the case of a square plate, we have with n = 0.3 

«.m«=0,0454^ 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

with an error of about 2.5$ of the exact solution obtained by Wavier 

[26]. 

2. Using the Ritz method, we would substitute ;r—A tin ** sin ^ Int 
« b 

Eq. (6.9) for N = 0, to obtain 
yv A 

— 2(1 — /sin* — sin* cos* — cos*^\l - 
x r’ bW\ a b ã b )\ 

— .Asín —-sin^-/>0] dxdy. 
a b I 
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Remembering that 

and 

j j sin* —sln'lZ-dxdy^ — , 
j j cos* cos’dxdy=^- 

a • 

II ¡¡„"sln-Z-äxäy^- 

we obtain 

The condition -^-=0 gives 
dA 

Consequently, 

16 p0 

D*‘ 

Thus, 

sue , ay 
16pos,n "*,n ~f 

nr / 1 1 \* 

D”‘b+w) 

Since the approximating function (b) also satisfies static boun i y 

conditions, the Bubnov-Galerkin and Ritz method both yield identical 

expressions for the deflection of the plate, but the Ritz method in¬ 

volves more labor. Hence if a selected function satisfies both geome¬ 

trical and static boundary conditions, it is preferable to use the Í ib- 

nov-Galerkin method. 

3. STABILITY np PLATES 

Let us consider a methou of determining the critical load for 

rectangular plate with hinge support at all four margins ana sub,led 
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compressive forces N that are uniformly distributed along opposite 

edges (Pig. 6.5). 

We shall assume that there is no load perpendlcuDa1 to the median 

plane of the plate. As long as the forces N have not reached a cer- 

tain critical value, the plate will retain Us 

flat equilibrium shape In a stable manner. When, 

however, the external forces Nvv reach a certain 

critical value, the deflections that arise as a 

Fig. 6.5 result of very small disturbances produced by 

the transverse load no longer vanish after the 

load Is removed, and the plate does not return to its Initial flat 

equilibrium shape. The flat shape has become unstable and the distorted 

shape stable. Let us deJ ?rmine the value that the forces N must reach 
XX 

if this shape of the plate is to be retained. It Is this value that will 

be the critical load for the plate. 

The differential equation of the elastic plane of the plate may be 

obtained from Eq. (6.10) for p 
(x,y) 

0: 

^'jrjTjrjr "I* ■f’ ® jjyjr ‘0. 

Substituting the deflection function 

2 A~sln — 
«•I «»I 

which satisfies the boundary conditions. Into this equation, we obtain 

s -f*'"T-0- 
m~l a-l 

Rejecting the trivial solution 

we obtain 

\ 1 *2 / «2 
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or 

(T+^r (6.17) 

K. 

As will be seen from Eq. (6.17)# the value of Nxx will be smaKleot 

for n = 1. Consequently, only a single half-wave is formed in the dli-ec 

tion of the y-axis when the plate buckles. 

Thus, the critical force per unit length Nxx is 

*î V «x»«*/ *• 
From this, the critical stress 

K «P *r.2£ hi (6.18) 
“P A 12(1 — (»*) A*’ 

where Is a numerical coefficient that depends un the rati 

a/b of the sides and on the number of half-waves m In the direction i’ 

compression. 

For m = 1, we obtain 

Ht+t)* 
on varying the length a of the plate with b = const, we obtain the 

curve of k for m = 1 (Fig. 6.6) as a function of the ratio a/b. For 

« b, this curve has a minimum value (k = 4). Curves for m *= 2, J,, 4 and 
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I 

ÜliíNn ^ 

5 are also plotted on Fig. 6.6. Given these curves, we can determine 

the critical stress and number of half-waves for any ratio a/b. Thus, 

for example, for a/b = 0.8, we find that k = 4.2 and m = 1. Hence 
# 

8 — *1 
* 12(1-H3) *3 ’ 

For the ratio which corresponds to k = 4.49, the number of 

half-waves m may be equal to 1 or 2. For the ratlos a/b «V'ë, y\2 , the 

respective numbers of half-waves are 2 or 3* 3 or 4. 

With other boundary conditions at the margins of the plate, the 

structure of the formula for determining the critical stresses remains 

as before, namely: 

kOE hi 
12(1-,3) *3 ’ 

but the coefficient k varies as a function of the boundary conditions. 

Thus, for example. If tne sides of the plate at x = 0, x = a and 

y *= 0 are hinged and side y = b Is free, the coefficient k will take 

the following values as a function of the side ratio: 

a 
7 0,5 1.0 1.2 1.4 1.6 1,8 2,0 2.5 3,0 4.0 j 5 

* 4.40 1.44 1,135 0,952 0,835 0,753 0/.98 0,610 0,5<»4 0,516| 0,506 

and,for longer plates, can be determined by the formula 

*=0,456+ £. 

In case the exact solution of Eq. (6.11) is unknown, the energy 

method will be found most helpful In that it enables us to determine 
« 

the critical loads with accuracy sufficient for practical application. 

When this method is used, it is assumed that when the plate Is acted 

upon by critical forces applied In Its median plane, it buckles out 

slightly in a state of Indifferent equilibrium. In buckling in this way, 

the plate accumulates a bending-deformation energy U and the forces In 
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the median plane will do a work Vi. If the work W Is smaller than the 

energy of the bending deformation, the flat equilibrium shape of the 

plate will be stable. The critical value of the load, at which the rec¬ 

tilinear equilibrium shape passes from a stable equilibrium state to an 

unstable one, is determined by the condition 

U-W 

or 

n-u-w=o. 

Thus, for example, in investigating the stabil¬ 

ity of a plate acted upon by shearing forces per 

unit length N (Fig. 6.7), the expression for 

w is taken as before in the form of the double 

F^. 6.7 trigonometric series 

a 
*, 

♦ 
*6 
1 
a 

y Nx) 

22 
m- lil-l 

- , m-x , flit, 
^_.sln —-sin 

mn a b 

From the condition *0 we obtain the system of equations for 
àAmn 

determination of the unknown parameters. From the simultaneous solution 

of these equations, the critical force 

T.1D 

or 

<AV»Vp . A* 
A 12(1 ~|iî) fî ’ (6.19) 

where b is the shorter side (l.e., b ^ a) and k is a coefficient that 

depends on the ratio of the sides. 

When six terms of the series are considered, the coefficient k 

takes the following values: 

a/b 1.0 1.2 1.4 1.6 1.6 
2'°. 

2,5 3 

k 9,4 8.0 7,3 7,0 ' 6,8 j 6,6 6,3 6,1 
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Approximate values of k for other values of a/b of the plate can 

be determined from the formulr [25] 

*=5,35+4(-i-V. 

The experimental values of the critical stresses are In good agree¬ 

ment with the theoretical ones only provided that the compressive or 

shearing stresses do not exceed the proportionality limit of the mater¬ 

ial. This is understandable in the lignt of the fact that It was assumed 

in the stability analysis of the plates that the material is sutject 

Hooke's law. At stresses above the proportionality limit, the theoreti¬ 

cal formulas give critical-stress values on the high side. 
» 

3 

It may be assumed with an accuracy 

sufficient for practical application 

that Formula (6.19) is valid to 

Let us ascertain the limit of ap¬ 

plicability of the formulas defining 

the critical stresses in compression. 

For a square plate hinged at the mar¬ 

gins 

‘ bVt 3(1-|tf) ** * (0.20) 

It is seen from Fig. 6.6 that this formula is also sufficiently accur¬ 

ate for plates with a side ratio a/b > 1. 

Curve AB of the variation of okr, as a function of b/h for a plate 

of D16T duralumin with E = 7-2«10^ kgf/cm^, olok = 3000 kgf/cm ' and a 

short-term ultimate strength ov = 4200 kgf/cm , plotted by Formula 

(b.20), is shown in Fig. 6.8. 

The smallest value of b/h, which determines the limit of applicab¬ 

ility of Formula (6.20), i.e., point B, is determined from the equation 

- 14^ - 



or 

(tL=/ 

The nalure of the curve okr = f(b/h) on the aegment from point B 

to b/h = 0 is shown In Fig. 6.8; for small values of b/h, the critical 

stresses exceed c¡v, but it is frequently assumed for the sake of a 

strer gth margin that = a^. 

4. PLATES REINFORCED BY LONGITUDINAL RIBS (STRINGERS). THE CONCEPT OF 
THE REDUCTION COEFFICIENT 

In all cases of plate buckling, the value of the critical stresses 

is prrnortional to h2/b2. Since the critical stresses increase in pro¬ 

portion to the square of the thickness h, it is more advantageous from 

a weight standpoint to use light-alloy panels, which have a thicker 

skin than steel panels at a given weight. For example, a duralumin pan¬ 

el will be about 3 times thicker than a steel panel for a given shape 

and weight. 

On the other hand, the magnitude of the plate critical stresses 

may be increased quite effectively by reducing the width b, since 1 ! 

sufficient to place a single Intermediate stringer and thus halve the 

width b so that the critical stresses are increased by a factor of 4. 

Thus the panels of thin-walled structures are usually stiffened by 
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Stringers. 

Since the stringers are used for attachment of the skin (plate), 

their rigidity should be considerably higher than that of the skin. 

Then, when a panel consisting of a skin and stringers Is compressed, 

the skin, losing stability, will not fail but, bearing against neigh¬ 

boring stringers, will be capable of carrying its share of the compres¬ 

sive load. 

The manner in which the compressive stresses are distributed over 

the width of a stringer-reinforced plate with stresses o in the 
S11* 

stringers is shown in Pig. 6.9. As will be seen, the load-carrying abll 

ity of the reinforced skin is raised considerably as a result of the in 

crease in the stresses on the zones cf the skin adjacent to the strin¬ 

gers. 

The total load acting or the entire reinforced panel 

where Pütr is the part of the load taken by the stringers and P b h is 

the part of the load taken by the skin. 

In determining Pobsh, It is helpful to replace the true ocb..h dia¬ 

gram by a fictitious one with a constant stress 0 , on a certain re¬ 
st r 

duced width bpr < b. 

Given identical stringers of area f and a constant skin thickness 

with astr = V.str' we obtaln 

(6*21) 

where <P = bpr/b is the ratio of the reduced skin width to the actual 

width. This ratio is known as the reduction coefficient. 

Un the basis of the assumption that the compressive load carried 

by the skin is taken up only on skin zones of width b when 0 \> 
pr kr.str 
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» tí, V we obtain the followlnp; formula for determination of b : 
kr.obah' ° pr 

,9A ]/-£—. 
r ®Kp.rTp 

Actually, for a changed plate of width b , we have 
r' A 

4r.2D rîfAî ., C1 ^ A2 
ao-rttî, =3,6,£ ^ BP 

From this. 

(6.22) 

,9A l/ —. V °«P.CTP 

Remembering that 

3fi, - rr °«P-( 
_ iO»C or C — 

°*P.o0ibA* 

61*2 

the quantity bpr may be written In the form 

»„-1,9*1/ -its; 
r ®Kp. cTp-^i 

p.o6iu&¿ 
6ÏÂ2 

or 

Consequently, 

r «Kpctp 

>np ./ 0Kp.o*Mi 

* f ••.►*»# 
<». 

If the maximum skin stresses (see Fig. 6.9) are 

®mil ~ °CTp ^ 9Kp.eTp* 

(6.23) 

(6.24) 

then 

/3 

Kp.OfilU 

"nut (6.25) 

In the design of aircraft structures. It Is usually possible 1 « 

specify spar flanges with okr, £ ov [9]- 

In specifying the stringers. It Is also desirable to have pro ‘11 

dimensions such that the plates forming Its configuration will havi 

critical stresses equal to the yield point of the material [9]• 



In this case. 

For a panel made from D1ÒT duralumin. 

V=l,9*j/ïÂœ30*. (6.26) 

Since the stringer may also suffer general stability loss, an ef¬ 

fort Is made In design to space the transverse couplings (ribs, bulk¬ 

heads) In such a way as to satisfy the condition 

®Kp.Ota “***•*•««*• 

Here 

°*p.06lll 

CrJE 

(r)’ 

(Euler formula) (6.27) 

"Kp.MfCT" 7 
(6.28) 

where o1 and are the critical stresses and areas of the elements 

(plates) of the profile and f Is the total area of the profile. 

Example. 

Determine the breaking force P of a duralumin panel. The panel 

consists of two longitudinal framing stringers, each with an area f = 
2 

= 1 cm , and a skin with a thickness h « 0.2 cm and a width b = 18 cm; 

the stringer critical stresses are okr obgh = okr>inest = 3000 kgf/cr/. 

According to the diagram of Fig. 6.8, we have for the ratio b/h -- 18/ 

/0.2 = 90 

(Tup oGm 320 kF/CMp. 

Consequently, 

/ ■120 

3000 
0,327. 

We find from Formula (6.21) that 
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/^3000(2-1 +0,327■ 18 • 0.2) =3000(2+1,18) -9550 k/\ 

of which 37# is taken up by the skin. 

In a more general case, the panels may have stringers and skin 

made from different materials. In this case. Formula (6.25) will obvi 

ously take the form 

a — ^SfS, 
£ctp 

°KP.06ui 
°ni«I 

where E . .Is the Young’s modulus of the skin and E,. obsh str 

modulus of the stringer. 

From the condition of equal relative elongations (e 

for the skin and stringer near a riveted Joint, we have 

Is the Young 

= £ ) obsh str' 

s 

£o6a nui ' *TP ÏCTp 

Consequently, 

foCu, , / »«p-oflui ^ fptu, - / «Kp.o«ui£cTp 

^Ctp r ®m«* Æ«TP y «ctpfofiu 

or 

where 

?= 
aKp.o0u''-o6a 

•ctp^cip 
(6.29) 

®*p. ofiui k^otm • 

k = 3.61 for hinged margins and k = 6.3 for restrained margins (double 

row joint). 

Manu¬ 
script 
Page 
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136 

[Footnotes 

Since the deflections are assumed to be small, It may alst 
be assumed that segment A'B* has a length dx. 
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PagePt [Transliterated Symbols] 

No. 

l4l Kp = kr =3 krltlcheskiy « critical 

144 tck = tek « tekuchest' = yield 

144 b = V = vremennoy = short-term 

145 np = pr = pnvedennyy = reduced 

145 o6œ * obsh = obshivka = skin 

145 cap = str = stringer = stringer 

148 wecT sc mest = mestnyy = local 
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Part Three 

DESIGNING WING-AND-BODY-TYPE SHELLS FOR AIRCRAFT 

Chapter 7 

SOME APPLICATIONS OF FINITE-DIFFERENCE EQUATIONS TO THE DETERMINATION 

OF THE STRESSED STATE IN A CYLINDRICAL SHELL 

1. CYLINDRICAL-SHELL CALCULATIONS AT A JOINT ^ 

We are to determine the stressed state in bending at a cylindrleal- 

shell joint where the shell is made of a sheet material with constant 

thickness Ó, and is strengthened by longitudinal members for a length 

L. We shall assume that the law of plane sections is violated for the 

length L owing to the spot welding of two parts of the shell. We shall 

direct our attention to che right side of the system (Fig. 7*la)* 

The condition requiring symmetry about the longitudinal plane en¬ 

ables us to consider only half of the structure, for example, the side 

bounded by the angles from ç = 0 to cp = 7r (Fig. 7*lb). 

At joints 0 and 1, the concentrated forces 

n_M 
— * I - - • ‘ 4r CO» f i (7 1) 

will act on the left side of the system, while on the right side, far 

from the attachment joints, the bending moment M produces normal stres¬ 

ses that concentrate in accordance with the law of plane sections. 

Remembering that M = P04r cos we obtain the stresses in the 

section X = L: 

where 

Ppcos ï 
’ll 

(7.2) 

it>r 
4 cos f| 

f A cost,; 

Here fL is the area of the longitudinal element x = L, which may equal 
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zero. 

The force factors P and a, (Fig. 7*2a) are represented In the 

form of two states "a" and %" (Fig. 7*2b and c). In state "a,” the 

effect of the bending moment Is represented In the form of stresses 

distributed over the contour In accordance with the law of plane sec¬ 

tions. In state "cu," the right side of the system is free from load, 

while to the left side there is applied a group of self-balancing for¬ 

ces so selected that when they are added to state "a," only concentra¬ 

ted forces will remain at the left end of the system. As a consequence, 

the sum "au + "a)" will be the actual external-load distribution. 

We shall not go into detail about the determination of the stressed 

state "a" which is simple to determine; we shall consider the determina¬ 

tion of the stressed state "a>. " In this state, a group of self balanc¬ 

ing forces is applied at section x = 0; the group consists of the cou- 



■tüMüÉÉaèÉs^" »»« Ü-^iëèMfeÉMriiiüaiat# "»«IS'*'. 

The group of self-balancing forces proves to have a substantial 

effect on a stress only in the immediate area of the point of applica¬ 

tion. We shall Investigate the attenuation of the forces in this group 

along the x axis. 

We let Px be the running value of the force Pq along the x axis. 

Then the stresses 

o- ^ _ ^£°Lt , (7.3) 
™ nx ’ 

where 

4 cos f i 
fCOS?,. 
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For f = const, the system would be regular and the Internal forces 

could be determined as in the case of Section 7 of Chapter 6. 

Fig. 7-3 

Where the area of tie reinforcing element changes along the shell 

length in accordance with some given law, a differential equation may 

be obtained with variable coefficiengs described by complex expression. . 

It therefore may be difficult to solve the equation, in such cases, U 

is desirable to make use of finite-difference equations. 

Let us set up a finite-difference equation for some section m. To 

do this, we mark off on the length L a number of sections with spans of 

length Ax (Fig. 7.3)» 

- - 



If we assume that the axial forces P on the sections of length 

Ax vary in accordance with a linear law, then the running value of the 

force P acting in section m will equal m — 

where £ is the auxiliary coordinate for the section of length Ax. 

The bending moment is 

As a consequence. 

Af m (t)=to 4r cos f |. 

--—«Kï. (7.4) 
I* 

where 

The force in the longitudinal member is 

h- (7-5 > 

Let us consider the section from m to m - 1. The shear flow from 

<p = 0 to <p = will equal 

]•<«.»>»** ^ |r 4 (7.6) 
<h- -p. sin?, 

where a 

AJC " î)mA* 

is the running value of the stress acting in section rn; 

’U 
*ir 

4co» f| 
+/*C0S 9,. 

The shear flow beneath the longitudinal member from to 

<p = tt/2 will equal 

▼ 
i0(*.»)Ärf4 j p 

Ax + Ax ' Ax _ 

= ,>’^(T^r_s'n?)- (7.7) 

The strain continuity equation for section m may consists of con- 
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ditions requiring that the sum of work done by the forces owing to dis¬ 

placements in section m equals zero. Let us find the work done by the 

forces in one side half of the considered part; here we use the average 

values of the quantities 

„ ï-^+Zco.»,. 

This assumption is quite acceptable, since it has little effect on 

the accuracy of the calculations, but simplifies them considerably. 

Keeping in mind Formulas (7-4), (7-5), (7-6), (7.7) we write the ex¬ 

pression for the virtual work of the forces Pm acting on the lateral 

strip m, m - 1: 

Pm\? co»2 y» ds d\ 
^Ajrî£ 

, 0*r fp VrUinifáidl , 
. “J J "• T* AjtîOI 

« 
*mT 

+1l'- 

b 0 

>va 
/—-Slnf) 
\ 4co*f, J 

7 d±*L 
01 

After integration and simplification we obtain 

ka P*\ , I 2>>ri -v tiAm.m-— — ^.*«-1 + ^ Ajr0 Y. 

where 

[.■(f-t.) .1 

16 cos* f, 4 ' 

(| - Zicosf.+Jcos»,, +¾). 

The subscripts on X Indicate that rj and f refer to the zone m, rn — 1 

For zone m, m + 1, we obtain 

_2 p"> ) i 2/V|6r* m.m-- - J“ — 
•J C \m^*G 

The work of the force factors due to the forces Pm-1 Suing for 
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displacements In section m will equal 

while that due to the forces P, m+1 will be 

Thus for section m the finite-difference equation for G = E/2.6 

will have the form 

Owing to the change in shear flow stresses will also appear; 

we neglected them in the derivation of this equation. When we take the 

stresses into account, the left side of Eq.(7»8) will consist of five 

terms. 

As a rimerical example, let us perform a calculation using the 

following values; Pq = 15,000 kgf; ô = 0.2 cm; r = 25 om; ^0°, 
p 

L = 45 cm; Ax = 15 cm; Íq = 6 cm . The change in the cross-sectional 

area of the longitudinal member along the x axis is shown in Fig. Z.^b. 

We shall consider Section 1 (Fig. 7*4a), for which Eq. (7»8) takes 

the form: 

KMirSy M *i,a 5,2>r3v 

3 irtjA* 

For our initial values, we obtain 

-i.siPo+s.riPj-i.sep^o. (i) 

We now consider Section 2, for which Eq. (7*8) takes the form; 

5,28/-^ 

Finding the coefficients on the unknowns, we obiain 
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Prom Eqs. (1) 

In state 

will equal: 

in Section 0 

in Section 1 

In Section 2 

In Section 3 

M 

) 

—1,56P,+16,!5P2~0. (2) 

and (2), we obtain 

P* =-0,0965^, and P,»0,153Po. 

'V the forces N in Sections 0, 1, 2 and 3 (see Fig. 7.5a) 

=- 15000 Í1- 

= 1480 nF, 

N' =179 nr. 

N“ =0. 

- I5Ö - 
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.. *~v% - ÏZ* *mm i • 
^ JIBSlJlIllr 1-. 

Thu calculations validate our assumption as to the rapid attenua¬ 

tion of the axial forces; Just as if the longitudinal members with 
p 

their finite area ^ = 1 cm did not extend far along the x axis, the 

stress states "œ" remains as before. In order to see this, we add two 
(Cm 

more spans with constant longitudinal-member area f^ = 1 cm (see Fig. 

7.4b). We then obtain the following system of equations: 

- 1.31P,- 16,15Pj-0,850P3=0; 

- 0,850P2 + 22,9Pj- 0,020P4=0; 

-0,020P3+25,2P4=0. 

From the solution to these equations we obtain 

(1) 

(2) 

(3) 

W 

P,=0,153P0; 

Pa-.0,0968P,; 

P3=0,037Pf; 

P4=0,0008P3. 

We thus see that the increase in the previously assumed longl- 

tuinda1-member length essentially has no effect on the stressed state 

"cjd. " 

Let us now determine the mean shear flows acting on a longitudinal 

member. The mean PKS for the zone 0-1 from <p = 0 to <P = will equal 

Ax 

& PoÇOü PliCO^X y 

J V »¡o / 

Ax 
or 

Ax \ ti0 t), / 

For <P we obtain 

0,2-25/15000 _0,153.15 000 \q ¢43. 
15 I 9,72 '7,87 / ’ 
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5(1542 - 291)0,643 m 12S1-0,643 _oca kgf/cm 
* “ 15 “ 3 

The PKS beneath the longitudinal member from to 9 = -n/2 

will equal 

1251 7930-1480 
-= 

15 

1251 sinf=430—417 sln«p. 

for 9 * 9-^, 

=430— 268=162 kgf/cm 

On zone 1-2 for 9 = 9^ 

0,2-25/0,153-15000 0,0148-15000 

15 \ 7,87 6,35 j ’ <h, 

-^-(291—35)0,643= —55 kgf/cm 

The PKS beneath the longitudinal member at 9 = 9^ will equal 

Çf| ==,_ 55= 87- 55= 32 kgf/cm 
15 

On zone 2-3 for 9 = 9]^# 

^. = -^^643=-7,5 kgf/cm 

while beneath the longitudinal member, 

¢,, =--7,5=4,5 kgf/cm 

The force factors fcr state "a)" are shown In Fig. 7.3a. 

In state "a" the system experiences pure bending (Fig. 7.3b). In 

this case, the normal stresses In any section x are found from the for¬ 

mula 

-. Ppcosy 

where 

nlr 
4 cosf] 

+ /, COS «p,. 

Thus In state "a" (Fig. 7‘3b) we have: 

--15()00 6 -0-76fi- 7070 kgf 
9,72 

- loo - 
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ln Section 1 

ln Section 2 

ln Section 3 

A^ISOOO3’^— M70 kgf 
7 *87 

A^j = 15000 ^^^=--2890 kgf 
6,35 

Ar;=o. 

The mean PKS on zone 0-1 from <P = 0 to 9 = will equal 

K0if)írfi-ío*,f)» as 
<rf 

For 9 = 91, 

üx 

nt _ 15000.0,2.25 

P0lr / 1_1 
Ajt 

(---jslny. 
XTo ’ll / 

15 
-L-\0,643: 

\9,72 7,87 / 

_/5000_rj0O0\0643 __121.0 643= _77 5 
\9,72 7,87/ 

The PKS beneath the longitudinal member from 9 = 9-, to 9 ^ tt/2 2-; 

For 9 = 9- 

VS —121 sin?. 
v* Ax 

^=7070 - 5270^ —77,5= 120—77,5=42,5. 
15 

On zone 1-2 for 9 = 9^, 

j. = _5000\ 0,643- 
\7,87 6,35) 

= (636 - 788) 0,643= - 97,6. 

The PKS beneath the longitudinal member (zone 1-2) for 9 

will equal 

¢^--^----97.6= 

= 158,6 — 97,6 = 61. 

On zone 2-3 for 9 = 9-^, 

9^ that 

- I6l - 
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r-î'» 

^-(^)0.643= 
= (788 - 978)0,643= -12?, 

while beneath the longitudinal member 

OfiOfl 

^.=--122=193-^^2=71. 

Let us now determine the force factors In 

state "D" (Fig. ?.5c): 

A^0= 7930-f 7070= 15000 kgf 
jV, = 1480 + 5270 = 6750 kgf 
^,= 179 + 2890= 3069 

jv,«o. kef 

The PKS for ç = will be 

on zone 0-1: 

-268 - 77.5= -345,5 k6f/crn 
162 + 42,5=+204,5 kgf/cm 

on zone 1-2: 

- 55 - 97,6= -152,6 ^/°01 i 
+32 + 61 =+93 kgf/cm; 

f) c on zone 2-3: 
Fig. 7-5 

-7,5-122=-129,5 kSf/cmi 
4,5+71 =+75,5 kgf/cm. 

Despite the fact that the Ax are long with respect to length L, 

the values of the axial forces in the 

longitudinal members are quite exact. 

The average PKS values are far less ac¬ 

curate, especially for zone 0-], where 

the most vigorous attenuation of the ax¬ 

ial forces occurs. 

In order to obtain a more exact val' 
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ue for the PKo, it is necessary to reduce the distance between spans, 

which leads to more cumbersome calculations. The computational diffi¬ 

culties appearing, however, may easily be eliminateo through the use of 

computers. 

It follows from the calculations given that in sections lying more 

than 2r away from the Joint, we can determine the stresses in accord¬ 

ance with the law of plane sections with a satisfactory degree of ac¬ 

curacy. If for X = 0 and x = L the bending moments are roughly equal, 

then in order to increase the safety factor, we can determine the 

stressed state due to the greater bending moment. In the opposite case, 

the recommended procedure is as follows: if Mq 

should be determined in accordance w!th the method presented above for 

Mqí we then add to this state the stresses due to - Mq, distributed 

in accordance with the hypothesis of plane sections and * he accompany¬ 

ing PKS stresses; here we assume that M^ - MQ varies linearly, reaching 

the zero value at x = 0 (Fig. 7*6). 

2. DETERMINATION OF STRESS STATE IN TORSION FOR CYLINDRICAL SHELL WITH 
CUT 

We shall determine the stressed state in a shell of the type used 

for a flying-craft body (Fig. 7-7a), consisting of a center bay with a 

cut and closed bays bounding the central bay on both the right and the 

left. 

Since the bulkheads are usually quite stiff in their own plane, we 

shall assume that they are perfectly rigid, and that they are perfectly 

flexible in the direction perpendicular to their plane. 

We assume that the framing bar has a constant cross-sectional area 

f, while the skin thickness equals ô everywhere. In this case, the .ys- 

tem will have a transverse plane of elastic symmetry. The transverse 

plane of elastic symmetry and the position of the coordinate axes are 

> «L- 
the stressed state 
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shown in Fig. 7*7a* Since the torsional moments M are applied to the 

body, the internal forces must be inversely symmetric. As a consequence, 

at section x « 0, the stresses must equal zero, since it is only in 

this case that the internal force factors about the plane of elastic 

symmetry will be inversely symmetric. 

Fig. 7.7. A) Closed bays; B) bay with cutout; 
C) transverse plane of elastic symmetry. 

Fig. 7.0. A) Trans¬ 
verse plane of elastic 
symmetry. 

Fig. 7.9. A) Center* 
of bending. 

The framework consisting of the framing bar and bulkheads has a 

very small frame effect, which may be deflected; we assume a hinged 

attachment of the longitudinal assembly to the bulkheads. 

The stresses may be written In the form 
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«U. («*)<•>(?), (7.9) 

where the function ^(x), which depends solely on x* Is unknown, while 

the function oo(<p), which depends solely on the angle <p, is the sector 

area 

u> (7.10) 

where p is the length of the perpendicular dropped from the center of 

bending of the open contour to the tangent at the point of the contour 

having coordinate £. 

The change in stresses along the contour of the body cross sec¬ 

tion obtained from (7*10) is proportional to the sector area o>, and 

agrees well with the more exact calculation of [29]. 

Determination of Stressed State in Bay with Cut 

Despite the fact that this Is a fairly simple structure, the 

stressed state is described by very complicated formulas. For simpli¬ 

city we shall assume that the function ^(x) varies in accordance' with 

a linear law, i.e., we let 

♦(*)-*». (7-11) 

where k is a constant. As a consequence, the stresses for a bay with a 

cut will be 

(7*12) 

Since the stresses o^x ^ vary along the x axis in accordance with 

a linear law, then over the span of the bay with cut, the linear PKS 

will depend solely on the angle <P. 

The value of is found from the conditions requiring equilibrium 

of the part of the shell abed (shown hatched in Fig. 7*0)* On the left 

side (ab) for x = 0 the stresses will be a^ ^ = 0, and on the right 

side (od) for x = i/2 we have 

u>=jc</i = f(r+ y cos a) r ¿a+C = r (r?+ÿ sin *) -f C. 
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Thus, from the conditions requiring equilibrium of the part of the 

shell abed, we obtain 

It is clear from Fig. 7*9 that 

(7.13) 

The contour distribution of the stresses a and, consequently, of 

a) as well, must be inversely symmetric about the ^ axis, so that for 

q> = 7T, the sector area must equal zero, or 

r (r»-f ÿ sin t)-f C=0. 

From this we have 

C--rV 

As a consequence. 

®=srIr(f“*)+ÿs!n ?] 

and 

= — r[r(ç—*) -}-y sin *]. 

Substituting (7.15) into Expression (7*13)> we obtain 

(7.14) 

(7.15) 

u 

».= + 
ÍT' *) + y*¡"*il/+ \ “t*^ k (t — *) + > sf« tJ • rfí 

2 

or 

¢,= +kr J[r[r(f-*)+ÿsin'fl</aJ. 

Following integration we obtain 

0,= + *r {{/1/ + Sr - « Cf “ f i)]~ ÿ («-os f - cos <p,)j J, ( ‘^ • 16 ) 

where 

i4 = r(?l-*)+ysinf,. 
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We find lhe coefficient k from the conditions requiring equilibri¬ 

um, for example, of the entire right side of the body bounding the cut. 

On this portion there acts the external torsional moment M, which must 

be balanced by the imment due to q,,,. acting at section x = o. As a con- 

sequence, 

or 

■ 
2 ds-fan=o. 

f» 

In view of the fact that 

« 

I +HW’+H£-t-f+*».»1- fl ** 

— y |sln f — <p cos f, jj 8r J|* =» 

~ + *ra |^/(R — ?i) — r* j-——-+yri [(r—^,) cos <f, -f sin f, jj 

« 

2 J i/s = 2*r® (m/Ç - +ÿr ). 
n ' 

Here Ç = 7T — <p^ and ¢ = ^ cos <p^ + sin 

Substituting (7.18) Into Eq. (7.17), we obtain 

(7.17) 

(7.1Ö) 

+ 2*rs ^ + yr 84» j + 2R = o. 

As a consequence. 

*=- SR 

2r>(AA-^-P") 
[kF/cm']. 

(7.19) 

We now find the position of the center of bending y: 

ï«—f, 

Here 

y=y- J Sy{f)rds. 
* U 

$9 <f) = A sin f, +1 ?r* sin o da =/r sin -f 8r*(cos 9,—cos f); 
fi 

t 

J, = 2/r2 sin* if, f 2J Hr3 sin* 9 =, 2/r* sin* 9 + 28r3^tl -j. ÜÄ). 
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Since 

**-t» »«-ti 

j Sfr ds = j [fr sin <p,-fir* (cos «p, — cos 9)] r* d<f =- 
f* fi 

•»-ft 
- r* [/<p sin <p| -f Ir (f cos <p, - sin ?)] — 

f» 
=2r* (/, (>t - f,) sin f,+îr ((* - ?,) cm y,+sin ?,]}, 

or 

j Str ds=* 2^(1/, sin ?,+V4»), 
ti 

then 

y=_+ 
+ + (7.20) 

In order to test the formulas obtained, we turn to a numerical ex¬ 

ample. 

Let 

SN^IO5 kgf «crii /=2r; cm; r=25 cji? 

8=0,2 cm /=2 cm2 ?,=30*=—. 

Then 

sln^,=0,5: cosy,=0.866; sin2y,=0,866; 

.,-?i = Í = Ak==2,618; 
O 

<1» = 2,618 0,866 +0,5=2,767; ^=17,944. 

Let us determine the position of the center of bending, the value 

of the coefficient k, and the PKS q^: 

*= - 

-25(2,818 2 0,5 + 0,2 25• 2,767) _ 

2 0,52 +0.2-25+ 

= “«^^•.^ 50.62,*; 
0,5 + 7,62 8,12 

_ ____ _ 5W _ 

2-25i(.42-2,M8-^iîSLËlSL -t 50,62.25-0.2.2,767) 

R 
2-15 620(4-5,236 7 50 + 700) 
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f &« ,m» mÊÊm r***“'- 

Here 

or 

^^25^-^ + 50,62.0,5=-25 ~ 3,14 + 25,31 = -40,14. 

Thus 

*=- 
n 

2 15 620(-210 - 750 + 700) ^2 15620-260 8.12 10« ’ 

(1, = 0,308 J - 80,28 +125 ^ - K(p j + 189 - 253cosŸ + 218j, 

qf - 0,308 ^ — 80,28+125 ^ - 253 cos f+407 j. 

For 9 = <P1 = tt/6 

For 9 = tt/2 

For 9 = tt 

Qí—0,308 ( — 80,28)-- — 24,7 kgf/cm 

=0,308 [ - 80,28 +125 (^- - ^)+407] - 

= — 0,308^-80,28—125-|-k* +40?]= 

=-0,308(-80,28 - 462 + 407)= -0,308-135=-41,6 kgr/cm 

^=0,308 [ - 80,28 +125 (y - n* j + 253 + 407] = 

= 0,308 ( - 80,28-125 y+ 660)= 

- —0,308-37,78= —11,65 kgf/cm 

For 9 = BV2 

^ = 0,308^-80,28 + 125^ -y«*]+407] = 

= +0,308 [-80,28-125 y ^+407]= 

=0,308[-80,28 - 462 + 407J= -41,6 kgf/ctr 

For 9 = 2tt - 9n 

qf — 0,308— 80,28 +125 ^ 
4**—4*f i +11 

2*’+*?»)- 

— 253 cos (2n — (p,)+i07 

- 0,308[^ - 80,28 +125 ( fJ-253 cos ?l + 40?] = - 24,7 
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Fig. 7.10 

We also determine the stresses at section x = i/2. In accordance 

with Formula (7.15) 

(25(, - a)+50,62 »In tl - 

= 7.7 (25 <p - 78,5+50,62 sin f ). 

For 9 = = tt/6 = 30° 

7,7(13,1 — 78,5 +25,3)= -7,7-40,1 = -308 kgf/cn^ 

For 9 = tt/2 

«(in..) =7,7 (25y-78,5+50,62sin -^]=7,7-11,32 = 87. 

For 9 = 3V^ = 135° 

a. , , =7.7 (254-K-78,5 + 50,62sln4*)--= 

= 7,7(58,8 - 78.5 + 50,62 0,707)=7,7-16,1 = 124. 

For 9 = Tr 

a(f/J( ,,=7,7(25.3,14-78,5)=0. 

For 9 = 3^/2 

3_ 
t 

The nature of the variation in and (pj» acting along the 

bulkhead contour from the direction of the skin on the bulkhead with 

the cut Is shown in Fig. 7*10. 
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Determination of Stressed State In Closed Bays 

Let ms consider the part of the body to the right of the bay with 

the cut. To this part there Is applied an external torsional moment M 
• 

(Fig. 7-11) which Is balanced by forces acting on the left bulkhead; 

these forces are known from the calculations for the bay with cut. 

We move the coordinate-system origin fron the center of the bay 

with the cut to the center of the left end of the considered portion of 

the body (Fig. 7.11). In this section there acts the group of self bal¬ 

ancing forces produced by the stresses q))' distributed in pro¬ 

portion to the sector areas cs. Let us see how this group of self balanc¬ 

ing forces varies along the x axis. Representing the law governing the 

variation in this group of forces in the form of the function i{x), we 

obtain 

0(<r> --= ♦ (X) «>(*)=* (*) Mr (<p - «)+y s,n *1- 

The strain potential energy is 

xL^j rldfdx 
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or 

U=^Tdx, 

where 

We determine the value of the integral: 

f[‘U 

The first Integral equals 

(7.21) 

(7.22) 

2*— 
çf j ^(■*)'J[r(»-,l)+ysin,<pl,¿?=^,WB, (7-23) 

where 

B = 2r* { '2 (-o—-- - 2 ry ((n - ?l) cos <p, + sin *,] + 

Before proceeding to integrate the second term of Expression (7-2k), 

we determine the PKS q^x Prom the conditions requiring equilibrium 

of the elementary portion of the shell (shown hatched in Fig. 7*12), we 

obtain 

— f, dx+dN—O 

dN 

or 

<!\ 
dx 

(7.24) 

From the conditions requiring equilibrium 

of the cross section ui the shell located a 

distance x away from the coordinate-system 

origin we obtain 

it 

(7-25) 
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Freni this we have 

-1^-. (7.26) 

where ÎÎ Is twice the area bounded by the contour of the cross section. 

The total shear flow Is 

i - dN 
W + (j) dS_ 

ix 
r ds 

(7.27) 

The running value of the force Is 

Wu.») = 0(í.í,)/+R)+ys,n?ii/+ 

* __ 

+^(^) jrlr y slnf]8rd<pa= 
fi 

='i* wr (ir Cti •“ *)+ys,n ?ii/+Sr f tr (? “K)+ÿs,n = 
' Ti 

=, î (X) r {{¿/-Hr {r —*(? - f,)]- ÿ(cos f - cos ?,)}}. 

As a consequence, 

ÍÍU +•/(x) r (H+ *<■ {r - *(* - f |'] -ÿ<c® » “ cos »>)}} (7.28) 

or 

dN VW ^ —=—r—Vf* 
dx * 

where the PKS Is determined from Formula (7.16). 

We next determine the value 

»i f* 

Keeping In mind Expression (7-1Ö), we obtain 

"J'^rds^ +/(x)2r> 

fi 
where, as before, 

*=r —f, and 4> = Scosf,-l-slnf,. 

(7.29) 
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Thus, 

Since 

we obtain 

where 

if.=ir* Jr J —------«(?-?,)|-ÿ(cos ? - cos?,)}+«(»,)/, 

í(^f) “f (Jt){{«r* Jr 1^“—”—— 

- ÿ (cos f - cos Ÿ»)j + cj J - , 

C=« (?,)/- 
2r» J^/6 - + ÿr JI« 

We now determine q^x 

(7.30) 

(7.31) 

«?..« =>"W *(,-♦,)]’+ 

-f ÿ’î’r4 (cos ç — ce' ÿi)*+— 

- 2¿>r8[^-yTl—« (? - ?i)j y (cos ? - ce ?,) 4- 

+ -»(»-»,)]c-2y?r>(co«T-co,fl)c}|- 

- 2*' (Jt) {{ir* |r -.(,-,,)]- 

- Í (cos ,-cos ,,)) ï + CÄ j) + Ä-. 

Let ig T) represent the first sum of the terms In the double races 

and y the second sum, we obtain 

«!«.« “T Wi-^'Wv+'fr • 

As a consequence. 
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r=*^f [•!..„ (•/ W -I - 2>' + f)] ^ 
or, taking Into account Expression (7*23), we obtain 

r- ~ {f Wfl+(J) [2-ü±ü (r W , - 2/ W Ï+^)] </» j 
After integrating over the contour 

r=£ [f W B + ft- w ï—2/(X) V + S- 2.]. 

where 

TJ = ^Tl</f anil Y=(j)Yd<P' 

Using the equation 

a « i^o 
4 i* l «(*;.,) J • 

we obtain 

or 

where 

(20 
2(1+1*)^ 

The solution of Eq. (7*32) takes the form 

^U)=C,e M+Cle*' 

Then 

(7.32) 

(7.33) 

(7.34) 

= 

ta» 

From the boundary condition at x = » it follows that !í£ül»=o and 
<* 

0. Therefore 

*U,T) 
’«(?) 

From the boundary condition at x = 0 we obtain C,=»Thus, 
1 «<?> * 

3<jr. ¢)-0(/,1. f) e - *x (7-35) 
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(7.36) 

V *- # 

and 

We determine the value 

e-“, 
•(f) 

j)hdf, 

where 

and 

n ^ 2V^---2—1 — "(f—foj + 

-f y*8*r4 ( cos f - cos ?,)*+C1— 

- 2ffr8^———.: (<p - ?,)jy(cos f — cos f ,)+ 

+2írJ j^ —--y' — «s (? — f ,)j C — 2p.rJ (cos f—cos f,) C 

H ÿ> »♦ J 
C —<«(?,)/• 

In view of the fact that 

I1 [- Mi - 9,)] rf, = 2 j [ Ü-TL - , ,t ^ ^ ± ih 
fl J 

ft 
2 J (cos f _ cos i/f=5 +1,5 sin 2ŸI + 2- cos2 Ÿl: 

* « 

^ cî = 2 j*..,3(?1)/3^-2^20,(f,)/ -^/< —i ^.J. 

+ 
r «'•(¿/í-^+ímo)2 
j ¿j </f 

•2“‘,(»i)/n-+.<»,)/ 5 + 

T 
(/1/S - —• + ÿr 6* j 22r 

Ö» 

2 j I“ ¿ Tl ~R(f-f,)J(cos?-cos'f,)</fi 2<l> + -|-f*cosf,; 
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4’v 

’f[^- 
ti 

« 
2 j (cos <p - cos 9,) i/9 - - 2®, 

M?“?,)Ií/9= -yi8; 

t| 

We obtain 

1 = W “ ;5+y'Vr' ((+1,5 sin 29, + 2( cos» 9,) + 

+ D - 4iVsy (l* + y ;*cos 9,) - y Ir'fC + lÿôr^'C, 

where D represents the expresslcn for the third integral, 

Manipulating Expression (7*33), we obtain 

I» 
3 

if- ^(H h) — «Hy,£ + 
D 

¿Vr* 

A 
3 

2r y I* -f “ (* cos ?i)- 

_+2AÎ£] 
Sr T Sri I 

where 

(7.37) 

(7.38) 

^4^0175810 29,+ (008*9,. 

We determine the value of a using the geometric data for the body 

as given in the sample calculation for determination of the stressed 

state in the bay with the cut. 

Letting [i = 0.3, vie obtain 

a*— 

(50,62x2/2.618 0.860 

iS“)( 2 + r) 
2,6(10248,4 + 10049,6+ 139,6 - 20108,7 - 14,7 + 94,4) 

,= !Ä= 0,000968. 
1063 

As a consequence, 

a-^0^000968 =0,0311. 

Thus, for the given case, 

- - --O.OIIU 
•u.f) =«(»/*. *)e • 

where 

5(//2, =7,7 (25 9 ““ 78,5+50,62 sin 9). 
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For X = 0, 

for 

for 

for 

x*= r ~ 25 0(4T,f) =0,4590((/1,^ 

JC=2r = 50 «u. ¢)=0,2110(1/1.,)1 

The PKS q (x, <P) 

jc=3r«=75 0(4.,,=0.0970(/,,.,,. 

is computed from Formula (7*30)* In the given case 

>,>n a| 7,7*0,0311 B Mil» 
sa « '"••V- ar*** = —-¢-0.001 w; 

V) w c 25 

ÿ{M) Hi. „ —0,239 e-o w"' [-80.28+125 (■£-*?)- 

— 253 cos t+«7j; 

= J. 7,7*0,03?1_ -0iWIU2049 2, 
^ 25 

and 
+ 19,6e- 0,0311« 

ax io« 
a 2w2 

=25,4 kgf/cm. 

As a consequence, the PKS is 

g{JI,„ = -0,239 [ -80,28+125 253cos?+407]tf-0*' 

-19,6tf-0M'''-25,4, 

where the first term is taken from to 2^-9^. 

For X =» 0, along the upper arch between stringers 

-19,6-25,4= -45 kgf/cm 

while along the lower arch: 

-0,0311« . 

for 

for 

for 

for 

for 

T = ?| g= -0,239(-80,28)-45= 19,2 — 45= —25,8; 

<P=y q— +32,2 — 45= —12,8; 

¢=-. +9—45=—36; 

0= -12,8; 

tp—2t—0=-25,8. 
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For X = r = 25, along the upper arch between stringers we have 

Vo= _ 0,459 -19,6 - 25,4 =-9 - 25,4 - - 34,4, 

while along the lower arch: 

for 

for 

for 

for 

for 

¢=,, . ¢=0,459-19,2 - 34,4 = 8,8 - 34,4= —25,6; 

9=-- ¢=0,459-32,2 - 34,4= 14,8 - 34,4= -19,6; 
2 

,=* ¢=0,459-9-34,4=4,1-34,4=-30,3: 

¢=-19,6: 

, = 2>c—<p, ¢=- 25,6. 

,= — 1C 
T 2 

For X = 2r = 50, along the upper arch between stringers we have 

q0=- —0,211 -19,6—25,4= -4,1-25,4= -29,5, 

while along the lower arch: 

for 

for 

for 

for 

for 

<P=*i 

* 

¢=0,211-19,2 - 29,5=-25,5: 

,=-1. ¢=0,211-32,2 - 29,5=-22,7: 

,=k ¢=0,211-9-29,5=-27,6: 

, = -1,1 ¢=-22,7: 

,=2ic—,, ¢=- 25,5. 

Fer X = 3r = 75, we have along the upper arch between stringers 

¢,,= -0,097-19,6 - 25,4= -27,3, 

while along the lower arch: 

for 

for 

for 

for 

for 

,=,, ¢=0,097-19,2 - 27,3=-25,4: 

« = — ¢-=0,097-32,2-27,3= —24,2; 
T 2 

,=# ¢=0,097-9-27,3=-26,4: 

,=-1 * ¢=-24,2: 

,= 2r—,| ¢=-25,4. 

The stressed state is shown in Fig. 7*13* As we can see, the nor¬ 

mal stresses are attenuated rapidly and are nearly zero at a distance 

of 1.5D; near the bulkheads bounding the bay with the cut, the PKS is 

considerably greater than yielded by the Bredt formula: 
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In sitting up the finite-difference equations of Section 1 and de¬ 

termining the potential energy in Section 2, we assumed that the shell 

was perfectly stiff in the transverse direction and thus the computa¬ 

tions given in this chapter should be considered to be first-approxi- 

mat ion calculations. 
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Chapter 8 

FREE BENDING AND FREE TORSION IN HIGHLY TAPERED SHELLS* 

We shall consider shells of the type used for flying-craft wings 

working within the elastic-deformation range under the assumption that 

the ribs are perfectly stiff in their own plane, while they are per¬ 

fectly flexible in the direction perpendicular to their plane. 

On the assumption that beams can only 

carry normal stresses and the skin only 

shear stresses, in calculation schemes we 

take as the beam area the area of the lon¬ 

gitudinal member with the associated area 

of the skin, multiplied by a reduction fac¬ 

tor. 

After we have associated with the area 

of each beam the immediately adjacent skin 

working effectively under the normal stresses, we obtain a calculation 

scheme, for example, a wing sect ion,consisting of several separate 

points - the centers of gravity of the beam areas (Fig. 8.1b) with the 

skin between them, working only under the shear stresses (Fig. 8.1a). 

If the wing has no stringers, the beam area in the calculation 

scheme will consist solely of the skin area, contracted to the given 

point. 

Such a calculation scheme has found wide application in the design 

of thin-walled structures, but where the cross-sectional contour is sim¬ 

ple (see Fig. 8.1a), another, converse calculation scheme is used on 
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occasion; here the effectively working skin area and the stringer area 

are not contracted to a point but, quite the opposite, are distributed 

uniformly over the section contour. As a result, we obtain a shell with¬ 

out stringers (Fig. 8.2a and b) having a thickness ó0 and working under 

normal stresses. The thickness of the skin ôT that is working under 

shear stresses remains equal to the true skin thickness. 

. When we are determining stresses and 

strains, the second calculation scheme 

enables us to make wide use of integra¬ 

tion in closed form, which eliminates the 

tiresome tabular summation needed when 

the first, discrete scheme is used. 

Henceforth we shall arbitrarily refer 

to the first calculation scheme as the 

f î b 
Fig. 8.2 

scheme "with skin working solely in shear," and to the second as the 

scheme "with skin working under shear and normal stresses." 

the shell wall is so small as compared with the over-all dimensions of 

the structure's cross section that both the normal and shear stresses 

may be assumed to be constant over the wall thickness. 

When we consider tapered shells, the calculation schemes will con¬ 

tain trapezoidal skin elements. We recall (see [30]) that for such an 

element, the average PKS q is represented in terms of the PKS actinr al 
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the edgfcti (^'Lg. 3»3)j In the following manner: 

Q—Qi-i—Qi-v 
hi 

? —?í-8^« 

(Ö.1) 

1. DETERMINATION OF NORMAL STRESSES 

Figure 8.4 shows a multistringer shell of the wing type, loaded at 

the end by the bending moments Mx, My, the torsional moment M about the 

z axis, the transverse forces Qy, and the longitudinal force N„. If 

we had to make use of the familiar methods of static indeterminacy, it 

would be difficult, since this type of shell has a very high degree of 

static indeterminacy. In order to eliminate the high degree of static 

indeterminacy, we introduce the hypothesis of plane distribution of the 

relative elongations, i.e., we assume that the relative elongation e 

along the height of the shell varies in proportion to the distance from 

the neutral layer of its cross section [9]. 

The possibility of extending this hypothesis to shells of the wing 

type has been verified by numerous static tests of structures under ac¬ 

tual conditions. The tests showed that the normal stresses obtained by 

calculations based on the hypothesis of plane distribution of relative 

elongations agree well with the experimental values for sections far 

from the attachment. 

Since the normal stresses due to bending, distributed in accordance 

with our deformation hypothesis, will not depend on the constraint con¬ 

ditions, this stressed state is called free bending, while torsion that 

does not take into account the effect of the constraint is called free 

torsion. 
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Mx 

Pig. 8.5 

Let us consider the method of normal-stress calculations developed 

by I.A. Sverdlov [9]* 

In determining the normal stresses we shall assume that the shell 

taper is great only in the Oxz plane (see Fig. 8.4). From the shell, we 

take a bay of length dz formed by two planes with coordinates z = const 

and z + dz = const (Fig. 8.5a); after the shell has been loaded, for 

example, by a bending moment N^, these planes form an angle da (Fig. 

8.5b). As a result, any longitudinal element Í a distance away fron, 

the neutral layer will be displaced an amount y^ da along the z axis. 

Corresponding to this displacement there will be an elongation or con¬ 

traction of 

y, da cos <f. 
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In the longitudinal element forming the angle <p with the z axis. 

In view of the fact that the element length equals dz/cos <p, we 

obtain the relative elongation of the longitudinal member in the form: 

« = cos2<p. 
f di 

As a consequence, the stress is 

c'“£ ^ cos’f- (a ) 

The axial force is 

N,-f,E cos1»- (b) 

Here f^ is the area of the longitudinal member, cut perpendicular to Its 

axis. 

The axial force along the z axis equals 

jV.-AT.cosf^/if cos1», (o) 

while the stress along the axis is 

0,=-^2-cos<p=£ COS4». (d) 
* /i d* 

We find the constant value da/dz for section z from the equili¬ 

brium equation 

V- -£n=Li7E>'‘cos,f/" 

From which we have 

where 

da _ Mj 

dx ~~ EJj, ‘ 

y^y’cosV,. 

Substituting the value of da/dz into Formulas (d), (a), (c) and 

(b), we obtain the desired stresses 



•• > - ^ *' 

The axial forces are 

SMi^yt cos*^. 

Taking into account My (see Pig. 8.4), we obtain 

(8.2) 

(8.3) 

(8.4) 

AT 
(8.5) cot r 

Here x, ^ are the running ccordinates in the principle central axes of 

inertia of the shell cross section; 

cos»t 

Syt=*Ji cos»f 

principle central 
moments of iner¬ 
tia 

static moments of 
ith element; 

Nz is the force for the ith element, acting along the z axis; is the 

force acting along the axis of the ith element. 

2. DETERMINATION OF SHEAR STRESSES IN BENDING OF A SHELL WITH OPEN 
CROSS-SECTION CONTOUR 

We have a bay of an open shell with length Ai equal to the dis¬ 

tance between ribs (Fig. 8.6) with an arbitrary number of ionrituü Inal 

members each having a reduced area f,. 

For simplicity we limit ourselves to the case in which the effect 

of the remote portion on the right-hand section of the bay being con¬ 

sidered reduces solely to the bending moment ana the transverse 

force 
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Fig. 8.6 

In order to find the mean PKS q in any section c-b, we consider 

the equilibrium of the part of the bay shell shown hatched in Fig. 8.6 

whose length is equal to the distance from the free edge d-a to sec¬ 

tion c-b. The symbol above q indicates that the PKS refers to an 

open contour. 

The effect of the remote portions of the shell on the hatched 

element abed reduces to the unknown PKS q and the resultant forces from 

the right side 2N?r and from the left side ZNf. Thus the equilibrium 

c ondition for the element abed about the z axis may be written as 

from which we have 

«-Ü—• 
(8.6) 

The equivalent force from the right side of the bay is 

(8.7) 

while from the left side it is 

£ Q,JWS¿, 
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- -, >. 

or 

Si' (8.8) 
0 

where S?r and J?r refer to the right-hand section of the bay and S* and Xm X A* 
/ 1 

J refer to the left-hand section. 
A 

According to Formulas (8.1), the PKS due to the right-hand and left 

hand sides of the bay will equal 

tna " as* (from the right side); 
* ¥ AS"* 

(8.9) 

AS* 
?*-*lsr(froin the side). (8.10) 

Here ASpr and are the distances between stringers from the left and 

right sides, respectively (see Fig. 8.6). 

For the second calculation scheme of Fig. 8.6, in accordance with 

Formulas (8.2), (8.3)* (8.6), (8.7) and (8.8); 

Here 

'Hif''*')“•** 

’ CMl. * 

A/ 

2 

2^; 
Ms-QyH c. 

'Î 
CJ 

J9/=cj^ y "P* cos4 Ç =(j) y "P’ cos4 f 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

or 
77* — (^ y*’ cos’ 9«nP8, </9, 

VÎ^^y^’cos^c’î,^; 

5* j y"p cos* 9?’,p83 rff, 

5i -- j y" cos* 9 2*8, rff. 

(8.16) 

(8.17) 
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The origin for the z coordinate is shown in Fig. 8.5a. 

In determining the moments of inertia, integration is taken around 

the entire contour, while in determining the static moments it extends 

from the free edge to the section under consideration. 

3. BENDING AND TORSION IN CLOSED SHELLS 

Assume we have a calculation scheme of the first 

ed by the transverse force Qy, the bending moment 1^, 

moment M acting about the z axis. 

(Fig.8.7a), load- 

and the torsional 

If the system has one wall 4-4^8^8 (contour with simple closure) 

then traversing the contour in the clockwise direction, we can find the 

mean PKS fcr panels 1-2, 2-3j 3-4 from Formula v8.6): 

- 2>:p-2"î 
*=-Ü • 

It Js not possible to extend this formula to panels 4-5, 5-6, 6-7 

and 7-8, since we do not know the PKS for the wall 4-4'-8'-8. To avoid 

this difficulty, we let q0 be the unknown mean PKS for the wall. Then 

the mean PKS for the closed-contour panels will be 



or 

ÿ-ï+îô- (8.18) 

We find the unknown value qQ from the as-yet unused equilibrium 

condition of statics, which states that the sum of the moments due to 

all forces (external and Internal) acting on the system as a whole or 

on part of It about any axis parallel to the z axis must equal zero. 

Í.» 

•Scm* :1,tS 

j'2u 

£ ¿«¿J 
«■>* - (na>it.nk's 6-1ê) 

F" 

fjW hiii 

h 

J (nantJië 1-2'3-M) 
2 

mM 
Sfl 

,1 V 

Fig. 8.8. l) View; 2) panel. 

Let us write the equilibrium condition for the right rib 

31-41-5'-61-7'-8'-9'-10'-111 (Fig. 8.7b). 

If we take as the center of moments, for example, the point 

Moint) 8', we obtain 

V f"P0A$"p - V Ns + V - TO - Q,a=0, ( 8.19 ) 

where qpr Is the PKS acting on the rib flange; It clearly equals. In 

accordance with Formula (8.9) 
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or 

„ - AS4 

¡5^* 

(8.20) 

Here p is the length of the perpendicular drop from the center of mo¬ 

ments to the line of action of the PKS qpr; Nn is the component of Nz 

that acts along the flange or in the direction of the x axis; Ny is the 

component of N_ that acts in the direction of the ¿r axis; n, m are the 

arms of forces Nn and Ny, respectively (see Fig. 8.7b). 

Since in the solution for the simply closed shell all the force 

factors are determined from the conditions of statics, we can conclude 

that simply closed shells are statically determinate. 

Example. 

We are to determine the stresses state in a four-flange bay acted 

on by the bending moment = 1000 kgf«m. The geometric characteristics 

are shown in Fig. 8.8. 

We first determine the forces acting on the joints at the right- 

and left-sides of the bay. We use the formula 

Mm5Si 
N,- 

Jx 

where 

In the given case 

Ss^yi/tcotfif H corff. 

cos(l—2, 2)=0,99; /,-,=5 c*»; 

cos(6-5, z)=0,955; /,-,=2 cm*. 

For the left side of the bay 

yj=2 (5 • 10*-0,993+2 • 7.5,*0,9553)=1166 cm*; 

5i, = 5.10 0,993=48,5; Slt= -48,5; 

Sî.=2.7,5 0,955»= 13,05; £,= -13,05. 
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As a consequence# 

a,;_ioo^M=4170. n. 

UN 
KT» • 

'NNO.M.N N.-N. 
I loo 

For the right side of the bay 

[ 5 (^.0,9^+2-5^0,955^466 cm4; 

5 

5^=2,5.0,9553 =*8,7; 

S"?“5 ~ 0,99*=30,3; 
s 

As a consequence. 

JV:f: 
100000-30,3 

466 
= 6500; 

Nn,*= -100 000,8,7 = 1870; 
466 

SZ-30,¾ 

-NZ. 

K—NZ 

TABLE 8.1 

«> 

i£ 
*s 

KOOPAHHITII 

X y 9 

KiaxpaTu 

xa 

1-2 
1-4 

1-5 

3-2 

3-4 

3-7 

6-2 
6-5 

6-7 

8—5 

8-7 

-5 

0 

—40 

0 

5 

-20 

20 
15 

0 

0 

40 

15 

-5 

-20 
-2,5 

12,5 

-2,5 

1,25 

1,25 

3,75 

-10 
15 

-2,5 

1,25 

50 

0 

0 

0 

-50 

0 

0 

—50 

0 

0 

0 

50 

25 

0 
1600 

0 

25 

400 

400 

225 

0 

0 

1600 

225 

25 

400 

6,25 

156 

6,25 

1,56 

1,56 

14.1 
100 
225 

6,25 
1,56 

2500 

0 

0 
0 

2500 

0 

0 

2500 

0 
0 

0 

2500 

/3 

2550 

400 

1606.25 

156 

2531.25 

401,56 

401.56 

2739,1 

100 
225 

1606.25 

2726.56 

4 KocHNycu yraoi 

xfi y¡; •It 

50.5 

20,0 
-40,0 

12.5 

50.3 

20 
20 
52.3 

10,0 
15,0 

40 

52,25 

-0,099 

0 

-1 
0 

0,0992 

-1 

1 
-0,288 

0 

0 

1 
0,288 

-0,099 

-1 

-0,0625 

1 
-0,0497 

0,0625 

0,0625 

0,0717 

—1 

1 

-0,0625 

0,0249 

0,99 

0 

0 

0 

-0,993 

0 

0 

-0,955 

0 

0 

0 

0,955 

. I 
1) Beam number; 2) coordinates; 3) squares of coor¬ 
dinates; 4) cosines of angles. 

We turn to the determination of the force components N, In the di- 
SB 

rectlon of the longitudinal members (flanges, strut ribs) for which v/e 

set up the auxiliary table of geometric relationships (Table 8.1). 



Joint 1 

2*= -4170+AT,., 0,99=0; 

A7|_,=4210 

-4210 0,099+^(-1)+^.,(-0,0625) =0; 

2-V- -0,099.4210+^,.,(-1)=0. 

From the solution to Eqs. (3) and (2) we obtain 

^,.4=-391 kgf 

A^-#=—417 

(1) 

(2) 

(3) 

Joint 2 

Joint 3 

Joint 4 

Joint 5 

Joint 6 

I2 =0 6500-^,.,0,99=0, A,., = 6570 kgf 

2^=0 6570-0,099-A^,.,0,0625-A,.,=0, iV,.,=610 kgf 

2^=0 6570-0,099-AT,^=0, A’,^=600 kef 

2Z=° 

2^=° 

2^=0 6550-0,0497 - 650-0,0625+Ar3_2 =0, Ar,.,= -325 + 
+41 = -284 kgf 

— 6500—Aj_4 • 0,993=0, 

-6550-0,0992-AT,_7=0, 

A,,_4 = 6550 kgf 

Ar,_7 =-650 kgf 

4170+A^4_30,993=0, A4.3-=-4210 kgf 

4210•0,0992—Ar4_,=0. A4_,=418 kgf 
2Z=° 

2-v=o 
yK=0 - 4210-0,0497 + 418-0,0625+A^.t=0, ^-209 - 26 = 

=■-183 kef 

2/=0 — 1118 + Af5_60,995=0, JV,^=1170 kgf 

2^=0 ' 1170-0,288+^,.,=0, ,V,.,= -337lcSf 

2^-0 — 1170-0,0717 — 337-0,0625 — AT,.,=0, .V5_,= -84- 
-12==-105 kef 

- 193 - 

m ... . ■ ■ .. m1".1. WW" 



■pip1 , : ■ 
i* Z3t 0 1870-Ar6.50t955=0, AV,» 1M0 kgf 

2JT-0 -1960.0,288+//,.,-0, iV,.,-505 kgf 

2K=0 1960-0,0717 + 565.0,625—AT,.,—0, Ar6.7-141+35- 
Joint 7 =176 kgf 

Joint 8 

I2 — 0 —1870—AV-,P,955—0, —1960 kgf 

2*®0 1960-0,288+AT7.(l=0, AT,.,--565 kgf 

2^=0 1960• 0,0249+565-0,0625+7V7_, =■ 0, -48,8- 
^ -35,1 = 

= —83,9 kijf 

T2-0 1118+^,.^,955-0, ATm- 
= -1170 kgf 

2*“0 -1170-0,288+7V^,*0, 7^,=337 kgf 

2^=0 -1170-0,0249-337• 0,0625 + 7^,.,-0, 7/^,=29,2+ 
+21,1=50,3 kgf 

w 



The forces N and the positive direction taken for the PKS are shown 

in Fig. 8.9. 

Let us determine the PKS: 

—ÿ,_j_3_450 +550+ 6500+1870-4170-1118=0, 

or 

From which we have 

¢1-1-1-4=61.6+fo* 

¢4-1-7-18:3 ¢1-7-4-4- ¢0 + 15. 

or 

— ft-j-o-jSO + ?o50+N/,—Nt% *= 0 

or 

-^,.,-0-,50 +^50+1870-1118-0. 

From symmetry - - , 
^-,-,-,-^0+15: 

-7,.,-0-,50 +io50+M.+M,-M.-M,=0, 

From the equilibrium conditions for rib 2-3-7-6 it follows that 

the sum of the moments of all forces about joint 7 will equal zero (Fig. 

8.10), i.e., 

2Mj—¢,-,-,-1 -^'•SO. 10+7-,-3-, ]|^12.5.20+ 

+(650-565) 10-(610+284) 20=0 

or 

- -850 + 17880 ¢1-1-4-8+¢1-1-3-4 =-—-= 42,6, 

so that 

70+15,0+7 + 61,6=42,6. 

From this we have 

and then 
¢0= 17.1 kgf/cm, 

ÿ,—,—,—,— —1,9 kgi /on. 
7-,-3-4=44.6 kgf/err. 

9,-3-7-4= -l*9 kgf/cm 
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It follows from the equilibrium conditions for beam 6-2 that 

20+(650- 565)-0: 

ÿj—i-;-*— —0,45 kgf j 

while from the equllibrinm conditions for beam 1-5 (see Fig. 8.9) we 

have 

-£• 40 - 337 - 417 =0; 

<7l-4-1-5~ ^ kSf* 

The PKS found and the axial forces are shown in Fig. 8.11. 

k. DETERMINATION OF SHELL DISPLACEMENTS 

When external forces act on a shell, any longitudinal element of 

it set off by sections z = const, z + dz = const and s = const, s f os = 

= const will be affected by stresses op, ox, and Tpj here ap acts along 

the X axis. 

Since the stresses ax = 0.1op [30] have little effect on the 

stressed state, they may be neglected. Then the element will be affect¬ 

ed only by the stresses shown in Pig. 8.12. 

We shall call this set of external and internal forces the state 

"P. " 

In order to obtain an expression to determine the deflection f of 

- 196 - 



point K In section I-I, located far from the constraint, we apply a 

force Qy = 1 kgf In accordance with the unknown displacement (Fig. 8.13). 

Fig. 8.12 

/ 

Fig. 8.13 

The force Qy = 1 kgf produces stresses and In the shell elements; 

acts along the z axis. 

The work expended by the Internal forces of this state on displace¬ 

ments caused by the forces of state "P" for an element of length dz and 

width ds equals roughly 

C 

while the total Internal-force work is 
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The exact value of the Internal-force work also contains additional 

terms (see [30], page 257). 

The work done by the external forces is = f.l, where f Is the 

unknown deflection. On the basis of the principle of possible displace¬ 

ments 

i 
XiX IdMdS 
-£--= 0. 

From this we obtain 

P P 0,« M* rfs J» P T|T-M*ds f) -^T—+?j -V- 
or 

Since for sections far from the constraint, the stress distribution 

(8.21) 
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Ig assumed to be governed by the law of plane distribution of relative 

elongations, then Op and will be statically determinate, while Tp or 

qp will be statically Indeterminate for a multiply closed contour; when 

we determine the displacements In a single state we employ the fundamen¬ 

tal statically determinate force (singly closed contour) so that the 

stresses and the PKS are statically determinate. 

In order to obtain the angle of rotation a for section I-I about 

the X axis, we apply to this section the moment M = 1 (Fig. 8.14). 

Then 

(8.22) 

or 

where and q1 are produced by « 1. 

Finally, In order to obtain the torsion angle 9 for section I-I 

about the z axis, we apply to this section the moment M = 1 (Fig. 8.15). 

When M = 1 acts, the normal stresses *= 0, so that the unknown 

torsion angle will be 

ijtpidg dt n a 

(3.23) or 

-V- 

5. BLN DING AND TORSION IN A SYSTEM WITH MULTIPLY CLOSED SECTIONS 

The determination of normal stresses far from the constraint does 

not depend on the number of closed content or the number of longitudin¬ 

al bars, l.e., in other words it does not depend on the degree of static 

indeterminacy. Thus, here also the normal stresses are determined, as 
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before, from Formulas (8.2) and (8.3): 

** COI*f ’ 

We recall that static Indeterminacy was eliminated from the calcu¬ 

lations when we determined the normal stresses owing to the earlier as¬ 

sumption as to the distribution of these stresses In accordarc e with 

the law of plane distribution of relative deformations. 

Fig. 8.16 

Things are different when we come to determine shear stresses. 

Here we have advance knowledge of no law that will describe the varia¬ 

tion ln PKS over the entire multiply closed contour with sufficient ac¬ 

curacy. As a consequence. In order to determine the PKS It Is necessary 

to solve a statically Indeterminate problem. 

Actually, In the solution for a singly closed contour, all equa¬ 

tions of statics were used and, as a consequence. If the shell has n 

closed contours, to determine the PKS It would be necessary to use n - 1 

deformation equations. If we also wish to determine the relative angle 

of rotation 0, It would be necessary to Increase the number of equa¬ 

tions to n. 

The deformation equations can easily be set up when we consider 

the fact that the ribs In shells of, for example, the wing type are so 

rigid In their own plane that the entire multiply closed contour essen- 
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tially does not change configuration during loading of the shell. As a 

consequence, if the entire multiply closed contour (Fig. 8.16) is 

turned through an angle 0 about the z axis, then each component of the 

contour will be turned to the same angle 0, i.e., 

9,=9,=8,...=9,=6. (8.24) 

In accordance with Formula (8.23), the angle through which a bay 

of length twists will equal 

Here over the length of the bay Ai, we replace the flow variables qi 

and qp by their mean values q1 and qp. Then 

As a consequence, the relative angle of rotation 0 is 

Since q^ refers to a statically determinate system (see Part 5, 

Chapter 3) for M = 1, then regardless of the number of closed shell- 

section contours, for the ith contour, it will always be the case that 

where ^ is twice the area bounded by the contour of the average sec 

tion of the 1th singly closed cavity of the bay. As a consequence. 

Here we integrate over the average section; qpi is the total PKS acting 

along the ith contour. 

The total PKS qp of the multiply closed shell may ba represented 

as consisting of the PKS f of the open contour and the additional PKS 

»... fc. j«....««.'that compensate the PKS In the cuts, set equal to zero 
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In determination of q. 
*0 

Thus If In the determination of q we assume that the contour Is 

opened by making the cuts shown In Pig. 8.15, the total PKS will equal. 

If we drop the subscript "P": 

for the first contour: 

at the tip 

at wall 1-10 

9i — foi “ Qa"' 

For the second contour 

at wall 1-10 

0Î —foi“ V«* 

along skin 1-2 and 9-10 

q7=q-\- qm. 

at wall 2-9 

<7i=?(b-got etc. 

A 

Fig. 8.17. A) Rib. 

The relative angles of rotation of each contour will equal 
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I 

(1) 

(2) 

(3) 

(4) 

where we integrate only over the corresponding contour. The n equations 

contain n unknown PKS ^02'*‘‘’'^On and unknown angle G. 

We obtain the one equation still needed 

from the condition requiring that all forces 

acting on a rib equal zero. Just as in the 

case of calculations for a singly closed shell. 

It should be noted that the unknowns q^^. 

^02' ^03' etc., can be determined with a high 

degree of accuracy by slide rule if the cuts 

made in determining q are taken not at the 

points indicated in Fig. 8.16 but at points 01, 02, 03, 04, 05, as 

shown in the same figure. 

Example. 

We are to determine the stressed state and relative angle of rota¬ 

tion G of the triply closed shell of Fig. 8.17 acted on by a force 

Q = 1000 kgf, a bending moment M = 1000 kgf»m, and a torsional moment 

M = 1000 kgf»m. The wing-tip contour is described by a semiellipse. The 

ribs are assumed to be perfectly rigid. The skin and spar walls have a 

thickness ô = 1 mm = 0.1 cm everywhere. 

We first reduce the tip to a trapezoidal bay for which the cross- 

sectional areas along ribs I and II equal, respectively, the areas of 

the initial tip bounded by the semiellipses (Fig. 8.18): 
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(20 + //) 

2 
25=-^- y 2.2.5 20, //= 11,4 cm> 

(12.S + *) 
2 

15=-1--2-15- 
2 4 

2-15-12,5, A = 7,15 
cm. 

We now proceed to determine the axial forces In the strips. Th3 

bending moment acting on the left side Is M = 100,000 - 50.1000 ^ 

= 50,000 kgf.cm, while on the right side It is M = 100,000 kgf.cm. We 

make the x axis coincide with the axis of symmetry of the cross section. 

The calculations are shown in Table 8.2. 

t 

V 

Pig. 8.19. A) Rib; B) mean section. 

On the basis of the axial forces obtained, we can determine the 

PKS q for the open profile. The positive direction taken for q when the 

equaticns were set up is Indicated In Fig. 8.19: 

50 

0850 4 500 -} 415 — 58*50 — 1080 — 1260) 

50 
^9-io-n-ia = — 120,5 kgf/cm 

*3-4 7 

¢7-1-13-11 — 
(^60 - 1^±1850 + 500X^ _ 104 kEf/cm 

For convenience in the remaining calculations, we decompose the 

axial forces Into their components (see Table 8.2). 

We check the equilibrium of the right-hand section In the y-axis 



TABLE 8.2 

ol 

Ax 

1-2 

•1-3 

5- 6 

8- 7 

9- 10 

12-11 

2-1 

3-4 

6- 5 

7- 8 

10- 9 

11- 12 

1-5 

1- 13 

2- 6 

2-14 

-5 

-5 

15 

15 

15 

15 

ày 

-5 

2.5 

-3,75 

1.25 

-3,75 

1.25 

-40 

25 

-20 

15 

A* 

50 

50 

50 

50 

50 

50 

(A*)* (Ay)8 (A*)8 

-2,5 

4.3 

-1.25 

-*.47# 

25 

25 

225 

225 

225 

225 

1600 

625 

400 

225 

25 

6,25 

14.1 

1,56 

14.1 

1,56 

2500 

2500 

2500 

2500 

2500 

2500 

6,25 

18,49 

1,56 

7,156 

0 

0 

0 

0 

/8 

2550 

2511 

2739 

2727 

2739 

2727 

1606 

643.5 

401.6 

232,16 

50,5 

50.3 

52.3 

52,25 

52,3 

52,25 

Ax// 

-0,099 

-0,0992 

0,288 

0,288 

0,288 

0,288 

Ay// 

-0,099 

0,0497 

-0,0717 

0,0249 

0,0717 

0,0249 

40,08 

25,37 

20 

15,27 

-1 

0,985 

-1 

0,982 

A/// 

0,99 

0,993 

0,955 

0,955 

0,955 

0,955 

0,0625 

0,1695 

-0.062 

-0,175, 

0 

0 

0 

0 

(A//l)3 

0,97 

0,98 

0,871 

0,871 

0,871 

0.871 

-/l yi 

4,85 

4,90 

1.74 

1.74 

1.74 

1.74 

4,85 

4,90 

1.74 

1.74 

1.74 

1,74 

10 

-10 

7.5 

7.5 

6,25 

6,25 

6,25 

-6,25 

5 

5 

3,75 

3,75 

100 

100 

56,25 

56,25 

39,1 

39,1 

39,1 

39,1 

25 

25 

14,08 

14,08 

S*l 

48.5 

-49,0 

13,05 

-13,as 

10.88 

-10,88 

.30,3 

-30,6 

8.7 

-8.7 

6,S3 

-6,53 

* 

£•1 4) 
u 

N, A/M N*, Nm 

1-2 

4 3 

5- 6 

8-7 

9 10 

12-11 

2-1 

3 4 

6- 5 

7 8 

10- 9 

11- 12 

1- 5 

• 1-13 

2- 6 

2-14 

485 

490 

98,0 

98.0 

68,C 

68,0 

7*5=1307 

189.5 

191.5 

43.5 

43.5 

24.5 

24,5 

7,-517,0 

0,0371 

0,0371 

0,0100 

0,0100 

0,0083 

-0,0083 

+0,586 

0,586 

+0,168 

0,168 

+0,126 

-0,126 

1850 

-1850 

500 

-500 

415 

-415 

5860 

-5860 

1680 

-1680 

1260 

1260 

18500 

18 500 

3 750 

3750 

2594 

2594 

«50000 

36625 

36625 

8400 

8400 

4725 

4 725 

^100000 

1870 

-1863 

523,6 

523.6 

434.6 

-434,6 

5919 

-5901 

1759 

1759 

1319 

1319 

-185,0 

+184,8 

+150,8 

-150,8 

+125.7 

-125,7 

S«0 

586 

- 586 

-507 

507 

-380 

380 

0 

185,0 

92,59 

37,54 

13,04 

31,16 

10,82 

370,15 

586 

292 

126 

43.8 

94,5 

32.8 

1175,1 

Ay3 Axj tfvAyj 

12.5 

0 

11,25 

1,25 

10 

2.5 

Ny{bx* 

0 

0 

-20 

-20 

-40 

-40 

7325 

0 

5703 

633,75 

-3800 

950 

-594,25 

0 

0 

2520 

876 

3780 

1312 

8488 
leP/eM 

2 
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direction. 

Keeping in mind that the resultant shear stress on one of the sides 

will equal the mean PKS multiplied by the length of the opposite side, 

we obtain 

* 
+ -f _7_,40 -f ÿ7_g_,2 _n20) cos (6—2, y) -f 

+^-10-11-1112.5+2^,,+(3=0, /—2, 3, 6. 7, 10, 11. 

(80.2-40-104-20 - 80,2-40-104-20)0,0625-120,5-12,5+ 
+1175+1000- -661 -1506,25 + 2175,1 - -2167,25+2175,1 «0. 

We now proceed to determine the mean PKS q (Pig. 8.20): 

Ínocm == ?oi* 

íi-i-4-i — 4oi — Çça’. 

¢2-6-5-1 — —80,2+^; 

¢0-7-1-5=¢01 - ¢03: 

¢0-20-0-5= —104+^0,; 

¢10-11-11-0= 120,5+^: 

¢11-7-0-11= ~ 1®^+^* 

¢7-3-4-0= ~ 80.2+002. 

In order to determine q01, q02, q03 and the relative angle of ro¬ 

tation, we set up the single equation of statics £M = 0 and three de¬ 

formation equations. 

The sum of the moments for all forces acting on the right rib is 

set up, for example, about joint 3 (see Fig. 8.19): 

27^+2(^^+^^)-^=0- 

We determine the value of the first term in this equation with no dif¬ 

ficulty, and the value of the second term is indicated in Table Ö.2. 

We thus have 

7,(11.4-15 + 2512.5) f40-12,5(-80,2+0^) + 15.20(7,-00,)+ 

+20 12,5(-104 I-003) +12,5• 40( — 120,5+0M)-594,25 + 

+ 3488—100000 —0 
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or 

4,835^0,-1-8^-1-4,5^,=2185. (l) 

The relative angle of rotation in the mean section is, for the 

first contour: 

kL Ms 
G»~ ’ 

2, = 2 
20 -f 12..S 11.4 + 7,15 

25 + 15 2 + 2 

—2 y -^^*,28) =510,6 CM», 

1 
0?i9*= sitel20,2^+9-2^» + 2°^« +16*25 (4o> - 4«)] 

= 0,129^,-0.0318^,; (2) 

for the second contour it is: 

15+10 j 20+ 12,5 

2--2 1-20 —2---— = 30 ( 12,5 +16,25) = 862,5 cm\ 
*2 2 

Olh2 = -¿-116,25 (fca - 9oiR 30 ( - 8°’2 + 4oj) +12,5 - gn)+ 
004,5 

-f 30 ( — 80,2 -j-lo,)] = - 0,018^0,+0,103^0,- 

— 0,0145^0,-5,58; (3) 

for the third contour it is: 

12,5 + 7,5 15 + 10 

2,= 2 -?--— =450 cm», 
3 2 2 

0»,=¿ (2.20(-l04 + íM)+10(-12aS+5M)+12,5(?M -ÍM)I= 

--0,0278í„+0,139ío,= ll,9. (4) 

Setting el = e2 = and using Eq. (1), we obtain 

*,=77.18 kit/om> 

k8?4o» =î4' kgf/cm 

403 ^53 kgf/cm 

Substituting these values into (2), (3) and (4), we obtain 

059, =^0,129 • 77,18 - 0,0318-141 = 9,956 - 4,484 = 5,47 kgf/cm2 
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-0,0188-77,18 + 0,103-141 —0,0145* 153,5 — 5,58=» 

.-=-1,45+14,52 - 2,22 - 5,58 - 5,27 kgf/cm2 

080,= -0,0278 • 141 +0,139 • 153,5-11,9= 

= -3,92 + 21,34-11,9 = 5,52 kgf/cm2 

=5,42. 

For G = 270,000 kgf/cm2, the relative torsion angle is 

e = —^—=0,00207 rad/f .* =«0,01 19*/cjií. 

The torsion angle for the right section (rib II) about the left 

<p = ei = 0.595o» We take angle 9 to be positive if the right-hand sec¬ 

tion twists counterclockwise with respect to the left. 

Finally, the mean PKS equal: 

77.2 kgf/cm 

¢2-3-4-1 — —63,8 kgf/cm 

¢2-6-5-1 “60,8 kgf/cm 

¢6-7-1-6 ~ —12,5 kgf/cm 

¢0-10-^-5--49,5 kgf/cm 

¢10-11-12-9-33 kgf/cm 

¢21-7-6-11=---49,5 kgf/cm 

¢7-3-4-6“60,8 kgf/cm 

Tne magnitudes and directions of these PKS are indicated in Fig. 8.21. 

Knowing the values of the mean PKS, we have no difficulty in using 

Formulas (8.9) and (8.10) to determine the PKS acting in the sections 

near ribs I and II as well. 

When we make allowance for the taper, the components of the axial 

forces usually unload the spar walls, but In the given case they load 

them, since here the direction of the bending moment is taken opposite 

to the direction of the bending moment due tc ’he intersecting force. 

I.A. Sverdlov has shown that the calculation method constructed on 

the hypothesis of plane distribution of relative elongations is a fair¬ 

ly good approximation to the actual stressed state even in the section 

directly adjacent to the wing attachment. 
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» .au. I 

Fig. 8.21 

A more exact determination of the stressed state involves deter¬ 

mination of "secondary" stresses. This problem may be solved "in stres¬ 

ses," as, for example, in the studies of V.F. Kiselev [11] or 'in dis¬ 

placements" [33]i [3^]* 

In the next chapter, we shall consider the solution of this problem 

in displacements, using the example of a wing with skin working only in 

shear. 

Manu¬ 
script 
Page 
No. 

[Footnotes] 

Free bending and free torsion of cylindrical shells have been 
considered in detail in [30]. 
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Chapter 9 

APPLICATION OF THE METHOD OF DISPLACEMENTS TO CALCULATIONS FOR 

CONSTRAINED BENDING AND TORSION IN WING-TYPE SHELLS 

1. METHOD OF DISPLACEMENTS 

In calculations for systems with a high degree of static indeter¬ 

minacy, it is frequently preferable to take as the unknowns not the 

force factors as we do in the method of forces, but the displacements. 

Thus, for example, if we are to deter¬ 

mine the stresses in the bars of a plane 

truss (Fig. 9*1) consisting of a single 

joint connected by a large number of bars 

to a rigid support and loaded by forces P 

and P , the solution will be far simpler 
O' 

if we take as the unxnowns not the stresses 

in the "redundant" bars, but the displacements u and v. Actually, re¬ 

gardless of the number of redundant constraints, the longitudinal de¬ 

formation of each bar and, then the stresses in the constraints, may be 

expressed in terms of a function of two unknown component displacements 

u and v. 

As soon as we have represented all stresses in the bars as func¬ 

tions of u and v, we can set up twr equations for equilibrium of the 

joint: EX = 0 and EY = 0. From the solution of these equations we deter¬ 

mine the values of the unknowns u and v, and then the stresses in all 

bars. 

We can give many more examples of systems for which lha applicu- 
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tlon of ths method of displacemerfc offers an advantage over the method 

of forces, but here we shall only consider the application of this meth¬ 

od to wing design. 

Wing design by the method of displacements involves solution of 

flexibility matrices and stiffness matrices. 

2. FLEXIBILITY MATRIX AND STIFFNESS MATRIX 

Let us determine the vertical displacements at .lolnts of the struc¬ 

ture when certain generalized forces ?1...Pri act (Fig. 9.2). We shall 

assume that the material of the structure is Hookian and, as a conse¬ 

quence, the displacements will be proportional to the forces. 

We first consider a case in which the system is acted on by just 

one force applied at Joint 1. Under the action of this force, another 

joint, for example, joint 2, will move by a certain amount. Since the 

total displacement of Joint 2 is proportional to P^^, then each of the 

components Au2, Av2, Aw2 of this displacement will also be proportional 

to the force P-^ Thus, for the vertical component 

Ayj=»Oj|P|, 

where a21 is the influence coefficient of force P^^ on the vertical dis¬ 

placement at Joint 2. 

When the generalized orces P1# P2, act simultaneously, on 

the basis of the law of Independent action of forces, the vertical dis¬ 

placement of joint 2 will equal 
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i*a*a2iP|+a»Pj+ ... +ûinPii" 

Using similar arguments for the other system Joints, we obtain the 

vertical displacements flr all n joints that can be displaced in the form 

of the following linear equations: 

vi *= fluP| 4-aijPt+• • •+ 

—a2lP, -f anPj -f... 

v*=++...-1- 

(9.1) 

or 

V“1* 2,... «). 
*-i (9.1') 

The constants a^^ for the considered structure are called the flex¬ 

ibility influence coefficients. 

Solving (9*1) for P,, ...Pn as linear functions of v^, we ob¬ 

tain the following system cf linear equations: 

^1=^1+^,+...+^. 
P,=Mi+M,+--.+^,. 

^.=^1+^,+...+^. 

(9.2) 

or 

(/-1,2,.../1). (<¿.2') 

The constants blk are called the rigidity Influence coefficients, 

In connection with the theorem of displacement reciprocity, the 

influence coefficients will possess symmetry properties: 

a*“fl«, &<*=■&« (/, A-1, 2,.../1). (9.3) 

In static and dynamic investigations of modern flying-craft struc¬ 

tures, the number of terms in Eqs. (9.1) and (9.2) is very large. The 

solution of such equations using, for example, the Gauss algorithm, in¬ 

volves enormous computational effort. Thus, automatic computers are 
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The writing of computer programs will be simplified considerably 

if the equations are written in matrix notation. 

Equations (9*1) and (9*2) are written as follows in matrix form: 

or in condensed form: 

ûi,a„ ...au 
ÄjjOjj... a,. 

• * • &HI 

• • • bnn 

(9.4) 

(9.5) 

If]=(i] [PI; (9.41) 

[P]=(»]W. (9.51 ) 

The square matrices [a] and [b] are called the flexibility matrix 

and the stiffness matrix, respectively. 

The solution of the linear equations (9*4) for P,, P„, ...,P In- 1 d fi 

volves inversion of the matrix [a], and this is written in the follow¬ 

ing manner: 

[/»MaJ-'M, (9.6) 

where [a]“1 = [0] is the matrix that is the inverse of matrix [a]. 

As an illustration, let us determine the flexibility influence co¬ 

efficients alk for a homogeneous thin-web beam of the type used for a 

wing spar (Pig,. 9*3). Let the beam have an axis of symmetry x> a flange 

cross-sectional area f, and a web thickness ô. 

For a thln-web structure, the flexibility influence coefficient for 

any point 1 is found from Formula (3*6) 

where the subscripts i and k indicate that the displacement is found 
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from force Pk = 1 at the point of application of force P1 » 1 In the di¬ 

rection of this same force. 

!___J Pr' 1 

i~rr . nn 
’ _U n 

Lj_' 

Fig. 9.3 

V 1 P, 
I . 

* 
i . j 

1 1 I 1 1 MC» ..^ m 30c» i 
Fig. 9-4 

Summation is taken over all elements of the panels for which the 

force factors due to Pk = 1 and P1 = 1 overlap. 

In the case considered, the PKS will equal: 

while the stresses in the flanges are determined from the expressions: 

N,~ h' iV*—7T' 

where Ç is an auxiliary coordinate (see Fig. 9.3). Thus, neglect¬ 

ing the effect of axial forces in the braces since they are so small. 

we obtain 



After Integration at G - E/2.6, we obtain 

a'*~f [£+Wl3'+a'>] (9-r) 

Let us evaluate the flexibility matrix for the beam shown In Fig. 
2 

9.4. We let f = 3 cm and <5 = 0.1 cm. From Formula (9*7) 

‘,»=f[Ä+T^T(2-30)]“f 
2,6+^(3.30 + 2.30)]=-^(2,6+5)=?j?: 

318 408 <>36 996 

an^~¿ ' 
_ 1356 ^ 1854 „ 2664 , 4152 
aU-• ^33 ~~£~ ’ a3i~~ ~Ë~ ' • 

Using the symmetry property (9*3)» we obtain 

[a). l 
£ 

138 228 318 4081 

228 636 996 1356 I 
318 996 1854 2664 | 
408 1356 2664 4152 J 

The beam deflections (Fig. 9*5) will equal; 

v3 
LtU 

138 228 318 408 

228 636 996 1356 
318 996 1854 2664 
408 1356 2664 4152 

If H, f, and <5 are variables, in calculating their Influence coef¬ 

ficients we may substitute the average values for the portions between 

ribs. Then for the panel located between ribs r and r + 1 we obtain the 

constant values Hr, fr and óp (Fig. 9*6). 

The displacement from this panel is 

i 
Aa m 

Í't 

, Efr ' fl 

Since 

«1,—S-. Í»=-„L. 
/if n, nt nr 
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iWtBljlr r •••" 4amr%#miw* m > 
m* w, .*t., ^ iu^fcL, 

then 

rt rr Hr{lr + lr+\) • n 

Aa'»= /$», +2 J —RÊr- *rAl 

For Q = E/2.6 we obtain 

\ 
Í 2^_ 
i /’W 

V + V+i 
a//}/. V + Vfi 

The total value of the flexibility coefficient is 

(f + V+i 
3W*/r V + V+i (9.Ö) 

The sign on the sum extends to all panels making up the length £,. 

3. WING CALCULATION SCHEME 

For calculations making use of the method of displacements, the. 

wing surface load Is transferred to the Joints. As a result, a concen¬ 

trated force Pr will act at each Joint, where the subscript r indicates 

the number of the Joint. If the wing has a tall section not connected 

to the body, then in an approximate calculation this section may be re¬ 

moved and replaced by the effect of forces and moments M,, M„, ...,M 
12 n 

on the wing (Fig. 9*7)* 

The spars and ribs bend under the action of the forces l ?j and mo¬ 

ments , ...Mn, while the bays bounded by the spars and ribs will 

twist. 
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Fig. 9.7. A) Spar; B) rib. 

The portion of the joint loads P that causes spar bending Is re¬ 

presented by F, the portion of the Joint loads P that causes rib bend¬ 

ing Is represented by F and, finally, the portion of the joint loads P 
A 

responsible for bay twisting Is represented by F. 

Thus, If we concentrate our attention, for example, on Joint 6 

which Is touched at angles by four bays and which Intersects spar III 

and rib II, then In the direction of the forces Indicated In Fig. 9*0, 

the joint load for joint 6 will be 

p.=^+F.+fi+Av-fs,-'¢,, • 

or 

p.~r,+r,+K 
where 

A A. A A A 

For n elastically seated joints we obtain the n equation 
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(9-9) 

¿Wi+f.+A. 

P\—F|-f ^ 

Pig. 9.8. A) Spar; B) rib. 

If we represent the right sides of these equations as functions of 

the Joint deflections, then from the solution to the system of equa¬ 

tions (9.9) we obtain the value of deflection for each Joint. After this 

it is not difficult to determine all the values for the forces F, F, 

and F; knowing these, we can also find the stressed state of the spars, 

ribs, and bays. 

Thus the fundamental problem in calculations using the method of 

displacements consists in determining the fcrces F, F, and F as a func¬ 

tion of Joint deflections. 

In the following sections we give a method for solving such a prob¬ 

lem using the wing calculation scheme shown in Fig. 9.7. 

4. DETERMINATION CF SPAR JOINT FORCES 

We shall consider one wing spar, for example, spar II (Fir-. 9.9). 
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1 **■<%* Mm 'i* ¡dijÉl * 
% 

--sí. .*4» 

ßOHMtpOM 
tt 

The deflections of joints 6, 7, 8 will equal: 

Vj—a^F 5 + 077^7-a7»^l» 

t>,= aMF 8+ 7 + aM^« 
(9.10) 

or. In matrix notation. 

^7 

®8 

a66a61aM 

a76a77an 

rt 

Fy 
Ft 

(9.U) 
LaB6a*7a8»J 

Where the relative thickness of the wing Is small. In approximate 

calculations the flexibility Influence coefficients may be determined 

from Formula (9.8) with no allowance for deformation of the wall owing 

to shear, i.e., 

“'.-s4^h+2(^+dfc)]- (9-i2) 

Solving the system of linear equations (9*10) for the forces F by 

the Gauss method or by inversion of the flexibility matrix [a] for Sys- 

tern (9.11), we obtain the forces Fg, F^, Fg expressed as functions'of 

deflect Ions : 

F t~ bütiPs -{- btlv7 -{- bMvt, 
F 7—b76v6+bjyVj -f bnvv 
Ff bi6v6 -] • bvv7 bMvt. (9.13) 

Applying this same method to the remaining spars, we obtain all 

Joint forces F as a function of joint deflections. 

5. DETERMINATION OF RIB JOINT FORCES 

We consider one of the wing ribs, for example, rib II (Fig. 9.10) 

The deflections of joints 6, 10, 13 may be represented as a sum 
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consisting of the deflection v2 of joint 2 (translational displacement 

of the rib as a rigid body), £nd of the displacement produced by rota¬ 

tion of the rib as a rigid body about Joint 2 through angle and by 

Its elastic deformations v, i.e.. 

Here 

(9.14) 

vt—Ã|10 Tí9+a6„ 7 
®io—amT # +n10J ,0 

x>„«= ãíuF t -f ãmi)Fl9-\-ãlm? 
(9.15) 

where alk Is the rib flexibility coefficient. 

System (9*14) has five unknowns: v2, v^, v10, v]3, and the angle 

while there are only three equations In this system. 

In this case, however (In contrast to the case in which the spar 

is constrained at one end and all the unknowns in the equation of sta¬ 

tics must be used to determine the support reactions), we can write two 

more equations of statics: 

^0^+^l(/lO + ^l/|3--Afj = 0. I 
(9.16) 

Solving the equation systems (9-14) and (9.16) simultaneously for 

the joint forces of the rib F, we obtain 
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F, = bnV2 -f èjgVj -f *îjo®10 '1' ^213^13 "H C*» 
F6 = ¿»gjVj -f ^C6V« *f ^610^10 H* ^613^13 "f Q» 

^10 — ^109¾ “f* ^1MV« 4* ^1010^10 "f" ^1013®» 4- ^JO* 

^13 ~ ^I3j®j4” ^136®6“}” ^1310®10~1” ^ISIS^wf^W* 

(9.17) 

w^iers b,,_ ^re the pib stiffness Influence coefficients, and the are 
Xlv 

free terms. 

In this manner, we can represent the joint loads as depending on 

the deflections and the remaining ribs. 

6. DETERMINATION OF BAY JOINT FORCES 

We shall first consider a single rectangular wing bay, for example, 

bay V (see Fig. 9.8). We let aV and bV represent the sides of bay V, 

and ÏÏV its mean height (Fig. 9.11'* 

Fig. 9.11. A) Bay. 

As a result of a general deformation of the wing, let the corner 

braces of the bay obtain displacements v^, v^, v^, and v1Q. 

We let <PV represent the angle through which bay V twists owing to 

elastic deformations. It is clear from Fig. 9-11 that 

«V __ _g7-P|H «lO-t'fi f v (9.18) 

This is the torsion angle produced by the forces 

A A A A 
/?V_ _ f V „ I'M _ _ #?V rt— /-7 — r ,,-- 

V which create torsional moments equal in magnitude to F^b . This means 
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«¡i» m- •?- *» **■ • 

that the PKf, In all bay walls will be 

£v*V yrV 
(9-19) 

Since for a wing of low aspect ratio, the height of the bays will 

be small In comparison with the dimensions of the sides a and b. In ap¬ 

proximate calculations in order to determine the torsion angle ^ we can 

consider only the upper and lower skin. Under this assumption, we ob¬ 

tain from Formula (8.23) 

As a consequence. 

i »V 
W’W 2iF • 

(9.20) 

or 

where 

2(7?v)iO»v 
tfT-Pli-fPlO-P» 

(9.21) 

*v_ 2(^V)Î0»V 
-• 

In analogy with Formula (9-21), taking into account Fig. 9.8, we 

can, by traversing the joints in the counterclockwise direction, at 

once write 
A, 

V,); 

K — —17,); 

This means that the force due to the four bays that acts at joint 

6 will equal 
A . 

Fc — k(V2 — v6 -f t'j— 1',) — (tt3 - Vj -f I'j — 17,) — 
-*,V(l78-17IO-fl>#~17s)+ftV(t,r_Vi(J ri0_t, ). (9.22) 

In this fashion we can obtain the joint loads due to the bays for- 

•r 
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the remaining wing joints as well. 

7. GENERAL REMARKS ON THE DETERMINATION OF WING JOINT DEFLECTIONS AND 
THE WING STRESSED STATE 

If we express all joint forces of spars, ribs, and bays as func¬ 

tions of deflections and substitute them into Eqs. (9*9)* we obtain a 

system of linear equations containing a large number of unknown joint 

deflections. Thus, for example, for the wing whose planform is shown In 

Fig. 9*12, the number of unknowns will equal 63. 

After we have obtained the wing-joint deflections by solving the 

system of equations (9*9)* there will be no difficulty in finding the 

stressed state for the spars> ribs, and bays, since the forces acting 

on the spars, ribs, and bays may be found from available formulas ex- 
_ A 

pressing the forces F, F , and F as functions of joint deflections. 
A 

Figure 9*13 shows a wing-deflection pattern detained by A.N. Be¬ 

denko from calculations using a system with 13 unknowns. 
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Chapter 10 

APPLICATION OF THE KANTOROVICH-VLASOV METHOD TO THE DESIGN 
OF SOLID WINGS 

INTRODUCTION 

The configuration of solid wings in plan can be described quite 

exactly by a set of straight lines (Fig. 10.1a) with the furm of a 

trapezoid, rectangle, or triangle. The cross sections of such wings are 

usually represented as symmetric profiles taking the form of a polygon, 

rhombus, or lens (Fig. 10.1b). 

The thickness of solid wings is small in comparison wUh th- uvu"- 

all dimensions. Thus in calculations for such wings we make use of the 

fundamental equations of the theory of plates with allowance for the 

fact that in integrating, we must deal with the geometric variables 

D(x, y), h(x, y). 

The coordirate system used in the design of plates (seo Fig. 6.1) 
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is rotated through 180° about the x axis; the origin of the system is 

placed at the wing attachment (see Fig. 10.1a). 

The deflection of any point of the wing is represented In accord¬ 

ance with the Kantorovlch-Vlasov method in the form of an expansion: 

(lo.i) 

where ^(x) is the unknown function of x and ^(y) is the given func¬ 

tion of y. 

In the design of solid wings. Expansion (10.l) is usually repre¬ 

sented in the form of a polynomial in powers of y: 

^y)=?0(•*)4-?i(■*)y+<pa(*)y* + . . +<p„(.*)y\ (10.2) 

where 9Q(x) is a function of bending, ^(x) is a function of torsion, 

and <P2(x) is a function of wing curvature in the direction of the chord 

for a parabola. 

After the curved surface of the wing has been determined, we can 

also determine its stressed state with the aid of Eq. (6.7). We obtain 

V’“K,(6.7 ' ) 

T =-^—Wg. 
** 1+H * 

As experimental data indicate [35] in approximate calculations we 

need only keep two terms of this expansion. 

Thus, the deflection is determined in the form 

®(*.y)=?0(*)-f?(jr)y. (10.3) 

1. DIFFERENTIAL EQUATIONS OF THE PROBLEM AND FORMATION OF BOUNDARY CON¬ 
DITIONS 

The total potential energy (6.9) is determined for the considered 

system from the expression: 



If A*) 
/7=( f ^ [wi, + «Í , + fywxxwit+2 (l -1*) <>) "" 

• y.u) 
—/7(x,y)w(x,y)Jrfy</x, (10*^) 

where y^ix), y2(x) are linear functions describing, respectively, the 

positions of the wing leading and trailing edges; D(jc,y)=^*j^“ ^-3 the 

cylindrical stiffness; p(x, y) is the transverse surface load, which 1; 

positive upward. 

Substituting the expression for the deflection (10.3) into Eq. 

(10.4), we obtain 

If:!*) 

I i»)fi*]--/>(fo+Tiy)}^y^x. (a) 

Here primes indicate derivatives with respect to x* 

Integrating Expression (a) over we obtain 

=-rfrrfy. -If 

where 

r=+¡W, w¡+^+2(1-1.)^-^0-2"».: 

y.u) 
rf0= f D(jc,y)rfy; J D{x,y)ydy, 

y,(*) 
>iUI 

d2= f D(x, y)yJrfy; 
y.u) 

(b) 

ï 

»u> jiU) 
f p(x,y)dy is the load per unit length; m— f ^(^,y)yt/y is the tor- 

fti*) yi(j») 
sional moment about the x axis, per unit length. 

From the conditions requiring minimization of potential energy we 

obtain 

Since 

rf.-—r =0; Ay »o dyi »o 

1\,- JL 
dy 

rfJ r 4- r. =o. *i dy* f| 

(o) 

(d) 

r; - 2^4 2i/1?;; 
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Then Eqs. (c), (d) take the form: 

W+«W=*; (10.5) 

(^1¾)+(di?])” - 2 (1 — =m. ( 10.6 ) 

Thus the functions of wing bending and torsion are described by 

two fourth-order differential equations with variable coefficients and 

free terms. 

Eight of the arbitrary constants in these equations are determined 

from the following boundary conditions. 

At X = 0 we let the wing be constrained along the entire chord; 

we then obtain four given geometric boundary conditions: 

(1) 

(2) 

(3) 

(¿0 

?o (0)=0 
?¿(0)=0 

¢,(0)-=0 

¢1(0):=0. 

At the free end of the wing at x = we have four natural bound¬ 

ary conditions: 

(5) 

(6) 

(7) 

(8) 

I«)' 

W+rf,¢11,., =0; 

IK?;)’ + (dif\)’ - 2(1 - l*)¿o?¡)jr-i“0; 

It is convenient to combine Eqs. (10.5) and (10.6) into a single 

differential equation for the torsion function <p^(x). 

Integrating Eq. (10.5) and using boundary condition (5), we obtain 

(rfo?o)'-f (rfI?I)'= — J ? </*=(? (JC). (10.7) 
* 

Integrating this equation and using boundary condition (6), we 

rfo?;-! rfrr;=-jQ(Jc)^=Ai(.<) 

find 



mtr* * '• 
/i.*-« 

or 

(10.8) 

Integrating Eq. (10.6) and using boundary condition (7), we obtain 

_ Jmdx—W(x)t (10. 9) 
§ 

where M(x) is the torsional moment at section x. 

We now substitute the value «pj from (10.8). We then obtain 

(_-iL?;j-|-(4.At (*))' + (¿.t))’-2(i-ri ¿.fi=» W 

or 

[(«'i - 4) »;} -2d -i*)/#,»: -to (*)-[-^ a((*)J. ( io. io ) 

We have thus obtained a third-order equation which, together with 

boundary conditions (3), (4) and (8), completely determines the func¬ 

tion ^(x). 

We note that boundary condition (8) together with Eq. (10.8) may 

be represented in the form: 

[(-•4)4. =°- (ö,) 
After we have determined the torsion function qp1, we can also com¬ 

pute the wing bending function <Pq-by direct integration of Eq. (10.8), 

using boundary conditions (l) and (2). 

2. DESIGN OF RECTANGULAR WING WITH DIAMOND PROFILE 

Let us determine the stressed and strained states of a wing acted 

on by a unit load 

p(y)^p0+(p,-Po)-j 

and having a diamond-shaped profile (Fig. 10.2). 

We shall determine the geometric characteristics of such a profile. 

The wing thickness is 
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and 

A(y). 2"y (o<y<y) 

A<y)=2//(l -X) 

The cylindrical stiffness is 

and 

or 

and 

where 

D(y) EhHy) 

my) 

12(1-|A*) 12(1 — |AJ) 

£8//) 
12(1 ftrC-fr 

D(y)~ D~- (0<y<y) 

D(y) = D8(l—J-)’ (|<y<*), 

D= £//3 

12(1-h1) 
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The coefficients 

Ht » 

<*. = 0 J %-dy+oj 8y(l-- 

rf,=ojMrfy+Dfay(i 

2* 

We now determine the force factor 

P(y)=Po+(P>-P0)-j-; 

ç=\p(y)dy=l»±£iïL; 

Q(x)= -f ]dx= -(JojtlilÈJLzIl ; 
J 2 

< 

.«W= - j 
• jr 

™= fi (»)y </y - ; 

M (X) = - j m </x= - '{•:L?Ç»J*j 

Thus differential equation (10.10) will take the follow: 

fox* the case under consideration: 

+<^+ ^ (/ - jc) — {Jss-p* L 6*(/-x) 
or ♦ 12 

*; - (Md -y)i »; 

The substitution Ç = [1 - (x/i)] yields the followini-; ti 

t ion : 

»: «)-120(1 -y)-{i,;(.) - 
b* Db 

- 2j0 - 

ng form 
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fii^. ■ .-d , 

or 

(I) 

where the primes now indicate differentiation with respect to £, and 

r»=24(1-ri¿. 

The general Integral of Eq. (l) with respect to 9^(0 is: 

(II) fKtHCjShJH+CjCliJkS+tf, 

where 

k^rVb 

rWb 

Boundary conditions (3), (4) and (8') for the function have 

the form 

(3') 

(4') 

(3") 

Employing boundary condition (4-) for Eq. (II), we obtain 

C, $h ¿-f C, ch *-f i — 0. 

Differentiating Eq. (II), we obtain 

<P* (l)—Clkchk’-\-C2k sh *• -fij. 

In virtue of boundary condition (8") 

(A) 

(HI) 

or 

From Eq. (A), we have 

As a consequence 

sh* \ sh hj 
* I ch * (IV) 
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and 

Intégrât trig Eq. (V), we obtain 

Boundary condition (31) yields 

c>„+, 
As a consequence. 

ch kj - ch k 

*2 
%hk\ f sh hi 

k )\kc\\k 
»h* \ i-tn 

k ch k ) 2 ]’ 

or 

f|_|2 ch A — ch *{ *-sh* /»h*-»h« M 
?.U)- -2i|—---dTÃ“t‘ *» I]* (VI) 

We now turn to the determination of the value of tha function 

Substituting Ç = [1 -(x/l)] into Eq. (10.8), we arrive at tha fol¬ 

lowing equation: 

To integrate this equation, we make use of the remaining boundary 

conditions : 

?oO)=0'- (1') 

900)==0- (2») 

Taking into account Expression (IV), we obtain 

? ; (:) - + y 11 [ch*“; -1 ) * rirr*sh kl ]+ 
+j£o±MWL' (VU) 

Integrating this equation once and using boundary condition (2'), 
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I 

(VIII) 

Integrating Eqs. (VIII) and using boundary condition (I'b we ob 

tain the following value for the wing bending function: 

j_»_fl-ta ch* —ch*j *-~sh*/sh*-»h« \ 
T 2 U 2 *1 ~ ch* I ** /' (IX) 

Thus, the curved surface of the wing considered may be represented 

by the expression 

»(5,y)=?0(9+?iG)y. 

or 

*-). (10.11) 

where 

D: £//3 

12(1-h*) 

4 (/>„-*>)/«. 

r =j n) is an aspect-ratio parameter; 
Ù 

1 —ta chk — chkj _ k-shk /sh k — sh kt -sh k (shk — shkt \ 
rh* I *¡2 ) 

A-r/S: 

Example. 

As an example, we shall determine the deflection, angle of rota¬ 

tion of the free wing end (£ = 0), and maximum stresses o in the sec- 

tion at the constrained end of the wing (£=1) for the following hypo¬ 

thetical values: pQ = 0.1 kgf/cm; pb = 0.2 kgf/cm"; I = b = 100 cm; 

H=3cm;p=0.3;E= 7»10^ kgf/cmc\ 

Determination of Deflection and Angle of Rotation of Free Wing End 

We shall determine the values of the constants D, £, r2, k and 
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Tj, as well as the value of ¢, contained In Expression (10.11): 

710S-33 7-10»-27 D. 
12(1-0,3*) 120,91 

E-0; 
/■•=24 (1-0,3)= 16,8; 
*=Kl6jy=9,18; 

„ 4(0,1-0,2)1004 _ 0,4.10 

291 

== 17,3-108; 

16,8-17,3-10«. 100 

Since cosh k - sinh k, then 

4 
‘291* 

<i»=-L -j--!-_L^—1-i_ =o,40}. 
2 r ** * 2 '9,18* 9,18 ’ .18* 9,18 

Prom Formula (10.11), the unknown deflection of the win?; longitud. 

Inal axl, will be 

The deflection of the leading-edge point at the wing tip will be 

w (°- *)=4,33 - yl- ¡b - y)=4,33 ^ 0,403 ■ 50= 

=4,33-{-0,277=4,(i07 

The deflection of the trailing edge at the wing tip will be 

w (0,0) - 4,33—0,277 =* 4,053 cm. 

The torsion angle of the free wing end is 

4,607 — 4,0.¾ 

r 100 

Determination of Maximum Stresses 
Wing U = 1) 

The unknown stresses are 

=^-=0,00554 rad 

__ctt In Section at Constrained End of 

Since 

Et 

^ -? (o <,<-*-); 
^ »('-I) 
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WJ -* 

then 

0,= - Í0<y<i-t 

£"('- » )*« 
(r<y<‘) - (\-Mr- 

Differentiating Expression (10.11) twice with respect to £, we ob¬ 

tain 

w. u 
(PQ-Pril'i1 

where 

For I 

cn It 

i. we obtain $ 1 = 8.18. As a consequence. 

Thus, 

(0,1 +0,2) 100« 
17.3.10* +¿r8',8(y-T)= 

^+|!(y-T)“,7'30+0',,S5(y-T)- 

■‘=-ö^[,7'3+°-1125(y-T)]“ 

= -2,3y[17,3+0,1125(y-i)] (o<y<-i-); 

.,-=-230[l-i)[l7,3+0,U25(y-i-)] (>-<y<6). 

Fig. 10.3 

Making use cf these formulas, we obtain tue following values for 
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Nf!à., 4»iv 

for 

for 
y—o 
y =-^=16,7 

for 

for 

for 

for 

for 

y= 1-=33,3 

y 

y 

-50 

¢=66,7 

y — — ¢=83,3 ' 6 

0,=0: kgf/cm2 
0,= —520 kgf/cm^ 

o,= — U90 kgf/om2 

o,=-2000 kgf/cm2 

o,= — 1480 kgf/cm 2 

o,= —808 kgf/cm2 

y = ¢=100 a,=0. 

Figure 10.3 shows a graph of the variation in stresses a in the 
X 

section at the constrained end of the wing. 

3. CALCULATIONS FOR UNIFORMLY LOADED DELTA WING 

Let a delta wing be constrained along the root chord of length b 

(Fig. 10.4) and loaded by a constant transverse load Pq. 

In the section x = const, the chord 

"■•‘ngth is 

where 

0 

1-. 

t, is the length of the wing along the x ax¬ 

is. 

In first-approximation calculations, 

to determine the deformed state of the wing, 

the profiles shown in Fig. 10.1b may be reduced to rectangular profiles 

with an average thickness of 

-ï- 

where F Is the cross-sectional area of the wing at the section x 

= const. 

Letting h = h - const, we obtain the following geometric charac 

teristics for the delta wing: 
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D. Eh' 
12(1 -M ’ 

V *x 2 2 
^dy = Db£\ f yjy =- 

We now determine the fundamental force factors for the delta wing: 

m 

= Jpo‘tys=pJ>& 

^ ^ *»62 = J^oy^y=/»o-y-; 

• 1 w 
Q(x)= --/^0 JSí/j:- -p0bÿÇ(-/í/Í)= - 

X 
0 

Af(x)x= ; 

l) 

Pol>llV 

Substituting the expressions for the geometric characteristics and 

the force factors into Eq. (10.10), we obtain 

r^oS pM'W 
I 2 6 ] 

pX’V 
6 12 6 

Expressing <p^ and V'' in terms of the variable £ = [1 - (x/i)], we 

obtain 

(a) 

Since 
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and 

l 12 J 3 ’ 

then Expression (a) will take the form of the Euler differential equa¬ 

tion after certain manipulations: 

where 

®0 

We shall seek a solution fo Eq. (b) in the form Ç1. We assume that 

<p|(£) = y =-. Çk. Then 

/«A.**-»; 

Substituting these values into Eq. (b), we obtain the characteris¬ 

tic equation 

The roots of this equation are 

*, = 0 — 1 and *J=_0-1, 

where 

a-vT+7*. 

Thus, the general Integral for the homogeneous equation 

W0+3*p;(9-rY,(t)=0 

has the form 

We seek a particular solution to inhomogeneous equation (b) in the 

form 

We obtain 

y*, = 2 A\\ y\ — 2A. 

Substituting these values into Eq. (b), we find 
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2.45* -I- 6i45*- >5r*52 ^ _ _2£Æ. 
Dl>0 

From which we have 

A = W* 
O*0 (8-^) 

and 

yi! ‘¿PolV 
Oi0(8-rî) 

As a consequence, the general integral for the inhomogeneous equa< 

tion will be 

Now boundary conditions (3), (4) and (8') for function q^U) will 

have the form 

?,(1)=0; 
f,0)=0; 

i^;a)ic.0=o- 

(31) 

(41) 

(8") 

Employing boundary condition (811 ), we can see that C2 = 0. As a 

consequence 

2polV 
Dho(*~ri) 

Employing boundary condition (4'), we obtain 

C,= -2^4 
O*0 (8 —r*) 

This means that 

Differentiating Eq. (I), we find that 

T:(')"5ÄrKa-,){,*’-2ti- 

(I) 

(II) 

Integrating (l), we obtain 

According to boundary condition (31) 
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.. » > 
■AÄt* , 

0»o(S ̂r(T-r)+»-« 

From which we have 

Db0(9 -r>)\3 a) 

Thus the expression for q^U) will have the form 

«V-miïhïi—-'1!1)- (I11) 
We now have no difficulty in determining the value of the bending 

function <P0 as well. Equation (10.8) is rewritten as 

or 

Introducing into this equation the value 

we obtain 

or 

(IV) 

Integrating Eq. (IV) and using the boundary condition ^¿(l) 

we have 

= 0, 

'» -“-f i‘=’ - »] • ( V ) 

Integrating Eq. (V) and making use of the boundary condition 

<P0(l) = 0, we determine the value of the function q>0U): 

- ?J \0 - 

(VI) 
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Fig. 10.5* l) kgf/cm2. 

6X kT/cm*! g. 50« 

In Fig. 10.5). 

Thuc, the curved surface of the del¬ 

ta wing may be represented by 

a — 1 O-'-^r^rT’-V)] 

where 

(10.12) 

12(1-h*) 

a^/Tp: 

r>=24(l-rt^. 

In Fig. 10.5* we have plotted the 

leading-edge and trailIng-edge elastic 

lines for a hypothetical wing loaded by 

a transverse unit load; the sweep angle 

0 = 60°; b0 = 173 cm; p. = 0.3; E = 7*10b 

p 
kgf/cm (the remaining values are shown 

For such a wing we use the formula 

(20 —r* 

■SOU, 

<W2 
A3 (8 

s’ - -1 ) i"' -1 ):• ->-2;)} (10.13) 

to determine the stresses for four cross 

sections (Fig. 10.6). 

The difference between the stresses 

computed In accordance with the ]aw of 

plane sections and in accordance with 

Formula (10.13) represents the secondary 

stresses. Figure 10.7 gives a curve for 

the secondary stresses ovt in the trail¬ 

ing edge. 
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Part Four 

THERMAL STRESSES 

Chapter 11 

APPLICATION OF THE METHOD OF FORCES AND FINITE-DIFFERENCE EQUATIONS TO 

CALCULATIONS FOR THERMAL STRESSES IN THIN-SKIN SYSTEMS 

1. DETERMINATION OF THERMAL STRESSES BY THE METHOD OF FORCES 

As temperature Increases, the elements of an elastic body expand, 

as we know. In contrast to S.O. systems, ln S.N. systems the elements 

cannot expand freely. As a consequence, heating or cooling of such sys¬ 

tems will usually produce thermal stresses. 

The stressed state of a structure due to the effect of tempera¬ 

ture is selfbalanced. This date consists of the sum of the single 

states multiplied, respectively, by the unknowns X1, X2,...,Xn. These 

unknowns may be found from the solution of the canonical equations: 

• • • +^A»+Air=0. 

^1^31 "f "f* • • • +-^3/1+^- = 0, 

(11.1) 

^/11+^/11+ • • • +^/1/1 + ^=0, 

where the subscript T on the free terms indicates that the displacement 

is caused by temperature. 

Fig. 11.1 
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For a bar of length the displacement produced by a temperature 

change T - TQ = ÆT will equal its elongation: 

A/=a(r--ro)/=«Ar/f (11*2) 

where a is the linear coefficient of thermal expansion; TQ is the ini¬ 

tial temperature; T is the final temperature. 

We shall first consider the determination of thermal stresses in 

plane systems. We shall find, for example, the stressed state in an 

annular bulkhead, as shown in Fig. 11.1a, under the condition that the 

skin and Internal flange have zero Initial and final temperature while 

the outer flange is heated from Tq = 0 to T = 150°. The material is 

duralumin, the cross-sectional area of each flange is f, the skin thick¬ 

ness is Ó. 

We use a fundamental system with a cut in the outer flange (Fig. 

11.1b). On the assumption that the skin works in tension - compression 

only in the radial direction, we obtain stresses in the flanges Nlv = 

= - Nln = 1 for the unit state. The per-unit length tensile forces £ in 

the skin are shown in Fig. 11.1c for the skin section in the first 

quadrant. From the equilibrium conditions on the vertical axis we ob¬ 

tain 
« 

\ + [qr sin a do=0, 

from which we have 

This means that in the unit state the skin will be compressed by 

forces 

I 

The unit displacement is 

- 243 - 



where 

-»1 dF = rdadr. 

After integration we obtain 

“ir 
2V. ,2^ 
B/ X £/ 4 

~ In — 
£» ru 

or 

f1"'7)- 

In view of the fact that In the cut the displacement due to the 

temperature is 

Ajr^aar&r,, 

we obtain 

(/-.+1-. + ^ In ^-)+a!hf.4r=0. 

From whi-ih we have 

A'-- — _aiTrtEf 

r» + rH + {' In -- l r„ 

If rv = 50 cm, rn = 30 cm, f = 3.0 cm2, ó = 0.1 cm, then for E 

7.10^ kgf/cm2, a = 22.10“6 anu AT = 1^0°C we obtain 

.V - 22-JO“6 JW - SO - 7-101- 3 

+ 7, “ 

- 24^ - 
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Ag a consequence. 

AT. = -3640 kF, 1215 kgí’/cm' 

3640 «/', a, --. 1215 kgf/cm£ 
3f»t0 3(110 

aT.„=—-1215 kgf/cm^ of in 1 »•r, 0,1-30 

The increase in temperature affects the mechanical properties of 

the material and, in particular, the modulus of elasticity, which for 

duralumin drops from E = 7^103 kgf/cm at room temperature to E-^q = 

= 5.7«105 kgf/cm2 at T = 150°C. 

-6 
Using this value of the modulus for a = const = 22*10 , we obtain 

,v= - -^C6:10»; 3 ^ k 
7 3 50 3 
^50 + 3.+ -,.- 

In order to gain a better understanding of the physical meaning of 

problems involving the determination of thermal stresses, let us c<- - 

sider another such example. As in the preceding example, let the initial 

and final temperatures of all members of the system shown In Fig. 11.2a 

equal zero, except for the center flange 8-9-4, which is heated from 

Tq = 0°C to T = 150°C. The material is duralumin, the cross-sectional 

p 
area of each strip is f = 5 cm , the skin thickness is everywhere ô = 

=0.1 cm, and a = 60 cm. We also assume in this case that the skin works 

solely in shear. 

The system is statically indeterminate with one redundant con¬ 

straint. We obtain the fundamental system by making a cut at joint 9 in 

strip 8-9-4 (Fig. 11.2c). The displacements for thermal state "T" is 

shown in Fig. 11.2b. 

The displacement of the unit state (see Fig. 11.2c) will be: 

3,,^4-! - --1-8 - - 1 - -j-2 -- --- — j- 

4-2-^ -- 
'23 

luí fíh 
I 

.» £/ 3 £/ 1 

1 2 a 2 a 
£150/ 05 ' Z Ef ] 3 £/ n 3 /:,5,,/ 

:=±4.±JL.l 
06 ' 3 £/ ' 3 £,50/ * 
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we da tain 

0 â. 
2.6 

7105 

2.6 
= 2,7.10» kgf/cm2 

, _ 1 / I_u ^60 2 60 \ M 

11 10*1 2.7 0.1 ■' 3 7.5' 3.5.7 5/ 10»’ 

The stress in the center strip may be obtained from the equation 

^n + Air—0 

or 

X= -*£-**)• ^».jo-^isooo.io»^ -268Qkgf, 
»II 7,4 

Multiplying state "1" by X, we obtain the stressed state for the 

entire system. 

When thermal and external forces act 

simultaneously on the structure, the free 

terms in equation system (11.1 ) will con¬ 

sist of the following sums: Aip+A|T. Ajp+Ajr. 

.Anp+Aar , where A2p,..., 

are the displacements due to the force 

factors produced by the external forces. 

As an example of the determination 

of the stressed and strained states under 

simultaneous action of thermal and external forces on a structure, we 

shall consider the tip portion of a rigidly clamped four-flange sholl, 

loaded by a torsional moment in the form of a couple (Fig. 11.3) under 

the condition that the initial and final temperatures of all shell mem¬ 

bers equal TQ, except for flange 1-1', which is heated from Tq to T; 

the shell has an identical thickness ô for the spar webs and the skin, 

and identical flange areas f. 

We shall perfoim an approximate calculation on the assumption that 

Fig. II.3 
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Fig. 11.4 

the skin works solely In shear, and that the ribs are perfectly rigid 

In their own plane. 

In the calculations we assume that the axial forces vary linearly 

along the z axis fron the maximum value at section 1-2-3-4 to zero In 

section I'-a'-S'^'. We recall that with this type of axial-force var¬ 

iation, the PKS remains constant. We thus reduce the given structure to 

a statically indeterminate system with one redundant constraint. Dis¬ 

connecting joint 1 from the support, we obtain the fundamental S.O. sys¬ 

tem. 

In state "P + T" (Fig. 11.4a), the PKS will be 

i h ui IV M . ^ 

(Jp <!p--Qp -Qp — 0/> J, 2HB 2H' 

where QpV Is the PKS for the lower skin. 

In state "1" (Fig. 11.4b), from the equilibrium conditions for spar 

1-1«-4'-4 the PKS will be 

Vi *■=- 
\H 

'2IH 
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From the equilibrium conditions for braces 11 -4' and 2^31 

«ii-a-Land ?! Vl 2/ 2/ 

The unknown value of X is found from the equation 

X8„ -f- -f A|r 0. 

Since 

Oh Ef 

■ip = V«îl4^ 
Gh 

B H . l 
2lhG ' £¢/ 

/>(«-//) . 
2A/OI ’ 

/ 

3£r/: 

we then obtain 

x=xP+xT. o 
Here 

A'r *u 

(1) 

(2) 

(3) 

(4) 

(5) 

Thus, in the actual state, the axial forces will be 

N-XP+Xr (6) 

and the PKS will be 

i il P i N 
* * 2H' 21 

-,- 

(7) 

(B) 
2// 2/ 

We now determine the torsion angle for the end section of the 

shell : 

<p = q)l+<f2+<P3. 

where cPt is the torsion angle in free torsion; T,. is the torsion angle 

due to the effect of the attachment when only external forces are act¬ 

ing; is the torsion angle due to the effect of the attachmert when 

temperature alone is acting. 
i 

From the formula 
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I qls 

U Zà G» 

we obtain 

„ _ I P2(B + H) , 
Ÿ1 fi 2//GI ’ 

_ l XP2(H-B) . _ / XT2(H~B) . 
^ fi 2/G> * fi 2/G» 

OP 

PHB+H). 
//QO» ’ 

Xp(B-H) . 
QG» 91 = - 

Arr(fl-W) 
fiG» 

* 

where 

Û = 2/YÂ. 

As a consequence, 

PI(B + H) Xp(B~H) Xr(B-H) /q\ 
Ÿ~ //QG» OG» 00» ’ 

In the given case for B > H, the value of Xp proves to be positive, 

while XT is negative and, as a consequence, the second term in Eq. (9) 

will reduce the angle of twist in free torsion, while the temperature- 

dependent term will increase it. 

In order to determine the effective temperature, we determine the 

force factors and torsion angle <P for the shell under the following de¬ 

sign conditions: P = 1000 kgf, B = 100 cm, H = 20 cm, £ = 100 cm, f = 

= 5 cm2, Ô = 0.1 cm, T0 = O'C, T = 150oC, E0 = 7-105, E15Q = 5.7>105, 

a = 27*10 , and Eq/Qq = 2.6. 

From Formulas (l), (2), (3): 

1100 + 20) 2,6 J 100 , _100_^6,26 , 

/• 100-0,1 7* 105* 7 10'’*5 1 3-5,7-10^-5 " 10* ’ 

1000(100 - 20)2.6  7410 , 

2-20-7 ÍO' O.I " 105’ 

22*10-«*UA)-HK) IOTiOO 

2 10s 
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As a consequence. 

7-140 

6,26 s 
1190 kgf; 

V 16600 OC4n. ., 

iV— 1190 — 2640 - - 1450 kgf ; 

„Ul „IV 1000 145° 17—, ^iii=çiv =.--- -=17,/0 kgf/cm 

•i 

ra 

2-20 2-100 

1000-100 120-2,6 .657,5. 

2 100-20-20-7.103.0,1“ 103 ’ 

U ^ -^9: 2jl6_ 88,5. 
2-100-20-7-11^ -0,1 K>s ’ 

2610-80.2,6 _ 197 

2-100-20-7-103-0,1 “^105’ 

Thus, 

ï“ ,^(557,5 - 88.5 +197) = ± (469 +197). 

From this it follow that in our case the torsion angle will be 

increased by about 40% by the temperature. 

As we know, not only the quantity E but also the coefficient a de¬ 

pend on temperature. In order to avoid complicating the basic calcula¬ 

tions Involved in determining the thermal stresses, we shall henceforth 

assume that E and a are constant, since within the range over vh ich it 

Ls desirable to employ a material at elevated temperatures the modulus 

E decreases slowly as the temperature increases, while the coefficient 

a slowly rises. Thus the accuracy of the calculation for E = const a = 

= const will not decrease sharply, since the values of the unknowns , 

X^, ...,Xn depend on the product of these quantities. 

2. APPLICATION OF THE METHOD OF FINITE DIFFERENCES TO THE CALCULATION 
OF THERMAL STRESSES IN A WING WITH A THIN SKIN 

Using equations in finite differences, we shall determine the 

stressed state of a four-flange wing with diamond profile (Fig. 11.S>). 

The wing has a skin thickness ó and identical flange areas f. The tem¬ 

perature of the leading and trailing flanges is rrouter than Ur., tempera- 
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ture of the remaining wing members by an amount ÛŒ°C. Since the skin Is 

thin, we shall assume that it works solely in shear. 

On the assumption that the ribs are perfectly rigid, we obtain the 

following finite-difference equation for any section m: 

(11.3) 

It is clear from Fig. 11.6 that 

t, — 8 |2 * • 
M'm 3 £/ T A/0» ’ 

*-1 8«i. »ii+l: 
2 A* 
3 £/ ázGò ’ 

v/here Az is the length of the span between ribs. 

Fig. 11.6 

In view of the fact that 

for E/G = 2.6 we obtain 

+ £?'m. + f'.M. ,Afm +, + =- 0. (11.4) 
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where 

2_ 2,6*. 
3 / A/l * 

ElmtT=tek; 

k^atfE. 

Using Eq. (11.4) for section 0, 1, ..., n - 1 (see Fig. 11.5), we 

obtain n equations to determine the unknowns. 

While the system obtained in this manner will contain a large num¬ 

ber of equations, there is no fundamental difficulty in its application. 

We shall Illustrate the use of Eq. (11.4) for a limited number of un¬ 

knowns so that hand computation will be possible. 

Variation 1. Let n = 5 and bays 0, -1 and n, n - 1 (see Fig. 11.5) 

be perfectly rigid. We let ô = 0.1 cm, f ^ 5 cm2, b = 50 cm, Az = 30 cm. 

Using Eq. (11.4) for sectiui 0, we obtain 

X 
KSflU) 

1,25 k 

1,00 

0,75 

0,50 

0,25k 

0 
2 

20 60 90 120 HOC« . 

Fig. 11.? 

As a consequence, for section 0 Eq. (11.4) will take the form 

■)1,4.Y0— 39,4.Y, + 15*-- 0. (a) 
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Applying Eq. (11.4) to sections 1, 2, 3, 4 we obtain 

-39,4^,-102,8^,-39,. . . -r30*-=0, (1) 
- 39.4.Y, -f 102,8^,- 39,4^3 -f- . . . -f 39* =-0, (2) 
-39,4^,-f 102,8^,-39,tAVi-'W* -0, (3) 
-39,4*3-1-5115* ^-0. (4) 

Solving Eq. (a) as well as (l), (?), (3) and (4) of System (b) si¬ 

multaneously, we obtain 

A’0 -- .Vj = *, = «Vj=- Xi =-1,25 *. 

In accordance with our boundary conditions, these unknowns corres¬ 

pond to complete limitation of thermal expansion and, as a consequence, 

are the maximum values. 

Variation 2. If we assume that only bay 0, -1’ is perfectly rigid, 

we then obtain the following system of equations: 

4-51,4*0-39,4*,+ . . . +15* = 0, (0) 
- 39,4A o 4-102,8*,-39,4*, + . . . ;-30*=0, (1) 

— 39,4*,+102,8*,—39,4*j+ . . . +30A=0, (2) 
-39,4*,+102,8*,-39,4*4 + 30* =0, (3) 

- 39,4 *, + 102,8*«+30 *=0. (4) 

Solving these equations simultaneously we have 

*0=-1,195*; *,= -1,178*; *, = =-1,117*; 
*3 = - 0,9752 *; *« - 0,6656 *. 

(c) 

Variation 3. Let bay n, n - 1 be elastic, but loaded by a fuel 

tank; as a consequence, we may assume that it is completely "cold." In 

this case, equation system (c) remains as before, except for Eq. (4) 

which now takes the form 

-39,4*3+125,8*4 +15*= 0. (4') 

Solving Eqs. (0), (l), (2), (3) of System (c) and (4') simultane¬ 

ously, we have 

*o= —1,178*; *, = -1,1559*; *. = -1,0765*; 

*3 = -0.8915*; A'« = - -0,4876*. 

Comparing the curves of Fig. 11.7> we can see how the boundary con- 
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Chapter 12 

APPLICATION OP THE KANTOROVICH-VLASOV METHOD TO CALCULATION OF 

THERMAL STRESSES 

We shall consider a system of the wing type having a width 2b and 

length 2£. We assume that the temperature distribution over the wing Is 

in accordance with the three-dimensional graph of Fig. 12.1a. 

We further assume that the wing may expand freely in the direc- 

tiens of the X and jr axes, while thermal expansion is completely re¬ 

stricted in the z-axis direction. Thus the system cross sections remain 

plane during heating. As a consequence, deformations at any point of a 

cross section will be determined by the equation of a plane: 

f + aT~a + bx+cy, 

where the e are the elastic deformations; the aT are the thermal de¬ 

formations under free thermal expansion; a, b, c are coefficients deter¬ 

mining the position of the cross-section plane after heating of the wing 

In accordance with Hooke's law, the thermal stresses are 

o£=ft = £ (a-f 6*-f cy - af). 
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Since the wing is not loaded by external forces, only selfbalanc¬ 

ing force factors can appear in any cross section, so that 

2^= f <rf/r=£|(a+ftx4-O,-«îr)^=0; (1 ) 

«rtydF—Ej(a+bx-\-cy—aT)ydF=*0; (2) 

ci^xdF=E f {a-\-bx-{-cy—aT)xdF—0. (3) 2MH 

After integration and manipulation, we obtain from these three 

equations the values of the coefficients 

and the stresses 

where 

r rc- , A' , At> *t = -aTE+y+—y—j! X, (12.1) 

N^aE^TdF; Mx — aE^ TydF\ M,^uE \TxdF\ 

here F is the area of the entire wing cross section. 

The first term (-aTE) in Eq. (12.1) consists of stresses that fri¬ 

sure complete restriction of thermal expansion. The results in force 

due to the stresses (-N) is balanced by the stresses N/F, distributed 

uniformly over the section. In the general case, the force N acts with 

a certain eccentricity with respect to the principle central axes x and 

so that bending moments Mx and appear; in accordance with the 
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last two ^erms of Eq. (12.1), these moments are balanced by forces pro¬ 

duced by the stresses distributed In accordance with the law of plane 

sections. 

Since we are considering a free wing, for convenience In the cal¬ 

culations, It Is desirable to separate the over-all temperature T Into 

two parts: Tq and ÆT (Fig. 12.1b). The temperature Tq, which varies 

along the chord In accordance with a linear law, is noteworthy In that 

it causes fundamental deformations of the wing without stresses. 

In fact, let the wing have a diamond-shaped profile (Fig. 12.2) 

and be acted on by a temperature 

7o**f—At 

The components of TQ are shown graphically In Fig. 12.3. 
T 

The stress o is found from the formula 
Cj 

T T C- . A’ A, V 

In view of the fact that the thickness of the diamond profile Is 

and 
«><*«») 

*W=«(l+y) 

where H is the maximum profile thickness, we obtain 

+ * r 0 

Ar=a£ y) #(l + 

(12.2) 

Thus 

s_ 
F 

alEHb 

Hb 

+ # 
M* - <i£ f 7"0 xh (.vi (lx uitE - j- ; 
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HlNiWàlK* 

+ è 
7,-JjcîA(jc)î/jc=-^. 

As a consequence, 

My _ ultE 

^ Œ * * 

Fig. 12.3 Fig. 12.4 

Thus 

-r. 't- — M y)£+a*£-^-~0. 

For 0^, = 0 the remaining stress components will also equal zero, so 

that the relative deformations e and e will equal only the relative A Z 

thermal expansion oiTq. 

Taking Into account Formula (4.4) and y = t /0=0, we obtain zx zx 

ou 

ÚJI 
r Ow - tilt , du n --=ar0; --4.-=0. 

Og ÚX ÙZ 
(a) 

Integrating the first two equations, we obtain 

It u Jru(tx ) / (z) -- a(tx-\t -) / (*); 

,c» aTqZ-t /(X). 

In order to use the third equation of System (a) to determine the 

unknown functions f(z) and f(x), we must first find 

Ow 

dx 

Ou 

dz 

uUz ,à/(x) . 

b ' ' dx~ ’ 

d/(z) 

dz 
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As a consequence, 

[«)/(*) aA//l . df(x) Q 

[ d* b \ 1' dx 

The function In brackets depends only on z, the function òf(x)/òx de¬ 

pends only on x, and the sum of these functions equals zero. This means 

that they are equal in magnitude to the constant C, but are of unlike 

sign. 

Thus if 

()/(/) aA/z r -—.„C,, 
ds b (b) 

then 

df(x) 

dx (c) 

Integrating these equations, we obtain 

/(z)=oM — -f-C,z-j-C2: 

/(*)= -C,x+Ca. 

The linear two-term expressions involved here represent rigid displace¬ 

ment of the wing. Discarding them we obtain 

£) + £- “Q ¿ 

and 

W—O, (t — At 

It is clear from these expressions that the equation for the bent 

axis of the wing is a parabola, while the cross sections, rotating with 

respect to one another, remain planes (Fig. 12.5)* 

Thus we have seen that for a linear temperature variation, a free 

wing will be deformed without stresses. 

Let us now look at the second part of the temperature T - at ÆT, 

which varies along the curve. As a consequence, any cross section nr. - n 

(see Fig. 12.5) will tend to leave its plane, but part A of the wing 
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restrains this warping, and this is the reason for the appearance of 

thermal stresses. We thus obtain a correct expression for o even where 

Eq. (12.1) contains AT in place of the function T. 

The curve for the temperature T along the 

wing chord is asymmetric about the ^ axis, 

while AT is also asymmetric to a certain degree. 

As a consequence, the component terms of AT 

will be both odd and even. It is possible, how¬ 

ever, in many cases to approximate AT fairly 

accurately by just a single term of a power function with an even power 

n, or by a single term of some other function, for example, a trigono¬ 

metric function. 

Using p to represent the approximating functicn for AT, we obtain 

Ar=A7> 

After substituting ATQp into Eq. (12.1) in place of T, we find 

that 

(12.3) 

where k = aAT0E are the stresses ensuring total restraint of thermal ex¬ 

pansion; 

(12.4) 

Here ^ is a known dimensionless function ensuring that the forces in 

the wing cross sections will be selfbalancing. 

We take as the fundamental stresses those given by Formula (12.3), 

on the assumption that they occur in any wing cross section. Such a 

stress state, however, will occur only for a wing of infinite span. 

Such a state will be called state T. 

The solution of (12.3) cannot be used for a wing of small aspect 

ratio, since at the free ends for z = £ and z = - £, the thermal str< .- 



3es will equal zero. In order to satisfy these boundary conditions, we 

apply to the ends of the wing the stresses 

o» —i_aT 

The running valu of these stresses is represented in the following form 

aj= -o^?(z) 

or 

(12.5) 

where <P(z) is the unknown function, and depends solely on the coordinate 

z. 

The actual stresses are 

(12.6) 

or 

3,= *(1-?(*))*(*). (12.7) 

In the next two sections, we shall show how to determine the func¬ 

tion 9(z) with the aid of the Kantorovich-Vlasov method in calculating 

the thermal stresses for a rectangular plate and a solid wing with dia¬ 

mond-shaped profile. 

1. THERMAL STRESSES IN A RECTANGULAR PLATE 

Let us determine the thermal stresses a in a rectangular plate of 

length 2Í,, width 2b, and thickness h (Fig. 12.6). 

X 
t L 

b 

b 
i 

Fig. 12.6 

According to (^-2.6) 
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»;= -h(z)'Hx)- 

Assuming that we know the values k = aÆr0E and ÿ(x), we find that 

the stresses o°. 

The stressed state due to aa In an element dx d¿ taken from an 
z 

elementary strip of the plate is shown In Fig. 12.?• 

Of the three unknowns a , and t . only the stress a® Is sta- 
Z X X z z 

tically indeterminate, since o and may be represented as functions 
X X z 

of using two equations of statics (4.1), which, neglecting body for- z 

ces, have the form: 

ÏÏLj-ÊhL 
dt ‘ dx 

"T„ j dax 

dt ^dx 
= 0. 

(D 

(2) 

From Eq. (1) 

or 

T„ 1 

Tx, = *?' j + dJC, 
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where 

f = d'r (*) 
dz 

From Eq. (2) 

iä*=-i\\fdxdx. 
» » 

The strain potential energy is 

U^2^Tdz, 

whe re 

+*r s i 
i\ + L/X. 
J [2£ ' ' £ 1 20 J ' 

r^h 

It can be shown that for the assumed form of the function Ÿ(x), 

the integral 

+* 

Í ^i-dx-^O. 

Thus the last expression will take the form: 

+*i 

Substituting the values of o . a , and t into this expression, 

we obtain 
»»V 

2£ 

20 JU1""/"”' (12.8) 

After integration, we obtain the following constant quantities: 

Substituting these values into Expression (12.8), we obtain 
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Minimizing the system potential-energy functional, we obtain the 

Euler equation in the form: 

d_L__'d dr . d* dr 
df dt df'"* d/j dim=* ’ 

where 

—e=—2i3ç; — =» —4 V; — 2Y<?". 
df 2£ df' 2£ Y d?" 2£ ,Y 

As a consequence, 

Yf«v-2XT"+?f-0. (12.9) 

As an example of the solution of differential equation (12.9), we 

shall determine the stresses in a plate of length 2i = 30 cm and width 

2b = 20 cm (Pig. 12.8), in which there is the following temperature- 

difference distribution: 

Ar=Ar0 

In this case 

+» 
hdx 

* r* 1 jt* 
»3 F 3 »3 

As a consequence, 

•¡■‘(i-S)- 

State T is shown at the top of Fig. 12.8. 

In state "a" the stresses are -Af |-L—-iij (see Fig. 12.8, 

center ) ; 

(}-£)**■ 

From this we have 

T" *7'(3--.1¾ 

(12.10) 
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X 

Moreover 

——- 

■I¡|! V 

IT-T 
• i! n.ïïïïl! 

»> 

-r ' f 1 X*\ 5 
4*‘ f-p)/ ? r, 

• I ! I J * 

i * 15 c* I • 15 cm 

àT*&T,yt 

Ÿ 

i p) ..a‘‘ 

'i^TTTT^^ 
'C 

-"(rf») 

k*v 

jr jr 

Asp" j jtydxdx= — jit-aT.) 
</X, 

.e. 

We now proceed to determine the constants ß, 7, and X 

(12.11) 
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^-0,00564^ 

Vî 4» 

#-)--114-,¾ W = ^=0,0169^. 
945 

Substituting the values of the constants ß, 7 and X into Eq. (12.9), 

we obtain the following differential equation: 

5,64 6VV - 33,8 ¿y -fl 78 Ÿ=0. ( 12.12 ) 

From the characteristic equation 

5,64^-33,8^+178-0 

we obtain 
*,=0,207+0,114/; 

*,=*0.207 - 0,114/; 

*3 -0,207-0,114/; 

k4—- —0,207 +0,114/. 

Thus the general solution to differential equation (12.12) may be 

written as follows: 

«? = t?’*(44lcos;^ + /l,sln^)+e-w(/43C05 3z—^sln.îi), ( 12.1¿ ) 

where 

a —0,207 and ?-=0.114. 

From the conditions requiring symmetry of the system about the x 

axis, the values of the function q> must bo the same for positive and 

negative values of its argument z, i.e., 

e** cos + ^2 sln ?*) *1* <?-”(.1,cos )z—A4 sin — 

cos lz-Atsln ;^)+f*-(.4 jC03 ?z-\- /l4sln )z). 

From this we have 

.1(--/\3 C, and 

which enables us to transform Eq. (12.13) to the form 

•f -- /), i ll <i^ cos 'iz ¡- /), sh sin }z. 
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In our caue 

== O, ch 0,207 ? cos 0,114 5 -j- ü2 sh 0,207 z sin 0,114 z. 

The arbitrary constants and D2 are found from the boundary 

conditions : 

for z •- l, <P = 1; 

for z = i, T = 0 or 9' = 0. 
J\ Cj 

Using the first boundary condition for z = f = 15 cm, we obtain 

1 = D,ch0,207* 15cosO,114* 15-j-DjSh 0,207-15 sin 0,114* 15=- 

— — 1.55D, -f 10,97 Dv 

Using the second boundary condition, we obtain 

ç' = D, ( — ? ch az sin -f a sh az cos fc) -|- Dx ('i sh nz cos J-s -j- 

a ch oz sin ,3z) -= — 23,50/), 31,46/), = 0. 

We thus have 

— 1,550, -j-10,97/), — 1 0; (l) 
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(2) — 23,500, + 31,46Oj~0. 

Solving these equations simultaneously, we obtain 

O, =,0,1510; 

0,=0,1125. 

As a consequence, 

<p(„»0,151ch0,207zcos0,l 142+0,1125sh0,207*sln0,114* (12.14) 

and 

?(',)=0,151(—0,114 ch0,207z sin 0,1142+0,207sh0,207zcos 0,114*) + 

+0,1125 (0-, 114 sh 0,207* cos 0,114*+0,207 ch 0,207* sin 0,114 *). (12 .15 ) 

Further, 

=O, {(a* — P) ch a* cos ?*—2a? sh a* sin ?*]+ 

+O, [2a? ch uz cos ?*+(a* — ?a) sh a* sin ?zj 

or 

<P*f j =- 0,151(0,02985 ch 0,207* cos 0,114* - 0,0472 sh 0,207* sin 0,114*) + 
i 1125(0,0472ch0,207*cos0,114*+ , 

+ 0,02985 sh 0,207* sin 0,114*). ^ * } 

In Fig. 12.9, we have shown curves for the variation in 1 - <p(z), 

<P'(z), and <p"(z) in the right half of the plate. 

The actual thermal stresses, in accordance with Formulas (12.7), 

(12.10) and (12.11) will be 

(f-+); 

The curves for the variation in these stresses are shown in Fig. 

12.8, at the bottom. 

2. THERMAL STRESSES IN A SOLID WING WITH DIAMOND PROFILE 

A solid wing with a diamond-shaped profile (see Fig. 12.2) differs 

geometrically irom the plate with rectangular cross section considered 

in the preceding section only in that for this case the thickness h(x) 
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Fig 12.10 

lii a variable: 

and 

/!(*)-//( I--Í-) (<>«*<») 

*W = h(1+í) (0 .> x'è' — b). 

where H is the maximum profile thickness. 

Thus if we assume 

Ar=Ar0 —, 
0 b* 

then 

IX'-t)« 
^ — xJ-4 V *j i - f 

In view of the fact that 

» 

[*{'-T)dx~ir and F’ Hb, 

we obtain 

As a consequence. 

V ö’ *J 

(12.2') 

(12.1?) 

(12.18) 

(12.19) 
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(12.20) 

and 

«,=i+9;=*0-?)(“—)• 

In order to find an expression for the t and a accompanying o , 

we cut an element from the wing at sections z = const and z + dz = const 

and set up for the portion of length b - x (Fig. 12.10) the equilibrium 

equations 

5:*=o; 

£z=o. 

Expanding equilibrium equation (2), we obtain 

M 
—tjukWdz—j dzhaA^O. 

(1) 

(2) 

Since with the Introduction of the auxiliary coordinate £ 

-*'(!-£) 
Ô3g 

dz 

and 

Fig. 12.11 

*©=■«( i-i). 

we obtain 

-T.;»(,>+VwJ (|-£)( i-|) ^o. 

or 

» 

After Integration we obtain 

_iîi+ÜÎ\. 
12 \ i /-J ¢3 ' M / 

from which we have 

(3) 
'XI 
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where 

2x jfî 3jc« 

b ~ b* ~ b*~+ b* 

For the rest of the computation, the function becomes too com¬ 

plicated, so that we shall approximate it by means of a simpler func¬ 

tion. 

From the curve of the function (Fig* 12.11), it is clear that 

we could, for example, use the approximating function 

Hvs,n'T-Xsln?TL) 

where 7 and X are constant coefficients. 

But as we must consider a rectangular plate, let us try to compare 

the expression for t (3) with Expression (12.10) of the preceding 
X z 

section 

To simplify the comparison, we transform Expression (12.10) to the 

form 

V* / Ax 4*3 \ 

T"~ 12 \ 6 b> I' 

The curve —— is similar in nature to the curve for t^, but 
b 4* 

the abscissas of the points are roughly 40# greater. We thus let 

Ax_4*3 
b ¿3 

The curve for the function tjg Is also given in Fig. 12.11. 

It is clear from Fig. 12.11 that with an accuracy sufficient for 

practical purposes, the function may be replaced by function t^* 

Then fcr a diamond profile, we have in place of Expression (3) 

or 

T 
(12.21) 
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where 

or 

*.„0,193* (f—¡r)- 

Expanding the equilibrium equation (l), we obtain (see Fig. 12.10) 

M 
-oMh(x)dz-j 

After Integration and rearrangement we find that 

where 

0,.¾ 

*180 
(^) 

30jf5 20af* 15jt« 12jts 

** ~ »3 "" H “ A* 

The curve for the function is plotted in Fig. 12.12. 

To approximate o (4) we use Expression (12.11) givim?; a for a 
■K X 

rectangular plate; we transform it to the form; 
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^ __ /30x2 _ 15jf4 \ 

180* l ¢2 '¿r 

The curve for the function 

,,=0,533 (^-^-15) 

is shown in Fig. 12.12. 

It is clear from Fig. 12.12 that function is a satisfactory 

approximation for the function T]y We stop with this approximation, i.e., 

for a diamond profile we use 

0-58Jfef"i»aO,533(——^-4- 15), \ 6* b* I 3-=. 
1 180 

or 

where 

(12.22) 

^,=0.02564.(^-^-1). 

The strain potential energy for one fourth of the wing in plan is 

where 

Substituting into this expression the values of o . o , and t 
Z X X z 

for a. 
2(1 + 1*) 

, we obtain 

r=-£ [N’+iV1 - 2|irr-/+2(i+ri/y’). 

where 

? -= j A (^c) ^ dx\ Y —f h (X) $ dx\ 

S Î 
I -= J* (X)dx\ y =- f h(x)i] dxt 
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From the conditions requiring minimization of the potential energy, 

we obtain the following differential equation: 

+ (12.23) 

We determine the values of the constant coefficients in this equa¬ 

tion : 

- *-) dx—Q,Q\94Hb‘, 

v = jtf ( 1- f ) [0,02566s )px=0,000198rt6>; 

,_i) (|-iî) 0,02566s . 

---0,000683//^: 

= J // ( 1 -y) [ 0,1936 (y- yJJi/jC-O.OO^SW. 

We shall now find the function <p for b = 30 cm and £ = 43 cm, i.e., 

for a wing having an aspect ratio 45/30 = 1.5. 

For b = 30 cm, we find 

3=,0,0833//: V -4845//: 

t4--18,44//: ).-=34,60//. 



Substituting these values into Eq. (12.23), we obtain 

4845-f1 v — 2[0,3 ( — 18,44) -f 1,3 • 34,60] <p" -{-0,5833f=0 

or 

4845'f,v - 78,94'f" + 0,5833? - 0. 

From the solution to the characteristic equation 

4845*« - 78,94)(:3+0,5833=0 

we obtain 
=0,098+0,0378*; 

==0,098 — 0,0378/; 

*3= —0,098 — 0,0378*; 

*4= -0,098 + 0,0378/. 

This means (see Section 1 of Chapter 12) that 

? = D, ch (iz cos $z+Da sh az sin 

where 

a=0,098 and ß=0,0378. 

In accordance with the boundary conditions: 

z = £ = 45 cm and <p = 1, and also x = i = 45 cm, and the stresses 

t,x*=0 or <p' = 0; 

we further obtain 

=0,0600 and 02^0,0326. 

Thus 

<p = 0,0000 ch 0,098^ cos 0,0378^ + 
+0,0326 sh 0,098.? sin 0,0378^ (12.24) 

The curves for 1 - <P, <p' and <p" are plotted in Fig. 12.13- The 

thermal stresses are found from the formulas 

*.=*('-?> (I-.£■)■ 

o.-- A’5"0,0256/>3 ( - 1 ). x • \ r- b\ 1 

(12.25) 
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[Footnotes] 

Manu¬ 
script 
Page 
No. 

The force N sets up a positive moment about the center of 
gravity of the section (Fig. 12.4), but since the integrand 
contains x* the moment will be positive only where there is 
a sign before the right side of this equation. 
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Chapter 13 

APPLICATION OF THE METHOD OF FINITE DIFFERENCES TO CALCULATICNS FOR 

WING THERMAL STRESSES. INFLUENCE OF THERMAL STRESSES ON THE REDUCTION 

IN WING STIFFNESS TORSION 

1. THERMAL STRESSES IN A THIN-SKIN WING 

As we have already indicated (Section 5* Chapter 5)> it is de¬ 

sirable to use the method of finite differences for irregular systems. 

Thus, the temperature field in a wing or body of a flying craft may 

vary in accordance with a complicated law not only laterally, but also 

longitudinally. Moreover, sharp temperature differentials may appear, 

for example, between the wing center panel and the cantilevers. 

Let us consider a cylindrical wing (Fig. 13-1) with symmetric pro 

file (Fig. 13.2) used for a high-speed flying craft which has, as we 

know, a wing with relative thickness <6$. The temperature distribution 

over the wingspan and over the chord are shown in Fig. 13-1- Here the 

temperature field shows sharp differentials along the inboard wing ribs 

Fig. 13.I. A) Fuselage section of wing. 
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l S) b 
Fig. I3.3 

The chord temperature distribution which we assume (Fig. 13.3a) is 

very asymmetric about the £ axis. Isolating ÆT from the temperature we 

see that this part can be approximated well by a function of the form 

(Fig. 13.3b) 

In virtue of the symmetry of the profile and the function ÆT about 

the X and ^ axes, the two last terms in Eq. (12.4) will equal zero and, 

as a consequence. 

In our case p = x^/b^, so that 

r- 
ÍX* 

_ 
dF 

b» ' F 

In order to avoid dealing in subsequent calculations with integra- 
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tion of piecewlse-continuous functions, we shall uniformly distribute 

the areas of the wall cross sections over the upper and lower wing skins. 

Then the skin thickness is 

2L 
4b ’ 

where Ô is the actual skin thickness; Zf is the wall cross-sectional 
T 

area. 

Such a calculation scheme has little effect on the computational 

accuracy, since the part played by the walls in carrying longitudinal 

wing stresses is slight. 

Also taking into account the fact that for a small relative pro¬ 

file thickness we can assume ds = dx, we obtain the value of V from the 

following expression; 

+=~ ¢8 + * 
2 J M* 

After integration we obtain 

(13.1) 

In order to set up a finite-difference equation for each section 

m, we mark off on the length i of the wing a series of cross sections 

with spans equal to Az (Fig. 13»^j top). 

In section m and in the adjacent sections m-2, m-1, m+ 1, 

m + 2, the stresses oz may be represented in the form: 

0m—,--= — 

(13.2) 

where X^, X^, Xm+1, Xm+2 are the unknown values of the stresses 
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in the sections corresponding to the subscripts; ÿ is a known function 

determined from Expression (12.4). 

From the conditions requiring symmetry of the structu*^ cross sec¬ 

tion and the temperature distribution, in finding the unknowns we need 

only consider the upper or lower wing skin. 

In Fig. 13*4, top, we have shown the stressed states in the upper 

. »n-i rr\*2 

Fig. 13-4 
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skin produced by the stresses of System (13.2). Here the calculation 

model for each transverse strip cut off by the two sections z = const 

and z + Az = const consists of two braces with a cross-sectional area 

fsh = Azó and the strip of skin with thickness Ô, which is located be¬ 

tween them and which worKs under normal stresses along the z axis and 

under shear. In Fig. 13*bottom, we have shown in a larger scale the 

unit state due to the stresses applied in Section m. Let us 

consider the force factors for this state. 

We may assume that a varies linearly along the length Az, so that 
Là 

the running value of the stresses will be 

- (for the left-hand strip); 
** (13.3) 

0^, = — (for the right-hand strip); 

Here £ is the auxiliary coordinate for the zone of length Az. 

Where the stresses £z vary linearly, the accompanying shear stres¬ 

ses on the length Az will be constant. Let us determine these stresses 

from the equilibrium equation, for example, for the left-hand strip: 
jr 

\ (I - dx 

or 

03.4) 

In Fig. 13.4, bottom, the arrows indicate the action of the forces 

on the braces, and also indicate the nature of the variation in the 

force factors for the unit state. 

We should now have no difficulty in also determining the running 

value of the forces in the braces. Thus, for example, for ^he far left- 

hand brace the force Is 
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(13.5) ^dxdx% 

and the stresses are 

tydxdx. (13.6) 

In order to obtain the true force factors for the transverse strips 

located in the zone of Influence of the stresses a i, a , o ,,, 
m-i m m+1 

we need only multiply the appropriate unit state by these stres¬ 

ses. 

We find the finite-difference equation for any section m from the 

conditions requiring that the sum of the works done by all forces of the 

unit state for the actual displacements equal zero. 

The work done by the force factors of the unit state for displace¬ 

ments produced by forces applied in Section m will be, for the identical 

transverse-strip length Az 

Substituting into this expression the values of the force factors 

from Eqs. (13-3), (13.4), and (13.5), we obtain 

After Integration from 0 to Az we have 
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Here 

Az; 

+» 

(13.8) 

j !j j'irfxrfjc) dx. j ^rfx j rfjt. (13-9) 
-* 

The work done by the force factors of the unit state for displace¬ 

ments due to forces applied in section m - 1 will be: 

_,ítrfírfjr 

or 

+ b f X X 

»« r 
á*í£ J 

-(J 

from which we have 

-/. Í— --P-4 —— — y—“* I- (13.10) 

The work done by the unit-state force factors for displacements 

due to forces applied in section m - 2 extends only to a single brace, 

so that 

Í-1«.y. (13.11) 

Using similar reasoning for the virtual work of the forces applied 

to sections m + 1 and m + 2, we obtain 

and 

m-l 

4«, m+a— 0-3. 
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The work in section m of the force factors of the unit state for 

displacements due to the temperature ÆT will equal: 

+» 

\<T— J AZi/P, 

where 

As a consequence. 

dP~ —ÿicdx. 

+* 

E.\m T— — f k\z'i%dx. (13.12) 

In view of the fact that 

E A m, E A m> „fj -}- r53“®* 

the finite-difference equation for section m is obtained in tte form: 

'^o-An. o-î 4" -^o—l^o. o—l "I" m "t- ^o+l^o, o+l “I" 

“I* ^0+8^0, 0+8 Afllt 1- = 0. 
(13.13) 

Here 

% % 
°o. 0-3 '“^o. o+I — 

# 

o-t 

». 
A**/. ' 

J A£_ 
2 3 r 

.3-4 in X 
A^/ui AiG #, 

*0 0^2--3 + 6 -A_v + 2-J?_Îi-X 
3 ' ‘ MVm A,8G #t * 

(13.14) 

♦* 
(I3.I5) 

If we are to obtain high computational accuracy, the length Az of 

the transverse strip should be small in comparison with Its height and 

as a consequence. System (13.I3) will contain a greater number of equa 

tions. Of course, given the present-day level of computer techniques, 

there should be no difficulty in solving such a system. Even with the 

use of computers, however, it is desirable to reduce the number of 

equations insofar as possible. This may be done while retaining the 
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same computational accuracy if we do not try to make the transverse 

strips all the same length. Then the coefficients and the free terms of 

System (13.13) will equal 

&.Y 
«-a .. 7~ “ * m—I*"*—1, m—ifm—l 

1 Az, 
m, *—1 ‘ 

/W« w -+ 
l AZWl m_j" AZbi, n»4 i 

^-!_IHL. ^_I f 1 + X 

>.Y ». .. 

fm &*m, m-fi 

V.?+[^:; ( .+^)+ 

j._2_ i M,, / 

+Í—!—+_!_) filX; 

7Íir+^(1+^r)]x m. m + r^^(i»+|,m+2 

/m A£Wtm+iO •, 

8 *-V ■ 
m,m+* AZm.m+rAZ/n+i.m+a'/inH 

/ * AZ/b_i, (H-J + Azm, w_| 
/«-I — 0* 2 ’ 

f _î A*m, m-i + Azw. bh-i , 
Jm 2 * 

4 * A*m, CT4.| -j- AZgfhwfî . 
/(■+Í —2 ’ 

(13.16) 

»m, r- 

+ /» 

-t 
+* 

+ ^«1. mfl r^in,m+ l’t* ^**)* 

For the sake cf a numerical example, we assume that 

-—-=1,143; & = 50 cm-, Azo.i~30 cm-, Azi.j —50 cm\ 
», 

AZ:,3=50 cm; Azj.4=30 cm-, AZ4,s=12,5 cm\ 

Az5.b=^7,5 c.v; /=180 cm (Fig. 13* 5)- 
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•esu *j 2 
—t— £ 

JL 
ncdtpostMKHas sac mi «puna. & 

3 * J 

JO ' 50 JA. jejz ¿í 
180 cm 180 cm 

Fig. 13*5* A) Fuselage portion of wing. 

We now determine the constant values in Expression (13.9): 

9M _ 2^»o _ 'I SxW , 2.3xW \ . 
562 14-56^6 14-56 5626« j0'* 

96« 265 66« 

562 11-14-56 3-14-56 

66» \ 
9-56J / 

= 265 / 562 i _6:56 , J_\ 

562 V 5•142 H ' 11-14 3-14 ‘ 9 ) 
^ 26» /3136 ■ 1 .g_112_336 . _2 \ _ 

562 \ 980 "H? ' 154 42 ' 3 / 
ou 
— (3,208 f 0,0588 -)-9-0,7272 - 8 -f 0,6667) - 0,0026820»; 

x6 
66 

8 ^ J6_ 
45 2205 

b* - 0,0072566s. 
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Substituting the value b = 50 cm into the expressions for ß, 7, and 

X, we obtain 

ß—0,113 • 50 •■=* 5,650; 
Y = 0,002682-52 • 10s = 0,002682-3125- 105 = 8,380 H)8; 

Ji=0,007256' 125-103 = 0,9070-10». 

Applying Eq. (13.13) to section 0, we obtain 

'Voo+9X /01 + +A0r == 

According to Eqs. (13-16) and (13-17) * for E/G = 2.6, 

1 -i +A^» 
1 A “ i, —I / [ A/o,-i ^ ' A^-i.-a + A^o, 

j_2_ I 1 O I Nl 2y_ 
A*0l_|'A*o.i A*qi \ A^o.i + ^^1.3 /J —j 4* ^^c*i ®t 

.i./ J- h. X— 301.”_ 5,65+ 
^o.Jo lt 3 

■ r 1 /., 30 + 30 \ ■ 2 I 1 / J ■ ^ + 30 \lx 

’’laoî \ ‘ 50 + 30 Z'1* 30 30 ^30: V ' 30 + 50 /] 

2-8,38-105-1,143 

30 + 30 
2,6-1,143.0,907-1(^-20-5,65-1- 

\ 30 30 / 

60 \ 9,578-105 2,695' 101_ 

80 / 30 30 

= 1134. 5^.578-10^ Si^io^ =-113 + 195,1 +179,7 ---487,8: 

+^0+1+2+^)^+ 30 

303 
30 

3oi=^; 5.65 
2-3 -f- (30- 

30 

1 30 -i- 3C) 

30 ' 30-50 30 + 50 
, JL / . i 30 + 30 \ 

^ 30» 1 1 ^ 30 + 50 ) * 

^ 2-9,5784^-L 2 695.103 = — — 
30 + 30 30 4 

—■ ( 1+^- 0,75 + 1+0,75^. 9,578-1(^--^--28,25- 
U* \ 50 / • 

89,85=28,25 -113,52 - 89,85 -= -175,1 ; 

303 

3,2-9,578-105 
303 

2-0,= —350,2; 
ML10MJ43_i60 

“ 30-50(30 + 50) 

22^=32; 

lor=6- 

As a consequence. 
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487,8A'o - 350,2^ + 32Xt =0. (0) 

Applying Eq. (13.13) to section 1, we obtain 

'Vio+(*i. -i+^11)++ J+Air=0. 

where 

-175,1; 
2-9,578-10S 

30-30(30 + 30) 
= 35,5; 

.\1 *!?5J2L+a+U 2,695.„>* = 
50 + 50 }\ 30-(-50 ' \30 1 50/ 

■f— ( 1-f 
' 50* \ T 

30 + 50 \1 2-9 578-101¾ 
30 4-50 

= 150,7+111,24-143,7=405,6;, 

«i. -i + «u=35,5 + 405,6 = 441,1 ; 

& — 5,65 —f——I—L_ 
n 2-3 L30 50 r .r)0-50 50 + 

30 + 50 ^ 1 

50 + 50 1 50* 
/ 1+^\1 29'578, 

100/] 80 
10» 

-i- 2,695 103--=47,1-40,9 - 53,9=-47,7; 
50 

* - 2-9'578-105 ^.7,66; "13 50-50(.50 + 50) 

+» 

.,r=-f 50 j 

-* 
+ * 

2 J V7i« bn J 
-b 

= _5oWJL—‘-^-U 
\7-îé* 13+»/ 

—Sükb (---W — 50^¿> f W 
I« 13/ \ 49-13 / 

i cali. 36 50-50-36A , ,, 0. 
r= -\-50kb —==-=141,3«. 

673 637 

As a consequence, the equation acquires the following form: 

for section 1, 

— 175,1 JTo + 441.1 .Y,—47,7X2 + 7,66X3 +141,3fc—0; (l) 

for section 2, 

^ o'’in H i ''21 ! - ^ï'72 ! X3^23 + Ay<2< 

'20 

r'21 ' 

'02 

JI2 

16,0; 
-47,7; 

2ÖÖ 



So that 

so + riO 
rn.,.- 

, 2-9,^78-105 
5'65+(^(,+^)+^+^(l+^)lx 

Hi 50+50 
188,3+49,8+107,8 = 345,9; 

2,695-10®= 

5,65-[J- + J- 
6 LSO- 1 50-30 80 ^ .W V 1 80 .1] 

2-9,578-105 

2-50 
1 

2,695-^=47,1 —40,9 — 53,9= —47,7; 
50 

2.9.578.10* 
16,0; 

50-30 (50 -f 30) 

Aîr=141,3*-2=282,6ft. 

16,OA'0 - 47,7Xl + 345,9*2 - 47.7*3 +16*4+282,6* = 0. 

fop section 3 

*,83,+*3832+*3833+*,8j1+*s835+Ajt—0. 

Here 

8ji = 8||=7,66; —47,7; 

833=420,2; 833=-274,2: 833 = 120,2; 

Ajr = 141,3*+ 141,3* -=(141,3+84,8) * = 226,1*. 
50 

As a consequence, 

7,66*, - 47,7*,+420,2*,-274,2*4 +120,2*s + 226,1 * - • ». 

for section 4 

Ml+Ms+M«+Ms+^*r=0. 
Here 

83,=,8,3=16,0: 83,=833=-274,2: 

833=1603,9; 835=-2247,1: 

^3,.=/141,3 — + 141,3 ] * = (84,8 + 35,3)* =120.1*. 
\ 50 50 / 

As a consequence, 

16,0*2-274,2*3+1603,9*3-2247,1*5+120,1*=0. 

For section 5 

*3853+*4854 + Ms+Asr— 



Here 

=8m — 120,2; ^== - 2247,1 ; 

8h=9815,8; 

Ä5r=fl41,3 ly+llLHi») *=(35,3 + 21,2)* = 56,5ä. 
\ 50 50 / 

As a consequence, 

120,2^3—2247,1X« + 9815,8Xs+56,5* = 0. 

We thus arrive at the following system of aquations: 

487.8^,-350,2^, + 32^,+.. .=0, (0) 
-175,1 *,+441,1 - 47.7.V,+7,66X,+ 

+ ...+141,3*=0, (1) 
16,0.Y0— 47,7 Xt + .345,9.Y, - 47,7.V, +16X, + 

+ ...+282,6* = 0, (2) 
7.66X, - 47,7A', + 120,2X3- 274,2a', +120,2.V#+ 

+ 226,1 A = 0, (3) 
16X, — 274,2X, +1603,9X, -2247^-1-120,1* = 0, (4) 

+120,2X, - 2247X,+9815,8^+56,5*=0. (5) 

From the solution of this system we find: 

(5) 

(13.18) 

/Y0= —0,324*; ,Y, = -0,540»; -0,973ft; 

X,= -0,81 U; X,= — 0,2905ft; X8= -0,0623*. 

The actual stresses, according to Formulas (13.2) may be written 

In the form: 

V- 0,324»i= 0.324* 

V =0.340* +--£); 

«.’0.97.3* 

^ 0.811* 

., = 0,2903* ( L-^); 

,,= 0,0623*+ -£). 

In order to understand the effect of the temperature differential 

along the inboard ribs, we also determine the unknowns for a uniform 

temperature distribution over the entire wingspan. In this case, all 
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the terms of the system of equations (13.I8) remain valid except for the 

two free terms of Eqs. (O) and (l), which will now equal: 

Aor-2-141,3^ * = 169*; 
uU 

Air -- ( 141,3 U + 141,3) *=226,1 *. 

Fig. 13.6. A) Without temperature 
differential; B) wi^h temperature 
differential. 

Substituting these values into equation system (13.I8) and solving, 

we obtain 

^0= —1,00*; .Y, = -1,00*; = -1,00*; 

A'3=-0,805*; -0,290*; A>--0,0622* 

while the stresses will be 

V-1.00* 

—1,00* 3,—O.anst (-j £-): 

,,-_0.290*(!~£); 3S»0,0622J 

It is clear from the curves given for az/k^ in Fig. 13.6 that for 

the right-hand half of the curve the thermal stresses at the free end 

of the wing increase rapidly from the zero value, while for the portion 
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equal to roughly the length of the chord 2b, they reach a maximum value 

equal to the stresses in a wing of infinite span. 

When we take into account the temperature differential along the 

inboard rib of the wing, the stress pattern for the zone a length 2b 

away from the wing tip will remain the same as when the differential is 

neglected, but then the thermal stresses fall rapidly and reach roughly 

1/3 of the maximum value on the wing's axis of symmetry. 

Let us now determine the stresses t and a accompanying the Ion- 

gitudinal stresses: 
t0=0; 

V,--0,5*0-0'324 — * i «d* 30 
*T‘ 

0.216 ». 
30 l (t~£) 

h 

= -0,0082* /-; 
V 7 . Ibt) 

x-^o^-^97-3-^^0- 1.143* (-——) = 
30 ,0 50 V 7 7*6/ 

- 0 • ~ 1,143* (-— —)= - 0,0099* (-- - ; 
.50 \ 7 7b* ) \ 7 7*6 / 

0,811-0,973 
" 50 1,143* 

= -f 1,143* ( — - --)=0,0037* (4 - -—) ; 
^ 50 \ 7 7*« / \ 7 7*« T 

M30-I6C 

— 1.0.5205 j 

~ ^ .30 

TlCO-l7a,5 

7*6, 

0.2905 - 0,811 
1,143* 

•143*(t-fl)=0'0,99*(f-^r); 
0,0<)23 — 0,2905 , lx jtM 

'•143*(r~?¡rh 12,5 

_ 4-OJ-282 t 143Ä (JL _ —Wo,0209* (4 — '-) ; 
^ 12,5 ’ V 7 7b* J \7 7b* I 

‘172.5-1*0 
0^ 0,0623 

7,5 ■ 1,143* 

xl 

V 7 7»* / 

».0,0095* (f-Jtj-); 

Tl»0“®‘ 
- 292 - 



% 

Further 

3j:(û-IS)— — 
0,()082 . T f ■'j dxdx- 

= __ 0.^--1.143k I X* __*Ij b¿\ 
15 112*2 6 12/ 

— - 0,00094ã l-x~ - -xl 4- *i\ ; 
6TI2/’ 

^ - ^0099 + 0,0082). , *iV 
w Vl2*2 6 ‘12/ 

«1,143* 
W \ 12>i 6 ' 12J 

= - 0,000049* /—— íi 4- ; 
\12¿2 6 ‘ 12/ 

a,(J5-,o„= +°-^LtM099 j l43Â / _ü + iiU. 
5Ü \12ft2 6 1 12/ 

T 0.00031* 
\Ub¿ li 1 12/ 

- . , 0,0199 - 0.0037 , , 10L / X* *2 , ^ (103-145)= H---1,14.3* (---]=- 
10 V12Ò2 tí‘l2j 

— 0,00047* ( -x> - 'i-j-.i1.); 
\12^ rt. ‘ 12/ 

- ,0,0209—0,0199. , i0. / *1 *3 , b!\ 
fl4t(!45 106,25) = “1-——- — 1,143*1- -h -)- 

‘ 21,25 V 12*2 6 ' 12 / 

=0,000034* (——--h—); 
\\2b3 (> 1 12/ 

2,(^.25-,75.25)= ,,¡43* 
\12*2 6 r \2j 10 

•0,00130* (~— — - 1 bl 
\ 12*2 6 

íl+*iv 
6 + 12/ 

0,0095-1,113* / X* x3 . *2\ 
= —~3ys—(iãí-THíí)= 

= - 0,00290* /— - --f —). \ 12*2 ü r 12 / 

Figure 13.6 gives the curves for the dimensionless values of the 

stress t and o . 

If we neglect the temperature differential, the values of the 

stresses x_v and a at the zone from the wing tip to the maximum values 

will coincide with the stress curves obtained when we allow for the 
* 

temperature differential, but from there to the wing axis of symmetry 

they will equal zero. 

The distribution pattern for stresses computed with allowance for 
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Fig. 13*7* A) Wing axis of sym¬ 
metry. 

the temperature differential for one-fourth of the wing is shown in 

Fig. 13.7. 

To conclude, in connecticn with the use of finite-difference equa¬ 

tions to determine thermal stresses, we must note that in deriving the 

expressions for the coefficients on the unknowns in the finite-differ¬ 

ence equations, as well as for the free temperature terms entering into 

these equations, we assumed that the temperature was constant in the 

longitudinal direction along the wing cantilevers, while that it is re¬ 

presented by the function p(x) for the transverse direction. 

Let us consider a still more general case in which the temperature 

also varies along the span in accordance with the function 4>(z) (Fig. 

13.8). In this case, the coefficients on the unknowns in Eqs. (13.13) 

are determine d from the formulas (13.14) or (13.I6) used before, since 

they do not depend on the temperature. 

In order to determine the free term ^T, it is necessary to re¬ 

place the actual function $(z) by a step function as, for example, is 
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shown by the solid line in Fig. 13.8. After this substitution, the values 

of z^T may be found from Formula (I3.17). 

From this it is clear that by using finite-difference equations we 

can determine, without especial difficulty, the thermal stresses even 

for the more general case in which the temperature field along the wing¬ 

span is described by a function 4>(z), and in the transverse wing sec¬ 

tions by the function p(x). 

2. EFFECT OF THERMAL STRESSES ON THE REDUCTION IN STIFFNESS IN TORSION 

The wing thermal stresses associated with aerodynamic heating 

reach a maximum value at the end of the aircraft takeoff run. After the 

aircraft has reached its maximum speed, the temperature along the chord 

will gradually equalize itself and, as a consequence, the thermal stres¬ 

ses will drop from the maximum value to zero [36], [37]* 

C 2 6 8 10 k 

Fig. 13.9. A) Min. 

Thus, for example, as we can see from [37] > if an aircraft with a 

steel wing having a thin diamond profile reaches a speed M - 4 at an 
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altitude of 15,000 m In the course of a two-minute takeoff, at the end 

of the takeoff, the difference between the temperature of the wing cen¬ 

ter panel and the temperature of the edges will be roughly 425°C, i.e., 

ar0 z 425°C. During the next 2-3 min of flight at M = 4, at the same 

altitude, the value ÆTq will decrease sharply, and after 10-12 min have 

elapsed from the beginning of takeoff, we can assume ÆT0 = 0. 

The nature of the time variation in ATq was shown in Fig. 13*9 

[37l* The time variation of the thermal stresses is cf the same nature. 

As we can see from the thermal-stress calculation, the axial 

stresses o are compression stresses near the leading and trailing ed- 
Cà 

ges of the wing, and tensile stresses in the wing center panel. This 

load distribution along the chord reduces the wing stiffness in tor¬ 

sion. In order to see this, we consider a wing that carries a torsion 

moment M under conditions of aerodynamic heating (Fig. 13.10). 

Fig. 13-11 

We isolate an elementary strip from the wing by means of the two 

sections z = const and z + dz = const. It is clear fron Fig. 13.II that 

under the action of the torsion moment M, the fiber of length dz lo- 

cated a distance x away from the axis of rigidity z will turn about 

the xz plane by the angle 

xdy 

dz 

Decomposing the stress vector a along the direction of the fiber 
Cà 
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and along the y-axls direction, and assuming that the angle 7 Is small, 

we obtain 

cos y t and ~°,Y. 

(13.19) 

about the z axis. 

The minus sign appears here owing to the fact that when a Is pos- 

Itlve the moment Is directed opposite to the torsional moment M. 

By Integrating Expression (13.I9) over the wing cross section, we 

obtain the resultant torsional moment due to the thermal stresses ar¿: 

(13.20) 

Thus, the total torsional moment M acting In section z will equal 
Là 

1 (13.21) 

If we neglect the effect of the attachment, then 

.W,“<CW)r-£ • 

where (GJ)t Is the stiffness of the heated wing in torsion. 

As a consequence. 

(13.22) 

F 

or 

!M=f(a/)H-ÇvtW (13.23) 
F 

From this we have the torsion angle 

Z 

(13.24) 

The expression in brackets is the effective stiffness of the heat- 



> 

ed wing in torsion: 

(a0*“(G*0r +jv*5 dF- (13.25) 

Since the value of the Integral will be negative when the air¬ 

craft is accelerating, the axial thermal stresses wi]l reduce the wing 

torsional stiffness. 

If we consider only the time variation of the second term in Ex¬ 

pression (13.25), we can state (see Fig. 13*9) that the effective stiff¬ 

ness will be at a minimum at the end of aircraft acceleration and will 

then increase gradually, reaching its Initial value at a = 0. As for z 

the first term in this expression (0J)T, its effect on the reduction 

in effective stiffness reaches its maximum at a = 0, i.e., when the 
Z» 

wing section has heated up to tr.e maximum temperature over the entire 

length of the chord. 

Comparing Expression (I3.25) with the initial wing torsional 

stiffness GJ, we obtain 

( 9tX‘i1F 
^ JQJU {GJ)r . fr_ (13.26) 

GJ GJ r GJ 

As an example, let us find the value of v and the torsion angle 

for a wing having a 4$ relative thickness (see Fig. 13-10) for the fol¬ 

lowing conditions: the material is nickel-base steel, the maximum tem¬ 

perature does not exceed 600°C, Ær0(t) varies over the time t in ac- 

2 2 
cordance with the curve of Fig. 13*9, and p = x /b . 

We shall assume that at temperatures up to 600°C, nickel-base 

steel does not change in its properties, so that in our example, which 

is only designed to Illustrate the essential features of the problem, 

we let (GJ)rp = GJ• 

With these assumptions, and also assuming that a depends on time. 
Là 

we can write Expression (13.26) in the form: 
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j¡ z, (/) x-ilF 
, - 

1 GJ 

Keeping in mind the fact that 

whe re 

k=u±T0(t)E, 
l jr* 

’> = 6 ¿2 ’ 

we obtain 

(13-27) 

» 

j -,,x>dF - 2 j air0(/) £ ( I - ï) (-g— ^-) (l-y) i/jc 

or 

! 
In the notation used here for the diamond-profile geometry, the 

expression for GJ will be 

G bW GJ 

7'2 (*^) 

V 

- 299 - 

"mm 



Thus : 

V=1 
7-7.2 

180 £('+£) oir|1</)(1-?) 

£ 
a 

or, with E/G = 2.6 and a = 14.10”6 

v=i-io,2.io-« ~ Ar0(0(i-?). (3.3.28) 

For a wing with a 4# relative thickness, H = 0.04.2b = 0.08b, and 

v= 1-0,0016Ar„ (0(1-9). 

For a wing of infinite span, 

(pcaQ .ndv= 1-—0,00 ISA To (0- 

The design curve for the variation in v with time for 9=0, cor¬ 

responding to our conditions, is shown in Fig. 13.12. Here at the end 

of acceleration the maximum stresses in the wing edges for x = + b will 

equal 

.,.„-H.10-«.425-2,2.10«(l~ *i)=_10900 kgf/om2, (a) 

while the maximum stresses in the wing center panel (x = 0) will be 

0t mn& 3 +2180kgf/cm2. (b) 

The ultimate strength is 

o, *11 000 kgf/cm2. 

The wing considered (see Fig. I3.IO) has an aspect ratio of 45/ 

/30 = 1.5. Thus in accordance with Fig. 12.13, the value of 1 - 9 at 

section z = 0 will equal 0.95» As a consequence, the value of v at sec¬ 

tion z = 0 for a wing of low aspect ratio will equal 

v-1 -0,0016Ar0(0 0.94. 

Figure 13.12 gives the curve for the variation of v in time fcr 

1 - 9 = O.95 or 9 = O.O6. 

Thus at the end of the acceleration period, the stiffness of a 

..ing with a 4$ relative thickness at section z = 0 will be reduced by 

68$ for a wing of infinite span, and by 64$ for a wing with aspect ra- 
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tio of 1.5* 

At the end of acceleration, the maximum stresses for 1 - <p = 0.9^ 

and z = 0 will be: 

at the wing edges (x = + b) 

a, m.x = -10 900 • 0,94 --10 200 kgf/cm ( c ) 

at the wing center panel (x = 0) 

2 
o* ma * 2030 kgf/cm 

In other sections of a wing of low aspect ratio, the stresses will 

be rapidly attenuated, while for a wing of infinite span, the maximum 

stresses for Expressions (a) and (b) will be the same in all sections. 

Let us now look at the determination of the torsion angle (13.24), 

which in our case will equal 

SB / dz 
GJ \7tx^dF~ * 

) ,+^ö— 

For a wing with a 4$ relative thickness. 

r*p- 
GJ 
r-ji J 1-0,0016^ (0(1-f) (13.29) 

or, according to (12.24) 

ip - O.OGOOch 0,098¿ cos 0,0378^+ 0,0326^h 0,098^ sin0,0378z. 

The curve for (1 - <p) is given in Fig. 12.13. Here it is quite 

suitable to approximate the complicated function for (1 - <p) by a sim¬ 

pler function, namely, the function 0.88 cos u, where u = 7rz/2£. The 

curve for the function 0.88 cos u is shown in Fig. 12.13 by the dashed 

line. 

In Expression (13.29), we substitute the value 0.88 cos u for 

(1 - <p), and obtain 

• “p 
2 du 

1 -o,ooir>Ar0(/)0,8«fos « * 
(13.30) 
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The wing torsion angle at the end of aircraft acceleration, when 

ÆT0 = 425°C, will equal 

From which we have 

du_ 

1 —0,6 cos u 

or 

w_2_ 
GJ 

arc 1 -f-o.6 
1 -0,6 

For z = i and the parameter u = tt/2. 

For a wing of infinite span, 9=0. In this case, according to Expres¬ 

sion (13.29) at the end of takeoff, the angle 

„ _jN£ 1_0 u JW* 
rKp O; 1 -0,0016-425 ’ GJ ' 

Thus, at the end of acceleration, the torsion angle for a wing of 

low aspect ratio with a 4# relative thickness will be increased by 77$ 

owing to the thermal stresses, while for a wing of infinite span the 

increase will be 214$. 

Thus at the end of acceleration of a high-speed flying craft, the 

thermal stresses in solid wings with diamond profile will be great, and 

will considerably reduce the wing torsional stiffness. 
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* * -'4 H» 

40 34 
i i¿r-r<\,R\ h 

I h:m- 

41 35 

1 kF-jirsQ.fti i)jr 
42 30 

I) Quantities; 2) unit of measurement; 3) International System of Units; 
4) abbreviation for unit of measurement; 5) dimensions of unit; 6) MKGSS 
(meter, kilogram-force, second) system; 7) relationships between units 
of MKGSS system and International System; 8) length; 9) mass: 10) time; 
II) thermodynamic temperature; 12) plane angle; 13) area: 14) volume; 
15) velocity; l6) force; 17) pressure (mechanical stress); 18) work, 
energy; I9) meter; 20) kilogram; 21) second; 22) degree Kelvin; 23) rad¬ 
ian; 24) square meter; 25) cubic meter: 26) meters per second; 27) New¬ 
ton; 28) Newton's per square meter; 29) Joule; 30) kg; 31) sec; 32) rad; 
33) m/sec; 34) n; 35) n/m2; 36) dzh; 37) kg»m/sec2; 38) n»m; 39) kgf» 
•see2/m; 40) kgf; 41) kgf/m2; 42) kgf»m. 
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