
Best Available Copy

ýýEMORANDUM

`R)M-5058-PR
QTULY 1966

JOSS: INTRODUCTION TO
A HELPFUL ASSISTANT

C. L. Baker-,,.
C.LEARI, 0Ru S FFO FEDERAL SCIENTTPIC AND

TSCHNICAL INFOl.BATION,

00517 Njor* she

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA * CALIFORNIA

40J

.••"~~~VA
" •"''•w•-" '

MEMORANDUM

RM-5058-PR
JULY 1966

JOSS: INTRODUCTION TO
A HELPFUL ASSISTANT

C. L. Baker

This research is sponsorid by the United States Air Force under Project RAND-Con.
tract No. AF 49(6311)-1700-monitored bh the Directorate of Operational Requirements
and Development Plans, D)eputy Chief of Staff. Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or poliey of the United States Air Force.

DISTRIBUTION STATEMENT
Distribution of this document is unlimiteld.

04MIAL CONT0i9 Os "LAT= ,L
UIWODU K@T W ft-& UAXD qu

-iii-

PREFACE

This memorandum was originally delivered as a speech

to the Eleventh Annual Data Processing Conference at the

University of Alabama Birmingham Center on May 4, 1966.
A brief but explicit description of the capabilities

of the JOSSt system is presented through a step-by-step

demonstration of the process, with illustrative material

taken from actual OSS output. (The slides prepared for

the original presentation have been reproduced and have been

inserted in the text of the present memorandum as illustra-

tions.) The unique aspects that distinguish JOSS from other

systems permit the user to combine a few highly refined

basic features in a variety of ways without restriction.
The process is described in layman's terms and will give

the uninitiated user, if not the ability to converse fluently
with JOSS, the capacity to "overhear" a conversation with

almost full comprehension.

This memorandum is a part of The RAND Corporation's

continuing program of research in computer sciences under

U.S. Air Force Project RAND.

The JOSS system was originally implemented on the

JOHNNIAC computer in 1963 by J. C. Shaw, and the present

expanded version is implemented on the Digital Equipment

Corporation PDP-6 computer.

tJOSS is the trademark and service mark of The RAND

Corporation for its computer program and services using
that program.

-- -

-V-

SUMMARY

Though JOSS is implemented on a high-speed, general-
purpose, time-sharing computer, it is a special-purpose

system designed to provide the user with a personal service

through remote computation. The only component of the sys-

tem that the user is aware of is his own console--a mobile

unit that is plugged into his office outlet and that sup-
plies computational power. The console itself consists
of a standard IBM Selectric typewriter with a slightly mod-
ified character set. The conventional characters take up
73 of the standard 88 keyboard positions, leaving 15 posi-
tions available for special graphics, which, since the JOSS
system is restricted to numeric computations, have been

chosen from the usual set of mathematical symbols.
An auxiliary control box, equipped with indicator lights,

activates the console. The JOSS console has been designed
so that control of the typewriter is proprietary: Either
JOSS has control for output purposes, or the user has con-
trol for typing in to JOSS. Which of these situations is
actually the case is indicated by visual, tactile, and
audible signals. The user's input of instructions and data
is typed in green, and JOSS responds with output in black.

JOSS commands are limited to one line; take the form
of an imperative English sentence, and in fact may be read

out loud; begin with a verb; and obey the conventional rules
of English for spacing, capitalization, punctuation, and
spelling. The ability to append a conditional clause to
any JOSS command is an extremely powerful feature of the
language. Three brief examples are presented that touch on
almost every feature of the JOSS system: the readability
of the language, including the identity of the "speaker,"

its computational ability, its logical ability, and JOSS's

response to errors.

In addition to computing directly with numbers, JOSS

-vi-

can assign valhes to letters, to help in working with

numbers that are repeated many times, or initially have

unknown values. Further examples demonstrate that JOSS

operates with numbers that are (1) always in decimal,
(2) limited to 9 significant digits, (3) are exact on

input and output, (4) are expressed in scientific notation
where appropriate, and (5) may be denoted by single letters.
Any legitimate algebraic expression involving letters, num-
bers, and functions may replace any number, anywhere in the
language, without reservation, and JOSS will interpret the
result appropriately. JOSS arithmetic also provides us
with the true result, rounded, if necessary, to 9 decimal
digits, for the operations of add, subtract, multiply,

divide, square root, and selected cases of exponentiation.
Supplementing the basic operations of arithmetic, the

JOSS functions fall into three groups: elementary tran-
scendental (log, exp, sin, cos, arg), number dissection
(sgn, ip, fp, dp, xp), and iterative (sum, prod, max, min,
first).

Several "rcal" problems are next presented to illus-
trate how the user can add to JOSS's power to work with him
in specific problem-solving situations. We see how JOSS
can store values, expressions, functions, and forms, as
well as sequences of commands, called steps, for subsequent
interpretation.

The ability of JOSS to produce, easily and quickly,
report quality output, in a standard format of 8k by 11 in.,
contributes a great deal to the power of the system. The
value of the JOSS language itself lies not in the user's
ability to continually expand and refine the language in

many small ways, but in his ability to combine a few highly
refined basic features in a variety of ways without restric-
tion. The language is highly readable, and the JOSS user
will soon come to actually "think" in the JOSS language--or,
at least, to express his problem using JOSS's vocabulary.

-vii-

ACKNOWLEDGMENTS

I am grateful to the several members of The RAND
Corporation staff who assisted in the preparation of the
lecture: Ray CI.ewett for his expertise in taking the
slides, Sylvia Comfort for her skill in preparing them,
and Edward Lowe and Bernard Dickson for their many valuable
suggestions on the organization of the presentation.

-ix-

CONTENTS

PREFACE ... i ii

SUMMARY ... v

ACKNOWLEDGMENTS vi i

I. GENERAL DESCRIPTION OF JOSS 1

11. CONSOLES 4
Keyboard 7
Control Box 9

III. COMPUTATION 13

V. CONCLUDING REMARKS 40

-I-

_.1 GENERAL DESCRIPTION OF JOSS

JOSS is an acronym derived from:

JOHNNIAC--the RAND-built Princeton-type
computer, named for the mathematician
John von Neumann, on which JOSS was first
implemented in 1963.

OPEN SHOP--operation of a computing facil-

ity where operating can be performed by

an. qualified employee of the organizatiuu,

and not necessarily by the personnel of the

computing center itself.

SYSTEM--although "service" would be more
descriptive of the goals of JOSS, and, in

fact, JOSS is the trademark and service
mark of The RAND Corporation for its com-
puter program and services using that program.

Of the four main components of the JOSS system, the
user is aware only of his own console, located in his own
office, The console is connected, of course, by a commu-
nication link--a two-way telephone line--to a central
computer. This machine, along with its resident software
programs, is dedicated full-time--24 hours a day, seven
days a week--to providing JOSS service. It is through the
software package that this hardware becomes a JOSS system.

Please keep in mind in what follows that a high-speed,
general-purpose, time-sharing computer is used to implement
JOSS, but JOSS is not a general-purpose system for time-
sharing and using a general-purpose computer. Let me ask

you, therefore, to remember that JOSS is a special-purpose
system and should be viewed accordingly. It supplies a
personal service, and by this we invite comparison with a

telephone, a desk calculator, or a slide-rule--always avail-
able at a user's desk.

We restrict JOSS to numeric calculations, and do not

attempt to provide any of the many symbolic capabilities

of the computer. To attract the casual user, and to provide

intimate interaction, we have tried to avoid at all costs

the placing of many of the small atumbling blocks that com-

puter systems often erect in the path of the would-be user.

To the initiate, of course, these pose no problems--in fact,

they cannot be seen--but to the novice, these often appear

to be barriers beyond which he is hesitant to venture.

This afternoon I am going to introduce you to JOSS by

inviting you to look over my shoulder, as you would do as
a visitor at RAND, while I demonstrate some of the capabil-

ities of the JOSS system. Since JOSS is not a pa'ngramming

language, and since it is not a language for programmers, I

believe that you will leave with the feeling that, while you

might not be able to converse with JOSS fluently yourself,

you could certainly "overhear" a conversation with almost

full cr-,prehension.
T ,roughout this demonstration, I will try to place

-3-

special emphasis on those features that distinguish JOSS

from other systems and make it unique--features that have

contributed to its enthusiastic adoption by the RAND staff.

-4-

II. CONSOLES

The first of the special features of the JOSS system

is the JOSS console itself. This unit was developed for

this use alone, and, as you will see, is quite different

from, say, the familiar Teletype consoles, which were orig-

inally developed for an entirely different purpose. The

console is mobile, and may easily be moved, as required,

from one office to another.

If JOSS were indeed a truly personal service, each

user would, of course, have his own console, always avail-

able but normally unused, just as with his telephone. Micro-

electronic circuits notwithstanding, however, the cost of

a console is still much higher than that of a telephone,

and so too few consoles are available to provide one in

each office. What we have done instead is to put a "JOSS

Plug" into the office of each RAND staff member. This

outlet may be thought of as supplying JOSS computational

-5-

power, just as the conventional AC outlet is a source of

electrical energy.

As soon as it is plugged in, our console is ready

for use; but first I'd like to take a moment to describe

the JOSS console network. Each of our 30 JOSS consoles

JOSS CONSOLE NETWORK

300 LINE:

CNCENTRATO12

MUJLTIPLEXER

COMPUTEI r

-6-

may be plugged into any one of more than 300 lines, which

are connected to a centrally located line concentrator.

This line concentrator, in turn, extends the connection

over one of 32 lines to a data multiplexer, which inter-

mixes all communications to the computer.

Not all consoles are located in RAND, however. At

McClellan AFB, Sacramento, California, and at the AEC's

Nevada Test Site, remote--really remote, in the Nevada

desert--consoles are connected to a data set, which is

connected to a matching set at RAND over a common carrier

link (AT&T or Western Union lines).

At all times, communication over each of these lines

is full duplex--that is, in both directions simultaneously--

so that the consoles and the computer can be in immediate

contact with each other.

We're now ready to use our JOSS console. But just as

we look over the dashboard of a new or unfamiliar auto be-

fore we start the motor and drive away, let's spend a few

moments for a "cockpit layout check."

. -- - --% -. i.

-7-

KEYBOARD

The typewriter keyboard itself is undoubtedly familiar

to everyone here--even to the hunt-and-peck artist. We

can try out the typewriter simply by pushing the ON switch

and typing a bit. At first, the "golf-ball" typing element

of the IBM Selectric typewriter will attract the attention

of anyone who has not seen this fascinating mechanism at

work. It is more important, however, to become accustomed

to the "feel" of the keyboard and to locate the conventional

and unique characters available.

We'll return to the auxiliary control box in a moment,

but first let's take a closer look at the typewriter graph-

ical character set.

JOSS TYPEWRITER GRAPHICS
CONVENTIONAL

0 LETTERSS abc ... xyzABC .. XYZ

0 PUNCT!,TION1.. .;: ' ' '? () []

0 DIGITS: I Z 3 ... Q 0

0 NON-PRINTING'

SPACE. BACKSPACE, TAB, SHIFT.
CARR. RTN., PAGE

The letters (upper and lower case) preserve their conven-

tional positions, as do most of the usual punctuation marks.

The period and comma in the upper case position have been

replaced by brackets, and we should point out that lower

case "one" and "ell" are different, as are "oh" and "zero."

The nonprinting functions--SPACE, BACKSPACE, TAB, SHIFT,

-8-

and CARRIER RETURN--are all to be found in their usual

positions, and do the usual things. PAGE is a RAND-added

feature that combines forms-feed with carrier return.

These conventional characters take ip 73 of i.he stan-

dard 88 keyboard positions, leaving 15 positions available

for special graphics which, since the JOSS system is de-

signed for numeric computations, have been chosen from the

usual set of mathematical symbols.

SPECIAL

* OPERATOQ: +-- /* I

0 RELATION; < _ > >

* OTHER: $ #-

The standard centered dot has been selected to indicate
multiplication, and the slash has been retained to indi-

cate division. Mathematical notation commonly uses a

superscript to indicate raising a number to a power; to

linearize such notation requires an explicit sign, for
which we chose a 5-pointed, upward-pointing, elevated
asterisk (drawn on the following slides as a star). The

relations "less than," etc., round out the mathematical

signs. The remaining characters are all used for special

purposes. The dollar sign is always appropriate; the "#"

-9-

sign is used to strike out any typing errors; and the use
of the underscore will be shown later.

CONTROL BOX

Now that we've familiarized ourselves with the type-
writer keyboard, we can take a closer look at the auxiliary
control box on the console.

Of primary concern is the POWER ON switch, which we use
to request JOSS service. When power has been applied,
three white status lights let us know in turn that

1. The console electronics package is working.

2. The JOSS system is working.

3. The typewriter is working.

In the lower half of the console control box are a RED
light, a GREEN light, and an INTERRUPT button and light,

all of which we'll encounter later on.

-10-

We've seen where the controls are, so let's try to

use JOSS. As we turn on the console with the POWER ON
switch, the typewriter comes to life and types out:

JOSS II at your service.
Initials please t

It looks as if JOSS is now waiting for some action on our
part, but how can we be sure?

The JOSS console has been designed so that control of
the typewriter is proprietary: Either JOSS has control
for output purposes, as in the sign-on salutation, or the
user has control, for typing in to JOSS. Which of these
situations is actually the case is indicated by the RED/
GREEN light pair on the control box.

4"I

-11-

We therefore speak of the console being either in the RED

state (computer control) or, as shown above, in the GREEN

state (user has control and may type).

When JOSS turns control over to the user, the follow-
ing signals are given: (1) light changes to GREEN, (2) key-

board unlocks, (3) ribbon changes to GREEN, and (4) soft
BEEP tone is sounded. These visual, tactile, and audible
signals leave no doubt in the user's mind as to who is in
control of the station.

JOSS CONSOLE RED/GREEN STATES
* JOSS HAS CONT10L

CONTQOL 0 USER HAS CONTROL

* LOCKED
KEYBOARD * UNLOCKED

* JOSS TYPES IN BLACK
RIBBON 0 USER TYPES IN GREEN

The user turns control back to JOSS by either CARRIER
RETURN or PAGE with consequent motion of carrier and platen.
At that time, the signals are: (1) light goes to RED,
(2) ribbon changes to black, and (3) keyboard locks.

The two colors used for typing, black and green, not
only leave a permanent record of "who said what to whom,"
but form a valuable aid while the system is being used.
For the moment, we'll not make any typing mistakes, or
forget to follow instructions, and we'll respond properly

to JOSS's requests.

-12-

JOSS II at your service.
Initials please: RAND
Project number: 3407
Department: CSD

What is shown above is reproduced from actual typewriter

output. Now it turns out that typewritten material is

fine for reading at a desk or console, or for putting into

reports, but not for slides in a lecture hall. So, I've

had the following slide, and the rest of them as well,

produced by our graphic arts department.

JOSS I] at your service.

Initials pleases RAND

Project numbers 3407

Department: C S D

-13-

111, COMPUTATION

As the sign-on procedure is completed with the final
carriage returns JOSS advances the form in the typewriter to
the top of a new sheet of paper, where the time, date, and

user identification are typed. Also on each sheet is a
centered page number.

JOSS OUTPUT PAGE HEADING

0 1141 4/1615/ RAND 3407

0

The output paper is pin fed, but when the tear strips are
removed, each sheet, with a heading line as shown above,
is reduced to the standard size of 8ý by 11 in. In ad-
dition, JOSS feeds enough lines to leave a 1-in. margin

at the top of each page, and will also give us a 1-in.
margin at the left and 1 in. at the bottom of each .age.

This unique feature of JOSS is especially appropriate
for RAND, since as a nonmanufacturing research organization,

almost all of our tangible product consists of 8½ by Ii in.

sheets of typewritten paper,
As a starter, let's ask JOSS for the answer to that

simplest of all problems--what is 2+2? We do this by asking

JOSS to Type the value of 2+2.

-14-

Type 2+2.

?-÷.. 4

Type "ok" K' 500<3*b!1000Q

ok

type Z+2

EhY

JOSS responds, in black, with "2+2 - 4", as we would expect.

In the second example, which is read "Type "ok" if
500<3*6ý1000.", we observe that a JOSS command may be
modified by a conditional clause. In this case 3*6 - 729,
which musts the stated condition, so the remainder of the

command is obeyed, and JOSS types "ok"; this could have been

any series of characters. Had the stated condition not

been obtained, JOSS would simply have returned control with-

out typed response. The third example shows JOSS's response

to meaningless inputs (compare with correct form of first

example). The error response "Eh?" covers a groat variety

of situations; the user can quickly scan the offending line

to determine the cause of error. Thus JOSS avoids misleading

the user by misconstruing his intentions. Other error situ-
ations give rise to more particularized error messages, as

we will shortly see, but the brevity of the "Eh?" response

to an obvious error will be appreciated by the user.

Notice that a command to JOSS is

1. Limited to one line.
2. Takes a form of an imperative English sentence,

and in fact may be read out loud.

-15-

3. Begins with a verb.

4. Obeys the conventional rules of English for

spacing, capitalization, punctuation, and,
of course, spelling.

The ability to append a conditional clause to any JOSS

command is an extremely powerful feature of the language.
We shall not use it further this afternoon, since an intro-
ductory demonstration is hardly the occasion for untangling
complicated logical knots.

In these three brief examples, on one slide, we have

touched on almost every feature of the JOSS system: the
readability of the language, including the identity of the
"speaker," its computational ability, its logical ability,
and JOSS's response to errors. And, incidentally, we have
tested a very large portion--perhaps 90 percent--of the
hardware and software of the entire JOSS system.

In addition to computing directly with numbers, we can
ask JOSS to assign values to letters, to help us work with
tnumbers that are repeated many times, or initially have

unknown values. The command "Set x - 3." results in no

Set x3.
Type x.

'A Z 3
Type x+Z,- X -Z, X'Z, x/Z, *.

Z

x/Z = 1.5
x* :q

-16-

output, but JOSS responds by swit:ching back to green. The

response to "Type x." verifies that x indeed has been as-

signed the value 3. Each of the 52 lower and upper case

letters may be used this way.

We can compact several calculations onto one line, as
above, where we see each of the arithmetic signs used.

As always, we can read the command out loud: "Type x+2,
x-2, x.2, x/2, x to the power 2 (or simply x squared)."

Each result appears, as we see, on a separate output line,

with the decimal points aligned.

More elaborate expressions can, of course, be evaluated,
although the inclusion of the brackets, parentheses, and

absolute value signs required to linearize the expression

makes it harder to read.

Type [(Ix-5 j"3+4)-'-15P]-3+10.
[(Ix- 5l-3+4).Z-15].3+1o = 2.5
X,=7

Type ([x-71"3+4)2 *

Type [(tx-513+4)-Z-15].3+1o.

Y = z5

But let's try: "The absolute value of x minus 5, times 3, plus

4, all times 2, minus 15, all times 3, plus 10 equals 25."

To try another value of x, we merely say "x = 7" (using

an abbreviated form for input), and try again. Here, in at-

tempting to type the expression again, I've hopelessly botched

-17-

things up. An asterisk instructs JOSS to ignore the line,
and we start again. Had the error been less serious, back-

spacing plus strikeover would have sufficed.

This is an appropriate point to explain that although

the nontypist is initially annoyed by JOSS's insistence on

capitals, periods, spacing, and correct spelling, he soon
learns that their contribution to readability is indeed

worthwhile, and that the requirement for the letter-perfect

entry of expressions is really the limiting factor of type-

writer input--a limitation that is experienced by typist

and nontypist alike.

JOSS has a number of features that help us overcome

this problem, but for the moment we'll continue with our
demonstration of JOSS's computational ability. We use

Type sqrt (3),_, sqrt (4).

sqrt (3) = 1.7.Z305081

sqrt(4) = 2

Type sqrt(-1).

I have a negative argument for sqrt,

"sqrt" as an abbreviation, so we can read "Type the square

root of 3, leave a blank line, type the square root of 4."

Note the use of parentheses enclosing the 3 and 4. JOSS
comes right back with a 9-digit number for the square root

of 3, a blank line, and the exact value of the square root

-18-

of 4. If we try the impossible operation of a negative

square root, JOSS lets us know with an appropriate error
message.

JOSS provides a number of elementary functions, such
as sine and cosine, shown below, which yield 9 decimal

Type sin (.5)t cos(.5).

sin (.) = .4794Z5539

Cos(,5) - .67758Z56Z

Type exp(O), exp (1), exp (20).

exp(0) = 1

exp(i) = 2.71828183

exp(zO) 4.851b5195-10*8

digit results. There are, of course, an infinite number

of digits in both of these answers; JOSS has rounded
".386 " to ".39" and .618. to 11 62" Not

shown is the computation sin2+cos 2 , to which JOSS replies
with the single digit "1". The exponential function, "e to
the power x", yields an exact answer, 1; the rounded value
of e; and, in the case of e to the 20th power, JOSS ex-
presses the answer in scientific notation: "4.85... times
10*8", as is appropriate for very large or for very small
numbers.

It is often desirable to be able to work with the var-
ious parts of a number expressed in scientific notation.

To show this, we give y the value -1.23456.10*2, or -123.456.

We can ask JOSS to "Type y, the integer part of y, the

-19-

y = -1.23456" 10"*Z

Type y, ip (y), f p (y), dp (y),xp(y).

y = -1Z 3.456

ip(y) a -1Z3

fp (y) z -*4=

dp(y) = -. o1345b

xp (y) =z

fractional part of y, the digit part of y, and the exponent
part of y." The fp operation, for example, allows us to

test to see if a computed number is an exact integer by
using the phrase "if fp(x) - 0."

In statistical work, as in many other scientific fields,
we often encounter the summation operator, a built-in JOSS
function. Shown below is a textbook example that we can ask

JOSS to verify: for a value of N ", say, 100. Since the

N N
1=1

N = 100

Type sum[i=1(1)N: *i2].

sum[i=l(1)N:i*21 = 338350

Type prod[N,N+1,Z-N+1]/b.

prod [NN+IZ-N+1]/b = 538350

-20-

JOSS notation is concise, it's not immediately readable,
but an example will clarify: "Sum over i (from 1, in steps
of 1, to N) the values of the expression: i squared." The
result should be equal to the product of the values of N,
N+l, and 2 times N+1, and indeed this is the case. Other
similar JOSS functions permit us to find the maximum or

minimum of a series of values, or a list of values. These
iterative expressions provide a first hint of how we can
let JOSS work for us in repetitive calculations.

Before we go on with the JOSS demonstration, I'd like
to show you the actual typewriter output, or protocol, of
-what we have done so far (see facing page), and, at the same
time, summarize the features of JOSS that we have observed.

First, JOSS operates with numbers that are

1. Always in decimal.

2. Limited to 9 significant digits.
3. Are exact on input and output.
4. Are expressed in scientific notation where

appropriate.
5. May be denoted by single letters.

Also, I must point out that although not explicitly shown
in these examples, any legitimate algebraic expression
involving letters, numbers, and functions may replace any
number, anywhere in the language, without reservation,
and JOSS will interpret the result appropriately.

Second, JOSS arithmetic provides us with the true
result, rounded, if necessary, to 9 decimal digits, for

the operations of add, subtract, multiply, divide, square
root, and selected cases of exponentiation.

A few examples will serve to emphasize the care with
which JOSS does familiar decimal arithmetic, and, inciden-
tally, will provide you with exercises to try on other sys-
tems. In the first example we subtract .05 from 1 followed

-21-

11039 4/15/66 RAND 3407 l

e

Type 2+2.
2+2. 4

Tupe "oX" if 500<3*6:S10fl0.
ok
tyupe2'e2
Fh?
Set x=3.
Type x,

XE 3
Type x+2,x-'2,xo2.K/2,x*2.

me x+2 a
x-2 s I

x/2 c1.5
x*2 a 9

Type [Kjx-5I3+4)s2-l5)s3+1O.
C(Ix-51-3+4)-2-15)93+1O a 25
x: 7
Type UCx-71-3+4).2
Type [(Ix-5I.3+4~)9-15b)3+1O.
[(Ix-5j93+4)s2-l5)e3910 a 25
Type sqrt(3),_,sqrt(4).

sqrt(3) a 1.73205081

sqrt(4) a 2
'pesqrt(-1).

I have a negative argumen't for sqz't.
Type sin(.5), cos(.5).

sifl(.5) a .479425539
cos(.5) a .877582562

Type exp(O), exp(1), exp(20).
exp(0) z 1
exp(1) =2,71828183

exp(20) z 4.85165195.10*8
y 1. 23456ol 1*2

Type y,ip(y),fp(y),cip(y),xýi(v).
y c -123,456

ip(y) - -123
fp(y) a-.456
dp(y) a -1,23456
xP(y) z 2

s- ~Type suir[i=1(1)N':!*-l.

ed ~um(i:1(1)N:i*2J 338350
Type prod[N,!;+ 1 2!.+ 1j/rl.
prod[N,N+11,2*N+1]/6 c 338350

I -• -•. - -=

-22-

Type Io*8-.0500oO0000.

08-.00000000o W 1*10*8

Type 108-.0500000001.
108-4000000000 - 9.99999999Q10*7

Type &qrt(*5)*

qrt (o5) * .707106781
Type

-qrt(.5)]*Z .5

by 8 zeroes, or one hundred million, and are not surprised
when JOSS returns 10*8 as the rounded answer. However,
if we increase the .05 by a single digit in the 10th decimal
place, the true answer does not round to 10*8, but is in-
deed 9.99999999.10*7. Nineteen-digit arithmetic is involved.
In the second example, the square root of ½ yields a 9-digit
number, and this number, when squared, yields h--a very

comforting situation.
Supplementing the basic operations of arithmetic, the

JOSS functions fall into three groups, as shown on the
facing page. The accuracy of the logarithmic, exponential,
and circular functions is not so easily stated as with
arithmetic. Great care is taken to hit "magic" values on
the nose, and for most purposes it is correct to say that
the resulting values elsewhere are in error by at most a
few digits in the last decimal place. The number dissection
functions, of course, yield exact answers, while the ac-
curacy of the summation, product, and max and min operators
is subject to the arithmetic operations involved as well
as the order of, say, summation. The remaining function
"first" is essentially a table-look-up operator; since it

-23-

JOSS FUNCTIONS

* ELEMENTARY TRANSCENDENTAL
log, exp, sin, cost arg

* NUMBER DISSECTION
sgnp ipp fp, dp, xp

0 ITERATIVE
sum, prod, max, min, first

properly belongs to "advanced JOSS," it will be skippud
over here.

The examples so far have covered all of those opera-
tions by which JOSS can directly aid the user. To continue,
I've chosen several so-called real problems to illustrate
how the user can add to JOSS's power to work with him in
specific problem-solving situations.

The first of these (shown on the following page) is
taken from a beautiful book by E. H. Lockwood, A Book of
Curves, where we find the formula for s, the arc length
along a parabola, as a function of two parameters a and t.
Our first thought is to proceed as before, by entering
values for a and t and by asking JOSS to type the value of
the expression. But JOSS has the ability to store expres-
sions as well as numbers. In this example we see a common
subexpression sqrt(l+t*2) appearing twice; we'll denote
this by the letter r, for root. We ask JOSS to store our
expression by means of the command: "Let r - sqrt(l+t*2)."
Similarly, "Let s - a.[t.r+log(t+r)l." We have thus ab-

tCambridge University Press, Cambridge, 1961, p. 8.

-24-

Arc Len 9 th AIon 9 a Parabola:

S =a [t'v'iT7 +109t+VI iA

Let r= sqrt(I+t*Z).

Let s = ae[torflog(t+r)].

Type s.

Error in formula 8$ 8 = a z

breviated the long expression by a single letter; and we ask

JOSS to "Type s." An error message reminds us that we have

neglected to enter a value for a--and for t as well,

We enter these values and try again, and now JOSS re-

sponds with the value of the expression that we have abbre-

viated by the single letter s.

a=3

t a1.5
Type s.

6 1 11.69b78
t2.5

Type s.
* Z: ?5.t5bOb1

Type formula s.

6s a° ttr+log(t+r)]

-25-

The same expression may now be evaluated several tLmes for
different parameters, and to recall one of our stored ex-
pressions, we ask JOSS to "Type formula a." This ability
to abbreviate an entire expression by a single letter is
appreciated by the typist and nontypist alike, and shows

how we have added to JOSS's power for our particular problem.
Even more powerful is the ability to define a complete

functional relationship for JOSS, and to illustrate this,

I've chosen the classical problem of finding the roots of
a polynomial; that is, finding those values of x that make,

for example, x 3-10x 2 -6x+10 - 0. We will have to evaluate the

Potnrmnial Equation:
%3-10 ',,.'-,X + 10= 0

Let P((x) = %*3 -10 ° .*Z-b*%+10.

Type P(- W), P(0) , P(i0), P(20).

P(-O) = - 1930
P(0) = 10

P(10) = -60

P(20) = 3890

polynomial many times, so we ask JOSS "Let P of x -

JOSS stores the expression as before, but now we can easily
indicate the values for which the polynomial is to be eval-

uated and can, in a single step, "Type P(-10), P(0), P(10),
P(20)." I've cleverly chosen the polynomial and its co-

efficients so that we can see immediately that there are
roots between -10 and 0, between 0 and 10, and between 10

and 20. Let's see if we can find the value of x between 0
and 10 for which P(x) - 0.

-26-

So far in our demonstration, all of the outpljt eori

JOSS has been in a standard format--each number it Identified
and decimal points are aligned. Since we are shoirtly going

to start getting a lot more output from JOSS, we'tj 1ice JOSS
to use a more economical format, and one that is 13a±cui1larized

to our problem. We do this by first entering a f that will

describe the output format desired.

Form I:

X M __* -.---- - f00 = __

M- 5/3

Type x P(x)in Form1.

S• " 1,t)b0b7 f(•) = -Z3.14815

Forms are identified, not by letters, but by nbmbers, as

"Form 1:" The colon serves to remind us that the nrlet full

line is the form itself; in this form we may type literal in-

formation such as "x a" and "f(x) -", and denote fie1.ds for

decimal numbers by using the underscore combined wit~t the

decimal point. After entering a value for x, we ask JOSS to

"Type x, P(x) in form 1.", with the results shown above.

Notice that JOSS has rounded the value 5/3 to fit rtto the

first field, and that a position is required for vhe minus
sign in the second field. Because of the ease with which we

describe output formats to JOSS, we'll use them fjeety from

now on.

M27-

We've seen so far how JOSS can store values, expressions,
functions, and forms for us; the next step is to get JOSS to

store a command, or a sequence of commands, called a part, for

subsequent interpretation. We can thus avoid retyping a com-

mand many times, and at the same time provide a means for

carrying out a number of commands in sequence.

i. Type %, P(x) in form i.

Type step 10

1. Type %, P(%) in form i

Do step 1.

V, 0 I.fobbb7 f W 23,14815

We indicate that JOSS is to store a command by typing

it as before, but preceded by a numeric step label, which

also serves to idnntify the step, We can now ask JOSS to

"Type step l.", which JOSS does, or to "Do step l.", which

results in the same action as if we had entered step 1 as a

direct command,
The real problem at hand, however, is to find a value

of x that makes the polynomial P(x) - 0. We now know that

one such value lies somewhere between zero and one; we'd like

to repeat step 1 for a number of values of x in this range

and see the result. We can ask JOSS, therefore, to "Do step

I for x - zero, in steps of point two, through one."

-28-

Do step 1 for % = O(. Z)1.

= .00000 f(%) = 10.00000

= .ZOOOO f(x) = 8.40800

X = .40000 f(x) = 6.06400

= .b0000 f(x) = 5.01000

Y = .80000 f(0) = -. 08800

= 1.00000 fWx) = -5.00000

JOSS obeys this command, and the result is six lines of

formatted output. This narrows the range of x somewhat

(to between .6 and .8), and we could continue to home in
on x by taking finer and finer intervals over a smaller

range by asking, say, "Do step 1 for x = .7(.01).8.", and
eventually we would get our answer.

There's a much better way, however, which we can find
by consulting any textbook or handbook of numeric methods
and where, almost without fail, we will find a description

of the Newton-Raphson method of root solving. This method

states that if we have a point that is an approximation to

the root of an equation, a better approximation is given
by subtracting the value of the function at that point
divided by the derivative of the function at that point

from the approximation. As shown in the next slide, we

denote this improved value of x by the function i(x), and

copy the rest of the formula directly into JOSS; except

that we use Q(x) to denote the derivative P'(x). But what

about that derivative? Nearby in our numerical analysis
book, we should find the formula for an approximate deriv-
ative, and we can also copy it directly into JOSS.

-29-

Let i (x) = -

Let Q(x) = [P(x+d)- P(x)]/do

That's just about all we need to begin. We'll start
with a guess, .7, and ask for the improved value, i(x).

.= 7

Type 1(x).

Error in formula Q. d ??

d = .0001

Type ;(x) P[D(0)] ;n form 1.

x = .76708 f(x) -.-03519

We've forgotten d, of course, so we enter an appropriately

small value and try again--but let's use form 1, too. Sure

enough, we seem to get a better x--at least f(x) is smaller.

-30-

Let me point out what may not be entirely obvious: The
literal information (here "x =" and "f(x) =") that we have

entered in the form does not in any way determine the num-
bers that print in the form. This is merely descriptive

information that JOSS types along with our numbers.

Thus, x being a guess, and i(x) being a better guess,
if we improve the improved value with i[i(x)], that ought

to be better still--at least it seems to be.

Type Tix)].

S- .765280012

Let P [i 0[i(01M,

Type R, P(Q) in form 1.

.= °76528 f(W) = o00000

But what we need is to improve our guess a number of times,

so we will use the letter R as an abbreviation for "the

improved value of, the improved value of, the improved value

of ... etc.," five times--which should be enough for our

purposes. And, when we try it, we find that R indeed yields

a root of the polynomial from the repeated application of

the basic definition of Newton's method, as copied from our

handbook.

Our first look at the polynomial roughly located three

roots, but we have found only one so far. So, we'll ask

JOSS to store a step to type out R, the root derived from

-31-

starting with a guess, x, near the root, and the value of
the polynomial for that root.

2. Type 1, P(Q) in form 1.

Do step ' four x = -1, 1, 10.

x = -1.Z4670 f (Y) = .00000

x = .76528 f(W) = .00000

x = 10.4814Z f(x) = .00000

Delete all.

Then we "D)o step 2" for three initial guesses for x: -1,
1, and 10. JOSS responds with the values of the three
roots, which appear to be correct to at least 5 places.

Our part in the solution of the problem has been merely
to identify the formulas to be used; we have delegated to

JOSS not only the arithmetic computations required, but also
all of the sequencing of these computations, and even the

formatting of the output.

The entire sequencing problem cannot always be turned
over to JOSS so neatly, however; and besides, the problem we
have just solved has a somewhat artificial air about it. In
several years of demonstrating JOSS to many different groups
and individuals with every possible background, I've found
only one problem with wide appeal--a problem that everyone
has, that almost no one can solve, and that is universally
understood: the amortization of a loan in equal monthly pay-

ments. Most of us have the problem as debtors, to be sure,
but even the creditors are interested.

-32-

The first step is easy: We borrow (or think about
borrowing) money to buy a new car, perhaps. When we look

up the formula for monthly payments to check the quoted
interest rate, we are confronted with a formidable-looking
equation involving small numbers raised to large powers,

which is almost impossible to evaluate by hand--and so we

take the dealer's word.

A-r- (1+r0Np=
(1+ r)N-. 1

Let p = A" r-(1+r)*N/[(1+r)*N-1].

Let r [l/IZ]/lO0.

A 1500
P.=V

N=24

But with JOSS, we start off by copying the formula

directly, or almost; we do have to add brackets to put the

expression on one line. In this formula the interest rate,

r, is per period (in our case, per month), but we would

prefer to work directly with a percent per year--6 or 7 or

10 or whatever; so we must also define r to be the yearly

percentage; r is divided by 12 to get the monthly percentage,
and by 100 to get the true rate.

The remaining values we enter directly: the amount
"A - 1500", the rate "R - 7", and the term "N - 24". We

"Type p." and learn that our payments will be $67.1588831
monthly. But we should really get rid of those fractional

SJ,-- - a -- ~ - - - - .

-33-

Type p.

p = 67.1588831

Let P= ip[100*p+ .5]/100.

Form t:

Type A2qNqNP in form I1

A= 1500#00 R= 7.0 N= Z4 P= b7lb

pennies, and we can define a new P, which will round to the

nearest penny. We multiply p by 100 to express the value

in pennies, add k cent to round up, use the "integer part"

function to keep a whole number of pennies only, and then
divide by 100 to get back to dollars and cents.

We'll probably want a formatted output if we plan to

try, say, several terms, rates, or amounts; so, as before,

we define a form for our output and ask JOSS to type the

amount A, the rate R, the term N, and the payments P. We

could easily, as before, store this step, and ask JOSS to

"Do" it for a number of values of A, R, or T.
A more interesting problem, however, is that of actually

constructing an amortization table to keep track of how our

balance is declining, and how much interest we are paying in

a year. Our payments are first applied to the interest due,

and what's left over goes to reduce the balance. The interest

due is merely the rate times the existing balance. As before,

we more or less copy these definitions into JOSS (rounding

the interest amount to the penny), after which we enter forms

2 and 3 (see following page). Form 2 has no fields for

numbers--just column headings for month, interest, reduction

-34-

P= '+8

Let a = P-i.

Let i = ipEr@B ,100 + @5]/IO0o

Form 2:

Moo Int. Pr. Ba .

Form 3:

of principal, and balance remaining. In the same way, form
3 has fields for these values that are lined up directly
under the respective headings.

Our remaining task is to store a step that will type
these values in form 3: month, m; interest, i; reduction
of principal, a; and balance, B. When we try to "Do step 1

1 Type m,i,a,B in form 3.

Do step I for m = 1 (1)N.

Error at step I (in formula i) B = 7?

Goo

starting m (the number of the month) with one, then increased
in steps of one to N (the period of the loan)," we get an
error message: JOSS wants to know the value of B, the bal-
ance outstanding. Initially, the value of B is the amount
(A) of the loan; therefore, B - A. "Go." tells JOSS to
resume, and our table begins to emerge.

-35-

1 8 .75 55 8.441 1500,00
4 8.75 58.41 1500.00
3 8.75 58,41 1500,00
4 8,T75 58.41 1500.00

This is clearly wrong; the interest and reduction of

principal amounts seem to be OK for the first month, but the

principal hasn't been reduced, and all the lines are the

same. The month number does go up, but this certainly isn't

a very good way to pay off a loan.

For the first time, we're really aware of the fact that

the console is in the RED state: the keyboard is locked,

the light is red, and unless we regain control, JOSS will

supply us with 24 lines ' l irbage--or 360, if we've tried

a 30-year home loan. W- m, it somehow ask JOSS to turn con-

trol of the console back to us, and we do this by pressing
the INTERRUPT button. JOSS acknowledges this request by
lighting the button, as shown below, and shortly returns the

-36-

console to the GREEN state, in an orderly manner, with an

appropriate message.

5 BM75 08.41 1500.00

b 8.70 58o41 1500.00

I'm at step 1.

Delete step i.

1.1 Type tn,i,a, B-a in form 3.

I.a Set B = B-a.

Type part I.

It's apparent that our single stored step isn't up to

the job, end that we'll need a two-step procedure to con-
struct our table--one step to type out the table entry

itself, and another to reduce the balance by the correct

amount each month. In the first step, labeled 1.1, we
correct our first mistake by typing B-a, the reduced bal-
ance, instead of B. The second step, labeled 1.2, actually

replaces the old balance, B, by the reduced balance of B-a.
We mustn't reverse the order of these two steps, however,

since the interest due, i, is calculated on the basis of

the old balance due. These two steps, labeled 1.1 and 1.2,
are collectively referred to as part 1, and we can ask JOSS

to type out part 1, just to make sure we got it in OK.

Now that we know how to store a sequence of steps in

a part, we might as well construct another part that will

combine all of the steps that we've had to do so far. We'll
use part 2, by labeling each step "Two point something."

-37-

1.1 Type m.iqa.5-a in form 3.

I.Z Set B a B-a.
&.1 lype A,R,NP in form 1.

Z.2 Line.

2.3 Type form 2.

Z.4 Line.

Z.5 Do part I for m=lkl)N.

?.45 Set 5 = A.

Let's read out loud:

"2.1 Type A,R,N,P in form 1."

"2.2 Line." Leave a blank line on the output
page.

"2.3 Type form 2." Form 2 is our column
heading form--as yet unused.

"2.4 Line." Another blank line.

"2.5 Do part 1 for m - 1(1)N." The "Do" com-
mand is the same as before, except that
now we use "part" in place of "step" to

refer to all of the steps comprising part
2, taken in sequence.

But before that last step is interpreted, we must set

the initial balance, B, to the amount of the loan, A, as

JOSS reminded us before. JOSS will insert step 2.45 be-

tween steps 2.4 and 2.5, so that it will indeed be inter-

preted at the proper place.
Now, if all goes well, the single command "Do part 2."

will produce our table:

-38-

Do part Z.
A. 1500.00 Q= 7.0 N= 24 P= 671b

Mo. Int. Pr. Bat.

1 8.75 58.41 1441.59
e 8.41 58.76 138-,84
5 8.07 59.09 13.2375
4 7.7?2 59.44 1Zb4.31

W ~~ 59.7$ P

Our table looks good, and had I released the "Do
part 2." line with the PAGE key, or better yet, added
the command "Page." as a step at the beginning of part
2, our table would have been neatly typed on a fresh

sheet with the proper margins, as shown in the slide of
the actual output on the facing page.

However, at the end of the table, we find a balance
line of $-.03. Exactly zero would be much better, of

course, and by adding one or two more steps we could with-
out much difficulty arrange to indicate that the final
payment should be adjusted by a few pennies. Further, we

would undoubtedly want to total the interest for twelve-
month periods, for tax purposes, and add similar refine-

ments. None of these will require us to learn new features

of JOSS--in fact, in our few examples this afternoon, we

have used all of the features of the JOSS language, with
only a few minor exceptions.

-39-

12123 4/15/66 RAND 3407 [11]

An 1500,00 Ru 7.0 Na 24 Ps 67.16

moo Int. Pr. Bale.

1 8,75 58.41 1441.59
2 8,41 58,75 1382.84
3 8.07 59.09 1323.75
4 7,72 59,44 1264.31
5 7,38 P9,78 1204.53
6 7.03 60,13 1144.40
7 6,58 50,048 1083e92
8 6.32 60.84 1023.08
9 5,97 51.19 961.89

10 5,61 61,55 900,34
11 5,25 61,91 838.43
12 ',89 62.27 776516
13 4,53 62,63 713.53
14 4.16 63.00 650.53
15 3.79 63.37 587.16
16 3.43 63.73 523,43
17 3,05 64,11 459.32
18 2.68 64.48 394.84
19 2.30 64.86 329.98
20 1.92 65.24 264.74
21 1.54 65.62 199,12
22 1.16 66.00 133,12
23 .78 66.38 66,74
24 .39 66.77 -. 03

-40-

!V. CONCLUDING REMARKS

The ability to produce, easily and quickly, report

quality output, in a standard format, contributes a great

deal to the power of the JOSS system.

The power of the JOSS language itself lies not in the
user's ability to continually expand and refine the lan-

guage in many small ways, but in his ability to combine

a few highly refined basic features in all manner of ways,

without restriction. As you have seen, the language is

highly readable, and the JOSS use- soon comes to actually
"1"think" in the JOSS language--or, at least, to express

his problem using JOSS's vocabulary.

JOSS itself is not a problem-solver, of course, but

rather acts as a "helpful assistant" to which the human

problem-solver can delegate most of his computational

chores. The JOSS language is not a programmer's language,

and, in fact, most of the matters with which a programmer

usually busies himself--input and output; converting,

-41-

branching, looping, testing; compiling and assembling;

symbol manipulation and list processing; etc.--are either

delegated to JOSS or are entirely out of the scope of the

JOSS system. To the professional computer programmer,

therefore, JOSS undoubtedly appears naive and unsophisticated.

Many of the problems that JOSS users have solved, however--

including simultaneous nonlinear integral equations--would

tax the abilities of most such programmers. To the large

body of its many users at RAND, the JOSS system represents

a manyfold increase in power over what is available to them

by any other means.

DOCUMENT CONTROL DATA
I ORIGINATING ACTIVITY 2a. REPORT SECURITY CLASSIFICATION

UNCLASS IF IED
THE RAND CORPORATION 2b. GROUP

3. REPORT TITLE

JOSS: INTRODUCTION TO A HELPFUL ASSISTANT

4. AUTHOR(S) (Lost nome, first name,initial)

Baker, C. L.

5. REPORT DATE 16a. TOTAL No. OF PAGES 6b. No. OF REFS.
July 1966 J 50

7. CONTRACT OR GRANT No. 1. ORIGINATOR'S REPORT No.
AF 49(638)-1700 1 RM-5058-PR

9a AVAILABILITY/ LIMITATION NOTICES 9b. SPONSORING AGENCY

DDC I United States Air Force
Project RAND

10. ABSTRACT I1. KEY WORDS

A step-by-step demonstration of JOSS-- JOSS
a system designed to provide the individual Computers
scientist and engineer with a personal
computational service immediately avail-
able, whenever required, in his own work-
ing environment. The distinguishing fea-
tures of JOSS are: mobile consoles
equipped with electric typewriters for
input and output; highly readable and
powerful language for numeric computation;
English capitalization, spelling, and
punctuation rules; easy editing; quick
response; exact input; familiar decimal
arithmetic; exact output; and report-
quality formatted output. The intimate
interaction between man and machine per-
mits the JOSS user to exercise Judgment
continually duri-ng the course of computa-
tion, changing and modifying the procedure
as he wishes. This is one of the unique
aspects that distinguishes JOSS from other
systems and has led to its enthusiastic
adoption by the RAND staff. This talk
was presented to the Eleventh Annual Data
Processing Conference at the University
of Alabama Birmingham Center on 4 May
1966.

