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ON STATIONARY -PROPAGATION OF A SYSTEM OF CRACKS
IN AN ELASTIC-BRITTLE MATERIAL

V. M. Kuznetsov

(Novosibirsk)

Questions of the dynamics of cracks during britt le rupture
have attracted significant attention recently [i]. in [2]
there 4is considered stationary propagation of one semi-
infinite crack, on the surface of which there are applied
symmetrically distributed normal and tangent stresses. Be-
low we investigate generalization of [2] to the case of an
infinitely large number of cracks. For simplicity we assume
that there are no tangent stresses on the surface of crack.

1. Mathematical formulation of the problem. Let us consider an

infinite elastic body in a plane state of stress in plane xy. Let

us assume that in the body is there is an infinitely large number of

(racks, parallel to the axis of abscissas, located distance 2h from

)ne another in region x < Vt, where V - constant, t - time. Let us

assume, further, that on both sides of 'the surface of the crack normal

and tangent stresses are equal and have form

S= - t (Z -, Vt), an( = .1)

Behavior of components of the stress tensor at infinity we define,

as follows:

Rqm, Rau, Rav -o as R-.oo (1.2)

7.
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We designate by ux and u components of the displacement vector

x y
and introduce-scalar and vector potentials T and ?P:

ax ayay ax(1.3)

As it is known, cp and P satisfy the following equations:

P, P P)" T

Here p -- density of the medium,, X and t -,Lame constants.

Fromn physical considerations it is clear that with an infinitely

large number of cracks there is gymmetry both relative to any straight

line which passes through the crack and its continuation, and also

relative to any straight line which passes parallel to cracks at half

the distance between them. Due to this it is possible to limit our

consideration to the regidn (Fig. 1), constituting the strip 0 K y K

< h.

On, boundaries of the strip we should have

On-0, ,O0 why (i.5)

due to symmetry, and

0,,, - (z-Vt). ,,=o wheny=O <VS (1.6)

due to (I.1).

Following [2], we seek a solution of equations -(1.4) in the form

S= (P (x - Vt, y), R =, (z-ty) (1.7)

We introduce designations

X- Yt =X, py = Y1, 02y = Y,

• -t '~ ~ P,= (- ,,S/ (i.8)

Putting (1.7) in (1.4) and using (1.8), we obtain

S+.-O = o, L + = •(1.9)

It follows from this that it is possitle to Lntroduce int., con-

sidcratLon two functions

m w2



W (z 1) = q + ix, W2 (Z, = + ik -(z=X +iy, 22=X+iY2) (1.iO)

Functions T, X and 7/, k are connected by D'Alembert-Euler

conditions

ax ax av 14x. ak ,* ak-X '-l v-- ' -, = -aX ax == -2, TY a-; Tx .

For components of the stress tensor we have

Y axay a#2 aJ

Using (w..7)-(±.11>, we transform these relationships to form

;ht a: x

xv- (2 . 13 )

In the same designations

Now we formulate the problem. It is required to find function

w1 (z1 ) and w2 (z2 ) in region

0 < Y% < Pnh (n = 1, 2)

satisfying the following boundary conditions:.

2P -+ (1 + ,,) ( 0 when Y,,=, Y. =0 (1 .15)

,s )- 2% ±k (X) when Yn., X<0 (1.16)

P,,--I +1 when Y,=Ph, YV=,,X>O (.1)

and 'the condition at infinity

d-n,-0 when Izn  (1

2. Formal solution. We introduce instead of w,(z,) and w 2 (z2 )

W, ' W, (2.1)

We map the strip of (Fig. i) in the upper half-plane o, (eig. 2)

C = I,, + , = xp (n =1, 2) (2.2)



So far, formally, we make no distinctions between variables

C, and C2 and set Wi = WI(C), W2  W 2 (C). In plane C boundary condi-

tions (i.15)-(i.17) for functions Wi and W2 have formra
2P, Im W, -(I +-') Re W= (I0) (2.3)

(1-+ P311)eW 1: -- 2P3,ImW. = - f [X ()i -I F(t)

010 (i ,<) (2.4)
A 80'

Fig. i P ImW +ReW,=0" (=, ><o) (2.5)

We designate by W@ a function, the conjugate of W, and we re-

write (2.3) in the form

2P1i(W - W )- + )w,+W,*) = 0 (2.6)

We integrate this equality-over a contour, consisting of a seq-

nent of the real axis and a semicircle of radius R. Directing R to

infinity we obtain, considering (1.18), by the Cauchy theorem [3]

W w()), = Gi t  o

and, .consequently,

jg. 2 W(g) (2

W; (2.7)

) We replace in (2.2) and (2.3) function W2 by W1 with the help

) )f (2-.7):

I-, FO ( 2 8 )

ImW = 0 ( k=, >1, <O) ( 2.8)-)iPJ"

For function W,(C), thus, we obtain a mixed boundary value

) oroblem. Its solution comes from the Keldysh-Sedov formula [5],

) i :ich in this case has form
Iw ~, a F,. (t), '' g (1'+ '',,, :() d W., (-0

: M= -QgQdtWA o (g (V (2.9)
0

Due to the condition at infinity (1.18) Wo(.)

-4



3. Particular case. Let us assume that, just as in [2],
l() --0{ (-oo<xT<_a)1
f M <x o-a(3.!)

In plane C for function F(s$) = f[X( )] this condition has the

form
0(exp (-xa/lim) >E>0)

( > > exp (- / a )) (3.2)

Putting (3.2) in (2.9), we obtain after integration

w, M ap[2ar t-I
W1 ();)l, arctgb lnr (3.3)

b = )/-exp (na / Ph --- 1) ( 3.4 )

Branches of the ambiguous functions in this expression are de-

tcrmined as follows: g( ) > 0 when > i; the imaginary part of the

logarithm is equal to 2 arc tg b; when - 0, arc tg.b -9 1/27r. E.x:pres

s-ion (3.3), together with (2.1), (2.2) and (2.7), gives the solution

to the problem at hand. Components of the stress tensor are determiied

from this by formulas (1.13). Let us note that with replacement of

C by C, and C2 the magnitude of b should be replaced according to

(3.4), where, correspondingly P = P and P = 2" '

We pass now to determination of the rate of spread of cracks.

From (3.3) it is simple to verify that components of the. stress tensor

and vector components of the rate of displacement are quantities

O(exp(-v3/ h)) when R -+ o. Thus, the flux of energy at infinity is

absent. On the other hand3 in environment of singular point z = -a

stresses and the rate are quantities 0(ln r), where r2 = [(x - Vt +

+ a) 2 + y2], so that work per unit time is O[r(ln r)2] and seeks

zer,- together with r. Consequently, one may assume that the whole

flux of energy created in an elastic body by external forces P is

ccnnected with the peculiarity et point z = O, i, e., at the beginnin:

of the crack.

5_



Hence we naturally assume that work of external forces is wholly

expended on creation of the free surface of crack.

We -designate by T the energy per unit area of the forming surface.

Then the rate of growth of surface energy is TV. This quantity

should be equal to the work of external forces per unit time:

TV= P dj x (3.5)

Due to (i.i4) and (2.7) we have

+- I (3.6)

We place, (3.6.) in (3.5) and pass under the integral to variable

v = we obtain

2es- are tg bo 1 v1V

'[2 are tg b 3 _' ,in b + vdv (0.7)

ed Noting that

hIn__b + _YdO= arc tg2 b

we obtain- from (3.7), taking into account (2.8),
r,,, X4, Aft ft - ( + ,f,,), ( 3. 8 )

4. Analysis of results. Let us con,3ider first formula (3.8) in

the limiting case h wo. Considering a/h < I., we have, with accuracy

up to members of higher order of smallness,

Sarc tg b=b (3.9)

Substituting these quantities and expressions Pi and P2 from

(i.8) in (3.8),, we obtain

P2 , V - V' -
' T s'. cs')

4 (1 - ) "1 - (2, ()2 . )

This expression coincides with the finding of [2] for a sLnflc

crack. In particular, equality to zero of the right sid(- ,f (i .A.)



constitutes the equation, determining the rate of propagation of
ce.

Rayleigh surface waves.- Thus, in the

case of the stationary propagation of

of one crack in an unlimited elastic

medium its rate has a limiting value,

equal to elastic medium Rayleigh velocity..

The second limiting case, which is

obtained from (3.8) when V + Oj corres-

Fig. 3 ponds to the static problem

/na {,farctg[exp(xa/)-1j"+ a C3 -A a a(4.2i ex (4.2)

Hence when h -c o we obtain
P'_z = i+ _C,,

*pT C1'
This also coincides with the result obtained in [2].

We consider now formula (3.8) in general form. Results- of calcu-

lation in case X = pL, c1 2/c2
2 =3 for different values of parameter

a/h are presented in Fig. 3, where

P0 = Pd', (npT)-h, V, = V I c,

Meriting attention is the circumstance that formula (3.8) de-

termines in plane P0V0 two families of curves, corresponding to two

different conditions of spreading of cracks- In one of them (the

lvwer one in Fig. 3) the velocity of cracks decreases with increase

ff pressure; in the other, it increases. Formally this depends on

which turns into zero earlier with growth of velocity, the numcrator

or the denominator of formula (3.8). It is obvious that the critical

curve, d!_vidnir these two families, is determined by simultano,,u,,8

c)nversi n i.nt, zLero of the numerator and dcnominat,)r. Since th,

T'- r .



numerator turns into zero at a velocity, equal to Rayleigh's, the

critical value of parameter (a/h). is determined from equation

Po arc tg'b,0 - P0[° (23)'] arc tg bl = 0 (Ii. 3)

Here

o=ic c , be = oeXp (9 a / hiP.) - 1 (it 1 2)

o signifies Rayleigh velocity. When X = j, we find (a/h), = 0.91.

Critical pressure is determined for the found value of (a/h), from

expression (4.2)., In this case we obtain
-" = 1.27

The physical meaning of the two conditions of development of

cracks consists of the following. The rate of stationary spreading

'f a single crack increases with decrease of pressure. Thus, if in

material under the acti*n of certain loads there appears and spreads

a crack, it can continue to devclop after the loads are removed. In

the case of a la-rger number of cracks such conditions are not always

possible. With greater distance between cracks, such that a/h < (a/h).,

every crack develops approximately just as a single one. If, however,

the distance between cracks is small, so that a/h > (a/h)*, the spread-

ing of every crack is substantially influenced by the other cracks.

Development of a crack as it were is restrained by compressive forces

acting from neighboring cracks.

From formula (3.8) there ensues one more important result. With

sufficiently small distance between cracks, when a/h > (a/lh)., there

exists a limiting rate of spreading as P -+ co, smaller in magnitude, or

equal to Rayleigh,s velocity. For a given, value parameter a/h this

rate is determined from equation

2P, arc tg 2 b - P (I + P2) arc tgb-0 ( .)

In particular, if a/h > i, then it is approximately possi.ble t,-



take arc tg b1 - 1/2w, arc tg b2  1/2w, and from (3.8) we obtain

V2 1(4 ("1)

When X = p. the limiting value of velocity, determined from this

expression, is equal to 0.8 c-2 .

Submitted
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ON THE DYNAMIC COMPRESSIBILITY OF
HARD ROCKS AND METALS

S. A. Khristianovich and Ye. I. Shemyakin

(.Novosibirsk),

Methods of dynamic testing of solids by explosive and
shock loading are the subject of many works; Works of
Soviet and American physicists l[-i5] contain numerous data
on impact adiabats of solids and equations of the state of

these bodies up to pressures of -10 megabars calculated on
this base. At the same time a comparatively small number
of works pertain to the range of pressures below 100-150
kilobars, which is of great practidal and scientific
interest. To this range pertain practical blastings in
rocks; in this range there occurs transition of solids

from elastic to plastic and, possibly, to a hydrodynamic
,state; this same range corresponds to a change of ground
pressure in the earth to a depth of 500 kin, i.e., covers
the region- of depths of interest in geophysical applications.

In experiments in dynamic testing of solids by explosive
loading there usually is realized a state of stress, cor-
responding to a plane wave. In recent years there have boen
measurements of parameters of spherical and cylindrical
waves, appearing during explosion in hard rocks [Ii, i6].

in these experiments there were noted unexpectedly hiL, 1j
attenuation of stress amplitudes: namplitudu decireased wi ti
distance r according to the law r , where n = i.6 to 1.8.

As it is kno*o'n, for an elastic medium in the case f a
spherical wave n = i. Calculations of attenuation stress
waves, based on contemporary concepts of plastic fL~ws -f
solids (theory of flow and the theory of small -*Ia ;t )-i)]a.A io
flows) and about an elastic unloading wave, lead L) valu
n = 1.1 to 1.2.

10



This poses the problem of more precise definition of con-
cepts of plastic flows of solids under rapid Lading and loads
significantly exceeding the elastic limit. Consideration of
data of experiments in dynamic compression of metals in the
region of large stresses leads to the -same problem.

Below there is discussed a physical model of a solid
medium, in which during rapid loading there is revealed
significant internal friction. On the basis of this model
there are considered phenomena of damping of sphericalwaves
in solids -and results of experiments in dynamic compression
of iron and quartz in the wave plane shock.

Till now concepts about the mechanism of damping of ampli-
tude stress waves with distance from the explosion were based
on an analogy with the corresponding phenoma in liquid and es.

Damping of a plane shock wave in a gas or fluid is con-
nected with irreversible processes of compression in the
shock wave-; behind the front of the shock wave the process
of expansion can be considered adiabatic. In solids the
irreversibility of the process of deformation in the load
zone is mainly connected with plastic shearing strains and,
to a significantly lesser extent, with irreversibility of
volumetric strains; process of unloading in a continuous
wave is considered reversible -and straing are considered
elastic. Irreversible processe's cause -aecrease in the
propagation velocity of perturbations in the load zo.ne as
compared to the velocity of sound in an elastic medium. The
difference between these velocities directly determines the
rate of decrease of miximum amplitude of the wave. On. this
effect is based the term "hydrodynamic damping." During
research of propagation of spherical and cylindrical waves
in the frames of these concepts in principle nothing is
changed: the effect of hydrodynamic damping is imposed on
weakening of amplitudes at the expense of geometric divergence.

§ 1.1. Estimation of the effect of "hydrodynamic damping" is

most simple for a weak wave*(L. D. Landau [18]). A wave is considered

weak if pressure jump p or amplitude of stresses ar is much less than

the bulk modulus of the medium K or modulus of compression Ki in the

direction of propagation of wave allowing for strength of the medium

<1, <t(1.1)

In a weak wave, as follows from (1.1), vblumetric strains are

small; it is passible to show that in a weak wave the propagation

U.i



velocities differ from the velocity of sound in a medium at rest by

a magnitude of the same order as the strain.

In nard rocks and most reta.l waves with amplitude -50-150
3kilobars are weak, sjhce the bulk modulus has an order of 10 kilobars.

Attenuation of the amplitude of a weak spherical shock wave with

distance in liquid and gas [18, 19] is proportional to (r Ln r) - I

which gives comparatively small correction to geometric law r (in-

stead of n 1, usually n = 1.1 to 1.2). Calculations of parameters

ic §phcrical waves in solids show that the effect of "hydrodynamic

damping" leads to iorrections of the same order (n = 1.1 to 1.2).

Experimental-data [16, 1f ] about attentation of stress waves

in hard rocks durinC explosions of spherical charges indicate a faster

decrease of amplitudes; therefore we naturally think about the Lre-

sence of new phenomena, which can appiar in solids and 1,,fluence

damping of stresses.

1.2. Let us consider a model of a solid, composed of "balls,"

close-Dacked and strongly cemented together. During compression of'

,uch a body there can occur both volumetric strain of the "balls"

nnd also slipping of them over each other with disturbing f bnnd. anu

ith friction. As "balls" in rocks we can take separate cry.ta-1 or

b,locks of the rock, and in metals - crystals or groups of neightor1.n

crystals with specially strong bonds between them.

Let us consider uniaxial compression of such a medium :in a

cylinder with rigid walls, stress along the axis of the cylinder c

,I-. sress on the radius a. we have

Er = 8.

Under compression, depending upon the force ,ppliod, th c;pc, :

be realized the following cases.

. 12



1. Friction between particles is great (cohesion is not dis-

turbed): in this case strain is elastic (or nonlinearly elastic)

because of compression of grains - "balls." In this case the ratio

of stresses a and o is determined by Hooke's law

f /a,= ,a a = v/(I -v) (v- Poison',s ratio) (1.2)

2. Cohesion is disturbed; friction between particle, is

negligible. Then

(e u a *) = * 1 (1 3)

which corresponds to a hydrodynamic state or a state of ideal fluidity

close to it:

or - a= 2T8  (, > =const)i (1.4)

3. Cohesion is disturbed, but friction of particles cannot be

disregarded:

09/0,u,- <1 (1.5)
This state of stress we call a state with internal friction.

When c* = v/(i - V) there is a transition from the elastic state

to the state with internal friction; as a*- I the coefficient of

friction decreases; a* = I corresponds to the hyd-rodynamnic state.

The mechanism of internal friction can be described if we intro-

duce the condition of plasticity in the form of the relationship of'

tangent stress T = 1/2 (ar - '0 ) (second invariant of the stress tensor)

with U = i/3(a r + 2%y) - the first invariant; this relationship may

be nonlinear, so that a* = a*(F).

Let us consider dynamic loading. The velocity of sound in a

state of stress with internal friction for a* = a0O'j = const arid , =

= K- will be

a= 3K -+K2 * K =I-L A,, Larne parameters). (1 . )

___(I_+____ ) 3
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When a* v/(i - v) we have

a = .. Q + 2p/ p (1.7)

Here a0 -propagation velocity of the elastic wave

When a* = 1, we have

a = = (K / p0)" (1.8)

'Here c0 -hydrodynamic velocity of sound.

If a* deends on o, and the relationship of a and e has a weak]

linear character, then, instead of (1.6), we have

=P:oA + 2a*w)( + £e)

I &I< (1 9)

Let us consider a solid, for which a = Ks (K = const) and for

which acdofding t experiment-with plane waves there is established

". ki lobrP " // dependence a (s) in a certain rank lobars s G, O/ 
c

,ZV' [' -of stresses, which corresponds to

Iron constant velocity of sound durin-

/2 loading and unloading.C .S, -5.1
(- 7] IQ-- On the basis of these data w

to- r _Fuse qt can make two equally justified

0 - -e q 1hypotheses: the medium is in -)ii

¥ fr-$i kmsec - elastic state a = v/(1 - v), or .

- -_ w" state with internal friction

7 a* = V/ (I - V).

Consider now a spherical wa v(

- 0 is 5 propagating in this medi.

If, during propagation of the wav

cohesion between the "balls" is not disturbed, then strains in th.

Swave will be elastic and damping of amplitudes will follow the law

-i. If the bonds are broken, there is a state of stress wtth

I1A



internal. friction, and damping occurs [21] according to the law

r- (2 -a )  This damping is connected with the work of forces of frictic

during relative displacement of' paiticles in the divergent wave. This

effet occurs not only during build-up of stresses in the wave, but

)lso in the unloading zone. Considering damping of maximum amp!itud.s

in a spherical wave, it is possible to establish the elastic limit.

ik!E- This effect is clearly seen in Figs. I and 2, where there are

,iven data of experimeats with plane and spherical waves for iron,

fused quartz, granite and rock salt [17]. The authors of [17] note

that this dependence remains practically linear in that range of

deformations which corresponds to data in Fig. 2.

• ange § 2.1. Let us consider in more detail results of certain expcri-

ments pertaining to plane waves. In experiments of dynamic (explosive

loading of a test piece in 6 certain environment of the axis of a

cylindrical piece there is realized a plane stress wave. The stress

wave can have a shock nature, have continuous build-up or to disinte-
W'

grate into a group (two to three) of continuous or shock waves, moving

at different velocities (Fig. 3a and 3b).

Rock selt [17] Steel (9) Iranite [161
103 6Fmz, kilobars 6 r*z.,bars

4 40 400

330 300 -_ V2- -- 2o - - ZO ." 
n -.2 |

10 - -- - Z O 1. * 00 . .._" - --

6 IJ760

4 , - -- 40---

a -124

__ __ __ _ __ _ _ -. .... L .

14 20 30 4050 70 100 140 10 30 400 20 30 40 6 01 00/o
fi," 2.
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In Fig. 3p is a "stress - time" diagram in steel [5], where

4 - time of arrival of an elastic wave with velocity 5.85 km/sec and

tion amplitude 15.7 kilobars; 3 - time of arrival of a shock wave with

'his velocity 5.1 km/sec and amplitude of 225 kilobars. In Fig. 3b is

the "velocity of surface movement - time" diagram for a piece of' fus d

des quartz [13]: beginning of recording corresponds to wave velocity

of 5.97 km/sec; first shock wave has velocity of 5,.15 km/sec and am-

plitude of 100 kilobars.

lh; state of stress is determined-by the principal normal s-tresse

or and ae and volumetric strain E. In experiments we usually measure

the propagation velocity D of the shock wave and the rate of parti1'e

displacehent it, afte: which stress ar and strain a are determined I.,/

ri- Hugoniot equations:

Lve) a, - ao = po (D - uo) (u -uo) (2.1)
8= D. (8= -- ) (2.2)

Here index 0 designates quantities in front of the wave. Fio.r

propagation velocity D of the shock wave and velocity of sound a we

.ng have

DO P--/ ,po de

Here o* o*(a) -adiabatic dependence.
r r

As noted, for weak waves dtJ1'ereri t
o (a) u (b;P r-of velocities a, D and a0 has the s

order as E. Relationships (2.1 ) a d

(2.2) are exact f,r i shock wa v ' , . ,'

3 4 t } approxirriat ey satisied ('it, ,

up to E2) f r (, u 'U , t: .[ 2 t

wave [1 2].

Jr (ID I) ,nd (2.2) we c:an i_.ros ni c. p , ri '-,Y d , ;f



uressih :f iron and fused quartz in the following form (Fig. 1).

As follows from these data, the velocity of shock waves in this range

of stresses changes slightly, by magnitude of no more than !0-!5%.

To estimate deviation of the velocity of perturbations from the

velocity of souna in the elastic state the diagram of (Fig. i) can be

presented in the form of two straight segments. Then in iron and

steels slopes of these lines correspond to velocities of perturbations:

with minute (elastic) amplitudes of waves they are 5.86-6.0 km/sec,

zes and with large stresses [20] right up to 130 kilobars they are 5.1 to

5.15 k./sec; in fused quartz they are 6.0 and 5.15 km/sec, respectively.

The presence of irreversible strains can be judged, if the de-

pendence ar(E) differs during loading and unloading. Without delving

into the mechanism of irreversible strains, we can set dependence

or(s) at the base of the theory of plane waves, but as one may see

from the preceding, without additional data, we must not base our

consideration of a more complex state of stress on this dependence.

If to supplement dependence ar(s) we have data on relationships

o(5), it is possible to establish the magnitude of strain e, at

which a solid passes into a hydrodynamic state. This is possible

t-, do by comparison of slopes of tangents on curves ar(S) and a(F)

for th2 same value of s.

2.3. If we turn to a model of a medium with internal friction,

then experimental data on dependence ar(s) can be interpreted as

follows.

Change of the propagation velocity can occur both because of non-

linearity of dependence

aid du. , Lo nonlinearity cf volumetric compression

17
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' n=Kis (I + lit), l ~i! < 1

Dependence Or(e) allows to determine a0. Thus, in case of the

diagram ar(s) for iron, having a break we have

O*a_ I +v A-ao

Here A - relative jump of the velocity of sound. If, however,

change of the velocity of sound occurs continuously, which is ob-

5: served in many cases during tests of metals [0] and rocks [iEj,

y V(2.4)

Wave attenuation due to friction is determined first of all by

ly." If nonlinearity of dependence r(s) is connected with ir-

reversible processes --f volumetric strain, the influence of these

processes on wave attenuati:n is determined by the relative difference

of the velocity of sound under load, i.e., it appears in additional

"hydrodynamic damping" of the wave.

2.4. As noted, experimental data on Or(s) is insufficient for

a simple conclusion about the mechanism of irreversible deformnatins.

Such information can be obtained either from experiments with

divergent waves, or from other experiments, supplementi.ng data on

J,(s) with data about compression c(s) and friction T(o).

As illustration we consider experimental data of" Bridgiran on

'(o) (Fig. 4. line 1) [23] and data of Buchanan (Fig. 4, line 2) [,].

Dependence T(o) has a form, characteristic for a mrdliun with inter'm.j

zcnsion: r increases with growth of o. Slope f linu T(6) ,ear d.pm

on the rate of loading o.

It is possible to assume that with high rat-s ,_, _a :.,,

no longer depends on the rate of loading and c..,c:-ffiCent cat, be

determined fromn observations of weakentri, of awritudet s T".

a sphcrical wave, considering here the add Lt_:.ol. fec,
18



iyi.v ,wn:ii ' ,lamp trng.

Experiwents in spatial attenuation oi' stress waves in metals in

spherical and cylindrical cases practically have not been discussed

in the literature. Here it is poss'ible to give only certain data of

J. Rinehart [9] on damping of stress waves with axisymmetric loading

of metals (Imposed concentrated charge in blocks of iron or steel of

different thickness d) (Fig. 2). From these data it follows that

upon achievement of the elastic limit the law of damping of maximum

stress ,wharply changes: the exponent in the exponential law, slmle-

t~!iet larger than 2, becomes somewhat larger than one, although the

velocity of perturbations according to Rinehart rema-ins 5.53 kni/sec

The experiments of Rinehart were conducted in more complex c' -

e ditionb than a spherical explosion in a solid medium; this does nod

allow us t- directly compare data of experiments [9] with conclusions

c £ theory; accuracy of determination of or and a is also insufficient;

apparently, a = 5.53 km/sec is the average value of a when

40 kilobars and o 10 kilobars.

More complete data were obtained during explosions of sphtricP.

,harges in hard rock (marble, granite, diabase, hard limestones [{(1;

,',-' soll [17]). In Fig. 2 are given data from [17], indical,in,,q

,' ~icts Tw:- (W Iirping of stress waves in a state with internal fric-

I icun iA in ite presence only of hydrodynamic damping, although,

r ie ,llthl'S Of [17] note, the dependence Or(s) remains practically

I ii i.ar in the- whole range of deformations for which these data are

The. .'o. obtoined in the same conditions f )' wh h thc r ,

*i...!,l i ,d " 1. ht oret..c i[ law of damping, of maximum stros;, , -

' .hich allts us t caL-,,oat;c va ic ; -- , ; , ' La

-. -19



!klor (2-.4) we find v = 0.305, which is

(1) very close to the value of v for rook

salt: ; = 0.30 to 0.33.

Thus, experiments in dynmic• 8 6. bars SO

Pig. lj. testing of solids (if results :nre ti

be used for calculation of parameters

of the divergent wave) should be supplemented by study of the laws,

tamping of spherical stress waves or data on dependence i(o), o ,tai,.

in e.r-nents at different rates of loading.

3.1,. Let us consider propagation of a spherical shock wave; Uh-

hind the shock wave front unloading occurs, but unloading, must ot ,,

-onsidered elastic: -ne should take. into account internal fricti ri.

For the unloading wave- -n the stress wave in a medium with in-

ternal friction ve have

a -ao =K(z -,o), do'- Oeo *(Or -- or.)( .)

1.,1here the magnitudes with index 0 pertain to the state att !c ginning

,If' inloading.

At present there are no direct data on dependence '(,) i1,tri

r-,pid change of 0. From certain data of Pridgnman on the behavl.,r

ii i(o) during slow loading and unloading [23] it follows tL -  -

lendence rt(o) during loading is similar to the same during uii, r ,.

We determine the law of damping of spherical shock wc'vo ,

Y- -resses in the range of pressures at which internal frLcti, il apf)C'1'.*.

For a continuous short wave we have [12]

F ° = G (t), a,* = . a = Kle (1- le)

r aot (., .

Here r - (oordinat, ; K -Imcdu I us ,.mpr,. i ri , . -. ;-

1, furic t i 01.
La
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Let us consider the simple case of a linear profile behind the

front of the shock wave:

For a weak shock wave the propagation velocity in a medium at

rest is equal to
D dr = a* I o\-1

2 (3.3)

Determining dr/dt from (3.2) and equating it to (3. ), we find

dX I C r -C (-*o L

From this we obtain the law of damping of a stress shock in a

medium with internal friction:

Orr, C1 '+,
- a --" r(C

'-  
ron

-

As follows from (3.4), the shock wave of stresses attenuates

faster than the continuous wave.

Submitted
in-p 25 February 1'64
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TOWARD A THEORY OF ANISOTROPIC CREEP

N. I. Malinin

(Novosibirsk)

Certain ,.isotropic materials have the property of aniso-
tropic creep. .: isotropic creep will appear during the
action of'mechani. -tresses in single crystals at'. hL
temperatures, in rei. - plastics [1], reinforced con-
crete, etc. During designir( -,f certain constructions 1
anisotropic creeping materials there arises fh nec- :cty
of estimating the magnitude of creep in a body f;' ;t:v -
ing, for instance, the distribution of stresses in if.
fortunately, solution of such problems is harnpered y tue
fact that the theory of anisotropic creep is extremiej, /o,-
der-developed at present. Absent also are experi,-:
on research of anisotropic creep of re'al motcrials.

Pelowv .' cmnsider certain possible variants f ,',:j
of equations, of* anisotropic creep. The latter, on .1,; 'V
hand, constitute a generali--tion of equations or nis-
tropic plasticity, and on the other, a generaliz t.L _ ':

dependei.ces of' isotropic creep. In expeciments I.': Ph

days we studied anisotropic creep during compression f
4lass-fiber-reinforced plastic AG- [3 (unif,)rm -r0V11t ) -t
at temperature of 300C.

I. Wor;ks, devoted to research o" arisotr, ,, rep, n,',

numerous,* in the work of Takizawa (2] there tru ,r- r,' tr,' , ,

, '- icterices of' the th ,,y of linear ivr, ,is t

,w, .oistirig Of a eoneral iziition o krviw ri c-,un ti ,i-,,

V, r rI In monor'aph c] e,. Li :, . t-t, -

..:, ',u ; iV ,iti , ' , *' ' t

...



I' po2tential type, whereas the potential of flow S it is proposed to

take the homogeneous quadratic form

S = G ,ai (1.1)

where Cijkl - parameters of material (Cijkl = Cjikl, Cijlk = Cjkl

since stress tenso-r aij is symmetric; Cijkl = Cklij due to symmetry of

form (1.1) with respect to aij and okl).

Unfortunately, the cited works on the theory of anisotropic creep

cannot satisy the researcher for the following reasons. In [2] it is

nrt indicated, even approximately, the number of parameters describing

anisotropin creep, and also nothing is said about methods of determ-

ination of' parameters oI' material fromi experimental data. The theory

of flow, for which in [3] there is -offered a potential in the form f

(1.1), badly describes creep during changing stresses.

Contemporary theories of creep of an isotropic body constitute

a generalization of theories of plasticity. Thus, for instance,

equations of the theory of small elastoplastic flows for an iso-

tropic body are recorded in the form

ri = T (T) at)* (1.2)

where Eij - plastic flow; o - component of the deviator of

stresses; T! -function of intensity of tangent stresses T.

If we consider function T (T) dependent not only on T, but also

,- time t, then instead of (1.2) we will have equation of one of the

theories of creep - the theory of aging - where in these equations

instead of E ij one should write E ijc (S ic - creep).

Analogously we make generalizations of the flow theory of'

1i,;-Licity, eiuations of which for an isotropic body are recorded in

I ho I' rm

(eij)" A (T) a~i* (() =d/d) (1 .3)
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If we consider A a function not only of T, but also of time t,
we obtain the theory of flow for creep; instead of (s iP)" one shoulc

as above, write (E,,c)'. If it is considered that A does not depect

on t.. but depends on ,or s or on the work of stresses, then wE

have one of the theories of hardening.

Among theories of creep the theory of heredity occupies a special

"ace. The theory of linear heredity uses the principle of super-

position, according co which deformations caused by the sum of sep-

aratc :t-sges of stresses Aoij are equal to the sum of deformations

from each of Aaij. Here, the laws of creep have the form of line:r

integra] Volterra equations with a variable upper limit. For the

nonlinear theory of .redity the principle of superposition no longer

is observed. Equations of r- rtnlinear theory of heredity constitut

n generalization of linear equations, where in the corresponding

tntegral Vo]!terra equations instead of functions oi(t) or Ei. (t)

there are substituted nonlinear functions f(oi ) [4.] or f!(ii ) 15

Summing up what has been said above, it is possible to Istete

that the theory of creep is a generalization of the theory of0 pias-

ticity. The theory of creep, in distinction from the theory of

plasticity, considers time effects. Equations of creep differ fror,,

<,Iuations of the theory of plasticity in that in the correspunding

terms, determining Ec (or "(Ec)*), along with stress (or some in'ra

" stress) there enters time. Thus, every theory of plastcit, ;.: .

in principle, be generalized for creep, if' we consider funcLticons

e A or their equivalents dependent not only .,n s't,. 1t ,i

Usually the theory o" plasticity ,il,, cri1 oria of y ,r,, ifl

x t':% (A' the St.. Venant criterion or f -, Von ilL. i-i 1 ,-

- -- - S. - .. - ~'16



The St. Venant criterion of yielding was generalized for an

uld, anisotropic plastic body by A. Sawczuk [6] and D. D. Ivlev [7]. The

nid concepts developed by A. Sawczuk and D. D. Ivlev were generalized for

We anisotropic creep by 0. V. Sosin [8].

Unfortunately, the theory developed by A. Sawczuk and D. D. Ivlev

has the following deficiency. With rotation of the principal axes

the shape of the surface, depicting the condition of plasticity

(or creep), will change. Consequently, changed also will be numerical

values of parameters, in the equations of plasticity (or creep). De-

pendences of these parameters on angles of rotation are not fixed; in

principle they can be discontinuous functions [7]. Thus, for complete

r characterization of the properties of anisotropic plasticity (creep)

Lute of a material it is necessary to carry out a very large number of

experiments. In connection with this we subsequently will use the cri-

) terion of plasticity (or creep) of Von Mises for the anisotropli body,

f ]. offered in [9].

The equation of the plastic potential is recorded in the Cartesiar

system of coordinates Oxyz, axes of which are connected with the

principal axes of anisotropy. In general this equation for an aniso-

tropic body has the form

S = Cij.A-taYqa'k = const (1.4 )

Coefficients Cijkl constitute parameters of the material. In

general, criterion (1.1) contains 21 coefficients Cijk. If plastic

flows are not accompanied by changes in volume, then the number of

pnrameters C ijkl decreases to 15. For an orthotropic body, incompres-

sible during, plastic flows, properties of the material are described

1yv ( premeters Cijkl and on the principal axes of anisotropy the

equ.tion of the plastic potential is recorded in the form 1I)]
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S = C, (av - aV + C. (a. - a )2 + Cz (ax - 0)2 +
+ 2C,,2,.., + 2Czj, 2 + 2C,,:r = const (J • 5)

where Cx, .. ., Cxy - parameters of the material. Here the rate of

plastic flow (E ijP) is determined by formula

= as / ag (1.6)
.ev In the case of imperfect plasticity S may also not be constant,

and by analogy with the theory of plastic flow of potential type we

can write

al
Njpy = I (C,) as / aij (1.7)

It is not difficult to show that the criterion of yielding

Sf'(ci ) for an anizotropic body should satisfy requirements imposed b-,

the condition of comprscibility or incompressibility of the material,

and also properties of deformati m symmetry. These conditions will

ri- be satisfied if as the argument of function f tie take quadratic form

S C ijkl ijkl as for the elastic potential (coefficients C.
=C lijk a oetil:jkL

and C*jkl in general may nvt coincide). Expression (1.7) will be

ian ignificantly simplified if we set f(oij) = 1' (S). Here we will hPve

as _ am (1-8)( ,,) = ¢'(s) = _j,-7

Subsequently the theory described by equation (1.8) is gcneral.Le,'

for the case of creep. For creep this equation has the form

(ej,). = cad (S, 1) as = O(D (S, t) ( .9
aS O ij - 3i

2. For creep of a body D (see formula ('1.?)) will depei

not only on S, but also on time. If S is considereA a parm,ri r

(.-t, h consideration is possible only when stress, an I consoiuonily

a i,,, magnitude S preserve a consuant velue luring the peirti F rh,

experiment), then for a creeping bo,ly u is po. ilt I,< , 1i .,



potential q) a function of time t, i.e., ¢ = O(S,t). If curves of

creep, obtained for different stresses, are similar, then function

4) can be presented in the form of the product of two co-factors, one

of which depends only on stresses and the other, only on time, i.e.,

€(st) =F s)O* (t) (2.1)

Subsequently it will be shown that curves of creep for identical

samples of glass-fiber-reinforced plastic AG-4S, taken with different

stresses, can with a sufficient degree of accuracy be considered

similar. In connection with this we subsequently will use the hy-

pothesis described by formula (2.1).

As e*(t) in theories of creep they frequently use an exponential

function [4], i.e.,

e*(t) = tn (n - parameter of the material). (2.2)

Function D(S) is the dependence of the rate of creep on stress.

For linear creep it is possible to set

F (S) = S (2.3)

For nonlinear creep two cases are possible:

ZI1 / 6- when t = ocs, ice / O = Const 0 when t = const (2.4)

where in the first case they usually use an exponential function of

the dependence of creep on stresses [3], .and in second one in the

form of a hyperbolic sine wave [11-12] (or cosine wave), so that, for

an anisotropic body it is possible to write

(S) = S F (S) =Ah (2.5)

in these dependences the quantities m characterize the material.

3. If if is considered that dependence (1.8) is also satisfied

29

- ~ ~ ..---.-T



for alternating stresses, ,.ye arrive at one possible variant of the

theory of flow during creep. If stresses do not zhange, equation

(i.8) for creep can be written with allowance for (2.1) and (2.2) in

the form

= 0 (A) OF ! &Vj

From this we easily find the equation of the creep cur,, having

form

ce (t) ()d(.1)
13 o

If it is considered that equation (3.1) is also Useful for

stresses -changing in time, we obtain one of the variants of the the(ury

of aging.

As it was shown by Yi. N. Rabotnov [5], the theories of aging and

flow have a deficiency, consisting of the fact that their equations

are not invariant relative to the beginning of the reading of time.

Therefore, these theories cannot give satisfactory solutions to prob-

lems when the loads change rapidly in time. More promising in this

respect are theories of hardening and heredity.

According to 'the theory of hardening, in distinction from the

theory of flow, function 0 (see equation (1.9)) depends on the set or
rthec

parameters characterizing the state of ma erial [13]. In particular

cases the determining parameter (along with stress) can be considcrt

creep [14], work stresses in creeps [15], and others.

Thus we consider possible variants of construction of the thcryt'

har'dening for an anisotropic body. Let us assume that magnitude 11

in equation (1.9) depends on certain functions of' stresses an,1

strains, i~e.,

ID =- (

Min=.



Functions (oij) and C(eij C) play the role of stresses and strains,

respectively, for the one-dimensional case; therefore we call them

generalized stress and strain. For calculations in the case of a com-

plex state of stress it is essential that equations (1.9) and (3.2)

lead to a dependence between and t having the same structure as

formula (1.9) for uniaxial extension or compression. For an isotropic

body as it is convenient to take the intensity of tahgent stresses,

as C-- the intensity of shearing strains during creep.

For an anisotopic body functions and C should satisfy the

requirements imposed by conditions of symmetry of deformation proper-

ties of the material. For material incompressible under creep to them

we join the condition of incompressibility. As generalized stress it

is possible to take, for instance, 1-, which, as already noted above,

satisfies the set requirements. It is possible to show that require-

ments concerning forms of the relationship of C and will be satis-

fied if as generalized strain we take -L Anction

=

--I( 'i  f ;j c ''dt (3.3)

Here coefficients bijkl one can determine from equations

bijk Cif.-* 1c r Cm.p, (3.11)

Between coefficients b ijkl there exist the obvious relationships

b =jkl = biM, bijkl = bitk, bijtk = bklj

L In general, system (3.4) consists of 21 linear equation with 21

un nownbijk!. For an orthotropic body we have a system of 9

equations with 9 unknowns, disintegrating into 2 system of 6 and 3

unknowns.

Let' us assume, following [15], that creep depends on the work
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of stresses in creeps a. Here the equation of creep can be written

in the form*

'-U (a) aV(S) / U, (a) V' (S) OS / 0,, 3.5

For a hereditary medium it is possible to generalize the non-

linear equation of M. I. Rozovskiy [4]. This equation for an aniso-

tropic body will have the form
a £

0,, - , 0, (t - () (S) ,s dj) (3.6)

For a linear body Ft(S) = 1, and equation (3.6) is a particular

case of the more general equation of Takizawa [2].

4. A thorough check of the theory presented in the preceding

secticns can be ma~e in exp, riments during a complex state of stress.

However, certain conclusions can also be made on the basis of ex-

periments during simple extension '(compression).

A limited check of the developed theory was undertaken on

uniform-strength glass-fiber-reinforced plastic AG-4S, for which in

conditions of uniaxial compression we took curves of creep.

Uniform-strength glass-fiber-reinforced plastic AG-4S is a non-

homogeneous material, glued together from alternating layers of glass

fiber, where the direction of fibers in adjacent layers are mutually

perpendicular. Anisotropy of deformation properties of gla.ss-fiber

plastics is a particular case of structural anisotropy. To descril(

elastic properties of a structurally anisotropic body, as shown in

[ i, it is possible to use the framework of the theory of conthirntvo:u

physical anisotropy. This was confirmed In a number of works (r'or

instance, in [17]), in which it was shown that the nonhomo enririty ,rvl

*Equation (3.5) was offered by Yu. N. RaI[,h)!ro".



layet'ed nbture of a material do -,ot play an essential role, -and

elastic properties of glass-fiber plastics are described by the same

equations as for solid anisotropic media.

As for plastic properties and also creep of structurally aniso-

tropic bodies, for them the framework of the theory of physical aniso-

tropy frequently is unsuitable, and it is necessary in every concrete

case to consider peculiarities of construction of the body [16].

Therefore, the tieories recointed above can be considered applicable

to glass-fiber-reinforced plastics only as a first approximation.

As has been noted, e.g., in [18], during experiments on com-

pression it is necessary to pay special attention to centering of the

test piece relative to the applied force. Centering is more easily7

ensured for short test pieces. But for short pieces essential influ-

ence on the results of tests can be rendered by non-uniformity of the

state of stress near faces of the test piece, for which the problem

of selection of optimum flexibility of the sample in compression ex-

periments is of essential importance. Therefore, preliminarily we

conducted a experimental check of the uniformity of the state of

stress by section and length of uhe sample. The test piece had the

s shape of a rectangular parallelpiped with a cross section 14 x II mm

,ind length 80mm. For loading we used a reverser, created by the

author of [18] and modified by us.

In the first series of experiments on each of the lateral faces

near the center of a piece of uniform-strength AG-4S there was fastened

a strain gauge with a base of 20 mm. Readings of the strain gauges

weore fixed by an eight-channel strain gauge installation

8ANCh-7M. It was established that readings of the strain pauges

,tr r'o by not more than 5< and calculaed eccentricity turned out
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to be minute.

In the sucond. series of experiments we estimated error caused

by friction on faces. On one of the faces of the piece there were

fastened four strain gauges- with a base of 5 mm. At the edge of

transducer 4 the paper sublayer was cut away as much as possible and

the transducer was fastened to the actual edge of the piece. Strain

gauges 3, 2 and i were glued approximately at distances of 1/8, i/1,

and 1/2 the length of the sample from its end. Readings of trans-

ducers 1-3 during tests practically coincidedJ readings of trans-

ducer 4 differed from those of the first three by not more than

6-7%. If this deviation is caused by the influence of friction on

the faces, possible error caused by non-uniformity of the state of

stress in the sample will.not exceed 0.8-1.0%. These results are

in qualitative conformity with the data of Binder and Mller [19],

establishing identity of diagrams of compression and extension in

veiry short samples for a large number of glass-fiber plastics

(change of the cross sectional area of the sample during its le-orme-

tion was considered in [19]).

Tests for creep were conducted on machines described in [20] at

a temperature of 30 ± 0.30C. Control of temperature was through a

contact thermometer. Samples were cut from one block of uniform-

strength AG-4S. Axes of the samples had different directions in

space, i.e., angles T and V1 (Fig. 1) were different. Axes x and y

of the coordinate system are parallel to directions of the gla. s

fibers in adjacent layers, axis z is perpendicular to the la ' r

(direction upwards).

Elastic moduli for different angles 0 and 'P coull be v;tenmineoi

by the magnitude of elastic deformation, developedi practicn 11,
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instantaneously at the mo,,lent of loading, or during unloading.

Furthermore, it Was possible to calculate

TP Test piece elastic moduli from the diagrams of compres-

sion in Fig. 2 (where teare are given curves

of deformation of glass-fiber plastic AG-4S:

a) q = 0, 4' = 0; b) T = 0, P = 900; c) CP
Fig.1.= 450 , P = 0; d) T = 450; P = 450; e) T =

= 150, P' = 30o). Experiments, results of which are presented in

Fig. 2, were conducted as follows. Load was applied in small equal

portions and at equal intervals of time from zero to a maximum value.

Strain was recorded after the addition of each new step. After the

last step of load was applied, we recorded creep for 1-2 days.

kg CtV!5hr) 6'E(118 hr) kg c C( hr/

6JtAZ MMdZ k 6'(26hr ) tq

016

° . 0..q-6,70  .o - o 0 .41 o 0.2 a/ 02
a b 0 d
Fig. 2.

Horizontal area in the diagram of Fig. 2 thus corresponds to creep,

built-up from the moment of termination of loading to the beginning

of th-e load. After expiration of 1-2 days we produced unloading,

the diagram of which is also given in Fig. 2. From the diagram of

loading it vias possible to determine the modulus of compression.

Vor samples cut in direction T = P = 0 the modulus of compression

turned out to be equa. to the elastic modulus, determined during

rapid application of load.

For angles cp and 7P = 0 the modulus, calculated from diagrams of

the type presented in Fig. 2, turned out to be 10-25:' lower than



during rapid loading. These divergences are caused, apparently, by

the influence of creeps, built-up in the period of loading (=3 in).

Curves of creep of uniform-strength AG-4S for samples, cut at

different angles, during loads changing in steps, are presented in

35 Fig. 3 (where (a) q = 0, ?' = 0; (b) 0 = , ?P= 900; (c) p = 450,V =

S: (d) T = 0, ?p = 450; (e) T = 450., V= 4 5
0 ; (f) T = 450, P = 300.. On

the basis of analysis of data presented in Fig. 3 we established that

the dependence of creeps on time during constant stresses may be

expres.ed by formula

a = Ct'(4 .1)

where C - parameter, dependent oh stresses a and angles T and . Com-

paring formula (4.1) with (i.9), we see that function q is presented

in the form of the product of two co-factors as (2.1)-, of which one

depends only on stresses, and the other depends on time.

With respect to the dependence of creeps of glass-fiber plastic

on stresses it is possible to say the following. The best way of

satisfying (with stress a constant during the period of experiment,

the latter can be considered a parameter) the dependence of sC on o

is in the form of a hyperbolic sine wave [12]. With small loads, in

connection with the fact that for small a sh a a creeps

Ec are approximately proportional to stresses, which is confirmed b

[21]. During our check of the theories developed above we shall

limit ourselves to the area of linear c.reep, i.e., we set F(S) = S.

From the graphs presented in Fig. 3 it is clear that c is alp} ro,:i-

inately proportional to a everywhere except the curves in Fig. 5a ar-i

c for stresses of 10 and 5 kg/mm 2 , respectively.



Ir Fom the graphs in Fig. 3a, b, c,

COOV-_:, h5T

0 3 6= '6 and d it is possibl c calculate parame-
0 80 6  ters Cx - Cy (since densities of reinforce-

ment by glass fibers in directior.s x and y

o 433 - are identical), Cz, Cyz = C zx and Cxy. As

0. h a result of analysis of data for glass-
#0O 80 O

e 6 fiber-reinforced plastic AG-4S (uniform-

strength) at a temperature of 300 C we ob-

.ain values C= Cy 10.7"I0- Cz

00 1 -9.35 10-5; C = 2.0-10- 5 , C C
(d) 14.2.O - 5 kg-1 2 -0.2I. d _Il-. ' mm. hours . With the help

of equations (1.9) taking into account

6 z_._ (1.5), (2.1), and (4.1), there are con-
O=067 i*

I . , hi structed curves of creep (theoretical) for
6 0. 81) 20 angles T = , = h5 ° and T = 450 , P1= 300 for

-l (ae) stresses of 0.67, 1.33, and 2 Kg/mm2  de-

&I33 R91MM0 4H I6_ picted in Fig. 3e and f by dot-dash lines.

o 20 Uo Here, for the same stresses there are
cc % (f 6 Z - given experimental curves. For direction

0. 1[nF
= as one can see from Fig. 3e,

1--3 experimental curves corresrond well to

- theoretical ones, For p = 15°, 0 =30

]--- errors are somewhat higher and reach 255.eror resoehathgeran eahe5
.1 8However, these errors are still small as

compared with errors which could be ob-

lcioned by ignoring the anisotropy of creep.

Wor cheek:u<i above-described theory for variable stre',ses, on

one .111n1 le: fron cacfi series we formuilated exieri ments i, which

....... - . . .ITT. -. .-. .



load upon the expiration of a definite period increased in stages.

Curves of creep for loads varying intermittently are presented also

in Fig. 3. Here the dash lines plot "theoretical" curves of creep;

here we used the hypothesis of hardening of Yu. N. Rabotnov, descril

by equation (3.5) taking into ac.count (1.5), (2.1), and (11.1). De-

pendences U(a) and V(S) were selected in the form of exponential

functions, i.e., U = ka-a and V = SP; for AG-4S we obtained values

a = 4 and P = 5. Dotted lines plot "theoretical" curves of creep

accoa'ding to the theory of heredity -described by equation (3.6)

taking into account (1.5), (2.1), (2.3), and (4.1). From Fig. 3

it is clear that experimental curves are close to theoretical ones

everywhere, with the exception of the region where stresses are too

high.

(All experiments, results of which are shown in Fig. 3, were

repeated. Creeps differed in parallel experiments by not more than

15%. The relatively small magnitude of scattering was, apparently,

caused by the fact that samples are cut from the same plate.)

Analogous calculations were carried out for the theories of

aging and flow. Here we obtained the already known fact that theve

theories satisfactorily describe the process of creep only during

-:moothly-varying loads. During sharp changes of stresses the theori

of aging and floi. give results significantly deviating from experim-

Subsequently it is necessary to create a more universal theot':,

of creep for reinforced plastics, which should consider features of'

structural anisotropy of these materials, different nonlinear effo-

andI which would, furthermore, be useful for description of the be-

havior of material during non-monotonically changing loads, a,' fo "



instance, in [22].
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nl. ON SINGLE-COMPONENT BEAMS OF LIKE-CHARGED PARTICLES

V. A. Syrovoy

(Moscow)

By single-component is understood flow in the direction
of one of the coordinate axes (for instance, in the x1-
direction) of an arbitrary orthogonal system of coordinates
xi (i = i, 2, 3). Below, the question about coordinate
systems allowing such flows is investigated. It is shown
that in the two-dimensional c-ase (§ 2) single-component
flows are possible only in three orthogonal coordinate
systems: Cartesian x, y, polar R, ?P, and helical q1 5 q2 "
In three-dimensional space (§ 3) there are considered
coordinate systems for which

gn = hi (x) h (x2) h (X3 ), g = k ( K(xl, x, g3 = I () L (1, xj

Here, to the three cylindrical coordinate systems,
corresponding to the shown two-dimensional systems, there
are added spherical coordinates r, 9, P.

§ i. Formulation ofhe problem and fundamental equations. A

monoenergetic non-relativistic beam of like-charged particles in the

stationary case in the absence of an external magnetic field is

dt scribed, as we know [1, 2], by one nonlinear fourth order differen-

tial equation forW - action per particle mass. In the arbitrary

curved system of coordinates xi (i = I, 2, 3) the meuric, in which there

is given by relationship

d5 2 '=g x' dk (i. i)
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this equation, has tha form

g-m { =0 (1.2)

Clarification of the question of those orthogonal systems of

coordinates which allow single-component flows is the subject of a

series of works [3-8]. However, their goal was to obtain necessary

and sufficient conditions for the possibility of a single-component

flow in the xI-direction (abbreviated as x -flow). The question of

the existence in the given system of coordinates of x -flow was

solved by means of application of developed criteria to the metric

tensor of this system. It is clear that the number of coordinate

systems satisfying these criteria could not be established because

with such an approach it was necessary to act by trial-and-error.

Thus in [6] they studied eleven curvilinear coordinate systems,

encountered in the theory of electromagnetic fields.

In [2, 3] it is shown that in the case of flow in xI-direction

equation (1.2) takes form

(d-)'-w + a W + h (x) 01- = F (X-, x)

W(x)= (g3)g, 1V, h(X) =- (,, a ( (1.3)

Here F(x 2 , x3 ) is a certain function, appearing as a result of

integration with respect to xI , and f(x) = f(xI , x2 , x3 ). Since

components of the metric tensor, having in orthogonal coordinates a

diagonal form, depend, in general, on all three coordinates, and

w = w(xI ), on ghh(h- fixing index) there shold be placed certain

limitations. Sufficient conditions of the possibility of xI-f'low

were obtained in [7] proceeding from the requirement that equat-ion

(1.3) be an ordinary differential equation for w, and consi.;r c' tho
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following:

f () = (D (x)F(2, 3) + G (x)
(x) h (x) = T (x) F(x,, )+H() (. )

For w we have equation

0 (x')e + D' (x) w, + T (X')-w = w-11, (1.5)

Here (D, - certain functions of x , and G. H, and w are connected

thus:

dG +G (x) dw

G(z) +0-' ax +(x)w= 0  (1.6)

When G = H = 0 formulas (1.4) determine conditions, fixed earlier

in [3]:

f (x) = ID (x) F (:0, a), h (z) = T (x) (1 .7)

Conditions (1.4) and (1.7) pertain to twoqualitatively different

classes of flows. For satisfaction of boundary conditions on the

emitter the solution should contain two arbitrary constants. If,

however, on the metric there are imposed limitations (1.4), then it

will have not more than one arbitrary constant. In this sense,

solutions for which (1.4) is satisfied are degenerate. Solutions

of this type were validly contrasted in [3, 4] to solutions, describi.ng

single-component flows from a surface on which there are realized

conditions of thermal emission. Actually, expressing w" from (1.6)

and substituting it in (1.5), we have

Requiring, as above, that (1.8) be an ordinary differential

equation for w, we obtain
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(D!). l In G(x) (x) - cr(xl) + U (x)

V (,- L-, ( x) ) P (x) + V (x)
d W (x (1.10)dw+ ()49 •z dxt

a(z').d 4 + P (x)w=,#- dw'u +(),=o(~o

It is easy to prove that solutions of [9, 10] given in [4, 5]

W = x', (1) x -= '/2 1 - y'),
(2). 1 = Re (2i in sc z) (.- =x + iy) (1.11)

simultaneously satisfy equations (1.6) and (1.10). They correspond

to the case when U V = 0 and

S=I/g = =)F (e) + K (xl) L (.e-) (g = lq, I

For the fii-st of them 0 = L = 1; for the second (D = 1. In each

of cases (1) and (2) solutions (i.i1) will, apparently, be the only

possible ones.

Subsequently we will be interested in systems of coordinates,

for which we have conditions (1.7), and, consequently, nondegenerate

solutions.

Besides fulfillment of conditions (1.7) it is necessary that

the metric be Euclidean. This requirement is expressed by equality

to zero of the Riemann-Christoffel tensor [ii]

0;,a = 0 (1.12)

or of the symmetric tensor of second order Si j

s' j= 4e-,el,' "R,,, = 0 (R,,,, = g,,,,R.', l.!
S'1 

. = (4R~rg) (1 s13

Conditions (1.13) are called Lame identities and in detailed

notation have form [12]

ah In g . + In g I n I g . n g 0 In g , a In g ,, 0 In g yy

a +i a- - T ax*" axP = o (l .h)
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M~ [2In g. alng.. a +g3[a IngMn g,, + In g.gam 2 + a 042 Ian + -a- a( -.

+ glra- agOJ

Three conditions (1.14) unite identities Pon/= 0, and three condi

tions (1-15) unite identities B = 0; here a, P, y - fixing

indices and a / / y.

In §§ 2, 3 there is an attempt to obtain a solution of eqqations

(1.14) and (1.15) during fulfillment of conditions (1.7) in a plane

and in three-dimensional space. Analogous research for the Schroedinge

equation was conducted by Eisenhart [13-15]. Linearity of the

equation under analysis facilitated complete solution of the problem:

in [13-15] there are shown eleven curvilinear orthogonal systems

in which the wave function of a particle can be presented in the

form 7 = HYi(xi). Below there is considered a more specific problem:

there are found systems of coordinates in which W = W(x ).

§ 2. Plane flows. Without loss of generality one may assume

that an arbitrary orthogonal system of coordinates in a plane is given

by expressions of form [16]

'e =Re / (z), z= Imj (z) (z=x+iy) (2.1)

Here f(z) -- certain analytic function of complex variable z.

In this case

(g, = 9, = Y (g = Ig. ) (2.2)

Using (2.2), we obtain conditions (1.7) in the form
(D(l ;0, j- X( % a (2-3)

( ' ;) aa-I + •dv

All equations of (1.14) and (1.15) are satisfied identically,

with the exception of one: S 3 3  0 or R1212= 0
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(Yg = l Y9 ' +aV; (2.4

5)
This equation and the second co-dition of (2.3) can be presented

ndi- in the form

J ,,, , 93 •g[ 25
[4(-) + MM2j = v (e') 8X=+(2'+(~Y 25

fS -Using the expression for the determinant of the metric tensor from

(2.3), we obtain equations -for determination of q = -I f = F-1 and

rige r
-..-- = b2 , - -- + = 8 (b, 8 = const) (2.6)

The first of these equations shows that f exp (bx 2). Substi-

II
tuting this expression in the second equation of (2.6) we find that

5 = 0. Consequently, q) - _.-p (ax ), and T - a - b2 . Thus, the

general solution of equations (2.5) has the form

g 1, exp (a- -+ Pe), IF - a' (a = -a, P-= -b) (2.7)

When y = , = 0 we obtain Cartesian coordinates x, y; when

= I and a 0 0, = 0 or a = 0, / 0 expression (.2.7) corresponds

to coordinates ln R, ?'. Spiral coordinates q,, q2 are determined by

formulas (2.1) when

f (z) = (, + ib2) / (b' + b2
2) In z (bilbs = const)

Ir spiral coordinates

g = (b,' + b 1)' exp [4 (blq + b4q2)] (2.8)

It is clear that when y = (b1 2 + b2
2 )2 , a = 11bi, = ib 2 , formula

(2.7) passes into (2.8). In each of the enumeraLed coordinate systems

single-component flows are possible in the direction of any coordinat'

axis. Emitting surfaces can be plane x, y = const, cylinders R

= const, half-plane P = const, spiral cylinders ', q2-: c.:,jsst. jl(.,
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p~qrticles move in straight lines, circles or spirals.

§ 3. Three-dimensional flows. Conditions of a space being

Euclidean (1.14), (1.15) in detailed notations have form

2 P23 + p2 p' - P21p3 2- P3P2, = 0 (3.1)
2P13s + P2P3,' - p3' 3 = 0 (3.2)
2p,3 + p'p23 - p1

2p.3 p2 p1' = 0 (33)
m_ In g p a In gh(3

a * Pk1= akaL

2u'g - g Vxli + g2 2 [('g 2 gn8 3

(aX3)+ [aX2y i 0g22 d O k~x3 + ft
L" 

" 
( x--)a[-2 + 69=2? 1] g-

2+ "gn + 28g i g +a
L~ ~~ ~~j3 a( =') -- ~ (- J= L~~ {  j o ax:.

+ g=,M
2, M91+ : 69WL_41j~! (35)
2L(-' -ii'"l (a=)"J (Y)-l- 5x_ e= 0 911a ag-. "t

+ -"jx aj2 (3.6)

Here there can be presented the following cases:

2. p' O, p21 = p3
1 = 0; . p' + O, p2 = p'= 03 p= 0 , ps' =0; 40- p31=+O, P3'#+ O

Final results in the three-dimensional case can be obtained if

we assume that

g,, = h,, (@) , (e) 3 W ( 3), g 22 = k (e) K (x1, x3), g,. = I (e) L (x,,

The first conditicn of (1.7) is satisfied only when K and L are

presented in the form of the product of functions which depend on x1

and x, x1 and x), respectively. Introduction of new variables is

possible in order to get

lt ,=1111/ (x:i) ('$.7)

1 ° . In this case, on the basis of what has been said, one should

consider that g 1 = 1. Tbe second condition of (1.7) is here

,--.,.-7- ' - - -.. . .... _-"_ _



satisfied identically. Using the first condition of (1.7) we obtain

a solution of equation (3.2):

gn =V (x,) S W, -0) + T (W, ') (3.8)

Then the following noncontradictory combinations are possible

a) P i 2 -0' p3l + 6) p12 = O, p 3 +J

0) P 2-0 , 3=) 0+0O p13 #+ 0k e+

) When p2 0 equation (3.3) gives for g33

Solving equations (3.5), (3.6), we have

9n, =-IQ W, x3) z' + P (W, 4 12, 9= - I T (W, x ) x' + 6 (;0, 4P 1 (3.i0)

Analyzing different situations, conceived of as possible for

simultaneous satisfaction of (3.8)-(3.10), we find that only one of

them has meaning, T = V = 0 (or 6 = 0). Thus

gn = 1, gn =:(x) S( W, 4,') = (x=)' U (e, X)

Functions S and U are connected by equation (3.4)

[rots a~i.i 8InUs8U 8nUS os
2 [ Ms + Mu + WS = a , W + o ; L (3.11)

Assuming that (3.7) is valid, i.e., S = S(x3 ), U = U(x2 ), we

obtain instead of (3.11)

[28" - S' (in S)'] + [21P - U' (In U)'I + 4US = 0

Considering that p2- / 0 and, consequently, U / const, we have

the sole possibility for which this equation exists

S = I, 21JU'-- U'2 + 4U2 = 0 (3.12)

Solving equation (3.12), we obtain

- = )t A.g- - (zl sin e')?3.
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Formulas (3.13) determine the metric in spherical coordinates r,

0, ?P. The considered case shows the possibility of r-flow.

P) All conditions of the space being Euclidean, except equation

(3.4), are satisfied identically. From (3.8), (3.9) and p,2 = P3 = 0

it follows that 0 = 1, T = V = O, g2 2 = S(x2, x3 ), g33 = U(x2, x3 ).

Conditions (1.7) here are satisfied. With the same assumptions

as in the preceding point, we obtain formula (1.1) in the form

dS12 = (dxI)2 + S (z3) (dr2)2 + U (t 2) (dz )2

Introducing new variables , "), C by formulas

3P de U= (e) d, dx =/s(d

we change the expression for dS(2 ' as follows

dS12 = d2 + U (I) S () (dq2 + dC2) (3.!4)

Formula (3.14) determines the metric in a certain cylindrical

coordinate system, where flow is carried out in z-direction ( = z).

Since in Cartesian coordinates x, y, z flow is possible in the direction

of any axis, the form of functions U and S may not be of interest.

Case y) leads to the same result as a).

5) Considering (3.7), we obtain ghh = i. These are Cartesian

coordinates.

20. In this case g2 2 = 1, and possible are the following

noncontradictory combinations

+) P '#O, p #0 T) ps 1+ O, p2+O

= P; 0o pS=o Pz # o, 8) p2'# 0, p23 = 0 P , = o
X) p3=0, p23 =O

a) Equations (3.4), (3.6) give for gi, and g33 expressions uf

fo rm

K. 1 [a (xI, zX x + P (xI, x3)i2, c93 = IT (W, x3) z + 6 ', x3)Je (3.5)
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The first condition of (1.7) is satisfied in two cases:

(2) g1  =.gu = (z)[= (z z + W Y (x2)Ix

In the. first case equations (3-•)-(3•3) are Satisfied identically;

the second is valid when P23 I 0, iJe., wen a and thus cc.ies

with case (I); Functions Uand S are connected by a relationship.

obtained from -(3.5),

PS a w alnUsau am us as

which, with fulfillment of (3,.7)-, gives a solution in the form

Sgu -= gn:= If 933 (= sin x)Y (3.16)

Formulas .(3.i6,) determine the metric in spherical coordinates

r, e, 7P with flow in the e-direction.

P:) In this case g,, = S(x I ' x3 ), g 2 2  1 i, g 3 3 = U(xi ' x 3 ), where

for U 'and S. there remain equation (3 5) and conditions (1.7)

2 r s___ ivav lnss (3.17)
02 t__ nUSaU aJnUs-S

aa~j-OX' jx' dx

With, fulfillment of (3•7), the first condition of (1.7) is satisfied

identically, and (3.17)' and the second condition of (1.7) take the

form

2U-'- (Jn U)' = - 2S+ 8' (In S)'= a, 2S"- 3S' (in S)'= b (, b = con.t)

Joint solution of the two equations for S show, s that S = (x3)2.

I1 2.
Consequently, a = 0 and U = :(x ) Thus

02) = (i'dz'), + (dx2)2 +=x'd3)t

Introducing new variables from formulas

Sb,' )112b, 2 ebsqs, X' = z,] X = b' Yb 1 + b,! ,z,
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we obtain for dS(2) an expression, determinjing the metric in a spiral

cylindrical coordinate system. Here flows in the q,- and q2 -directiohs

are possible.

y) Solving equations (3.1), (3.6), we have

g~l.= [a (XI e)'e + 0 (X1' e3)12, gis = IT M + 6(Al)l ((X, +O)

The first condition of (1..7) is satisfied if = = 0, and

a(xi, X3 ) = a(xa 3 ). Thus, the solution can be sought in the form

g11 = ') S (e), gn = -2 gv= (x

Just as and in a), there exists the possibility of fulfillment

of the first condition of (1.7) for g,, = g3 3 ; from consideration of

(3.1;) it follows that this case is included in the preceding one.

Equation (,3.5) takes form -(3.i2) for S. Thus

4g (1  sin d2xl) + (4e); + (. dXj)2

This corresponds to flow in the f-direction in coordinates r, e,

V,

6) In this case g22 = 9, g33 = 1. Solving (3.5), we obtain

.= [ (x, x1) .S +i (', X2)12

The first condition of (1.7) exists in two cases:

"(I) 0 =0, g ', = (x3)' S (x', x3), (2) g, = [a (x3) x + P @2)12

The first of them contradicts the initial assumptions, since

from consideration of (3.1)it follows that p2 1.p3  = 0. In the

second case solution of (3.1) and (3.6) gives for g11

gn = (a x +.X3)2 (a =,orst)

We now introduce instead of x2 and x3 new orthogonal coordinates

Sx1, '1I=ax2 + x3 , =-x + aX3
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In the new coordinates

d,=- ndt2 + dq' + dV (.3418)

Formula (3.18) determines the metric in coordinates R, ?P, z

with flow in i-direction. Consideration of x leads to the same result.

0
3° . 

*We irmnediately consider that we have limitatlbn (3.7).

Then, requiring fulfillment of the first condition of (1.7), we have

911 S g" T-'g), g U (XI) V~'

Considering (3.3), we find that there can exist th& following

cases:

(a)- OnS)'/(n € )'"= a, (In )'I (In'U)' = I --a (u' v, p o,al-consty.
(p) U =Tr=, i, g, = S(e), gn =l 63,g, = V (.0) (V,-=* o)
(y) V = s,= 1, gn = g, Wr==r(), 933= = U (--I) (U.= o)
(8) U==, g S=S(e), gi=T(e), gn,=I

Equations (3.4)-.(3.6 ), lead to expressions

(2V'2"1 V) = bV, (In T)' n U)' = -b
T (2 "/) cU, ' (n)' = -C (b e, d=cot)"

2S- - S'2 / S = d, I--T'- I T=-- d

All cases, with the exception of y) for T = 1, repeat already

kntown results.

1) WhenT = I we have U= ( x) 2 and

l'= (dx1)' + (de)2 + (x1dx)'

which corresponds to flow in the R-direction in coordinates R, ?P, z.

It is possible to show that upon fulfillment of (3.7) case 40.0

does not lead to any new results.

Thus, to the three cylindrical coordinate systems, corresponding

to the two-dimensional systems shown in § 2, we added spherical

coordinates r, 0, ?P. Particles can be emitted from spheres r = const
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and cones 0 = const, moving on radial lines -or circles.

Let us note that the four enumerated coordinate systems arose

naturally during research of group properties of the equations of

a beam [17,8.

Note: In the work of V. T. Ovcharov [19] it is shown that upoh
fulfillment ,of cohdiJ .ions (I7 particles in the two-
dimehsioneai case can h>.ove in spirals, straight lines or
circles; in three-dimensional 8pace- there were cohsid:red
coordinate systems with rotary symmetry.

Submitted
17 January 1964
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TENSOR 02 VISCOUS STRESSES AID THERMAL FLUX JN A
TWO-TEMPERATIRE ?PARTIALLY IONIZED GAS

M'. Ya. Aliyevskiy, V. M. Zhdanov, and V. A. Polyanskiy

(Sverdlovsk, Moscow)

In [1] , 9 the basis of the kinetic equation using an
approximation of 13 moments to the distribution function
there is found a closed system of transport equations for a
multicomponent ionized gas in a magnetic field. Temperatures
of components were assumed different. In the present work
there are considered relationships for the tensor of viscous
stresses ensuing from [i], and the vector -of the thermal
flux in such a gas 0 1). The starting point is linear
algebraic equations for separate components, following from
the general system of transport equations on the assumption
that macroscopic parameters of the gas change little at
distances of the order of the effective path length- and
in the course of times of the order of the time between
collisions of particles.

Coefficients of the obtained expressions in general are
extremely complex, but they can be noticeably simplified
for the particular case of a three-component partially
ionized gas with temperature of electrons, differing from
the temperature of ions ahd atoms (Te Ti = Ta)' In §§ 3

and 4 there are given detailed expressions for coefficients
of viscosity and thermal conductivity of such a two-tempera-
ture gas in A magnetic field. There is calculated the
contribution of each of the components to the total tensor
of viscous stresses and the thermal flux (including heat
transfer by diffusion) depending upon the degree of ioniza-
tion, strength of the magnetic field and the degree of
non-isothermalness of the plasma.

55



i1 Initial system of equations for determination of ter:sor

of viscous stresses of the %-component Tik and of the relative flux

of heat ha is written in for, Ti]

Alt W + . ,,i,,l + 7, ,,,I,*,,) ,,,i,,rm (!, 1 )

7-aC hkL1~T~~ (. 2)

Here

[ha, 5

W + (=u.- (1.3)

2 T ma77a= T + -. a diV -I - -' 1- c.3 (w. -- WO) +- 4.0%,] (1.5 )

He re Wa, Pa' Ta and q - correspondingly, relativre velocity,

partial pressure, temperature and thermal flux of the d -component;

U - mean mass velocity of the gas, ma - mass of particle of a-type;

k -- Boltzmann's constant. The influence of the magnetic field on

transpuit properties is described by -the second terms in the right

sides of (!.i)-(1,.2); here a - cyclotron frequency of a particle wi'th

charge ea j and a i& - permutable tensor. In expressions (i.4)-(! .5)

there are bmitted terms which depend on the electrical field and

which are essential only in ver'y strong fields [1].

Coefficients 7ia and Xa are connected with effective times of

collisions T a and T a by relationships of form

2 5ki1. --TP 1 , , "'- (1.6 )
am-~



Let i. note that for the single-component case 71 and X. coincide

with usual coefficients of viscosity and thermal conductivity of a

simple gas (first appmoximation of Chapman-Cowling [2]). Magnitudes,

the inverse of effectT've collision times, T- and (e)- are recorded

as linear combinations of magnitudes T - effective frequencies

of collisions of particies of the a and P-type. Expressions for Ta'
Sand m, and also for boefficients ap, bp, c.., d are giVen in

work [1]*; in the particular case of a three-component plasma with

Te > Ti = Ta and mi = ma these expressions are given below (§ 2).

In general, coefficients aap, ba, caP in a complex manner

depend on ratios of temperatures and concentrations of components,

and also on mass ratios and effective collision diameters for particles

of different types. Here, by definition we have a., = i, baa = i;

furthermore d = 0: when T. = T .

In the absence of magnetic field (IBI -C") general solutions of

equations a(i.i)-(i.2) ae written in an obvious manner

ASj~ --- 14' a TJ W k, b 1,,,,( 7

T aT J Ii

Here jai and Jbj are determinants of correspondinc systems of

equations;. [aj t and blI(, are cofactors of element Pq of the determi-

nants.

For solution of systems (1.1)-(1.2) with an arbitrarily oriented

magnetic field we form, with the hel of (1.1), an equation for

ik risk k
convolutions of tensor Tr, with tensor ar , with vector it with

tensors aris xsx and xsm',. and with the help (1.2) we form equations

*In (1] there are not written the explicit expressions for c,,, and

d, however, their form is easily established by comparison of (1.5)

with expression (2.10) ill [1]. Furthermore, the value of '. -1 differs
from that given in [1i by a factor of' 3/)i.
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i risk. ik
for hd " and ha i-, where t =-B/IBI is the unit vector in the

direction of the magnetic field. 'Using then properties of antisynietric

unit tensor aAZ , after a series ,f cumbersome, but simple calculations,

kr
we arrive at ;ar expression for 7r r ecorded- with the help of five

coefficients of Viscosity:

= - t.('). " - (" - q&(!)jVw, + ,(ij(W;r + 1.(4)Wk, (1. 8)

where

'(i.e

(00) (1.9)
ijW0() t lt (4) =

2 1 1i

Analogously we find the expression for ha, which is cdnverniently

presented in vector form, introducing components of , correspondingly

parallel and perpendicular to-the magnetic field

JL ApRI 1b1{XsR-.- + wgra 1_A (Ry'*x x)} -(I1.10)

whe 4e

IL=x (x.), R =x x(R. x x)

Elements of determinants, marked by one and two asterisks, are

connected with coefficients a t and b., by the relationships

ae= a~ + 17 t),Lacz)iAT4,* =a, + -1'

4, I

Let us aote that the above form of notation of expressions (i.8)

an d (1 .10) is analogous -to that used in the survey article of

Braginskiy [3] for the case of a two-temperature stripped plasma. In
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the same -place -(p. 233)- are general expressions for tenso'sW. kr

constituting d4ifferent convolutions of tensor N.1 with tensor

quantities of type %k r i i, X Xni x r . and a n

The form of tensors W kr is noticeably simplified in a speciallyP

selected system of coordinates, where axis x is directed along the

magnetic field. For components of tehsor of viscou's stresses Vi

in this system of coordinates we have

= 1(O)W=

= -- OY)1/ (WV + vi) 1- 14 (W - WI).+ (3)WY
%z = OVz ( + fl) - 11W / (W1 - lU(11) + rJ) ((. 12)

XQz= dzy MW(zfIZ + T l.(Wa" I
f = j, = - 1 (2)W-V . Tii [t'X"

= I = - (2) + i (4), !

Relationships (1.8)'(or (1.12))'and (1.10) obtained about

allow us to calculate the tensor of Viscous stres'ses and the relative

thermal flux for any of the components of a nonisothermal multicomponent

plasma in a magnetic field. The total tensor of viscous stresses,irk and

the thermal flux q in the plasma are found by simple .suhnation -of the

corresponding quantities for the components:

ni = iik , + 2.5 ~JW 1.3

Analysis of expressions for the tensor of viscous st're,ses and the

thermal flux in general constitutes a fairly difficult problem due to

the complexity of the expressions themselves and also the coefficients

in them. Therefore, in the subsequent account. we consider the

particular case of a three-component plasma with Te > Ti = Ta and

Mi I . Besides its practical interest, consideration of this case
1 a

allows us to write coefficients of viscosity and thermal c'onductivity

__"



in a form accessible for detailed analysis of their dependence on tlhu

ratio of temperatures of components (degree of "nonisuthermalness")

the ratio of particle dlisities -(degree of ionization) and the

magnitude of the magnetic field (degree of '"magnetization" of the

plasma )..

Let us note that in [I] there were already expressed a series of

general considerations about th form of the coefficients of viscosity

and thermal -Pnductivity of a two-temperature partially ionized gas.

Here they used a simplified initial system of equations, obtained as

a result of disregarding cross-terms in the equations for electrons

and terms cortaining electron magnitudes in the equiations fur ions

and atoms (analogously to "how this was done earlier in [4, 5]). The

following analysis of exact solutions shows,, in particular, under

what conditions we take such an approach to solution of the initial

systems -of equations.

I2. Below is a summary of coefficients of the initial system of

equations (i.I)-(1.2) for the .case of a two.-temperature partially

ionized gas. Masses of ions and atoms, and also temperatures of htavo

components are assumed identical (Ti = Ta = T, mi = ma = m). In

simplification of generaI expressions for coefficients [i] we

essentially use conditions

(OTT)(2.1)

Coefficients a , ba, cap, da are

ae =o a. (,2.2-)
a= - .4 a, = - 0.2 e (30 - ) 'V*1

a = -4'e ff + '/ (1 - 0)] '
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b, = b = b.= 1 (2.3)

= 45~ [2 0.40 - 41" (In A)I v 1*iTL-i

&gi.*rjl bac j- 8 [*-r s0 1-.0-+t1(

b 8 ,, =..5) -~ ,j =14

=di 'li di. daj 0 (2.5)

d, d 2e(I--f); d., 20 -1)

Quantities =- a.~ -, raij 06A*i(.)

-r O.:3,r + Af'ij6-1 + ',71, ' = 0.3A.~; i4 f',Ta1 J-' -

0 .4T,,,' + 1.3vi'i + (2.5 - 1.2B.);j',- (2.-7)
0 .4vj' + gj,,rTj,-+ 3vt;1

Her /. = ~/(I --O.6Aao*), U/ - 0.2A~p* -0.5B.gl* (2.8)
1'p / 4 (1 + 0.64.p*), 11'/1,j+I 0.2Ajp* - 0,15B~p*

- ~0 =2C.~*~1 . (2.9)

=a 0.625 + 0.2A~o* + 0.3B,,.* + 0.3D,,,* - 2.4C1O* (2,.10)
= 1.5C~*- 6B~p:' - 0.3D, *

Collisions times aand coefficients A,.Ba CpD are

expressed through kno-wn integrals [2] of Chapman-Cowling ,

-~-~ (2.12)

-0 2Q- 50r"

3~~11 Q1
1

Here n~ density of particles of P-type

ap cos j,,e~g ( CS ) bd bd (2-13)
0 0

liere
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kT,. kTp

__, +T (2.i4)

and the scattering angle X, is a function of g, and b, determined

by the form .of the law-of interaction of particles of a-and P3-type.

For particles, interacting as solid elastic balls

n. ,_' I (" , A* B*= (2.115)

Here Q., geometric collision cross section of particles of

type a. and P.

Expression (2.15) is conveniently used in the case of other laws

of interaction, where Qq can be considered a certain effective

collision cross section appearing in the general function of

temperatures of the components-. Here A*, B*, C*, D4 also turn out to

be weakly varying functions of temperatures.

In the case considered by us (mi = ma, Ti  Ta,1 meT/mTe << ')

collision times of charged particles with neutral ones and of neutral

ones among themselves are written in the form

S 6 N k, ' n.__ (2.6)

I--( ,,,.Q(T) -L .An1= =6 * kT1 ,(T),

16 k3'
n' M-) , Q44(T)

For interactions of charged particles we have

I _ kr,\ ) ' n,

n ,I - =-(2 .7)

i ,O.-'I, t6j 16\ /\

Here

Q. e' 1. A,. In = A'@= , . Qii= (-] In Aj,(" "
2 (kTO)3 U l k)
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Here e = lee [ - charge of electron; ze - charge of an ion;

in Ap - Coulomb logarithm, values of which are tabulated, for instance,

in [6].

Subsequently we will need estimates of ratios, or, since

these magnitudes are proportional to Q, estimates of ratios Q,1/Q6

For electrons and ions, assuming without great error [4.] that

ln A ln A. ln A., directly from (2.i8) we have
ee ie T

Q0,I Qi, .-.-21 ; Qv / QU 0z;. Q.1 Q'i .-110 ~z

To estimate ratios Qea/0aa it is possible to use theoretical and

experimental data of [7-8], in-which there are given total effective

elastic collision cross sections of electrons with atoms and with

molecules of different gases. The diffusion s cattering cross sections

interesting us, through which Qea are expressed, differ from total

cross sections by -oL more than,, I0% for most gases [7]. In [iO there

is discussed a great amount of data on cross sections Q eafor inert

gases. Sections Q for di'fererL potentials of interaction can be
Aii*

calculated, using values of Qa given in [9]. Comparing theseaa tie in[] oprn hs

results it is possible to consider approximately that in ranges of

temperatures 5.10 2 oK - T 1O OK,-5.103 OK _ Te 9 5.105 OK we have

estimate

On interactiori crops section of ions with atoms there is
comparatively little data, but judging by certain results (see, for

instance, [i, 12]), it is possible to limit ourselves to approximation

Qia / Q-

In estimating Qii one should consider that for the considered

temperature range and in the range of densities of charged particles

G~3



109' K. ni  ±15 cm-3 the Coulomb logarith In A is included in limits

from 5 to 13. Then, using results of [9] for sections Qaa' we arrive

at
'Q6.U-(0o-, -- 5-)

3. Using values of coefficients a&, given in § 2 it is possible

to hoticeably simplify the geheral expression for coefficients of

viscosity (1.9). Witn accuracy up to magnitudes of the order of

(ee)3/2 with respect to the remaining ones determinants jal, Ja*1 ai±u

la**I are equal to

!, I= f - = =A, 1a*[ A (I + Wo,"e') (1 +A-WI";:

ia* i. A(I +'/,c,'t.) (1 +/,A- ,, ,) (3.1)
A =1 -(3.2)

Coefficients he(p) for the electron component when .. << 1e i i

take form
-t

) 0) (2,.. )

" - "+ + i'(2. (3.3)++%(0,0ir 6i +/%/qo

In (3.3) there are omitted terms which have the order i/2e5/2

with respect to the remaining ones. Let us note that coefficients

e(P) in form (3.3) can also be obtained directly from (1.1), if

we use the equation for the electron component, disregarding in it

the Jon and atom cross terms. A similar method was used earlier in

[1$,%. Analysis of exact solutions shows, howeVer, that when a% I I

calculation of cross-terms can lead to marked corrections in

t () and (2 In the case of a fully ionized gas, -,.r
M ,.coo:ff'icients ile qe "/205/2

inst.ance, along with terms of order e1/205/2, in coefficients with

.2 there appear terms, having order /205/2' as
L e
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compared to one. Then, for w iT i >> I coefficients %e(l) and e ( 2 )

for that case take form

TI() = e (1 +0.40), = 2 ( + 0.40) (3.4)

This result differs from the expressions given in [3, 4] by factor

(I + 0.46). Divergence with [3] is connected, apparently, with the

fact that transpurt factors for each of components -were determined in

this work by solution of a system of "loose" kinetic equations for

electrons and ions-, obtained as a result of a series of simplifications

in cross-colliding members.* In [4] cross terms are rejected already

in the transport equations themsellves.

Coefficients i ( p ) and ( P ) for ions and atoms can be presented

in the form

(0)(0
o = 1/2pt tA', hi() = °) (2) - 1I +4.A 2aitr1 i ' i() "; + 1- /4 Awitis

% (3 ) A- ) l.9)0) .0A (3)

S+ +'j -2~

V o) '/ 2p T.A -' 1() A, ' &a + 1 o-r
a - I + A-20,2V 1 2

Sa.- '14A 'Wiso
2 '" + ' 4 Akj.- '. (3.6)

- ((3- a) r&-l (4) = t r A - A) wori2l() - Dar tz 1--A-2W'V 2 a -Pa A-'t- 1/A, -"(jai i" "

aL = +iaTfrai(', i= I +IiaaTLJ1' (3.7)

In (3.5) and (3.6) there are omitted the term whose maximum order

is e -O with respect to the remaining ones. Obtained etpressions are

valid, thus, for conditions, where

T./Tr<,,/,m. (3.8)

*In comparing (3.11) wif}Q expressions of [3] one should consider that

e in [3] corresponds in ou-- designations to Te,, and that, although

coefficients TP) e in [3] are calculated taking into account a large
number of terms of the expansion of the distribution function fur
large va]ues of wiT, any order of approximation gives coinciding results.65
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It is necessary to note that coefficients of viscosity, determined

by expressions (3.3) and (3.5)-(3.6), actually have the same form as

in [5], where there Was considered the case of a partially ionized gas

with identical tempe'ratures of components.. The difference is that
-i -i-i

Tee , Tei and -r , in the effective collision times Te, a' iT

should now be written at the temperature of electr.ns, Te instead of £;
Furthermore, obviously, pe nekT n kT pa n kT.

In conclusion of this paragraph we analyze briefly the contribu [L.,

of each of the components to the total coefficient of viscosity 7() =

= e(P) + i(P) + qa(P) depending upon the degree of ionization a =

= ni/(ni + na), the degree of "nonisothermalness" and magnitudes of

)e Te IWiTi*

For this purpose instead of fl(P) it is -onveriient to introduce

values of reduced coefficients of viscosity, defined &s

(mkT) 3 1, (3.9)

Considering that ' -a and i are close to one, using expressions

for -r, T , -; and estimates for ratio QJQ, given in § 2 we have
e, a 1 t&

• ,(a,S, o), .--. _" _ (o). I - a (3. :0)e (I- 0) - a' + (I -,-a a i+

where

= Q,/ Qi--(1o-2 1o-,)

As can be seen, relative contribution of e(0) to the total

coefficient of viscosity is negligible when e = i, but can be comparnthlt.
1/5 iTto the contribution of i(0) already when e - , i.e., when T/

- ('k to 10). We note here that the role of rji( 0 ) becomes essential

only for high degrees of ionization a Z I - P. For a << I - 1 the

mroin contribution is introduced by the coefficient of' viscosity o fi')



For analysis of the relative contribution of coefficients 7e(1)

and ]a(3 ) besides (3.10) we need additional estimates

i,-i - w- +(I- 3)- A.. p3.1i
cz(3

Compa-ring expression for xeduced -coefficients of viscosity, we

find that the cohtribution of separate components to 71(l) io analogous

to the preceding ease with this difference only, that in a strong

magnetic field (Wi i >> 1) the influeic,& ef r,(1 ) shows at still

higher degrees of ionization a I- /Ci2Ti

The cont-ribution of 71e () f (3) and (3) t (3) is approximately

identical in weak magnetic field (IWelTe < 1) when a << I. With growth

of the degree of ionization the contribution of Ta(3) decreases, and with

growth of the magnetic field the role of e (3 ) decreases, so that

when w 1.(3) « << (3) (3) Nonisothermalness only increaseswhe i. >> , e << i Ifa

the relative contribution of (e For coeficients, 71(2) and

the conclusions drawn during analysis of r(i) and 10) are valid.,

4. Relative thermal flux o~f each of the components h., in

accordance with the structure R., is composed of several independent

parts. Let us consider first that part of it which is determined by

temperatures gradients of components.

Calculating determinants JbI and Ib*1 with accuracy up t-0

magnitudes of an order of s5/2e3/2, we find

Jbj - I~ =b 8,8*6(1 + oI.I (I + 6-Ico2r1*I) '41
1 (4.2)

From (1.10) it follows that the expression for ha (t) in general

contains terms proportional ', temperature gradients of all

components. Analysis of corres ponding coefficients shows, however,

that the basic contribution to the electron thermal flux h et) is from

67
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terms which depend only onVTe. Then the expression for he
-ee

presented in form

h II= VT.o ) - VT 4A (VT, x X) (4.3)

Coefficients of thermal conductivity X are defined here as

e
5k _1 = *1 _ ____.___

2".= m .Pr,' 7 1+ (o. 'r*' ' - . (" 2. )

In the notation of (4.3)-(4.4), there are omitted members, whose

order are 001'aIITI/iVT.I and ,OIViTI/IV±T.I with respect to the others.

Analogous calculations, in expressions for hi(t) and ha(t) allow

us, under certain condltions, to omit in them terms proportiona-l to

A gradients VT . Then
e

N - ~~~IV;T -)'VT %i.aA (VT x x)(4.)

where

7fr p-Ti*+i*6-, WI i 1+ (6- ' i n (*),
5 5 ~ 0 'a* +_ 6- )(-.6)

0 k * '  I *a )!r ^ "na 26 m a + - ' J)

)=a 5 k - 6) T** -2 ara 1 + (or

Here

* =t + gjr.-r,-', . * = I + gji*o,-,t* ( .8)

In (4.5)-(4.,) there are omitted terms the maximum order of

which is eJVT. 1/IVTJ and r.O' (5inA)-'IV7,.,j/IVTI with respect to the

others. When IVTI-j VT! this leads to condition Te/T << 5 ]n Am/m.

Sice In A - 10, this condition turns out to be less strict than
(3.8). .If VTI/IVTI--TL/T, the limitation on quantity T /T turns

out to be somewhat more strict than (3.8), namely

7-8



{re /'T)2 5 In Am /me

Let us note that with the shown limitations coefficients of thermal

conductivity (4.4), (4.6)-(4.7) are described by the same expressions

as in the case of identical temperatures of components [5]. Here,
-1 -1 -1 * * ~*

times Tee ' and Tea, in 'e, 'i, ' and pressure Pe n kT
1e eie e.T aP e e

are recorded at electron temperature of Te

For analysis of the contribution of each :,f the components to

the thermal flux h(t) = he (t) + hi (t) ha (t)' we use the circumstance,

that for r*, and b there are the same estimates for Ta , , and,
aa

A. We introduce instead of X reduced coefficients of thermal con-

ductivity

t -M- (%i •9)

Then

a + (I "a) 00-2

--- ('410

From comparison of expressions, for i. it follows that the total

flux of heat along the magnetic field is determined basically by

values of he and h a" the contribution of ions is negligible, and

nonisothermalness only strengthens this circumstance. With increase

of the degree of ionization the electron thermal flux rapidly increases,

and at a-(eO)';I'-VjT/I'T!i thermal fluxes of atoms and of electrons

become comparable.

Increase of the magnetic field noticeably limits the electron

thermal flux across the field; therefore at We rel >> I the basic

contribution to transverse heat flow is introduced by ha and h. Here,

the contribution of ions becomes essential only at high degrees of
• * 2

ionization a I - f, and for w I when a -0

..69



The total thermal flux perpendicular both to the magnetic field

and to the temperature gradient at [0er e I is determined basically

by het With growth of the magnetic field the contribution of hi and

h increases and becomes of the order Of he at w.iTi I. Nonisothermal-

ness leads to noticeable growth of the relative contribution of e '

We now consider that part of the thermal flux ha which is

proportional to relative velocities of the components,.* In the case

interesting us, of a three-component plasma, the corresponding part i

vector R. is conveniefitly expressed through the density of electrical

current 3 = -ne-e(we - wi) and. "slip" velocity of ions S = - wa Then

in the rulative thermal flux of a-component h&, besides the above-

considered "temperature" part ha (t), there ate isolated terms

bJ) = - Xj,- X.- .A (jx x) (4.11)
JQ.) = - jSI- S - ,A ^ (S X x)

so that

h"= h(l) + 1 0) + h.(') ( .2)

Coefficients Xe , with accuracy up to terms -5/20-1/2 are

determined by expressions

kTe ___"__ kT_
Xet  U , L 1  1+Q {i.*)l "-

A,^ = -_ . kQT* .T)
+~ (.,.,.* -().a

where

aT,.= '/,T (2 ' -, - o.T,-,) ( )

During calculation of coefficients X1 and Xa, in them there appoar

I ×'The t-r,..m with div a in thermal flux h. turns out to be in m .st

probipms of little importance and, therefore, is not considerrd
subsequently.
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noticeable additions, connected with allowance for electron cross

terms. However, these very coefficients have an order o1 E3/205/2 and

E3/20-1/2 as compared to Xe; therefore, their relative contribution

to total coefficients in projections of j in the expression for

h ( j ) = h + hi()+ ha(J) can be ignored.
e1

As for coefficients pi, their contribution to total coefficients

in projections of vector S in the expression for h (s ) turns out to be

nf" the same order for all components. Not writing concrete expressions

for each of these coefficients, we immediately give the expression for

the total thermal flux q, in which, besides contributions from h
(j )

and h(s), it is necessary to consider the additional contribution to

coefficients for j-1.,i' S11, S', arising due to term 5/2 Zpw, in

(1. .13):

q,= q(l) + q(I) + q(s) .4 i )

where

q(t) be' +11(t) + Ila (' 16)
q ) = - XJq - zj - XA (j x x), q(8) = . - tl. 11A_ 11A (SXxk)

and

'5~* kT a11: * = kT - Yi -17)

XA UC

A I + (,,re*) 2  e

pg. = [d,* - (t - aE)] ,Fdlii , a ba

2 6

&- ] d' 'p i+d'p 0 ( ' + 8-' e i rV' )ixl t + 2, )-" 5 i - a) p + - (1 - z ' ' -- - , , (4 . i13)

pA = ee* dis it *  -,daPa (ka* - 6)

HerI + -Fee) + ~ w (I v*)6lHore

, = I.* IRer&,,,-' + 2e (I - 0) (1 - a) rr-I
d4s = /Iri* [/4tia -' + 2W-' (I - 0) (1 -t) r1,'1 ('1 ,
da' -- /Ta* [/t~iaTaC'- 2 0- (1 0) Qta -

..71
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and 5, i' and a are determined by expressiofs (4.2), (4.8).a

In conclusion let us note that with fulfillment of condition

(T. IT)'f.c(M [m.)'!.

for j and S it is possible to use relationships, given in 5],. if one
-1 -1 -1

were to determine Tee ' Te. 'e , and p = n kT at temperature
-e i ea e ee

Te, and also to replace vT byTT'e.

Submitted
10 March 1964
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HEAT TRANSFER AND DIFFUSION IN A, PARTIALLY
IONIZED TWO-TEMPERATURE PLASMA

G. S. Bisnovatyy-Kogan

(Moscow)

There is given a solution of the Boltzmann system of eqia-
tions for plasma in a magnetic field by the Chapman-Enskog
method. The plasma is considered partially ionized, and
the temperature of electrons can differ from the temperature
of heavy-particles. Tensors are obtained, connecting the
thermal fluxes and the diffusion velocities with temperature
gradients and diffusion. vectors.

I. The Boltzmann equation, describing change in time of the

distribution function of particles Of type a in coordinates and

velocities f (t, x., ci), has the form [i]

at at~ e~ 8
+ ,,,=-- FI +j-o,,BL)j + ja = 0 (I. !)

Here e , m - charge and mass of particles ol. type d = 1, 2, 3

C. irJespondingly, for singly charged ions, electrons and neutrals;

Ei , Bi -- electric field strength and magnetic induction; eis - per-

mutable tensor; c- velocity of light

) 3 - J'J') gbddci (dcai=dcp:dcpd, (1.2)
J-2 1.= 9*,=ep



Strokes designate functions of -elocities after collisions; g a

relative velocity during collision; b, F - geometric parameters of

collision. We consider only elastic collisions. Let us turn in

equation (1.1) to relative velocity V i, equal to

a

n.- = d4Ci,, P = p. .,..3)

W'O obtain
Vl i, v, " ._ + ejtjci,,j

du i ( j + i- j +

{~-4-6~ dt k at " , ac =0(11

Just as In [i], we obtain equations of transport of particles of

each component, of transpor~t of the momientumh of the *who e mixture and

of transport of energy for electrons and~ heavy parti cles

dne aioe at + , + J(, ,,> = 0 (.5

+ " , t +,0 1

3 k,, a'/'s af a a E

3 dco

+-.2-q (1.7)T + q) + 0

= f + -- eakcoB + , k ( +

where k - Bol.zmann's constant

II,,U, n~mL (v, IVak), q=*.- n~m ,<v.v,> ~i"-ne i (!.
3 a'

111* = IH. , q = q2 , T- = p. + i, Q 2 = 5 mz.2 Jdc..

Q=54-mviJdcl,+S --91 e=~lxf

3kT , ms 3kT mt ,hv. i>)aca

2 = - ' - 2zJ> 2 =(q< ' :2v-, 3> = -"aad

3 k ( . +



Here e - absolute magnitude of the charge of an electron.

Temperature of electrons T2 differs from temperature of heavy

particles T. Relationships (1.5)-(1.8) are a system of hydrodynamic

equations. To find dependences of H aik, qi' <vyi>, Q' Ji on the

electrical and magnetic fields, parameters n T, T2 , c and their

gradients, lit is necessary to solve sysiem (1.4). Solution of this

system is conducted by the method of successive approximations of

Chapman-Enskog [1].

2. Let us consider the zero approximation. In kinetic equation

(1.4) as basic terms there are considered collision and magnetic ones.

If the plasma is "-strongly ionized" in the sense of [2], the main

parts of collision terms will have the form

J = Ju. U1 1*) + J13 0 I), J20 = J22 -U U 0),
3 = .j1 U30!1. 0) + 13 U30!30)(.

in equation (1.4) the magnetic term (in braces) is turned into

zero by any spherically symmetric function of velocities. Collision

terms in form (2.1) are turned into zero by Maxwellian distribution

functions, and the temperature of electrons can differ from the

temperature of heavy particles. Thus

0 m., )%, (x T,=T =Ts)

Tn,  
1 -- =T=s=T#3 (2.2)

3. Let us con zder the first approximation. We substitute

I = 0 + f a in (1.4). In small terms it is sufficient to leave

I' 0 Time derivatives of na , T, T2 , c0 i are excluded by transport

equations (1.5)-(1.8), where magnitudes of (1.9) are calculated by

Mnxwellian function (2.2); only ji in (1.6) j; calculated by P1 = a 0 +

+ . We obtain

liik° = PAR, p. = nkT , qi " O, J? = 0, A = i + 0 (3.1)

W7 7



if we use (2.2) and (i.2), then, according to (1.9), the magnitude

of Q 0 0; however, in the zero approximation we disregarded exchange

0
of energy between electrons and heavy particles, i.e., Ja was selected

in form (2.1); therefore QO = 0. In collision and magnetic terms

we leave parts,,, linear in f a. Collision term J has the form
3a$

=a2 . (41 [ +U~~ ±J-0 0a,) + J-0J) (3.2)

1 0
Designating f. = fCa ' we obtain a system for C

a i a

J . k T V i ~ k O c k . ( m v 2  T . i x
___~ ~~~ V -5p 0ND +3 ~ -~ i+~idt

- ~ (. - 9 1- ?qBI e£ Eikl,.kBi' - Y, Jr. (fof)

I, 1 (3.3)

where 3

~ Sf~I~+ I~)~j -(1 + ')/Jgbdbdedcsj(34

I ap. P Op. (,maPe e) (E1 +
'p i a- p~p Ox1

- \" pkT, 7 / "UIC401)

3

] d pda,= 0 Pp =P +P +O (3.5)

As independent diffusion vectors da± we select vectors d;li and

d 3i Because of linearity, we seek solution of system (3.3) in the

form

i OT AaT a
(D. *~f A~ i1k G.i- - -Djdj _ P3d 3 i -

(n = 'i + na) (3.()
Here Aapi, D ai) G aik Fa - functions of v i, Bi . Contribution

-to the thermal flux q ai and to diffusion velocity <v ai> will come [1]

only from terms in A and D . We use henceforth designation

K.j = A.1,, Aa.j, O.,,, D.: (3. 7)

We s-eek K ai in the form

K = K',.j + K;,j42.jBk + KB 1 (v'1B1), K = K- (r., B)1= = , 2, 3) (0 .8)

M



Equations for 0 are obtnined with substitution of expansions'

(3.6)-(3.8) in equations (3.3) and equating of coefficients in

independent parameters to-zero. W-e introduce C = K I + iB K 2 and shift
a K +

to dimensionless velocity ui = [(1/2)m/kT )11/2v. Systems obtained

for with different Kc. from (3.7), linear, nonhomogeneous, differ

from one another only by nonh6mogeneous terms. They have form

M- = - - L .j f, . + a( I ) (3.9)
3 c pkT. m~C(39

Here

= f (z==, 2,3; 'c,=-ea=e, c=O), (3.10)

Left parts of system (3.9) for different K i from (3.7) have form

M. -fs=Ii(=02= 4) uai. when K.i = IL

M 1= 0, ,fs=I (u2 -2)ui, M.=o when Kai A.,j
P, P- U., MT 03.Vk= 4u~I, M, = -n'- t hu 2 i, M$-"0 when K 1 D 1  (3.11)

M=0, , M2  M_!i3  T when Kmi D 3j

If-2, U1, M3 = f~3 j

Solution of system (3.9) with right parts of -(3.11) is sought

in the form of expansion in a s'eries of Sonin polynomials S3/2()x),

which are determined as follows [i]

(1 - 4"'exp j_ - .Ps0,0 (X); S,(0) (X) = 1, s:. ' (X) 5 X (3. 12)

030I"e-XS,/,(P) (z) S,,.J"( ). xP/-d-- P! (p
, x ~(~ 'Id 5p (3.13)

0

In order we have

T 'yaSi;,p (u=2), L = 3. 1= -S"'P L = -- n.,,l (3. 14)
p=O ma
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From the condition that correction to the Maxwellian function

does not contribute to mean mass velocity, we obtain condition

n1T710 +n 2T2 o +nTTr3o=0(315

Substituting (3.14) in (3.9), multiplying by S3(P)(u 2 )u and

integrating with respect to dcdi, we obtain instead of system (3.9) an

infinite system of lnear nonhomogeneous algebraic equations

B -P3IeB ( T n''n 3 =eB -
pc T,,K Ti °- +e-7n 7il"ncz-+

( m "T)I." ( m,T2 )'. rao+ (2,T i t3' A

.2r.(k+ 6/2) e 1~ 'MM Tlat
N - / , ,T- + L,, S I r/a a +

ak 'T T3rkr tk

r;= r---O

For different K i from (3.7) the left parts of system (3.16)' have

the form

_ i5~ _ 15.Nil=+ -4 N3il n3 when Kai Aeii

• '4 n2 when Kai = a=a.I. (3.17)

= 3 _Lj NN2  3ntT when Kai = D.,i2 '  2 nT2  GI Gi

3 .n, ,T N 3 ns when Kai
N 0  2 n Yz' -2 n =D a

3
i

In all these cases remaining values of Naj = 0. Quantities aa
•i pq,

are determined as follows:

a 3 as,, (U 2) Uai [ (ua2) u 4s, W (u!) Uj - s,, (U' U.i'-

- S'h'M (u' 2) ui" l.g,, bddc dc i

+~SIP)(U.) U~i [foaf,l,)(U"2) U i S, (q)u 'gbddcdc' ,,tl~ ~ ~ ~ ~~~~~' ,o..,q..., _,*,., ,(a .) u,,i ,gapbdbdek,,,dc,..

(al =t, 2,(3) (3. 18)

a = __5) u~2 u 2) U -",,'i ) , (u.'2) uai'lg. b dbdedc:,, dci

(at, 13= ,2,3; af')

The first three equations of system (3.16) will be linearly

t8



dependent. This is a mathematical result of the same fact from which

we obtained condition (3.15). Eliminating from system (3.16) with left

parts (3.17) variable 730 with the help of (3.15) and dropping the

third of equations (3.116), we obtain a system which can be solved by

Krammer's rule. Finding C a, we can immediately write the solution for

K3 from the following considerations: without a magnet"Lc field

transport properties are determined only by the magnitude of Ka, in

which it is assumed that B 0 0. In a magnetic field transport

properties do not change; therefore for Bi , parallel to any of vectors

T /3xi ., d i, transport properties connected with this vector- will

be the same as for B 0 0. Therefore,

K + BK = (K )B= o (3. A9)

This relationship determines K3 . If = Xr + iByr, and K3
a ar a ar a

is expanded in a series of Sonin polynomials with coefficients z ar

j. + B=,, = (z)D= (3.20)

.4. Coefficients of the expansion of K in Sonin polynomials for

different values of K i from (3.7) we designate as follows

A,,If atd, bra' cra
1

A alot ar (9 bra2 ¢cr- t. 2, 3) 4

D g1  Xr yral Zr a l 1 )
D-31 Xra3 * y_2 3  Zr .3

Then, using definition (1.9) for qijv Kai> , ji considering

.0 (1 + 1)a) and equalities (3.6), (3.8), (3.14), and (4.i), and

also orthogonality of Sonin polynomials (3.13), we obtain

- v1 kd-l ,,- -jX (4.2)

-aT ,t at (4.3)

ik k k k



where ta l5 k 'T'
XV 2 m n, [(a. - a*)'6- ,B ,(bo -b,0) + B1k (c.40 -c120)]

5 .T= 2 ( 4 . 4 )

rnn, [(xoa -z) , -eB, - y.M +Btk(z2A - zI)

(,=1, 2,; ~3f= ,a) (4.5)

T [X2.ak- - ejk,,Bnyo + 1iBkzoA]l I, (4.s6k= me (2=.3) (.6

-K.k-- [aO2P6 c- ea.,Bbo~ + B1Bco (4.7)

h= e(n, <v,) - n, <v>) (4- 8)

Thus, to find the thermal fluxes and diffusion velocities it is

sufficient to know the first two coefficients of the expansion.

5. We leave in expansion (3.14) the first two members. Elements

aP(i, k = 0, 1), in e-quations of the first approximation by Sonin

polynomials defined in (3.18), will have form

a.'. = a) + 3  n m. na I ),5 Pa. T --T n

0,nXi -- ()-+) £13;10 61

tl V2-, M in= 2M m T

"-- -- ~.na~ - -j~T3 -- i I/

a.13 = 4:1 a12' n t = 0 , ni :'.i (I - a)
-- - -mo 10 I1-11

413 q:, _-='m" 0, a 3= na( -a- a -3"V W

a +. dt = 0, a = 9 ( n,2T n2 5-,

U ~ L 10 3 4a T~

"030 na +-2 nax(.- a), a22= a .22
2 is- va- '(22 + J) -2 + L n,),a2= L-a(

a 23 ao=a3 .= 0, 41x1At( a ),a.1=
20 i t --Ta

all na 0 -~ na~ a), qt2 z a a "2 a' a.=0a, -

oQ to -- 23 IN - t -- ~

a3 ,) na -a) mT+\
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4j~z~ ~.~e'n1 8'V (2.2)*31 CT Ri i -Y~k)1  = 3)m'

3 m ,(kT,)"'. _ " 2 (5 .2)
'= ~ ~ ~ yp n€,:,, fit n , ,=F;,

Here X -Coulomb logarithm [3] for ions and electrons

) 1 t I T,2TT,2 -

T in, , (T + TF) (x=t.2) (53)

Interaction of neutrals among themselves was calculated ,by the

Lenard-Jones potential. Values of a and Q (2 .2 ) for that potential

are given in [4]. For the interaction of neutrals with charged

particles we took Maxwellian interaction

(2 e=1,2) (5. 4)

The constant of interaction P2 for electrons can be estimated

Prom the magnitude of polarizability of the molecule [5], which can be

expressed through the dielectric constant of the gas [6]. Considering

the picture of interaction, from classical mechanics, we have

3 e-1 e . - -
'-- = +2 N:L - e4"1. (5.5)

Here E - dielectric-constant of the gas; N - number of particles

per cm3 under normal conditions. The value of Tpi is larger than T2 by

apjproximately one order due t3 the larger recharge cross section.

F-r Maxwel.ian interactions nondiagonal elements a and aa3
ik ik (i/k)

Purn into zero. For real interactions of neutrals with ions and

#A'e,;rons these elements are much less than diagonal ones in the first

aipproximation it is possible to disregard them. For Maxwellian

interac Lion

,= 2.81, x. = 3.98, x =9.95, X4 = 10.7, x= 3.4, x, = 19.9 (.6)

Durtng calculation of' (5.I) we diregarded quantities

1/2 as cmpared to one and a:.rurmed
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Integrals of collisions (5.1) of neutrals with ions and electrons

for real interactions it -*s necessary to caClculate by formulas [i],

which in the given approximation have form
___ : -Qr 5 .)( 3' = 4-,+,( '( (1)' = 4913" ) (1), ,, '(.1)--
11TI$ W

r.TSz 1. )3
=, [-[,3,(" (1)- 59.31" P) + P-23") (3)1
-,, ,[ pWt (I) - - Q" (2) + -( . .3 + 13~()

W t3
,=4 2 3 (1) - 5Q 13,,) (2) + 13' l (3) - 1 93(2) (5.8)

'0 0 CID

it) (;)1r+ (I - cos'X,,) &~b Ab dz
0O

In formulas (5.8) we use designations

= 2, (,,,Tg +,,AT) 9 (P = 1, 2) (5.9)

Here x3  - scattering angle. Using (3.16), (5.1), disregarding

(mt/T)1/2 as compared with one and considering at2 << -C for

coefficients in (4.4)-(4.7), we obtain

-' = b=0! -- 01 = a, 21 = b 121 = C 21 = 0 (=1, 2,3) (5.10)

For = a. + iBb 1 (i( 1, 3) we obtain system

5 =[3uL + x"na(-a) 5 - a ( a) T3-- na =- - + +L-c)inoc I -- L~~-~
4 Lri IfC

15 n a -) x -- , ) n- .+[- + -' a)
T) = J 1 3  InIT

From (5.11), (5.2), (4.4) for a = 0 we obtain the formula of the

C-rst approximation Vor the coefficierft of thermal conductivity of a

,:imple gas [i]

75 ts(,) (k3T)z(r1 )X .4 -(2.2)' . -n
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For a model of elastic spheres 
-2 12.2 ,

a,011 - blot = " = = = PI = = L = = 1 , 3; 1 , 3) (5.!13)

F'pr coefficients

P, ,= a.12 + iBbol t , p12.= a.22 + iBbo22, P 22 = a j" -iBb" I

P= 011 + iByoll, P22 = x61 + iB 0
21, P27 i 1

21 + iByl2  . 14)
P31 X2 + -iByo s, p" = _-z11 + iByo13, p= = X:123 + jByl s

we obtain system

3 m , ni t TPp- not ia'( ;-- C04t --- i-k,.P~z - T -= ''

9 m2T +9 r) (1 p1 i5 15/S,ro [ pp, +,,p, ,,i
PPI " -- -- -la 2i -oT (021 P02 + .n1 ,1( =) 3

4rv mvi~Ls 2 jOjP3

where

Pi,= -  tr= -i=-a is= - a'r[i - t - ) -(5.16)

The other values ot" P = 0. From system (5.15) for a = i we

obtained results of the first approximation of Landshoff [7] for

transport factors along and cross a magnetic field and iesults of [8].,

Tn [7] there is investigated the convergence of transport factors for

str:ipped pl.asma in the case B =-0 with expansion in Sonin polynomials.

For coeff'icients of diffusion and the diffusion thermoeffect the first

approximation gives an error of -1.5%; for coefficients of thermal

conducti,'ity and thermal diffusion error is -15%. When B = 0 and

,, = T, From (5.15) we obtain the results of the first approximation

oi' 1)]. Remaining coefficients in (11.4)-(4.7) are obtained from

r -a tio n hips Mck, = (a ka,))B=o - a l, B'Zk ma = (Xk )B=o- Xk (5. 17)

(a = t, 2, 3; t=,2; t= , 3; k=O0, 1)

Fo31 a Fot, >
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where

F=a,b,c (p1,2), F=X,y,z (P =1,3)

Limits of applicability of the solution Of the Boltzmann equations

by the Chapman-Enskog method for a stripped plasma are given in

[7, 9]. These alo are necessary conditions for applicability of the

present work. Furthermore, it is necessary that the plasma be

"strongly ionized" in the sense of [2].

DuriLL, proofreading the author was apprised' of the recently

appearing work [ii], in which by the Chapman-Enskog method, analogousiy

to S. I. Braginskiy [i0], there is a calculation of transport factors

for electrons.and ions in partially ionized two-temperature plasma.

Distribution, of neutrals was assumed MaxWelilan.

It is noted that analogous calculation of the influence of neutral

particl,' s on transport properties in partially ionized singe-temperaturu

plasma is-made in [12].

Submitted
20 February 1964
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ONREGICNS OF APPLICABILITY 'OF VARIOUS EQUATIONS FOR
STUDY OF COMPLETELY IONIZED GAS*

V. B. Baranov

(Moscow)

Transport factors for a completely ionized gas have been-
calculated by different authors from kinetic theory (see,
for instance, [1, 2]), relying on the Boltzmann equation.
Applicability of this equation for study of the behavior of
systems of charged particles frequently evokes objections by
virtue of the fact that it is usually derived on the assump-
tion of the binaryness of collisions of particles, whereas
Coulomb interactions spread to distances, significantly
exceeding the average distance between particles, and
co].lisions are not binary. In [3] there was derived an
expression for the tefm with collisions of charged particles,
which subsequently acquired the name of the integral of
collisions in Landau form, and was used in [2] for calculation
of transport factors for plasma. However, the derivation in
[3] was also based on the assumption on binaryness of
collisions.

In [4] it is shown that the kinetic Boltzmann equation
can be obtained by breaking up the open chain of kinetic
equations, obtained from the equation of Liouville for
distribution function fN(qi, q2 ' "'', qN, p1, p2 ' "''' PN' t),

which depends on coordinates qi and pulses pi of all N

particles in the system, and on time t, where the kinetic
equation with the integral of collisions in Landau form war
obtained on the assumption of uniformity in space and
in the case of the absence of a magnetic field.

*From report at Second All-Union Conference on theoretical and
applied mechanics. Moscow, January 1964.
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In this work, using the method offered by Yu. L.
Klimontovich,* there are extracted those limitations which
it is necessary to put on parameters of the plasma so that
from Liouville's equation for the random function of the
number of particles N a(q, p, t) we pass by means of averaging

to the kinetic Boltzmann equation with the integral of
collisions in the Landau form. The latter was used in [2]
for calculation of transport factors for plasma in a strong
magnetic field. On the basis of the obtained system of
inequall.1es in the density-temperature plane there is
constructed a diagram of regions, which gives a graphic
presentation of the possibility of use of one or another
equation for description of processes in plasma, if we
know parameters of the investigated System (ionization
potential of the gas, density, temperature, magnetic field,
etc.). In the work of Yu. L. Klimontovich, mentioned above,
it is shown that for Coulomb plasma the chain of equations,
obtained as a result of averaging Liouville equations for
a -random function of the number of particles N a' is equiva-

lent to the chain of equations of N. N. Bogolyubov [4].

For a random function of the number of particles

N. (q, p, t) = 6 (q -- qai ()) 6 (p- pa, (0)

where under the sign of summation of all patticles of type a there

sta.ids the product of Dirac 6-functions, Nadqdp  - number of particles of

a given type in an element of a six-dimensional space of coordinates

q and pulses p; in the case of absence of inelastic processes the

Liouville equation is valid.

For a system of charged particles it is written in the form [5-71

"aN a e(r.E + V X - l !m O = (

Here e a - charge of a particle of type a3 Em and Hm - microscopic

intensity of electrical and magnetic fields, correspondingly, for

which it is necessary to write Maxwell's equations

rot 11" = IE m +4n VN a (q, t) dp
a

rot Em =  I OHM div H'= (2)

div Em = 4are. Na(q, p, t) dp
a

,Yu L Klimontovich. Statistical teory of nonequilibriu pro-
Ces:3e in plasma. Doctor's dissertation, Moscow, 19 2.
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System of equations (1), (2) for random functions is a closed

system for description-of the behavior of plasma. We set

Em = E + OE",. H'." -- H + 8HM, N (N,> + 6N (3)

where E and H- average electrical and magnetic fields, both external,

and- internal, satisfying averaged Maxwell's equations; <Na> - mean

statistical value of the number of particles per unit phase volume,

coinciding with the distribution function appearing in Boltzmann's

equation (here-and henceforth brackets < > will indicate averaging- of

the respective quantities by the distribution function depending

on coordinates and pulses of all particles in the system, and also on

the electrical and magnetic fields [8]),; 6E', 5Hm and ,5N - devia.tions

of random variables from their mean statistical value.

By virtue of the linearity of Maxwell's equations it is possible

to set

8E"= 8E1 '" + 6E~" (it4)

Here quantity

8Etm -- -  i . q. 6Nb (q', p', t) dq'dp'(5

is the solution of equations

rot 6E,' = 0,, div 6E"' = 4 nYe4 8Nb (q', p', t) dp'

b

Quantity 5 E2 m in (4) is the solution of equations

rot 6E," I 66H- , div 6Em = 0

Substituting (3), (4), and (5) in (i) and averaging the obtained

equation, we have

0 (Na) + <N4> E + (INa
+ l dq +ea( +U-vxH)

-.S-. (i __q1pi) e (6Na8Nb) dq'dp' +

+vx 8H+) _L. =o6)

SIR-8



From this it is clear that in order to close the system of equa-

tions it is necessary to write equation for moments <6Na 6Nb>,
I,

<E 2 1 Na>, etc., since equ&tionsfor average magnitudes of E and H are

easily obtained from averaging system of equations (2). In order to

obtain the equation for <Na6N b >, we substract from (i) equation (5).

Then, taking into account (3), (4), and (5), we obtain

aS/ a  qN 1 a p"'

a a ( e% ,) [(Na) 6Nb + ZNaSNb - ('Na.Nb)\dqdp' +

.+ea (sE.m+! ×8) + (N+ 'o (Em-+ '- × x6I" ' 'j-- .-

Multiplying this equation by bNb, adding it to the analogous

equation for 6Nb, multiplied by 8Na, and averaging, we obtain
3(6Na6b r5N0 5Nq I × (<NONb>

+ e.( + v) ( N .ENb) + e x' + It I, n

C aUd

€ Op' Oqc~eb 3l-qi ((N) (N Nb

++ t
ea O JI q' q x 0

(+Na6N+Nv.) dq" dp" + e. (((E 1 tNb) + v x ( 1H)'t5N )) - +

4 eb (E +-t- E m "N0 xv(ml H) +,

+eK6u ) b>o (7)

Thus, in the equation for second moments there entered moments

o' the third order. In the equation .oi- moments of the hird order

there ent~er moments of the fourth order, etc. There is obtained an

open chain of equations. In order to close this chain, it is

necessary to place certain limitations on parameters of the plasma.

For simplicity, which does not sacrifice generality, we consider

that; plasma consists of two types of ions, where

+ e89



T. rT6 =T, Ie.[-= Iewi = e, n,,.t:n

Here T , Tb na , nb - temperature and average number of particles per

unit volume for the corresponding type of particle. Let us assume

that

es kT I/iY (4x = 2 (8)

Here. rd - Debye shielding radius-; k -- Boltzmann's constant.

Multiplying the numerator and denominator of (8) by 4kn, we find that

condition (8) is equivalent to condition

(9)

i.e., inside the Debye sphere, on the assumption (8), there should

always be many particles.

This condition gives the possibility of disregarding moments of

the third order in equation (7) as compared to moments of the second

order (see also, [4, 9])-, and thereby the chain of equations is

closed. If one were to use certain properties of a 5-function, there

can be obtained formulas

(Na> = fla (q,. p, t)

(N.Nb> = nfa*nb*/b (q,p, q', p', t) + 6 b6 (q - q') 6 (p - p') na'l, (10)

Here 5ab = i when a = b and 6ab = 0 when a bna* is equal to

the total number of particles of type a in a system, divided by volume

V, which is occupied by the whole system, and is considered subsequently

a constant number (it is only a certain normalizing factor). Since,

furthermore,

(N 0 Nb) <(a (Nb) + (6N,,6Nb)

lab -- Inb + gob (q, q', P, P', t (II)

(here g ab- correlation function; gab ' 0 as cq - q c),

(6N,6Nb> = 6a 6 (q- q') 6 (p - p') na.*I, + n,,*nb*g,,b (q, q', p, p', 1) (12)

.... DO



'Jsing assumption (8), and also relationships (1O)-(12) and

properties of a 5-function, instera of equation (7) we obtain the

following equation for correlation function gab;

,-v a -.. (q', p',,q', p-, t)dq'dp"-

jq' Y. n ._ *,, (q, p, q, 1) dq dpo - +

+ e.(E Y xH) " +e,(E+ v'x H)'!,L+C a) ep'+ a (<6E. ,"6N,) +_IV x <6|I-6N,>) '/a,+
(I- b+N a+ (13)

S)L

CVx dP (lF q a p~ O

The first four terms on the left and the term on, the right entered

in the equation for the correlation function in the dissertation of

Yu. L. Klimontovich. Remaining terms were obtained by considering

the total electromagnetic field. From comparison in equation (13)

of term vgab /3q with term ea E gab/p it is clear that the latter

can be ignored, if

ea [El rd ,< ,V,,°-  (14)

inasmuch as lag b /qj - gab/rd (as a result of shielding of' charges

in plasma ga seeks zero as r-+ rd, where r - distance between two

particles), Here v0 - thermal velocity of a particle (we consider

that the order of magnitude of total velocity of a particle is

,letermined by its thermal -elocity). From comparison of term V~gab/3q

with term (ea/c)v x H~gabi/p it is clear that it is possible to ignore

the last term when

_ a

rdrL ) i5)ell

where r1 - radius of the Larmor orbit o1' a charged particle. Calcula-

tions for particles of type b are analogous. We calculate now certain

trrm.; in equation (13). We compare term
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q, ....q~b (q'p% q', pV, t) dqw dp 16aq C 
(16)

-- e ) .]'L- -= -- ( 6E,"bNb>a/

with term q -q' ,r"

(8aM N p (17)

Preliminarily we write Maxwell's equations fo- deviations of

random variables from their mean statistical value

tot 8E" = -1 +, -1 + -" 2' e. ., ON ,
, t t =

la6H m , iv 6II ,7 (18)

div 6El= 4n i. N. dp, div O M = 0

Multiplying equations (18) by 6Nb and averaging, it is possible

from the equations obtained as a result to determine the order of

all quantities interesting us, if functions change sufficiently

smoothly. From the fourth equation of (18)

<(6EjS6Nb) - 4nerd 8(SNA.Nb dp

From the second equation of (18)

(4Em'6Nb) - - -

From the first equation of (18)

(<6H 6Nb) 4n rdevp (6N dp, or

- re- (6&VNb/\dp

Using these estimates and taking the ratio of (16) to (17), we

fLnd that this ratio is great, and te.rm (17) can be ignored as

compared to (16), if

V,-, < CS (19)

i.e., we should consider the gas nonrelativistic. Instead of

equation (13), with fulfillment of inequalities (14), (15) and (19),

we have equation



+-i 7- ,.-+ V1 gab-- y no* .i - a" gbcdqffdp'
(V c are, q'I ala

., -ebeC - 84 - a ( ao .e _ lb b (20 )

C a.pq'- q \-j-q' )q I b Op,

coinciding with the equation obtained by Yu. L. Klimontovich.

For the case of a three-dimensional uniform plasma this equation

was extracted earlier in [4].

Making analogous calculations in equation (6) and using the first

formula of (10) and formula (12a), instead, of (6) we obtain

,e et, ) gab .
e. (E+ v A,- b* q ) p' (21)

b

To obtain the kinetic equation for the first distribution

function it is necessary to solve equation (20) for the correlation

function and to substitute this solution in the right side of equation

(21). In order to find from (20) a solution which brings the right

side of equation (21) to the form of the integral of collisions in

Landau form, it is necessary. as shown in the work of Yu. L.

Klimontovich (see footnote on p. 86), to make certain other

assumptions.

Let us assume that distribution function f a varies little during

the time of correlation (correspondingly, the length of correlation),

i.e., we consider cha-racteristic times t (length 7), much larger than

the correlation time Tk (lengths of correlation rk) during which two

particles, near one another and moving with thermal velocity will

L-epafate distance rk, at which these two particles become statistically

independent (do not interact).

From the solution of equation (20) for the case of equilibrium

di.tribution of particles by velocities it follows that for that case

rk. rd, rk rd/v=I/ 0

I'%



(here o - frequency of Langmuir oscillations), since, when

r-> rd (r =[ q- q'), iub -- fib (gab o)

This also follows from the Debye-Hiickel theory for electrolytes.

During solution of kinetic equations we usually always linearize

around the equilibrium distribution, i.e., we consider small deviation

from equilibrium. Due to this one may assume that Tk differs little

from rd/v = 1/wo, and rk differs little from r Thus, introducing

the characteristic frequency of the problem Q = I/t, we assume

< (22)

upon which in (20) it is possible to omit term Ogab/6t since by

v;irtue of (22) initial correlations attenuate after the considered

characteristic time. Applying to eqiation (20) the Fourier transform

and assuming

V- rd2> (23)

(k- reci'ocal of the length of the wave vector), which means that

dielectric constant s = i (see for instance, [10]), as a result we

obtain the equation for the correlation function, the solution of

which, substituted in the right part of equation (21), leads to the

integral of collisions in Landau form. If we pass to equations of a
solid medium, using Boltzmann's equation, it is necessary to consider

characteristic times, much greater than - the time of establishment

of ,n equilibrium state -the order of magnitude of which is determined

by the order of magnitude of the f:ee path of particles and is equal

to r. d/v0, where LL - plasma parameter, determined by formula (8),

Cons idering ' - v (7. - so-called length of establishment), for

transition to a solid medium we should assumc that 10 << L (L

characteristic dimension), i.e.,
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jiL 1 24)

System of inequalities (8), (14), (15), (i9), (22), and (23)'

means that for description of processes in plasma with parameters

wnich satisfy these inequalities it is possible to use a closed

sytem of equations, consisting of the kinetic Boltzmann equation with

integral of collisions in Landau form and Maxwell equations for the

electromagnetic field, where function <N a> = na f acorresponds to the

first distribution function, usually appearing in the Boltzmann

equation.

For transition to magnetohydrodynamic equations [2] it is

necessary to.make assumption (24).

In the diagram, in the same coordinates as the known diagram of

Kantrovits and Petchel: [11],, there are depicted-regions in which

,,arious inequalities are satisfied. Along the axis of abscissas is

the decimal logarithm of temperature, expressed in electronvolts,

• nd on the axis of ordinates, of electron density. For characteristic

length we take magnitude L =1O cm; for order of magnitude of

etrical field E we take magnitude E v°H/c, i.e., maximum, possible

mnqnitude of separation of charges during motion of the medium with

ro.'pect to the magnetic field. Below line i inequality (8) is satis-

fied; above line 2 inequality (14) and above line 3 inequality (15) are

satisfied (for the latter two lines H = j05e if, however the field

iS 16ss, these inequalities in the marked regions are long since

satisfied).

Above 4 is the condition of solidness of the medium (24); to the

].i; ofi 5 condition (19); the dotted line corresponds to thermal

ionization of* lhydrogen (to the right, more than 50%/o ionization), where
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2 toq!n for gases with an ionization potential,

smaller than for hydrogen, this line is
20

shifted to the left.

15 Line 6 corresponds to we Te = (we-

. cyclotron frequency of rotation of

-I 0 7 2 3 ',V 5elcrn T- .* o"'tcee of free path" of
Fig. 1. o

electrons, T e T for completely ionized

cee,gas, H =0 iOe for-this line).

Rpgic'n A corresponds to classical magnetohydrodynamics (we .

Region B corresponds to magnetohydrodynamics with anisotropic transport

properties f [12, 13]. If we are in region C, for description of

processes in plasma it is necessary to use the kinetic Boltzmann

equation with integral of collisions in Landau form. Region D corre-

sponds to a kinetic equation with an integral of collisions which

depends on the magnetic field [14, 15]. Inequality (22) is not

marked on the diagram, since we consider it always satisfied.

With decrease of the magnetic field lines 2 and 3 shift downward.-

ad correspondingly regions A, B and C increase in size. In region

C far from line 4 it is possible to disregard the integral of

0
.ollisions, since we have Z > L, and for description of processes

in plasma it is possible to use the equations of a self-consistent

field of A. A. Vlasov [16]. Near ].ine 4 the integral of collisions

should be accounted for. A generalization for relativistic p].asma

is contained in [8].

In conclusion the author thanks Yu. L. Klimontovich, A. G.

Kuliko'skiy, and N. N. Shirokov for valuable advice and discussion.

Submi (ted
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Note during proofreading. It is necessary to note that assumption

(23) leads to divergence of integral of collisions at infinity. In [3]

this dvergence was removed by means of cutting off the integral of

collisions at distances rd .

Thus, assumption (23) leads to ignoring the interaction of elec-

trons with plasma oscillations, and also their Lnfluence on transport

factors [2].

Recently there appeared a work [17], in which there is revealed

the ihfluence of these interactions on transport factors for a com-
pletely ionized gas. It is shown that, when temperatures of electrons

and ions are comparable, calculation of interaction of electrons with

plasma oscillations leads only to small corrections in transport

factors, which, in general, can be ignored. With sufficiently strong

nonisot-hermatess of plasma these interactIons play a determining role.
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THE ELECTRICAL FIELD IN A MAGNETOHYDRODYNAMIC
CHANNEL OF RECTANGULAR SECTION WITH

NONCONDUCTING WALLS

S. A. Regirer

(Moscow)

The two-dimensional problem of finding the electrical
field in a channel with parallel nonconducting walls with
constant and changing conductivity of the liquid was
considered earlier [1-3]. The obtained distributions of
electrical potential and current could be interpreted as
the result of averaging of the corresponding distributions
in a channel of rectangular section [4]. For certain other
quantities, e.g., Joule dissipation, such a connection with
average characteris-uics of a rectangular channel, in general,
does not exist, if the velocity of the fluid changes in the
direction of the magnetic field. At the same time, calcu-
lation of these changes is of interest, in particular,
during calculation of the influence of the transverse edge
effect," i.e., of closed currents, circulating in the plane
of the channel cross section. Below there is set forth
a complete solution of the three-dimensional problem of
distribution of currents in a channel of rectangular section
with nonconducting walls, valid for any given dependence
c;' vectors of velocity and the magnetic field on coordinates.
There is also investigated a solution, corresponding to the
particular case of rectilinear flow in a nonuniform trans-
verse field. In conclusion there are discussed conditions
which should be satisfied, in general, by the magnetic field
assigned in the solution.

I. Let us consider rectangular channel < 0o, yl < F, Izi < a

with nonconducting walls, in which there occurs stationary motion of

ani i.,)tropjicoliy conducting fluid (Fig. i). If' the externa] magnetic
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field B(x, y, z) and distribution of velocities V(x, y, z) are known,

and the induced field can be ignored, the distribution of electrical

potential qp and of current density j can be found from system [4]

.. 8 .. ,. = BrotV (1.1)

a = o(- V, V B) (z-const (1.2)

with boundary conditions
Fig. i.

-h,= - +I_) 0 wheny (13)

Here

ft (z, z) =-(V x ), wleny 6

g (z, y) = (VxB). w.ien a

We assume, further, that V and B - bounded functions of coordi-

nates, where
av

--,0, a -0 s x --,-+ o
B -. B z),-- _. 0 asx -.- o

Ox

and we seek the solution of system (1.1)-(1.3), satisfying asymptotic

conditions
T -,O as r-

ix= [- + (X B).] ->0 as x- (1.5)

It is easy to prove that function

o (" - aZ)2 [( + i- (6 -)" /- , (Y -6' Ti( 4a)"g--(a-=)"g- (1 6)
46 (: l- a-)' (y- 6)1 - 4a l(: - :- (y2 - 6")q

-Atisfies boundary conditions (1.3). Introducing auxiliary potential

0
T - p and considering

A (z, y, z) = I'B rot V - (1.7)
C

wo obtain for D a boundary value problem

Z, = A (x, y, z) (1.8)

-D 0 w-n ±6. = 0 iv'hen et
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A

with asymptotic conditions

OlD I
(D -> 0 as x--- oc, .W ->- .... a (1.9)

It is known that the problem at hand has a solution, if the right

sides in (1.8), (1.9) satisfy certain integral conditions. These

conditions and limitations imposed by them on V and B, together with

limitations ensuing from other considerations, are considered at the

end of the article. Here it is assumed that a solution exi-ts and can

be presented as a series

(D , + I ~ i si -' O ""' -

= W +[i -( +±Nncos'-6--
60

Onrn
9o( rm-

+ (N 1, .os -- + To,,, sil +(

+ M M,,, si T o cos -- cos +

+ S,1,, sin -sil + T,,,,

Then Mnx), nm(X), Sn(X). Tn(x) -solutions of ordinary

equations, bounded as [xj -+ o:

Mm" P ,"M , = N., 1" - VIm'Nn = n,,.

S..," - Onm, M = s,,,,, Tnl' -. ,"T,., = tnin

Here rn = r(n - 1/2) and

-a -a

-a S
V + a-- ,  n = - - A s- cos dy dz

rn 2 rM2 "nmr si -'"m z dy dzFF=M s = -aT iA ssin -- a21SjAyi
61 -i-, ~ ab 6 a

nn
2 a m 2j \Acos-L sin-M dy dz

When n and m are not simultaneously equal to zero

CO

M.m =- t \ m,,, (n ) exp (- x i.1,,I - I) (1.12)
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Analogously Nnm is expressed through vnm and nn(k), Sn is

expressed through anm and snm(X), Tnm - through Tnm and tnm(x). When

n= m= 0

x

After the distribution 6f potential is found, from Ohm's law

(1.2) we determine current density

-vi° +- VxB)(

Joule dissipation Q is calculated after this, by formulas

Q j'dydzdzx= -i-3\ jVB dydzdx (1.15)
-coCO -a

The second equality of (1.15) is valid only for channels with

nonconducting walls.

2. Of interest is consideration of rectilinear flow with a

cymmetric velocity profile in the presence of a flat magnetic field,

-onstant along one of the transverse coordinate axes. Let us assume,

for instance that

V ,z), B = exB (x, z) + e,B (x, z) (2.1)

where

V (y, Z) = V (y, - Z) = V (-Y, Z), B., (z, z) = B, (x, - z)

tim B = 0, lir B = BB = const

In this case

g, = O ==(x, z)

__ _4_ ) ( I 'v

= . -- . + 0%, 63)2 ,-- (2 .2 )

Function A(x, y, z) turns out to be even with respect to z and

with respect to y, and in its trigonometric expansion differing from

zer,1 there are only coef'icients mnm* Therefore, solution of boundnr,
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value problem (1.8) is presented by series

o -r- + !cM, 1 1 si o

M,,, s + Minsi -ill
11=1 T11 m=1

coefficients of which Mnm are expressed according to (162) through

mnm , where in this case a

m,= " vBz cos n dz + tL,,nn'2 °0
•a

-a
t ~ __ c mrdy

= - v cos dy, T1 4 .-1 . sin -cosAdydz (2.3)
o 6 *~6 a

-- . -a -5

Setting T nm V nm + cnm 0, we obtain formal expansions of the

potential and components of current density

co -cos-t -I n~ rny COS M Z

. = , ,, sin-- +  . sin - s (2.4)
n=l n='I m=l

€~- COSC

J U(±i.-.(rn
2  rn j i (q O rim.- -- q,,o+ iftZ X- To- simn i .,' sin (2.5

nn=1 tn=i

n --- rnY ln~

, ny rny cmz
jz = -g - = Y ,n, n Sino-0 ni snl jtm

hsn6 ai

Let us note that functions A(x, y, z) and cp0 (x, y, z) do not

depend on the longitudinal component B of the magnetic field. There-

Core, the solution of (2.4), (2.5) also does not depend on it.

Joule dissipation in the channel is calculated by one of the

t'ormulas
co co

Q = ua6 ':,,,['i. , '- " q ,+ - +

Co on 2

-, 1 1 0) + , J (2.6)
IT= r,,:., r - 111 V1T.1 

d 2 6

Co Co

Q=ota6 \ I1 \'[ " ,r 1  ± )O (n, 0

- -[ - T + I,,,, - I.,, "o° (z,,o - ji0 "0 , )  +

Co Co ]
+8111 [ , (: q,,,- m,, -11 ,,,1 2T,8m1) (m,,,,, ,,2 ,,,) dx ( 2.7)

n=t Io= 14
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These expressions have meaning when 130 = 0, where the field

attenuates along x as jxj -* co so fast that its energy is bounded, i.e.,

when Bz is a function, square-integrable along the whole x-axis. If

this condition is not observed, then integrals in (2.6) and (2.7)

diverge, and it is possible to investigate only the "linear density"

of dissipation, determined by the integrand in (2.6). The integrand

in (2.7) for this purpose is unfit, since it is not equal to the

integral from j 2/a6o2 with respect to the channel section.

The obtained solution is intimately connected with certain

previously known bnes. Thus, when x -* co, B z - B O 0, it asymptotically

npproaches the Longuet-Higgins solution [5]. In another case, when

V and B do not depend on z, the double ,,ums in (2.4)-(2.7) disappear

and there is obtained a solution of the corresponding two-dimensional

problem of distribution of potential, which for special forms of

dependence of V and B on coordinates x and y is considered in [1-3].

.. Let us assume that the velocity distribution satisfies

conditions of adhesion on walls and is expressed by series

U0  X. x'. Cos11. (3.1)
n=1

Let us assume also that change of the transverse magnetic field

along axis z, at least in section Izi < a, can be ignored and we can

_et Bz = Bob(x). Function b(x) we consider even and attenuating

rather rapidly as I xI -j co. Constants U0 and B0 have the meaning of

characteristic values of velocity and field, respectively. With the

indicated assumptions
",,z,,,. UJ~b (X), X,. i IZ,()c.

a

--fel) c0 r6 X11104 
(3 .2 )
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From formula (2.6) for Q we obtain

00 
00 00Q "T. \L M z.j-q#1o -- " )(3.3)

W 00 CO
"I= a=I =1 -.- IQ = Q ' [t + 2 " z~ (Y x(,,,q, ,,,,I x ,, q ,*)J(
pN:::1 N--- f"=l

Here
Q* zaucu5 2 qfmn+ dx> 0

, O 11 0

If velocity changes along axis z practically only in narrow

boundary layers on walls z = +a, then, in general, coefficients Xnm

are small (for m _ 1). In the limiting case, when v - v(y) when

jyj -i 5, [zl < a, from (3.3) we obtain the formula of two-dimensional

theory Q = Q It is obvious that two-dimensional theory gives a

satisfactory approximation to the more exact result (3.4), if

",.= 0), 2.,,, /,,,,. ,o q,,,. (3.5)1 nn
m=1 'n=1 t)=1

Functionals qno(b(x)] in this formula are bounded from above by

a certain number, not depending on n and the form of function b(x),

if only b(x) is bounded (b ; I). Functionals q nm(b(x)] when m a I

do not possess this property. Therefore, if the extent of the region

where the field is substantial, i.e., b - i, is great in comparison

with 8, qnm can become so large that inequality (3.5) obviously will

tiot be satisfied even for small values of Xnm Investigating

,lu;intity w for the given v(y, z) and b(x), it is possible for each

problem to indicate the maximum extent of the zone of the magnetic

field at which the contribution to dissipation from closed transverse

currents still remains negligible.

Quantity a in general can be calculated as follows. Let us

a:u"me that

q,~,,,< 3,, ~ , > , .-, nit, .o, ,,>1., ,i (3.6)
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Then
o0 CO CO-= z,,," ,,,- 2, 1,,a (3.7)

Sums in these inequalities are calculated in final form by the

Parseval formula. It is obvious that (3.7) can be modified and

improved, for instance, by more precise definition of inequalities

(3.6).

4. As an example, consider flow in an exponentially attenuating

magnetic field [i] :

b (x) .whenlxl<

when functions 7 nm(x) and constants qnm are expressed by formulas

21 f "ieI'(" " ' /8 t -'l 'Le ""(X+ ) -.i.e.." (X-) (X < - .)

2 - .h ,,, ) (1 - I < X .) (

qnun (P, += -- ' ( -_ e_.,,,) +," (2x - ) (4.3)

.11 _______ 1- /
,,,,-- -l - p,,,,, P/l

The velocity distribution, following [2, 5], we take in the f'orm

21 the product

V = UO(1) (Ni y) y (A )

= . (cli X, - cli N~y / 6), 7,-,) = jII:- (clh N. -. ch N.,: / a) ( 4. )
(Nk) = INA cli Nk - !41 N.. (k = 1, 2)

Here U -- mean velocity, Nk - geometric parameters, characterizing

i'illness of the profile. With a real DI M varying from 0 to co, the

volocity profile in plane z = const (for k = 1) or y = conrt (ror k =

= 2) ig deformed, passing from parabolic to unirorm. When Nk  Ti/2

in I he oorresponding planer there is ob',iined a 2osinlnoida I ,r-r''ilr
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II],and series (3.1) then is broken on the first term. For larger

il k the relative thickness of boundary layer on walls y = ±6 ard z =

- ±- in order of magnitude is equal to N1i and N21  respectively.

Coefficients of trigonometric expansion of X(Y, z) have form
X. (Z) 1)"" = ,c , ()h ch - N.z / a)

rn(f n(N 1) J (N .) (c- _ h. t -c a,

4NS (- 1)"~ t cli YV (-- I)" "Nsh IV.(
Xo = rs (N,) rn2 + N12 , ' ,,, = (.arml - .':) / (Nt) ,

Joule dissipation in this case depends on parameters Nk P, X/6,
u,/a. In order to investigate their influence, we consider w, for

vihich, taking into account (4.5). we obtain

I-Wi ,,! (r,:2 -. V") r-- I NO 2\,
W= & . I 7=.I 

r n  
(t*

For q nm here we can establish more exact estimates than(.)

_ . o < 33, < q.,,, < s( .7)

( - -p2( e - )I3 ) ."_ _p

16a, 4as6"a l,- (2 -X 1
R a,= I + 2-+ ) (4.8)

o =p'- (1 - e - 'a'')) + P6 ';x ?.
-6,i'(P + 6 ,,)2 2

Taking into account identities

00
(N)lt 2 'h 2N - 3 sh 2N+ 4V

.n=! n- r& --

Co

is (N) = - 2.V (N-- (1) ch 2N + 15 sh 2N - 2)N (N2 *.0)

o

(N - (4.'--2O 1.VI-..) eh 2 - 105 s 2.V- 4N--2O.V3- 120N=-' r,, (r,,:-..V:)2 I2C.V'ch: X
n~i

pr'oved by the Parseval f1ormula, we find for m
,,.(N ,) < 0)11 <7 , (.\',)

, , (.v,) < 1,,, q- (N I -- 3_0 - ,( t. 9)

r.m this., ~turning to (4.6), we rind as estimate i'or
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-'1 (N1) '3 (N2) <(a < ~ (asV N!)
al 4s(NI) + a2V (NI) (4. 0)

Here
112 4 j2(N = 2V2 NshNchN.-2sh2N

Curves of'functions Yi(N), Y2 (N) and T3(W) are presented in Fig.

2. For large values of N

Dependence of a 4/a3 on X/b for different values of p and 6/a = I

is depicted in Fig. 3 for X/5 9 2 and p i i. Let us note that with

further increase of X/6 ratio a4/a3 increases almost linearly. Decrease

of p leads to more rapid growth of a 4/a3, since from (4.8) it follows

that Ya/3 - p-2 when p i i. With growth of b/a values of a!,/a 3 also

increase, but they preserve the same order of magnitude as when 6/a =

=1i

From consideration of these results it follows that when 5/a i

parameter a has an order of magnitude at least as large as N2  , and

a for X/6 b 4 or p < i it exceeds N2-1  by an

order. Therefore, even with small relative

a2 thickness of the boundary layer on walls,

perpendicular to the magnetic field the

-- contribution of transverse currents to
0 19 zo u

Fig. 2. dissipation can be marked. For instance,

for N2- = 0.05, X/6 ; 4, p = 3, 6/a = 2

we have w > 0.2, i.e., real dissipation by more than 20% exceeds that

ia!_ulated by two-dimensional theory. With greater relative thickne.ss

of the boundary layer on waJis z = ±a (for smaller N2 ) the influence

o!' cross currents becomes essential correspondingly for smaller X/V

and larger values of p.
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Thickness of boundary layers on walls

16 y = +5, parallel to the magnetic field, is

characterized by parameter Ni. As can be seen

8 - from the given calculations, its influence on

w is small, and conclusions, made above, are
X

o. 1.6 valid for any N At the same time, in the

Fig. 3. expression for total Joule dissipation (3.4)

this paramter enters not only in w, but in Q , where Q strongly

depends on N1 . Thus, with change of Ni from 0 to w0, Q and, conse-

quently, Q decreases by a factor of one and a half [2].

5. The solution investigated above was obtained on the

assumption that V(x, y, z), B(x, y, z) are given functions. It is

obvious that solvability of system (1.1)-(i.3) requires only fulfill-

ment of equality

lim B rot VdD == fln\(V X B),, dM
j...*- (5.1)

D £.

under D, Z - volume and surface of parallelpiped xl g Z, iyf

IzI < a. This condition is fulfilled exactly if B - arbitrary

potential vector. It also takes place for different cases of joint

assignment of V and B in special form, for instance in such a form as

in Sections 2-4, when V rot B = 0.

During solution of problems there frequently arises the necessity

of introducing in system (1.1)-(i.3) a simple approximate expression

i'or the external magnetic field . instead of the exact expression,

which satisfies equations div B = 0 and rot B = 0 and having, as a

ru!e, very complex form. Here it may be (as in Sections 3-4) that the

introduced veotor does not satisfy equation rot B = 0. If the [low

of liquid i.- nonreetilinear, then condition (5.1) may also be

di .- i-rbod, Therefore, in such eases the cltsses oi, ,Ipproximating
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functions of V and B are bounded by condition (5.1) or the equivalent

requirement

lim V V rot BdD =0D (5.2)

The latter can be considered the condition of conversion into

zero of the V-weighted average value of rot B. Let us note tinat

current density J found from the solution exactly satisfies equation

div j = 0, if requirement V rot B - 0 is fulfilled better than

(;.2). Otherwise equation div J = 0 on the average throughout the

volume is satisfied exactly, and at every point it is satisfied

approxima tely

Selection of function B, introduced in the calculation, is also

determined by other considerations, the essence of which it is possible

to explain from the example of the problem considered in Sections 2-4.

In this problem of significance only is selection of the component of

magnetic field Bz(x, z) transverse to the flux. If in direction z the

channel has relatively small width (6/a > i), then within section

N < a it is possible to expect small change of Bz in comparison with

the magnitude of Bz(x, 0). Considering therefore Bz(x, z) Bz(x, 0) =

= ob(x), we arrive at the formulation of the problem in Section 3.

TI' however the ratio of transverse dimensions of the channel is the

opposite (6/a < i), although the whole system of the problem is close

to two-dimensional, approximation Bz(x, z) ; B(x) can be unsuitable

Cor not too great an extent of the zone of the magnetic fiel3 a'ong

the channel.

Solution of the problem, considering change of the magnetic field

across the channel, is easily obtained from general forumulas of

So(!tion i. Nonuniformity of the field, just as nonuniformity of

velocit(,y, leads to appearance of a transverse edge effect.
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Let us note that there exist such fields for which Bz(X, 0) <

' Bz(x, a) for small values of x and Bz(x, 0) > Bz(x, a) for large x.

In this case the transverse edge effect, caused by nonuniformity of

velocity, will be weakened near the central section of the channel

and will be strengthened far from it.

Submitted
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ON COOLING BY RADIATION OF GAS, FLOWING PAST A FLAT PLATE

A. F. Kurbatskiy and A. T. Onufriyev

(Norosibirsk)

In a number of problems of aerodynamics it is necessary
to consider transfer of energy by radiation and thermal
conduction through an absorbing medium. Finding the mutual
influence of both forms of energy transfer is the subject
of a number of works. In [1-3] there was considered the
case of stationary one-dimensional transfer of energy
between two plates. For flow in a laminar boundary layer
the problem was -onsidered in [4-8]; for turbulent flow,
in [9]. For description of energy transfer by radiation
there were used different approximations: one-dimensional,
diffusional and of nonlinear thermal conduction. In the
present work in the simple problem of a thermal boundary
layer there is shown the influence of radiation on the
magnitude of the energy flux, depending upon the parameter
characterizing the relative magnitude of densities of
energy fluxes caused by radiation and thermal conduction,
and we compare different approximations.

Designations

- dimensionless magnitude of density of the energy flux, deter-
mined by radiation;

q - the same, but determined by molecular thermal conduction;

q - the same, but determined by radiation in the approximation of
nonlinear thermal conduction;"

q - the same for the tctal energy flux;

- dimensionless magnitude of density of energy of' .radioti'n;



o equilibrium density of energy of radiation;

c - velocity of light;

o - Boltzmann's constant;

T - dimensionless temperature;

- path length of radiation;

u - component of velocity of flow among axis x;

p - density of gas;

P - Prandtl number;

c - specific heat capacity at constant pressure;

xI - coordinate lengthwise along the plate;

y - transverse coordinate;

- magnitude of the parameter, characterizing the relative role
of molecular thermal conduction and radiation;

k - coefficient of molecular thermal conduction;

- coefficient of viscosity;

I n(x) - Bessel function of imaginary arguaent (n = 0.1);

9 (q' C(qO) oTo
o ' o= T ' q = -q +q , 4q- C '' ,

_I 4T4 3kT, T L = 4x'A _ Y'

c 4 IOTco4 , TCO k 31 1

i. The problem consists of finding the distribution of density

' the energy flux the length of a semi-infinite ideal black plate

during stationary flow past it of radiating hot gas. The plate is

Located along axis x. Gas flows parallel to the plate. We take the

hypothesis of loc.al thermodynamic equilibrium. The gas is gray.

The process of energy transfer by radiation will be described in the

ditI'usional approximation [10]

4/3 1 div (q')' = - - -', I grad (c:[))

C.)n:ider- i'low in the boudnary layer- of an incompressible fluid

]hling m ].]. ch:'nges ol temperature for small Prandtl numbers P. In
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this case there can be obtained a solution in final form. When P << I

it remains to consider the problem of a thermal boundary layer, in

which dissipation of energy due to viscosity will be ignored [6, 11].

Transfer of energy by radiation will basically occur in the direction

to the plate with a value of parameter A < i.

With these assumptions the problem is reduced to solution of

sy s tem

5T +,r Dji, - (4T -3) (1.1)

with boundary conditions

I,= ' / 3 8 / y = (p - (4T, - 3) -eny = 0 (1.2)

T =i, P=1 weny=w -

and with initial condition

=O, y> 0 when T-

System of equations (i.i) can be reduced to an equation for the

magnitude of the density of radiation energy

a(4+ ,) (I.)d y, azay, 4! 4 Z,.rV -

with boundary conditions

2 ay = 4 61q = p - (4T, - 3) ,neny-, T) when Y (1.4)

afnd with initial condition

P = q (0, y) when -o (1.)

Quantity cp(o, y) satisfies the second equation when T 1 (1.1).

Magnitudes of' densities of energy fluxes are determined by

4 07' a 48 p]
I 3 ,- q- -  - - T , i 9

Value of' parameter e = o corresponds to the case of no radiati'm,

and = 0 corresponds to the absence of thermal conduction. The

I-ILA



latter case was considered in [12]. The density of the energy flux

on the wall when s = 0 will be

q, (0, x) = - 4 (1 - TI) e'Iz[to(,/ ) + I, (1./x)] (1.6)

2. Equation (1.3) with the corresponding boundary and initial

conditions is solved with the help of the Laplace transform. For the

transform of the density of the energy flux we obtain

q'I(0, s) 4 (1- (2.1)

q*+(0, s) = . .- (2.2)

Expression (2.1) on a plane with a cut along the negative

f-(miaxis has only one singular point s = 0, and the complex integral

in the expression for the original is reduced to an integral with

respect to a real variable

q(o, X-' ' r + ,[[(4 + + " (2.3)

qT (0, )4 (1- T,) (2.4)

From (2.4) it is clear that in the considered linear problem the

density of energy flux, determined by molecular thermal conduction,

does not experience the influence of radiation.

Quantity q we find as the difference a - qo = q .

5. When E = 0 the expression for density of the energy flux

:il. be

q (0, T) 7 L 1 (3.1)
0

Expression (3.1) can be converted to form (1.6). Correction to

!'or small values oi s will be a quantity of' the order f E 1/2

which it is possible to see from series expansion of (2.5). As

X+ we obtain

q (0, x) 4 (t -Ti) -If
3;i t z



which corresponds to molecular energy transfer. The first term in

q corresponds to calculation of quantity

q (- (0 [4TI (y, z) - 3 e-- dy'+ (4T1  . 3)

by the temperature profile, which is obtained from solution of the

problem during allowance for thermal conduction alone; for large

values of x:

8 (1 - TO
q, (0, .1" (3.2)

For large values of x we can obtain an asymptotic expression for

density of the total flux of energy,

q 0,Z). 4 (1 - TI) ]r4-- + 4q(, )..3 .--(X I t T( x] Z (3.3 )

and for the density of the flux of energy, determined by radiation,

q(0,x)= 4 (L-T2)[y 4 +-F - -e(43 --i (3.4)

From (3.4) and (3.2) it is clear that the latter can be used for

1-irge values of s, i.e., when thermal conduction plays a predominant

role.

4. Approximation of "nonlinear thermal conduction" corresponds

to the value of the effective coefficient of thermal conduction

k X = k + (16/3)jT 3.

The density of the energy flux is

q (0, X) - T(I-T,) I- (4.1)

This quantity for large values of x coincides with the solution

in diffusional approximation (3.3). But if we are interested in the

I radiation component in the energy flux, there is no coincidence

[7, 13]; in this approximation we obtain that which should be

compared with (3. 11). As 0, -+ ,

U'S



TI)
q**1 - 1(I- , (4.2)

3 Y I1,. _

we find that x is great, and s o o and q*. /qI 2. When I is small,

but k -, 0, s -+ 0, and x is great, and q*i /qI q- i

But in the molecular component of the density of the energy flux

there is obtained here a great difference. When Z -+ co, but : is

finite, e -+ 0 and x -+ 0. Instead of (3.) it is necessary to take

(1.6), which gives q (0, x) -2 I and q** /q - Co.

5. .esults of calculation of the magnitude of density of energy

fluxes are given in the form of dependences on x of q/(i - T,) in

Fig. I for = 10, Fig, 2 forE = I and Pig.. 3 for s = 0.1. In each

figure curve I corresponds to density of

eo 10 total energy flux; curve 2, to density oi

Penergy flux determined by radiation; curve

3, to density of energy flux determined by

thermal conduction; curve '4, to density of'

0.2 z 3 X4 total energy flux, calculated in the

Fig. 1. approximation of "nonlinear thermal

q conduction"; the curve, marked by small

". lcrosses, corresponds to the quantity

2 _ determined by (1.6); the curve, marked by

circles, corresponds to q.x.

0 Comparison of curves shows that for

Fig. 2. small values of parameter E the difference

€ ,,j7 between results in the diffusional approxi-

L--\' ;..1"" mation and the approximation of nonlinear

.*~ thermal conduction may be significant.
3- From comparizon of curves in Fig. 7 it i"

0 clear that the magnitude of den.i ty of' th-

Pir'. 1.
11?



total energy flux, determined by (1.6), when we completely ignored

the action of thermal conduct71on, is close to the solution in diffu-

sional approximation. When we allow for thermal conduction there

occurs only a certain redistribution in energy fluxes.

This consideration of the linear problem allows to see the region

of validity of different approximations utilized in describing the

transfer of energy by radiation, which preserves it qualitative

meaning in the more general case.

The authors thank V. P. Zamurayev and V. N. Vetlutskiy for

useful discussions.
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LAMINAR BOUNDARY LAYER IN A RADIATING-ABSORBING GAS
NEAR A FLAT PLATE

V. P. Zamurayev

(Novosibirsk)

The stationary problem of laminar f'low of a radiating-
absorbing gas in a boundary layer near a flat plate was
considered in a number of works [1-6]. However, due to
assuiptions made about radiation, the region of applicatio-'
of the obtained ;olutions is limited; for the same reason
accuracy of the utilized methods of calculation of rad'ation
is not known.

In the present work there is considered a laminar boundacy
layer near a plate with more exact description of the
transfer of radiation. Heat transfer is carried out by
normal thernial conduction and radiation. About radiation
there -re wade a series of simplifying assumptions, utilized
also in the works mentioned. Thus we take the hypothesis
of local thermodynamic equilibrium - emissivity and the
coefficient of absorptions are connected by Kirchhoff's
law. The medium is assumed to be gray. Radiant fluxes
along the plate will be disregarded in comparison with
f1uxes across it. This is permissible if change of tempera-
ture along the plate on the radiation path length is small.
In raiant fluxes across a plate weak change of temperature
along plate will show up in such a way that these fluxes wilt
be determined by the temperature profile in the considered
section. The wall is assumed ideal black; Physical
properties of the medium can depend on temperature.

We show the character of aymptotic behavior of heat
transfer far from the front point of the plate. For
solution of 'the problem along the whole plate there is
applied a differential method of' solution of the ,,y.rlfom
of p.jrtial dit"Verential equations with a complex*rtegro-
di'i'ecential equation of energy. Thi.: method in it- b-.'i,
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features is similar to the differential methnod applied for
solution of equations of the boundary layer without caj.-u-
lation of radia-ion [7-9]. In conclusion there are given

results of calculations for one of the cases considered in
[_]. Here, we" show the character of heat transfer and th3
possibility of accounting for radiation in approximation of
radiant thermal conduction.

i. We conrider a stationary laminar boundary layer near a flat

plate.'

in variables x (longitudinal coordinate) and y (transverse coordi-

nate) the problem at hand is described by system of equations

3:1 of a to
-7- + P ,,-7 - ,, t W( .i

aT "' aq Iuy\

Here u and v are components of veloc-ity along and across the

plate; T - temperature, p --- density, p - coefficient of viscosity,

cp - specific heat capacity at constant pressure, q- total flux of

heat along y, equal to the sum of fluxes from normal thermal conduction

q and from radiation q

q =q,,, +q,- (1-2)

Flux of heat qm is determined by usual method

X OT/)Oy

vit zhe N - aoei'I'icient of thermal conductivity.

The flux of heat from radiation qr can be found by using its

e' re8sionl, obtained by integration with respect to the spectrum and

-id angle of the intensity of radiation in the form of a formal

.A.Ntion -)I the transport equation, multiplied by the .osin, :i the

qnIe b, tween the direction of radiation and axis y, taking int-)

.i iinl the .f.'.;mpt-i'm of grayness of the medium and ignorin" change
I

AI ii':, lure atong x I'or ,eve rai, radiati on pathl Length.:

... . A-
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q, 2a T. o ,Ei) + 1TIr,.2. --t)dt-:',_ 2:7', t-- .)dt (1-.4 )

Here j - Stefan-Boltzmann constant; En~ ) -integral exponential
nk

n.untion; t - optical thickness of the layer f gas, determined by

equation (z. - radiation path length)

y

~= Sd (5)

Subscript 0 characterizes values of parameters on the wall.

Cuantities p,, t, cp, X-, 1, in general, are functions of temperature.

Thstead of continuity equation it is possible to consider two,

equivalent equations (' - stream function)

PV = - (1.6)

Solution of system of equations (1.1)-(1.5) is sought in region

x > 0, y a 0 with boundary conditions:

u=v=,, T=TO wheny=o; U T 7 , r=Tw6 whenY=0 (.7)

2. The above problem is solved numerically. Here, the front

point x = y = 0 is singu].aa7 (stress of friction and flux of heat

t'rom normal thermal conduction behave in the vicinity of this point

r 1/ ViX), therefore for creation of a single algorithm of numerical

'91culation in all the region there are introduced new independent

-riables

PIUP, % T,. It TI t,, I PI (2.1)

-ind instead of stream function p(x, y) - we have'a new function I'(P, 'i)

(2. )

As a result all derivatives in the equations of conservation

become finite, and searched functions f, u and T in the nevi variabLe.:

1-I-



vary slowly along the plate, thanks to which calculation with the same

nc'-uracy can be conducted with a larger step with respect to 6-

Boundary conditions for y = co should be considered at a certain

Finite distance from the plate, starting from which functions u and T

differ from their limiting values u00 and T a magnitude, not exzeeding

Pvrors of the differe-ce diagram. In new variables the thickness of

the boundary layer changes little, and the solution can be sought in

:.tandard region 0 _ 0, 0 - D .1 "

We introduce ,.imensionless quantities

u= G- , Pi Py P ,,' '= ,c , . , , I CL' T , -q, (2.3)

where r' " si'.al parameters, marked by index I, are taken at temperature

T1 . System of eq7-aations (1.1)-(1.6) with boundary conditions (1.7)

in dimensionless quantities will taeke form

U -37, (2.4)
P'"°' 2 °a 4-o-q a1 o,,'o U = 0 (2.5)

I , 01 , a T' . r + e ( L +. to .P'1L 0 =(2
-. t + P &aq(26

2 p'' = (0 - T")E. (.) +

+ (0.4 - T'1) E. ('ro- r) + S I[T" (t) -- T"I El (Jt- t1) dt (2.7)
0

11

8(2.8)
0

Boundary conditions are

j= u' = O, T' = 00 when --,O, U" 1, T' 6o ,ihn 1=1, (2.9)

Here P1  is the Prandtl number;

CAP, ,_(2 1 ,c)-,8 ,25T,41 1 C 'l
P1

The expro'-sion for 1 is obtained taking into account; the r'ct

that T t en 7 1 ry Fluxes of heat can be f'ound accordir to

tfhe 1")1lowing formulas



2 aT' ,er

= 200
4E3 (-) - 20IE. (Tw - r) + 2 1T'4E (r - 1) dt -

-21 T"E. (t - ) dt (2. 12)

3. From equation (2.8) it is clear that for small values of

the boundary layer is optically transparent, where the smaller E, the

linger it remains transparent. The term in energy equation (2.6),

connected with radiation, is the product of and bounded function

and for small it is small in comparison with other terms of the

equation. According to this the influence of radiation is s ma,]..

When - 0 it disappears. The temperature profile here seeks a

oelf-similar profile in the absence of radiation. However, singularity

when = 0 does not completely disappear. Being bounded, function

D has unbounded derivatives with respect to . Its first derivative

behaves as -1/2 ln . This is connected with the fact that the

Dptical thickness of the boundary layer grows as V (for small )

A.3 a result function D varies very sharply.

4. Integrating in the right part of equation (1.4) by parts

•,n] using (1.5), we can obtain an expression for qr in dimensionless form

4 1 oT' -I a7~4 2E4 (Y%), , __ ir,- , ""' I 2E4( P " ;Tn

+-• E.( - ) t

40,

If - , the integrands in (4.1) seek zero everywhere as

(V/FT' - t)- exp (- 8,I a - ti) with the exception of the vicinity
,-W point L = a, which seeks zero, where they are finite. As a result

31 -1-
the corresponding terms have order (s) Therefore, when V/T >3

in:tLead of (2.12) for q" it is possible approximately to use expre:irl I



A 4 aT "  04fTl

qr "- ___ or qr-- : dy (4.2

Thus,, for large values of az the radiant flux outside the wall is

obtained in the approximation of radiant thermal conduction.

The matter is different near the wall in a layer of thickness of

several path lengths of radiation (thickness of this layer in variables

, seeks zero as i/V ). Thus, when I/L r 0, L - characteristic

dimension of the problem (and, consequently, i/VT-+,0), for the

radiant flux in this layer we obtain

_ 4 [ 3 1 a79' " I',
(4.3)

differing from (4.2) by factor [I. -(3/2)E4(T)], which changes from
0.5 on the wall to I in the gas flux (when T = 4, the difference of it

from one constitutes less than 0.4%). The mutual portion of heat

fluxes is determined correspondingly thus:

-~j 36 E ~

Thus, for small I/L near the wall in a layer of gas of a thickness

of several path lengths there is redistribution of the heat, transferred

by radiation nnd by normal thermal conduction, in the direction of

increase of the molecular thermal flux and corresponding decrease of

th,2 radiation flux (total thermal flux almost does not change). This

i; carried out by sharper lowering of temperature toward the wall.

Bu-t the relative thickness of this layer is small; Therefore,

o:>nsidering radiation in the approximation of radiant thermal conduc-

tion, we can obtain the correct to-tal thermal flux of heat; the

rc~liation comp)onent of the thermal flux will be overs:tated a minimum

oi 2 time<, with change of parameter 7//L from zero to inI'inity.

Tin (1] fill- shortcoming of approximation of radiant thermal coidltioi

)o (_(o-.t iin extr)Lt is i'omoved by irll--'duction oI' , thin near-wa l



layer, where the coefficient in the expression for the radiation thermal

flux is less than in the remaining area by a factor of 2.

5. We solve system of equations (2.4)-(2.8) with boundary

conditions (2.9) by the method of finite differences.

RegJon of flow _ 0, 0 _; 1 n = c-onst is divided into character-

is-tic strips of width h. We consider arithmeoic mean values of' the

sought functions fp(fp = f, u , T ) on the left (i - i)-th and. right

].-th boundaries, of the strip

1p° = ,.I-, _, + /-I, (5.1)

index i here meanis that the function is taken for , equal to

= ih(i = 0, 1, 2, ...).

These mean values differ from exact values on the center line of

the strip by a magnitude of the order of h
2 .

System of equations (2.4)-(2.6) with boundary conditions (2.9)

is written on the center line of the char'acteristic strip, where exact

quantities are replaced by mean fp , and derivatives with respect to

" are replaced by their differential analog

P + fp* - /1) i-(

f,-4/- , (5 .2)

In order not to resort to an iterative process, greatly increasing

u-e of machine time, when radiation is present., and at the same

time so as no.t to increase the error of approximation of the system,
I I I ?

quantity 4, describing radiatin, and, simultaneously, p t , ,p

and velocity u in (2.4), each of these quantities is replaced by a

linear combination of its values on boundaries of the preceding strip,

&() that the error of approximation of the system remains of the order

o1' 11
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where h1 is the preceding step, and h2 is the new step.

As a reult the system of linear partial differential equations

(2.4)-(2.:6) is r, .uced to a system of ordinary linear differential

c quations

d--J U P (5-.4)
dqj

d +°  d (i ' d  -

+ U ( = (5.6)
7 h d l]

Boundary conditions are

/ =,,=, T° =0,0 .h n =0;. =0  , T'=O °  ,hen TIT1o (5.7)

This system is solved in this sequence. First, from equation

(5.4) we find function f°(ri). Then we solve equation (5.5) for u°(rq).

And, last, from equation (5.6) we find: _fnzi.on.... S( Te(),
After systeu'. .(:)-(5.6) is solvea, from algebraic relationships

L'i 2 p- api! corollary of (5.1), we find values of the

sought functions f u and T for = i = ih with error of the order

of h 2 .

For solution of the linear system of ordinary differential

equations (5,. 4)-(5.6) the region of flow in pl.ane , is divided

into n hyizontal strips of width = etn, and each of equations

(5.4)-(5.7) is approximated by a difference equation of the secund

order of accuracy. As a result values of function f( ) aor nsi = jA

are found by formula

rf=* ±]_,+ (u _., ,, u), ,' =0 (o i= , 2,....n - )

2 '

* And inctemi of equations (5.5) nd (5.6) we use, correspondingly,

difference equations

22



(piL)" + (p')+1,t" + A- o+2o + -+ 2,_,)6 u.+, - fL(p)j_1 + 2 (pA),' +

+~jt 1 +ptj, +pi) -t AA'

2Z A-('? - /"
_,. .. ujLo+ 4,_,,

-A 2to P c+j (f -f -

p(pt).)j + ( ) 1+ 1-. + 2(" - j i-j) ' T [(P --(pX "L +

- (pX)'- (p ,)+'L + 4PO Picj' ,,,j (P;.)j_, 4- ()0 " - Paj 0¢p

2~ A-+ 2 PC'j U2T'i 3 + 2t0A2P 1'TD .
Plcpj* (f.O - j)j T - . -. _L -

+ p 1(pL1)1 (u
0

t "_jt-L) 0

u=0, u,, =1; To *=O 3, 0

.Each of these ,equations i-s a second order equation with known

values of the sought function-s at different ends of the interval.

They are solved by the method of successive appr6x-imatiOns [?i.*
I I

Quantity (p z )ij is calculated by the formula

(pT'P)ti = (0 -- i 4'. + ( -. ) E,(-2 +

where
I

'. ki = = (f', - T'j1 ) -E l (I -ik - ij I)

Optical thickness T ij, is calculated by a difference analog of

equation (2.8):

+ij= "ijr JA ri ( I +  (!" = 1, 2, ... n)

-. o =01+0

In order to start computation, it is necessary to know profiles (f

vel.ocity and temperature in the initial ( = 0) and the first (P- h)

sections. Solution in these sections is sought by the method of

-uc, essive approximations.

•Cyrillic progonka" comes from a verbal root with the sense of
"'Irivo away" or "drive through" -hence it possibly implien suc ,essi
approximation [Tr. Ed. note].

. .. . .- + 4 .'- * ', . . . .+++,-- -- -. + _



b. Results of calctilations are given for the case: = '1,

0.1, a = 0.2, P1 = i, s i = 0. Physical properties in this case
I I I fI I f I

,,re assumed constant- quantities .p i , p , cp , p I were equated

to one. All these conditions accurately

- correspond to one of the variants in [1].

The problem was considered with step

varying with respect to . Accuracy was

checked by calculating with -other values of the

I step both with respect to , and with respect
Fig. 1.

to f. Initially calcubation was made for

ihe following values of the step with re-aect -c $;

h = 0.002 w0 < .0.008
h = 0.004 ,he, 0.008 < <, 0.02

-Ih=0.008 wi-.ei 0.02 < <0.06
h =0.02 wlen;0.06 < ,0. 3 '
h =0.1 when 0.3 < <

The step with respect to r in this case was equal to 0. 4, and the

1,alue of -q on the external boundary was 16. Calculation on a comfibuter

Look "I minutes.

Calculation was repeated up to = 3.1 with values of the step

hili' as large both with respect to and with respect to q. The

value of f0c to = 0-5 was assumed

.1- equal to 13, an then it was increased

0 to i-6.

The maximum difference between the

Fig. 2. first and second calculation in values

of temperature was 0./o, and in thermal

:'tuxes on the wall. it was 0.7% (for = 3.1). The ditf'erence in

'Il Bes of P roaches several percent.

u ol the calculation are presented in the form of curves.

Tlio di ttodl line plots corresponding curvp.- from [1].



7, In Fig. i there are depicted temperature

profiles with respect to variable for

different values of . With growth of the

temperature profile is deformed from a self

/ similar one wit iout radiation into a profilej
Fig. 3.

corresponding to consideration ,of radiation in

the approximation of nonlinear (radiant) thermal conduction. Deforma-

tion occurs in such a way that hot gas in the presence of radiation

becomes cooler, and gas near wall becomes hotter. In the physical

plane this corresponds to the hot gas cooling faster, and the gas

near the wall cooling more slowly (in comparison with the case when

radiation is not considered). This is explained by the fact that hot

gas gives off heat not only by molecular thermal conduction, but also

by radiation, while cold gas near the wall absorbs more than it radiates

6 (Fig. 2), where for different values

q of there is depicted the dependence

on r of magnitude D, proportional to

In Fig, 3 the thickness of
Fig. 4L.

boundary layer q. is constructed,

calculated from a value of temperature, differing from the maximum by

TY,). For small there is observed very sharp thickening of boundary

layer. Subsequently, thickness of the boundary layer with respect tn

7i almost does not vary and is close to its maximum (as - c).

In the considered conditions deformation of the temperature

~ profile for small values of occurs sharply, which is connected

with rapid growth of the optical thickness of the boundary layer

(Fig. 5), where in the midst of the flux it occurs more rapidly.
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The latter signifies the approximation of nonlinear therma]. conduction

for radiation becomes acceptable initially in the hottest region of

the boundary layer. The same fact is seen from Fig. 4, where circles

mark radiation thermal fluxes, calculated in the approximation of

nonlinear thermal conduction from the non-self-similar temperature

profile for = 3.1.

The region, where the temperature

profile is close to linear, in the presence

q of radiation is narrowed with growth of

- ' This one may see directly from Fig. I,

o0 3 0 z . and also by examining Figs. 4 and 5, where

Fig. 5. there are plotted thermal fluxes Q =

= (q/a)To because of radiation q , and

normal thermal conduction qO and the total q, depending upon il for

g equal to 0.02 and 3.1. For small values of the molecular thermal

flux near the wall decreases more slowly, and for large , more rapidly.

Since the thermal flux from normal thermal conduction is proportional

to the slope of the temperature profile, curvature of the profile grows

with growth cf P.

tt
g ---

°o / 2 3 4' 5

_! g. O.Fig. 7.

For' zmall values ol' the radiant flux changer, slowly wit~h

tlic:l,. • oif thl boundary layer (Fig. ',,since the bounday lnyoi-
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is still optically transparent (Fig. 3). But at g = 0.02 in the

considered case there clearly stands out a maximum of radiation flux,

connected with the fact that heat is initially transferred by radiation,

and only at the wall does there occur redistribution, and heat is

nlso transmitted by molecular thermal conduction, where the total

flux of heat almost does not change. For large this effect is seen

to a greater degree. This one may see well from Fig. 6, where there i6

;epicted the portion of radiant flux which depends on 6. In a rather

wide region inside the boundary layer the share of radiant flux

grows with growth of , especially rapidly for small values of . This

growth of the share of radiation in heat transfer is connected with

the fact that the temperature profile in this region becomes more

genhtle. Near the wall, conversely, steepness of profile grows, and

the share of the radiant flux drops. (For small the share of the

radiant flux also grows near the wall due to sharp drop of the

molecular flux).

In Fig. 7 we constructed the flux of heat on wall from radiation,

the flux of heat from normal thermal conduction, and also the total

tlux. In the same place we plotted total flaxes of heat allowing for

radiation in the approximation of nonlinear thermal conduction (from

[1]). The difference in the considered conditions is somewhat greater

flin iCF1/. The difference in the radiation component of the thermal

ilux was greater (for = 3.1 they differ in the considered conditions

by a factor of 40).

In conclusion we thank A. T. Onufriyev for useful discussion of'

tiui.- work.

Submitted
17 Feb ruary 1964
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MEASUREMENT OF PARAMETERS OF GAS FLUXES WITH
THE HELP OF A BEAM OF FAST ELECTRONS

A. M. Trokhan

(,Ncvosibirsk)

There is considered the possibility of using .a thin beam
of fast electrons as a probe for determination of parameters
of gas fluxes: local velocity and density of gas, and also
for local visualization of fluxes. To this end there are used
fluorescence and x-radiation, excited during passage of a
beam of electrons through a given region of the investigated
flux.

Finding the local velocity of a gas, and also velocity
fields in the investigated flux is a necessary component
part of most experimental gas dynamics problems. During
work with rarefied-gas fluxes the Pitot tube, usually
utilized for this purpose, turns out to be far from satis-
factory. For Reynolds numbers, smaller than two hundred
(for conditions of a free flux and diameter of the probe),
the pressure, given by the Pitot tube, deviates from ideal
valuesj given by Rayleigh's formula, and for Reynolds numbers.
smaller than several tens, the geometry of the probe begins tc
have a substantial effect. The influence of compressibility,
slippage, and also delay of excitation of vibrational
degrees of freedom of molecules of the gas still further
complicate interpretation of the pressure, given by the
Pitot tube, making it an independent very difficult problem.
In view of this it becomes necessary to develop new meanso of
measuring velocity, capable of giving reliable results
during research of fast fluxes of rarefied gas.

Good results in this direction were attained during
tracing of fluxes by ions, formed by means of pulse irradia-
tion of a moving gas by a beam of fast electrons [1-3].
These methods have two valuable properties - they will L

absolute, i.e., they do not require calibration and at the
same time they do not require introduction in the flux of
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external probes. However, tracing by ions allows us to find
only a certain velocity averaged through the irradiated
section, where the base of measurement in view of small
directivity of electrodynamic detectors should be great. At
the same time most valuable for most experimental problems
is the possibility of finding the local velocity, the velocity
"at a point," iie., the base of measurement should be minimal.
This problem can be solved, apparently, only by optical
methods.

Designations

v - velocity of the medium;

A+ - positive ion;

B - negative ion;

L - base of measarement of velocity;

- image scale;

Z,V - distance from principal planes of the objective to conj,.gate
planes;

F focal length of objective;

N - particle density;

n concentration of excited particles;

D- coefficient of diffusion;

P - density of excitation of particles;

Q - density of deactivation of particles;

T- lifetime of excited state;

X - wavelength;

j - frequency;

h - Planck's constant;

c - velocity of light;

-. angle between line of observation and vector of velocity;

O- argle between vertex of light-dividing wedge and axis of
image .of the s.pectral line.

1.1. V:cl.t.s !,n of i1uirscence ,o f;as. Lcal feed f
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energy to gas by a electric discharge or a flux of fast particles

leads to corresponding local change of its parameters. Moreover, in

the gas there appears a series of processes, leading to dispersion

of the introduced energy. Some of these processes are accompanied

by radiation of light. Most of them are very fast, in a time interval

of the order of i0 -9 to 10-8 sec,, but individual processes have

significantly greater duration, as a result of' which upon cessation of

feed of energy the glow does not cease instantly, but lasts for a

certain time, called: the time of afterglow. The duration of afterglow

and its intensity in different gasses can vary within very wide

limits. For instance, duration of afterglow of pure nitrogen under

favorable conditions attains '5 to 5.5 hours [4]. This is the so-called

Lewis-Rayleigh afterglow of active nitrogen, caused by triple collisions

including atomic nitrogen in the ground state. At the same time

nitrogen also has significantly brighter afterglow, lasting about 0.1

:1 sec, determined by double collisions [5]. Argon has prolonged afterglow.

It is determined both by recombination and luminiscence of metastable

states. 'For instance, state 3P0 of argon has life duration of the

order of 0.0005 sec, and state 3P2 has a duration 0.004 sec [6].

Afterglow of air has mainly a hemiluminescent nature and, is

determined by reaction

NO + -N02 + hv

giving a green continuum with luminscence duration of the order of

10-5 sec, and by

NO + 03- NOI + 02 + hv

giving a red continuum.

Furthermore, there is recombinational afterglow,

A' - B-> AB + hv
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where A+ is a positive ion, and B- is a negative ion or electron.

A process, giving very prolonged (and correspondingly very weak)

afterglow in air, is luminiscence of so-called atmospheric bands of

molecular oxygen, connected with a metastable state. Its life attains

7 sec [7]. Suof'T]h'j.ently bright prolonged afterglow in air was observed

however, only dauring excitation by an electric discharge.

Spark discharge is a very simple and effective means of excitation

of gas flow; however,, it cannot be used at a pressure below several

-tens of millimeters, since with loweri-ng of :pressure the discharge

Loses its local character. For excitation of' glow in fluxes of

rarefied gas there can be used beams of art ifically accelerated

charged particles. The spectral composition and,.time of attenuation

of afterglow in gasses practically do not depend on the kind of exciting

particles, if only these particles are sufficiently fast [8, 9].,

Apparently, the mGst convenient particle is the electron. Beams of

r- tificially accelerated electrons are a very effective and flexible

tool for local excitation of glow in a gas medium. The diameter
0

of' the e]lectron beam 'an vary in wide limits, e.g., from 100 A [10]

to tens of millimeters. Density of current in the beam can be very

oreat. Thus, there are obtained beams with current density of 200

.'mps/cm2 [11]. The path length of the beam in gas is easily regulated

by an accelerating voltage [12]. For the considered purposes very

valuable also is the possibility of comparatively easy realization of

modulation of the beam of electrons.

For drawing an intense beam Of electrons from the vacuum,

t:here it is t'ormed, into the investigated gas medium there are used

differential gas-dynamic* wi;mdows [13] with pump evacuation from

.Yu' :,, &s.cription see S. T. Sinitsyn. Instrument fo'
a v-1-uum with an open rer-,rvoir aperture. Author's c(ert. No. "1590,
, L','; d:1 d. 17, 51 March: "931 .
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intermediate chambers. With work which i,3 not very prolonged the gas-

dynamic window can be somewhat simplifiedL by freezing of a special

rorking gas.*

In examining different gases from the point of view of the given

applied- problems two factors are important: what is the brightness

of glow and what is the duration of preservation of an excited state

by the ga s. Here, the considered gases can be divided into three

groups:

1) gases, yielding a prolonged, bright afterglow;

2) gases, long preserving an excited state, but giving a weak

afterglow;,

3) gases, having a short afterglow.

Accordingly during research of gas fluxes there can be used

different methods of measuring local velocity.

1.2. Method of fluorescent tracing. As an example of a gas,

giving off a bright, prolonged afterglow, we can use helium. In

Fig. i is given a photograph of

I ., a stream of helium, emerging from

a nozzle with a cross-sectional

3 , ,diameter equal to 3 mm. In the

photogr-aph on the left the stream

has subsonic velocity, on the rig.-7

5 . it is supersonic. The stream is

F g. 1. intersected by a beam of electrnz;

possessing an energy of 20 key.

The diameter of the beam is about 0.3 mm; current is 0.2 ma. As can

* or description see A. M. Trokhan. Method of gas-dynamic wind

Author's cert. No. 128949, class 21 d. 35, 30 May 1959.
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be seen from the photograph, from the place of intersection of the

stream by the beam or electrons downstream there spreads a well-

defined luminescent sheet.

The method of fluorescent tracing*-consists in forming, by pulse

irradiation by a narrow intense beam of fast electrons in the given

region of the investigated flux, a luminescent plasma "trace." Thanks

to the presence of afterglow the velocity of4 6

the trace, which is part of the flux., can be

0measured by optical methods by finding the

time of its flight a given distance in the

/ space of the flux. Turn to Fig. 2. Let us

assume in a wind tunnel behind wall i-I there

moves the investigated flux of gas. On the

outer side of the wall there iS i1o ted source

2, emitting a narrow beam of electrons 3-4,

modulated in the form of short pulses. As

1-ig. 2. a result of electron shocks a certain volume

of gas, located along line 3-4, at the moment of passage of the current

pulse starts to gleam, and there will be formed a luminescent gas

cj.[wnri, moving together with the remaining flux. Perpendicular to

the plane of the drawing there is louated an optical system, consisting

f ,jective 7 and diaphragm 8, having two small apertures. Behind

01-aphragm 8 is located photoelectric multiplier 9, coupled into a

recording network. As a result of the presence of apertures in

o daphragm 8 light reaches the cathode of the photomultiplier only

1.X r~ a dr-scription see A. M4. Trokhan. Method of measuring the
.veilcity of a gas flux. Author's cert. No. 131109, class 12o15, 30

D,.cQImRer 1959.
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from po"nLs of the flux, which are located along two straight lines,

intersecting the plane of motion of the column at points 10 and II.

Thus, when the luminescent column at a certain moment of time, passing

through point 10, occupies position 3-5, depending on the velocity

profile, in the photomultiplier there appears a current pulse. A

socond pulse appears when the column, passing through point ii,

,,ccupies position 3=6. Knowing the distance between points 10 and Ii

and determining the time between pulses, corresponding to moments of

passage through them by the luminescent columm, we can find the average

velocity of the flux along base 10-11.

Typical oscillograms, obtained in

this way,. are presented in Fig. 3: in the

upper part of each of the pairs of oscillo-

grams there is given the signal from the

photomultiplier; in the lower is the beam

current; the value of time marks is 0.2

microseconds; width of apertures in the

diaphragm is 0.4 mm (in the flux scale);

the gas is helium; pressure in the chamber

was i0 mm.

The upper oscillogram of Fig. 3

3.. corresponds to a pulse value of current

Ln the beam -f 0.8 ma with accelerating voltage of 20 kv, and the

inicAdle osciliugram corresponds to a current of 0.1 ma; the base of

1,,rsuremcnnt is 8 mm. As can be seen, decrease of signal level leads

t- I.-It necessity )f certain time-averagings of the results in view of

fth, fluctuatin " nature o the signal.

:: the do.t, tr in the present work we used an uncooled photo-

wur. " ~L r i'LI-!T1 with objective Jupiter-3
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During measurement by the given method the velocity of gas is

found by determing the time of flight of the luminescent trace known

distance, base L

L=L' P.=L' i/l' ()

Here - image scale; L' - distance between diaphragm apertures;

, -I distances from principal planes of the objective to conjugate

planes, correspondingly to the object and to the diaphragm.

Maximum er;'or in determining the base is determined by expression

AL AJLA 3AI +  AlF

Here F - focal length of the objective.

In the case of average accuracy of measurements maximum error in

determining the base is of the order of one percent. Error can be

lowered by one more order if one takes special measures, Such as use

4,f long-focal-length objectives and more precise diaphragms. Maximum

error in finding the interval of time depends on the method of record-

ing. When using a very simple method - linear oscillograph scanning-

error of measurement is i--5% depending upon the quality of the

,)sc illograms.

Thus, maximum total error during masurement of velocity by

the given method has a magnitude of the order of 2 to 6%. Let us note

that perturbation of the flux by the measuring tool - the beam of

rlectrons - is practically nonexistent,, and accuracy of measurement

is determined only by accuracy of determination o~f distance and time.

For measurement there can be used both single-channel and two-

clhannel circuits. Application of a single-channel circuit (both

stgnals mov- t- one multiplier) is advisable when pulses do not

overlap.
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A- the !nment of irradiation under the action of scattered and

S - T.dary electrons a flash occurs in the whole volume of gas

i. (-n:ity -" flash drops approximately exponentially with distance

' I ., m axis): therefore, measurement of the flight time can be

,:r!d ,ut also with a single-channel circuit with one aperture in

Tk d laphragm.

1r) the lower part of Fig.. 3 is given a typical oscillogram of

. :nm. Thv base of measurement in this case is the distance from

e C" o' the beam to the investigated point.

oos-i!lzgraphy is the most graphic, but not always the most

1, .rvonien. means of measurement of flight time. In a number of cases,

when the signal level is low and the Schottky effect of radiation

- - begins to be substantial or when it is required

to investigate statistical laws governing

fluctuations of velocity,- it :Ls more expedientI I9

I I to use a delayed coincidence circuit.

___ __As an example, in Fig. 4 there is given

the dependence of the number of coinclzdences

[ L : f pulses in thousands of pulses per minute
/ /6

depending upon a delay in microseconds for

two points, 9.6 mm downstream. Resolving

H - . t4ine of the counter is I microsecond. The

base is located along the axis of the stream.

The prepence of a more gentle trailing edge

-- of the coincidences curve is caused,

apparently, by the presence of a large

a 97 1f #. d. /If z velocity gradient along the line of observa-

* tion, which is clear from Fig. 5, which gives

, IC 1 .. rr "i, ri a cross section of the. nucleus of the stream.



This curve is obtained "'ith that same base of measurement L = 9.6 mm

and at the same chamber pressure. equal to 4 mm, but by means of oscil-

lographic recording.

Spatial resolution with respect to the position of the base in

the space of the flux may be very high. Apparently, it is fully

practicable to obtain a spatial resolution with respect to the position

of the base of measurement in the space of the flux of the order of

hundredths of a millimeter. Since the base is selected optically,

change of its position can be realized practically as fast as one

wishes, e.g., by m2ans of introduction in the system of the necessary

revolving prisms or mirrors.

Fully practicable will be obtaining of a base of measurement of

d the order of 1 mm or less.

The range of pressures, in which for a concrete gas we can use

the given method, is determined first of all by the sensitivity of

the recording system and power of the exciting beam. In our experi-

ments with helium of industrial purity pressure., varied from 0.,8 to 50

mm. The lower limit was determined by sensitivity, the upper, by
operation parameters of the installation. Under the considered

e'xperimental conditions the lower limit apparently can be in,,.roved

by an order by means of introducing cooling of the multiplier and

Lncreasivg the beam current.

Application of stroboscopic photographing of the motion of the

f'luorescent trace with the help of the electron-optical converters aIlow;

us to find the instantaneous velocity field in a gas flux.

i. 3. Use of "blow-away" of fluoi'escence. In ViL. i on the left

IS 1iven a ph,)tgraph of glow, caused by a ,3tationary electron beam,

SnY'rsmc t-n, a sul,s)nic stream of helium. Downstream Prrm the ,) Iri,



of intersection by the beam there extends a tongue of luminescence.

The length of the -tongue is a function of a series of parameters,

including velocity of the flux.

For the density of particles, excited in the moving gas medium

by the electron beam, we can write the following equation:

(D-) +± _-±-) J D" c

- (nr,) - -L (nv,) + P(.r, y, z. n,.,N) - Q (n,N) =dy az-(3 )

Here n- density of excited particles; N - total particle dehsity;

D - coefficient of diffusion; v - velocity of the medium; P - density

of xcitation (density of sources); Q - density of deactivation

(density of drains).

For the very simple One-dimensional case of steady flow of an

incompressible fluid, irradiated by a flat beam of electrons, assuming

D = const, n << N, and also on the assumption of monomolecularness of

the reaction of luminiscence, we obtain

d~ n (X<O, q-O)

a- (0<x <B, q =const) (4)
(B<x, q=O)

Here B - width of beam; q - density of excitation, T - duration

of excited state.

Solution has the following form

n = qv (k! eB ) e, (X <O)

ki
T = 4- - k ekm (x-10 - kk e~1 (0 <X <B),

Sqv k ' ( - e-10) ek:c (B <X)
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Thus, we have three regions of flow: region 3-- irradiated by

electrons; regicn i, lying upstream; and region 2, lying downstream

from region 3.

IThe solution is shown graphically in an

arbitrary scale in Fig. 6 for the general case:

(1) D, T,- v 0 , c; and three limiting cases:

(2) v- 0, D, T 0 0, ; ( -c = a), D = 0; v / 0,

(fl; (4) D = 0; v, T / 0, G.

Fig. 6, Geometrically roots ki and k2 constitute

quantities, the reciprocals of sections of axis x, lying in the

c .rrespunding regions, in which function n = f(x) changes by a factor

of e.

Experimentally, quantities k. = i/xi and k2 = i/x 2 can be found

casily by photometry. It is possible to write the following system,

connecting three unknown magnitudes v D, r and the two magnitudes xi

and x2, found from experiment

v D - -  --' V (6)

Any additional condition, connecting unknowns or determining

one of them, makes the system determinate.

Note that the velocity of the gas will, apparently, be far from

the most important quantity yielded by this system. Measuring the

velocity independently and finding thus the other two quantities. we

pr,ably can obtain tnformation about the pressure and temperature of

the gas.

In the cunducted experiments what was said above found confLrma-

tion only qualitatively. Small dimensions of stream (3-5 mi) led to

largt: gradients of velocity and density. The region of irradiation

did not have sharp boundaries and had a rotational form, and noIt -f a
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parallelepiped. Furthermore, in: view of the smallness of the investi-

gated volume, and consequently, of the luminous fluxes, it turned out

to be difficult to conduct monochromatization of radiation, as a

consequence of which we measured the integral luminous flux, corre-

sponding to different reactions. Taken together this substantially

complicated calculation and hampered realization of exact quantitative

measurements.

As an example of a gas, having a dim afterglow, but preserving

excitation -well for a prolonged time, we can use argon. For research

of fiows of such gases by the method of fluorescent tracing we can use

an admixture to the basic gas of a certain amount of an auxiliary gas,

which illuminates upon receiving excitation from the basic component.

Thus, for instance, additioh to argon of several percent of nitrogen

sharply increases the brightness of afterglow. Adding as an admixture

various gases, we can obtain afterglow in the required spectral region.

1.4. Use of luminescent probes. As a detector, perceiving

excitation of gas in a fluorescent trace, we can also use usual solid

phosphors, introduced in the flux by mici'-probes.* The phosphor is

illuminated as the result of energy transfer either when excited

atoms, molecules, or ions strike it, or as the result of abscoption

of quanta of vacuum ultraviolet radiation, suspended in the gas.

Ifere, the efficiency of the phosphors turns out to be very high. Thus,

the quantum yield of willemite for shortwave radiation is greater than

unity, constituting, for instance, during irradiation by light with

= 1850 A a quantity of the order of 2-3 [14].

The very fact of use of a mechanical probe is undesirable in

view of the inevitable perturbation of the flux. However, as compared

*For a description see A. M. Trokhan. Device for measurement
of the velocity of a gas flux, Author's cert. No. i11018, class 42oi.5,
15 September 1960.
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to other probe methods this method has this merit, that the dimensions

I of probe are minimal, measurement is absolute, and the base of -measure-

I ment is 2ocated higher up the flux relative to

C11 -the probe. Thanks to increase of signal level

fun" use of luminescent probes will allow us,

U' Eapparently, to expand the area of applicability
of fluorescent tracing in the direction of low

pressures and small velocities of flow. In
Fig. 7.

Fig. 7 there is given zan oscillogram, obtained

by a probe, covered with willemite, in a stream of argon.

For measurement of the velocity of gases with short afterglow

one can use the Doppler shift of spectral lines. Determination of the

Doppler shift is rather widely used for finding the velocity of fast

fluxes of gas [15, 161. Here, they use either natural radiation of

the gaSi, or the glow of a specially introduced admixture, most

frequently sodimn. This method is applied only for gases whose

temperature is sufficiently high for thermal excitation of radiation,

or for gases directly in the area of electric discharg,. The velocity

found by them, will be a certain average magnitude for the flux

along the line of observation, where error due to averaging may be

very great.

1.5. Doppler shift of spectral lines. Use of a beam of fast

oiectrons for excitation of local glow in a gas flux allows us to apply

the Doppler shift iriethod to reseaich of fluxes of both weakly-lumines-

cent, and also nonluminous cold gases.* 'Here it turns out to be

*Th>r a description see A. M. Trokhan. Device for determining
the velocity )f gas. Author's cert. No. 134i495, class 42o15, 29
],'e ruary '1960.
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, possible to measure the local velocity of gas with the smallest possible

spatial averaging.

A diagram of the instrument for measurement of local flux velocity

by Doppler shift of spectral lines of radiation, caused by a beam of

fast electrons, is shown in Fig. 8. Beam

/ofelectrons 1, emitted by electron gun

is introduced -through the wall of wind'

F 7 If, tunnel 3 in the investigated region of the

flux. Light, emitted by region 4,, through

objectives 5 and 6 and" lightguide 7 moves

ig 8. to a spectrograph or monochromator 8.

H-ere, light, emitted by region 11, strikes objective 5 at an angle a

against the flux, and strikes objective 6 at an angle a with the flux.

As a result radiation, passing through these two channels, should be

shifted magnitude

)A =.2k -L cos (7)

Here X- wavelength of spectral line; v - velocity of the flux;

c - velocity of light.

Leaving spectrograph 8 radiation of the given

1---.4 f, spectral line strikes a light-dividing wedge 9 and. then
- f

P, proceeds to photomultipliers 10 and 11. UnbalancingYe
of the a-.,.ltiplier, caused by displacement of the spectral

line, is fixed by recording device 12.

The prTnciple of recording shift of the wavelengthi

of the spectral line is explained by Fig. 9. Let us

assume that the image of spectral line in the plane of

the exit slit of the monoochromator is bounded by parallel

1l0 ~lines ab and inn. Let us assume also that (x) - the
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distributin f intensity in cross section of the line - has a form

which is arbitrary, but constant in all-the--height. The exit slit

does net pass adjacent lines of radiation, and also does not cut off

the investigated line. Width of the exit slit here is equal to A + 2Ax,

where Ax is a quantity int(htionally chosen larger than the magnitude

of displacement of wavelength under the given conditions of the

experiment. At an angle e to the axis of the line there is fixed a

light-dividing wedge with face EF. The whole luminous flux, passing

through the plane of the exit slit above line EF, strikes one enlarger;

the whole luminous flux, passing below EF strikes the other. Both

multipliers have the same gain factor. Let us assume that at a certain

iri ment we have radiation from a gas, not moving in the direction of

the line of observation. We set EF 4-n such a way that the luminous

fluxes above and below the light-dividing wedge are equal:

+(I)d(= )ds= ()ds= -L (8)
abih hfn m abrra

Here (P is the total luminous flux.

Let us assume now that as a result of motion of the medium the

line is shifted along the x-axis a magnitude dAX. This is equivalent

to line EF., with line <D(x) fixed,shifting in height a distance
! !

d'X/tg ,', ccupying position E F . The magnitude of luminous flux,

pass Lng in the channel, will vary here by magnitude

A$== a(x)ds= dAAA0 (9)Btg 0

Here d is linear dispersion of the spectrograph..

Thus, if' glow of the gas medium is observed alternately, first

11th tlhK flux, and then against it, the corresponding photucurrents

f th imultipliecs will differ by the following magnitude:

1,--1. 2 d-. con Vstv (io)
n (gO I,
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Here y - integral sensitivity of the multiplier. The result

does not depend on the width and form of the spectral line. Difference

of currents is greater, the less angle e; however, here it is necessary

-that, shifting, line EF intersects only the lateral face of rectangle

mbrm. Absolute er.ror in determination of velocity by Doppler shift

of spectral lines constitutes 15-30' m/sec [15, 17]. Thus, the method

can be used with success for measurement of high velocities. In Fig.

10 we give the spectrum of glow of industrial helium, argon and air

(from top to bottom). Below is given the spectrum of an iron arc'.

Characteristically almost all the energy of radiation of air in the

visible range was apportioned to one band of the molecular ion of

nitrogen.

006mi

Fig. 10.

For recording it is also possible to use a Fabry-Perot etalon

united, when necessary, to fast recording with an image converter.

S ince glow occurs in cold gas, Doppler br,Jadening is minimal. At low

pressures Stark broadening also is small. In view of this Doppler
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shift can be measured with high accuracy.

2.0. Measurement of local density of a gas. Measurement of local

density of rarefied gas can be realized by recording the glow- emitted

by the gas under the influence of electronic impacts [18, 19]. During

emanation of definite spectral lines the intensity of radiation

em*tted per unit volume of gas, other things being equal, turns out

to be proportional to the local density of the gas.

Deficiencies of this method are:

1) Intensity of visible radiation, emitted by a given volume of

gas, with identical conditions of irradiation depends not only on the

density, but also on the temperature of the gas, which is caused by

the presence of processes of quenching of fluorescence, which depend

on temperature [20];

2) Measurements can be made only in the absence of natural

radiation of the gas, and also in the absence of any outside sources

,,f light, i.e., the method only is useful for research of cold fluxes.

In the present work there is considered the possibility of using

x-radiation for determining the local density of gas emitted during

,loving-down of fast electrons by it.

Measurement of the integral intensity of radiation, conducted -by

a gas-discharge counter through a mica window, showed that in wide

imits there exists a linear dependence of the intensity of radiation

on gas density.

In Fig. ii. are photographs of x-radiation in an argon medium at

pressures, equal to 0.85, 1.7, 3.4, and 6.8 mm, excited by a beam of

leci rvns with beam current of 0.7 ma and accelerating voltage 25 kv.

i.irnimum exposure was 15 minutes. Exposure time was inversely prqpor-

tirial to pressures. Photometry of negatives showed that here within
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the limits of aecuracy of the exr%-,iment

blackening in the region of entrtnce of the

beam into the gas is identical. For photo-

graphing we used a camera obscura, having a

hole of diameter 0.2 mm in a lead Shield,

coated with aluminized mica. Distance from

the screen to the beam axis was 100 mn.

Photographing was on X-ray film of type RF-).

As can be seen from these photographs,
Fig. ii.

brightness of radiation changes with distance

from the place of entranc- of the beam into the gas. However, if the

density of gas is sufficiently low (accelerating voltage is sufficiently

great), these changes are small. If in the path of the beam there are

regions of increasod or lowered density of the gas,

these changes :of density cause corresponding changes of

Ell, local brightness of the X-ray glow.

Thus in Fig. i2 there is presented a photograph

of a 25 kv beam of' electrons intersectI.ng a thin

(,6 ca i ter ol apprioximately 3 mm) ktream of argon at a

pre:ssure of 5 Ia-a. Tn 11g. 3 the point of intersection

is distinctly visible, The glow in the upper part of

the photograph is caused by the impact of electrons on

3. 1&. 12. the s.rface of a cvpper' collector. Brightness of the

X-ray gl ,w depends b)n on the kind .f <as and its density, and on

the p)ower ,I' the electron beam.

Pr dia.n'stic purp ses it is expdient to use low-power beams;

the rr', it is n-c ezsary t,- apply/ lh( most sensitive radiation

Olt tc tr,:' In I, J. ii s a Xiwr~m , )-ZsWle device for



measuring gas density. Into chamber i,

containing the investigated gas flux, there

is introduced a beam of fast electrons 2,

emitted by electron gun 3 and trapped by

collector I[. With the help of X-ray unit

Rig. 13. 5, consisting of a thick diaphragm with

holes in the form of cones having a common vertex on the beam axis,

from the whole volume, irradiated by electrons, there is separated a

rmiall region, radiation from which, passing through diaphragm 6, opague

to visible light, reaches scintillator 7. Radiation of the scintil-

lator is recorded by photomultiplier 8.

The described method of measurement can be used both for research

(f pulsations of gas density in a given region, and for measurement

or visualization of density fields- Natural radiation of gas or

light from outside sources does not affect results of measurements.

For research of unsteady flows it is necessary to use more

powerful beams of electrons, and to photograph with the help of image

converters.

3.0. Visualization of flows. Usual methods of visualization

)f flows of gas, using .an ihterferometer, shadow and schlieren

photography, turn out to be unfit for research at pressures below

several imm. Therefore, for visualization of fluxes of rarefied gas

we use either the afterglow evoked by a high-frequency discharge

[21], the glow discharge directly in the investigated region [2LJ,

ur absorption of ultraviolet radiation [23].

All these methods allow us to visualize the flux as a whole; to

study the "fine" structure of the flux turns out to be difficult,

with the exception of certain particular cases. The fact is that
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.L -,,. ,_tL-A are int-grated, i.e., glow or absorption of light

Ky a i,.'v.n r~ion of a flux is part of the glow or absorption along

thc* 11r' in; )f observation. if the region is small, then the share

L.i ;dV!:'. by it to the overall quantity is small. This makes results

re cruiak, and raises uncertainty about interpretation of them.

Us- _f Leans of fast electrons allows us to solve this very

[mBrtant pr.Alem. Depending upon the duration of afterglow the

2Qhtol ni~onay diff'er.

,.l, intro duce a norimodulated thin beam of fast electrons into

a tas flu:x, possessing prolonged afterglow, downstream from the

irradiateo re!irn there will spread a solid luminescent sheet. After-

glow in streams of a gas, irradia-

ted by a beam of electrons, was

first observed in [21]. Photo-

graphing the sheet, we can find

the flow surface, passing through

a given line (axis of the beam).

arefs 2r-ssin, in the flux, corresponding photography

:ind -he soa tial position of the flow line, passing

through the point of inter-

section of the beams. Local

brightness of the sheet W

afterglow is a function of

local density. Brighter

regions correspond to

denser gas. This allows us

to visualize flow in the

given flow surface. In

. . Figs. 14-16 are examples



f visualization of flw past very simple models by a stream of helium:

a wedge, a cylinder and a flat wall, normal to the flux. This method

allows us t0 determine position of shock waves, the thickness of the

boundary layer, the region of separation of the flow, etc. It should

be noted that in the given method of research only visualization

is possible; quantitative determination of local density, apparently,

is impossible inasmuch as local brightness depends not only on local

density, but also on change of density along the flow line from the

poAnt of excitation of glow to the considered one, i.e., on the

prehistory of the flow.

This method is unsuitable for research in air, or in other gases

which have weak afterglow. For visualization ir "this case we can use

a flat beam of electrons. Since under identical conditions of irradia-

tion the brightness of glow of gas inside the irradiated region is a

linear function of density [18], it turns out to be possible not only

to obtain visualization of the field of densities, but also to find

its exact quantitative values. The beam can be arbitrarily oriented

to the flow; therefore, it turns out to be possible to investigate the

field of dens'*ties in any given plane of the flow.

3.1, Visualization by scanning of the beam. Introduction of flat

beam in a gas is more difficult than introduction of a thin circular

aam; in the present work we used a scanning beam. Scanning of the

beam in the plane, parallel to the axis of flow, was carried out with

the help of a small electromagnet,

;F, located at the entrance of the beam

into the gas medium. The f i.eld

strength was varied by sinusoidal law.

. - In Fig. i7 is an example of visual i-

zation of flow, thus obtained. "[f
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.:e need ouantiratiPr- results, it is expedient to photograph in X-rays.

T_ o)tain quuntitative values sinusoidal scanning is inconvenient.

7',, ensure uniformity of the velocity of the beam, intensity of the

deflecting field should change by sawtooth law.

The author is thankful to S. A. Khristianovich for attention

paid to this work.
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DETERMINING DENSITY FIELDS riF THREE-DIMENSIONAL
GAS-DYNAMIC FLOWS ON THE BASIS OF

OPTICAL METHODS

S. M. Belotserkovskiy, V. S. Sukhorukikh and

V. S. Tatarenchik

(Moscow)

There are given certain results of research of three-
dimensional gas-dynamic flows by optical methods. Integral
values of density are determined directly, and local values
are found from integral equations. In these equations
density is a function of three space coordinates. One of
the coordinates plays the role of the paramet-er. If from
density, as a function of two coordinates, we can pass by
,some means to a dependence on one variable, the considered
relationships will be ordinary integral equations. Such a
transition is obvious in the case of flat and axisymmetric
distribution of density.

For the shown reason in experimental gas dynamics optical
methods up to now have been applied only for study of flat
and axisymmetric flows [i]. The authors proposed a method
of research of three-dimensional gas-dynamic flows on the
basis of quantitative optical methods [2]. Its essence
is as follows.

On the basis of preliminary information we select approxi-
mating functions, which describe the field of densities,
including also the form of the surface of discontinuity.
For determination of approximating functions there are used
results of interference or shadow measurements, obtained
for different directions of movement of light rays through
the gas flux. The necessary quantity of directions depends-
on the form of investigated flow and is established in the
process of research.
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Designations

PO - density of gas in normal conditions;

nO - index of refraction of the gas in normal conditions;

_ - density of gas in an undisturbed flux;

p-- pressure on the surface of the body;

p - pressure of the undisturbed flux;

M.- Mach number

a - angle of incidence;

w- angle of half-aperture of the cone;

X - wavelength of light;

x - wavelength of light at maximum transmission of interferenc-e
max light filter;

0

X - half-width of transmission band of interference light
filter.

§ i. Basic relationships. In Fig. I is depicted one section of

the investigated gas flux. The perturbed region is included between

0o the contour of the body (i) and the external

42.) boundary (2). In super6,onic flows this external
boundary is a forward shock. The velocity of

KZ K undisturbed flow is perpendicular to the plane

of the drawing, and incident rays are parallel to

it.

91 -iWe introduce rectangular system of coordi-

Fig. i. nates OxykZk ,1 whose x-axis is directed along

the velocity of undisturbed flow; axis zk is directed along incident

rays. By T k we designate the angle. between a certain fixed plane

,)01 and axis Yk" In the given direction of radioscopy we obtain

experimental data, corresponding to angles qp k and q) k + Y, since change

of the direction of rays to the opposite does not change the result.
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These data are different, if axis zk does not coincide with the plane

of symmetry.

The contour of the body in the considered section x const is

described by equation t = t(y); the contour of the external boundary

is given by equation R = R(-y). The current point is defined by

coordinates r and y. By hk and Hk we designate maximums of coordinate

Yk on the contour of the body and on the external boundary.

Consider some ray, entering the perturbed region at a point with

coordinates Yk' Zki Disregarding distortion of the ray, we take for

its path in the perturbed region chord Yk = consto, The point of

departure of the ray from the perturbed region has coordinate Yk'

Zk2 '

Results of interference measurements will be distributions of

functions mk(x, yk) , which express change of the optical path length

of light passing through the perturbed region. Functions m k are
p

connected with the distribution of density along the light ra, by

relationship

,5 - 1) dzk = Ck1nk (Yk)

ZkE

Here X - wavelength of light; pO, no - density and index of

refraction of gas in normal conditions; pM - density in an undisturbed

flow.

The result of shadow measurements will be changes 6(dx/dzk) and

"(dyk/dzk) of directions of light rays passing through the perturbed

region. These magnitudes are connected as follows with distribution

of components of the density gradient along the light ray:
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A2

zkL

\ -s (1 P" -P )I. 2)
zkI 

\

-6" k dz, = p2* -+ I

Z Jhkt (Ik + dyko I

* * -=.,'

Here p1 , p2 - values of p at points of entrance and exit of

t0e ray from the region.

§ 2. Solving integral equations. Let us turn to a cylindrical

system of coordinates with the same direction of the x-axis and

polar coordinates r, y in plane x = const.

Density in the section x = const is considered a function of

polar angle y and A dimensionless radial coordinate

(2.1)

On the body surface 0 = ; on the boundary of the perturbed region

= 1. For definitiveness we assume that 001 is the plane of symmetry

(f the flow; We present periodic continuous dependence of density

t_,n the angle in the following form:
q-1

P(G,-,') = Pm (G) cos-r (2.2)
n=O

Contours of the external boundary of the perturbed region and of

the body in section x = const are approximated by expressions of the

same type:

R(T) RP ,,cos~n
m=O

qt -1 (2.3)
t (T) .. c,,,o

1/n=0
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where Rm and tm - coefficients, determined according to measurements

H k and hk.

The highest degree of polynomials (2.2) and (2.3) is selected in

accordance wiuh the expected character of the approximated functions;

in process of treatment these numbers can be modified and definitized.

We dtesignate by q the number of different measurements, determined

by angles Tk" If the zk-axis does not coincide with the plane of

symmetry of flow.,

q = 2u

where u -- number of directions of radioscopy. With coincidence of

one of the directions of radioscopy with the plane of symmetry,

q ='2u - I

Ntuber q should not be less than the largest of numbers qp, qR3

qt. Substitution of expansions (2.2) and (2.3) in relationships (I.i)

and (1.2) leads to system of integral equations for functions pm(

or their derivatives.

For interference method when q =q we have

qp - LZA'

P=o M,, cOs( d2. Z- Zk +± 9kni

SYhk (2.)

(k = , 2...q)

System of integral equations (2.4) is solved numerically by

means of division of range 0 9 9 i by dividing points i at N small

intervals, within limits of which functions pm( ) are replaced by

constants fmi"

As a result of this the system of integral equations is turned

into a system of linear equations for unknowns Pms
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q-1
Sa,,k '41)i--

i--1 q-1
"- () - Z ,,, ,,

k = , , . . ( 2 .5 )1.-- ,2,. .,V

Here s is the largest odd number i for Yk = const.

When q > q system (2.5) in accordance with the method of least

squares takes form

Y pma I~ a,,k~a..I)
M-. O k=1

k.=

S-1 qp-I

I PmiN amikants -)

(n 0, ... (q9 -a) (:2.6)

Calculations were done on a digital computer. Details of calcula-

tions are not considered here.

§ 3. Examples. Results of determination of the field of

densities near a cone with half-angle wu equal to 150 with an angle

,;f incidence a = -7.5 and values of Mach number M = 3.5 and M = 4.2

are given,

The experimental part of the work was executed on a four-mirror

Mach-Zehnder interferometer with field of view 225 mm. As the light

source we used a spark discharge between cadmium electrodes.

Interference pictures were photographed simultaneously in white and

In monochromatic light. Photographs in white light were used for

measurement of the whole part of change of optical path length,

expressed in the wavelength of light. To obtain photographs in
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monochromatic light we applied an interference light filter (Xmax

= 644 mAX = 5 fu).

The experiment was conducted for three and five values of angle

k(q = 3 and q = 5). Change of angle Tk was carried out by turning

the model about an axis, parallel to the velocity of the undisturbed

flow. Data :or- angles (pk 'and Pk + w were obtained in one blowing

with a fixed position of the model. Values of q turned out to be

odd due to the fact that one of the values of Tk was equal to 1/2 iT,

and the flow had a plane of symmetry.

The obtained photographs in monochromatic light for M = 3.5 are
p

presented in Figs. 2, 3, ard 4. To them the correspond angles (k'

equal to 0 and 7r (Fig. 2), (i/4)w and (3/4)w (Fig. 3) and (1/2)v

GRAPHIC NOT
REPRODUCIBLF

iig. 2. Fig. 3. Fig. It.

Results of analysis of th.? experiment by the above method are

presented in Figs. 5 and 6 in the Corm of dependence p/P, = Pi (t;, -).

Tay y = 0 is located on windward side of the flow. Experimental
*

values of p are given by points, and solid lines show results of

numerical calculation of density according to method of [3]. Every

curve has its own origin of coordinates with the same index as thc

number of the curve. The reading unit along the axis of ordinates i.:
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is marked by a brace.

Experimental data in Fig. 5 correspond to values M = 3.5, q = 5

in Fig. 6 we have values M = 4.2 and q =3. Number of intervals N, into

which the range 0 -9 i is divided, in both cases was equal to 20.

Due to this relationships (2.5) for the first case were reduced to 20

systems of 5 equations; for second they were reduced to 20 systems of

3 equations.

o oo

Fig. 5. Fig. 6.

From the given data it is clear that during determination of

density near a cone, flowed past at a small angle of incidence, it

Ls possible to limit oneself to number q = 3.
\x~flThe shape of the shock wave for M = 3.5 is shown in

iR/ i) ment; curve (2) is obtained by the method of [3].

I ~ In Fig. 8* are given results of recalculation of

I5

/ density in pressure p on the surface c'f the body ( , = 0),

n the assumnption that on surface of the cone entropy

11.7. unto =p/ is cosatadis equal tL its value

,*n WIv wiuidward side of the shock wave fronvt, Pressure on the

5 =0.975



undisturbed flux is designated p M = M .5.

0

,30' 60' g 120 /5" 180

Fig. 8.
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ON MECHANISMS OF DISINTEGRATION OF A DROP MOVING
IN A GAS FLOW

V. A. Borodin, Yu. F. Dityakin, and

V. I. Yagodkin

(Moscow)

in work [i] there was an attempt at theoretical study )f
unstable axisymmetric forms of perturbations of a spherical
drop of an ideal fluid, flowed past by a flux of another
ideal fluid, leading to its disintegration. For solution
of this problem there was used the method of small pertur-
bations.

We found the critical valuesof the Weber number and also
forms of neutral perturbations. Below there is considered
the case of increasing perturbations, and also their form
for different values of the Weber number.

According to Rayleigh's hypothesis, of all possible forms of

increasing perturbations, in reality there is realized the form having

the biggest value of increment Z = -a3 pI 2 /T, where a - radius-of the

drop, p, - density of the fluid of the drop, T - coefficient of surface

tension, P in the given problem is the purely imaginary frequency of

oscillations [1]; therefore, for determining the formi of perturbation

for a given value of Z from the equation of eigenvalues one should

find the least value of the Weber number W = P2aU2/T, since the values

of Z monotonically increase with growth of W; here p 2  density of

the medium, U-- relative velocity of the drop.
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In [i] there is obtained the system of equations

4f = a.1 an._ + Pnan. (,=O. 1. 2.... ()

where
, C.
C;i n cit. )1

C.. Z + R,- A JV, Cit, 1-- C,,_JV, C..,, -- BitV (2)

n2  -- 1) (2n 2 -n -2) 9 (n -,)2 (n -2)'A -2 (4n12 - 1) (2n -O ,, -. {n -- 1) (2n -3)

B (n + 1) (n + 2)1 (n 3) n (n 1) (n + 2)
4 (2 + 3) (2n+ . n(

from which, after eliminating constants, we obtain an equation for

eigenvalues of the problem.

System of equations (i) disintegrates into two systems:

x.= 2k (k = f, 2,...) =2k (k = 1; 2.... )

as = P=a4, a, = P a,
., = a + P,, , . = 3, + 3a (3)

............. ...............
a-k = atak 2 + P2kak+', a.,., = _k + P.:a::.,

The equation, corresponding to k = 0, can be rejected, since

a2 =0, and the equation of nodal lines on the perturbed drop sur-

face does not include a0 . The remaining coefficients are defined

simply in terms of a2.

v:e introduce designations

- =+ a3--_ = ... aGk+1sk4L, TlkI =GE1.+P.&-1 (k = 0, 1, 2 ....
Ij!

-= - a ..•. CEzksrz-, T k = a1_kPlk-2 (k = 1, 2. 3,..

Then we present system (3) in the following form:

i = T3$3, I = T0S
ss = I + TIsS, s, = t + TS(
s6 = S3 + T2$7, ss = s4 Tss

. . . . . . . . . . . . . . . . . . . . . . . . .

S 2i6 + S2k+3 , S. = S2k-2 + Tk..V2kf



Quantities Y2k+3 and T2k+2 with increase of k, how calculations

showed, rapidly diminish; therefore, to facilitate calculations it is

convenient to apply continued fractions.

In equations (5) for a certain sufficiently large k we set

-y2k+3 = ' ,2k+2 = 0. Then for s3 and s4 we obtain expressions in

the form of continued fractions

L-t 17 1. (6) A

The general solutions of systems (5) in continued fractions have

the form

(~~ Ski 1 72kf., 72kiS

-12k+2 i--2-4

Determining s3 and s4 from the first equations of systems (5) and

substituting them in equations (6), we obtain equations of eigenvalues

f the problem, written in continued fractions

I T--1 I , I 7, (8)

From equations (2) and (3) we easily obtain expressions for 7yj:

B 1k+l C+ 1 IV
72* = (Z - 2k. I - -.,kfL TV) (Z -F .,. - .._ v)

1 2.-2 C( 2 V'9)

= (Z + i - . (WT) (Z + R 2k- 2 --12k. IV)%

Assigning values of dimensionless increment Z and finding the

value of the least roots W of equations (8), we can establish the

dependence of least roots W on Z for both systems of equations of (3).

These calculations gave the dependences depicted in Fig. I in logarith-

mic coordinates. In Fig. 2 are given forms of perturbations, corre-

sponding to the calculated values of W and Z.

Then we carried out calculations of forms -f perturbations, whichl
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Z - have the largest inclement, for differen.

-- values of W by the formula of the rate

- (I) of lifting of the surface of the drop

3 -

- - - *e-2 -Coefficients of the equations ,er'

'- - - calculated by formulas (4)-(7).

gw As can be seen from Figs. i and

-Fig. 1. 2, for values of the Weber number 1.63 <

< W < 1000 three forms of increasing
perturbations are possible. For 1.63 < W K 4 there appears a form

with two nodal lines (here n is even).

When 4 < W < 5 there occurs a transition from the shown form to

a form with four nodal lines. Last, for W > 5 the most rapidly

S growing form of perturbations will be the forx,

with one nodal line (n is odd).

The form with two nodal lines, apparently,

can lead to formation of two drops in the

/ z direction of flow or one torus. The critical

value of W for this form will be W = 1.63,

which is confirmed by [2].

The form with four nodal lines can exist

in a narrow interval of va].ues of the Weber

Fig. 2. number, and, therefore, the probability of its

real appearance is minute. This form could lead to the formation

of two drops and a torus or two tori.

The form with one nodal line may, apparently, lead to format L',r

17 0



,of a "pocket." Actually, such forms were

observed (photographs in Fig. 3) immediately

Sat W - 5 in [3].

Fig. 3. Duality of theoretical forms (Fig. 2)

follows from the fact that linear formula-

tion of the problem gives a solution with an arbitrary factor of

indefinite sign. in fact deformation of the drop should occur in such

a manner that energy of the drop is increased at the expense :f energy

of the flow. For this, it is necessary that at points of the surface

,f the drop where pressure is maximum the velocity of deformation

is directed into the drop. Then there is realized the form depicted

In Fig. 2 on the right for the case of even n. For r odd in the frame-

work of the theory of an ideal fluid, both forms are equivalenV

(corollary of the D'Alembert-Euler paradox). However, in fact,

pressure on the front side of the drop is greater, and this should

lead to formation of a "pocket," stretched along the flow (Fig. 3).

Thus, from these conclusions concerning different forms of

perturbations, appearing during mction of a fluid spherical drop in

a medium of another -fluid, it beccmes evident that oscillation and

breaking phenomena in part of a fluid torus should play an essential

role in the process of disintegration of such a drop.

The form with one nodal line leads to such a ring with a "pocket"

of very thin film (Fig. 3), which subsequently breaks into a great

number of small drops, and the ring is turned into a torus, divisible

into two big drops and many small ones.

The form wi.th two nodal lines also leads -to a torus, but without

an enclosing "pocket."

]ii V1g. 4; are consecuti.ve slide.s of ti, (WOt1_,,1 I 8 drop of ink,
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dropped into water (photographs were taken from above). It is clear

that from the drop of ink there appears a torus, in which there

further form antinodes, and it breaks into drops, and each again

turns into a torus, in which there again appear antinodes, etc.

LAA

V •

:I "

c )d

Fig. .

It is necessary to note that the number of antinodes appearing

in the torus may be two, three, or more; it decreases with decreasc ',,4f

the diameter of the torus.

The problem of oscillations and breaking of a fluid torus is

considered, apparently, only by S. Oka [1I]. He made the very

c4mplex calculation of thc number of dr )ps, into which a motionless

to rus disintegrates, depending upon thf ratio of the torus radius E<
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to the radius of its cross section r only for values R/r 5; in

[ ] there are given following values:

f1/r.=5 6 7 8 9 10 it 12
m=3 4 5 6 6 7 8 8

From the formula given in the same place it follows that when

/r= 3 to 4, m = 2.

These results can be obtained from the following ele.nentary

considerations.

If ratio R/r is great, splitting of the torus can be considered

splitting of a rectilinear cylindrical stream of round section under

the condition that in length 2rR there are packed a whole number of

waves m.

Since, according to Rayleigh [5] the maximum of instability

corresponds to 2R/X = 0.697, with condition mX = 21rR we obtain

m = {0697 R/r} ()

Here symbol (x) signifies the integer nearest to x. Formula

(1i) gives all the above-cited values of m, and also values m = 2

and 3 for R/r = 3 and 4;, This shows that allowance for toroidalness

does not influence the number of drops formed from the torus. It is

easy to see that the torus can be divided:

into two drops with fulfillment of inequalities

R/r->2/O.697=2.87 or R/a>i.2 (12)

into three drops with fulfillment of inequalities

R/r'>3/0.69 7 =4.3 o R 1a>1.58 (13)

Here a - radius of initial drop.

Comparison of these results with the above experiments can be

mad(c only fur very slowly moving tori. Thus, in Fig. 11c it Ls clear
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that ratio R/a for the case of division of a torus into three drops

is approximately equal to two. The circumstance that in experiments

ratio R/a is significantly larger than it is according to formulas

(12) and (13), apparently, is explained by the influence of transverse

flow past of a filament the length of the maximum growing perturbaticn.

Submitted
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INFLUENCE OF THE RELATIVE VELOCITY OF A GAS BUBBLE IN A
LIQUID ON CHANGE OF ITS DIMENSIONS

Yu. N. Kalashnikov

(Leningrad)

During research of the bubbly form of cavitation the basic
problem is to find dependences characterizing change of
dimensions of cavitational bubbles in the liquid. Principal
attention here is usually allotted to mechanical processes
caused by disturbance of the equilibrium of force on the
boundary of the bubble, since these processes determine
such known phenomena of cavitation as cavitational noise
and erosion of the surface of the flowed-past body. At
the same time during flow past sufficiently extended bodies
or motion of liquid in closed channels, e.g., cavitational
tubes, appearance and deve.opment of the indicated form of
cavitation is greatly influenced by diffusion of the gas
dissolved in the liquid. Due to disturbance of diffusion
equilibrium on its boundary, the bubble changes it
dimensions (even in the presence of an equilibrium of forces
on the boundary) either due to dissolution of gases contained
in it, or due to liberation in it of gases dissolved
in the liquid. This process, called bubbly gas cavitation,
has been investigated by many authors, and for the case of
a bubble, motionless relative to the liquid, there were found
equations which describe change of its dimensions. Results
of calculations by these equations sufficiently well agree
with results of measurements of dimensions of growing or
dissolving gas bubbles [].

At the same time, for bubbles moving in liquid such coordi-
nation up to now has not been obtained, possibly, because of
the sufficient complexity of experiment with respect to
measur.ement of the dimensions of these bubbles.

In the book of V. G. Levich [2] thero is a solution Cf th(e
problem of diffusion in liquil, containing a moving drop o1
another liquid. According to this solution, and also similar
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solutions for solid particles [3], the diffusion flow of gas
into a bubble moving relative to the liquid shoui't be
proportional to the relative velocity to a certain degree.
However, measurements conducted by Liebermann during surfacirw
of bubbles in a field of hydrostatic pressure [3] did not
show dependence of the degree of intensification of
diffusion on the velocity ol" surfacing.

Below there are derived equations of state of a gas bubble
moving in liquid, taking into account diffusion of the gak;
for comparison there are given certain results of experi-
mental research into the influence of the relative velocity
of the bubble in a liquid on change of its dimensions.

i. Let us consider the diffusion flow of gas in a bubble flowco

past by a liquid. We consider that motion of the gas bubble in the

liquid takes place with Peclet numbers Npe >> i. For water solutions

of gases contained in the air, the Prandtl number

N will be of the order of 103; therefore, the

Vindicated condition will take place for Reynolds

numbers N > io 2 , which corresponds to dimensions
'Fig. i. Spheri- Re

cal system of of bubbles, surfacing in water under the action -

coordinates.

of the hydrostatic pressure gradient, R > iO-5 m:

We connect the spherical system of coordinates with the center

of the moving bubble (Fig. i). Considering axial symmetry of problem,

we have the equation of steady diffusion of gas in the liquid:

r,+ I, - = A. [+L - -t- -- s2- (,10 i~
r i ord r Or r:si,,O 60 do(i.i

with boundary conditions

C =CA Wen r=R c=c Cowhen r oo

Here c - concentration of gas dissolved in the liquid; vr and

v- components of velocity of the liquid on axes of the spherical

system of coordinates; k - coefficient -f molecular diffus.on of gaz
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in the liquid; R - radius of the bubble; cs - saturation concentration

on the bubble boundary.

Since the bubble is flowed past by liquidiwithNPe >> 1, on its

surface there will form a thin diffusion layer, in which there occurs

a sharp change of concentration from cs on the boundary of the bubble

to almost c0 on the boundary of the layer. In this case derivatives

of concentration with respect to the angular coordinate are small as

compared with derivatives with respect to the radius vector and,

furthermore, for values of r close to R we have

a c

Accordingly, equation (I.i) will be simplified:

r. + re I a a- .(1. 2)

We will introduce stream function Vi, connected with vr and v

by relationships

Vr , (1.3)
-- rsinO r ' rsinO 00

and turn to new variables ?P and 0. Such a change of variables will

allow us to transform (1.2) into an equation of thermal conduction

type:
a-c = 4l---"a -- r sin o va ac

aBc -aa74 Cdic
=- -- - r=i v r2- sitil OW,

=r () C L10 -4. + - r in O Va

k\dO/ 00

Substituting values of derivatives with respect to concentration

in (1.2), we have

in1.2kr Sin Oha

S(.4)

Since equation (i.4) is valid in the diffusion boundary layer,

it is possible to present r = R + E, whore F << R and changes from
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zero to the thickness of the diffusion boundary layer. Then r =

- R(i + s/R), and r3 is approximately equal to R3 .

In distinction from motion of a solid sphere in liquid, tangential

velocity on the boundary of the bubble is not equal to zero, but

according to [2], it is

= v, sin O (1. 5)

where vI - absolute value of velocity on the boundary of bubble when

= 900. Velocity v,, depending upon hydrodynamic conditions 'of

motion of the bubble, varies from (1/2)v 0 for N Re << I (the solution

of Rybchinskiy-Adamar [2]) to (3/2)v0 for very large Reynolds numbers

(when NRe >> i distribution of velocities on surface of the bubble

becomes close to that in the case of flow past a solid sphere by

an ideal fluid).

Tangential velocity in a diffusion boundary layer differs little

from (1.5) due to the facz that thickness of th diffusion layer on

crder is less than the thickness of the hydrodynamic boundary layer

by NPr1/ 3

Taking these assumptions into account we give equation (1.1)

the form

ac = A.R3zVsin 3 8e .67P-AM (1.6)

where the value of 2c/p 2 is taken for small values of e, when the

fcllowing approximate exprtession for the stream function, obtainel

by integration of (1.3), is valid:

i = - Rv sin:' Oe

We introduce the new variable

s= kR3rIvsin3O0 dO = klr, !2- - cos0 +A
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where the integration constant A is selected from the condition that

s = 0 when = 0. Consequently, A = (2/3)kRr1v. As a result of

this,equation (1.6) will become

Dc. a:,
'jY -- (1.7)

with boundary conditions

C=cs when=0(=0), C=co whni=oc

To this we should add one more condition, namely, in th front

critical point of the bubble (r = R, 0 = 0) concentration of the

incident flux should be the same as at infinity, which corresponds

to c = C when s = 0.

Equation (1.7) is easily solved by operation method. Its intcgral

is equal to

U

C =e e( - X c)e.x

where

t Br sin- O

2 1(s 2 /k/*r, JI,, cobP 0 - cos 0 + 2,3)

The gradient of concentration on the bubble boundary is

c5 co dx __ oul0e-~ 18
- ,c/,'_d ) 1D !C'- •=-a.- kir, (113 Cos 0- COS o +:T/

From thi.s we find, according to Fick's law, the flow of mass of

the gas from the bubble per unit time (Fig. 1).

.,m 2.() o ' kri (co- c ) ., '

-- = s in OR dk (0) dO
o oi

(3 (0) = Co- OS !/,,3

In Fig. 2 is a graph of integrand T = (0). Calculation -jvos

for the integral a value, equial to 2.30. Considering v, = 1/ 2 ) vi,
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-N we have

10 - '!--Y = 5.78 R Y R (co--,) (1. )

- In the case of a motionless bubble [1],
of _ _. ,.,

0 -. =4Rk (c. - ,)(1.1)

Fig. 2. Graph of
function p(e). Thus, increase of the intensity of

diffusion of gas from the bubble due to flow

past it of a liquid is equal to

X = (dnIds),"- 0.46 (R- = 0.46 (N,,)' (1.11)

Here, subscript I s'g-".,. the value of the derivative for
Npe >> 0, and subscript 0 is the value for Npe = 0.

This result allows us to consider a bubble moving in liquid

motionless, for which the gas diffusion coefficient is increased,

as it were, by a factor of X.

It is obvious that the value of X for small numbers NPe will lie

between one and the value given by (1.i1). Therefore, for these

numbers NPe it is possible to write an interpolation formula

di

.Thich for NPe >> i passes into (1.9), and for NPe = 0, into (i.1O).

Expression (1.9) was* obtained on the assumpti.on of constancy of

the bubble radius R.

In reality, with growth or dissolution of the bubble its radius

-hanges. This circumstance raises the necessity when solving a

i,1,)lemn on diffusion to satisfy boundary conditions on a mobile boundary,

.-hich is a comolex problem.

For small values of the velocity )f the bubble wall, occurring

!n pr-cesses of gas cavitation, cxpression (1.9) can be used,
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obviously, also in the case of a bubble radius varying in time.

considering the phenomenon quasi-stationary.

2. Expression (1.12) obtained in th preceding section allows

us to obtain equation of state of a spherical gas bubble, using

the equation of equilibrium of forces oft its boundary

, (/),= P,'+ ,.. - (2.1)

Here p(t) - pressure in the liquid; pg .-pressure of gas in the

bubble; pd - pressure of saturated vapors of the liquid; u - constant

of surface tension.

The mass of gas in the bubble is

m = 4/ 3 R3( g (p, =

where pg - density of gas in the bubble, determined by the Boyle-

Mariotte equation; pga' in turn, is density of gas at atmospheric

pressure pa" Consequently,

P--. - 1 (2.2)

Differentiating (2.2) with respect to time and comparing with

(1.12), we have

d, k__ t ( kp, (I + 0.46 N ") ( - 2))
7F P (1) - Pf + "/3i * P' pgaR 1 ' (CO " ( • T

The saturation concentration on the bubble boundary in accordance

with Henry's law can be expressed as follows:

, = (2.4)

Here c sa - concentration of saturation at atmospheric pressure,

determined for the given temperature from known tables.

Substituting (2.,) in (2.3) and designating ct c 1 f, wher I-(
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a - volume of gas reduced to atmospheric pressure, dissolved in a

unit volume of water, taking into account (2.1), we finally obtain

S()_ + p p (t) + -I 4 it

X ( 0+ .46 ¢ dp ,Rl . -a -FfR.

with initial condition R = R0 for t = 0.

With constant pressure in the liquidequation (2.5) can be

integrated. We introduce dimensionless quantities

Ro = R k 0t o=,P- At

2 R 6= Pa
-- A,, - __- __ - T ,

(2.6)

in this case dp/dt = 0: therefore, it is possible to reduce

equation (2.5) to form

d zo " , '){+ + 2 (2.7)

with initial condition R = I for r = 0.

Designating = cW, we rewrite (2.7) as follows:

2*0 (W~ + 2/3 (p) dco _'

(W2+ 0(W + 1)- d

Integrating this equation and returning to the old variable, we

have

6 (1 (i -VR--~- (I _ RO) + + 2 -. t) - V9±

-- '

2/- aq '' -0 [.Lin ++ %I q-(P (arc tg -arczt-L)]+

+ 1.,(;L.,p + 1) 2,.+ ( , )



for q > 0, which corresponds to dissolving bubbles, and

-L (I - 1)'O

+ +2IS + [I R-++x (+7- + vit)(t +w) I

+ A, ( , + 1) -.1 1 (2.9)

for T < 0, which corresponds to growing bubbles.

Considering in (2.8) R° = 0, we obtain the following relationship

for determining the time T of total dissolution of the gas bubbles
ks' = -2 3 +--+ ( 6 -
-2R T ) ( 12 -- Q ' +

X-26+ /.p- 6n T In- 1

+ (2.10)

Expression (2.10) allows us to calculate the time during which

for certain conditions a gas bubble will be completely dissolved,

and to compare it with the experimental value.

8 5

Fig. 3. Fundamental scheme
of the experimental installa-
tion. i - vessel; 2 - micro-
scope with movie camera; 3-

system of condensers; 4 - source
of lignt; 5 - tanks; 6 - vacuum
manometer; 7 - instrument for
determining air-content of the
water; 8 - clamps; 9 - connecting
hoses; 10- feed to compresser
and vacuum pump.
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3. The fundamental diagram of the experimental installation is

shown in Fig. 3. Vessel 1 for observing the bubble is a round

.V-es morganic glass (Fig. 4). In the upper part of the

vessel is a window of thick plate glass,

which ensured small deviations of form of

bubbles from the spherical (organic glass

is hardly moistened by water-, and on it

bubbles have a flattened form). Water

Fig. 4. Vessel for flowed into the radial gap between the outer
observation of bubbles.

wall of the vessel and the inner circular

partition. From gap through holes in the partition water reached the

lower central part of the vessel, and then through a hole of diameter

10 mm in a diaphragm it enters the upper central part and through

upper holes in the circular partition and radial clearance it leaves

the vessel. Such a labyrinth is created in order to ensure the most

exact flow of water to the center of the lower surface of the inspec-

tion window, in which the gas bubble is located, since with small

deflection the bubble is easily carried off by the water.

The flow of water was created by the difference of water levels

in two tanks. The velocity of the flow of water through the hole

in diaphragm of the vessel was determined by the flow rate and could

be regulated by the relative location of tanks in height. In the

tanks, with the help of a vacuum pump and compressor, it was possible

to assign any pressure from deep rarefaction to I atm (abs).

Observation and filming of bubbles were produced on a micro-

filming installation of type MKU-i, which allows us to obtain a

10-power magnification on film.

vith return movement the water was passed through an instrument



for determining the gas-content of

the liquid, and we measured the
008 -7I I -_ quantity of air dissolved in the

0.041 11 t 1
1i _1 1 -h water.

o zoo Uoo 6oo OO 0 i zoV On the described installation
FPig..5. Influence ofr theFig.5. nflenc ofthewe conducted a large numbe-r of
velocity of flow past an air
bubble U, cm/sec, by water experiments in observation of the
on its growth and dissolution.
Temperature of water is growth and dissolution of air
200C; a0 = i79%. Curve 1 -
20 ; 2 0 179%. Cure 27 abubbles with different velocitiesU = 0; 2- = U = 27 at p =

= 10750 kg/m 2 ; curve 3 - of flow past them by water. In

U = 16 at p = 10250 kg/m2 ;
curve - U = 0; 5 - U = 3Fig. 5 there are shown some of the
6 - U = 2.6 at p = 6850 kg/me. experimental curves of change of

radii of dissolved and growing bubbles in motionless water and with

different velocities of flow past them by water, and in Figs. 6 and

7 are photographs of these bubbles.

#Nm
ct

-Fig. 6. Sequential photographs of dissolving
bubbles: 200 sec; U = 0; 30 sec, U - 16
cm/sec; 15 sec, U = 27 cm/sec.
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Fig. 7. Sequential photographs of growing
bubbles: i20 see, U = 0; 30 see, U = 2.6
cm/sec - i se -

; 30 see, U = 13 cm/sec-.

F.om experiment the velocity of flow past a free bubble by

liquid remains unknown, which is embodied in expression (I.i2),

although we know the rate of flow of water through the hole in the

diaphragm of the vessel. Therefore, it would have been possible to

try to find this velocity from one experiment, solving for this

purpose equation (2.8) for X, and, by determining the ratio of the

velocity of flow past a free bubble to the velocity of flow through

the diaphragm hole, to calculate from the same (2.8) the time of

growth or dissolution of the bubble for another experiment and zo

compare this time with its experimental value. It is somewhat unclear,

here, what magnitude of the coefficient of diffusion to put in the

calculation, since in motionless liquid during contact of a spherical

bubble against a flat wall the intensity of diffusion decreases by a

factor of ln 2 [3].

We shall consider the intensity cf diffusion the same as in the

case of an infinite fluid, since with such a scheme of flow past 

'ubble the influence of the wall on diffusion of gas through scctionr.

of the surface of the bubble turned toward the flow should be small.
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and flow of gas through these se,:tions, a,- can l-e seein fr'om Fig. 2,

constitutes the prevailing part in th- total flux across the whole

surface of the bubble. Obviously, with dccrease of the ve.city

of flow past the bubble the influence of the wall on intensity of

diffusion should increase.

To this purpose, for conditions ctrre')pnnding to curve 2 of

Fig. 5, we graphically scolved equation (2.10), as a result of which

we obtained X = 9.60, and, c, nscquently, U/v 0 = 24, where U - velocity

A' flow thirough the hole in the d iaphragm.

Thus, f'-r a bubble, chan ,e , ,f whose dimensions is depicted by

-u-rve 3 of Flig. 5, we have XT , .7 nmb/'ec andA = 7.26. From equa-

tion (2.10) we obtain T = 150 _ec; the experimental value of tLe time

)f total dissolution of this tiibble, as can be seen from Fig. 5, is

,,qual to 170 sec.

Matching should be consjd,,rtd satisfactory, considering inevitabl,

errors in determination of conditicns of ' bhe experiment and a ccetain

influence of the wall on diffusL n.

Thus intensity of diffusirn cf gas into a ggs bubble during

its relative rm,ntiin in a liquid increases proportionally to the

velticIty of flow past the bubble to the 1/2 power. Even with suf-

ficiently small relative velocities; with which bubbles at a dimensin

,)f' the order of 0.1 mm surfacc, intensity uf diffusion is Lncreased

Ly an order ,r more as compared t , the case f a motionless bubble.

Results of experimental rc -earth confirm our theoretical

S,,nclusions. 8uliuj Ited

>0 e,,teimber lq 5
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ON THE STABILITY OF A COLLAPSING GAS CAVITY IN ROTATING LIQUID

V. K. Kedrinskiy and G. 14. Pigolkin

(Novos ibirsk)

This work, basically, is devoted to experimental resear :h
of the stability of the shape of a collapsing gas cavity,
formed by a rotating liquid volume and filled with air or
a mixture of acetylene and oxygen. In the latter case we
determined the influence of ignition of the mixture at the
moment of maximum compression on stability of the cavity
shape during its subsequent expansion. At the end there is
an attempt to construct certain diagrams of the observed
phenomena.

Experiments were conducted on installation presented in Fig. i.

The working chamber was cylin(r' i with transparent walls 2, filled

with water. High-pressure chamber 3 with a !50% mixture of acety],hne

and oxygen was separated from the working 2hamber by a diaphragm.

The basic working part of the installa-

_2 tion - a "rotator" - consisting of two

S f- parallel plates, rigidly fastened by

four thin ribs. The lower plate rests

on shaft 5 with a hole for admission of

gas. During supplying of gas through

Fig. i. the hole in the shaft during rotation

between the plates there will form
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cavity 4. Motion of the cavity walls was fixed by high-spec- photo-

recorder 6. At the moment of -opening of the shutter of the photcre-

corder a synchronizing pulse ignites air gap 7 in the circuit of

capacitor 8, whi-.ch,, discharging in gap 9, ignites the mixture, During

discharge of capac]Ltor 8 a Rogovsky strip placed in the circuit of

this cabacitor, starts pulse transformer 10, which, in turn . -starts

the pulse tube, standing in the circuit of capacitor ii.

In Fig. 2a is a typical photograph of pulsation of the gas cavity.

Scanning of the process is downward, cavity is somewhat skewed on a

cone. The moment of collapse is clearly seen in the nineteenth frame.

The cavity at the moment of maximum compression is a cylinder over-

compressed at its center. Compression is unstable, and during the

following expansion of the cavity it is significantly eroded. In

this ph0tograph is the case of compression of a cavity, filled with

a mixture of acetylene and oxygen (the moment of igniting is seen well

in the eighteenth and nineteenth frames). The fact of ignition of

the gas is determined by the self-glow, fixed at the moment of maxi-

mum compression without illumination of the process. Repetition of

the above e r, periment for bhe case of a cavity filled with air showed

that the influence of ignition of the mixture inside the cavity essen-

tially does not affect subsequent expansion. Figure 2b depicts the

final moment of collapse and subsequent expansion of the air avity (th-,

initial radius in this case is somewhat less than the preceding). As

can be seen from the photograph, instability in this case is stronger.

The cause is the decrease of the minimum radius and, as a result,

strong disturbance of centering at the moment of maximum compression.

In such cases we always see total destraction of the cavity.
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Location of the "rotator" in a transparent hollow cylinder per-

initted us to achieve significant improvement of stability (Fig. 2c)

a b

I MAI
Fig.ji8

shape~~2 ofteg= aiy

Z86

30', 30:

li10J 'y~ *n inroucio ofapitn Fg.5z.Ista o

.191
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Fig. 2.

hloiwever, the above scheme of thie experiment did not give a possibility

of' improving the stability by increasing of the rate of rotation of

the liquid due to the appearing eddies. Ins'tallation above the "rota-

tor" of a lattice allowed us only slightly to increase the rate.,

since appearance of small eddies led to instability of the initial

shape of the gas cavity.

We succetoded in significantly increasing the rate of' rotation

and freei~ng )ut-selves from eddies by rotation of the whole "vessel-

liqid"jl ystomI ond introduction of a piston (Fikr. 3\ln 1.oad of the

l1rotatorU there i- tablished a transparent cy-lindJer I1 with piston 2.

777777? "171-



B6,weon the piston and the bottom of cylinder we filled in water.

Regulating the admission of gas under piston during rotation of the

cylinder, we obtained cavity 3 of the desired dimensions. The rate

of rotation of the cylinder was in the order of 30 rev/sec; initial

pressure of the mixture in the explosion !hamber varied from 200 to

500 mm, the height of the cavity was i0-80 mm; diameter of cavity

was 4o-70 mnhn In Fig. 4a is a typical photograph of compression of

the cavity by a solid '(along the. diameter of the cylinder) piston.

Compression occurs in two ways: by radius and by height. This, one

may see especially distinctly in Fig. 4b. In the direction of ioution

of the piston on the surface of Ji he cavity there moves a compression

wave, reminiscent of "bora" in low water. Naturally, with such very

unstable compression expansion of the cavity leads to its total destruc-

tion. Obviously, for stability it is necessary to preserve the height

of the cavity during compression.. For this the solid piston is

replaced by an annular one (Fig. 5). In this case the cavity is com-

pressed symmetricawlly; the shape of the cavity remains during pulsa-

tion close to cylindrical; the surfa'ce waves are insignificant

(Fig. 4c).

As a result of experimental regearch there

is revealed the basic- possibility of obtaining

sufficient stability of walls during collapse.

Let us consider briefly certain diagrams

-of axially symmetric flow of an initially twirled

-liquid with a free surface.

The liquid revolves together with a cylin-

Fig. 3. drical vessel of radius R, as a solid with con-

stant angula-velocity cu. During rotation i.idt
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This solution-givas a simple wave, leading to formation of a

shock. Flow, illust,-ated by Fig-. 4a and b, is reminiscent of flow

with, a shock. The equation of motion in the axially symmetric case

is satisfied when

a = const, r = 0, N - N (i, t)-

where u and v - axial and radial velocities, respetively. Conse-

quently, flow with a shock is theoretically possible. However, inte-

gral relationships in our case do not give the possibility of deter-

mining the velocity of the shock as depending on its amplitude and

parameters of motiont before the shock.

Study of experimental data showed that, in

distinction from ,discontinuous flows in shallow

water, here we have a free surface w'2thout any

S- - traces of turbulation. However, it is easy to

show.that flow, in which-at infinity the free

- surface has various Values of radius, cannot

everywhere satisfy Euler's equations.

Fig. 5, Consequently, the zone of turbulent motion

should exist somewhere inside the liquid, so

that 'the free surface does not become turbulent.

Let us assume that the turbulent zone adjoins the zone of regular

flow. The shock moves here toward the zone of regular flow. On the

free surface contact can be realized only on a circumference of mini-

mum radius. Taking all these assumptions, we obtain absence of tur-

bulence on the free surface and the expression for the velocity of

the shock is

1 9- r,, -o
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where D- velocity of the shock, Po - minimui, radius of the free

surface. Axial velocity after the shock is determined from the condi-

tion of conservation of mass of" the liquid

The quest-ion of the existence of the mentioned regular flow has

encountered significant difficulties and remains open.

Thus, for the case with a solid piston the criterion of stability

of shape of the cavity during compression is analogous to the condi-

tion of' adiabaticity of compression of a gas volume

where u -- velocity of the piston. When u - C (Fig., 4a and b) u C

4 m/sec we obtain unstable motion with a shock.

In the case with an annular piston the collapsing cavity is the

most stable in shape. However. the authors did not manage to find

a physically acceptable model. of motion, calculation of which would

be sufficiently simple and at the same time. gave satisfactory explana-

tion of stability of cavity shape,

The authors are grateful to B. V. Voytsekhovskiy and R. I.

Soloukhin for their attention to this work.
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A THEORY OF THERMAL EXPLOSION IN UNSTEADY STATE

V. V. Barzykin , V. T. Gontkovskaya,

A. G. Merzhanov, and S. I. Khudyayev

(Moscow)

With the help: of computers we anailyze and give a solution
of the system of equations of thermal explosion in partial
derivatives for a reaction of the zero and first order during
conductive heat transfer in the reaction zone and Newtonian
heat exchange on the boundary.

We definitize determination of basic characteristics of
thermal explosion. The obtained results are presented in
the form of approximate formulas, relating characteristics
of thermal explosiQn with all parameters of the problem in
a wide range of their variation.

We give the criterion of applicability of the equation
averaged by volume for calculation of the period of Induc-
tion in the case of conductive heat transfer in a reacdbion
volume,. We offer a method of averaging the system of equa-o
tions of thermal explosion.

i. The unsteady-state system of equations on the assumption

of coiductive heat transfer in a reaction volume and of constancy of

thermophysical coefficients in dimensionless variables has the follow-

ing form (see, e.g., [i])':

heat-conduction equation
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equati-n of chemical kinetics
"'I

o-7 = T (11) exr I

F ET I'l (T - T)) T . .
6 -QE-o ( 

(1.2)

Here, 0 -heating up, - -time; coordinate,, - Frank-

Kamenetskiy criterion,i± = 0, 1, and 2 correspondingly for plane-paral-

lel, cylindrical and spherical vessels, r- the degree of conversion.

The variables with dimensions are:, T(x, t) - temperature in reaction

volume, TO -ambient temperature, Q thermal effect of the reaqtion,

k0 - preexponent, E - activation energy, X - coefficient of thermal con-

ductivity, c - specific heat capacity, p - density, R - universal gas

constant, r - radius of vessel (for a plane-parallel one, half th6

thickness).

This system -was not investigated in detail. In the theory of ther-

mal explosion in unsleady state [2-7] various simplifications are

reaction volume, decomposition of the exponential factor, etc).

Below there are described results of solution of system (i.i)-

(1.2) for the case of a reaction of the zero and first order ( (f)

c orrespondingly is equal to i and (I - n)). The system was solved

for the following initial and boundary conditions:

*O 11=0, q=0 whefn-

-(1.3)

- BO) hon "-

Here B - Biot criterion, a - coeffitient of heat transfer from

the charge surface. Case B-+ o corresponds to assignment on the sur"

face of a constant temperature ( = 1, 0 = 0).

Solution was carried out on a computer. We found functions 0( , r)

and . ') for different values of pa.ameters n, 6, R, y, f. The
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basic purpose of calculations was to determine,

the critical condition

6 . (n, B. (1!. 4)

and the period of induction
T9 = n (6,., B, T, .)

Vn 6 >, (1.5),

Calculations were conducted in the following ranges of variation

of parameters:

p.56 <16- 1O, 10.*OI0I00 cc0 <; 0'.o0 , 0 < P <0.o05

V .2. Before passing to presentation

n- -of quantitative regularities of thermal

: 1 ;I explosion, we shall emphasize certain
0 4 6 8-' !0

Fig. i. Dependence 0(,) aspects of the physical -picture of th'e

when n = 0, = 0, y = 0.005, phenomenon and definitize determina-
B= c.

tions of basic characteristics.

As it is known, a distinctive feature of thermal explosion is

the presence of two clearly expressed regimes. For small 5 the reac-

tion flows almost steadily with small heating up; for large. 5 there

is observed progressive thermal self-acceleration of the reaction,

leading to explosion. For a reaction of zero order* change of regimes

during change of parameter 5 takes place with a discontinuity at 6 = 5.-

here there exists th& largest value of steady heating up.

Analysis shows that with burning out of the substance (y % 0) a

mathematical discontinuity, dividing these two conditions, does not

exist. Transiti,6n from one regime to the other during change of 6

(or of other parameters) occurs continuously, where the greater the

) *So that system (i.i)-(i.2) describes the behavior of a reaction

of zero order, it is sufficien, in the second equation to formally
set y =0.

* - -~** -- ~ -~~'4~' ____________________777-C-77~



burning out (the greater -y), the wider the transitional region r2}].

By the actual meaning of the phenomenon, a thermal explosion correspondE

to a narrow transitional region, which is observed usually for y of

the order of !0-2-10-3. in Fig. I is a typical picture -o O(') for

different 6. The presence of a transitional region leads to the neces-

sity of certain more precise definitions .of determinations of basic

characteristics of a thermal explosion.

i° . Preexplosion heating up - a characteistic, obtained in

steady-state theory for reaction of zero order (maximum stelady-state

heating up of a system). Adcording to steady-state theory [,1, 8,, 9]

we have I - 0* _ 1.6. From analysis of an Unsteady-state system of

eqiuations with allowance for burning out it follows that such a char-

acteristic, strictly speaking, does not exist. The magnitude of the

maximum value of' heating up '( ) with increase of 6 continuously

increases (Fig. 2) and here becomes larger than e.. However, heatings

up 0 m > e. occur in a very narrow range of variation of parameter b

and in concrete cases are realized comparatively rarely. in this

connection observation of maximum heatings during experimental

research of thermal explosion and comparison of them with preexplosion

heatings, determined by steady-state theory, are always useful. Thus,

for instance, systematic observation of excessive heating during

research of the thermal explosion of Tetryl in a melted state allowed

us to establish complex convection mechanism of heat transfer in the

reaction zone, caused by mixing of the liquid phase by bubbles of the

products of decomposition [10].

20. Critical criterion (or limit of self-ignition) is relation-

ship between parameters of the system 6.(n, B, yj, P), separating two

regimes of the reaction. Since transition from one regime to the
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7 other occurs continuously, as 6. it is possible to select a value of

6, corresponding to the bend in curve em(b) (Fig. 2).

*30 . induction period. In the literature there is upheld the

definition &cco2dhing to which by the induction period we understand

the, time of deving fof preexpiosion heating up (see, e.g., [2', 5, ]).

Here,, it is, assuired that the time of flow of a process when e > 0*

is considerably less than the induction period. This definition is

inaccurate, since, first, 1preexplosion heating up, as such, does not

exist, and therefore, the time of its achievement 0. will not be a char-

act~ristic quantity, and second, the time of the process when 0 > e

cannot be ignored (Fig. i, Table i).

It is more correct to characterize
induction period by time T of achieve-

S . • ' ment of the maximum velocity of non-

isothermal reaction. Such a definitio±*

2allows us to trace the rules of change

of the induction period in transition

,I, conditions (Fig., 3). Depeldence T0 (5)
£o.9 IN oI# .. 9 /6 ' f2 has a maximum, corresponding to 5..

Fig. 2. Dependence 0 (6)
whe n When 5 -+ 6. (from both sides') -0when n 1 , 0 =  .03, =

= 0.005, B = 2. sharply increases, seeking its maximum

value r.. Quantity '* strongly depends on. y and when y = 0 (zero

order of reaction), as noted by D. A. Frank-Kamenetskiy** [3], 'ru. -.

*When 5 > 6. in the interval of change of y shown above, for To

with error not worse than i-2% it is possible to take a time of achieve-
i nt 0 = 5, convenient for practical computation.

**In works [2, 4] they incorrectly obtained finite values -.* for n

reaction of zero order.
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It is necessary to note that in the considered case of simple non-

self-accelerated reactions T. is not a

Table 1. Difference A-T
Tbtwenlie oDff cevconvenient characteristic of thermal explo-Between Time of Achieving

o = 5 and 0 = 1.2 Depen- sian, since during experimental research,
ding upon 6 for-n 0e
-Y = 0.005, B- 00. thanks to the very sharp dependence Too)

: .. [ .' near the limit, it is practically impos-

1. 1.02 0.7 :1 sible to find ..
1A I _. .74 31

1 4.t 2.31 /11
0,115 8 :.4 5-7 40. Degree of preex',losion reaction
0:.18 9.3 3.45 W3

is a conditional characteristic, sometimes

introduced in consideration for estimating burning out of the substance

during the induction period, which near the limit, as can be seen

from Fig. 4, can attain comparatively great val.ues. Let us note that

the degree of preexplosion reaction, as a characteristic, has clear

meaning in the framework of the theory of quasi-steady thermal explo-

sion [1i].

3. Dependence of 6. on all parameters (1.4) with a degree of

accuracy* fully sufficient for practical calculations (±10%) can be

presented in the form
60, 6r(B) (P2, (W)T3 (P)

( 1r._ - B) -x- (3.1)
q (B) = B) e ) _V -

qP () = I + 2.4r". (p,@) = I + W

Here 60 is the value 6., o~bqtained by D. A. Frank-Kamenetskiy in

steady-state theory (n = 0, %O, = 0.88; n = i, 50 = 2.00; n = 2, 0 =

= 3.32).

Function cpi is obtained from the steady-state boundary value

.Determination of 6. with the help of a computer was conducted
with crror, not excee.ding 5%.
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problem [9]: function 2 expresses correction for burning out during

the induction period; the form of this function was approximately

obtained by D.- A. Frank-Kamenetskiy [3]; as a result of solution of

system (i.1)-('1.2) the coefficient before y was somewhat definitized

(2.4 instead of i.39); .function 3 Was obtained by the authors as a

result of rewbiking the calculations of Parks [12].. Dependence (3.1)

is checked in a large number of variants

15 (more than 50); part of them is given in

-0 Table 2.

-' -- Table 2. Dependene of 5. on Dif-

J T0O ' 1ferent Parameters.1i I . . •t,+ S(per.1 ( or or

Fig. 3. Dependence rO(5) er)

when n 1, P -:0.03, 0 .A)I 5) 0 t .(XX,:L- (. )37 5.4
-0o 0.5 5 4) -0.15 f.16 f30 2 1 3 0..43 0.43 0

0 11) 10 5 0.85 0.87 2.3
0 20 5 0 o.85 0.,- 1.2

oc 1 3 .93 . 1.1
.0 C 6 .(3 Ifi 4.3 ~ (

QJV r7  0 5c 10 1 - .3 1 . . I

t 0.01 5 0 0.1X)78 ().43079 1.3
1 0.5 5 0 0.0 :!- P.039 0
- 0.1 5 ) 0. 077 0.077

t , 0 3 (). IR; 0.67 1 .5
dI/O 1 5 1 5 1 .5 1.48 1 .'3

52.15 2.14 0.5
t .65 2.14 2. 0.5

2 1 5 0 1.n 7.5
2 2 to I 1.7 I.6 ;.2

1 0 -2 101 2.9 13
2, o 0 5 3.5 3.V5 t.5
2 00 1 3 3.5 3.2 2

0. - 1 2 00 3.6 .5 t1.8
2 o10 3.7 :1.6 t.

Fig. W. Degree of conver-
sion q, corresponding to
different temperatures Thus, the influence of different
depending upon A. Dotted
curve - T),, c0Tresponding parameters on the critical criterion with

. to maximum of temperature.S mshown accuracy can be considered indept i-

dent, which is very convenient for concrete calculations.



4. On the basis of numerical solutions of equations (i.1)-(i.2)

we analyzed the dependence of T 0 on all parameters of problem (1.5)

in the shown range of variation of them. The character of this depen-

dence is rather .complicated: in this connection, to show the whole

picture, it was necessary to conduct a rather large number of calcu-

lations. Part of them is given in Tables 3-6.

Table 3. Dependence of T0 Table 4. Dependence of

on Y for Different A = /b on n for Different

for n = I, P = 0, B 0.01. Values of A for ( = 0,
B = co, y= 0.005.,

Y=J'r0 0.001 J 0.05 j 0.01 .1 t n=0 [ I2

1.1' "4.52 4 o.4 3.56 I 3.22- I 3.35 3.07 2.81
1.2 13.17 2.98 74 2.57 1. 2.57 2.35 2.15
1.5 12.07 2.01 L,94 1.88 1.5 1.80 1 .65 1.51
-2.5 I .42 1.40 1.391 1.38 2.5 1.28 1.!) 1.124 1 .22 1.22 1.21 1.21 4 1.12 1 .06 .03

6 1.24 1.14 1.) 1: 1.13
t0 ..08 1.08 1.08 1..8 3 1.0 .. 0!-

Table 5. Dependence of To on B for Diff erent,

A for Y = 0.005, n 1 , ( = 0.

A i1=0.0, . 0.5 ' I I 0t
1.1 3:56- 3.53 :.4, 3.1 :.07 :.07
1.2 2.74 2.74, 2.71 2. 63 2.36 2.35 2.:35
1 .5 1.94 1.91, 1 .91 1.8:) 1.66 + 1.65 1 .65
2.5 1 .39 1.38 1 .36 1 .32 1.20 1. I19"" 1. 19

4 1.21 1.21 1.18 1.14 1.07 1.06 1 .06
6 1.13 1. 13 1.10 1.07 1.03 i:03 1 .02

10 1 .08 1.08 1.05 A .03 t.15 - 1., 01 1.01

From the tables it is clear that the induction period is most

3trongly influenced by parameter 6. The influence of the other param-

eters is signifiroantly weaker. We shall discuss the influence of

each of the parameters.

The dependence of To on b. The form of dependence mOt(b) was

known long ago., As follows from the works of Todes [2], with increase

of 5, -0 drops, approaching its least value -the induction period in
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adiabatic conditions Ta . Dependence TO(b) is conveniently presented

in form tO(A), where A^= 6/6. - relative distance from the limit of

self-ignition. With such a presentation it is easier to comprehend

the character of the influence of other parameters, and also to select

approximate formulas.

The dependence of on is especially noticeable near the

limit. With increase Of 5 it weakens and when A > 7 it is practicall

absent..

The dependence of on in accordance with the concepts of

D. A. Frank-Kamenetskiy is weak and has a purely correcting character.

The dependence of 0 on n and B. Solution of system of equations

(i.i)-(i.2) in partial derivatives allows us to consider the question

of the dependence of T on the shape of the
Table 6. Dependence
of 0 on P When y = vessel and conditions of heat exchange on

= 0, n = i,~ B = .the surface, which in principle was impossible

L __ in theories using the assumption of the
1 1.:37 I C.'u. t.!": I.7 absence of distribution of temperature in

0.1u5 .49 I.II
the reaction zone, From Fig. 5 and Table 5

it is clear that dependence T 0(B) has two limiting cases as B - 0

and as B -+ co. With identical distance from the limit (A = const)

the induction period is less; the more intense the heat transfer-.

The shape of the vessel affects the induction period analogously.

The larger the surface-to-vol'ume ratio, the more intense (for icentical

B) the heat removal, and the less the induction period. Minimum T0 ,

other things being equal, is obtained in a spherical vessel. For

large A, when (just as for small B) temperature distribution is insig-

nificant, the dependence of T on n and on B disappears.
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Calculations of the induction period were conducted with error,

not exceeding 5%. All obtained results in interval i.i - A -9 10

could be described with the same accuracy by approximate formula

'= ) fh (A, r) It (n, B, A), Ta (3) 1 2-3 (4.1)

Here -r a- adiabatic induction period, practically not depending

on y in the selected range of variation of y. Function

h(A, r) i-. 0.62 ' - %:- 1 (4.2)(A - ""

does not depend on A and B and describes basic variation of T0 from

A in limiting case B -- 0 for dif erent y: function

1. (n, B, A) = I - 11 '1 1r) - I 2 ,),1 1 (4.3),~1 (6 1 :- B)}

describes change of The induction period due to shape and heat

exchange. The depehdence on A here has a corrective character.

5. In connection with these results the question of the possi-

bility of using the well-known ([2, 3, 4, 6] and others) system of

equations, written on the assumption of constancy of temperature in

the reaction volume is of interest. Such a system Of equations in

the designations used here has the form

1/0 0 d0

When using this system two approaches are possible. Either it

is assumed that temperature distribution in the system is lacking

for physical reasons (for instance, purely convective heat transfer
in the substance, weak heat emission) and then notation of equations

(5.1) does not contain additional assiunptions, and constant C is

expressed through the coefficient of heat transfer a, which has the

clear meaning of the coefficient of heat emission from the surfa.e of

the reaction volume to the environment, and other parameters are as

follows : " SIlt, "
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Here S surface, and V - volume.

Or the notation of system (5.1) is treated as a certain approxi-

mation (averaging by volume), i.e., the mathematical methcA for facili-

tating solution of system (1.1)-(1.2). In this case with the following

definition of averaging

we imply two assumptions

/ 0 M.(0 :Pf)

Furthermore, it is necessary from independent considerations to

determine the constant. Frank Kamenetskiy offered [i] a method of

finding constant C1 by using findings of the steady-state theory of

-thermal explosion, namely

C1

It is obvious that the solut.ion of system (5.1) for finding

which it is necessary to assign only the initial condition,, should

completely -coincide with the solution of system (1.1)-(1.2) with the

same initial conditions and for B-+ in bolPiudary condition (1.3).

For comparison we solved system (5.1): and system (1.1), (1.2) for

B = 0.01. Coincidence of solutions in a wide range of variation of

different parameters is within the limits of accuracy of calculation.

The structure of formula (4.1) for the induction period, in

connection with this, can be treated as" follows.

aII- Function T0 = "ra(p)fi(Al Y) (see

Z.7 -Y - T (4.1), (4.2)) can be considered the

a0- - result, obtained from, solution of aver-
z. -F [go aged system (5.1), and function K =

-1.5 a 0 a81.6

Fig. 5. Dependence -o(B) for - f 2 (n, B, A) (see (11.3)) constitutes

three vessel shapes (n = 0, 1,
2) when A = 1.1, P = 0, y = a factor, showing how much To. calculatod
- 0.005.
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from the averaged system, is larger than T0 obtained from the system

of partial differential equations, and is in point of fact the criter-

ion of possibility of use of the averaged system for calculations

of the induction period. As can *be seen from (4.3) and Fig. 5, the

biggest d- vExgence is attained at n = 2, B -0, and A -+ i.

It is possible to offer another method of averaging system (i.1)-

(1.2), containing only one assumption and free Of the necessity of

using findings of steady-state theory - the, so-called weighted aver-

aging.

Let us consider this method in the example of a reaction of zero

order for 0 = .

Equation (i.i) for arbitrary three-dimensional region G with

surface S will be written as follows:

S+ 0(5.2)

The initial condition is r = 0, 0 = 0; the boundary condition i:

0/6n = -Be on surface S.

We average equation (5.2) with weight (i; 2; 3) (i; 2; 3-

coordinates); u0 will be the first eigenfunction of equation

V 2u - Xu = 0 with boundary conditions on surface S du/dn =--Bu. We

normalize u0 so that

I .= (dV - an element of the volume).
()C .

The law of averaging will be written as follows

(0 (0) > 04(1; ';i; ' 3 0) uodV
(G)

After simple computations, averaging equation (5.2), we obtain

d (0) _ i eep Od:-" 0>

(w;)
where X0 - correspondi ,g eigenvalue. Function exp 0 - convex ftu'ction,



and exp e (1 + e - <e>) exp <e>; therefore, assuming

ue exofV exp <0> (530)

we obtain averaged equation

d M0-; expO 2. Md-: 0

with initial condition <e(0)> = 0. Here there is error of the order

of

-- 0 -> exp (0> dt"

The critical criterion in this case, obviously, is written

<%> = Xo/e (the sign of averaging < > means that 6* is obtained from

the averaged system); <4*> is somewhat overstated, since by assumption

(5.3) the source is Somewhat weakened. For greater detail on such

estimates see [13]. Let us note that if we analyze results on induction

periods in the form o(A), the values of T0 obtained from both

methods of averaging coincide.

It is possible to show that averaging of equations in the problem

taking into account burning out and also for P - 0 requires no new

assumptions.

Submitted
23 January 1964
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THE BURNING VELOCITY OF POWDER UNDER VARIABLE PRESSURE*

Ya. B. Zel'dovich

( oscow)

With a powder burning in solid phase there will form a
heated layer; thidkness of the layer depends on the burning
velocity; in turn the burning velocity is connected with
the temperature profile in the heated layer. One can expect
that during rapid change of pressure the heated layer can
not reconstruct itself in time, and the burning velocity
turns out to depend not only on the instantanieous pressure,
,but also on the curve of its change. We trace the dependence
of burning velocity on pressure during rapid changes of
pressure for certain cases.

In the theory of burning of powder, developed since 1942
[1], it was shown that the relaxation time of processes
occurring in a gas is minute compared to the relaxation
time (time of change) of distribution of heat in powder.
Therefore, if we limit our consideration to intervals of
time, significant as compared to the relaxation time of
processes in a eas, we can assume that the state of the
gas layer nearest to the surface, in which the chemical
reaction is concentrated, each moment is in accordance with
the thermal state of the thin layer of the k-phase (powder)
nearest to the interface; distribution'of temperature in
deeper layers does not have a direct influence on the proce s
occurring at the surface. If, furthermore,, we assume that
the zone of gasification of the solid subst&nce is very
narrow and that gasification occurs with cnstant tempera-
ture (this corresponds, to a reaction with ,rery great acti-
vation energy), the relaxation time of the zone of gasifi-

cation of powder also can be ignored, and we can relate the
zone of gasification to the layer of gas above the surface

*Published from materials of a report to the Institute of Chemical

Physics, Academy of Sciences of USSR in i944i
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of the powder. The thermal stat of the part of the heated
layer nearest to the surface of the powder here should be
completely determined by only one magnitude - the temperature
gradient at the surface. This quantity characterizes the
transfer of heat from the gas and the zone of gasification
into the heated layer of powder. Thus, at each moment the
burning velocity is determined by the current value of pres-
sure above the surface of the powder and the magnitude of
the temperature gradient at the surface cp:

(P, 0 (0.1)
Quantity T, just as the whole distriLution of temperature

in the powder, depends on those actions, which t+he powder
experienced up to the considered moment; this distribution
we find by solving the problem of thermal conduction for a
body, extended in one direction and limited in the other
direction by a surface of given temperatxre Tk (temperature

of gasification), moving by a given law
=;. _r (1), d.,-/ d t ,(1) (0.2)

§ 1. Steady-state regime and the limit. In the frequent, most

important case, when the burning velocity is kept constant for a

prolonged interval of time, quantity (p seeks a definite limit, depend-

ing on the ourning velocity and the initial temperature of the powder'

To0

" (, TO) = . (T - T,) (.1)

where % - coefficient of thermal diffusivity of the powder.

Substituting this expression for cp in (0.1), we obtain an expres-

sion for determining that unique value of velocity, foi, a gi;oj pres-

lre and initial temperature, which should be realized during pro-

longed maintenance of a given pressure: vhis state of burning wC call

a steady-state regime and we denote quantities pertaining to it by

subscript c:

UC= u I P, q' (11,T) (.2lie = U(: (, T ,,) ( . )
,o = (p. T,) (1.3)

The steady-state regime obeys simple relationships, which follow

from equations of conservation; therefore, Uc(P, TO) can be directly

expressed thyough p and TO, thermal and kinetic properties of the
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powder and products of its gasification without the help of equations

(0.i)-, (1i), and-

Dependence (.3) we shall subsequently consider fixed by the

corresponding experiments, in which burning velocity was iiiasured at

constant or sufficiently slowly changing pressure and with different

values of T0 .. We shall use this dependence of u on p and To, fixed

by experiment, in order to determine the dependence of velocity n on

pressure and the -temperathre gradient T (see formula (Q.i)); the tem-

perature of gasification Tk wie cdnsider known and constant.

In reality measurement or calculation of Tk is a difficult problem.

For its solution it is necessary to investigate the thermal decompo-

sition of p6wder at high teriperature, when this decomposition proceeds

with great velocity. Cohstancy of Tk aso, strictly speaking, does

not occur.. Quantity Tk should be such that it ensures '. velocity of

gasification which is eqiial to the burning velocity. However, due to

the very 5trohg dependence of the gasification velocity on temp -ature

with high activation energies (doubling of velocity during change of

Tk by -50 ), significant change of the burning velocity causes -only

small change of Tk, due to which it is possible to consider Tk con-

stant.

Having a table of measured values of uc(p, TO) for different p

and TO , by formua (1.1) we calculated for each pair of values of p

and T the magnitude of gradieit y; comparing quantities u, p and p

pertaining to this experiment, we obtain a table, expressing depen-

dcnce (0.1)

For To, close to T the burning velocity seeks a definite limit

uk; magnitude Tc, according to (1.i), here is close to zero.



Direct observation of uk is hindered by the rapid decomposition

of powder at a temperature, close to Tk; quantity uk can be found by

extrapolation to Tk of the dependence of u on TO, measured at lower

temperatures. Both theoretical considerations, and also, experimental

material shows that the burning velocity does ribt incre&se without

limit as To approaches Tk.

With decrease Of To there occurs growth of p due to increase of

Tk - TO; this growth is delayed by simultaneous drop of velocity u.

,(Lowering of T decreases the temperature of burning of the powder

Tb.; burning velocity depends on. Tb as exp (-I/2RTb).) That value of

T at which cp reaches a maximum is the natural limit -of steady-state

burning; this condition is easily Tormulated mathematically (all dee'iv-

atives are at constant pressure)

OqT, Tk To dar t ie "Y--.- -0
Tt i . , . (- )

In [i] the theory of a limit was considered with definite assump-

tions about the form of dependence uc(p , TO), connected with chemical

kinetics of a burning reaction. The advantage of formulation (1.4)

will be the use of only one constant Tk in addition to the experimen-

tally studied dependence uc(P, TO).

Siibsequently, we shall assume that we are above the limit, with

such a T0 at which steady-state burning at constant pressure is stable

and pcssible, for which we should have inequality

I ' 5)

Simultaneously, formula .(1.4) allows us to determine the actual

maximun value of T at which (at a given pressure) burning in the gas

phase i.s possible; for that we put the value of To, found from (1.4),
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and the corresponding uc in formula (1.i). This maximum value of the

gradient, earlier ti] designated B' plays an important role: for

ignition of powder it is necessary to heat it in such a mahney that

at, surface temperature Tk the gradient is less than *B" Conversely,

if in the course of burning we reach gradient p > B (for instance,

due to a drop. in pressure, causing decrease of B), there occurs

extinguishing of the powder, and burning ceases. Expression (1.5)

is general. Considering constant the derivative

,, 07o -  (1.6)

we find the dependence of uc on T0 by integrating (1.6)
u, (TO) = const eT. (1.7)

Inequality (1.5) in this'case we can rewrite as

P(T.- To)< 1
Uikluc = e (Tk-T.) C (1.9)
u > u1 ,,e = 0.37Uk (i. iO)

In the latter form the condition of stability of burning was

also found in [i] with certain assumptions about the kinetics of the

reaction of burning, which approximately led to a dependence of form

(1.7).

Substituting expressions T0 and zLi at the limit of stability in~c

(i.1), we determine the critical value of the gradient:

The ratio of the critical gradient B to the steady-state one

at a given pressur& depends on the product P(Tk - TO), determining

the "margin of steadiness" of burning

'Pi t I II (7.'k T ,1 (!.1i2)
S: (7'k- TO)
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§ 2. Very rapid change of pressure. Formula (1.3) for constant

T0 gives the dependence of burning velicity on pressure for very slow

change of pressure and complete reconstruction of the layer,. In the

opposite extreme case of very rapid change of pressure the layer

absolutely does not succeed in being reconstructed; thus, the sought,

depeidence of u on p for very rapid changes of p- is -given by function

u(p, qp) (formula (O.!)) for constant cp. The method of transition

from uc(p, TO) to u(p, T) described in the preceding section in prin-

ciple completely solves this problem. Along wjth the functional

dependence, of great interest is comparison of partial derivatives

didi

(p )T,' W
We compose the expression of the total differential of (1.3) aiid

(1)du - dj,-- dT0  v ~dp) ±, pudT0\ I T . , ;'i'u P '(2 .1 )
dV, = 7,.- 7'.du - _,, dTo, = - du - T , dT,

T-'" - TO

Here the following designations are intzroduced:

, . p (Of ¢ ,,l ,, ' (2 .3 )
ukdIT. \4 I1 ( i-3

U (111 ( f"J ") (2.4)

Quantity v constitutes the value-of the exponent in the exponen-

tial law of burning: considering

, 1  /P (2.5)

we directly obtain the equation written above for v. However, the

calculation is not based on the special assumption of correctness of

the exponential law of burning, since the assiumption that V is constant

is not obligatory,; expression (2.3) for v we can, Write for any law

with this difference only., that with a law of burning, differing from

(2.5), exponent v is variable, Thus for a linear law we find
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-- p 1iO bp

po, a + &P (2.6)

Magnitude of the temperature coefficient of the burning velocity

P we also do not consider constant, and, thus, we are not limited to

a particular case of any definite dependence, of u on T0.

With the help of (2.2) we express dT0 by dp and d and substi-

tute in (2.i). We find, after simple transformations,

"a " "-- dp - $' .(T-T) (2.7)
duFk =1,3) - - dp

Comparing (,2.,7) with the expression of the total differential

du -- ('i).dl, ) ,, dq (2.8)

we find

o; " V f l- (T 'TU) PIts (2,.9)

or

P V( -P)" U{-.. to (2.10)

L -,,, ,-_, ,- (2. 11)

Formulas (2.9) and (2.10) -respond to the question of the law of

change of burning velocity during very rapid change of pressure; in

this case, for constant T, the derivative of velocity with respect

to pressure turns out to be larger with respect to 1/[i - PI(Tk T0 )]

as compared to the derivative of velocity with respect to pressure

during slow change of pressure. In that same respect Lhe effective

value of the exponent in the exponential law during rapid change of

pressure also increases. As can be seen from the formulas, quantity

P(Tk - TO), which we encounter in the theory of the limit of stabi-

lity of burning (formulas (1,5)-(i.8)), also plays a role here. The

closer to the limit the system is - condition of limit P(Tk - TO) = i -

the more labile it is, and the greater the changes of velocity causeo
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by rapid change of pre3sure.

As we know, in the internal ballistics of reactive systems the

value of the exponent of the law of burning has greatest significance;

for the possibility of steady burning in a semiclosed volume it is

necessary that v < i. From what has been said it is clear that pow--

der, satisfying this condition during slow change of pressure, may,

during rapid change of pressure, give an effective exponent larger

than one,

In a semiclosed volume under conditions which a'llow rapid change

of pressure it is possible to expect unsteady burning. Steadiness of

the burning regime of powder in the chamber of a missile was considered

in detail by the author using the method of small perturbations [2].

In this work we also obtained formulas (2.7)-(2.il).

Finally, on the assumption of a constant temperature coefficient

of burning velocity P and constant exp.onent v, we find -how many times

pressure should instantaneously drop so that extinguishing occurs.

From this iWe formulate such a condition: gradient (p,), which

corresponds to steadyr. state burning with initial pressur, p , should

be equal or larger than the critical gradient cpB(P 2 ), causing extin-

guishing at pressure P2. Using (i.±2), (i.i), and -(2.5), we find

P. (TA. (2.12)

We- give ratio pl/P2, calculated on the assumption that v = 2/3,

for different values of P(Tk -To):

P3 (7-k - 7"o) I 0.2 0.1 Q.1; 0.8 tn
(P I //))" 2.25 L. S 1.12 1025 i\'.O

P1] ;:. :1. ',11 1.8;2 L.18 L.' 1.1
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§ 3. Graphic presentation of relationships of the preceding

pa'ragraphs. The relationship derived above can be illustrated by

diagrams, which facilitate understanding of the qualitative aspect

of the matter.

in Fig. I is the distribution of temperature at the surface of

the powder. Temperature gradient T depends on the angle of inclina-

tioft a of the tangent to the curve at point A(x = 0, T = Tk, p = tg a).

In this figure there are shown two methods of determining the thick-

rfes§ of the layer. Strictly speaking, temperature only asymptotically

seeks T0 with increase of x, so that even 'at point E, far from the

surface, the ......... 'azture, although slight, differs from To; therefore,

we can speak about the thickness of the layer only conditionally.

The first method of determining the conditional thickness consists

in passing through point A a tangent and finding the point of inter-

section of' C with line BCE, on which T = To(Axi = (Tk - TO)/p). The

second method consists in Constructing rectangle ABCD in such a manner

that its area is equal to the area ABCE, bounded by curve T(x) and

line T TO:
00Ax (T-Z- T.L d.T

In the considered case with temperature distribution (4.i) both

definitions of Ax coincide and give Ax = %/u.

The distribution of temperature (Pig. i) is obtained for pro-

longed maintenance of constant pressure and for a given constant tem-

perature in the depth of the powder TO. At the same pressure, but

with a different temperature To', the powder will burn with another

volocity, the distribution of temperature and the magnitude of gradient

T will be different. In Fig. 2 curves (a) and (b) give, accordingly,
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dependences u(T0 ) and cp(T 0 ) pressure-constant, corresponding to steady-

state burning.

To bring T to Tk is practically impossible due to the fact that

the -powder is rapidly decomposed already at .a loweir temperature; there-

fore,, corresponding parts of the curves are shown by a ,dotted line.*

The value of velocity extrapolated to Tk is

-- -.D designated uk.AI

Curve cpc (To) passes through a maximum with
T \J
... .. . - coordinates TB, PB" The value of velocity cor-

x responding to TB is designated uB = Uc,(TB).

Fig. i. Let us construct a graph of u depending upon

T for a given pressure (Fig. 3); for that we take

U various values of T0 and plot in plane ucp the
a YsU

A corresponding u(To) and cp(To). This process is

r 27 easily traced by points A, G, B. General consid-,

i7 erations of theory show that the dependence of

6
u on T for a given pressure should be the same,

6 I A
F regardless of whether the process as a whole is

T, steady-state, i.e., regardless of the distribu-

tion of temperature in deeper layers, of the pow-
Fig. 2.

der and regardless of whether, in the course o

burning, T is kept constant. Figure 3 graphically shows that: i) for

"P > B there is no corresponding velocity, i.e., burning is impossible;

and 2) for T < TB to each T there corresponds two possible burning

velocities (see, e.g., points A and G). Segment BG of the curves or

Fig. 3 in reality is not realized and should be rejected. C-onsequently,

*We can get closer to temperature Tk during the study of burning

of low boiling secondary explosives, e.g., methylnitrate.
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steady-state burning is also impossible at temperature T0 <'TB (in

Figt 2 corresponding parts of curves BGF are obtained by extrapola-

tion orcalculation). How is one to conceive of this impossibility?

In Figs. 4 and 5 §olid lines give the dist;,ibutions of tempera-

tures, -correspohding to points A and G, at which q are identical for

different T0 and, u.

In regime A, to which Figure 41 corresponds, steady burning is

stable; with passage of time the distribution as a whole shifts into

the depth of the powder, and the width of the thermal layer and gradient

T are kept without change - see dotted curves of Fig. 4. In regime

G steady burning would be possible, if it occurred with low velocity.

But rto gradient p in this regime there also corresponds a second
possible velocity - such as in regime A - since gradients are identi-

cal. There will be realized just this, high velocity; but distribu-

tion of temperature is not in accordance with high velocity, with

burning the deep layers are not sufficiently heated, distribution

becomes steeper and gra. ent cp grows. When it reaches (PB-1 burning

ceases. Thus, if one were to prepare a powder of very low temperature

TG for corresponding slow burning, creating for that a very deep

heated layer (Fig. 5), in fact, instead of slow burning there will

occur a fast flash., the heated layer will be expended, and the powder

will extinguish.

U U

T, 

T
A A

I ~~- -

ws ----- -

Fig. 3. Fig. 4. Fig. 5.
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We plot on the same graph curves of u(p), pertaining to different

pressures (Fig. 6); here, we depict only the practically realizable

upper part of each curve.

Considering Tk constant, as we did in all calculations, we note

that,,points describing steady burning at different pressures, but at

one and the same initial temperature of the powder T0 , are located on

straight lines, emanating from the origin of coordinates; from (1.1)

it follows that ratio
itt. "1 x °'

is constant on lines TO =,const.

If, e.g., at a temperature of the powder T0 t pressure slowly

increases from P2 to P!, the powder burns steadily at each pressuru.

in Fig. 6 the point depicting the regime of burning shifts from M to

S (slow - slow change of pressure); increase of pressure is accom-

panied by growth of burning velocity and -reconstruction of the layer,

causing increase in the temperature gradient cp. Rapid change of pres-

sure is accomplished without reconsta-Ui*oii cf the layer, with con-

stant cpT; change of velocity is depited by segment MR (rapid - rapid

change of pressure). AS can be seen from Fig. 6, increase of velo-

city here is great. At pressure p, in the first moment the powder

burns as if its temperature is higher than it is in fact. The differ-

ence between change of velocity along a ray (T0 = const) and along

the vertical (p = const) is minimal at To, close to Tk (ray T0 =T k

in Fig. 6 coincides with the axis of ordinates) and increases as we

near the limit (T0 -+ TB) in accordance with formula (2.10).

With decrease of pressure change (decrease) of velocity is also

greater in the case of the rapid process than in the case of the
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slow one. As can be seen from Fig. u, during rapid pressure decay,

for instance, from P2 (point M) to P4, we will

find no solution; that , which was steady foP

-/ exceeds maximum PB at pressure pe. During slow
I , S

M change of pressure i. e cross at point L, correspon-

' ding to a stpeady-state regime of burning at pres-

, osure P4" Thus, Fig. 6 explains extinguishing of

powder with rapid pressure decay.

Fig. 6. As can be seen from the figure, the higher

the initial temperature of the powder, the lower should be the final

pressure to achieve extinguishing (compare with data of .§ 2-).

§ 4. Small changes of pressure. We formulate the problem of

the law of change of burning velocity during arbitrary small changes

of pressure. In this case change of the burning velocity and change

of temperature distribution in the powder can also be considered small

and we can limit ourselves to the first terms of the series of expan-

sionsi

With a constant burning velocity the temperature distribution

in the heated layer of the powder (the examination is conducted- in a

system of coordinate's, in which the surface of the powder shifts

with constant velocity- burning velocity uo) has the form

,t = To + (Tk - To)exp[-- (X uot)] (4.1)

We find now the temperature distribution, which differs by a

small component from distribution (4.1). The additional small com-

ponent we also take in the form Ae mx+nt  From heat conduction equa-

t ion

(4.2



and boundary condition T =- as x-+ co we find n = 2 ' m < 0.

Assigning the position of the surface of the burning powder as

the surface on which T = T we determine the law of motion of the

burning surface (we consider A small):

xIT=T = U±i'I (F 3)- I

The burning velocity of the powder is

dx I .I_____

dl 7 - T o 0 4 .

The temperature gradient at the surface of the powder is
d T j T4 . -T 0 ) - A ( . " o + r n ) ei u O -r " M) ( 4 - 5 )

Relationships (4.3).-(4.5) were also obtained in work [2], :devoted

to research of stability of burning of powder in a thrust chamber.

We denote by pO, that pressure at whib,,h we have

It wh= n 1 I -fro - -17'.(,- TO) (4.6)

Then with the hJ!,p of (2.8), (?.9), and (2'.11) we find the law

of change of pressire, substituting

u dq (.Ldp, dp = - - (4L7)
t- it, - (Ou / 1q)1. (w - fo)P - lo -"(du /op),.}

P=io+,"y {- [ P(Tk-o)]- (4.8)TUVO + ".- Itom '

- 3 (T.- TO)(4' ... 2 ,)} A exp (,,, --. ,,) (I

If We set

p po + Pe.' (4.9)

and express m and A in terms of w and P, for velocity we find

U= Vito ,Pe ' ( 2 x
U Po t- ( .- 7't) 2m -- I - -,(4. io)

Formula (4,.!0) is valid for any valu.ep, including complex or

purely imaginary, of n; here the complex ratio of change of velocity

to change of pressure indicates a phase shift ,between variations of
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pressure and variations of burning velocity caused by them.

Formula (4.10) contains the limiting cases considered earlier:

u - u. - v Z (p - po) w (,,1.)

U O VU0(P - PO) wihen w- ~(4.12)
po IL-S(Tk- "o)[

in accordance with (2.-8)-(2.1i).

Considering w small,

we e-n-ind (4.i0) fn a series and remov the term, containing w.

We find
u P Po p, 

(4.14)
Noting that

PO Uo+, Ie 1= UP T, d (4.-5)

we rewrite (4.14) in final form

u = u, ():+ 3 Ti. T0) 7~( T , (4.6)
U UC P 1 aOPT. u2d

or, substitating expression P in form (2.4),

Formulas (4.16)-(4.17) give an answer to the question of devia-

tinn of velocity uc(p), obtained at the same pressure if we continue

to keep this pressure constant. This deviation is proportional to

the derivative of pressure with respect to time. It is easy to show

that the formulas are aT.plicable not only for a simple exponential

(or harmonic, in the case of an imaginary w) law of change of pres-

sure in time, but also for any law p(t), since it is always possible

to present it in form
p (t)J= o + Z , e ,

By virtue of linearity, each component in pressure gives a cor-

responding component in velocity. We recall, however, that all
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calculations of this section are performed on the assumption that

changes of pressure, velocity, and other variables are small, and in

deriving (4.16)-,(4.17) we were limited to the same low frequencies.

Thus,, formulas (4.16)-(4.17) are applicable only to a smooth curve of

the pressure-time relationship, not containing high-frequency com-

ponents (see condition (4.13)).

§ 5. Burning and extinguishing during dropping pressure. Solu-

tion of the problem of burning with variable pressure for any law of

dependence p(t) in the preceding section we found on the assumption

of small changes.

Let us find by dimensional theory a criterion, determining the

role of unsteady phenomena for any changes of pressure. On this cri-

terion thei'e should depend not only deviation of velocity from its

steady-state value, but also the presence or absence of extinguishing

of the powder, occurring with sufficiently rapid and deep pressure

decay. The sought criterion should reflect the relationship between

the rate of change of pressure and that time which is necessary in

order that, after change of pressu re, the thermal layer can be recon-

structed in accordance with the new conditions of burning, i.e., the

relaxation time.

The relaxation time T of a heated layer of powder can be deter-

mined if we know its thickness Ax, the time during which a layer of

such thickness T = Ax/u burns, or the time of levelling off of tem-

perature in a layer of given thickness T = (Ax) 2/x. Substituting

expression Ax = %/u, which follows from the solution of thermal prob-

lem (21.1), one can prove that both determinations of relaxation time

T, given above, coincide and give

-- (5.1)
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The rate of change of pressure is characterized, obviously, by

derivative dp/dt. In order to construct the dimensionless criterion,

we compose the relative change of pressure for the relaxation time
B r dp x dp

B dP - ' dp (5.2)

Assuming we have an exponential law of burning u U up we

obtain another expression of the criterion:

i-=d "u= , 2d (5.3)

This drifterion, and also dimensionless constants of the powder v

and P(Tk k TO) determine for unsteady phenomena the change of velocity

and sp-ontaneous combustion or extinguishing of the powder.

Derived above for small and slow changes of pressure, formula

(4.16) can be recorded by the criterion B in the form

1,C= i+ V3(r, - To B, JI l<1 (5.4)

For the case of failing pressure (B < 0) we solve the problem,

considering any B -(not small). Given a definite value of B, we should

expect that

,,-! () (5.5)

will be a constant quantity, which it is necessary to determine. Con-

stant B corresponds to a definite law of change of pressure, which

we obtain by integration of (5.3)

PI= X (5.6)

From this we find the law of change of burning velocity

U= v=+jV T (5.7)

and the law of motion of the burning surface

xI\u1= Vxt )(5.8)27 - udl r__. IT 2C I/ Xt c- =-.V"
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Thus, a constant negative value of B corresponds to motion of

the burning surface in which the path covered is proportional to the

sauare root of the time of motion. Solution of the equationof thermal

conduction, in which temperature depends on ratio x/V -(in particular

T = Tk when x/Vfx = 2C), we easily find by substituting T = T(x/vt)

in equation .l:-.2). Here (4.2) will turn into an ordinary differential

equation. Solving the latter, we find

T( + D I -,5 .9)

We determine constant of integration D from condition

=2C~ft T = Ttk=To rf(s] D T -ToDo teI -. '.rc (5.0)

For the gradient of temperature at the surface we obtain

aT ._ e " . e-

\Dx 5T -- __ _ _ __ _

j= ' = !/ =  a V (I-.rC) (5.11)

The three magyitudes u, p, and T are connected by the one equa-

tion of the dependence- of burning velocity on the pressure and the

gradient of temperature (0.1). If the velocity of steady burning of

the powder is connected with initial temperature T0 and pressure p

by formulas (1.7) and (2.5), for dependence (0.1), using the method

described 'in § 1, we can obtain

,- cP - - L (5.12)
, ) It ,]

Substituting for u and T their expression (5.7) and (5.11), we

obtain an equation, solution of which gives the change of velocity ?P

depending upon the rate of pressure decay, which is characterized by

B, and on constants of the powder v, P(T k - TO)

Sexp [P(T;,- T.)(,- : -,, ))' C 5)

As one iould expect, for small values of B the solution of (5.1k)

Coin.1ides with expression (5.4), derived earlier by anothei' method.

FT-P w-e,.rf



More interesting is the question of the rate of pressure decay, caus-

ing extinguishing and corresponding to the value of B. For its deter-

mination we use the expression of burning velocity uB at the limit of

stability of burning and compare it with the steady velocity for the

given pressure (see (1.9)-(1.10)):

U8 = ---. , U.kE t , - '5
,R UC=Ue-,(k-s)fl C ST .- t( 14e C

Substituting this expression in (5.13) we obtain an equation

whose solution gives the critical value of BB, Leading to extinguish-

ing:

cxp 1P(Tk-T)-iI =exp[ P(Tk-TO)(1- ~ ~C)) (.5

Hence
p(Tt -T) exp (-C2) - C ( - erf C) (5.16)

Given different values of auxiliary quantity C, we obtain cor-

responding values of P(Tk - TO), P., and B. Calculations give

C 0 0.2 0.5 1.0 1.5 00

~(Tt -Tr) 0 0.28-5 0.55 0.76 O.&5 1.0
- VDR 0 3.0 0.82 0;31 0.167 0.0

As can be seen from equations and the obtained data, for the

burning velocity and the condition of extinguishing product vB is

essential; the -greater the dependence of burning velocity on pressure,

the lower the rate of drop of pressure B which causes an equal action.

§ 6. Comparison with experiment. One of the conclusions of the

developed theory of burning of powders and condensed explosives [1]

is the conclusion that stable steady burning of powder is possible

only if dimensionless magnitude P(Tk - TO) is less than or equal to

S one. Experiments of K. K. Andreyev on burning of nitroglycol at low

temperatures, evidently, confirm this. There are, however, experimen-

tal data, indicating that the criterion of stability of burning is riot
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always satisfied. We give, for instance, data on quantity 03)(i. - TO)

for powder H. For that we use values of the temperature coeAficient

of the burning velocity of this powder obtained in [3] and the magni-

tude of the temperature of the surface of the powder according to

data of A. A. Zenin. Below in the table we give these data for varir

ous pressures:
P. M 10 20 50
P -10 3  5.1 8.2 8.2

T - T 300 360 401

5 (T'j- To) 1.53 2.88 3.28

Divergence of theory and experiment bears witness to the limited

nature of the theory, the cause of which lies in idealization of the

mechanism of burning of the powder. In particular, in theory -:e used

an idealized concept of the zone of gasification of powde.; it w&

assumed that the activation energy of the gasification reaction is

very great, so that the reaction occurs in a narrow inertiale - onu

at a constant temperature, not depending on the burning vulocity. In

reality, the zone of reaction has finite thickness and inertia; the

temperature of the surface, although it changes little with cha-.nge

of the burning Velocity, can substantially affect the gradi j ,,t

temperature at the surface. These factors affect the magnitudle of

the criterion of stability of burning. From physical con.,tderations

it is possible to assume that complete allowance for the reaction in

the condensed phase will lead to easing of unsteady effect., and to

increase of stability of burning of the powder.

Of interest are experiments in interruption of burning of powder.

In the experiments of G. A. Barskiy and 0. I. Leypunskiy, p)er-

formed at the Institute of Chemical Physics of the Academy of Sciences

or' 'the USSR in the 1940's, a charge burned in a chamber with no:_zle

equipped with a deflecting flap. Impact of the incidit lo',-t on the
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hook freed the flap. Pressure fell from 100-200 kg/cm2 to atmospheric

in time At less than 0.1 sec. Burning velocity of the powder at atmos-

pheric pressure was near 0.,04 cm/sec. Substituting these values in

the expression (5.6) of the law of change of pressure for constant B,
we find (we take % = 2.0 -3. cm2/sec)

_(P. ---,, ) _ _ "14- 2.1 -
3 .1 I (6.1)

2u* At .'.IV . I

Here - initial pressure; P0 0 - final pressure.

According to data of § 5, such a rate of pressure decay by sev-

eral times exceeds that necessary for extinguishing the powder (when

P(Tk - TO) 0.5 - By : i). This conclusion agrees with the fact

that in experiments- of G., A. Barskiy and 7. I. Leypunskiy there was

indeed attained cessation of burning.

Certain information about experiments in extinguishing of powder

has been published recently [4, 5]. In the experiments of Price [4]

it was found that the depth of pressure drop, necessary for extinguish-

ing, grows with increase of initial pressure in the combustion chamber.

TPhis result agrees with formula (2.12). In the work of Ciepluch [5]

there was studied interruption of burning of a mixture powder (V =

= 0.337). The rate of pressure decay, dp/dt, required for extinguish-

ing turned out to be roughly proportional to initial pressure. This

also is in qualitative agreement with theory (see formula (5.3)).

After extinguishing repeated ignition of the powder from contact

of the surface with hot gasses or from heat supplied by radiation is

possible. If the powder is heated by hot gas by means of conductive

thermal conduction, then it is easy to prove that heating of the sur-

face of the powder will be small. As is known from the theory of

thermal conduction [6] (p. 88), temperature on the interface of two
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maedia I and 2, having initially temperatures Ti and T2, constaiit

throughout the mass, during propagation of heat remains constant and

is equal to

Tk. = T2+7': jf Q .ocp) (Q..,),

V+ F)±.QJ:0- j) (6.2)

(X, Cp, -p - correspondingly thernial conductivity, heat capacity and

density of the media,). Assume that medium i is a gas; the temperature

of the gas is equal to the temperature of burning of the powder Ti -

= 2400°K; and medium 2 is a powder; the temperature of the powder 12

equal to initial temperature T 2 = 3006K. The ratio of density of' the

gas to density of the powder we consider equal to 410-3, which co,-

responds to pressure in the combustion chamber of -50 atm. Heat

capacity of the powder c = 0.36 ca!/(g.deg), of the gas cPd

= 0.40 cal/(g.deg); thermal conductivity of the powder X2 = 5-I0-4

cal/(cm.sec.deg), of the gas X= 2.10 -4 cal/(cm.sec.deg). In this

case the temperature of the surface of the powder, calculated by for-

mula (6.2), will be equal to 377 0 K, which is insufficient for ignltiit.

However, if there is cOnvective supply of heat to the powder

(hot gasses blow over its surface) or if there is heat transfer by

radiation from 1heated parts of chamber (intensity of' radiation of

which slowly decreases in time), then repeated ignition of the powder

is possible.

In conclusion I take this opportunity to express sincere grati-

tude to K. K. Andreyev, 0. I. Leypunskiy, I. P. Grave, M. Ye.

Serebryakov, and I. M. Shapiro for their interest in my work. I am

very grateful to Yu. B. Khariton who turned my attention in conn.cLioi

with work [1] to the phenomenon of extinguishing of powder :in the
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barrel of an artillery piece after firing of the shell. I also thank

V. B. Librovich for help in preparation of the article for publication.
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AN APPROXIMATE METHOD IN THE THEORY OF UNSTEADY
BURNING VELOCITY OF POWDER

A. G. Istratov, V. B. Librovichi, and

B. V. Novozhilov

(Moscow)

During change of pressure the burning velocity of powdh
changes. If change of pressure is slow, so that the tempora-
ture profile in the heated layer of the powder can reflecb
the varying pressure, there are quasi-stationary condition,;
of burning. During fast change of pressure the temperatui
profile in the powder Will lag behind the pressure, and the
burning velocity of the powder therefore, differs from
quasi-stationary.

Unsteady conditions of burning of powder were considered
in the works of Ya. B. Zel'dovich [1, 2]. In [3] there was
conducted numerical calculation of transient processes from
steady-state conditions of burning at one pressure to steady-
state conditions at another pressure on an electronic com-,
puter. In it there are investigated cases of a sharp rise
of pressure and rapid narrowing of nozzle in the combustion
chamber of a powder-propellant rocket engine. The influence
of instantaneous rise of pressure on the burning velocity
of powder was also considered in [4], in which there were
used assumptions about the mechanism of burning of powder.
differing in many respects from those in [1-3].

Below, with the help of the method of approximation of
integral relationships [5-7] we derive analytic expressions
of' the unsteady burning velocity for a model of powder,
whose burning velocity is determined only by pressure and
the temperature gradient at the surface of the condensed
phase. We consider cases of instantaneous and exponential
change of pressure. We obtain conditions of extinguishing
of powder during de2rease of pressure. We make a compari-
son with results of numerical calculation [3]. Wc* investi-
gate cases of linear and exponential dependences oC cttndy
burning velocity of powder on its initial temperatu.e.
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§ 1. Fundamehtal equations; Application of the method oi inte-

gral relationshios. In steady-state conditions the burning velocity

of a powder

u° = Bp" f(To)

is determined by its initial temperature To and pressure p.

As it is known [1], during steady burning there is a simple

relationship between initial temperature and the temperature gradient

on the boundary of the condensed phase,

-where x- coefficient of thermal diffusivity and T - temperature of

the surface of the powder. Expressing from (i.1) temperature T0 as

a function of T and p, it is possible to present burning velocity in

the form u = F(p, p). This dependence will also be valid for unsteady

burning, which was shown by Ya. B. Zeltdovich [1]. However, in this

case relationship (i.i) no longer will be satisfied, and for deter-

mination of p it is necessary to solve the heat-conduction equation

in the solid phase.

Before formulating the p-roblem, let us turn to the following

dimensionless variables
T- To ,,

TX ( 1 .2 )

Here x - space coordinate (x > 0, x = 0 - surface of the powder),

t - time-, 7A - burning velocity, u0 - initial value of burning velocity

(when t = 0), p0 - initial pressure.

The problem consists of finding functions w(T), O(T, -), which

determine the unsteady burning velocity and distribution of tempera-

tures in the solid phase from heat-conduction equation
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'the law of burning

and the given dependence of pressure on time z(T) during transition

from one steady-state regime
(0) 1 , W~o , "o(, - (1. 5)

to another

(z) = z,, w (oo) = = z,, 0 (oo, = -(. 6)

with boundary conditions

I do (1 7)

in [3, 4] solution of the thermal conduction equation (1.3) ,.a,

produced numerically on an electronic computer. In this work the

solution is found by the method of approximation of integral rela-

tionships [5-7]. This method was first applied by Karman and Pohlhauzen

in boundary layer theory.

The method consists of seeking, instead of the solution of the

thermal conduction equation, the solution of the integral relation-

ship obtained from (1.3) by intepation with respect to from = 0

to = :

0

The integral relationship is solved if we are-given the distri-

bution of 0(e), depending on a certain parameter. The approximate

solution should satisfy boundary conditions and qualitatively correctlj

describe the character of temperature distribution. In our case it

was expedient to select the following temperature distribution:

0 (, I C - - + / (T) e-.9)

where f(T) -a function, changing from zero (for T = 0) to one (when

T --- 0).
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Substituting (1.9) in (1.8), we obtain an ordinary differential

equation for determining dependence f('):

w,- dx 1,d -w (1.10) --)

The dimensionless temperature gradient of the surface is expressed

in the form

For final solution of the problem it is necessary to make the

law of burning (1.4) more concrete and give function z('t).

§ 2. Unsteady burning velocity for linear dependence of burning

velocity of powder on initial temperature. If the velocity of steady

burning of powder depends linearly on initial temperature To(u° =

= BpV(i + cTo)), law of burning (1.4) in dimensionless variables has

the form [3]

S[ ( 43 I (7'z-T,,) (2.,)
S(I ++ ) P t+ , "-

In [3] there is u-ed another quantity q = 2/(1 + P).

Relationship (2.1) together with (i.ii) allows us, instead of an

equation for f (1.10), to write an equation for velocity w

1( 1 Q~u\dww d1( (2.2)d---- "7". dv- :w -

It is convenient to introduce a new function W = w/z. It has a

simple meaning. During steady burning W = 1; deviation of W from

one characterizes the degree of unsteadiness of burning. For this

function from (2.2) we obtain equation

(1 -. t - 2W) W + IV) - - 1)d' + (1 + p)- :- ,.(; , 2 3

ULet us investigate the transient process from steady-state con-
ditions w = z = i to steady-state conditions wi = zi with the followiic
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dependence Of pressure on time:

, e-- wheno )<r< (2.4)
z - . W1  C-- '. con.st when rn < r <

Using initial. condition W I for ,z = 0, we obtain

i L ( (1 - 3)- in (I - 3)

-= -- •IV)-)]

T (I "1) -,' ,,>, -, (2 .6 )
I_ + (1-"° ' ( +3)1:,., (T (2 6

where W0 - value of W When T = To, determined from (2.5).

With infinitely fast change of pressure ('y = ±+co) the solution

comes from expression (2.6) for 0 = 0. In order to determine W. in

this case it is necessary to consider the limit of (2.5) as y-+ ±o

with condition lT0 = -in w., or more simply, set z = zi = w1 in (2.1)

on the condition that PO/6I0= i. For W0 we obtained expression
i -- .± [ (t .3 Y-1"(

.).O Ir- - : - (2.7)

Function f('), necessary for-finding the temperature distribution

of the solid phase, we express from (2.1) and (1.11) through W and z:

1:V(I - - (2.8)
01 -- I)

The given solution is valid both for decrease of pressure (N > 0)

z < 1), and for increase of pressure (y < 0, zi > 'i).

For illustration of the results obtained in Fig. I we give the

dependence of unsteady burning velocity w on time for share (1)

and exponential (2) pressure decay. The dotted line shows steady

velocity (or pressure to power v). Curves correspond to the following

parameters: P = 0.6, wI = 0.95, 7 = co, y = 0.25. It is clear that

the burning velocity differs more from steady burning velocity the

sharper the pressure decay. The velocity of steady burning is greater

than that of unsteady due to the fact that the latter occurs with a
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less heated surface layer of the powder. In Fig. 2 the dotted lines

depict the dependences of burning velocity W on time with a sharp rise

when pi/po = 10 and pi/p0 = 200 (v = 2/3, P = 0.74). Solid lines in

this figure give the same dependences taken from [3], which were

obtained by numerical integration of the equation on an electronic

computer. It is clear that the method of approximation gives satis-

factory agreement with results of exact calculation.

In Fig. 3 are profiles of temperature in

G powder, calculated by formulas (!.9), (2.6),

and '(2.8) for two different moments of time
2 -(.dotted curves), and there also are plotted the

results of exact calculation, taken from [3]
a5 (solid curves 1, 2, 3, 4 correspond to T = 0.0,

Fig. 1. 0.16, 0.237, o when P = 074, p!/po = 10). Also

there is observed satisfactory coincidence of

w results.

In Fig. 4 is a comparison of dependences,

ii; - obtained. by approximate formulas and by exact

, calculation, for p1/p0 = iO, v = 2/3 for differ-

ent values of P: 0 =0.905 (curve 1) and P =
o -ai 0.2 V"0 aig. 2. = 0.6 (curve 2). It is clear that as P approache:

one (the criterion of stability of burning of

powder according to Ya. B. Zeldovich [i] is condition P < i) accuracy

of approximate calculation lowers.

With sufficiently rapid pressure decay there can occur extin-

guishing of the powder. For instantaneous change of pressure this

can be seen from formula (2.7). If
z1zx (t +P)3
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the expression under the radical is negative, and a solution does not

exist.
10 The temperature gradient at the surface of

the powder, produced und._r the initial pressure,

is equal in this case to the critical gradient,

with which, as we know from the theory of Ya. B.

Zel'dovich [1, 2], there still can exist a

flame above the surface of the powder. With
Fig. 3.

great decrease of pressure the gradient exceeds

1.8 W the critical.

With smooth change of pressure it is neces-

\ sary to investigate the more general formula

(2.1), from which it is clear that the critical

value of W is 1/2(1 + ). A smaller value of W,

0 T ou in principle, cannot be attained. When W* -

Fig. 4. 1 1/2(1 + P), which corresponds to achievement

of the critical gradient, there occurs extin-

guishing of the powder. From equation (2.3) it follows that under

this condition dW/d becomes an infinitely large negative quantity.

If we are given a finite value of zi , two cases are possible.

For small values of y (weak unsteadiness) W is always greater than

W*, and the powder is not extinguished. For large values of y, W at

a certain moment attains W*, and there occurs cessation of burning.

We obtain the critical value of y* (for a given z.), if we set

W = W* in the moment most dangerous for extinguishing, i.e., at

T--T0.

Here, zI = exp (--Yr 0), W = 1/2(1 + ). Then from (2.5) for

dependence zi = zi(y*) we obtain transcendental equation
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-z expr + (1it, + (29

Hence Z .- 3 as I* oo

I +z III + (I + 1 11 1 2.0

as It-> l-

For sufficiently small values of -y there is no extinguishing

for any Values of z1 . in this case dW/d becomes equal to zero befor.',

W attains value W*. The point of termination of the extinguishing

curve z,(y*) is determined from the condition of equality to zero of

the second term in braces in expression (2.9). Its coordinates are
"--"V (2.11.)

-3

In Fig. 5 are cu'ves 1-5 of dependence z,(y*) when I - 1.0, 0.7,

0.5, and 0.3.0. The dotted line shows the locus

__ of points of termination of the extinguishing

curve.

§ 3. Unsteady burning velocity with an

exponential dependence of the burning velocity/ i5 Y_

of powder on initial temperature, Absolutely

Fig. 5. analogously to the preceding case it is possible

to investigate unsteady burning of powder, the velocity of which

depends on T 0 exponentially (u° = BpveaTO). Dimensionless burning

velocity is related to z and the temperature gradient by the relation-

ship

w=zexpI l---.,), =a(T,-Tu) (3.1)

For determination of w we have equation

+- A a A) II-)

dT _- dr(3.2)
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It is easy to show that for 0 << i relationships (2.1) and (3.1)

and equations (2.3) and (3.2) change into one another, as it should

be, since a linear law is obtained from exponential under just this

condition.

If pressure depends on time according to law (2.5), the solution

of equation (3.2) will be

TW,0 -! P) 1w,-T) A] k
T  3(i + (3.3)

W1 (V> (3.4)

Witn instantaneous change of pressure A0 is determined from

equation
Ao= In w, 0 -A.\,,.) (3.5)

Minimum possible A0 = - , and the critical value of pressure,

at which powder extinguishing occurs [2] as -y-+ o

I"= P-- -  - (3.6 )

S -The curve of extinguishing is sought from

transcendental equation

• ,~ , = e x p i -{ -r r ._ 0 : 7

_/ 5 _ Y*
When Y* >> I

i 6. P)I11 l 9(1 -3))] (3.8)

The point of termination of the curve of extinguishing is deter-

mined by relationships

z*=ezp[ (* = -"( )

In Fig. 6 are curves 1, 2, 3, 4, 5 built by formula (3.7), cor-

respondingly for values .= , 0.7, 0.5, 0.3, and 0.
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In conclusion we thank 0. 1. Leypunskiy and G. I. Barenblatt for

discussion of the work and valuable advice.
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INFLUENCE OF PRESSURE ON THE NORMAL VELOCITY OF THE
FLAME OF A METHANE-AIR MIXTURE

V. S. Babkin, L. S. Kozachenko, and I. L. Kuznetsov

(Novosibirsk)

The influence of pressure and temperature on the normal
velocity of the flame in a methane-air mixture is studied
with the help of a bomb of Constant volume in the pressure
range 1-60 atm (abs.) and temperature range 16-2200C. The
apparent velocity was determined in the initial section by
means of high-speed filming using an optical schlieren sys-
tem. Normal velocity was calculated as the result of divi-
sion of apparent velocity by the calculated coefficient of
expansion. In the pressure range 3-60 atm (abs.) the normal

velocity obeys dependence Su -P p-05.

1. Study of the influence of high pressure on the normal velo-

city of a flame began relatively recently on the basis of methods

developed for measurements of normal velocities at low pressures

(0.1-3 atm (abs.)). '2he method of a bomb of constant volume was used by

Yampol'skiy and Price [i] for research of explosions of hydrogen-air

mixtures up to 900 atm (abs.). Smith and Agnew [2] used this method to

determine the velocity of the flame with initial pressures up to 20

atm (abs.) in methane-oxygen-nitrogen mixtures. A modified method of a

bomb of constant pressure was successfully applied by Strauss and

Edse [3] for a series of fuel-air and fuel-oxygen mixtures, burning

under a pressure of up to 90 atm (abs.). In a wide range of pressures

Al.. 2 43- -* 
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up to 40 atm (abs.) the Bunsen-burner method was applied by Diederichsen

and Wolfhard for methane-air mixtures [4]. The influence of pressure

on the velocity of the flame of mixtures of methane, propane, ethylene

and propylene with air in the range of 0.5-9 atm (abs.) was studied

by the tube rmethod by Egerton and Lefebre [5].

During transition to increased pressures application of the

above-enumerated methods encountered certain difficulties. As

Diederichsen and Wolfha-rd show, application of a Bunsen burner with

a pressure chamber at high pressures requires a decrease of the diame-

ters of the burner to very small dimensions (in their experiments at

20 atm (abs.) the diameter of burner was i.7-mm) which to significant

extent hampers observation of the flames. On the other hand, this

leads to the necessity of measurement of minute consumptions of gas,

which is connected with increase of error. In the experiments of

Diederichsen and Wolfhard, with a stoichiometric relationship in the

mixture and 20 atm (abs,) pressure, the consumption of methane was

about 0.1 ml/sec. In [4] there is also indicated the difficulty of

stabilization of the flame on Bunsen burners.

The method of a bomb of constant volume

with application of pressure-time recording,

* although an old method, does not allow us to

160- obtain reliable values of normal velocities of

a flame, since different authors offered contra-
dictory equations for their determination [6, 7].

80-Strauss and Edse [3], working with high

Il pressures with a soap bubble, noted the diffi-

culty of registration of boundaries of the bubble;

8 9 10 It therefore, instead of the coefficient of expansion

Fig.
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of products of burning usually determined experimentally, they used

its thermodynamic computed value.

A very successful attempt at determination of the normal velocity

of a flame is the method with application of ionization transducers,

used by Smith and Agnew [2], in combination with measurements of appar-

ent velocity of the flame by means of these transducers in the early

stages of burning, when the process of flame propagation in a closed

bomb can be considered a process* under constant pressure [8].

In this work there is undertaken a further study of the influence

of pressure on the normal velocity of the flame of methane.-air mix-

tures with initial pressures of up to 6,0 atm ,(abs.) and its dependence

on temperature up to 220 0 C at atmospheric pressure. Measurements

of normal velocity were conducted in a closed spherical bomb with

central ignition in the initial section of flame propagation, with

application of filming by the schlieren-method.

2. Description of experiments. The closed spherical bomb Was

a thick-walled steel vessel with a working cavity of 183 mm, equipped

with inspection windows on opposite sides of the bomb of optical

glass of 72 mm diameter and 48 mm thickness. The bomb was equipped

with steel regulated electrodes for igniting the mixture by a centered

spark and high-pressure valves for filling the bomb with the fuel

mixture and evacuation. Recording of the flame was produced by means

of high-speed filming using an optical schlieren system and a serial

spark discharge as the source of light. A typical schlieren system

*In i960, D. G. Nikitin investigated by the method of a bomb of

constant volume with application of ionization transducers Vor regis-
tration of the flame the dependence of the normal velocity of flame
propagation on pressure for mixtures of certain hydrocarbons with air
during change of initial pressure from I to 8 atm (abs.) (cand. diss.
Institute of Chemical Physics of Academy of Sciences of USSR, M, 1950).
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with two long-focal objectives of type Telemar-2, where the bomb was

located in the parallel beam of light between these objectives.

Propagation of flame was studied in the ini-

tial section of its motion, when the radius of the
-Ch,

spherical flame does not exceed i/l4 the radius of

the bomb. Here, increase of pressure in the bomb

24 was not more than 1.5%, and, thus, it is possible

to consider that propagation of the flame occurs

at constant pressure, equal to the initial pressure.

Analysis shows that the principal error in deter-

mination of normal flame velocity, caused by this

approximation, also does not exceed 1.5% and, in

general, can be allowed for. The section of flame

formation directly after spark ignition was excludejd

from consideration, since spark energy and curva-

8 * U' Iture of the front of the flame have a strong influ-

Fig. 2. ence in this section on the apparent velocity.

This last circumstance allowed us easily to deter-

mine the extent of this section directly by photographic recording of

the flame.

Later stages of the process of propagation of flame are connected

with significant increase of pressure in the bomb, which with suffi-

ciently high initial pressure can lead to destruction of the installa-

tion. To prevent this during expansion of the range of initial pres-

sures the bomb was equipped with a safety diaphragm of pure copper

foil, which sustained the initial pressure, and then, bursting, ensured

drop of the heightened pressure after the process of flame propaga-

tion in the initial section was already fixed. With comparatively
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low initial pressures, of the order of 10 atm (abs.), when there was

no danger of destruction of the bomb, the safety

.- C" ,diaphragm was -.eplaced by a steel diaphragm,
70 5 which was not destroyed after the explion.

60 Change of the initial temperature of the

'4 mixtivre was attained by heating the bomb by
50

electrical heaters. Evenness of preheating is

40 ensured by the great mass of the bomb.

3. Results of experiments. As a result of
30

ZE Ianalysis of motion picture records we determined

a08 /0 / the apparent velocity of the flame S, and normal

Fig. 3. velocity Su was found from relationship Su = S/E,

where E is the coefficient of expansion of pro-

ducts durirng burning in conditions of constant pressure. The latter

was calculated from thermodynamic relationships taking into account

dissociation. Apparent velocity Was determined by the slope of the

straight line, tangent to flame developing in time spheres. Although,

as was indicated, the state of the fresh mixture before the flame

front and the state of products of burning changed with development

of the process, nonetheless, the apparent velocity of the flame

remain,)d constant in the considered section with accuracy up to error

of measurement. As was noted, the energy of the igniting spark ren-

ders , certain influence on formation of the flame; therefore, for

ignition of the mixture we used a spark with minimum energy. Such a

spark was selected experimentally. Spacial measurements of energy

of the spark were not conducted.

It is necessary to note that in certain experiments there formed

nonspherical flames and, although in the given method, rigorous
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sphericalness of the flame is not obligatory, nonetheless such motion

picture records were not analyzed.*

In all experiments we investigated flame propa-

70 uC.M gation in mixtures of methane with air. Chromato-

50 - graphic analysis of the methane showed its composi-

140 - tion to be the following: 98.2% CH :1, .33% N2, 0-32%

0 002, 0.033% 02, unknown component - O.i7%. For the

20 given methane a stoichiometric mixture with air cor-
zoo '/00 600

Fig. 4. responds to 9.65% methane and 90.35% air.

In Fig. I are given dependences of apparent

velocity S (cm/sec) of flame propagation on volume content (in %) of

methane in the -mixture: curves L, ... , 5 correspond to values of

initial pressure pO = i.0, 3.5, 10, 36, and 60 atm (abs.). Initial

temperature of the mixture for these measurements was 16°C, On the

basis of these experimental data and relationship Su = S/E we built

dependences of the normal velocity of the flame on the volume contents

of methane in the mixture for different pressures (Fig. 2) and the

dependence of the normal velocity of the flame on pressure for a mix-

ture of stoichiometric composition (solid line in Fig. 5). The depen-

dence of normal velocity Su (cm/sec) of the flame on the content of

methane for different initial temperatures T0 is presented in Fig. 3,

whei-e curves 1, 2, 3, 4, 5 correspond to values of T0 = 16, 40 70,

i40, 220 C. These experiments were conducted at atmospheric pres-

sure. In Fig. 4 in logarithmic coordinates there is given the depen-

dence of normal velocity of the flame on temperature for a stoichio-

metric mixture.

*At heightened pressures in methane-air mixtures there is observed
a tendency toward formation of anisotropic spherical. flames. Such
flames were taken into consideration.
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4. Discussion of results. The influence of pressure on the nor-

mal velocity of a flame in methane-air mixtures at low pressures proba-

bly has been given more diverse study than any other fuel mixtures.

However, the contradictory nature of published data testifies to the

difficulty of exact determination of this influence. As for high

pressures, information on the dependence of normal velocity on pres-

sure is very limited. In Fig. 5 there is given in logarithmic scale

a summary-of data on the dependence of normal velocity of a flame on

initial pressure for a stoichiometric methane-air mixture from certain

published works, and also results of this work (points 7). Such a

presentation of experimental results allows us to analyze the depen-

dence on pressure in the i-orm

Su = constp-

From Fig. 5 it is clear that normal velocities of a flame,

obtained in this work in the range from 3 to 60 atm (abs.), lie mostly

along a straight line, corresponding to n = 0.5. In this range flame

velocity can be expressed by dependence Su = 37.4/P. Below 3 atm (abs.)

there is observed a tendency toward lowering of n. An analogous

behavior of the dependence is noted in the work of Diederichsen and

Wolfhard [4.], the curve of point i. In this work there is a break

in the line at 2 atm (abs.), where the line from 3 to 40 atm (abs.)

corresponds to n : 0.53, and from 0.1 to I atm (abs.) to n - 0.2.

In good conformity with results of the authors both in magnitude of

the exponent, and in absolute values of Su are the results of Lefebre

and Egerton [5], the curve of point 2, in the pressure range from )

to 9 atm (abs.). The mentioned tendency of the dependence of normal

velocity at low and high pressures can be traced in work [3], the

curve of point 3, and in [6], the curve of point 4. If the depend<,n.ct
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on pressure in these works is considered in the above form, it is pos-

IIHH 1 i -52l

YO-- .

-l I i , _ _ _ i '- l- -i l- ' "o6

5 IM!= 5 o

- P. atm (abs .) T
2 3 4 5 7 10 20 30 50 70 10

Fig, 5.

sible to see that n constantly increases for Agnew and Graiff [8] in

the range from 0.2 to 20 atm (abs.), for Strauss and Edse [3] from

I to 90 atm (abs.). In Fig. 5, point 5 in [9] matches well witl, the

data of this work, and point 6 (data of Strauss and Edse, obtained

by burner method [8]) agrees in exponent n.

Regarding pressure lower than atmospheric, analysis of experimental

results in [4, 8-i0] shows that for mixtures, close in composition to

stoichiometric, exponent n lies between 0.1 and 0.2. In lean methane-

air mixtures there is obtained the value n = 0.49 [il]. Thus, it

seems, by a dependence of form Su = const'p -n it is possible satis-

factorily to describe the influence of pressure in a wide range, say

from 0.1 to 100 atm (abs.).

Very contradictory are the maxima of normal velocities of flame

at atmospheric pressure. Here velocities vary from 28 to 40 cm/sec.

Here the experimental values are concentrated in two regions: from

32 to 34 cm/sec [3, 8, 9, 12] and from 37 to 40 cm/sec [2, 4, 10, 13,

14]. With respect to [2, 10] it is possible to note that here normal
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velocities may be overstated due to understating of the local expan-

sion coefficient [7], in particular for a stoichiometric mixture, by a

magnitude of the order of 8%.

In this work at atmospheric pressure maximum normal velocity of

flame is equal to 30 cm/sec. This is partiall justified by the low

initial temperature of the mixture (16 0 C). Divergence in normal

velocities, possibly, originates also from divergences in calculated

coefficients of expansion; therefore, in the present work along with

normal velocities we also give apparent velocities of the flame (Fig.

1). Thus, for a mixture of stoichiometric composition of methane

with air as in [8] the value of apparent velocity is about 235 cm/sec,

which is very close to this work - 231 cm/sec. Regarding error in

normal velocities due to the possible disequilibrium state of products

of combustion, this question still remains open to debate.
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DEPENDENCE OF THE BURNING VELOCITY OF VARIOUS

FUEL SYSTEMS ON INITIAL TEMPERATURE,

A. D. Margolin, 0. N. Nefedova, and P. F. Pokhil

(Moscow)

There is conducted experimental study of the dependence of thc

burning velocity of representatives (hexogene, mixture of potassium

perchlorate with tungsten, zirconium and potassium benzoate) of various

groups of fuel systems on initial temperature (from -140 to +150°). In

the experiments we varied the relationships of components of the

mixture, discharge density and pressure of the inert gas in which

burning was produced.

Experiments showed that the logarithm of the burning velocity

u(ig u) of hexogene and of mixtures of potassium perchlorate with

metals is linearly connected with the initial temperature of the

substance TO . The dependence ig u = f(To) of the mixture of potassium

perchlorate with potassium benzoate has a discontinuity.

Results of experiments are compared with the hypothesis of

transition of the leading stage, determining burning velocity, with

growth of temperature from one spatial stage of burning to another.

Study of the dependence of the burning velocity of explosives un

initial temperature is of great value for combustion theory [1, 2].

.1O7 0



Earlier [3, 4] it was showm that the dependence of burning veloc-

ity u of powder H on initial temperature T0 has an anomalous character

(a discontinuity in the curve at coordinates To and lg u). On the

basis of available ideas on the mechanism of burning of powders [5]

there was advanced the hypothesis [6] that in the region of the dis-

continuity the leading role passes from one spatial stage of burning

to another. Here, the higher the discontinuity temperature, the more

likely that the dominating role is played by burning in the reaction

layer of the condensed phase; and the lower the discontinuity point,

the more likely predominance of burning above the surface of the con-

densed phase (in the smoke-gas and gas phases).

To check the mentioned hypothesis we conducted an experimental

study of the dependence of burning velocity on initial temperature

(from -140 to + 150°C) for various classes of fuel systents: hexogene,

which according to known data* burns in the gas phase [57: mixtures of

potassium perchlorate with tungsten and zirconium, during burning of

which reactions in the gas phase, apparently, practically do not affect

burning velocity; and the mixture of potassium perchlorate with potas-

sium benzoate. During experiments we varied the composition of' the

mixture, density of substance p and initial pressure p. Experiments

were conducted by the method described in [4]. Samples of the studied

fuel systems of 5 mm diameter and 10 mm height were prepared by

bilateral extrusion. Samples of lesser density were prepared by batch

extrusion in Plexiglas pipes with internal diameter 5 mm and height

20 mm. For burning velocity in this article, we take mm/sec dimension.

The dependence of the mass burning velocity pu of hexogene on

initial temperature at a pressure of 5 atm(gage) is presented in

*A. F. Belyayev. The mechanism of burning of explosives. Doc-
toral dissertation, Moscow, 1946.
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Fig. 1. Points show the mass burning

..... velocity of charges with density 1.72

g/cm3 , and points with crosses indicate

the burning velocity of" charges with

T, C density 1.20 g/cm. In Fig. 2 is shown

-120 -60 -/0 0. 010 -60 120 the dependence of the burning velocity

Fig. 1. of hexogene, having a density of

1.72 g/cm 3 , on temperature at pressures of 50, 60, and 100 atm(gage)

(curves 1, 2, and 3, respectively). By these experimental data we

determined the value of the temperature coefficient of burning veloc-

ity P = d ln u/dT0.

The dependence of the logarithm

- of the burning velocity of hexogene

on initial temperature in the wh(c-,

1.0 studied range of temperature fror,

Ifil 1 -140 to +150°C and the pressure

KTC range from 5 to 100 atm(gage) is
-/60 -120 -80 -4(0 0 *40 ,8O -120 160

rectilinear and can, with suffi-
Fig. 2.

cient accuracy, be described by a

constant temperature coefficient. At a pressure of 5 atm, P = 2.8"x

x 10 -3 deg- ; at a pressure of 50 atm, = 1.17"i0 3 deg - ; at

60 atm(gage), P = 1.0'10 -3 deg-1 ; and finally at 100 atm(gage) =

= 0.7.10-3 deg - . In accordance with literature data, with growth of

pressure the temperature coefficient decreases [i].

As can be seen from Figs. 1, 2, the process of burning of hexr-

gene does not change qualitatively with increase of temperature.

Under the conditions studied here the burning velocity of hexo-

gone is best determined by reactions above the surface of the e'n-

densed phase, by the mechanism discussed by A. T Belyayev. TiI0,

255

.__________-_____________-----_____ -I - .a 
'

-
r

" - " -" - ''°. .. •



f

burning of hexogene occurs basically in the gas phase is also indi-

cated by the independence of the mass burning velocity from initial

density ([I] and Fig.. i of the present work).

Earlier it was shown that hexogene in a vacuum does not burn,

which also indicates the important role of the gas phase during burn-

ing of this substance [5].

In Fig, 3 there is shown the dependence of the burning velocity

cf a mixture of 57% Zr + 43% KC10 4 on the initial temperature at

atmospheric pregsure;, in Fig. 4 there is shown the same dependence at

pressure 5 atm(gage) for a mixture

- LgU,. of 50% W + 50% KCl04; and in Fig. 5

i _ i Lg ur.

1.0

. .T,0C

SO -10 -60 -/0 0 +1o +80 -160 -120 -do 4 0 /-o ,60 +'20

Fig. 3. Fig. 4.

at atmospheric pressure for the mixture 74% W + 26% KCI0, (lines I

and 2 correspond to density p = 5.59 g/cm 3 and p = 3.60 g/cm 3).

Fr6m Figs. 3, 4, 5, and Table I it is clear that the dependence

of the burning velocity of mixtures of potassium perchlorate with

metals - tungsten and zirconium - on the initial temperature with suf-

ficient accuracy is described by a constant temperature coefficient.

The mixture 50% W + 50% KC104 at atmospheric pressure burns

instably (at a temperature +200 the ignited mixture goes out, at -11(U

the mixture cannot" be ignited).
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Since experimental dependence lg u = f(To) is smooth, 1:ithout a

break, it may be concluded that the mechanism of burn.ng does not

change qualitatively with increase of initial temperature. Components

tgu of the mixtures studied - the metals

-- 0.8- tungsten and zirconium - at the temper-

-aature of the surface layer of burning

/ of the condensed phase practically do

not evaporate: the oxidizer potassium

ToC perchlorate is not capable of indepen-
-160- -0 "140 0 .10 *80 120 dent burning. Experiments, conducted

Fig. 5.
by P. F. Pokhil and L. D. Romodanova,

showed that. these mixtures burn in a vacuum (p i0 -2 mm Hg) with

flameless burning without preheating, i.e., in the reaction layer of

the condensed phase of such mix-
Table i

tures there are intense exother-
gpi.e3 kg/om2 13Ideg-  mic reactions, capable of sup-

porting combustion.
74% W +26% KCO14  5.59 1 5.7.i0- 3

(Stoichiometry)
74% NV4-26% KCO 4  3.C9 I I.9.10 -  On the basis of what has
50% W + 50% KCIO4  4.21 6 4.9.10-:1.WO/ Zr-L430 310-3 been presented it is possible to, ," o i O 3 .0 9 1 3 .4 . 0 -

consider that in conditions of

the conducted experiments the leading stage, determining the burrnin

velocity of these mixtures, is in the reaction layer of the condensed

phase in the whole temperature range studied.

With decrease of density of the mixture of potassium perchlorate

with tuhgsten the mass burning velocity increases, and the tempera-

hure coefficient decreases (Fig. 5). It is possible that this effect.

is connected with anomalies in the reaction layer of the condensed

phase. Not excluded is the possibility +.hat there also occurrod a

.J mp nf combustion in pores of a low-density mixture.
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More complicated was the dependence of burning velocity on the

initial temperature of a mixture of potassium perchlorate with organic

fuel - potassium benzoate. This dependence at atmospheric pressure is

shown in Fig. 6. Curve I pertains to

a mixture of potassium benzoate with

potassium perchlorate with a weightOf

4/ relationship of components 30% + 70%

- and with density 1.39 g/cm 3 . Curves 4,

3, and 4 describe burning of mixtures

- - 6 with a relationship of components

- T, C 30% + 70%, 15% + 85%, and 40% + 60%
-760 -120 -W80 V 'I t,4 80 +720

and with a density 2.16, 2.38, andFig. 6.

2.04. g/cm3 , respectively.

As can be seen from Fig. 6, this dependence cannot be described

by a coefficient of burning velocity constant in the whole temperature

range. Such anomalous dependences, characterized by a sharp change

of the temperature coefficient in a narrow interval of initial temper-

atures, were observed earlier only during burning of nitroglycerine

powder [1, 3, 4].

In Table 2 there are given temperature coefficients P below the

point of discontinuity and P+ above the point of discontinuity of a

mixture of potassium perchlorate with potassium benzoate and the

temperature at the point of discontinuity of the curve at coordinaLe

T and 1g u. From Fig. 6 it is clear that temperature at the point

of discontinuity To decreases as the composition of the mixture

approaches stoichiometric.
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Table 2

Composition, -at. % r3 T, C0  V, dee 4  3+ dog'

70% KC104 + 30C 6 IsC00K 2.16 -30 1.4.10- 3  4.3-10 - 3
30% CHsCOOK + 70% KCIOI 1.39 0 1.4-10-s 4.t.10- 3

85% KC10 4 + 150% CJ1hCOOK 2.38 0 2.1.10- 3  4.3.10 -3
60% KCIO4 +40% C6H5COOK 2.04 1+60 2.3.10 - 3 5.8-10-3

The anomalous dependence of burning velocity of the mixture of

potassium perchlorate and potassium benzoate from the point of view

of our hypothesis is explained by the fact that at temperatures below

the region of discontinuity the leading role is played by reactions

in one spatial stage of burning, and above the break, in another. It

is possible to consider that the leading stage of burning below the

region of discontinuity are processes in the gas and smoke-gas phases,

and above it, in the reaction layer of the condensed phase.

To check this hypothesis we conducted experiments with a mixtur:

of different density, since when the leading stage of burning is in

the gas phase the initial density should affect the mass burning

velocity little [1, 7]. and when the leading stage of burning is in

the reaction layer of the condensed phase it is possible to expect

that the mass burning velocity will increase with increase of densi,,

first, due 'to increase of thermal conductivity and, second, due to thtm

ceacting particles of the oxidizer and fuel coming close to one,

another. Experiment showed that at high initial temperatures mass

velocities will differ by approximately 20%, and at low initial tem-

peratures they will differ by 10O. These values differ little from

.no another, so that by these data we can confidently judge a chanFr'

,f the mechanism of combustion.

It, is necessary to not- that potassium perchlorate in the reaclien

la '.yer of' the condensed phase is in e melted state, which oncels i i(,

influence of density.
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Data of G. K. Oranskaya [i] show that - '9°C the mass burning

velocity of pyroxylin does not depend on dct ' ty, and at 980C the mass

burning velocity increases with increase of density above 0.5 g/cm
3

(experiments at atmospheric pressure). Apparently, this result is

explained by the fact that with increase of initial tempera .re the

role of the reaction layer of the condensed phase increases in accor-

dance with our hypothesis, (Let us remember that according to A. I.

Korotkov and; O. I. Leypunskiy [3], the break of the curve at coordin--

ates To and lg u for nitroglycerine powder H, consisting of more than

half pyroxylin, occurs at a temperature of 20-40°C.)

It wuould be interesting to determine the temperature of the

leading stage of a reaction by the value of the temperature coefficient,

as this is done, e.g., in [2]. However, in our work we basically

investigated mixtures whose kinetics have not been studied. Further-

more, the temperature of the surface of the reaction layer of the con-

densed phase ih many cases changes not additively to change of the

initial temperature of' the mixture [8].

Indeed,, our experiments showed that the temperature on the sur-

face of the pyroxylin powder burning without flame (pressure p

10-2 mm Hg), heated to 900C, is equal to -300 C., and of powder

hieated to 140 0C is equal to -3200 C.

Using these values of initial temperatures and temperatures on

the surface, and also values of burning velocity u = 0.7 mm/sec at

kO C and u = i.4 mm/sec at 14 0 C, given in [5], by the formula of

Zc! 'dovich [7] we calculated the activation energy of pyroxylin E

40,000 cal/mole and preexponent B = 1O17 "7 sec -i (the coefficient

-3 2
of t hermal diffusivity of the powder is taken equal to 0 cm /sec).

The values of E and B obtained here are close to the kinetic data ,f
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B. S. Samnsonov [1], who, for slow decomposition of pyroxylin in

vacuum, obtained E = 44,600 cal/mole and B = i017 "8 sec -1,

Measurement of the surface temperature during flameless burning

-howed that heat, liberated in the reaction layer of the condensed

phasem with increase of initial temperature of the pyroxylin powder

from 90' to 1400C decreases by 15% (from 841 to 72 :al/g). Heat capac-

ity of the products of the generated smoke-gas mixture and powder was

consider equal to 0.4 cal/g.deg.

The authors thank N. N. Mikhaylov for the design and manufacture

of the installation for cooling the samples.
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STUDY OF THE TEMPERATURE DISTRIBUTION DURING
BURNING, OF AMMONIUM PERCHLORATE

V. K. Bobolev, A. P. Glazkova, A. A. Zeftin,

and 0. 1. Leypunskiy

(Moscow)

Study of the laws of burning of ammonium perchlorate is of

interest in connection with the anomalies revealed during the study

of its burning. Friedman, Nugent,, et al. [1] discovered the phenom-

enon of an upper and. lower limit of burning with respect to pressure,

and also measured by thermocouples (junction -50 [i) the maximun

temperature of the flame, which turned out to be equal to 930 0 C and

weakly grew with increase of pressure up to 150 atm. Subsequently,

Levy and Friedman [2] established that application of an asbestos

shell removes the upper limit. However, experiments of one of the

authors of the present article [3] showed that burning of perchlorat(

is ve-ry sensitive to change of" experimental conditions and, in par-

ticular, of the shell; for unarmored charges 7 mm in diameter Ln the

pressure range above 150 atm, in distinction from charges 11 mm in

i diameter used by Friedman, burning takes place, but it proceeds

unstably, with pulsations, and the dependence of burning velucity on

pressure has an unusual form, depicted in Fig. 1, from which it is
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-____, -clear that increase of pressure above 150 atm

-_ ,entails a drop of burning velocity. Drop of

6 -1- bur'ning velocity with pressure was also

- observed for samples 12 mm in diameter, which

- - is significantly larger than the critical

- f- diameter of burning in these conditions (see

Drop of burning Velocity with pressure

was observed also in the experiments of A. F.

Fig. 1. Pressure Belyayev and A.. I. Korotkov [1], for potassium
dependence of burning
velocity for unarm- picrate. This phenomenon is unusual and is
ored 7-millimf,ter
samples of' ammonium therefore of Special interest. One proposed
perchlorate according
'to experiments of explanation of this phenomenon was expressed
Glaskova.

by K. K. Andreyev and Sung Ts'Uan"Tslai,* con-

nected with ohase conversion of perchlorate at 240 0 C (,t this temper-

ature there occurs conversion of orthorhombic modification to cubic,

which, by data of Bircumshaw [5], decomposes with considerably less

velocity).

Temperature measurements during research of burning (surface

temperaturv Ts, maximum flame temperature Tmax, temperature gradient

at the surface cp , etc.) are one of the most effective means in clar-

ification of the mechanism of burning. Arden, Powling, and 8mith [6]

attempted to determine T of burning perchlorate by an infrared

pyrometer and Tmax by thermocouples (see [1]). They found that at

almospheric pressure Ts = 450 ± 300 C does not depend on burning veloc-

ity and the nature of the combustible addition, and T max increases

'K. K. Andreyev and Sung Ts'tian-Ts'ai. Research of thermal
decomposition of ammonium perchlorate and certain mixtures based on
it. Dissertation, Moscow, 1961.
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with increase of pressure. Based on constancy of T and increase of
s

Tmax , they stated the hypothesis -nat the temperature gradient at the

surface increases with growth of pressure, and that the foremost mec1,-

_ bhism during burning is sublimation. Subsequently, Powling and Smith

[7], investigating burning of heated ananonium perchlorate (pure and

with small additions of fuel) at pressures less than atmospheric, by

the same method, arrived at the conclusion that-burning velocity is

limited by the equilibrium endothermic dvt'composition of NH4ClO 4 into

NH3 and Hci04 . However, analysis of data given in that work for the

temperature distribution in the zone of burning shows that on the sur-

face of burning perchlorate there is an exothermic process.

In'the present work we'studied the temperature distribution

during burning of ammonium perchiorate by the method of thin thermo-

couples, developed by A. A. Zenin* (see also [8]).

For measuremenits we applied H-shaped thermocouples W + Re-W + Re

(5 and 20% Re), round ones of diameter 15 and 30 p. and laminar ones,

3, 5, and 7 p. thick, respectively. Experiments were set up with

7-millimeter samples o' unsifted perchlorate (pressed to a density,

close to its specific gravity - 1.93 to 1.94 g/cm3 ) for which the

phenomenon of a drop of burning velocity with pressure appears most

sharply. Experiments were conducted in the pressure range 40-350 atm

un a nitrogen atmosphere.

The method of embedding the thermocouples was developed in two

variants. By the first we first molded columns of perchlorate 10 nm

high and in them at an angle of -450 at a distance of -5 mm from the

upper face we drilled holes 250 p. in diameter, through which there wa.'

inserted a H-shaped thermocouple, after which the sample was placed it

a die of somewhat larger diameter, where there was preliminarily

*A. A. Zenin. Stady of temperature distribution during, burrninr
of cndensed substances. Dissertation, Moscow, 1962.
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poured a -portion of perchlorate, and it was pressed at a pressure of

3000-3500 kg/cm 2  In the second variant a f-shaped thermocouple was

inserted between two portions of powdery perchiorate and pressing was

performed in one step. To obtain transpa,.-nt samples it was required

to maintain them at this pressure for some 15-20 minutes. Simultan-

eously with recording of the temperature distribution on a loop oscil-

lograph N-700 (thermocouples were connected through a preamplifier)

there was recorded the velocity and nature of burning by a photo-

recorder. This allowed us to study the nazure of burning in the

region of drop of burning velocity with pressure in more detail. In

particular, it was found that along with stops of burning there ar,

regular oscillations of temperature in the gas phase with a period

-950 milliseconds and amplitude of oscillation up to 5000 '(1000 -

Oscillations in temperature of the flame and the plateau on the terLper-

aitute recording agree well with decrease of brightness of glow and

with stops on the photographs of burning. This gave us grounds 1o

call the region of pressures 160-350 atm the region of unstable burn-

ing.

In accordance with dependence ub = f(p) obtained earlier [3]

(where ub - mass burning velocity in g,/cm 2 sec, p - pressure in kg/cm'-)

oscillograms of the temperature distr.bution have a different chariak<r.

In the region of stable burning (below 150 atm) they have normal form,

similar to that obtained earlier, e.g., for powder H. In Fig. 2

there are presented the -most characteristic oscillograms of stable

and unstable burning (160-350 atm)-. Oscillograms in the region of

Unstable burning are characterized by the presence in most soillo-

grams cf a "plateau" with a stable temperature -270 C and pul.;at Lon

(XI temperatures in the flame. A typical oscillogram with -scillai i1'ro

cl' I-emperature in the gas phase with a period 50 milliseonds i "
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presented in Fig. 2b. In the upper part of the given oscillograms

are seen time marks with a frequency
-l of 50 cps. At present final analysis

of oscillograms duri.ng unstable

burning is not ,possible; they will -

analyzed after additional experiment.-,

in which simultaneously with temper-

X"J ; ature we will more exactly record

'Y oscillations in burning velocities by

"-- . height of the sample (e.g., with the
* "" ' S . "help of a high-speed movie camera).
I I i "

-. '. .- .Let us note that in certain

experiments burning went out upon

reaching the thermocouple; in all
Fig. 2. Typical oscillogra'ms
of burning: a,) in the stable these cases the surface of the
region, p'= 50 atm; b) in the
unstable region, p = 250 atm; extinguishing discharge was strict <;7
c) oscillogram, illustrating
oscillations of temperature in horizontal and even, and the maxirrmur.
the gas phase at p = 250 atm.

recorded temperature was, on the

average, -270 0C, which was taken as the surface temperature.

In tle region of stable burning surface temperature was deter-

mined both by the method cited above - by peak intensity of heat

emission in the condensed phase in analysis of oscillograms - and

also by direct measurements by the method offered by P. F. Pokhii_ [ '.

For this, in a cylindrical column of perchlorate a distance o 2-3 :

we drilled longitudinal holes 250-300 it in diameter for the thermo-

couple, from whose ends we suspended weights of 11-6 g; the colum w0'

ignited by a tablet of perchlorate, ard when burning reached the

thermocouple, under the weight of the weights it moved over the :,.,r-

face and recorded its temperature.
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Analysis of oscillograms in the region of stable burning allowed

us to obtain the temperature distribution in the zone of burning

r.7 (1 > 0 - gas phase, I < 0 - condensed

129/O- phase), and analysis of temperature pr'-

. p= /om -] files gave us the distribution in the zone

- --- ' of the intensity of heat emission q. These

results -are shown in Fig. 3. In -hie graph
of Fig. 4 are shown -t pressure depen-

dences of total heat emission, heat emis-

cal sion in the condensed and gas phaes, andA * C .M-T"s e o

. also the heat increment from t-he gas

p- 176g/cm2  phase (q).

MW0 .v0 In pressure range 40-150 atm (stable

conditions) there is observed an increase

4P oal/g 0

TU om e 1oo/7/•7------

TSe 4o

AMN _... e 0
__________ -7__ 14 AkS/n

61/ -A /11 // //

Fig. 3. Temperature pro- Fig. )4. Pressure dependence of
files and distributioni of total heat emission 1, h~eat

tertofemission of emission in the gas 2 and con-
heat dur'ing burning of dernsed 3 phases, and also tbe
ammonium perchiorate in heat increment from the gas
bhe stable region. phase 4 during burning of ammo-

nium perchlorat'e on pressure.

of total heat emission 1, which is connected w~ith its strong growth

it gas phase 2, while heat emission in condensed phase 3 drops w i i,
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increase of ressure. However, it would be incorrect to consider tlui

giowth of burning velocity is caused only by growth of heat emisskon

in the gas phase, since the supply of heat from gas phase )j is small

and changes little with pressure,, and heat emission in the condensed

phase, although higher by one order,, sharply drops with pressure, and

therefore ohe cannot -explain the observed growth of burning velocity

with pressure by the usual thermal mechanism.

The cause of increase of burning velocity with pressure one

should seek, probably, in the nature of chemical reactions occurring

here, the mechanism of which can vary With pressure (for another'

hypothesis of one of the authors, see ibelow).

in principle there is also possi.ble sharp increase of dispersion,

which may cause an increase of burning velocity This hypothesis

requires experimental proof. Dispersion, undoubtedly, occurs during

burning of ammonium perchlorate;* however, the quantity of unburned

particles carried into the flame zone and precipitated on walls of

the protectiv6 glass at a heig,ht, sometimes exceeding the height of

the sample by 2-3 times, was. larger for a lower burning velocity (at.

50, 250-350 atm-).

Possible also is growth of burning velocity ,due to change of

surface structure; this too requires experimental proof. However,

at present it is difficult to imagine the reason why the surface of

perchlorate would be less friable at a higher surface temperature,

.g., )25 C at 50 atm,and more friable at lower surface temperature

(3250 C at 150 atm), which differs less from the temperature of phase

transition, possibly also accompanied by loosening.

*P. F. Pokhil in this connection noted that, apparently, to
burning of ammonium perchlorate it is possible to extend the niechacii1::,

of burning of ballistite powders, i.e., burning with partieipatior "f
dispersion and formation of a smoke-gas phase and significant heat
emission in the condensed phase.

Z67



A number of authors [6, 7] consider that during burning of

ammonium perchlorate on its surface there occurs either sublimation,

or endothermic decomposition of perchlorate Levy And Friedman [2]

calculated the width of the reaction zone in the gas phase, proceeding

from the endothermic character of the process on the surface. It

turned out to be equal to 0.1 [1 for 100 atm.

Profiles obtained by us show that the width of the reaction zon-

in the gas phase is 1OOC times greater than that calculated by Fried-

man and Levy. Moreover, from our results it follows that in the

Fig. 5. Pressure dependence of temperature
T 0o/ - on surface of burning ammoniumzperchlorate:

.~ 1 - surface temperatures, determined by cplash

:" !on oscillogram; 2 -- surface temperatures,
determined with the help of thermocouple with
loads.' 3 - surface temperatures at 200 atm -.re
obtained during stabxe burning of preliminarily

- ,-kg* heated (to 40-500) samples; 4 - temperatures
A of thj break in the temperature distribution

2/o ih the condensed phase in certain experiments
during burning Of ammonium. perchlorate.

icondensed phase during burning of ammonium perchlorate there is liber-

a,.ed a significant quahtity of heat (80-120 cal/g) (Fig. 4). Further-

more.j during sublimation or equilibrium decomposition Ts should grow

with pressure, and not conversely as this follows from our experimentO,

presented in the graph of Fig. 5.

It is necessary to remind one also that Bircums~haw and Newman

[5] could not detect a noticeable quantity of sublimated perchlorate

dluring heating of it for 4.5 hours at 2600C at atmospheric pressure.

In our experiments pressures were significantly higher.

The presented facts force us to doubt the validity of the

hlypotheses of works [6, 7], at least for the studied pressure range.

As can be seen from the graph of Fig. 5, surface temperature

of burning amonium perchiorate drops with growth of pressure and in
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the region of unstable burning nears the phase transition temperatiure.

Incidentally, one shoulc note that in certain oscillograms in the

region of tempera-1.es of the order of 2500 C there was observed a

small break withi a practically thermoneutral effect, which, possibly,

is connected with the temperature of phase transition and weakly

depends on pressure, as follows from the graph of Fig. 5.

Above it wa5s not6d (see Fig. 4) that heat emission in the con-

densed phase drops with increase of pressure. This phenomenon was

not observed earlier for any of the studied substances.

Upon approximation of Ts to the temperature of phase transition

during growth of pressure, heat emission in the condensed phase should

drop more rapidly, since phase transition occurs with absorption of

heat. This circumstance may be the reason for the drop of velocity,

and in separate, unfavorable ,eases, the reason for extinguishing of

burning. Incidentally, one should note that one of the possible

factors supprting burning during pulsating conditions may be heat

emission during reverse phase transition of cubic modification into

orthorhombic with decrease of surface temperature to the temperatur

of phase transition.

Results of Fig. 5 in interval 50-150 atm are surprising not only

in the drop of surface temperature with increase of pressure (i.e.,

according to Fig. 1, with increase of burning velocity), but also 1ih

low value of temperature. Known data on the kinetics of decompositi.(

of -perchlorate, obtained at a temperature of up to 280°C and extra7,

polated to 4200C, give a rate of gasification of perchlorate several

orders smaller than the measured rate of decrease of the quantity of

perchlbrate during burning. Apparently, the kinetics and mechani.sm

of gasification at relatively low temperature in experiments on the
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decomposition of perchlorate differ from the kinetic and mechanism of

gasification of perchlorate occurring at the same or higher tempera-

ture on the surface of burning perchlorate. One of the authors

expressed the hypothesis that, perhaps, during burning there occurs

catalysis of the decomposition of perchlorate on the surface by pro-

ducts of reaction and by active centers, proceeding from the flame

zone to the surface of t-he condensed phase. The fact is that the

presence of a flow of heat from the flame zone to the surface of the

condensed phase automatically signifies the presence of diffusion of

molecules (including radicals) from the flame zone to the surface.

These active products of reaction can render effective catalytical

action.

This hypothesis pertains, naturally, not only to burning of

perch orate, but also to burning of any condensed system, in which

there .exists a flow of heat from the reaction zone in the gas phase

-to the surface of the condensed phase, since thermal conduction in

gas is carried out by means of diffusion of "hot" molecules (including

active ones). This hypothesis, obviously, also contains in itself a

possible mechanism by which the gas phase governs decomposition of

the c-ondensed phase. The significance of this mechanism would be

especially substantial in those cases when the heat increment from

the gas phase is small, and heat emission in the condensed phase is

great and almost ensures maintenance of the surface temperature.

On the- graph of Fig. 6 therE is shown the pressure dependence of

T max; it passes through its maximum values, i060°C, at 100-150 atm,

and then starts to drop, although pressure is increased.

With the help of the previously developed method by distribution

f. I omperature in the gas phase we calculated curves of the dependcrie
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of the rate of heat emission in the burning zone. Calculation was

Iconducted by the method of finite

0 1 [o _1 ) differences with an interval of

.... 6 Of10,. By curves of the intensity

of heat emission we calculated total
Fig. 6. Pressure dependence of
maximum temperature of burning activation energies and reaction
of ammonium perchlorate.

orders in the gas phase. The ob-

tained magnitudes E and n, although having a formal character, can

be of unquestioned interest for establishment of the mechanism of

burning.

The reaction order was calculated by the pressure dependence of

the intensity of heat emission for a fixed temperature by thr- formula

(= B + n lg p, where 0 - intensity of heat emission at fixed temper-

ature, B - constant (equal to lg Ae-E/RT), n = the reaction order,

p - pressure.

For temperatures 500-6000, corresponding to the region of peak

intensityof heat emission in the gas phase, the reaction order is
-E/2RI,

-1. Activation energy was calculated by the formula u p n/2e

where u - burning velocity, E - activation energy, Tm - temperature

corresponding to peak intensity of heat emission. Effective activa-

tion energy in interval of pressures 30-150 atm turned out to be equal

to 10-15 kcal/mole. Jalculation of activation energy of reactions in

the condensed phase we plan to conduct in the future by experiments,

where for fixed pressure we will change initial temperature of the

sample and, as a result of this, the burning velocity and surface

temperature.

Small changes of initial temperature of samples, sometimes

occurring in our experiments, led to a change of burning velocity,
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and with it of surface temperature. They permitted us to roughly

estimate total activation energy of reactions in the condensed phase

at 50 atm, which turned out to be of the order of 20-30 kcal/mole.

Conclusions. 1. We obtained temperature profiles in region of

pressures 1I0-350 atm, which show the presence of two regimes of

burning of ammonium perchlorate, stable (40-150 atm) and unstable

(160-350 atm).

2. We fixed anomalous pressure dependences of

surface temperature and heat emission in the condensed phase - a drop

with growth of the latter.

3. We expressed a hypothesis about change of the

mechanism of burning of ammonium perchlorate with growth of pressure

and about the catalytical influence of products, diffusing from th:

reaction zone in the gas phase to ,the surface, on the reaction of

gasification of the condensed phase.,

4-. We expressed a hypothesis about the cause of

the drop of burning velocity of ammonium perchlorate with growth of

pressure at p > 150 atm.

5. We ascertained the fact of significant diver-

ttnce between kinetics of thermal decomposition and kinetics of gas-

ification of perchlorate during burning.
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EXPLOSION ON THE SURFACE .OF A LIQUID

V. F. ,Minin

(Novosibirsk)

Ii! work [] there is considered a formulation of the pro-
blem of the motion of an ideal incompressible and weightless
liquid of infinite depth, caused by an explosion on its
surface. As the basic parameter, characterizing the effect
of the explosion on the liquid, there is taken the momentuml
acquired by the liquid. In this case during self-simulating
motion the graph of the time-dependence of the size of the
funnel, built in logarithmic scale, for a cylindrical explo-
sion should be a straight line with angular slope, equal to
1/3, which is confirmed by experiments giVen in work [1].
Below are results of experimental research devoted to this
question.

1. Cylindrical explosion. Explosion was produced by means of

discharge of a battery of 50 iLf capacitors, charged to voltage of

3 kv through Nichrome wire 40 mm long and 0.09 mm in diameter. Dis-

charges were produced in a tank with hard walls of dimensions .100 x

x 550 x 20 mm. ?Plexiglas windows 40 mm thick,, built into walls of

the tank, allowed us to produce optical registration of the phenomenon.

Thle wire was established perpendicular to the long edges of the tank.

The inLtial level of the free surface of the liquid was fixed by a

] ine on the tank window. Motion of liquid after the explosion was

rok,,oi'dod by high-speed filming on camera SFR-1 in the beginning of.
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the process, but more recently by camera Pentazet 16. Speed of film-

ing during experiment was monitored and was strictly constant during

the time of registration of the phenomengn, which allowed one to

analyze experiments, considering one frame to be the unit of time.

As a result of analysis of experiments of the initial stage of

explosion(filming speed 2"105 frames per sec) in Fig. i there is con-

structed the dep._ndence of diameter

d (mm) of the funnel at the level of

the free surface on time t (sec) (in

. - - - - logarithmic coordinates, Fig. la [sJ)_

- - - -- experimental points lie along line 1;

_____ /.gt in a later stage of explosion (film-
6 0O.6 1.0 1 6

Fig. 1. ing 3000 frames per sec) up to a ini:,

equal to 10-2 sec, dependence also is close to straight line 2.

Angular slope of straight lines, obtained from the experiment, varies

T, from 0.45 to 0.48, with mean value for 20 experiments 0.47..

After iO-2 sec experimetdtal points deviate downwards from a

straight line. Acceleration a of the funnel wall on the level of Lhc

free surface, determined after the explosion, turned out to be equal

to

a =14,g when t = 1.10-2 ; a = 5.5g when t = I.5.10 -2 sec;

a =3g when t = 2.10 -2 sec.

Therefore, fully evident is the fact that starting from times,

greater than 0.01 sec, the funnel ceases to be geometrically Lriilai

in the process of motion (Fig. 2, where d and r are in mm). Thus,

fuirther motion of the liquid is substantially influenced by accelera-

tion due to gravity, which was not considered in work [1], where in

conditions of the experiment described here, experimental points Iit
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on a straight line with slope 1/3, starting from time of approximately

5.10 - 2 sec, i.e., in region where weight is substantial.

(gd This regularity is stable

L.r -- -.ed relative to slight variation of

J ' - immersion of the wire. In our proof

0.0 f k._ we produced explosions both above

the free surface and beneath it.

tg~t Essential distinctions in motion
1.0 01 1.6 2.Z _

Fig. 2. of liquid here were not detected;

further-more, wh:Lch [sic] during explosion above the surface the size

of 'the funnel at a fixed moment of time is several times less than

with immersion of the wire,
(2 3 which is obvious. In order to

__ trace the motion of liquid for

ao_- a larger interval of time tha'iu

0.01 sec, in the absence of

- -l gt gravity, there was built anall' 98 '.2 ZO 2.4f

Fig. 3. experimental installation, con-

sisting of a falling platform with a tank of the dimensions 560 x 300 x

x 20 mm and a movie camera set on it. This device allowed us to

record motion of weightless liquid for 0.3 sec; in Fig. 3 this case

corresponds to curve 1, and for comparison there is given curve'2,

obtained in analogous conditions to curve 1, but with weight. In

experiments filming speed was 2000 frames per sec. Curve I to moment

of time 0.02 sec turned out to be also close to a straight line with

angular coefficient 0.17.

During experiments wich different enr gies of the explosion pro-

duced on the surface of weightless liquid, it was found that, sLarLing

27;

... r r M F .., pr : = : --T- -, ;",- '' .. ..P;. ..



from a certain funnel size motion of the liquid essentially depends

on dimensions of the tank. Tlhs can be illustrated by curves 1, 3,

and 21 in Fig. 3, where it is clear that a break in the curves occurs

at the same funnel size, approximately 1/8 the size of the tank. To

check the assumption we performed experiments in a tank 260 imm long

and with explosion energy corresponding to the explosion presented

in Fig. 3 by curve i. Here, it turned out that the break of the

curve starts earlier and corresponds to moments of time, when the

funnel size is approximately I/8 the size of the tank.

Thus, to study the motion of an infinite weightless liquid,

caused by an explosion on its surface, for a time, greater than 0.02

sec, with existing tank sizes did not seem possible.

For a plane explosion on the surface of a liquid it was possible

to obtain in an experiment the velocity field in liquid at different

fixed moments of time, which was done as follows.

Water in the bath was replaced by a salt solution, in which theL.-

waere mixed particles of rosin of the dimension 0.1-0.3 mm. Concen-

tration of salt in water was selected in such a way that the specifi(e

weight of the solution and of rosin were identical. After explosion

the liquid wn.s illuminated by pulse tube IFK-120, and was photograthod

by a camera with open shutter on a photographic plate of dimensions

1>3 x 24 cm. Moment of time of filming was set in the following mann'r ,.

Upon supply of voltage to detonated wire there was started sqiiar.

wave generator GIP-2, which formed single square pulse of predeterm;,,i

duration. After differentiation of this pulse there was trimmed a signal,

Korresponding to the leading edge of the front, and by a signal f2ruim

ihe trailing edge there was started a thyratron, working on a pulls

transformer, which ignited the flashbulb. Thus, the moment (,f' filwir,

was determined by duration of the square pulse and could be r'cnri

27S
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from 10 to -1-10-2 sec. Response time of the circuit did not exceed

10-7 sec. Ekposure during photographing, upon desire, could be

hanged from 10 to 5.10-3 sec, by changing parameters of the shaping

line, c,:mposed of inductances and capacitances and feeding the pulse

tube.

However, in the-given experiments exposure remained constant and

equal to 1 sec. Filming of the velocity field was produced up to
-2

ti-me 10 se'c, i.e., in range, where weight is still not essential,

and energy of' explosion was selected such that influence of the tank

i.ialls could be disregarded.

In Fig. 4 there is given a photograph of the velocity fieid with

lime from the beginning of' the explosion to the beginning of the e.:pl,-

sure of the photograph 2.5 msec, which was obtained during an expl-

sion on the surface. On the photo-

Lgraph there are drawn lines, passed

C.IW in such a way that the paths of rosin

C,- .., particles, photographed on the photo-

graphic plate, are tangent to these

lines at every point. Considering

- . the time of exposure of the photo-

Fig. 11. graph to be small, it is possible to

speak of the given curves as flow lines, which, of course, will be a

certain approximation. Experiments showed that, as one should have

been led to expect, the family of flow lines, taken at different

miDments of time with a time 'interval of I msec in the time, passed

I'rrn'm the beginning of explosion to 10-2 sec, i.e., during tlhe time,

IW I, in our conditions liquid can still be considered weightless,

r'ina bis geometri cally similar with precision obtained in developmr,-rr,
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This fact does not pertain to a sputtering stream, i.e.., to tho0

region of flow where continuity of the liquid is disturbed.

From these photographs of velocity field it is possible to judge

the potential realized during motion of the liquid. It turned out

that the form of potential in a fairly rough approximation is near I

that which is given -by a source placed in the center of an explosion.

and two flows of half intensity placed symmetrically relative to th.'

source at an angle of 450 to the free surface, a distance of 1.75r

from the center of the explosion, where r - depth of the funnel.

It is necessary to note that this form of potential of flow does

not pretend to be an exact description of motion of the liqu-id and in

a certain sense has more of a qualitative than quantitative character.

In Fig. 4 is shown the form of a free surface realized during

an __-olosion.

The interior of the funnel, below the initial level of the

liquid, is close in form to a circular semicylinder with ratio of

diameter to depth from 2.2 to 2.36.

2. Point explosion on a water surface. An explosion was pro-

duced in a Plexiglas tank, having dimensions 600 x 500 X 400 mra. Th

battery of capacitors in this case was charged to 3 kv and was dis-

charged through a flat spiral 3 mm in diameter, made from wire O.U9 r,3i

in diameter. Such a flat charge was established exactly on thu stuv-/

face of the liquid. Registraticn of the phenomenon was produced vilt.1,

the help of high-speed filmig with rate of filming 2000 frames per

Sc.

Results of experiments were formulated in graphs with the coor-

dinates indicated above. One of these experiments is represented in

Fig. I (curve 3), where it is clear that experimental points lie on P



.A.1raight litei with slope close to 0.4 up to time of 6.6.102- sec.

Average slope for 20 experiments is equal to 0.38, which also is not

-mpatible with "the pulse formulation of the problem, from which it

f',,]lows that for the case of a point explosion slope should be 0.25.

Thus, from these experiments it may be concluded that motion of

a weightless liquid, caused by an explosion on its surface, with the

,xception of sputtering streams, is close to self-simulating with an

index of self-similation a = 0.117 for cyindrical explosion and a

= 0.38 for a point explosion.

The experimental law of motion of a funnel, given in work [1),

loes not correspond to motion of weightless liquid.

Subw4,tted
23 Octobt.r !(JJ 5
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REIvI ARK ON SCATTERING OF A ,GAS CLOUD IN A VACUUM

Yu. P. Rayzer

(Moscow)

In a number of Works [1-3T,, in which the process of expansion of

gas into a vacuum is considered, it is assumed that in sperically

symmetric free-molecular scattering particles of gas have a Maxwellian

velocity distribution. Such concepts must sometimes be dealt with

during discussion of cloyely related questions.

Here one should turn attention to the fact that in order tihat

during scattering of a gas cloud into a vacuum asymptotic velocity

distribution of particles be Maxwellian, corresponding to the initial

t.emperature of gas,. we need very special initial conditions, almost-

unrealizable in practice. If the final distribution also -has general

features of Maxwelliam distribution, this analogy in most practical

cases is deprived of any physical content.

Particles of gas, expanded into a vacuum, have Maxwellian vel,'-

ity distribution

f (v) d, = const 2 e -A' dc it /2kTo) (1 )

only when a gas, having temperature T0 and occupying some volume,

say a sphere of radius RO , from the very beginning expands witlhout

collisions. In this case upon the expiration nf sufficien time, w,
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the basic mass of' gas has scattered distances r >> RO, in space there

is established a linear velocity distribution and Gaussian distribu-

tion of particle density by radius:

r f (r)dr _ _ot -(2)

However, so that collisions from the very beginning do not play

a role, it is necessary that particle path length ,1 at the initial

moment is of the order of or larger than dimensions of" cloud R0

RO/IO (3)

Here n0 -average initial density of particles, a- effective

collision cross section. Let us note that it is possible to present

<42
(3) in the form M < Ltr On,/a, whereM -N- mass. For instance, for atomic

weight 15 and a 10A '1 5 cm2 we have M < 107R2 (M in'g3 R0 in cm).

In practice the most important object for application of the

idealized problem of scattering of a gas sphere into a vacuum is the

process caused by an explosion-like heating and transformation into

gas of a certain quantity of solid matter, in a rarefied medium.

22_2
Taking 'into account the fact that in this case n0 '- 10 I023 cm3 ,

and section a in order of magnitude is at least 0-15_10 - i 6 cm2 , we

find that for satisfaction of condition (3) dimensions of the body

8h ould not exceed -0 -7 cm, i.e., a magnitude of the order of several

atomic diameters. If, however, e.g., the mass of the body is of the

order of several grams, R I cm, and on the length of tlhe initial

gas cloud there are included _iO7 free path lengths!

Running through all possible values of initial parameters of the
43}

cloud: density nO, radius and mass M = nm anidering

that to talk of scattering into a vacuum has meaning only in those

cases when density n0 is many orders larger than the density of the

ejnvironment (an absolute vacuum does not exist), it is easy to prove
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that relationship (3), with perhaps rare exceptions, is never satis-

fied in cases of physical or practical interest.

In real conditions, when 10 << RO, expansion of the gas cloud

always starts with a gas-dynamic stage, where the final velocity dis-

tribution of particles is formed, as a rule, in the process of motirn

o0' a 1"solid" medium, even before onset of the stage of.free-molecular

scattering. And namely, velocities of particles approximately attain

their final values when the initial thermal energy pf the gas to a

significant degree passes into kinetic energy of hydrodynamic motion,

i.e., chaotic velocities of particles become small as combared to

ordered radial velocities. Here, there almost ceases the 'action of

forces of pressure, and scattering of gas obtains an inertial char-

acter-.

Let us compare tentative moments of establishment of final veloc-

ities and of ceasing of collisions. During adiabatic expansion inter-

nal energy of gas ET decreases approximately as

ET= '0 (R/r /1 '1

where E - total energy, which initial internal energy &pproximates,

R - effective radius of sphere, -y - effective adiabatic index. Con-

sidering a highly heated dense gas, it is possible to assume for

estimation that y - and Scattering becomes almost3 EV0 RQR
inertial, we say, with E/E 0 = 0.1 when R 1OR 0 (velocities hcre

on an average attain 0.95 of their final values). The average mass

velocity of scattering becomes equal approximately to u 2 Yi,

and the radius of the sphere (with accuracy up to a coefficient of

the order of unity) changes in time as R ; ut.

The average number of collisions which an atom will experience

from moment t to infinity in order of magnitude is

28-



w = nV:dt (V \ Y n 13 --f '

Here V - Ave-age chaotic (thermal) velocity, n - average density

in the sphere. integrating, we find with accuracy up to a numerical

coefficient of the order of unity w ; nVot, where all quantities in

the right part pertain to moment t.

For the moment of ceasing of collisions it is possible tenta-

tively to take such mome'tt starting from which an atom for all time

to infinity will experience only one collision. This moment t2 is

determined from equation

(n V(t) "  I

Using approximate relationships

n -- ( ) t '-

we find the radius of a sphere R2, at which collisions cease

R = R(, o/ I.)". (4)

(if R0 K lo , collisions are absent from the very begdInning, in accor-

dance with condition (3)).

Thus, if Ri P 10, R0 < R2, i.e., if RO 0 > 300, scattering becomes

inertial even before collisions cease. This condition is satisfied

in most cases of practical interest, and, consequently, the final

velocity distribution of particles in these cases is established

already in the gas-dynamic stage. It is determined by the asymptotic

density profile, which at the limit t -* cc is kept unvaried n - t-3F x

x (r/t). Asymptotic velocity distribution during inertial scattering

is v = r/t; therefore, final velocity distribution of particles is

determined by function
/ (r) dr = n 4a r2 dr - r! F (r) di,

The asymptotic density profile depends on initial dist'ributLon.

of gas-dynamic quantities. There exists an unlimited number of stich
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initial distributions, for which function F has nothing in common

2
with the Gaussian, and v'F(v) has nothing in common with Maxwellian.

There is, for instance, the class of one-dimensional self-similar

motions shown by L. I. Sedov [4] in which v = xrq(t), and pressure p

and density p are connected by relationship p/ r = -,pr((p2 + dcP/dt)

If initial-distributions of gas-dynamic quantities satisfy this con-

dition the density profile F(x/t) by virtue of self-similarity is

kept unVaried ,from the very beginning, and this profile, and conse-

quently, also the asymptotic velocity distribution of particles

v 2F(v), can be given arbitrarily (see [5]).

It is clear that in many practically important cases the density

profile formed in the stage When forces of pressure still act has

common features with the Gaussian curve, and final velocity distri-

bution has common features with the Maxwellian. However, this is

nothing more than a convenient approximation, and here there is no

physical connection with the initial Maxwellian distribution of heatei,

gas. It is sufficient to say that "temperature" in the interpo]ati-Itp

Maxwellian law may be several times greater than the initial temper-

ature of gas, since to kinetic energy of radial motion there passes

not only the initial energy of chaotic motion of particles, but also

he energy of internal degrees of freedom, ionizing energy, initial

thermal energy of free electrons-. which in the process of adiabatic

expansion and cooling recombine with ions, etc. For more detail on

this see [5].

Submitted
5 March 1961J
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-EQUATIONS OF STEADY AXISYMMETRIC FLOWS OF GAS IN- VARIABLES
"PRESSURE-STREAM FUNCTION"

V. G. Dulov

(Novosibirsk)

Equations of steady axisymmetric flows of an inviscid and non-

heat-conducting gas with an arbitrary equation of state will be con-

verted to such form when pressure and. the stream function can be con-

sidered: independent variables. The sought function of these variable.-

is introduced so that dynamic equations are satisfied identically,

and from the continuity equation for this function there is obtained

the Monge-Ampere equation. The sought function itself constitutes

a flow of momentum through a line of constant pressure in 'the direc-

tion of the-axis of symmetry. Through values of this function we

simply express the drag coefficient of a solid of revolution with a

gener6.trix in the form of an arbitrarily taken flow line. There are

examples of calculations. In the first there is considered the prol-

lem of external flow by supersonic flow past a body with an arbH-raryi

generatrix. Approximation of change of the desired function along

an isobar by a polynomial from the stream function allows us to redc,,u-

the problem to a system of ordinary differential equations. In thi:

second problem we approximately find the distribution of paraiieter:,
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between the shock wave and the surface of a blunt body in a hypersonic

flow. The solution has relatively low accuracy, but is recorded in

elementary form, useful for rapid calculations.

I., Below we use the following designations: x, y - geometric

-coordinates in the plane of the axial section, p - pressure, p - dens-

ity, i - enthalpy per unit mass, 4 - stream function, w - modulus of

velocity, u and v - projections Of Velocity on x and y axis, respec-

tively, M - Mach number, $ - angle of inclination of velocity vector to

axis of symmetry, S - entropy, a - speed of sound, index co is used for

designation of parameters of incident flow. All measured magnitudes

refer to parameters of undisturbed flow. Enthalpy i we- consider L

given function of pressure and entropy (equation of state), i = i(p,,S).

We introduce as independent variables pressure p and stream

fur.kction 4. Then

d'=py (ridy - L-dx) py fit (P, dp+ y, dip) - v (xp dp + x4, d4f)J

or
'pyuy' - PYtr.: - i) d =- (pyx,, - pyuy) dp, i / p = i

In view of independence of dp and dV/ there follow from this the

relationships

VyU -, -- , (1. )

Let us consider dynamic equations for an inviscid and nonheat--

conducting gas

ULU'+ V- + p (1.2)

S =S(), I ( 2 + v)+ i = £,, =const (1.3)

Subsequently, we shall consider dimensionless enthalpy related to

magnitude w2 . In (1.2) let us turn to independent variables 4P and y;

we obtain
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In the latter case y is considered the sought function, and

pressure is the independent variable.

Equations (1.1) and (1.4) can be useful for numerical calcula-

tions, since the form of their recording is superficially similar to

the system of equations in characteristic variables: two of the

obtained equations contain derivatives of the sought functions only

in one direction. However, equations (1.1) and' (.4) cannot be con-

sidered as a system of independent equations.

Using isoenergetic relationship (i.3) for partial derivatives,

we have

•,,= . .= - (1. 5)

Equation (i.4).will be satisfied identically, if we assume that

XP = (ku) yP, z+= (VgY) (1.6)

where a = a(p, ') - arbitrary function. Eliminating x, by cross-

differentiation from (5) we can obtain an equation, containing only

one function of a

2 i i [i.S' (t) (i i+ P m 7PP

+2i~ 2, . +V2Q,- - PJi =o (1.7)

For A > 0 equation (1.7) will be an equation of hyperbolic type;

for A < 0 it is an elliptic equation, i.e., hyperbolicness occurs at.

supersonic speeds, and ellipticity at subsonic. From theory of

Monge-Ampere equations it is known that if a coefficient in a non-

linear combination of higher derivatives does not turn into zero, M.r

boundary problem in the region of ellipticity for such an equation

has two different solutions. If there is a point where this coeffi-

I cient turns into zero, the solution will be unique. In equation (1.7)

this coefficient will be the square of the modulus of velocity.
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Consequently, when in a flow there is a critical point (for instance,

in problems about external flow past bodies) there should be a unique

solution. If, in the flow there are local subsenic regions, but total

stagnation of the flow is absent (for instance, in supersonic gas

jets), there can exist two solutions.

We shall clarify the gas-dynamic meaning of the introduced func-

tion a(p, 4). The second of equalities (6) gives

Here the integral in the right part is taken along the isobar.

It follows from this that a constitutes the flow of momentum through

line p = const in the direction of the axis of symmetry. We fix a

certain surface of rotation with a generatrix in the form of a flow

line. The projection X in the direction of the axis of symmetry of

the force of total pressure on such a surface is calculated as fbllows:

* ~~X= .y2,.~

In particular, if X is determined, 9or flow line P = 0 (surface

of the bolid), this last expre:-sion will give 'he magnitude of the

2
drag force, where quantity 2a pr = wy for 4P = 0 is equal to the base

area of the flowed-past body. Thus, to determine the drag coefficient

of the body it is necessary to know the value of function a only at

one point, corresponding to the trailing edge of the body.

2. Let us assume that solution of equation (1.7), in the vicinity

of a certain line 4. = (p) in plane p4 can be expanded into a series

of form

o(p,') =&(p) +-- (p)I + °(2.1)

Here, index 0 designates values of the corresponding quantities

oni line 41 = (P(p). If, we assume a a0 (p), th.n, according to

we have w cos 4 = -o, 0 or 4 = i. From equation (1.7) we find tho
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form of function o°(p) which describes the degenerate case of axi-

symmetric flow - a two-dimensional gas source. Let us assume relation-

ship 7P - T(p) determines the front line of the shock wave in plane

(p, s). From mechanical conditions of compatibility we deternine

values of derivatives of 0 and a0 on this line (flow in front of th,
pP

front is considered uniform; a is related to p,,),

.' -Lk,(2.2)
UP" =: P' .°  - t kU , k- ~

* P:O

It is poslsible to calculate values of function a on the front

line of the shock wave:

oc p) )(p - t - U102)q ' (p) dp (2.3)

Retaining the first two terms in expansion (2.1), by means of dit'--

ferentiation -With respect to p and -,.we prove that relationships

(2.2) are satisfied everywaere behind the shock wave front. This is

possible only for zero thickness of the shock layer, i.e., such a

presentation of function a corresponds to the Newtonian approximat-iLm,.

.,et us consider the case when expansion (2.1) is performed to

members of the Secord, r'rder. Differentiating with respect to p and

@, we obtain

, - 1 . 2  + ?.,

Thus, in this approximation function p along lines of constant

pressure is approximated by a quadratic dependence on 7P, and the

axial component of velocity is considered linearly related to the

stream function.

In formulas (2.4) there are two unknown functions of pressure,

¢o and c(p). To find them we use the condition on the surface of

the body and equation (1.7). The equation of the contour of the
2

surface ,we consider given in the form y = f(cos .9), which, by viv',;
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of formulas (2.4), gives

CO I- f1 '(2 .5 )

Further, we assure Zh.t density p, speed of sound a, and conse-

quently, quantity y = a 2p/p are known functions of pressure on the

line of the shock wave front. With the help of conditions of com-

patibility in a shock wave, we can express values of all -oefficients

in equation (i.7) behind the wave fr'ont in terms of p, p, and y. Dif-

ferentiating (2.2) along line V =-p(p), we eliminate derivatives of

and op; we obtain

.1 (p).- 3,,O IB (p) q) (p) - C (/0 q,' (p)! 1 ) (2.6 )

where

• ( _p 1 " P TPP 1 - P -k.i/o.0 ..1

B (P) (3 +p) (p;- 1) 3 I\ p-I d t
kM062  - 3A1  -- p--- 1 k f- 1 p(j- 27

166 ") k.110*1- ( 2.7 )

C (p) - t I )p - 'p"- kMl~o

Functions a0 and p(p) are the solution of a system of two n, nz

linear first order equations, (2.5) and -(2.6).

If in (2.1) we retain members of the third order, similar cal-

.Ilations lead to a system of three nonlinear first order equations.

3. Let us assume that the relationship between pressure on the

surface of the flowed-past body and the local angle of inclination of

the surface, cos = F(p) for ?P = 0 is given.

Introducing expression cos $ in (2.5) and (2.4), we obtain

T- It ., (P' (P)l I 11I I,)I

.oOT (p)- p-1  - o - k.010 2/2 J(i - i) F (p)

If flow is past a blunt body, the first equation is integrated

taking into account the fact that at the point of intersection of the

slhock wave with the axis of symmetry, i.e., at p, equal to the pressur(
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behind the direct shock wave front p n (P m ) = 0.

Then, from (2.7) we find

P

Pitt
:1 1,,= " II(.),, J ,, S fFpj (2.8)

N I+ kAQ -p -l2 T)(i0  F (p)

I L "

Fig. . Fig. 2.

in Figs. 1 and 2 are results of calculations of distribution of

parameters between the surface of a body and the shock wave by for-

mulas (2.4) and (2.8) for the case of spherical blunting. Distri-

bution of pressure on the surface was calculated by a modified for-

mula of Newton, i.e., we assumed that

¢)s = If - Mo' 1 l-IT.

where pO - stagnation pressure. Gas was considered ideal with con-

stant ratio of thermal capacities, equal to i.4. In Figs. I and 2

results of approximate calcu.lations (dotted lines) are compared with

numerical calculations taken from tables [1] (solid curves). Figures

sh, w values of dimensionless pressure on corresponding isobars. Fui.'j

analogous results of comparison were obtained for blunting in the

form of spheroids at Mach numbers MCo from 3 to co.
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EVOLUTION OF A WAVE PACKET IN HYDRODYNAMICS
WITH DISPERSION OF SOUND

V. Ye. Zakharov

(Novosibirsk)

As it is known, in many cases for description of wave motions of

plasma they apply hydrodynamic models. However, in distinction from

usual hydrodynamics, in these models it is necessary to consider

effects of wave dispersion, especially noticeable for motions with

large spatial gradients. Such are models of "hydrodynamics of ion

sound*" [1], of "hydrodynamics with ion dispersion" [2] and models

describing propagation of sound in cold plasma across a magnetic

field. To hydrodynamics with dispersion we also reduce problems Uf wav,

propagation in channels of finite depth. In these models there exist

stationary waves of finite amplitude with a dimension of' the order -,I'

the dispersion length [1, 2].

For each of these models there may be posed the question of

rovolution of an arbitrary wave packet. At first glance it seems 1ht

if one were to take the amplitude of the packet sufficiently small,

it is possible to disregard the influence of nonlinear terms and to

*"Ion sound" may refer to propagation waves below ion cyelotr,,n

frequency [Tr. Ed. note].
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consider that evolution of the packet is described by its propagation

resulting from dispersion.

However, it is possible to show that such a consideration is

valid only for very severe limitations on the shape of the packet, and

that for the general case the influence of nonlinearity should be

taken into account for even the smallest packet amplitude.

Let us consider a simple one-dimensional hydrodynamic model of

plasma - model of ion sound. It is assumed that Te >> Ti and there is

no magnetic field. Then plasma is described by velocity v and density

n of tons and by the electrostatic potential T. For these variables

system of equations [3] is valid (m - mass of ions, Te = T -temper-,

ature of electrons, nO - undisturbed density of plasma)

dr aV e a d On 0 a'V ( e)- -- = - L T a' 7 , - + y == ( , ) 0 , , a - ,n o e x p( )

Henceforth, we assume that we are considereing motions for which

I a < 1 (= \'; Debye radius of the plasma
V rd k, 8 ef*)y lsa

so that dispersion effects are small. We shall, furthermore,. consider

that the amplitude of the wave is small (M - i< 1). Using these

assumptions (M4 - Mach number), it is possible from the last equation

to express the gradient of potential approximately:
-, !8 a

e T' = )T- r-2re n a:

Then we introduce 6n = n - n0 and pass to a reference system,

moving to the right with the speed of sound

z=- ., - C-, =(2)

The system of equations taken on the form

a dv d v 2 In_ 6.n 0 . 0)
C*5 + R, -a: - - n9 3(3)

:n P d, " : + -06+ = 0a --c o - 7 , b n j + u : =

Now, due to the fact that effects of nonlinearity and dispersion

are assumed small, it is possible to look for solut'ons for which



derivatives with respect to T are small. This corresponds to con-

sideration of waves running to the right and slowly evolving under tht

action.of nonlinearity and dispersion.

.The second of equations (3) also allows us to approximately

obtain

anen. ai + )o, Lu no )av(

Substituting expressions (4) in the first of equations (3)- we

finally obtain

av .a @ A3
-j. +V d ". -d t (5)

t Equation (5) was obtained for waves on the surface of water and

was applied in [3] for hydrodynamics with ion dispersion. Depending

upon the law of dispersion we obtained different signs of a.

Equation (5) allows us to estimate the relative magnitude of the

nonlinear term and of the term with the highest order derivative.

Let the characteristic amplitude of the packet be A,, and a be its

characteristic length. From equation (5) it is clear that integral

of vdz is preserved. The nonlinear term has the order A/a, and dis-

persion has the order [A/a3 .

Since Aa - E, it is possible to record them, respectively, by

E 2/a 3 and LE/a ' . It follows from this that with propagation of the

packet a will increase, and the relative role of the nonlinear term

increases.

The nonlinear and dispersion terms are compared at length a,

[/E. In the considered model stationary solitary waves have eX3_, 1. ;

tlhis length.

This consideration shows that only evolution of sufficiently

narrow packets (a < ak) can be considered in tho frames of a llneari:, or

equa tion. 28



We shall now obtain stricter conditions on the form of the wave

packet, for which evolution is determined basically by linear terms.

For that, in equation (5) we replace variables

Y= z-u,, (6)

equation (5) here takes the form

at, a 1 a _.a -P &jI + -. ev O -t.Yv

( 9V auPa.- 1,, , (7)
V=V W I, 8- - - +, - VU

From the last relationship it is clear that if 1 + TVy = O, u/6z

turns into infinity, which corresponds to "inversion of the front."

From the equation one can also see that in the description of

'the initial stage of evolution of the packet., when T is small, it j

possible to replace equation (7) by linear equation

u 0v (8)

If evolution of the packet for all values of T is described by

equation (9), it differs little qualitatively from linear spreading.

For satisfaction of this it is necessary that

<(9)

The solution of equation (8) is expressed in Airy functions:

, (,y, :) -4 r,' () dy' (1'0 (:,) - V (!/ 0)) (10)

Let us note that y = z when t = 0.

We expand vo(y) in a series of derivatives of 5-function
0 A , ,5 n( _ , A - - h m o m e n t )

,o (Y) = Y . ' "(i -,') A (11)_ n! (of function vO(Y ) )ll

Substituting (10) and (11) in condition (7), we obtain

I (( + 9 $ LTO (n + 1)! (j,,,h,, ,,), IL, )< ' (12)

As "- w the main role is played by the first terms of seri es

(12). For satisfaction of condition (12) it is necessary, in any

299
_________________________-~ ~W'i~-~ ~ ~~---



case, that

A=. A11<2 1 (13)

Then condition (12) is satisfied for jlj < wrl/3. For larger

values of y it will still be necessary to consider nonlinear terms due

to growth of derivatives of Airy functions as y -+ co. if the first

(k - 1) moments of function v0 are equal to zero, as T-+ condition,

(12) has the form
44

_ (k + 1)1A +; 3- -- 1' .

Let ,us now estimate from expression (10) the width of the wave

packet as T -+ co. Let us assume that X is the characteristic dimen-

sion, on which function v0 (y) strongly changes. Then v(y, T)

decreases, starting from those y. for which function P accomplishes

several oscillations on length X. If vo(y)- differs from zero for

jyf < y-, then y_ >> yo for larger values of r.

Then

Characteristic "frequency" of the Airy function is yi/2 -3 -/

from this follows the estimate

T 3  ('5)

Approximately at these distances we compared various terms of

series (12).

Comparison of estimates (14) and (15) shows that although one

An differs from zero, there exists a region where it is necessary t.

consider nonlinear effects, although the width of this region de-

aI creases with growth of n.

It is possible that there exist initial conditions of specific

form such that all An = 0, for which linear spreading of the packet.
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occurs for all T and z.

Rlecently in [3] there were found self-similar solutions of equa-

tion (5), evolving according to a law, close to linear. Analysis of

these solutions shows that they satisfy conditions (13).

In conclusion the autho'! thanks R. Z. Sagdeyev for discussion of

the work.
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APPROXIMATE METHOD OF CALCULATION OF OPTIMUM SUCTION
OF FLUID FROM THE BOUNDARY LAYER OF WING

PROFILES WITH A POROUS SURFACE

L. F. ,Kozlov

(Leningrad-)

By optimum suction of fluid from a boundary layer through the

porous surface of a wing profile we mean such distribution of the

normal component of velocity on the surface where in every section

the boundary layer the local Reynolds' number is equal to its lower

critical value.

The problem of optimum suction of fluid from the boundary layf&i

of a porous plate by numerical integration of the equation of L. Pi-,,

was first solved in [1]. An approximate solution of this problem i

quadratures was obtained by the author [2].

The works of Wieghardt and Wortmann [3, 4] are devoted to appr

imate solution of an analogous problem for a boundary layer witt i

longitudinal drop of pressures on the external boundary. Both work.-

aro based on simultaneous use of equations of momentum and energy f-

a boundary layer. In the method of Wieghardt for every particular

case it is proposed to integrate the basic system of differential

equations by the very laborious numerical method of finite differrn&,
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In the derivation of final formulas for optimum suction Wortmann used

functions calculated with application of Schlichting profiles, very

roughly approximating the real change of velocities in the boundary

layer on a porous surface, especially near the breakaway point.

Below, for calculation of optimum suction of fluid from the bound-

ary layer of wing profiles with a porous surface in an incompressible

fluid, there is used a system of equations of zero and second "moments"

[5]. The offered method is fairly precise and free from the deficien-

cies inherent in the methods of Wieghardt and Wortmann. It is neces-

sary to note that for solution of boundary layer problems, a system

of equations of "moments" was first proposed by L. G. Loytsyanskiy [6].

Designations

x- coordinate along surface of R' - Reynolds number,
wing profile, X

R** local Reynolds number,
x- coordinate of point of loss

of stability without suction, R0 -,lower value of local crit-
ical Reynolds number with-

U0 - incident flow velocity, Out suction of fluid,
**

U - longitudinal velocity on ex- R. - lower value of local crit-
ternal boundary of boundary ical Reynolds number
layer, during suction of fluid,

V0 - local velocity of suction of H - shape parameter of bound-
liquid through porous-profile ary layer,
surface, e** - thickness of loss of

f - parameter of boundary layer, momentum,

I - parameter of suction from * - thickness of displacement
boundary layer through the flow,
surface,

v - kinematic coefficient of
viscosity of the fluid,

=0.44, b = 5.48, B = 1.12, c = 9.54, 14= 2.59, 11 = 4, .At== 26.3,B l = 8
g'** %6*Uoz "6*6

VV ' X V V

Using approximate interpolation formulas for the coefficient of

friction and shape parameter H, we convert the equation oC zero mmen
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to linear form:

dl = U- [a + ( - 2)t. -bli ()

Differentiating the parameter

U'6**l vU'

we find that

dl vU" 2vU'2 vU"dfl**2"- 1-i "  R * * - ! - L R * 1 2

T7F2- i +. d, (3)

Substituting formulas :(2) and (3) in equation (1), we obtain
v dI.* .vU' ( '
U dx -- , (b - 2) R *  - (B -2) -r° I** - a = 0 /1** = - t** ( ,

Equation of the second moment we use in the following form:

d! U" 'a

- /  -up U*m - (5)

After substitucion of formulas (2) and (3) in equation (5) and

the necessary algebraic transformations, we have

v . 7 + '-- (ac - 2) a - , =- 0(6)

Eliminating from equations (4) and (6) quantity vIU, we obtaii!

a differential equation for calculation of the local Reynolds number

R**,-,)=if________________(7
"- exp --' In U (xO) v 11 (B -2) + ,a,"1 (7H)

x [ al, -1 (B,- 2)11, ,, .V .-0 In,, d + '"
-T U (X41J

Integratirg (7) for boundary condition R** = R** with x x 0 , W

find

dR**2 up a (al 'v a 114 \aI,]
d+ + (b - 2 11) ] (I _! 111

ko=[(ac- + -2) B .- 2)11c( B - a2l 4  )-

Calculations of optimum suction of fluid from the boundary l.aye.-

start from the value of the Reynolds number R0  at the point of L,
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of stability of the layer, up to which without suction of fluid the

flow in the layer is stable to small disturbances. For known velocity

distribution on the external boundary of the layer of a wing'profile

U(x) and given values of shape parameter H by formula (8) we calcu-

late R Obtaining family of curves R (x, H) and knowing local

critical Reynolds numbers, corresponding to every value of shape

parameter H, we graphically determine relationship R* (x).

The lower values of the local critical Reynolds number R. are

calculated by research using the method of small disturbances .of

hydrodynamic stability of flow of liquid in a laminar boundary layer.

It is known that hydrodynamic stability of flow basically depends on

the degree of fullness of the velocity profile across the layer, to

significant extent determined by shape parameter H. Therefore, it is

natural that the value of the lower critical Reynolds number R.

simply depends on shape parameter H. As proposed in work [3], in

subsequent calculations it is recommended to determine values of

R. (H), using the following approximate formula:

ex*.= p (.,-Bi;! ( 9)

From tne zero moment equation (!!) we obtain a formula for

calculation of the optimum distribution of the velocity of suction of

fluid:

2 _ V I I dl**2 vU' (b - 2) a
U T f -6-B- 2JI,, -7- + -Z- T _- - (

(10)

The first term in formula (10) we find from differential equation

(7). After transformations we have

v I I dll**- vU" Ao J?** A- 1,4 + 11 (B - 2)1 1

UD -" J** dno - -- - n2Ifo W(g -2) + aII -' - (11)

Suibstituting this expression in equation (10) and producing

necessary calculations, in final form we find the formula for deter-

mining optimum distribution along & chord of a wing profile of the
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velocity of suction of fluid from the boundary layer

r0  vU" (b - 2- a (H - Ho) I
(1 = I, 2 (11 -2)+ ,I /1*; (12)

Determining, by formula (12), optimum distribution of velocity of

suction by the method of approximation offered in work [5], it is

possible to calculate all characteristics of the boundary lay.r and

of friction drag of a wing profile.

For the particular case of a porous plate expressions (8) and

(!2) are. reduced to an integral exponential function. Comparison of

relationships obtained by various authors

for velocity of optimum suction on a porous

plate vy'U for different Reynolds numbers

S// R is shown in Fig. 1. On this .graph there

are plotted results of calculations by the

lox, proposed formula (12) (curve 1), and also

Fig. 1. according to [3, 4] (curves 2 and 3, respec-

tively). Comparison shows satisfactory

coincidence of results of calculations by the offered formul. with

corresponding data from [4]. Obtained results also allow us to con-

clude that distribution of optimum velocity of suction of fluid from

a boundary layer to a significant extent depends on the Reynolds

number.

Submitted

7 November IW3

Literature

1. J. Pretsch. Die Leistungserparins durch Grenzschichtbeein-
flussung beim Schleppen einer ebenen Platte. Deutsche Luftfahrt-
forschung, 19113, UM, No. 3048.

2. L. F. Kozlov. Optimum suction of the boundary layer on a
porous plate in an incompressible fluid. Eng-physics journal, 1903,
Vol. VI, No. 10.

..1306



3. K. Wieghardt. Zur Berechnung ebener und drehsymetrischer
Grenzschichten mit kontinuierlicher Absaugung. Ing.-Archiv, 1954, 22,
368.

4. F. Wortmann. Grenzschicht - Absaugung. Grenzschicht -

forschung, Symposium Freiburg, Springer - Verlag, 1958.

5. L. F. Kozlov. Approximate integration of equations of a
laminar boundary layer on a porous surface in an incompressible fluid.
PMFT, 1962, No. 5.

6. L. G. Loytsyanskiy. Method of approximation for integration
of equations of a laminar boundary layer in an incompressible fluid.
PMM, 1949, Vol. XIIi, Issue 5.

3O7



RESEARCH OF SPEED OF SOUND-IN LIQUID AND GASEOUS ARGON

I. S. Radovskiy

-(oscow)

In LI] there were given certain results of measurements of the

speed of sound in the vapor and liquid phases of argon on a saturation

curve. Construction of an ultrasonic interferometer, created for

research at low temperatures, is described in [2].

Below are results of systematic measurements of the speed of

sound in gaseous and liquid argon in the range of temperatures 84-17f K:

and pressures 1-60 bar, including the critical region.

Measurements were taken by isochores, where simultaneously withf

measurement of the speed of sound there was also determined the densify

of argon - in the same experiments and on the same installation with-

out additional complications of its construction. Strictly speaking,

due to the presence of "ballast" volume (valves, connecting capil-

laries, etc.), and also due to thermal expansion the process of chanfc:e'

,.f state of gas in the interferometer differed somewhat from isochorio,

.c~, was quasi-isochoric.

The value of density for every experimental point was determined

by means of introduction of corrections for ballast volume and therrwl
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expansion of the interferometer, Maximum total value of both correc-

tions constituted 3%, and for most experiments did not exceed 1-2%.

Accuracy of determination of corrections themselves was in any case

not worse than 3-5%. Consequently, error introduced by corrections

did not exceed 0.1%.

As a result of the conducted measurements there were derived more

than 30 isochores, there were obtained, about Z00 experimental values

of the speed of sound in gaseous and liquid argon and 100 values of

the density of gaseous argon.

By means of extrapolation of isochores to intersection with the

line of saturation, we also determined density of saturated vapors of

argon in range of temperatures 87-1460 K.

The data obtained on the speed of sound were compared with cal-

culated data of Hilsenrath [3], which are only for gaseous argon at

low pressures (in the investigated phase region there are no experi-

mental data on the speed of sound in argon).

Divergence with data of Hilsenrath constitutes 0.1-0.2%. Near

the line of saturation it reaches 0.45%.

Results of determination of density of argon were compared with

data of Michels [4] along the line of saturation (divergence is about

0.5%) and isotherms 133 and 1530 K (divergence of 0.2-0.3%).

In Fig. I are isochores (solid lines) and isotherms (dotted

lines) of the speed of sound in gaseous argon; in Fig. 2, the same

in liquid argon; black points correspond to the line of saturation.

Isotherms were obtained by means of graphic analysis of experimental

Lsochores. Furthermore, in Fig. I are plotted calculated data of

Ililsenrath on isotherms (half blackened points).
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Fig. 1.

Isotherms of the speed Qf sound were extrapolated to pressure

p = 0. The obtained values of the speed of sound were compared wiLh

those calculated by the formula for

an ideal gas
at= f53117'

00---'I
Divergence between experimental

- -- '" and theoretical values of a0 is withi,

z: f . ±0.2%.

Results of measurements of the
- i . speed of sound (msec- ) are also given

00 L__LI P i in Tables I and 2 for whole values of
2 9 5 55 65

Fig. 2. temperature and pressure.

In the critical region, where

the speed of sound strongly depends on temperature and pressure, we

conducted more detailed measurements. Isotherms of the speed of

sound in the critical region, including the critical isotherm

(150.630 K), are presented in Table 3.

Results of determination of density (p, kgm -3 ) of argon in th

range of temperatures 90-170 °K and pressures 1-60 bar are presented

in Fig. 3.
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Table 1. Speed of Sound in Gaseous Argon

P T I = C 10 I 16 I 13 j1 X .

0 177.0 182.5 187.0 191.3 1!,:.. 7 191.8 .20i..: 201 ..3 "i"

I 174.3 179.9J 184.9 89116 l:. I- l98.. [ : 207.5 211.5
5 I I~l8.7 192.3 . ....

10 - --6.7 - '189>, 7I:1 :--1 :l.:..I 211..

T1 -- 14) I V, 15 ,.. , ;. 1I ) I j 'I

0 .16.0 220.0 223.9 227., 2111".4 235.-.1 -39.,.1 243. 1__ I. I.I
215.2 219 4 "35 227 0 235.0 1

5 212.0 216.6 221.1 ."'" 2231.3 231 .23721 211.1
I0 207.1 212.3 217.4 22 . 1 2267 , 230.9 2:'".
I5 201 .5 207.6 213.0 _,"._ 223.4 "1228.2 " ." 8 " " 7."
90 190- 201.8 20S.5 211 ..i 2_0'.3I 225.4, 2305 .35.,
25 185.0 19.8 203.3 210.4 216.8 2 2'' 6 22-S.I : .
h - 186.0 197.0 2115.1; 21:. 1Z.! 5 .225.. " '"- I .
35 - - !,18. ' 2(X).i) 211.9 i 216. 3 222.9 2211. 0
n40 - - 193.2] -..3 213.1 220.1 ;.9

--- 182.8 199.5 21)9.9 18.2 225."
50 --- - ' 193.0 200.( 216 o -- --- i '" H I4 ....,55 ... 1831.5 202,8S 211 4,. 2 2,'.; 7

2 0 .7 200.0 2I2.,1 221.7

Table 2. Speed of Sound in Liquid Argon _"

P T -1 3 ' 1 i t) ! 1t 2 1 U s 1 1 6f % 9

30 4 6.'3 85.0 --'--7 -

, _ 403.3 :17 ". .45 W19:16 3!.H ._ 251.5 3167 ";," 2' 2-6

:0 ' _I - .4 :176.7 :313.6 I's, .5 248.2
-" - 4.23" :8 165.7 :1:.. 295.8
60 -- ! - 40 1.5 :1 .5 - :1238.1,

Table 3. Speed of Sound in Argon in the Critical
Region

I I * .-i-i i-1) T = 1o.l 11.oi.2 Vo .;, .: 1 %.,-631 15112 1Z:3 Z' 1-57

45 lw-.$s 18:1.91 1, 8.. 9 181;.. 187.7 1s .6! 1).. 191. 2 1 Y '. 2113.9

46 17.1 178.9 ISI,.8 182.2 181.7 87.11 189.1 1 2. 1 .s . )

47 16.5.1 17 1 :,73.) i17.5 17-.5 18.; 1 I1 .71 18-6.5 ji 8 1,7. 1 2112.1
8 171 .315 15 167.3 171.1' I73..7 179.5 1:1.2 180. t:,.!li211.1

4 2.5 2211.7 2013.7 1IS .2 I.,2.3 1 f lliW'.1 176. 1; PI 187.7 1 24 " I
49) 231.1; [20175.7 112.2 II1. i 1:1'.5 5 7:1.2. I17-8.9 18 .1 I...I
OIa - 2111.1! 1S,.!I .. II
511 2118.11 l11. 158.8 172.0 . 132." I18. 4!19.1)

- - - 211!1.:I, it;,.:3; liii.oi jkii.. 1192.2 i1!:3..

.. 186. 1 , 1 .: 17.,.1G I" .1 197.95; 211. 2117.3, I1ti.7 173;.., I.,h _ 96lt. 9

52 - - -- 2532.4 - .1 1 :1.7 187.1 195.8
5 41 I

Temperature everywhere is expressed in degrees Kelvin, absolute;

pressure is in bars.

7,3 1
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Fig. 3

Possible error in measuring the speed of sound does not exceed

0.2% for most experiments;- error of determination of density was

0.2-0.3%. Real scattering of experimental points, as a rule, is less

than these magnitudes.
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TEMPERATURE STATE OF A SEMITRANSPARENT SPHERICAL SHELL

V. S. Zarubin

(Moscow)

There is considered a thin spherical shell with a diathermal med-

ium in its cavity. In distinction from [1] it is considered that the

shell is semitransparent and has different optical characterisitics

in the region of shortwave (solar) and longwave (natural) radiations.

In other respects formulation of the problem is analogous to work [1].

In particular, the temperature over the thickness of t-he shell is con-

sidered to be invariable, and transmission of heat by thermal conduc-

tion along the shell will be disregarded.

From without,the shell is struck by specific radiant heat flows

!j( , Vj) and q2 ($, VI) varying along the surface, where and V/ -

angular coordinates of the point of a sphere (0 - 7r, 0 9 4' - 2w).

Here and henceforth, parameters with index I pertain to shortwave,

and with index 2, to longwave radiation. The degree of absorption,

reflection and transmission by the shell of radiant fluxes q1 (p, 4')

and q 2 ( , Vi) is characterized correspondingly by coefficients Al, R,

D1 , and A2 , R2 , D2 , which in genera! "can change along the surface.

It is assumed that radiant fluxes D q(, 4') and D2 q2 (%, 4i),

passing ihrough the shell, are radiated from its internal surface
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diffusely. Diffuse, also is reflection and natural radiation by the

internal surface of the shell. The balance of radiant fluxes on this

surface for a unit area with coordinates , P gives

Sq,* (0, ,) =R °  +. f,1'q (0, ii) (1 )

q,*? (0, ) = 2 q + I)'q. (0. ') + eqo (0 J), qo (0, J ) = xT' (0, )I (2)
* 0

Here q ($, P) and q -- effective and incident specific radiant

fluxes; E and R - degree of blackness and reflectance of the internal

surface of the shell, generally depending on $ and P; a0 - radiation

factor of an ideal black body; T($, 7p) - temperature of the shell.

For the above assumptions magnitude q0 is constant for any point

on the internal surface and is equal to [1]

47 = " (:z, .3) s 2 d-1 d3 = Const" (3)

where a and --angles, reading of which is analogous to angles $ and 4.

From expressions (1) and (3) it follows that

-= 1\)1'71  (a, )i a da d3
I-I Dl (,)'.,.(d~

q,* (0, T) = D,'q, (0. T) + B, -- ',,, (a P) " (5)
i , R i ti (5)

where Rim - value of reflectance with respect to shortwave radiation

averaged over the internal surface of the shell:

For determination of magnitudes q0 and q($, 4) from expression

(2) it is necessary to preliminarily eliminate radiant flux qo((, /).

This is possible by composing for a unit area of the sphere the

cquation of heat balance for a steady temperature state:

'a* ( , p -- ,,°  " q,to 0 ,) --q -

= (I - RL') 1 (0, q) - , (I - I..') q. (0, ,t) - - i:q* (9. ') (6 )
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where a -degree of blackness of the external surface of the shell,

where a = A2 ; D1 and D2 - transmitting ability of a shell with respect

to radiant fluxes qand q2 falling on its internal surface.

After eliminating q0 ($, ') from relationships (2) and (6), we

obtain equation

(e+ ') q,* (0,) = 1 -R.') + D.,'i q:!( 0 ,') "
+ e (1q -FA) e'Ijq2 " 4...i 1 qt (0,, -+ (7)

whose solution,, taking into account relationships (3)-(5), gives

{(e + e') -& (-D ) ) 'J?.,,,) q.' \ I [ (1 - R ') - 'D,' q.. (a, ) _ da d -

11 0 I.

+ leAd,, q, - " .'qi (a, ) - dad13 ()
4a

where index m signifies averaging over th6 surface of the spnere:

IP 0

Later substituting relationships (4), (5), (7), and (8) in for-

mula (6), we obtain

+ 0 qo (0, )+'-l 1 -- . da 1

+ + - 11t 'q1 (a,0) 1 - d
0 -1).) it. ~:I...~ i 4Q at

+ I (1 - ,; 4 ! ,'q, ( (a. j) i d a A ( )

R 1 4 .1
• (I '.q a )

From this there is found the distribution of temperature on th •

surface of the shell:

T (0,)

If optical characteristics of the shell do not vary on the sur-

face, expression (9) is somewhat simplified:

315



(e + ) qo (0, T) - .-i1'q, (0, '-) & .. :'. (0. '{')

+ L) x-+ 8'Al1 -+ (e .' ') I).. l~ '!- l

sin"a - .,.l +i (" - E')~ Z . .( (", )J-la
CtX , 1 (,O ~dd t O tij (1Ot

0 0

In the particular case for an opaque shell (Di = I = D2 = D2 = )

formula (iO), leads to results obtained earlier [1].
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ONE PARAMETER OF HARDENING

N. S. Vilesovaand V. S. Namestnikov

(Novosibirsk)

Recently Yu. N. Rabotnov [1, 2] advanced the hypothesis that

rate of creep p" is determined by the current value of stress a and a

certain number of parameters qS

P (D (a, q') (1)

where he considered that

dq a-dp -" b'da + cdt d-:- d'dl

where a s , b s , c s , and ds --functions of stress o, creep p, time t,

and temperature T.

If in relationship (i) there is only one parameter, dq = dp, it

is reduced to the normal hypothesis of hardening.
1

The case when in relationship (1) there are parameters dq = dp,

dq2 = pda was studied in [3]. Here we managed to account for

observed systematic deviations of the hypothesis of hardening from

experimental data [14]'.

Below are results of study on the basis of another very simIple

assumption that
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We know [4, 5] that a good approximation of the iypothesis of

hardening is given by relationship

ipa = (3)

Consequently, (2) may be taken in the form

P"1 (4)

When a = const, q = op; (3) follows directly from (4). Thus, the

constants in equations (3) and (4) are the same.

Let us consider the following experiment. A sample creeps under

constant stress o during time t., and there is accumulated deformation

p*. At moment t stress suddenly is

8V
Iincreased to a 2 and the test continues

A -A (Fig. i). In order to obtain the curve of

A / the subsequent behavior by the hypothesis

of hardening, it it necessary to shift

section A B of curve a2 forward in such a

manner that point A coincides with point A
o It

Fig. 1. (we obtain section A B ); by hypothesis (2),

as it is easy to show [4], it is necessary to shift section AB forward

to coincidence of points A and A (we obtain section A'B ). Point A

is found from condition pO = p.i/u2" Con-

3,kg/n 2 - D16T10° sequently, the curve corresponding to

0000 hypothesis (2) is located higher than the

curve constructed by the hypothesis of
00 t, hr

0 32 64. 86 hardening, and, obviously, should correspond
P'ig. 2.

better to experiment.

If stress is lowered instantly from

magnitude a2 to 0i, it is easy to prove that the curve after unload.iri,

by relationship (2), is located lower than the curve corresponding tv

318



the hypothesis of hardening. We compare hypothesis (2) with available

experimental data [4, 5]; subsequently, we shall apply it in the

form (4).

With a stress varying in steps on the i-th step, integrating (4)

for conditions

C = (Y = const when t R; tio, p Pio when t = io

we obtain

P i = P ! -- P i o , -k Ud " " i

tt(5

Pj, 5jt (Pin - p , + 1) (6)

With stress, varying according to the law

a = 6 ± " (t - t0) (7)

and initial conditions

p = pO, a = a0 , q = qo, when t to (8)

by integrating (4) we obtain
t

p,= ,o -r 1a -d 9)

q= qG mi-- + l+:F t-
nt (n +.-a- )

At pO= G = qo = to = 0 equality (9) is completely integrable;

in this case

S= P ,, (n -. (10)

where P4 - deformation, calculated by hypothesis of hardening in usual

form (3).

In other cases the integral in equality (9) must be calculated

numerically.

The curve of relaxation of stresses by hypothesis (11) has the

form
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where E - elastic modulus, and a 0-initial stress. For whole number

values of a, the integral in the right part is easily taken. It is

not difficult to show that the curve of relaxation (11) lies above the

curve calculated by (3), which, of course, is obvious if one refers

to Fig. l and considers relaxation the limiting case of creep for an

intermittently decreasing load.

In Fig. 4 are curves of creep under a load varying in steps,

reproduced from [5]. In this and subsequent [sic] figures the broken

lines correspond to the hypothesis of hardening (3), and the dot-dash

lines correspond to hypothesis (4). As can be seen, with increased

load hypothesis (4) better corresponds to experiment than (3) (see

curves 333-2 and 56-8). If at a certain time part of the load is

removed, and tnen is restored, hypotheses (3) and (4) give the same

curve (curve a-i).

32 C 2T Dr16AT In Fig. 3 are curves of creep

150" 77-4 311-1 during monotonically varying load [5].
XC

24--.. -/-- , It is clear that with an increasing

/95- p Ile D16AT -.5'-a- I

8 _ 7/f ,,ooo o i l__ -sI. -i / 1500

. 0 0

Fig. 3. Fig. k,.

load hypothesis (4.) better corresponds to experiment than (3), and

for a decreasing load it is somewhat worse.
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Curves of relaxation [4], built by (11), differ little from

curves corresponding to hypothesis (3) (Fig. 2).

Here we have not considered for an increasing load the curves

of creep during stresses exceeding the elastic limit, since in these

cases hypothesis (3) gives increased curves of creep [5]; conformity

(4) with experiment here will be still worse.

Leaving aside the last case, it is possible to summarize that 'the

new parameter of hardening without introduction of additional con-

stants allowed us for nondecreasing loads to obtain better conformity

with experiment as compared to the usual theory of hardening. For a

diminishing load conformity of the new theory with experiment is

somewhat worse; however, it is possible to free oneself from this

divergence if, as in [3], one considers that when U'a < 0 hypothesis

(3) is in effect.
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ROLLING A VISCO-ELASTIC CYLINDER ON A BASE
OF THE SAME MATERIAL

R. Ya. Ivanova

(Novosibirsk)

We consider the contact problem of linear visco-elasticity.

Many problems of this class are solved with application of the Laplace

transform; solution of the given problem is based on principles of the

theory of heredity. In the problem there is considered only one form

of nucleus - the exponential, although there may be applied any

degenerate nucleus. The problem about rolling of a cylindrical body

on a visco-elastic support in two-dimensional form was solved by

G. A. Boychenko [1], but with significant simplifications. In recent.

years analogous problems have evoked interest in the United States.

Witness to this are many works, and, in particular, the work of

Hunter [?] [2].

Belc.,v this problem is solved by another method. The roller and

base are considered prepared from one and the same material. Such

material may even be steel, since there are grounds to assume that

]for small stresses, steel behaves as a linearly viscous material.*
*V. S. Postnikov. Internal friction of pure metals and alloys Pt

high temperatures. Dissertation for scientific degree of doctor of
physical-mathematical sciences, Kemerovo, 1959.
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In the solution of the problem there are used the following

assumptions.

1. Motion of the roller starts at moment of time t = -00 and

continues with constant speed c.

2. The problem is considered two-dimensional.

3. Material of the roller and base obeys the Boltzmann- Vol'terra

law:

where X°, Po - integral operators of form

and

t* A) t a(t- T) 4 ( ) 'IT, t q (t) -. 1I(t - )f' (T)dr

4. There is no volume aftereffect, i.e., + = x + I.

Here X, t - elastic constants; A(t - T), M(t - ) functions,

determined experimentally. There exist materials, for which these

functions are close to exponential.

For the considered medium, in which the roller moves, the problem

will be formulated as the first basic problem of the theory of elas-

ticity, but in the solution elastic constants will be replaced corre-

spondingly by operators, which will give us the possibility to account

for changed elastic properties of the material in time. This propo-

sition was called by Yu. N. Rabotnov [3] Vol'terra's principle.

Following Boychenko [I], we shall use the Muskhelishvili rela-

tionships [4]. If the elastic body occupies the lower half-plane and

the value of stresses on the boundary are Yy = -p(x), X = t(x)

(Fig. 1), derivative of boundary values of displacements on coordin-

ate x should satisfy Muskhelishvili relationship

(D+ (x') + x(D- (x) = 21L (U t. 'i).
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Replacing elastic constants X and p. by

t 1 operators X°, 0 0 , we obtain for points of the base
O,*,+ (x) + x (D )- 2X t0 . . + ir, (i)

for points of the roller

Fig. 1. 4yji-(x) + X$ + (1) -- &t (U, - , ') (2)

where

Applying the Sokhotskiy-Plemelt formula for limiting values of

functions (P and (D2, we subtract equation (2) from equation (i). We

obtain a singular integral equation, containing p(x) and t(x)

b
X_ ds = A1- i ( U.. 1  - U..3j L

Here limits of integration are taken from- a to b, since outside

the contact section p(x) = t(x) = 0.

Dividing the imaginary and real part, we write two singular

equations
It bp (S) . I t(S) dI:o .

;- ds = A )'' ds-- (UJ - LVx)

_-a (3)

We solve the first of these equations, since tangential stresses

are determined in [].

Based on the absence of volume aftereffect (Assumption 21), we

present operator A° in the following form

I I + :t i ] t '.-.-2PA* x(k l) +_ __ 1.. 1+bt

Let us assume that P(t - T) will be the resolvent of nucleus

M(t - r). Then
A 0I'  a + bt *

Here

41 =3 (I it) 1-+ " (1 ) " r ( - F (T) dtr
.It (1 .. 2
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With even motion of the roller, motion of medium can be assumed

steady with respect to a system of coordinates, travelling forward

together with the center of the roller. Then displacement and stress

will not depend explicitly on time but will be functions only of

coordinates.

We introduce a motionless system of coordinates so that

y =-Y, I -r . + cf.

We substitute for the variable in formula (4):

xI=x +t C1, X, = -- -I' C-' f -,-
b C

.IT (x) ,,, (.,) N + ±' * - X ,7 (t) d. = ",r (.") + T I't*q, (r)

Replacing the arc of circumference of the roller by an arc of a
f t

parabola, one may assume that on the line of contact V x - V2x x/R.

Thus

V., V,,' = g (x) = x /I for - a t-I b (5)

.- 4g for x > b (6)

Here VIx is a certain, still unknown, function.

Equation (3) in new variables has the form

p (s) d- -'--s=.Fg6x) fix)

-a

Solution of this equation according to the Carleman method will

LD e

I,
I ba IUl~) cf

() = +S - I+(a + x) (b -x) (7)-a

From the requirement of boundedness of p(x) for x = b, it follows

that C - 0.

We take resolvent r of definite form. For instance,

k

In this case operator
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) q)(x) - + C I :exP -)i . ()d
i=1 x

I b~ I(c I i \
P (Ii X- - d

-a
bi

-I i*-4

b b-x b a b, k=~ ~ ~~S '- ,-- -): [,,. (.,) -! ,
-a i l

kcx-[; !L Ja,~ .± i ..~x[ ,'~j ~ (8)
1j. b

We simplify the right side of equation (8), considering condition

(5):

ba /I b' x t .t-
b --"1.' - 3 . b - ,. , - ,

We designate
}~l~P. -.. a

I . ' Ca, - (9)

where Vix = g(x) when x > b.

After transformation, equation (8) takes form

n' 1= = t+ / \--S/ I7" r

b k

+ 7 )xi  , [ exp --;Li d'; . ).. Ci exp )i--
i-=1 i=1 C -S

I -" '/ (4 +. S .3)I + \,ci ] ds)
-- = wI C

ak
(bija + b+) 

"} + k 01= (1=-a ii=1b k! [ -='v' b .f..+ . 1111[,,'s+ M 1 .,i CXP - + m3 (10O)
-72" a + x' .-a a + 3)l

Htere

ro & t,, - ). , b

3?6C (b e.p -C



We cannot calculate
b

b-a exp ds

in closed form. Therefore, below there are used two terms of the

series expansion of function exp (Xis/c):

exp .

This is justified for materials with sufficiently large relax-

ation time T, i.e., when s << cT.

Subsequently, calculation of p(x) is conducted by approximate

formula

bb

p (2 ) = ,\,+-; (,--) - x (II.)

k k€
)-v • N' .in1 - - r % . ~ *, 1i. = in3  - ,. i

1=l i=z

We calculate the integral in the right part of (10):

- '--- - -= ds = J (.0

For that we consider another known integral [5]

A-

, .q*

where belongs to the region bounded by contour A ; aq, aq 1,

a0 - coefficients of series expansion for sufficiently large of

function

I a + bx ("nl'g .L i,.:') z i ('l' - i" ), kin." --- ,, ' " in,..

Thus

n,'-- +' "" , - (I,,L: + 11.")

We introduce for consideration one more integral:
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/t's + ds

Z'dL

where s belongs to L. Subtending contours to arcs, we obtain

J(--) = Aip- (Z) -aib'i[ .-- z)  {(f .z In,') + i (111'z - In.') ( 2

Considering that

(:) = , (-) - F+ (x) miJ+ (x) when :- x

by the Sokhotskiy-Plemel' formulas we obtain

~ ((x) (X) (11 L'X L+ )2)
L

Thus

b
-q I ([--__\ ( , "-. b - s s -

D(13Ti J' (z b bxI (nlt 1x + 111') + U ~~~ 3 -
-a

On the other hand, from (12) it follows that

J+ ( ) = .i [(L - " ("a + " 'i') +  i ('"" - ""')] (1k)

Comparing (13) and (14), we find

b
\b ( -- ) /ftl's + ds .... (r n,')-,

Finally, we obtain the formula for stresses:

p (a) = _ , + ,,.,,) (15)

For determination of final points a and b of the contact section,

we have two conditions.

1. Requirement of boundedness of p(x) when x = -a:

m x + m2 = 0 when x = -a.

2. Condition of equilibrium

p ( ) d:
-- 'I

From the first condition it follows that

,--: 112 (16)
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From the second condition
t,

Y . [ +-T, (,,'I's + ,.- ds nit (it, b, - ) 1b -- - --- '

Or, considering (16),

' - - + .=b +I" (17)

Equation (17) gives the possibility of determining b only in the

case when we know Ci(b), on which m1 and m2 in turn depend. For

determination of b we use the condition of unloadedness of section

x > b. We solve the second basic problem of the theory of elasticity,

considering p(x) known, and replace the -elastic-constant by operators

2p° eL,' - ,V, '= (o + ) + (4 (18)

but

b

(X)s ) ds (19)

Substituting (19) in (18) and separating the imaginary and real

part, we have
h b

ds- P () ds (x > b)
s - . - (20)

-a -
a' +bt!a'

AIL* - 1(+ji) + t + , + 6'r,

Here Fi is determined by formula (5).

The integral in the right part of (20) no longer has peculiar-

ities and is easily calculated

b (s) as = - - -, b" r- x' -,a)
No a I, 2 Li V ~~ 4I (

- ;lh () = - a'/1 () - b'l I',* (.r) - n' (l4-

- b' . Xz..l exp f-" ' L(.' ,- -'I'f

x 3
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If one Were to expand function 1 - b)/(T+ a) in a series of

powers of , limiting oneseIf to two terms of the expansion (only

for convenience of recording), it is possible to approximately cal-

culate integral 00

x

As a result we 6btain,

k

V xA10 '( - . + (21)

Here 410i d,- , AP, =a'dL - b .\ AA,-!d

d= (3 a + 2ab-, b-- .,

flL1t inl1 "

di= 42 (3a- + 2,,b b-) - g (3b- + 3,,b" 9a'-'b -- 15,3),

Thus, determining by the formula (2i) function-Vii, it is pos-

sible by the formula (9) to calculate Ci.
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