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ON STATIONARY PROPAGATION OF A SYSTEM OF CRACKS
IN AN ELASTIC-BRITTLE MATERIAL -

V. M, Kuznetsov

(Novosibirsk)

Questions of the dynamics of cracks during brittle rupture
have attracted significant attention recently [1]. In [2]
there is considered stationary propagation of one semi-
infinite crack, on the surface of which there are applied
symmetricalkly distributed normal and tangent stresses, Be-
low we investigate generalization of [2] to the case of an
infinitely large number of cracks. For simplicity we assume
that there are no tangent stresses on the surface of crack.

1. Mathematical formulation of the problem, Let us consider an

infinite elastic hody in a plane state of stress in plane Xy. Let
us assume thaﬁ in the body is there is an infinitely large number of
cracks, parallel to the axis of abscissas, located distance 2h from
ne another in region x < Vt, where V — constant, t — time. Let us
assume, further, that on both sides of ‘the surface of the crack normal
and tangent stresses are equal and have form
oy =—f(z—V), Oy =0 (1.1)
Rehavior of components of the stress tensor at inf'inity we definc

as ollows:

Ro,, RO’W, RO’W—*O as R —soo0 (1.?)
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We designate by u, and uy components of the displacement vector

X
and introduce -scalar and vector potentia;s ¢ and ¥:

dp , @ .
=24+ R a=F-F (1.3)
As it is known, @ and ¢ ssatisfy the following equations:
Mol M@l

(g’=l-t2|l. ;,1-_—_-%—) (1.1|~)

Here p — density of the medium, A and p — Lamé constants.

From physical considerations it is clear that with an infiﬁitely
large number of cracks there is symmetxry both relative to any stréight
line which passes through the crack and its continuation, and also
relative to any straight line which passes parallel to cracks at half
the distance bhéTween them. Due to this it is possible to limit our
consideration to the regi¢n (Fig. 1), constituting the strip 0 < y <

< h.

Il M e

On. boundaries of the strip we should have

T

du .
Oy =0, =f=0 whny=hy=02>V: (1.5)

due to symmetry, and

Oy = — f(z—=V1), Gy =0 when y=0, V2 (1'6)
due to (4.1).

Following [2], we seek a solution of equations {1,4) in the form

q>==(p(z—-Vt,y), ¢=‘P(Z_V‘sy) (1.7)
We introduce designations ‘ .
r—Yt=X, Py=Y, By=Y,
. VY, _ Vi Y _
B=(-5)"  a=(-3) (1.8)
Putting (1.7) in (2.4) and using (1.8), we obtain
4 e 4 o i R,
! =t am=0 et 5pa=0 (1.9)

It follows from this that it is possitle to introduce ini. con-

sideration two functions

- ’ . B h it sl e e SO L 0 C L S i P e S50
s Y = TR T (o IR LS SO =
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Oy (z) =9+, vz =%+ ik (a=X+i¥, n=X4ivy) (1.40)
Functions @, x and ¥, k are connected by D'Alembert-Euler
conditions

a.p 9 a(p __ % oy ok - Ip 3k N
X TGy ¥, T dX’ AT, I, T ox (1.11)

For components of the stress tensor we have

—lV'w+?4*(an+axay) Oy “‘[ gg;: + ay’ _%]

ow=W"P+2*‘(3';=—é‘?‘gg) (V’=a7=—+b“yz)

Using (4.7)-{1.11), we transform these relationships to form

(1.12)

== (B = B s — Bayp
— (1 + 82 )aXt + ZB’aX’
- 2313)(: (i + BaY) ax*i (1‘ 13)

?E*H‘

In the same designations

du 2

FTi (Blaxf‘*'axz) - (2.1%)
Now we formulate the problém. It is required to find function

w,(z4) and wy(z5) in region
0 Ya<<Bh (n=1,2

satisfying the following boundary ccnditions:.

2310 +(‘+‘3*’)ax-‘"0 when Y, =B, Y, =0 (1.15)
“’*‘Bﬂ')ax' 2[;‘:;: f(x) when Y, =0, X <0 (1.16)
Blax-‘l':;“o whenYn=Bnh, Y,=0, X>0 (12.47)
and the condition at infinity
v
2—3—;[2,.[-—-»0* when |2, ] - 00 (1.18)
A

2. Tormal solution., We introduce instead of Wl(zi) and w,(z,)

dhyy

— dhw;
l"";{;l‘n

Wa=2, (2.1)

We map the strip of (Fig. 1) in the upper half-plane of (Iig. 2)

. b &4
C.=§n+inn=exp3—,'-: (r=1,2) (2.2)

S
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So far, formally, we make no distinctions between variables
¢, and £, and set Wi = wi(c).,-w2 a= WZ(C). In plane { boundary condi-

tions (1.15)-(1.47) for functions W, and W, have forim

%6, ImW,+ (1 +BH)Re W, =0  q=0) (2.3)
(14 BHRoW,~ 25 ImW, = - f 1X B)] =1 F(B)
=% N :
(=0, 0CE<) - (2.h)
By Im W, + ReW, =0 (n=0, £>1; £<0) (2.5)

We désignate by W¥ a functidh, the conjugate of W, and we re-

arite {£.3) in the form

,231‘.(“,1‘—“’1%)—“‘*'33’) (Wg+W1‘)=0 (2.6)

We integrate this equality over a contour, consisting of a seq-

nent of the real axis ard a semicircle of radius R. Directing R to

infinity we obtain, considering (2.18), by the Cauchy theorem [3]

{ CW@d_ o 10 We@E
T =W | T =0
. and, consequently,
W, =— i*EEw, ) (2.7)
28,

We replace in (2.2) and (2.3) function W, by W, with the help
T (2.7):

ReW, =aF (£} (=0 0<E<Y) ( 14 Bat )

ImW, =0 . (n=0,£>1,E<0) * = B+ B —apis] (2.8)

For function wi(c), thus, we obtain a mixed boundary value

oroblem. Its solution comes from the Keldysh-Sedov formula (%],

shich in this case has form
1

_a CFOg®d , Wi(o) z— 1\ p
CW!“’*M)S —t T 0 (tw=53)) (2.9)

Due to the condition at infinity (1.18) W, (m) = 0.

4’
— - v
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5. Particular case. Let us assume that, just as in [2],

L) <X —a)
X _{P (—aX<0) (3.1)

In plane § for function F(€) = f[X(£)] this condition has the

form

- R ={0 EPEmeB>E>0
‘ P (1 >E>exp(—na/Bh) (3.2)

Putting (3.2) in (2.9), we obtain after integration

) =— P VIR VISTHVE s
Wil = — [z e g X2 e e (3.3)
b=V exp{alBh — 1) ' (3.4)

Branches of the ambiguous functions in this expression are de-
termined as follows: g(€) > O when € > 1; the imaginary part of the
logarithm is equal t> 2 arc tg b; when £ — o, aré tg. b s 1/2w, Expreé
sion (3.3), together with (2.1), (2.2) and (2.7), gives the solution
to the problem at hand. Components of the stress tensor are determined
- from this by formulas (1.13). Let us note that with replacement of

£ by Ci andtj2 the magnitude of b should be replaced according to
(3.4%), where, correspondingly B = Bi and B = 62.

We pass now to determination of the rate of spread of cracks.,
Prom (3.3) it is simple to verify that components of the. stress tensor
and vector components of the rate of displacement are quantities

0(exp (-m8/Bh)) when R — w. Thus, tlie flux of energy at infinity is

absent. On the other hand; in enviromment of singular point z = -a
. stresses and the rate are quantities O(1ln r), where ¢ = [(x - VL +
+ a)2 + y2], so that work per unit time is O[r(1ln r)2] and seeks

cery together with r., Consequently, one may assume that the whole
flux of energy created in an elastic body by external forces P is
connected with the peculiarity et point z = 0, i.e., at the beginning

of the crack.

TET O Pe e
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Hence we naturally assume that work of external forces is wholly
expended on creafion‘of the free surface of crack.

We designate by T the energy per unit areg of the forming surface.

Then the rate of growth of surface energy is TV. This quantity
should be equal to the work of external forces per unit time:

H .
W= SP[%,—"] dz (3.5)
Due to (%.il4) and (2.7) we have

[?4_:!] - V{B’ Im W, (&) — T +ﬁg ; Im Wy (E:)} (3.6)

We place (3.6) in (3.5) and pass under the integral to variable

v= v (1<=¢)/¢; we obtain

7 ='2ﬁzﬁxh{’[2““gb S‘1+ ? ?lnbl“ e -

res- . S
23, ¢ ¢ bt o ud (3.7)
? vdy ‘ ) b,

v ) ’
1ed Noting that

| »

b4v vdy
Sl,,b__'“r',._ng*b

[ ]
we obtain from (3.7), taking into account (2.8),

L B 48— (1 + Bt
T = A Bsarctgtby — P (1 +BrY) arc tg' by (3.8)

4, Analysis of results. Let us consider first formula (3.8) in

T the limiting case h — w, Considering a/h < 1, we have, with accuracy

up to members of higher order of smallness,

_Yra . -
bn ViE arc tg b, = b, (3.9)

Substituting these quantities and expressions ﬁi and B? 'rom

(12.8) in (3.8), we obtain
PaW( Wy=

| LA
q =4(t—) - 5)" - - %) (1.1)

This expression coincides with the finding of [2] for a single

crack. In particular, equality to rero of the rcight side 1 (4i.1)

-awn 6
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constitutes the equation, determining the rate of propagation of

ce,
2 Rayleigh surface waves. Thus, in the
Pl S5, .
_ S S }/ case of the stationary propagation of
. . ’/ of one crack in an unlimited elastic
N medium its rate has a limiting value,
\\\.\ed
T &N \ equal to elastic medium Rayleigh velocity..
N\
N1 The second limiting case, which is
i obtained from (3.8) when V = 0y corres-
g g J . :
Fig, 3 ponds to the static problem
Pl _:farc tg[exp(na/h)— 1]‘/' a _cf ' Na m™
. T { (exp.(ria [ h) — 1)7r T o — o 21 te? [ex-p B i] } (%.2)
Hence when h — ® we obtain
. P _ . c:’
mT— " o

This also coincides with the result obtained in [2].
We consider now formula (3.8) in general form. Results of calcu-
lation in case A = |, c12/c22 = 3 for different values of parameter

a/h are presented in Fig., 3, where
P° = Pa'.(nuT)'h, Vo=V/e,

Meriting attention is the circumstance that formula (3.8) de-
termines in plane P°v° two families of curves, corresponding to two
different conditions of spreading of cracks: In one of them (the
lower one in Fig. 3) the velocity of cracks decreases with increase
of pressure; in the other, it increases, Formally this depends on
vhich turns into éero earlier with growth of velocity. the numcrator
or the deneminator of formula (3.8). It is obvious that the critical
curve, dividing these two Tamilies, is determined by simultancous

conversi n into zero of the numerator and denominator, Since the

T s AT R TS T N
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numerator turns into zero at a velocity, equal to Rayleights, the
critica® value of parameter (a/h), is determined from equation

2By arc tg? by’ — By° [§°- (B°)] arc tgtly = 0 (4.3)

Here

B’ = VT——_QFFT b =Vexp(ma /My —1  (a=12)
c, signifies Rayleigh velocity. When A = p we £ind (a/ht), = 0.9%4,
Critical pressure is determined‘for the found value of (a/h)* from
cxpression (%¥.2), In thi¥s case we obtain
. (—f";‘f'),—, =1.27

The physical meaning of the two conditions of development of
cracks consists of the following. The rate of stationary spreading
~f a single crack increases with decrease of pressure, Thus, if in
material under the acti-n of certain loads there appears and spreads
a2 crack, it can continué to develop after the loads are removed. In
the case of a larger nuiber of cracks such conditions are not always
possible, With greater distance between cracks, such that q/h < (@/h)*,
every crack develops approximately just as a single one. If, however,
the distance between cracks is small, so that a/h > (a/h),, the spread-
ing of every crack is substantially influenced by the other cracks.
Development of a crack as it were is restrained by compressive forces
acting from peighboring cracks.

From formula (3.8) there ensues one more important result. With
sufficiently small distance between cracks, when a/h > (a/h),, there
exists a limiting rate of spreading as P — ®, smaller in magnitude, or
equal to Rayleigh's velocity. For a given value paramcter a/h this
rate 1s determined from equation

2B, arc tg? by — B, (1 + By?) arc tg? b, == (ll A

In particular, if a/h > 1, then it is approximately possible t-

e a o ————




¥ 2

take arc tg b, =~ 1/2m, arc tg b, ~ 1/27, and from (3.8) we obtain

2%'::%(4‘*";_::){1‘[1‘(‘4?—:},—@;:]“'} (B.5)

When A = p the limiting value of velocity, determinéd from this

expression, is equal to 0.8 Cpe

A Submitted
15 October 1963
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ON THE DYNAMIC COMPRESSIBILITY OF.
HARD ROCKS AND METALS

3. A, Khristianovich and Ye. I. Shemyakin

(Novosibirsk)

Methods of dynamic testing of solids by explosive and
shock loading are the subject of many works, Works of
Soviet and American physicists [1-15] contain humerous data
on impact adiabats of solids and equations of the state of
these bodies up to pressures of ~10 megabars calculated on
this base. At the same time a comparatively small number
of works pertain to the range of pressures below 100-150
kilobars, which is of great practical and scientific
interest. To this range pertain practical blastings in
rocks; in this range there occurs transition of solids
from elastic to plastic and, possibly, to a hydrodynamic
state; this same range corresponds to a change of ground
pressure in the earth to a depth of 500 km, i.e., covers

¢ the region of depths of interest in geophysical applications.

In experiments in dynamic testing of solids by explosive
loading there usually is realized a state of stress, cor-
responding to a plane wave, In recent years there have been
measurements cf parameters of spherical and cylindrical
waves, appearing during explosion in hard rocks [11, 10].

In these experiments there were noted unexpectedly hLigh
attenuation of stress amplitudes: _amplitude decreased with
distance r according to the law r , where n = 1.C to 1.8,

As it is knorn, for an elastic medium in the case of a
spherical wave n = 1., Calculations of attenuation stress
waves, based on contemporary concepts of plastic flows of
solids (theory of flow and the theory of small ~lasis-pla.tie
flows) and about an elastic unloading wave, lead (o valurs
n=211171t%c 1,2,
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This poses the problem of more precise definition of con-
cepts of plastic flows of solids under rapid 1l.ading and loads
significantly exceeding the elastic limit, Consideration of
data of experiments in dynamic compression of metals in the
region of large stresses leads to the .same problem,

Below there is discussed a physical model of a solid
medium, in which during rapid loading there is revealed
significant internal friction. On the basis of this model
there are considered phenomena of damplng of spherical 'waves
in solids and results of éxperiments in dynamic compression
of iron and quartz in the waveé plane shock.

Till now concepts about the mechanism of damping of ampli-
tude stress waves with distance from the exp1051on were based
on an analogy with the corresponding phenoma in liquid and gas.

Damping of a plane shock wave in a gas or fluid is con-
nected with irreversible processes of compression in the
shock wave; behind the front of the shock wave the process
of expansion can be considered adigbatic. In solids the
1rrever51b111ty of the process of deformation in the load
zone is mainly connected witl plastic shearing strains and,
to a significantly lesser extent, with irreversibility of
volumetric strains; process of unloading in & continuous
wave is considered reversible and straing are considered
elastic., Irreversible processes causeé qecrease in the
propagation velocity of per+urbatlons in the load zone as
compared to the velocity of sound in an elastic medium., The
difference between these velocities directly determines the
rate of decrease of maximum amplitude of the wave. On. this
effect is based the term "hydrodynamic damping." During
research of propagation of spherical and cylindrical waves
in the frames of these concepts in principle nothing is
changed: the effect of hydrodynamic damping is imposed on

weakening of amplitudes at the expense of geometric divergence.

§ 1.4, PEstimation of the effect of "hydrodynamic damping" is
most simple for a weak wave (L. D. Landau [18]). A wave is considered
weak if pressure jump p or amplitude of stresses 0. is much less than
the bulk modulus of the medium K or modulus of compression K1 in the

direction of propagation of wave allowing for strength of the medium

S

In a weak wave, as follows from (1.1), volumetric strains are

small; it is possible to show that in a weak wave the propagetion
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velocities differ from the velocity of sﬁun@ in a medium at rest by
a magnitude of the same order as the strain.

In nard rocks and most metal waves with amplitude ~50-150
kilobars are weak, siace the bulk modulus has an order of :LO3 kilobars.

Attenuation of the amplitude of a weak spherical shock wave with
distance in liquid and gas [18, 19] is proportional to (r/Iﬁ_?)fl,
which gives comparatively small correction to geometric law r"1 (in-
stead of n = 1, usmally n = 1.1 to 1.2). Calculations of paramevers
~f ephorical waves in solids show that the effect of "hydrodynamic
damping" leads to norrections of the same order (n = 1.1 to 1.2).

Experimental -data [16, 17] about attentation of stress waves
in hard rocks during explosions of spherical charges indicate a faster
decrease of amplitudes; therefore we raturally think about the pre-
sence of new phenomena, which can appéer in solids and i.fluence
damping of stresses.

1.2. Let us consider a model of a solid, composed of "balls,"
~lose-nacked and strongly cemented together. During compression of
such a body there can occur both volumetric strain of the "halls"
and also slipping of them over each other with disturbing ¢f bonds anu
with friction. As "balls" in rocks wé can take separate crysiszls or
Plocks of the rock, and in metals — crystals or groups of neightoring
crystals with specially strong bonds between them.

Let us consider uniaxisl compression of such a medium in &
cylinder with rigid walls, stress along the axis of the cylinder G

and stress on the radlius Gg: We have
e = &

Under compression, depending upon the force applied, there can

be realized the following cases.

v Nl




1. TFriction between particles is great (cohesion is not dis-
turbed): in this case strain is elastic (or nonlinearly elastic)
because of compression of grains — "balls." In this case the ratio

of stresses . and 99 is determined by Hooke's law

6/ 0o, =4g, a=v/(1 —v) (v—Poisson's ratio) (1.2)
2. Cohesion is disturbed; friction between particle. 1is
negligible. Then
(de/0,) = a* =~ 1 (1.3)

which corresponds to a hydrodynamic state or a state of ideal fluidity

close to it:

0, — 0y = 21, (6, > v, 7, = const): (1.%)
3. Cohesion is disturbed, but friction of particles cannot be

disregarded:

o/ 0, =o* <1 (1.5)

This state of stress we call a state with internal friction.

When a* = v/(1 - v) there is a transition from the elastic state
to the state with internal Iriction; as a¥ — 1 the coefficient of
friction decreases; a¥ = 1 corresponds to the hydrodynamic state,

The mechanism of internal friction can be described if we intro-
duce the condition of plasticity in the form of the relationship of
tangent stress 7 = 1/2 (0. - 0g) (second invariant of the stress tensor)
with o = 1/'3(0r + 209) — the first invariant; this relationship may
be nonlinear, so that a* = ax (o).

Let us coensider dynamic loading. The velocity of sound in a
state of stress with internal friction for a¥* = d.* = consti and ¢ =

0
= K¢ will be

— 3K Y _ . 3 N L ’ . P e 1 L
a"’(EﬂTiﬁﬁ?ﬂ E=A+2p 5 Lamé parvameters). (1.t¢)




When a% = p/(1 - ¥) we have

a=ag=(A+2/p)j (1.7)
Here 24 — propagation velocity of the elastic wave
" When a¥ = 1, we have
- . a=cy= (K /pg)t (1.8)
Here ¢, - hydrodynamic velocity of sound.
If-a* devénds on 0, and the relationship of ¢ and & has a weskl
linear character, then, instead of (1.6), we have

3K
@ =niramd T

] <1 (2-9)

Let us consider a solid, for which ¢ = Ke (K = const) and for

which according t> experiment with plane waves there is established

T T . dependence o_(g) in a certain ran
kilobarss P, o, ) / r

27

\1k

T of stresses, which corresponds to

Iron « .
/] censtant velocity of sound durin.

|- [5.6] 4 : . loading and unloading.
== [7] ‘

-o- [f]—

On the basis of these data w

can make two equally Jjustified

/ . s
o0 hypotheses: the medium is in an

elastic state a = v/(4 - v), or i

‘ state with internal friction
gy 4
o
/ 7 a‘)é-_-_'u/(l.—'lj).

Consider now a spherical wav«

a5 o7 o € o . .
Fis. 1 & 6 propagating in this med:iwum.

If, during propagaticn of the wavs
cohesion between the "balls" is not disturbed, then strains in the
wave will be elastic and damping of amplitudes will follow the law

r-i. If the bonds are broken, there is a state of stress with
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internal friction, and damping occcurs [21] according to the law
r_(Q-a). This damping is connected with the work of forces of frictic
during releative displacement of particles in the divergent wave. This
effect occurs not only during build-up of stresses in the wave, but
also in the unloading zone. Considering demping of maximum amplitudes
in a spherical wave, it is possible to establish the elastic limit.
This effect is clearly seen in Figs. 1 and 2, where there are

civen data of experiments with plane and sphericel waves for iron,

fused quartz, granite and rock salt [17]. The authors of [17] note
that this dependence remains practically linear in that range of

deformations which corresponds to data in Fig. 2.

§ 2.1, Let us consider in more detail results of certain experi-
ments pertaining to plane waves, In experiments of dynamic (explosive’
loading of a test piece in & certain environment of the axis of a
cylindrical piece there is realized a plane stress wave, The stress
wave can have a shock nature, have continuous build-up or to disinte-
grate into a group (two to three) of continuous or shock waves, moving

at different velocities (Fig. 3a and 3b).
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In Fig. 32 is e "gtress — time" dizgram in steel [5], where
4 — time of arrival of an elastic wave with velocity 5.85 km/sec and
amplitude 15.7 kilobars; 3 — time of arrival of a shock wave with
velocity 5.1 km/sec and amplitude of 225 kilobars. In Fig. 3b is
the "velocity of surface movement — time" diagram for a piece of fus-d
quertz [13]: Dbeginning of recording corresponds to wave velocity
of B.97 km/sec; first shock wave has velccity of 5.15 km/sec and 2m-
plitude of 100 kilobars.
The state of stress is determined by the principal normal stiresse
L and Og and volumetric strain e&. In experiments we usually measure
the propagation velocity D of the shock wave and the rate of particio
displacement u, after which stress 0. and strain & are determined by
Hugoniot equations:
Gr — Gro = Po (D — up) (U — uy) (2.1)
e= g (e=1—%) (2.2)
Here index O designates quantities in front of the wsve, Tor
prepagation velocity D of the shock wave and velocity of scund a ve

nave

. s, s _ { dSr. 2 P
D-(Puﬁ) ' a_(-PT de ) (2.3)

Here o% = o?(s) — adiebatic dependence.

As noted, for weak waves differernc:

6, (a) o (b}
P2 F- of velocities a, D and a, hes the seme
-
L
- order as €. Relationships (2.1) and
(2.2) are exact for a shock wave any v
o= !
3% BE3 1 approximately satisfied (with oo upe oy
Bic, A, up to 82) ffor a continuoun we ko ohoed
wave [1¢, "i7.
by (2.1) end (2.2) we can rregoni exporime ool dete o e
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cumpiréssion of iron and fused muartz in the following form (Fig. 1).

As Tnollows Trom these data, the velocity of shock waves in this range
of stresses changes slightly, by magnitude of no more +than 10-15%,

To estimate deviation of the velocity of perturbations from the
velocity of souna in the elastic state the diagram of (Fig. 1) can be
presented in the form of two straight segments. Then in iron and
Steels slcpes of these lines correspond to velocities of perturbations:
with minute (elastic) amplitudes of waves they are 5.86-6.0 lm/sec,

and with large stresses [20] right up to 130 kilobars they are 5.1 to
5.15 ¥rfsec; in fused quartz they are 6.0 and 5.15 km/sec, respectively.

The presence of irreversible strains can be judged, if the de-
pendence Or(e) differs during loading and unloading, Without delving
into the mechanism of irreversible strains, we can set dependence
or(s) at the base of the theory of plane waves, but as one may see
from the preceding, without additional data, we must not base our
consideration of a more complex state of stress on this dependence.

I to supplement dependence Gr(a) we have data on relationships
a(e), it is possible to establish the magnitude of strain e, at
which a solid passes into a hydrodynamic state, This is possible
£ dé by comparison of slopes of tangents on curves o (e) and o(g)
for the same value of e,

2,5, I we turn to a model of a medium with internal friction,
then experimental data cn dependence or(s) can be interpreted as
follows.

Change of the propagation velocity can occur both because of non-
linearity of dependence

a*(o)=a* (1 +13),  |ws|<<t

and duc Lo nonlinearity of volumetric compression

17
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Dependence ¢ (e) allows to determine a,. Thus, in case of the

diagram Gr(s) for iron, having a break we have

do‘=d-— ‘+VA '(A=a_:a.‘.')

1—vw ag
Here A — relative jump of the velocity of sound. If, however,
change of the velocity of sound occurs continuously, which is ob-

served in many cases during tests of metals [40] and rocks [1€],

agt=q= (2.1)

Wave attenuation due to friction is determined first of all by
aé. IT nonlinearity of dependence Gr(e) is connected with ir-
reversible processes °f volumetric strain, the influence of these
processes on wave attenuati:n is determined by the relative difference
of the velocity 6f sound under load, i.e., it appears in additional
"hydrodynamic damping" of the wave.

2.4, As noted, experimental data on or(s) is insufficient for
a simple conclusion about the mechanism of irreversible deformavions.

Such information can be obtained either from experiments with
divergent waves, or from other experiments, supplementing data on
ar(s) with data about compression o(e) and friction (o).

As illustration we consider experimental data of Bridgman on
(o) (Fig. 4. line 1) [23] and data of Buchanan (Fig. 4, line 2) [»4].
Dependence t(o) has a form, characteristic for a mediwm wilh internal
vension: 1T increases with growth of o. Slope -f linc 1(4) can depceru
on the rate of loading &.

It is possible to assume that with high rates of loading Iricti n
no longer depends on the rate of loading and coefficicent - can Lo

determined from observations of weakening of awplitudes £ ovrosoe s 1o

a aphicrical wave, considering here the additionol «5fect 1
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hydeodynamic damping.

Experiments in spatial atienuation of stress waves in metals in
sphericel and cylindrical cases practically have not been discussed
in the literature. Here it is possible to give only certain data of
J. Rinehart [9] on damping of stress waves with axisymmetrié loading
of metals (imposed concentrated charge in blocks of iron or steel of
different thickness d) (Fig. 2). From these data it follows that
1pon achievement of the elastic limit the law of damping of maximum
stress charply changes: the exponent in the exponential law, some-
what larger than 2, becomes somewhat larger than one, although the
velocity of perturbations according to Rinehart remains 5.53_km/sec

The experiments of Rinehart were conducted in more complex co- -
ditions than a spherical explosion in a solid medium; this does not
gllow us to directly compare data of experiments [¢] with conclusions
o theory; accuracy of determination of Or and a is also insufTicient;
spparently, a = 5.53 km/sec is the average value of a when
o %0 kilobars and 0., ~ 10 kilobars.

More complete date were obiained during explosions of spherical
rharpes in hard rock (marble, granite, diabase, hard limestones 1167
cock salt [17]). 1In Fig. 2 are given data from [17], indicaliny
rious laws ot Jamping of stress waves in a state with internal fric-
tion and in the presence only of hydrodynamic damping, although,

Lhe authors of [17] note, the dependence or(e) remains practically
linear in the whole range of deformations for which these data are
wiven,

There i21a were obtained in the same conditions 11 whih thoee

io chiained Uhe theoretical law of damping of maximum siressen

~ r—(‘"i ), whiich allows us L calenlate valac v o) Ty oemala

1
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(2.4) we find v = 0.305, which is

20— .
"| f kilobars @ 1L-"
_ -1 m] very close to the value of v tor rock
10 e
: /:_,/”/ salt: v = 0.30 to 0.33.
- N C
- o ‘ - T 0 Thus, experiments in dynemic
Fig. b testing of solids (if results are &«

be used for calculation of parameters
of the divergent wave) should be supplemented by study of the laws ..
{amping of spherical stress waves or data on dependence T(5), obtsin o
in esperiments at different rates of loading.

3.1. Let us consider propagation of a spherical shock weve; bLt-
hind the shock wave front unloading occurs, but unloading must nci te
~onsidered elastic: -~ne should take into account internal friciicn.

For the unloading wav- "n the stress wave in a medium witih in-

Lternal friction we have

6— 0o =K (e — ), 35 — Ogo = a* (67 —Gr,) (%.1)
where the magnitudes with index O pertairn to the state at the bejinnineg
Af anloading.

At present there are no direct daeta on dependence T(v) durin
r+pid change of é. From certain data of Bridgman on the uchavi.r
~f t(0) during slow loading and unloading [23] it follows thst 1o~
pendence t{o) during loading is similar to the ceme during we o,
We determine the law of damping of spherical shock waves 7
“tresses in the range of pressures at which internal fricti u appeary,
For a conlinuous short wave we have [12]

g
Peot=G@®), 0° =4 . o =Ke{l+l)

mo
=rft-fE] -t wmy (5.0
Here r — coordinate; Kl — mcdulus eomproaoion: a0 - oot

treopy function,
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Let. us consider the simple case of a linear profile behind the
2k front of the shock wave:
G =C,(E— &) Ci = const
For a weak shock wave the propagation velocity in a medium at

. rest i1s esqual to

ng _dr i o\

p=g=at-y) (3.3)
! Determining dr/dt from (3.2) and eguating it to (%.3), we find
2 dX 1 Cif, . 1 C Y1 -

From this we obtain thé law of damping of a stress shock in a

medium with internal friction:

Gr C > l C '/' -
E.= ,:—".a [i+i-—{1 ’1-14] '(Ca = const) '(5'4)
_ As follows from (3.4), the shock wave of stresses attenuates

faster than the continuous wave,
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TOWARD A THEORY OF ANISOTROPLC CREEP

N, I. Malinin

(Novosibirsk)

Certain .- isotrcopic materials have the property of eniso-
tropic creep. {.isotropic creep will appeer during the
. action of mechani. '’ -~tresses in single crystaels alt hirsh
- temperatures, in reiir. ro-4 plestics [1], reinforced con-
rete, etc. During desigrirc o7 certain constructions !r
anisotropic creeping materials there arises the nec-csitly
of estimating the magniftude of creep in & body o r dioct-
ing, for instance, the distribution of stresses in it. U .-
fortunately, solution of such problems is hampered tv tne
fact that ithe theory of anisotropic creep is extremciy uvhi-
der-developed at present, Absent elso are experi - : 1 i
on research of anisotropic creep of real motcria’s,

Below .~ consider certain possible variaents of vecov il
of equations of anisotropic creep. The letter, on tbe o
hand, constituie a genersli~ation of equations of aiico-
tropic plasticity, and on the other, 2 generalizati.n o
dependences of isotropic ereep. In experiments lartin 7=
days we studied enisotropic creep during compression »f
gless-Tiber-reinforced plastic AG-43 (unifowrn stpenrth) o
at temperature of 30°C.

1. Works, devoted to research ot anisotropic ereap, are 1o

nurerous, In the work of Takizawa [2] there are oftercd {riviy er e

pendences of the thoory of linear herd 900 o enis be ol

—
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-

~onelisting off 8 peneralization of known eqguabi po o bty 0

Vonlierra, In monogrraph 3] there 1or 0 Fhe tooseibitioy o 0y -
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¢ potential type, whereas the potential of flow S it is propesed to

take the homogeneous quadratic fcrm

§ = Ciu0ion (1.1)

where Ci'k = C C

jk1 = parameters of materiai (C

ijkl = Cjirky’ Cigie T Cijra

since stress tensecr Oij is symmetric; C due to symmetry of

ijkl = Ck1ij
form (1.1) with respect to %5 and 0,,).

Unfortunately, the cited works on the theory of anisotropic creep
cannot satisy the researcher for the following reasons. In [2] it is
not indicated, even approximately, the number of parameters describing
anisotropir~ creep, and also nothing is said about methods of determ-
ination of parameters of material from experimentel data. The theory
of flow, for which in [3] there is offered a potential in the form .f

- (1.1), badly describes creep during changing stresses.

Contemporary theories of creep of an isotropic body constitute
a generalization of theories of plasticity. Thus, for instance,
equations of the theory of small elastoplastic flows for an iso-
tropic body are recorded in the form

&? = ¥ (T) o;* (2.2)

*
where sijp — plastic flow; oij — component of the deviator of

e

stresses; ¥ — function of intensity of tangent stresses T.

I we consider function ¥ (T) dependent not only on T, but also
on time t, then instead of (1.2) we will have equation of one of the
theories of creep — the theory of aging — where in these equations

ks p . . c c _
instead of Eij one should write €y (Eij creep).

J
Analopously we make generalizations of the Tlow theory of

lacticity, equations of which for an isotropic hody are recorded in

the form

(e®)y = A (T) oi* (Y =djdy) (1.3)
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If we consider A a function not only of T, but also of time %,

we obiain the theory of flow for creep; instesd of (eijp)' one shoulc

. Cy - s :
as zbove, write (eij ) . If it is considered that A does not depena

on t, but depends con €. . or or on the work of stresses. then we

ij OF Fi5
have one of the theories of hardening.

Among theories of creep the theory of heredity occupies a speciel
Q“ace. The theory of linear heredity uses the principle of super-
position, according to which deformations caused by the sum of sep-
ara-c¢ ctages of stresses Aoij are equal to the sum of deformetions

from each of Aci Here, the laws of creep have the form of lineer

i
integral Volterre equations with a variable upper limit. For the
nonlinear theory of I.~redity the principle of superposition no longer
is observed. Equations of .-. rnnlinear theory of heredity constitut
o generalization of linear equations, whnere in the corresponding
integral Vol'terra equations instead of functions oij(t) or aijp(t)
there are substituted nonlinear functions f(oij) [4] or fi(gijc) (5
Summing up what has been said above, it is possible tc state
thet the theory oi creep is a generalization of the theory of plas-
ticity. The theory of creep, in distinction from the theory of
plasticity, considers time effects. Equations of creep differ fror
~quations of the lheory of plasticity in that in the corresponding
terms, determining € (or *(€°)), along with stress (or some insarian

o1 stress) there enters time. Thus, every theory of plasticity cin.

in principle, be generalized for creep, if we consider funciions

¥ or A or their equivalents dependent not only .n cireasen, but =ia
conocime,

Usually the theory o plasticiby u:~- criferia of yieldineg it
7o oof the St, Venant critorion or the Von Mic @ pitert o,
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The St. Venant criterion of yielding was generalized for an
anisotropic plastic body by A. Sawczuk [6] and D, D. Ivlev [7j. The
concepts develecped by A. Sawczuk and D. D. Ivlev were generalized for
anisotropic creep by O. V. Sosin [8].

Unfortunately, the theory developed by i. Sawczuk and D. D, vlev
has the following deficiency. With rotation of the principal axes
the shape of the surface, depicting the condition of plasticity
(or creep), will change. Consequently, changed also will be numerical
values of parameters, in the equations of plasticity (or creep). De-
pendences of these parameters on angles of rotation are not fixed; in
principle they can be discontinuous functions [7]. Thus, for complete
characterization of the properties of anisotropic plasticity (creep)
of a material it is necessary to carry out a very large number of
experiments. In connection with this we subsequently will use the cri-
terion of plasticity (or creep) of Von Mises for the anisotrcpic body,
offered in [9].

The equation of the plastic potential is recorded in the Cartesiar
system of coordinates Oxyz, axes of which are connected with the
principal axes of anisotropy. In general this equation for an aniso-

tropic body has the form

S = Ciju0;;05 = const (1.4)
Coefflicients Cijkl constitute parameters of the material. In
peneral, criterion (1.4) contains 21 coefficients Cijkl' I{ plastic
flows are not accompanied by changes in volume, then the number of
parameters CiJkl decreases to 15, TFor an orthotropic body, incompres-
sible during plastic flows, properties of the material are described
by t parameters Cijkl and on the principal axes of anisotropy the

equation of the plastic potential is recorded in the form [10]
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S =0Celoy — ) + Cy (o — 02 + C; (0x — 0y)* +
+ 20,7t + 20572 + 205,10t = const (1.5)

where Cx""’ ny — parameters of the material. Here the rate of

plastic flow (sijp)' is determined by formula

(&) = S / doy (1.6)
In the case of imperfect plasticity S may also not be constant,
and by analogy with the theory of plastic flow of potential type we

can write
(&) = f (o) 3S / do; (1.7)

It is not "'difficult to show that the criterion of yielding
f‘(cij) for an arnisotropic body should satisfy requirements imposed &;
the condition of compre3sibhility or incompressibility of the material,
and also properties of deformeti n symmetry. These conditions will
be satisfied if as the argument of function { we take quadratic form
s” = Cijklaijokl’ as for the elastic potential (coefficients Cijkl
and (szkl in general may not coincide). Expression (1.7) will bLe

cignificantly simplified if we set f(cij) = ¢' (S). Here we will have
. T

Subsequently the theory described by equation (1.8) is generalize:

for the case of creep. For creep this equation has the form

N 0D (S, f) a5 I (s, t) L.
N = N T ) « 7

2. TFor creep of a body ¢ (see formuls (1.%)) will depeni
not only on S, but also on time. If S is considered & parsmetor
(~ti-h consideration is possible only when stress, ani consequenily
olso magnitude S preserve a constant velue during the perici f the

experiment), then for & creeping body it is possitle to 1 ~it v
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potential ¢ a function of time t, i.e., ® = &(S,t). If curves of
creep, obtained for different stresses, are similar, then function
¢ can be presented in the form of the product of two co-factors, one

of which depends only on stresses and the other, only on time, i.e.,

@ (S, ) =F(5)8* (1) (2.1)
Subsequently it will be shown that curves of creep for identical
samples of glass-fiber-reinforced plastic AG-4S, taken with different
stresses, can with a sufficient degree of accuracy be considered
similer. 1In connection with this we subsequently will use the hy-
pothesis described by formula (2.1).
As 6%(t) in theories of creep they frequently use an exponential

function [#], i.e.,

ox(t) = t" (n — parameter of the material). (2.2)

Function @(S) is the dependence of the rate of creep on stress.

For linear creep it is possible to set

F@S)=S§ (2.3)

For nonlinear creep two cases are possible:
aa°/60=0 when ¢ = const; 6&‘/8«!=coust4=0 when ¢ == const (2.4)

where in the first case they usually use an exponential function of
the dependence of creep on stresses [3], .and in second one in the
form of a hyperbolic sine wave [11-12] (or cosine wave), so that, for

an anisotropic body it is possible to write

F@S)=8" F(@)=AcVS§ (2.9)
In these dependences the quantities m characterize the material.

-

3. If it is considered that dependence (1.8) is also satisflied




— el " L 2t ReA 2V - o & y
L 5 Y- Wl‘”?“@ﬁ}m%m P T A st ST AN TR

for alternating stresses, iwe arrive at one possible variant of the
theory of flow during creep. If stresses do.not change, equation
(1.8) for creep can be written with allowance for (2.1) and (2.2) in
the form
() = 0% (1) OF / doy;
From this we easily find the equation of the creep cur., ., having

form
¢

& =£%6(t) (O(t)=SQ‘(t)d¢) (3.1)

If it is considered that equation (3.1) is also useful for
stresses -changing in time, we obtain one of the variants of the theury
of aging.

As it was shown by Yu. N. Rabotnov [5], the theories of aging and
flow have a deficiency, consisting of the fact that their equetions
are not invariant rélative to the beginning of the reading of time.
Therefore, these theories cannot give satisfactory solutions to prob-
lems when the loads change rapidly in time. More promising in this
respect are theories of hardening and heredity.

According to the theory of hardening, in distinction {from the
theory of flow, function @ (see equation (1.9)) depends on the set of
parameters characterizing the state of‘ﬁg?erial [13]. In particular

cases the determining parameter (along with stress) can be consideret

creep [14], work stresses in creeps [15], and others.

Thus we consider possible variants of construction of the theory ~F

hardening for an anisotropic body. Let us assume that magnitude ¢
in equation (1.9) depends on certain functions of stresses anl

strains, i.e.,
D = @ [E (o), § (e¢")] (5.0

30




Functions &(Oij) and C(eijc) play the role of stresses and strains,
respectively, for the one-dimensional case; therefore we call them

generalized stress and strain. TFor calculations in the case of a com-

plex state of stress it is essen®tial that equations (1.9) and (3.2)

lead to a dependence between £ and ¢ having the same structure as
formula (1.9) for uniaxjal extension or compression. For an isotropic
body as € it is convenient to take the intensity of tangent stresses,
as € — the intensity of shearing strains during creep.

For an anisotropic body functions € and { should satisfy the
requirements imposed by conditions of symmetry of deformation proper-
ties of the material. For material incompressible under creep to them
we join the condition of inccmpressibility. As generalized stress it
is possible to take, for instance, S, which, as already noted above,
satisfies the set requirements. t is possible to show that require-
ments concerning forms of the relationship of { and £ will be satis-

fied if as generalized strain we take i.nction

¢
0= { G up 2y . (5.3)
[}

Here coefficients bijkl one can determine from equations

biik Ciin.acklor = Cmnpr (3 . 4 )

Between coefficients bijkl there exist the obvious relationships

bijn = bjt,  bijm = bijie, by = by
In general, system (3.4) consists of 21 linear equation with 21

unknowne b, Foer an orthotropic bhody we have a system of ¢

ijkl-
equations with 9 unknowns, disintegrating into 2 system of 6 and 3
unknowns.,

Let us assume, following [15], that creep depends on the work
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of stresses in creeps a. Here the equation of creep can be written

in the form *

(o) = U (@) 3V (5)/ doy = U (a) V" (5) 3S / oy (3.5)
For a hereditary medium it is possible to géneralize the non-
linear equation of M. I. Rozovskiy [4]. This equation for an aniso-

tropic body.will have the form

N . [}
o= (0.0~ 520 = (0,¢—0) FF ) Fdo (3.6)

—c0 i —0 )
!
For a linear body F (S) = 1, and equation (3.6) is a particular

case of the more general equation of Tekizawa [2].

4, A thorough check of the theory presented in the preceding
secticns can be macde in exp: riments during a complex state of stress.
However, certain conclusions can also be made on the basis of ex-
periments during simple extension (compression).

A limited check of the developed theory was undertaken on
uniform-strength glass-fiber-reinforced plastic AG-4S, for which in
conditions of uniaxial compression we took curves of creep.

Uniform-strength glass-fiber-reinforced plastic AG-US is a non-
homogeneous material, glued together from alternating layers of glass
fiber, where the direction of fibers in adjacent layers are mutually
perpendicular., Anisotropy of deformation properties of glass-fiber
plastics is a particular case of structural anisotropy. To descritr
elastic properties of a structurally anisotropic body, as shown in
[1iv], it 1s possible to use the framework of the theory of continucus

physical anisotropy. This was confirmed in a number of works (for
!

instance, in [17]), in which it was shown that the nonhomoreneity onn

*Fquation (3.5) was offered by Yu. N. Ratuinor,
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layered nature of a material do ..ol play an essential role, and
elastic proparties of glass-fiber plastics are described by the same
equations as for s0lid anisotropic media.

As for plastic properties and also creep of structurally aniso-
tropic bodies, for them the framework of the theory of physical aniso—)
tropy frequently is unsuitable, and it is necessary in every concrete
case to consider peculiarities of construction of the body [16].
Therefore, the t.ieories reconted above can be considered applicable
to glass-fiber-reinforced plastics only as a first approximation.

As has been noted, e.g., in [18], during experiments on com-
pression it is necessary to pay special attention to centering of the
test plece relative to the applied force. Centering is more easily
ensured for short test pieces. But for short pieces essential influ-
ence on the results ¢f tests can be rendered by non-uniformity of the

- state of stress near faces of the test piece, for which the problem
of selection of optimum flexibility of the sample in compression ex-
periments is of essential importance. Therefore, preliminarily we
conducted a experimental check of the uniformity of the state of
stress by section and length of the sample. The test piece had the

S shape of a rectangular parallelpiped with a cross section 14 x 14 mm
and length 30 mm. TFor loading we used a reverser, created by the
author of [18] and modified by us.

. In the first series of experiments on each of the lateral faces
near the center of a piece of uniform-strength AG-4S there was fastened

o . a strain gauge with a base of 20 mm, Readings of the strain gauges
were fixed by an eight-channel strain gauge installation
g BANCh-7M, 1t was established that readings of the strain pauges

dirrer by not more than 7% and calculated eccentricity turned out
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to be minute.

In the second series of experiments we estimated error caused
by friction on faces., On one of the faces of the piece there were
fastened four strain gauges with a base of 5 mm., At the edge of
transducer 4 the paper sublayer was cut away as much as possible and
the transducer was fastened to the actual edge of the piece. Strain
gauges 3, 2 and 1 were glued approximately at distances of 1/8, 1/4,
and 1/2 the length of the sample from its end., Readings of trans-
ducers 1-3 during tests practically coincided; readings of trans-
ducer 4 differed from those of the first three by not more than
6-7%. If this deviation is caused by the influence of friction on
the faces, possible error caused by non-uniformity of the state of
stress in the sample will no* exceed 0.8-1.0%. These results are
in qgualitative coqformity with the data of Binder and Miuller [19],
establishing identity of diagrams of compression and extension in
very short samples for a large number of glass-fiber plastics
(change of the crodss sectional area of the sample during its ieforme-
tion was considered in [19]).

Tests for creep were conducted on machines described in [ZC] at
a temperature of 30 % OfBOC. Control of temperature was through a
contact thermometer. Samples were cut from one block of uniform-
strength AG-4S. Axes of the samples had different directions in
space, i.e., angles ¢ and ¢ (Fig. 1) were different. Axes x anl! y
of the coordinate system are parallel to directions of the gla.s
fibers in adjacent layers, axis z is perpendicular Lo the layrrs
(direction upwards).

Elastic moduli for different angles ¢ and ¥ coull be interminedi

by the magnitude of elastic deformation, develojed practically
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instantaneously at the mouwent of loading, or during unloading.

Furthermore, it was possible to calculate

71 , ) . . .
Tﬁtpwce elastic moduli from the diagrams of compres-

3

35y z sion in Fig. 2 (where there are given curves

; -2
NT4
y ’Vf . of deformation of glass-fiber plastic AG-4S:

a) =0, ¥ =0; b) 9 =0, ¥ =90% ¢c) o=
= 45% y=0; d) o =145 y=15° ¢e)o =

= 450, Y = 300). Experiments, results of which are presented in

Fig. 1.

Fig, 2, were conducted as follows, Load was applied in small equal
portions and at equal intervals of time from zero to a maximum value.
Strain was recorded after the addition of each hew step. After the

last step of load was applied, we recorded creep for 1-2 days.
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m% ﬁwM)ﬁgheMM) @%e%ﬂﬁ
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Fig, 2. ?

Horizontal area in the diagram of Fig. 2 thus corresponds to creep,
built-up from the moment of termination of loading to the beginning
of the load. After expiration of 1-2 days we produced unloading,
the diagram of which is also given in Fig, 2. From the diagram of
loading it was possible to determine the modulus of compression.
lor samples cut in direction » = ¥ = O the modulus of compression
turned out to be equal to the elastic modulus, determined during
rapid application of load.

Tor angles ¢ and ¥ = O the modulus, calculated f{rom diagrams of

the type presented in Fig, 2, turned out to be 10-25¢" lower bthan

Y
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during rapid loading. These divergences are caused, apparently, by
the influence of creeps, built-up in the period of loading (=3 min).
Curves of creep of uniform-strength AG-4S for samples, cut at

different angles, cduring loads changing in steps, are presented in

Fig. 3 (where (a) ¢ = 0, ¥ = 0; (b) © = 0, %= 90%; (c) o = 45°,9 = 0;

(d) ¢ = 0, ¥ = 5% (e) o = 45°, y =145 (£) @ = 45°, y = 30°}. On
the basis of analysis of data presented in Fig. 3 we established that
the dependence of creeps on time during constant stresses may be
expresced by formula

e° = C™ (%.1)
where C — parameter, dependent on stresses ¢ and angles ¢ and ¥. Com-
paring formula (4.4) with (1.9), we see that function ® is presented
in the form of the product of two co-factors as (2.1), of which one
depends only on stresses, and the other depends on time,

With respect to the dependence of creeps of glass-fiber plastic
on stresses it is possible to say the following. The best way of
satisfying (with stress ¢ constant during the period of experiment,
the latter can be considered a parameter) the dependence of e on o
is in the form of a hyperbolic sine wave [12], With small loads, in
connection with the fact that for small a sh a = a creeps
e are approximately proportional to stresses, which is confirmed by
[21]. During our check of the theories developed above we shall
limit ourselves to the area of linear creep, i.e.,, we set F(S) = S,
I'rom the graphs presented in Fig. 3 it is clear that e is apj rovi=
mately proportional to o everywhere except the curves in Fig. 3a and

¢ Por stresses of 10 and 5 kg/mmg, respectively.
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From the graphs in Fig. 3a, b, c,

and d 1t is possible 1i¢ calculate parame-

ters C, = Cy (since densities of reinforce-

ment by glass fibers in directiors x and y

are identical), C

22 Cyz = sz and ny. As

a result of analysis of data for glass-

fiber-reinforced plastic AG-4S (uniform-

strength) at a temperature of 30°C we ob-

. — - oA -5‘, —
tain values CX = Cy = 10,720 7 Cz =

— -~ "5. - . —5 — _
= -9.35:107%; €, = 2.0107°, €, = C,. =
2 -0.2

14.2.107° kg™ tim®hours 02, With the nelp

of eguations (1.9) taking into account

(1.5), (2.1), and {4.1), there are con-

structed curves of creep (theoretical) for

angles ¢ = ¥ = 45° and o = 45°, v = 30° for

stresses of 0.67, 1.33, and 2 xg/mmg, de-
picted in Fig. 3e and f by dot-dash lines,.
|
t, hr Lo )
0 20 40 Here, for the same stresses there are
56% (r) [g-28 given experimental curves., For diraction
z ol '
a0 4129 AT ® =Y = 450, as one can see from Fig. >e,
{ AAgadl | gz experimental curves correspond well to
] o ] o
Q04 ,
« g theoretical ones, For ¢ = &SO, v = 309
ey e MM -
<67k
¢ I . errors are somewhat higher and reach 25%.
- I)] ] 122 .
uo 80 . .
- However, these errors are still small as
Fiee, 3,

- compared with errors which could be ob-
tained by ipnoring the anisotropy of creep.
For checeking above-described theory for variable stresses, on

one oF ramp les 'rom 2ach series we formulated experiments in which
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load upon the expiration of a definite period increased in stages.
Curves of creep for loads varying intermittently are presented also
in Fig. 3. Here the dash lines plot "theoretical" curves of creep;
here we used the hypothesis of hardening of Yu. N. Rabotnov, descril
by equation (3.5) taking into account (1.5), (2.1), and (4.1). De-
pendences U(a) and V(S) were selected in the form of exponential
functions, i.e., U = ka™® and V = Sﬁg for AG-4S we cbtained values
a =14 and B = 5, Dotted lines plot "theoretical" curves of creep
according to the theory of heredity -described by equation (3.6)
taking into account (1.5), (2.1), (2.3), and (4.1). From Fig. 3

it is clear that experimental curves are close to theoretical ones
everywhere, with the c<xception of the region where stresses are too
high.

(A1l experiments, results of which are shown in Fig. 3, were
repeated. Creeps differed in parallel experiments by nol more than
15%. <he relatively small magnitude of scattering was, apparently,
caused by the fact that samples are cut from the same plate.)

Analogous calculations were carried out for the theories of
acing and flow. Here we obtained the already known fact that therce
theories satisfactorily describe the process of creep only during
~moothly-varying loads. During sharp changes of stresses the theor!
ct aging and flow give results significantly deviating from experime

Subsequently it is necessary to create a more universal theovy
of creep for reinforced plastics, which should consider features of
structural anisotropy of these materials, different nonlinear effccl
ant which would, furthermore, be useful for description of the be-

havior of materiat during non-monotonically changing loads, a« for
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instance, in [22].
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n, ON SINGLE-COMPONENT BEAMS OF LIKE-CHARGED PARTICLES

V. A, Syrovoy

(Moscow )

By single-component is understood flow in the direction
of one of the coordinate axes (for instance, in the x1-
direction) of an arbitrary orthogonal system of coordinates
xi(i =1, 2, 3). Below, the question about coordinate
systems gllowing such flows is investigated. It 1s shown
that in the two-dimensional case (§ 2) single-component
flows are possible only in three orthogonal coordinate
systems: Cartesian X, y, polar R, ¥, and helical 94» do-
In three-dimensional space (§ 3) there are considered
coordinate systems for which

g=h @ hE)hE), gu=kE@EK@E,2), g=IE)L,)

Here, to the three cylindrical coordinate systems,
corresponding to the shown two-dimensional systems, there
are added spherical coordinates r, 8, ¥,

PR AT AT Y

§ 1. Pormulation of the problem and fundamental equations. A

monoenergetic non-relativistic beam of like-charged particles in the
stationary case in the absence of an external magnetic field is
de scribed, as we know [1, 2], by one nonlinear fourth order differen-

tial equation for W — action per particle mass, In the arbitrary

A » i » - . 3 -
curved system of coordinates x (1 =1, 2, 3) the mevric, in which there

is piven by relationship

dS® = gy do? dat (1.1)
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this equation, has tha form

w 3

o | VEe ai’( )|} =0 (1.2)

Clarification of the question of those orthogonal systems of
coordinates which allow single-component flows is the subject of a
series of works [3-8]. However, their goal was to obtain necessary
and sufficient conditions for the possibility of a single-component
flow in the xi—direction (abbreviated as x1~flow). The question of
the exiétence in the given system of coordinates of xl—flow was
solved by means of application of developed criteris to the metric
tensor of this system. It is clear that the number of coordinate
systems satisfying these criteria could not be established because
with such an approach it was necessary to act by trial-and-error.
Thus in [6] they studied eleven curvilinear coordinate systems,
encountered in the theory of electromagnetic fields,

In [2, 3] it is shown that in the case of flow in xl-direction

equation (1.2) takes form

J(z)w'h (:::;t + aég)' o« _dw_ + h(z)uh = F (2, D)

1 (@) =[(g")Pgngnl™ h(z)= (,..): a: (VZ’g 2 )‘. w= (ﬂ) (-3)

Here F(xz, x3) is a certain function, appearing as a result of

integration with respect to xl, and f(x) = f(xi, x2, XB)

Since
components of the metric tensor, having in orthogonal coordinates a
diagonal form, depend, in general, on all three coordinates, and
W= w(xl), on g, (h— fixing index) there shold be placed certain
limitations., ©Sufficient concditions of the possibility of xi-rlow

o were obtained in [7] proceeding from the requirement that equation
(1.3) be an ordinary differential equation for w, and consist ¢t the
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{following:

f(z) = ® () F (&, 2 + 6 (2)
i (z) h (2) = ¥ (29) F(2?, &) + H (2) o (2.h)

For w we have equation

O (v + O @ + ¥ (D =wh (1.5)

Here ¢, ¥ — certain functions of xi, and G, H, and w are connected

thus:

G (z) dw
“ﬂmm+&m%+H”W—o (1.6)

When G = H = 0 formulas (1.4) determine conditions, fixed earlier
in [3]:

f(z) = ® (2') F (2%, 29), h(z) = ¥ () (1.7)

’ Conditions (1.4) and (1.7) pertain to twogqualitatively different
classes of flows., PFor satisfaction of boundary conditions on the
emitter the solution should contain two arbitrary constants., If,
however, on the metric there are imposed limitations (1.4), then it
will have not more than one arbitrary constant., In this sense,
solutions for which (1.4) is satisfied are degenerate. Solutions

of this type were validly contrasted in [3, 4] to solutions, describing
single-component flows from a surface on which there are realized
conditions of thermal emission. Actually, expressing w" from (1.6)

and substituting it in (1.5), we have

(1.8)

I*

[@ @) - 220 )] 25 +[¥ ) ~FE o @)]w =

V

gl

Requiring, as above, that (1.8) be an ordinary differential

cquation for w, we obtain

%7 b bt — oy ~ ™ oy T, X N v
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o (@) - 2B ¢ () = o (29 + U (3)

H (z) (1.9)
¥ (=g ® () =B (=) +V (2)
@) EHBEw =2, U@V @ =0 (1.10)

It is easy to prove that solutions of [9, 10] given in [4, 5]

W =z, ) =Y (-9,
2 Z=ReQRilnscz) (=ztiy (1.11)
simultaneously satisfy equations (1.6) and (1.10), They correspond

to the case when U = V = 0 and

I=1/g=0 (") F(z®) + K (z')L (=" (g =18

For the first of them ¢ = L = 1; for the second & = 1., In each
of cases (1) and (2) solutions (1.11) will, apparently, be the only
possible ones,

Subsequently we will be interested in systems of coordinates,
for which we have conditions (1.7), and, consequently, nondegenerate
solutions,

Besides fulfillment of conditions (1.7) it is necessary that
the metric be Euclidean. This requirement is expressed by equality

to zero of the Riemann-Christoffel tensor [11]

Rx.’ru = 0 (j‘ . 12 )
or of the symmetric itensor of second order Slj
8% = (48')_l¢wejm "Ritmn, = 0 (Rprst = gpmR7Trat) (1 . 13’)

Conditions (1.13) are called Lamé identities and in detailed

notation have form [12]

28‘lngm alngmalngm_alngcmalng‘m_a!ng,"malng.ﬁr Z0 4 1)
axPoz" &P e =P 9z o' 0P (1.3

44

e e e T A o N Gl
— - = % ™ Y -




N

Pinge;  Olnfeq 3 | Laa gInggy  Olngg 5 &
g“‘[ @) P R ]+g"“[ @ = e.a] +
\ (1 d 15 )
+ g —— %8aa gBB
2% "

Three conditions (1.14) unite identities Reqory = 0, and three condi
tions (1.15) unite identities RﬁaaB = 0; here a, B, v — fixing
indices and a # B # v,

In §§ 2, 3 there is an attempt to obtain a solution of equationsu
(1.44) and (1.45) during fulfillment of conditions (1.7) in a plane
and in three-dimensional space. Analogous research for the Schroedinge
equation was conducted by Eisénhart [13-15]. Linearity of the
equation under analysis facilitated complete solution of the problem:
in [13-15] there are shown eleven curvilinear orthogonal systems
in which the wave function of a particle can be presented in the
form ¥ = ?Yi(xi). Below there is considered a more specific problem:

there are found systems of coordinates in which W = W(xi).

§ 2. Plane flows, Without loss of generality one may assume

that an arbitrary orthogonal system of coordinates in a plane is given

Ly expressions of form [16]
D=Ref(s), Z=Imf()) (=z+i) (2.1)

Here f(z) - certain analytic function of complex variable z.

In this case

L’n=6’u=V§ €=legul (2-2)

Using (2.2), we obtain conditions (1.7) in the form

w |-

=0 FE), VEAE=YE)  (a= oy + o) (2.3)

@ T e
All equations of (1.14) and (1.15) are satisfied identically,

with the exception of one: 333 = 0 or R =0

1212
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WD =[5+ (L] (2.1)

—

5)
This equation and the second cordition of (2.3) can be presented
ndi- in the form
RERTE/ AN g\l _ A/ ag\?
wlo) +EE =Y ae=[(EE) + (3] (2.5)
ns . -Using the expression for the determinant of the metric tensor from
. (2.3), we obtain equations for determination of @ = @’1, £f=F7L and :
nge r g ‘ "I. s - ’g- lr« /I’
%"—"y;‘.‘—,r-_—'b’, %——‘%—,—r—: ~"_I—+_Ir=6‘ (b, 8 = const) {(2.6)
The first of these equations shows that f ~ exp (bxg). Substi-
tuting this expression in the second equation of (2,6) we find that
6 = 0., Conhsequently, ¢ ~ _.p (axi), and ¥ = a° - b=, Thus, the
general solution of equations (2.5) has the form
g»=1'exp(a:c"+pz*), T:al,a,l_bﬂ' (a=—a, B=-b) (2'7)
When v = 4, @ = B = 0 we obtain Cartesian coordinates x, y; when
n

Y=212and ¢ ¥ 0, B=0ora=0, B#£O expression (2.7) corresponds
to coordinates 1ln R, ¥. Spiral coordinates Qs Qp are determined by

) formulas (2.1) when
J@ =0+ ib)/ b2+ b Inz (51,183 = const)
Ir. spiral coordinates

g = (b + by exp [4 (bg, + bagy)] (2.3)

el 2 2,2
It is clear that when v = (b, + b, ), oY

(2.7) passes into (2.8). 1In each of the enumerated coordinate systems

Q = Hbi, B = 4b,, formula
single-component flows are possible in the direction of any coordinate
axis. Emitting surfaces can be plane x, y = const, cylinder: R =

= const, half-plane ¥ = const, spiral cylinders s Qp = coust,  iers
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particles move in straight lines, circles or spirals.

§ 3. Three-dimensional flows. Conditions of a space being

Euclidean (1.14), (1.15) in detailed notations have form

2P2s' + PiPat — Pa'pst — pilpd = 0 (3.1)
- 2pis? + popst — b’ — patp =0 (3.2)
2P’ + PP’ = pip — piip = 0 (3.3)
m . . . dingy, N #In g, |

Pe= a* ' Pu”= az*ax!

8’xa O%xn 11 982 0gss 9g:2\* | g .
[(61“ NEPSE ] —8 hmr T & [( ) T o oi:a]""

e (aee) + Semoem) (3.4)

2[ 265 4 3@] (%) 2paden) g Gendes |
+ i)+ e oo
IR B [ ST -
o) + @H (5.6)

Here there can be presented the following cases:

1°0 prE0, pl=pt=0; 2. pl=0, p?=pst=
3. pt =0, Pt =90; &£. pgt =0, PO

Final results in the three-dimensional case can be obtained if
we assume that

8u = hy (Z) by (2*) 13 (P), £rn =R () K (2, 2Y), gy = I()L (2", 29

The first conditicn of (1.7) is satisfied only when K and L are
presented in the form of the product of functions which depend on xi

3

)
and x7, x:L and x°, respectively. Introduction of new variables is

possible in order to get
Il (e (.7)
%R
o}

17, In this case, on the basis of what has been said, one should

consideyr that = 1, Tre second condition of (1.7) is here
811
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satisfied identically. Using the first condition of (1.7) we obtain

a solution of equation (3.2):
8 =VO (@) S (28, ) + T (2, 2%) (3.8)
Then the following noncontradictory combinations are possible

N P'0, pi+0

8 pt=0, px’#O} P 0

l’ Oo Sl
a) P'F0, p =/=0} 30,

B P'=0, p*=0
@) When p23 # 0 equation (3.3) gives for 83
83 =V O @) U (22, 2) +V (2}, D) (3.9)
Solving equations (3.5), (3.6), we have
En= la(a, 2) 2t + B (&% D), g =y (2% 2°) 2 + 8 (22, D) (3.10)

Analyzing different situations, conceived of as possible for
simultaneous satisfaction of (3.8)-(3.10), we find that only one of

them has meaning, T =V =0 (or # =0 = 0), Thus
8u = i) En =;(zl)2S (zt’ z’)r £ = (zl)z U (zi’ I’)

Functions S and U are connected by equation (3.%4)

ns U _8lnUSIU | 3lnUS S
2[(8::4)=+(8z’)2]+4US— P = ah Rl (3.11)

Assuming that (3.7) is valid, i.e., S = 8(x°), U = U(x°), we

obtain instead of (3.11)
(28" - ' (In 8)']1 + 20" — U’ {ln UY'] + 4US = 0

Considering that p29 ;é 0 and, consequently, U ;é const, we have

the sole possibility Tor which this equation exists
S =1, 2UU” — U™+ 4U3 = 0 (3.12)
Solving equation (3.12), we obtain

&y =1, €n = ('), £y = (2 sin 2% (3.12)
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Formulas (3.13) determine thie metric in spherical coordinates r,
8, ¥. The considered case shows the possibility of r-flow.
B) All conditions of the space being Euclidean, except- equation
- (3.4), are satisfied identically. From (3.8), (3.9) and p,° = p,” = O
it follows that ® = 1, T =V = 0, g,, = S(x°, x°), £ss = U(x%, x°).
Conditions (1.7) here are satisfied, With the same assumptions

as in the preceding point, we obtain formula (1.1) in the form
dS® = (dz)t + S () (@20 + U (2) (d)
Introducing new variables €, 1, ¢ by formulas
E=2, d2=VUEMm, d&=V5@dE

~\
we change the expression for dS(¢’ as follows

dS® = dt* + U (n) § () (dn? + d0?) (3.4%)

Formula (3.14) determines the metric in a certain cylindrical
coordinate system, where flow is carried out in z-direction (§ = z).
Since in Cartesian coordinates x, y, z flow is possible in the direction
of any axis, the form of functions U and S may not be of interest.

Case v) leads to the same result as a),

5) Considering (3.7), we obtain 8 = 1. These are Cartesian

coordinates.,

O

2°. In this case 8o = 1, and possible are the following

noncontradictory combinations
1 0' 2
a  pisk0, p,’:}:O} ; N PO pt+£0

= O, 1 3 = 3=
. B p'=0, pt=0 Pe % pg‘ +0, p,’ 0rp:
x) Py = O' Py = 0

a) Equations (3.4), (3.6) give for g,4 and &3 expressions of
form

= la(@, D)2+ (2, D), gy = [y (2, &) 22 + 8 (2, )P (3.15)
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The first condition of (1,7) is satisfied in two cases:

M B=B=0, gu=(P8E,), gu= (U2
@ gy ==8us=1(@)]0a() 2+ B (D)

In the first case equations (3.1)-(3.3) are satisfied identically;
the second is valid when 9231 = 0, i,e., when a ~ B, and thus cc¢. icides
with case (’1); Functions U and S: are connected by a relationship:
" obtained from (3.5),

dlnUS3U , alnUs 3s
[(az‘)’+(0z')']+4aq" i mi T Tap a3 a8

which, with fulfillment of (3.7), gives a solution in the ferm
w=1{(2% =1 & = (z*sin 2 (3.16)

Formulas .(’3.16) determine the metric in spherical coordinates

r, 6, ¥ with flow in the 6-direction.

1
B) In this case &9 = S(x s XE), &y = 1, 835 = U(x~, XB), where
for U and S. there remain equation (3;5() and conditions (1.7)
as dlnUS U , dlnUSaS: 7
[(Gr')’+(dx‘F] 9zt azx"*‘ B 98 (3.47)

With fulfillment of (3.7) the first condition of (1.7) is satisfied

identically, and (3.17) &nd the second condition of (1.7) take the

form
20°=U(n Uy = — 28"+ 8 (InS)'=a, 25"—3S"(In8)'=b (4,b=const)

Joint soluvion of the two equations for S shows that S = (XB)Q.

Consequently, a = O and U = :(xl)g. Thus
dS® = (M)t + (dz)t +(2'dD):

Introducing new variables from formulas

1 == bl-l V bl’ + b” ebt‘h’ 2! = ‘z"] z’ = b’—l Vblz -+ b” ebst
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we obtein for dS( ) an expression, determining the metric in a spiral
cylindrical coordinate system. Here flows in the Q.- and q2—directio@s
are pcssible,

v) Solving equations (3,4); (3.6), we have

fn,=la (2, 22 + B ), gu=l (@) 2+ 8N (5,70
The first condition of (1.7) is satisfied if B = & = 0, and

L) = oy (xh)es(x7).

a(x Thus, the solution can be sought in the form

En= (2S5 (2), gn =’i‘. &= ()

Just as and in a), there exists the possibility of fulfillment

of the first condition of (1.7) for 819 = g33; from consideration of
(3.14) it follows that this case is included in the preceding one.

Equation (3.5) takes form ((3.12) for S. Thus

dS = (2% sin Ldzl)? 4 (d2?)? + (22dz)?

This corresponds to flow in the ¥-direction in coordinates r, 8,

5) In this case g., = 1, 8,4 = %, Solving (3.5), we obta
22 23

In

gu = la (&, 2% 2 +B(z", 2P

The first condition of (1.7) exists in two cases:

@) B=0e=(PSE =), @ gu=Il()sI+ B (=31

The first of thém contradicts the initial assumptions,

since
from consideration of (3.1) it follows that p21

.p31 = 0. In the
second case solution of (3,1) and (3.6) gives for 811

£ = (az? + )2 (2 = sonst)

We now introduce instead of x2 and x3 new orthogonal coordinates

g = zl, 7 = az? - 23, {=— 24 as®
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In the new coordirates
dS® = ypdz? &- drt + dO* (3:18)

Formula (3.18) determinés the metric in coordinates R, ¥, =z
witlr flow in ¥-direction. Considération of n leads to the same result.
3°, Ve immediately consider that we have limitation (3.7).

Then, requiring fulfillment of the first condition:of (1.7), we have

m=5E) fu=T(), fu=U()V@EY

Considering (3.3), we find that there -can exist the: following

cases:

@ (nS)/(nV)y =a (nT)/(aUY=1—a (U, V0, aq= consty ?

® U=T=1, g=8@@), =1 =V () (7+0)
m V=5=1, g, =|, m=T(z), &=U(z) +0
® U=V=1 g,=8() =T etn=

Equations (3.4)-(3.6) lead to expressions

(?V' '-,-,V'f'/V) = by, T (WUy=->
T QU — U U)=U, V) =—c @ecd=const)
28° — 8§/ 8 =4, 2 — I T=—d
All cases, with the exception of v) for T = 1, repeat already
kndéwn results,
1,2
)

B) When T = 1 we have U = (x and

ds' — (dz)+ (da)? + (x‘dﬁ)i AN

which corresponds to flow in the R-direction in coordinates R, ¥, z.
It is possible to show that upon fulfillment of (3.7) case 4°
does not lead to any new results,
3 Thus, to the thrse cylindrical coordinate systems, corresponding
to the two-dimensional systems shown in § 2, we added spherical

coordinates r, 6, ¥. Particles can be emitted from spheres r = const

. e = T T TR TN e R e AT R N P
——— o r— KT R pro- X .
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and cones 6 = const, @moving on radial lines -or circles,
Let us note that the four enumerated coordinate sysiems arose
naturally during research of group properties of the equations of

a beam [17, 18].

Note: In the work of V. T. Ovcharov [19] it is shown that upoi

fulfillment ©f condi+ions (1q7gipart161es in the two-
dimensionai case can :#move in spirals, straight lines or
circles; in three-dimensional sSpace there were considexed
coordinate systems with rotary symmetry.

Submitted
17 January 1964
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TENSOR Oy VISCOUS STRESSES AND THERMAL FLUX TN A
TWO-TEMPERATURE 'PARTIALLY IONIZED GAS

M, Ya. Aliyevskiy, V. M. Zhdanov, and V. A, Polyanskiy

(Sverdlovsk, Moscow)

In [1] on the basis of the kinetic equation using an ~

approxnmatzon of 13 moments to the distribution function ’
- there is found a closed system of transport equations for a

multicompcnent ionized gas in: a magnetic field. Temperatures

of components were assumed dlfferent In the present work

there are considered relationships for the tensor of viscous

stresses ensuing from [1], and the vector -of the thermal

flux in such a gas (§ 1). The starting point is linear

algebrale equations for separate components, follow;ng from

the general system of transport equations on the assumption

that macroscopic parameters of the gas change little at

distances of the order of the effective path length: and

in the course of times of the order of the time between

collisions of particles.,

Coefficients of the obtained expressions in general are
extremely complex, but they can be noticeably simplified
for the particular case of a three-component partially
ionized gas with temperature of electronsg, differing from
the temperature of ions and atoms (T > T = Ta). In §§ 3

and 4 there are given detailed express1ons for coefficients

- of viscosity and thermal conductivity of such a two~-tempera-
ture gas in a magnetic field. There is calculated the
contribution of each of the components to the total tensor
of viscous stresses and the thermal flux (including heat
transfer by diffusion) depending upon the degree of ioniza-
tion, strength of the magnetic field and the degree of
non-isothermalness of the plasma,
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1. Initial system of equations for determination of tersor

of viscous stresses of the a-component m;k and of the relative flux

of heat h, is written in forir T1]

D augmgtt = — g™ - 1 (mligkim o s thgiin) o, (1.1)
8 ’
\"2‘5-5"3‘ = A-:R: + huk3“1m¢‘1'¢‘ (mﬁ =n::_;la'l) . (1 . 2)
Here
. oub au* 2 4k 3u' \
=% T T30 oy (1.4)
R¢ - VT ;2 Td .o n . my, -1 .
= Via +'5‘;'plev P _k'graﬁ [‘:aa (W — wg) + dzﬁwal (1°5)
Heretva, | Ta andfqa‘— correspondingly, relative velocity,

partial pressure, temperature and thermal flux of the d=component;

1 — mean mass velocity of the gas, m_ — mass of particle of a-type;

a
k -- Boltzmann's constant. The influence of the magnetic field on
transport properties is described by the second terms in the right

zides of (1.1)-(4.2); here

o cyclotron frequency of a particle with
K1

charge ey’ anﬁ‘ol — permutable tensor. In expressions (1.%)-(2.5)
there are omitted terms which depend on the electrical Tield and
which are essential only in very strong fields [1].

Coefficients 7, and A, are connected with effective times of

collisions Ty, and T; by relationships.of form

1 Sk -
Ne = -Z—'P.f.n 1‘( = fm':p.'ra*' (1 O )
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Let . note that for the single-componert case Mg and xa coincide
with usual coefficients of viscosity and thermal conductivity cf a

simple gas (first appr¥ukimation of Chapman—Cowling [2]). Magnitudes,

-1

. o R . - *
the inverse of effective collision times, T 1 and (t,) " are recorded

a
.- . » . . s . "'1 . (Y
as linear combinationg Of magnitudes Tap effective frequencies

of collisions of particies of the a and B-type. Expressions for T

*
= o ) . ‘1' ] 3 . i o N i .
T, and “ap? and also for «coefficients & baﬁ’ cqﬁ, dag‘are given in

work [1]%; in the particular case of a three-component plasma with
Te > Ti = T, and‘mi = m, these expressions aré given helow (§ 2).

In general, coefficients aqg? baa’ Cap 1R 2 complex manner

depend on ratios of temperatures and concentrations of components,

and also on mass ratios and effec¢tive collision diameters for particles

of different types. Hére, by definition we have ayg = 1, byy = 1;
furthermore daB = 0" when T = Tﬁ'
In the absence of magnetic field (|B| = C) general solutions of

equations (1.1)-(1.2) are written in an obvious manner

la blae ,
""’Z lﬂa Z'“,'[; AaRg (1.7)

Here |a| and |[b| are determinants of corresponding systems of
equations; [a|g, and Iblsa are cofactors of element Ba of the determi-
nants.

For solution of systems (1.1)-(1.2) with an arbitrarily oriented
magnetic field we form, with the helﬁ of (1.1), an equation for

is k

convolutions of tensor walk, with tensor ot n, with vector nk. with

ris s k S k

]

" tensors 0" Tuw and n”u™, and with the help (1.2) we form equations

*In [1] there are not written the explicitexpressions for ¢ op and
B,immmver, their form is easily established by comparison of (1.5H)

with expression (2.10) in [1]. Purtnermore, the value of 10 T differs
from that given in [1] by a factor ol 3/4.
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Taor h lorl’nﬁ and h n , whare u B/[B+ is the unit vector in the

direction of the magnetic field. Using then properties of antisymmetric

ikl

unit tensor ¢ , after a series ¢f cumbersome, but simple calculations,

k . o ; . .
we arrive at :an expression for T ¥  fecorded with the help of five

Q.- K

coefficients of v1scosﬁty:

R = — O — NtV 4 — ?l«(".)‘V:kr + N SIS 4 NaOW (1 . 8)
where
l : l a* | a’t
= 2 DS P X —~Z} ', ;.."}‘ s
5! (1.9)
8% Jaa
n‘w = 203'(3 T 1’3(0) (l) = — 2‘9579 “l 7‘8(0)

Analogously we find the expression for hal, which 1s conveniently
presented in vector form, introducing components of Rd,lcorrespOndingly

parallel and perpendicular to.-the magnetic field
NIAd) * Ipa . .
by = — 21 ‘5":‘15“3 I |b‘“ {lﬁRﬂ + wgTy Z |b [ A’ (R X %)} (1 o )

whe ~e

R." = x (xR,), Rol = % x.(Rq x %)
Elements of determinants, marked by one and two asterisks, are

connected with coefficients aaB and b4a by the relationships.

|

Gep** = agp 1 : ll 'l} 0, T, 03T . (,1.11)
1®]gq

b.p‘ == b,p + ”" (Oafa*mp‘fp

Let us note that the above form of notation of expressions (1.%5)
and (1.10) is analogous to that used in the survey article of

Braginskiy [3] for the case of a two-lemperature stripped plasma. In

- ] - g B s el >y 4




the same pluce (p.233) are general expressions for tensorsgmbkr;

constituting different convolutions of tensor:wlz with tensor
g s " kr il il ‘mi 1 MiTl I
quantities of type wu numn ,-Bkrn N okmlnrnmnz, and okmlﬁrznm.

kr

The form of tensors wp is noticeably simplified in a &pecially

selected system of cdordinates, where axis x is directed along the

. 2
magnetic field, For components of tenhsor of viscous stresses wdlk
in this system of coordinatés we have ;.
=x xx }
T = —q OW .

TV = —  OLY (W L W Y=, WY, (1YW — ”sz) _,_._’na(;,,wyz
Rt = —q,0, (W™ W) — @, (5 — ) 4 1];(3’W"‘
oV = qg*V = —~ na(;)W"i + @ Y, (W 177 (1.12)
TV == W = — nc(z)wxv . nam",xz
T = [ = — ) NV g O

e e e p———

Relationships (1.8) (or (1.42)) and (1.10) obtained about
allow us to calculate the tensor of viscous stresses and the relative
thermal flux for any of the components of a nonisothermal multicomponent
plasma in a magnetic field. The total tensor of viscous Stresses‘"ik'énd
the thermal flux @ in the plasma are found by simple .summation -of the

corresponding quantities for the components:

nik = Yrgik, q =Y he+253pw, (1.1%)

Analysis of expressions for the tensor of viscous stresses and the
thermal flux in general constitutes a fairly difficult problem due to
the complexity of the expressions themselves and also the coefficients
in them. Therefore, in the suabsequent account we consider the

&

particular case of a three-component plasma with Te Z_Ti = ‘I‘a and

my o=m o, Besides its practical interest, consideration of this case

allows us to write coefficients of viscosity and thermal conductivity

LAY
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in a form accessible for detailed analysis of their dependence on the
ratio of temperatufes of components (degree of "nonisothermalness")
the fétig.of paéticle;dépsities (degree of ionization) and the
magnitude of theiﬁagnétic figld (degree of "magnetization" oOf the
plasma).

Let us note that in [1] there were already expressed & series of
general considerations -about the form of the coefficients of viscosity
and thermal «onductivity of a two-temperature partially ionized gas.
Here they used a simpliﬁied initial systgm of equations, obtained as
~a result of Qisregarding cross-terms in the equations for electrons
and terms ccritaining electron magnitudes in the equations fur ions
ahd atoms (analogously to how this was done earlier in [4, 5]). The
folleowing analysis of exact solutions shows, in particular, under

what conditions we take such an approach to solution of the initial
systems -of equations.

2., Below is a summary of coefficients of the initial system of
equations (1.1)-(1.2) for the case of a two-temperature partially
ionized gas. Masses of ions and .atoms, and also temperatures of heav,
components are assumed identical (T; =T, =T, my =m,=m). In
simplification of general expressions for coefficients [1] we

essentially use conditions
etm/m<l, <t @=7/T) (2.1)

Coefficients aaﬁ’ baB’ caa, daB'are

e = 15 = gy = 1 (2.2)
0y = — 0.4 27,7, fie=—02e(@0— 1) urp

Gea = — 4efeaT,T L, dae = — 48 {fea -+ Yulea (1 — 0)] Ta¥ea

Bia = — it 7, i = — fiaToT; ]t




boe = ;i = boa =1

(2.3)

by = — 2.7ev,*v..7, bie = — 4.5e2 {62 — 0.40 — ¥/, (In A)~!] ¥,
g = — 8eg, T*Tse?,  bo= — 8z [8'”9’— SaB (1 —8) +£,,(4 — 9) | RAL I
big = — g Tt 1, bai = — g, Ta*Tia ™! . ¢
= -—1:1’5, Cie = ‘/‘et,(i —1.59), Coi == Cig= l/.tia (2 4)
i Coa = Log =38 (1 — ) (1 + 6fca + 1:500). !
Cas.= & [Lead — 200a (1 — 0) + Y5 (1 + 6/ea + 3Le0) (82 —1)]
dig = s = oo = dig = dyy = 0 (2.5) -
di=dua=2611 —8);  dig=d,=2e(1— 57
Quantities T, 'r; ) }
=037+ 0.6731 - 0.64,.* v (2.6)
=0 31!;1 + f"' Tfa—l + ex.t, T = O.BAGQ‘T.M'I + jidltgi;l +.et,.! :
(%*) ! = 0.4t - 137571 4 (2.5 — 1.2B,.3) 154! (2.7) ’
(7)1 = 047,71 + g, 't Ber :
(t*)r=0. 4A.,,‘1; o 8T et !
Here » ) )
) fCB = l/‘ (i - O-GAaa.), g ap = il/l‘ _— O uaﬂ — 0.156‘1‘ (2 ‘8>
Fap=Y4(1 +064ag%), & ,q="1¢+0.2455* — 0.15B.p*
- 7 ] C.5=1‘ZC,B"—1 (2'9)
3"3—0625'*"02‘4:3‘+03Bae‘+030aa‘—240;; (2.,10)
t:p = §.5Cz* — 0.6B 3'__030‘“‘
0llisi . Fficient ¥ * ° *
Collision: times TGB and coefficients Aafi’ BCLB’ Ca@’ DaB are
expressed through known integrals [2] of Chapman-Cowling Qég
Ty = ;—GnSQ},}; (2.11)
‘ Q!} 5913 _ gm
A.cﬂ = 25;:‘5 » . aB‘ '——pgla_"—' (2.12)
ol 207, — 507
c Can® af D — af afd
la 391.13 CB GQ:‘ﬂ t
Here ng — density of particles of B-type
@ o
i =V {1 %evy (1 — costy, ) bdbat (2.13)
e 0
Here -
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and the scattéring angle Xap is a function of &ap and b, determined
by the form .of the law of interac¢tion of particles of o-and B-=type.

For particles, interacting as solid elastic balls

t:B‘ =}32 M8 (Zn'ifaa) " Qui Asg* =Bag = Cag® = Dag* =1 (2.15)

Here Qaé — geometric collision cross section of particleé of
type @ .and B.

Expression (2.15} is~gonveniently‘used~in the case of other laws
of interaction, where QQB can ‘be considered a certain effective
collision cross section appearing in the general function of
temperatures of the components. Here A*, B¥*, C¥, D* also turn out to
be weakly varying functions of temperatufres.

In the case considered by us (m;, =my,, T; = T,, m T/mP < 1)

a’ i

collision times of charged particles with neutral ones and of neutradl

ones among themselves are written in the form

1 _ 18 AT, \'h : . A, 1 :
s (am) €T =g (2.16)
A _ 18, (AT £ _mod

Ty 3 n‘(:un) Qua (), Yot B Vi

i 16 kT \')

o= 3" () Quall)

R 0 L P S

el - 21"'". ’ Via R Ty (2 17)
L ) K e W W L °
Ty 3 ¢\am, ] X Ty 3 ) Qi

Here

oA n it gt I
T,y In A, Qi = PR A In Ag, Qu= T T In Ag (“ A0y

e
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Here e = |eeL — charge of electron; ze — charge of an ion;
in Aaa — Coulomb logarithﬁzvalues of which are tabulated, for instance, &
in [6]. '
. Subsequently we will need estimates of ratiOS¢T&é/Tgi, or, since
thése magnitudes are proportional to Q, estimates of ratios QaB/QSV‘

For electrons and ions, assuming without great error [4] that

In &, =~ 1n Ay~ 1n A, directly from (2.48) we have

Qu/ Qu~8/2, Q5/ i~/  Qu/ Qu~1lz

To estimate ratios Qea/Qaa it is possible to use thecretical and
experimental data of [7-8], in which there are given total effective
elastic collision cross sections of electrons with atoms and with
molecules of different gases. The diffusion scattering créss.sections
interesting us, through which Qea are expressed, differ from: total
cross sections by nol more than 10% for most gases 7). In (10] there
is discussed a great amount of date on cross sections Qeagfgr inert
gases, Sections Qaa for ditferenl potentials of interaction can be
calculated, using values of~Q§§* given in [9]. Comparing these
results; it is possible to consider approximately that in ranges of

temperatures 5-102 ©

K sT s 10 %%, 5.10° %K s T_ s 5.10° °K we have
estimate
Qu/ Qoa~1-+10
On interaction cross section of ions with atoms there is

comparéfively little data, but judging by certain results (see, for

instance, [11, 12]), it is possible to limit ourselves to approximation

Qia/ Qa7 ~1
In estimating Qii one should consider that for the considered

temperature range and in the range of densities of charged particles

N

- k2 = v » —
ey A e 8 P - e TSR E. . T R —
R e et ] TR AT I s PRy D e A T e o T S e R TR Y -~ - TTARRT ™
— yemlesiha i B .
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109_3 n; < 1013 em™” the Coulomb logarith 1n A is included in limits

from 5 to 13, Then, using results of [9] for sections Qaa’ we arrive

at
Qaa! Qi ~ (1072 +107%)

3. Using values of céefficients adﬁ’ given~in § 2 it is possilkle
to noticeably simplify the geheral expression for coefficients of
viscosity (1.9). Witnh aécuracy up- to magnitudes. of’ the crder of
(88)3/2 with respect to the remaining ones determinants |af, }g*] and

* %
la | are equal to

l.c |=1—au6i=A, |[a* l~=A{l +olv)(1 4 A %0t;?)
: la%* = A{ + Y0t (1 + Y, Atoird). (3.4)
A=1— fic"ifafci l (3 . 2)

Coefficients ne(p) for the electron component when w; Ty KL 1

take form

(0) (0
.4 "l e
(0) = e (l,=———-—_——-; (’):—-——_
N,% = 3 Pl ‘ 1+ ot O S (3.3)
oT, . 40,7, e
. 1+ o3, 1+/m’1‘17}

In (3.3) there are omitted terms which have the order &1/285/2
with respect to the remaining ones, Let us note that coefficients
qe(p) in form (3.3) can also be obtained directly from (1.1), if
we use the equation for the electron component, disregarding in it
the ion and atom cross terms. A similar method was used earlier in
[4.%]. Analysis of exact solutions shows, however, that when Wty o ]

caleulation of cross-terms can lead to marked corrections in

4

coefficients ne(l) and He(2)~ In the case cf a fully ionized gas, fcr

instance, along with terms of order 81/205/2, in coefficients with

Ly~ there appear terms, having order 8&/295/2 W, T /wiTi ~ (4 a8
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compared to one. Then, for w; Ty >> 1 coefficients Ne (1) and ne(E)

for that case take form

nm_‘

. =2%(i+0.4o) (3.4)

This result differs from the expressions given in [3, 4] by factor

(1 + 0.46). Divergence with [3] is connected, apparently, with the
fact‘that tranépurt factors for :each of components were determined in
this work by solution of a system of "loose" kinetic equations for
electrons and ions:y. obtained as a result of a series of simplifications
in cross-colliding members.* In [&] cross terms are rejected already
in the transport equations themselves.

| Coefficients ni(p) and na(p) for ions. and atoms can be presented

in the form

(0j

WO =apmkAT, a0 = 'TT%('M_@?T— . x-x-_n——_
A% fid 720,
- = ._l__:’__i‘_f“__;%? 0, N = +/:;':;_A-,r - (3.5)
WO =YVip R hA, 0 =Yap A : AA%“"?
0@ = 2 p,tA E;‘I,/I::_—::‘::: (3.6)
no = fpnar BN g0t B don
§a =1+ funita™?, Ei=1+ fiaTaTia™ ' (3.7)

In (3.5) and (3.6) there are omitted the term whose maximum order
is 59-1 with respect to the remaining ones. Obtained expressions are

valid, thus, for con@itions, where

: To/T<€m/mq (3.8)

xIn comparing (3.4) witt. expressions of [3] one should consider that

1_ in [3] corresponds in ouv designations to 7 and that, although

e el

coefficients n(p)e in [3] are calculated taking into account a large
number of terms of the expansion ¢f the distribution function for
large values of w; T, any order of approximation gives coinciding results.
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It is necessary to note that coefficients of viscosity, determined
vy expressions (3.3) and (3.5)-(3.6), actually have the same form as
in [5], where there was considered the case of a partially ionized gas
with identical temperatures of componéents., The difference is that

-1 -1 1, in the effective collision times v _, T., T.,

T . nd t__
‘e *» Tei B ‘eq e’ ‘a’ i

should now be written at the temperature of electrins, Te instead of T.

Furthermore, obviously, p

,e ;h nekTe, pi = nikT; pa = nakTo

In conclusion of this paragraph we analyze briefly the contribut.cn
of each of the components to the total coefficient of viscosity n(p) =
= ne(p) + ni(p9’+ na(p> depending upon the degrée of ionization a =
= ni/(ni + na), the degree of "nonisothermalness” and magnitudes of
eTer P15
For this purpose instead of na(p) it is convenient to intioduce

values of reduced coefficients of viscosity, defined &s

Qdﬂ

n PV = g {p),
O = T (3.9)

Considering that &i, %a and & are close to one, using expressions

for v, 1_, 7; and estimates for ratio Q 5/Q , given in § 2 we have
e’ ‘a’ i % ap “oy

o _gingh_ 3 o B N .10
N e anrr W arr=re Wi (3.10)

where
B = Qua/ Qi ~ (1072 107)

As can be seen, relative contribution of ne(o) to the total
coefficient of viscosity is negligible when & = 1, but can bLe comparable
Lo the contribution of ni(o) already when 6 ~ 81/5, i.e., when T@/T m~
~ (% to 10). We note here that the role of ni(o) becomes essential

only for high degrees of ionization @ > 1 - f, Tor a << 1 - f3 the

mein contribution is introduced by the coefficient of viscosity of qq(”}
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For analysis of the relative contribution of coefficients na(i)

2
_and na(’) besides (3.10) we need additional estimates

O g h 28+ (1—0)3 ___aB 3 4
|"'¢".l 4 at-(t—a)3 ? E“_A“"-——_——a-{-(i—-a)@ (3. 1)

Comparing expression for reduced -coefficients of viscosity, we
Tind that the contribution of separate components to n(l) is analogous
to the preceding case with this difference only, that in a strong
magnetic field (mifi‘>> 1) the influeiice Of ni(l) shows at still
higher degrees of ionization o ~ 1 - 5/mi2T12,

The contribution of ne(B), ni(B) and)na(E) to n(j) is approximately
identical in weak magnetic field (,welfe < 1) when a << 1. With growth
of the degree of ionization the contribution of na(3> decreases, and with
growth of the magnetic field the role of ne(j) decreases, so that
- when wiTi >> 1,ne(3> <L ni(B), na(B). Nonisothermalness only increases
the relative contributicn of neég). For coefficients‘n(E) and n(n)
the conclusions drawn during aﬁalysis of n(i) and n(B) are valid..

4. Relative thermal flux of each of the components*hu, in
accordance with the structure Ra’ is composed of several independent
parts. Let us consider first that part of it which is determined by
temperatures gradients of components,

Calculating determinants |b| and |b¥*| with accuracy up to

magnitudes of an order of 85/293/2, we find

6] =1 — bibai =8, |5 = & + 0t (1 + 3208t (&.1)
d=1— g"fg‘f.“l'ig"lfai-l (4 . 2)

From (1.140) it follows that the expression for ha(t) in general
contains terms proportional *. temperature gradients of all
components., Analysis of corresponding coefficients shows, however,

that the basic contribution to the electron thermal {lux he(t) is from

&7
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N terms which depend only on&jTe. Then the expression for he(t> can be

presented in form

Bel) = — ANV Te — ALV Ty — Kr (Ve x %) (

£
N
~—

Coefficients of thermal conductivity Ke are defined here sas

5 & - Al - wr !
= == * —_ e . -Vsle Ma '
Mo=a et M= aeEy M= e (.4)

In the notation of (4.3)-(4.4t) there are omitted members, whose
order are & |7 T||v,T,] ‘and e8|V, TV, T,| with respect to the others.
Analogous calculations in expressions for hi(t) and ha(t) allow

us, under certain conditions, to omit in them terms proportional to

gradients VTe . Then
. ‘ Bl = — Ka? VT — Aol V, T — high (VT X %) (%.5)
where
4 5 ‘ _ ~1( i (O-fi.a-l;.- n
Al = 2T pr,*t*§"1 N P S A N0 A
MU= g PR M= ey M T Toeeay
X_ 5 &k . ek- _ 5 k. IR A X A (PR AL I}
A’? = m pafa‘Satd l’ Agl = 3 Tn-pa'fatb 1 1 F oo ( : '6)
o 5 k. .2 o — Do -
1‘01\ =5 -;-n—«pafa'b : W (21” . {’)
Here
E* =1 4+ guvettial, Ba* =1 + gttty (4.8)

In (4#.5)-(4.7) there are omitted terms the maximum order of
which is e¢|VI,|/|VT]| and - (5in A)!| VT, |/|VT| with respect to the
others. When | VT, | ~| VT | this leads to condition Te/T << 5 In Am/me.
Since In A ~ 20, this condition turns out to be less strict than

(3.8). If|VT.|/|VT|~T,/T, the limitation on quantity T /T turns

Pt}
B <L b ™ L Ll

out to be somewhat more strict than (3.8), namely
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(Te/ T <50 Am/ m,
Let us note that with the shown 1imitatioﬁs coefficients of thermal
conductivity (4.4), (4.6)-(4.7) are described by the same expressions
as in the case of identical temperatures of components [5]. Here,
-1 1 A

* ¥
T . and T R | .
ee ’ ‘ey GNA T, o, 1N T, Ty

*
T res = kT
s Tgo and pressure Pe n KT,

times T
are recorded at electron temperature of Te.

For analysis of the contribution of each :f the components to
the thermal flux h(t) = he(t) + hi(t) ha(t) we use the circumstance,

o’ &d, and

: * * N N N
that for Ty &a and & there are the same estimates for =

A, We introduce instead of Xa reduced coefficients of thermad con-

ductivity

).‘t =2, (&)?"’_QTM; (+.9)

Then

& O 2-%0-% __...____.. ag
Rt ey
Al a3 P k.. (4.10)

Tard =8’ 1+a

From comparison of expressions for XZ it follows that the total
flux of heat along the magnetic field is determined basically by
values of he and ha” the contribution of ions is negligible, end
nonisothermalness only strengthens this circumstance, With increase
of the degree of ionization the electron thermal flux rapidly increases,
and at a'~(e0)':|V,T}|/|V3T] thermal fluxes of atoms and of electrons
become comparable.

Increase of the magnetic field noticeably limits the electron
thermal {lux across thé field; therefore at |weTZ| >> 1 the basic
contribution to transverse heat flow is introduced by ha and hi' Here,
the contribution of ions becomes essential only at high degrces of

* *
ionization a ~ i - B, and for w.t. > 1 when a ~ 1 - ﬁ/(wiTi)z.

itd
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The total thermal flux perpendicular both to the magnetic field
and to the temperature gradient at fweTZI < 1 is depermined basically
by heg With growth of the magnetic field the contribution of hi and

h, increases: and becomes of the order of h, at wiT; 2> 1. DNonisothermal-
ness leads to noticeable growth of the relative contribution offhe.

We now consider that part of the thermal flux.ha which is
proportional to relative velocities of the components.* 1In the case
interesting us, of a three-compcnent plasma, the corresponding part ..
vector Ra is conveniently expressed through the density of electricsal
current J = -née(we - wi) and "slip" velocity of ions S = W, - w . Then

in. the re¢lative thermal flux of a-component h&’ besides the above-

considered "temperature" part ha(t), there are isolated terms
be® = — ge¥jy = XaliL — % (% %) (#.11)
ha!®) = — ug1S; ""l‘e‘LS.L — 2N (S X %)
so that
he = he™ 4 h,0) 4+ h @ (4.12)

Coefficients X with accuracy up to terms ~85/2@';/2, are

determined by expressions

y A = —ar kerc . Yol == — I +__(.; ;.‘),, ,"_;t_
Lh = — i:-T(::)s i (4.13)
where
ar;= */3%e* (Loatea™ — 0.67.7Y) (h.1k)

During calculation of coefficients X5 and X0 in them there appear

X¥The term with div o in thermal {lux ha turns out to be in m.st

problems of little importance and, therefore, is not considercd
subsequently.




noticeable additions, connected with allowance for electron cross ‘
terms. However, these very coefficients have an order of 85/265/2 and
E}/QQ-Q/Q as compared to xe; therefore, their relative contribution
to total coefficients in projections of j in the expression for
h(j) = he(j) + hi(j) + ha(j) can be ignored.

As for coefficients oo their contribution to total coefficients

in projections of vector S in the expression for h(s) turns out to be

o{ the same order for all components. Not writing concrete expressions

for each of these coefficients, we immediately give the expression for
the total thermal flux g, in which, besides contributions from h(J)
and h(s), it is necessary to consider the additional contribution to
coefficieénts for jﬁ’ ji’ S”, Si’ arising due to term 5/2 zpawa in

(1.13):

= ql) - (5 - s - ’
q.=q -+ qi 4 g i)
where
g = hy® +hy® 4 hy® (4.16)
0 = —xhjy —2ti —xM (X %), q =—plISy —piS; —pn(Sxk)
and
/5 ‘kT 5 ar kT
= (’2—— a'l’)- ! X'L = ('2— - 1_*_‘(“)‘12:):{}) cf (l! o 7)
PRI\ *Ty '
Y =TT e .
i p; d .) (IE
B, [d'———u—-a>]p,+ L
dr 5 0. 4’ pE;* +d,°py (B0 + 670 ;
b= [1+mrﬂ __E(1~aﬂpr+, T A F 60 (h.19)
0,T,* di*piE® +d,"po (B4 — 6)
PA = Ty &Pt AT e O
Here

g' - s/orc [geurea 1 + 28 (l - 0) (1 - a) rﬂ-l]

¢ = y0* [/ GiaTia™ + 2607 (1 — 0) (1 —a) 1Y) (Or.1e)

d $. == —a/zTa* [/4€mrat -+ 2e01 (l - 0) ar"‘-ll

LR
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and 0, ﬁ;, and E: are determined by expreéssions (4.2), (4.8).

In conclusion let us note that with fulfillment of condition
T/ T (m /' mg)'t

for j and S it is possible to use relationships, given in [5], if one

T . : = n kT at temperature
ce * Tei 2 Tggq o and p, ‘ere GV pe

T, and also to replace yT by“VTé.

were to determine T
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HEAT TRANSFER AND DIFFUSION IN A PARTIALLY
TONIZED TWO-TEMPERATURE PLASMA

G. S. Bisnovatyy-Kogan

(Moscow)

There is given a solution of the Bolizmann system of equa-
tions for plasma in a magnetic field by the Chapman-Enskog
method. The plasma is considered partially ionized; and
the temperature of electrons can differ from the temperature
of heavy particles. Tensors are obtained, connecting the
thermal fluxes and the diffusion velocities with temperature
- gradients and diffusion: vectors..

1. The Boltzmann equation, describing change in time of the
distribution function of particles 6f type o in coordinates and

velocities fa(t, Xy 5 Ci)” hkas the form [1]

of, , of .
¥l 'T"Caia‘;
i

«3

ea '.i afu = ,
+”-;:(Ei‘+-*;8mcat31)ac +Ji=0 (1.1)

Here e, ma — charge and mass of particles of type ¢ =1, 2, 3
correspondingly, for singiy charged ions, electrons and neutrals;

Ei’ Bi —- electric field strength and magnetic induction; €4k, — Pee-

mutable tensor; ¢ — velocity of light

3 3 deg; = dcg de, de
Jo= D il = 3\ (ufs — K1) gasbibdede ( noaE ““) (1.2)
B=1 f=1

Bap = 1 €4 —¢p; |

Yoy
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Strokes designate functions of -elocities after collisions; g
relative velocity during collision; b, & — geometric parameters of
collision. We consider only elastic collisions. Let us turn in

equation (1.4) to relative velocity v qi’ €dual to

3
Vzi = Cai— Coi, i = _:,— 2 2 (Cais (Gai) = ;:S fﬂf’.‘!idcﬁ
3 3, )
" =S fu(kai. p= E,\pﬂ-': Z MaNa (j" 3)
l?l a=1 .
Wwe obtain
df of,

a €, 1 - & i, s
@ ey T [-— (Ei + s'»wcul_’l) — —j:l]gv— +

(1.4)
{———-vaaﬁ'tal} = .ta, +Je=0

(4 _2 B
‘("d?=~ ar 1 % azi)
Just as in [1], we obtain equations of transport of particles of

cach component, .of transport of the momentum of the wholé mixture and

of transport of energy for electrone and heavy particles

‘,,, + ,a;;‘ , ai%(ng ) = 0 (1.5)
P i:% = —:— euiBr — —?- Hu: + Pe (E{ + -1— euzf‘w&;) (1.€)
k"a - aa, + Hm = Jai (Et + = wzcokﬂx) +
+—- kr,?,; (ny <v»i>) — pa Cow) S8 ¢, (1.7)
LYY 4 e % (@ + )+ (e M) 52 |

= Ju (Et + - euu‘?mt:Bz) + TkTE (ny <vi> + ny (%i)) —

—(P1<v1i>+Pa<v3i>)‘i:‘;i_Q (1.8)
where k — Boltzmann' s constant

Haie = name (Pai¥ard, Gui = -%— oMy (VVaidy  Jai = Naa (¥aid (1.9)

. 3 3
. . . 1
Ou= My, @= 2, hi=Jitin, = S—z- my#,2J ydey;

a=1 a=]
Q= S"%"mxvffxd"u + S“:— mavg¥ ydegi = — .0y, Pe = € (ny — ny)
B =n, B =Tan = Ban, (= e
.74
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Here e — absolute magnitude of the charge of an electron.
Temperature of electrons T2 differs from temperature of heavy
particles T. Relationships (1.5)-(1.8) are a systém of hydrodynamic

equations. To find dependences of Haik’

qai’ <Vai>’ Q"jai on the

electrical and magnetic fields, parameters na, T, TE’ Coi and their

gradients,it is necessary to solve sysiem (1.4). Solution of this
system is conducted by the method of successive approximations of
Chapman-Enskog [1].
2. Let us consider the zero approximation. In kinetic eguation
(1.4) as basic terms there are considered collision and magnetic ones.
If the plasma is "strongly ionized" in the sense of [2], the main
parts of collision terms will have the form
- I = Ju (1) + Jis (11S)). JL = Jau (),
J,s. = Ju (10 + T (11 (2 . fl.)
In equation (1.4) the magnetic term (in braces) is turned into
zero by any spherically symmetric function of velocities. Collision
terms in form (2.1) are turned into zero by Maxwellian distribution

functions, and the temperature of electrons can differ from the

temperature of heavy particles. Thus
% oa?
/.“"":‘"“(2"3’:;‘_1') exp(‘—-'-%;—), I,=Ty,=T<T, (2.2)

5. Let us consider the first approximation. We substitute
£, = fao + fal in (4.4). In small terms it is sufficient to leave

.O . . L o . o~
ja . Time derivatives of n,: T, TQ, Cqy are excluded by transport

- equations (1.5)-(1.8), where magnitudes of (1.9) are calculated by

Maxwellian function (2.2); only j; in (1.6) i calculated by f,=T

+- fal. We obtain

nxiko = pabih Px = nakTﬂv qaio = Ov ,iai. = 0’ i‘l = il #= 0 (3‘ 1 )
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If we use (2.2) and (1.2), then, according to (1.9), the magnitude

)

of Q # 0; however, in the zero approximation we disregarded exchange

=

energy between electrons and heavy particles, i.e., Jao was selected
0

0
in form (2.1); therefore QO = Q2 = 0. In collision and magnetic terms

we leave parts, linear in fé. Collision term J& has the form
3 .
T = D Uas (3) + Tap () + Jap (12f3)] (3.2)
[ .

s . 1 .0 s .
Pesignating fa = fa®a’ we obtain a system for @a

‘my . { dc, . mpo:2 5\ g oT,
fa [’;Ta (l’aivak -3 &ikva")jay‘:' + (\—gf;— 7) T, oz Vai + Caidy | =
my 1 . 3 . €y r a®¢ 3
= — (ﬂm:— Vai — ijxB1 + e EiktVaxBi Er ) — N Jas (Rf}) — Ia (@) )
B=1 ( 3 .3 )
where s
I, = E S (Da + P)fofo,— (@a’ + D)L 13, bdbdedes; (3.4)
B=1
i apa Pa. aP: m,p, €a i 1 .
du = e =5 o+ (e — ) (Br - et
3 .
D) Palas =0 (p=p1+ pr+p3) (3.5)
a==1
As independent diffusion vectors dai we select vectors dii and
d}i' Because of linearity, we seek solution of system (3.3) in the
form
¢ 1 a7 | 4T, 9cy; L e
(Da = —Aali "‘37»“‘5;; - Aci')i 717; 'ﬁ;‘ - Gaik 32‘ - nD-uidn - n,naax d.]l - Fa
(n = ny -+ n,) (36)
’ _ . , Contribuki
Here AaBi’ Daﬁi’ G@ik’ Fa functions of Vai’ Bi' contribution

to the thermal flux Ao and to diffusion velocity Vg3 will come [1]

only f'rom terms in A__. We use henceforth designation
y aB"

-

and Da

pi’
KG{ = Aﬂli’ AG'.‘I') D\‘llh DJ?i ( 3‘ 7)

We seek Kai in the form

Ka = Krvas + KiejeaBe + KiB; (vaB;), K% = K% (¢4, B)
(= B =1,2,3)
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Equations for Ks are obtained with substitution of expansions
(3.6)-(3.8) in equations (3.3) and equating of coefficients in

independent parameters to zero. We introduce Ca = Ki + iBKiand shift

to dimensionless velocity u_ ., = [(1/2Xma/kTaﬂ1/2v Systems obtained

ai ai’
for Ca with different Kai from (3.7), linear, nonhomogeneocus, differ

from one another only by nonhomogeneous terms. They have form

——-L‘) uai -+ le“ i + I (Latta;) (3 . 9)

l [
M. = ’37

Here
a—- Sgaf)va’dcai (a=1, é' Jha=—ea=ec e=0). (5.10)

Left parts of system (3.9) for different K i from (3.7) have form

51\ . ; £ \ "
My= R — 5 )i My=0, My=f(up—3)us wonky=
. M = O, . A’[’ fg (uz —%) u_\i, M’ = O whenr K!i'= quzi
i __J T . (3.11)
1 = f°un, Mz = —— —— T u211 ‘MS = O when 1\¢i = Dﬂli
T g ,

Solution of system (3.9) with right parts of {3.11) is sought

in the form of expansion in a series of Sonin polynomials 83/2{p)(x),

which are determined as follows [1]

® 5

(1 — sy exp 1——“: = 3 528, (2); 8§, Mz =1, SV @=5—2 (3.12)
Pe=0

- ¢ T (p--3/2) (2 4=
S -xSI(P) (2) 8:, (0 (z)-2dz = — 0,q 2. 1))
(]
In order we have
” 3T
b= Z TGPS’/:(p) (u-xe)v L, = ™ 2 N1 a0 (3- ] )'l)

p=0
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From the condition that correction to the Maxwellian function
does not contribute to mean mass velocity, we obtain condition
nT110 + 13T 5720 + 1y Ty =0 (3.15)

Substituting (3.14) in (3.9), multiplying by 53/2(p)(u 2

\u . and
a /al

integrating with respect to dc g0 we obtain instead of system (3.9) an
infinite system of linear nonhomogeneous algebraic equations
- . 3 ¢B m? T, . B
Neos — i3 0 (a2 22 g -5 o nafa
mT \Y: . m Ts \%h o Y o
+ ('m:T.) Eo"fxra ; ( ) 2 Yoo (m,T ) 2 TSra
N, — l 2P(k+ /:) ‘a?{

-’ll(l‘,l T '/:
V-“k! m e ncT:k'*' (,’n— —_) 2 Tlra

T
+(Fr) D (2 ’)'33 nt (21,4 (9

For different K , from (3.7) the left parts of system (3.16) have

the form
Ny=— —iz-snl, N3y = — if-h, when Kqp = Agy;
Ny = ——-1;5- n, vhen Koy = A,y (3.47)
Nio=—2?’%l‘r N,°=-——gi:':; when Kop = Dy
Nag= --%—%i-%, Ny = %—':% when K g =z Dy
In all these cases remaining values of Naj = 0. Quantities agg

are determined as follocws:

afe = {APSu (1) ai 185 (0a) tas 4 S0 () s — 8, (ua") sy’ —
— Sy () uy'l g, bdbdede;de,; -
ja S ”own Dy Ny e 000 S, @y 12y .de.:
+ S (ua )ucn 29, (ua Ugi /a /B S", (ua )ucz "gagbdbdadc,’udcan
Ba

- (x,8=1,23) (3.18)
apn = {0 (a?) waa 1RSI (45%) g — 073 S0, (™) g’ | g5 b b dedesedes
((1:,3—1,2,3, G=f=3) )

The first three equations of system (3.16) will be linearly

oyt
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dependent. This is a mathematical result of the same fact from which

we obtained condition (3.15). Eliminating from system (3.16) with left
parts (3.17) variable Y30 with the heip of (3.145) and dropping the

third of equations (3.16), we obtain é system which can be solved by
Krammer's rule. Finding Ca’ we can immediately write the solution for

Ks from the following consideraticns: without a magnetic field

transport properties are determined only by the magnitude of Ké, in é
which it is assumed that B = 0. In a magnetic fieid transport

properties do not change; therefore for Bi’ parallel to any of vectors

BTa/Bxi, transport properties connected ‘with this vector will

d .
ai’

be the same as for B = 0. Therefore,
K + BKS = (Ka)p=o (3..9) .

s o . ) 3
This relationship determines Kd. If Vor = Xar + 1Byar, and K&

is expanded in a series of Sonin polynomials with coefficients z__,

ar
Ter + B*zap = (Zar)u=0 (3 20)

A4, Coefficients of the expansion of KS in Sonin polynomials for

different values of K , from (3.7) we designate as follows

K: K: K3
Aall aral bral cn"u
Aa @ 52 ¢ (:z=l. 2, 3) (4,1)
Dali xr‘" \yr“ zral '/>0

Dasi xr“: yr“3 Z,-“

Then, using definition (1.9) for Qyi® <v 3> ji, considering

r. = £0(1 + b ) and equalities (3.6), (3.8), (3.14), and (4.1), and

i also orthogonality of Sonin polynomials (3.13), we obtain
Gas = l" or — Ak 5 aT’ — vildy — vidy (4.2)

arT 2
(Vi) = — 0} dxx-—n‘fd:u: R} =— ax —ng a:: (%.3)

"9
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where . kT
l’:kﬂ .= 2 m T ng [(anca — al’ﬂ) 6“ — SunB (b GB — b Gﬁ) + B‘Bt (c.‘B —-— clap)]
. ]

(=123 B=1,2)
nny [(Ioap = 2,°P) Oix — eunBn (¥o° B — y,*%) +Bin (z*? — 28]
(x=1,2,3; =13

kT2

kT n =1, 2,3\
W = o 50" 0u — eunBuye®® + BiByz*?] (s=s )
‘ kT 2=1,2,3

P:*a = mg;ﬁ [a,°B8ix — eiucnBrnby®® +- BiBicy?] ( g=1,2 )

Ji = e(ry {oud — ny (Vx)).

“ Thus, to find the thermal fluxes and diffusion velocities it is

sufficient to know the first two coefficients of the expansion.

5. We leave in expansion (3.44) the first two members.

4ik
polynomials defined in (3.48), will have form

>

OLB( i, k = 0, 1), in equations of the first approximation by Sonin

Blements

- 3 nx m P q 15 meTe—T na
O = "“(‘"““) toam  W=% ai=7a T %
. .3n1 E 3 /myTy\Ys1na
n A 4 T —_ 12— o 12
an = +m na{i —a), ai 3 (mT) o
9 Ts\'/s n2 - - T
all = —T(%’T-’) %, alt =.al? =0, ad = — —mwi(l —a)
13— qis — B8— -5 na(f — 21___-__.3_(’1_":2_)""2_
axo," ao:"o' @y = R na (1 a), ] 2 \ mT, L €Y
9 / msT \%na
o got — A e D =
am-—au--O, @ = 4 ( mT;) T2 (5-1)
3 na Ty e Y ax
ag:T——;—*—r— na(i*a), aﬁ-—am-——‘r—'—z-

e = —1—3——{—}/5 —-—-ﬁ-l— na(i-—-a) a23=——‘na(i-»u)( m,i‘)
1\ 4 ' 00 mTy
B g8 g — Moo . TN - 3 — g3 =
a% = aZ = a2 = 0, @)= —;-na 1—a), a a 0
a=—Zpg(l—a), a2= —-—z-’—na(i—u)( m.Ts )!/' a% = a2 == a¥ =-(
[T O ’ 0" Ty mT | ' w (O} 1n -

o __ 'n xy ms Te—T
% =1, N0 (1—a), af =0, a7 = nx (1 —a)———
.au Ts +Tn nu(i )
where
80
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= S S L s
f1 = 4V =« ).xg'hi' T 8V nQdes \ AT ) n(i —:1)
o = 3VmGTyh L ¥Vm o Vo (5.2)
: AV Zndeetnx ' 13 V-a n’ 3 V @:n
. Here X — Coulomb logarithm [3] for ions and électrons
1 BT TT: B }
- b= 5In nnac (T + T9) (x=12) (5.3)

S
.

Interaction of neutrals among thémselves was calculated by the
Lenard-Jones potential.  Values of ¢ and Q"(g‘_"‘?)'* for that poteéntial
are given in [4]. PFor the interaction of neutrals with charged :
particles we took Maxwellian interaction

Py

— l
P ),

(87

(1=l,2’ (

The constant of interaction uP for electrons can be estimated
from the magnitude of polarizability of the molecule [5], which can be
expressed through the dielectric constant of the gas [6], Considering

- the picture of interaction from classical mechanics, we have
de—1 & . e— 1 cmSe .
(p&=‘:—'——7———4.12-m'3’“—7[—@-] (5-5)

Here ¢ — dielectric constant of the gas; N — number of particles
per cm3 under normal conditions. The value of @1 is larger than @2 by
approximately one order due to the larger recharge cross section.

For Maxwellian interactions nondiagonal elements afi and agz (1# k)

furn into zero. For real interactions of neutrals with ions and

. ~lantrons these elements are much less than diagonal oneg in the first
approximation it is possible to disregard them. For Maxwellian -
interaction

7, =281, z,=398, z,=995 z,=107, z,=3.4, z, = 19.9 (%.6)

During calculation of (%.1) we disregarded quantities

1
~(m,,"T,,/mT) /2 as compared to one and arsumed
l. '

. 81
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my=mg=m  A=ng=n2, a0/t 0 (5.7)
Integrals of collisions (5.%) of neutrals with ions and electrons
for real intéractions it is necessary to caliculate by formulas [1],

which in the given approximation have form

e N

% = [24"? Q,, (1) — 52,0 (2) + Q" @)

2Rl m - 1200+ 1200 + 3 200)

2. =20,00) ~ 52,7 @) + 2" @) = 22,7 @) (5.8}
Qe () = V:Tzio c-z'z='+=§° (1 — cos'yy) g:bdb dz

In formulas (5.8) we use designations

. mmg Vs ) _ -
z_[Zk(nxT5+nth)] 83p B=1,2) (5.9)
Here Xzg ~ scattering angle. Using (3.16), (5.1), disregarding

~(m2'i,'2/m‘l’)1/2 as compared with one and considering ATy ¢ To3 for

coefficients in (4.4)-(4.7), we obtain
a = b ! = ¢t =41 = b = ¢t = 0 B=1,23) (5.10)
For Yiu = aiui + iBbiui(u = 1, 3) we obtain system

{— .15
—_ -?na =~[3:a -+ x","in . -+ z—,‘—co,na]yl"fé:-;;—:na {—-a)7?
. {—
“Sn g =—2na(t—a -r,l+["‘ =2 4 e (1—a)]713
(0 =2Z) _ (5.11)
me .

From (5.11) (5.2) (4.4) for o = O we obtain the formula of the
rirst approximation for the coefficient of thermal conductivity of a

cimple gas  [1]

1B 1 k3T \\a
=% Qe (;,;‘) (5.12)
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. . (2.2)* _
For a model of elastic spheres Q = 1,

ot = b= o= 2™ =y = P = 0 B=13p=1,3 (5.13)

For coefficients

Pu = @' + iBb'%,  pj.= a** + iBb®, p;3 = a2 + ’iB_bxzz .
P = Lot + By, P = 2+ iBy®, 0y == M+ iBy,M (5.14)
Py = X' +iBy'?,  Ps = TP + iBy®;  pu= 5+ iByx”

we obtain system

Pu=nafi fo, (0 — )+ 24 o 2 ]on +

Ty . 3 3 Ty
TM IE-(DQG—t 2—\—'; p;;; vl:li-i,— P;;s

15.15)
3 T 3 {— .3
sz —-—nai,}; z;' a1 -+ na[zf +z—‘——:(‘;ﬁ 2) ""-2-021(’93-*-4—‘:"‘?‘933
9 T 7 1 — .45
Pa:=—mna%r Ps1 +4, ndpaz-f-na[ +%—a)——51’7%]_933,
(u"=__,B=i,2, 3) /
mac
where
15 . 3 3 T,. : - 3'-1 . T K
Pi'z—TnI P"::'—ia’ P3’=~-2—a.i'-:~. ‘Pn—"——z'( -"a)*TT" <5.16)
The other values of P, = 0, From system (5.15) foor a = 1 we

Bu

obtained results of the Tirst approximation of Landshoff [7] for
transport factors along and cross a magnetic field and results of [8].
In [7] there is investigated the convergence of transport factors for
stripped plasma in the case B = 0 with expansion in Sonin polynomials.
For coeftficients of diffusion and the diffusion thermoeffect the first
approximation gives an error of ~1.5%; for coefficients of thermal L
conductivity and thermal diffusion error is ~15%. When B = O and

TQ = T, from (5.15) we obtain the results of the first approximation
o' |9]. Remairing coefficients in (4.4)-(4.7) are obtained from

relationships

Be* = (a)p=o — @r", Bz = (2°F)p=o — TP (5.17)
(a=1,2.3; P=l;2; B=1o3;k=0’1)

a 3 .- :

FQ&‘: _i_—-—:—xpol ()38)
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where
F=a,b,c (B=1,2), F=1z,9,z2 @=13)

Limits of applicability of the solution of the Boltzmann eguations
by the Chapman-Enskog method for a stripped plasma are given in
[T, 9]. These also are necessary -conditions for applicability of the
present work. Furthermore, it is necessary that the plasma be
"strongly ionized" in the sense of [2].

Durii_ proofreading the author was apprised of the recently
appearing work [41], in which by the Chapman-Enskog method, analogously
to 8. I. Braginskiy [40], there is a calculation of transport factors
for electrons and ions in partially ionizéd two-temperature plasma.
Distributidn. of neutrals was assumed Maxwellian,

It is noted that analogous calculation of the influence of neutral
particl:s on transport properties in partially ionized singe-temperature
plasma is made in [412].
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ON REGIONS OF APPLICABILITY OF VARIOUS EQUATIONS FOR
STUDY OF COMPLETELY IONIZED GAS*

V. B. Baranov

(Moscow)

Transport factors for a completely ionized gas have been
calculated by different authors from kinetic theory (see,
for instance, [1, 2]), relying on the Boltzmann equation,
‘Applicability of this equation for study of the behavior of
systems of charged partlcles frequently evokes objections by
virtue of the fact that it is usually derived on the assump-
tion of the binaryness of collisions of particles, whereas
Coulomb interactions spread to distances, significantly
exceeding the average distance between particles, and
collisions are not blnary In [3] there was derived an
expression for the term with collisions of charged particles,
which subsequently acquired the name of the integral of
collisions in Landau form, and was used in [2] for calculation
of transport facvors for plasma., However, the derivation in
[3] was also based on the assumption on binaryness of
collisions.

In [4] it is shown that the kinetic Boltzmann equation
can be obtained by breaking up the open chain of kinetic
equations, obtained from the equation of Licuville for
distribution function fN(qi’ Qos +-vs Qs Pys Pos vevs Py L),
which depends on coordinates a and pulses P, of all N
particles in the system, and on time t, where the kinetic
equation with the integral of collisions in Landau form was

obtained on the assumption of uniformity in space and
in the case of the absence of a magnetic field.

*From report at Second All-Union Conference on theoretical and
applied mechanics. Moscow, January 1964,
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In this work, using the method offered by Yu. L.
Klimontovich,* there are extracted those limitations which
it is necessary to put on parameters of the plasma so that
from Liouville's equation for the random function of the
number of particles Na(q, p, t) we pass by means of averaging

to the kinetic Boltzmann equation with the integral of

collisions in the Landau form. The latter was used in [2]

for calculation of transport factors for plasma in a strong

magnetic field. On the basis of the obtained system of

- inequal..:es in the density-temperature plane there is
constructed a diagram of regions, which gives a graphic
presentation of the possibility of use of one or another
equation for description of processes in plasma, if we
know parameters of the investigated system (ionization
potential of the gas, density, temperature, magnetic field,
etc.). In the work of Yu. L. Klimontovich, mentioned above,
it is shown that for Coulomb plasma the chain of equations,
obieined as a result of averaging Liouville equations for
a random function of the number of particles Na’ is equiva-

lent to the chain of equations of N. N, Bogolyubov [4].

For a random function of the number of particles
No(q, p, 8) = 28 (@ — 0 () 3 (B — Pui ()
i

where under the sign of summation of all particles of type a there

- sta.ids the product of Dirac 6-functions, Naqup — number of particles of
a given type in an element of a six=dimensional space of coordinates
q and pulses p; in the case of absence of inelastic processes the

Liouville equation is valid.

For a system of charged particles it is written in the form [5-71

9N, . 9N, oo A o\ ON,

"-‘,T“*"V‘ga-'*'ea(E +"c‘v>< H )‘—ap__o (1)
Here e, — charge of a particle of type a; E™ and H" — microscopic

intensity of electrical and magnetic fields, correspondingly, for

which it is necessary to write Maxwell's equations

: rot B = & 55+ 7 i {vha (0, p, 0 dp
m __ 1 OH™ . m_
rot E == divH" =0 (2)

div E" = 41 Seq {Na(q, p, ) dp

*Yu Klimontovich. Statistical treory of ngggquilibrium pro-

. L ¢ :
cecsen in plasma. Doctor's dissertation, Mostow, 1
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System of equations (1), (2) for random functions is a closed

system for description cof the behavior of plasma, We set
E"=E+48E", H'=H4+0H", N,=<(N,)+ N, (3)

where E and H - average electrical and maébétic fields, both external,
and internal, satisfying averaged Maxwell's equations; <Na> — mean
statistical value of the number of particles per unit phase volume,
coinciding with the distribution function appearing in Boltzmann's
equation (here -and henceforth brackets < > will indicate averaging of
the regpective quantities by the distribution function depending
on coordinates and pulses of all particles in the system, and also on
the electrical and magnetic fields [8]); 6Em, sH™ and—&Na — deviations
of random variables from their meanlstatistical value.

By virtue of the linearity of Maxwell's equations it is possible
to set

OE™ =8E," + OE;" (4)
Here qu%ﬁtity

YIS

]
OE," T T &= ql

——— 8N, (q', p’, t) dq’dp’ (5)

is the solution of equations

rt 8E =0,  div3E" =4n Qe Stw,, q. p', 1) dp’
. b

Quantity 6E2m in (4)is the solution of equations

~ m
rot 8E," = — - L0 diveE" =0

Substituting (3), (%), and (5) in (1) and averaging the obtained

equation, we have

232 aj,zﬁ t+eo(B4Svxn) T2
—ZS B () 5 CONeON> da'dp’ +
+€a<( +-:—vxéll"‘)36‘\> 0 {H)




From this it is clear that in order to close the system of equa-
tions it is necessary to write equation for moments <6N36Nb>,
<6E2m6Na>, etc., since equations for average magnitudes oi'  E and H are
ecasily obtained from averaging system of equatidns (2). In order to
obtain the equation for <8N_BN, >, we substract from (1) equation (5).

Then, taking into account (3), (%), and (5), we obtain

361\’ a&»v

+v aq +c.(E+-vxn) =
3 ( o
—?S 3q (lq ; l) [{Vad ONy +- bNabNb (ON 0N |dg'dp’ +

Gb:N

b Lo o) (g )

ap
— e ((oE;"» +3vxanm) 2%

Multiplying this equation by 6Nb, adding it to the analogous

equation for 6Nb, multiplied by 6Na, énd averaging, we obtain E
) 3 (BN BN, ) . - 3 (5N BV
'—-"-—a-‘-———-—l" (Va—q'-l— Vv --',-) <6N,‘6Nb/ + ea(E+?" X ll)—-——‘—.’p———
. 1, WBNSNY 5 <y 20 '
+elE+dv ><H)——3‘;,--——-¢,;%\lq e o (Vo) ONGBNL> + (
+ NN BN D) d dp” — = zg__*;__l 9 ((Ny> (ON.ON,Y +

<

+ (ONONONCY) dq” dp” + ea ((OE,"ON,) VX (OH™ON,y

e (BEMONLY + Lv"x O8N ) T 4

+ e (BB + Lv x 81") aa.v‘::.' N
+a(oEn + Lvxanm) 252 —0 (7)

Thus, in the equation for second moments there entered moments
oi'" the third order. In the equation for moments of the third order
there enter moments of the fourth order, etc. There is obtained an
open chain of equations. In order to close this chain, it is
necessary to place certain limitations on parameters of the plasma.
Tor simplicity, which does not sacrifice generality, we consider

that plasma consists of two types of ions, where
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Te=~T,=T, lea|=]es]=e, Ng==ny=~n

Here T{,‘, Tb’ na, nb — temperature and average number of particles per
unit volume for the corresponding type of particle. Let us assume
that ’

e [ kT Y
b= <t re=(ma 9)

(8)
Here,rd -~ Debye shielding radius; k — Boltzmann's constant.
Multiplying the numerator and denominator of (8) by 4mm, we find that

condition (8) is equivalent to condition

‘4x:qu<;1 (9)

i.e., inside the Debye sphere, on the assumption (8), there should
always be many particles,

This conditioh gives the possibility of disregarding moments of

e

the third order in equation (7) as compared to moments of the second

order (see also, [4, 9]), and thereby the chain of equations is

S,
JACHRTIPVSIY VRN T

closed, If one were to use certain properties of a H-~-function, there

can be obtained formulas

k3

(Ng) = "a‘ia (q:- P, t) _
(NN = na*n*fan (@ 0y @5 P 8) + 0ud (@ — @) 8 (p — P') n*fo (10)

*

* .

Here 6ab = 1 when a = b and 6ab = O when a # b,na is equal to
the total number of particles of type a in a system, divided by volume
V, which is occupied by the whole system, and is considered subsequently

a constant number (it is only a certain normalizing factor). Since,

furthermore,
<NaNb> = <Na> <Nb> + <6N4|6Nb>

; fao = fafo + g (@, @', 2. P’ B (11)
1 !
g (here 8o — correlation function; 8o O as |q -aqa | — ),

ONWONb) == 8ad (@ — q') 8 (p — P) na*fo -+ na*m*du (4, ¢, ) 9, ) (12)
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'Jsing assumption (8), and also relationships (10)-(12) and
properties of a d-function, inste~3 of equation (7) we obtain the

following equation for correlation function 8o

R CF A Py i ey e 0 s, Dy
- % - nct ‘ ,—q%,——, fac (9,9, 4", 7, 1) dq” dp” _‘;.;'_ +
FalEt Lo s afp e beem) s
+ s (COB,"M:3 + L vx (O8N, ZLP + (13)

& [, . U, eppmsve O 3 [ e af Ay ]
+ s (<BESBN, + —v* x (M '8:}) rrak W(ﬁ) {gf/b ~ o7 fn}

The first four terms on the left and the term on, the right entered
in the equation for the correlation function in the dissertation of
Yu. L. Klimontovich. Remaining terms were obtained by considering
the total electromagnetic field. From comparison in equation (13)
of term vagab/aq with term eaEagab/ap it is clear that the latter

can be ignored, if

ei | Bl rg < mv™ ) (1%)

inasmuch as lagab/éql ~ gab/rd (as a result of shielding of charges

in plasma 8ab seeks zero as r — rd, where r — distance between two
particles)., Here v® — thermal velocity of a particle (we consider
that the order of magnitude of total velocity of a particle is
determined by its thermal -elocity). From comparison of term végab/bq

with term (ea/c)v X Hog b/ap it is clear that it is possible to ignore
a

the last term when
m_cv’ PPN
< (’(=’—:[T—) (41D)

where r, - radivs of the Larmor orbit of a charged particle. Calcula-
tions ror particles of type b are analogous. We calculate now certain

terms in equation (13). We compare term
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— _a_‘ % . ‘Gec ’ - ’ (4 ~ w .
[aq ;nc S"""lq__g'r'lgbc (qvp’vqrpt‘) dq dp (16)
] ( [ af. ¢y v 9,
fb '_.'<6El - =
with tefm BRI ql) ] n Lo
- af
8Ns) 5 . (17)

Preliminarily we write Maxwell's equations for deviations of

random variables from their mean statistical value

a f m y N .
rotd = %86;:: + -1- aaB’ —4;283 S VGN,; tdp
<
ot 35" = — LB div ™ =0 (18)

div 8E," =4 Y, S&N,dp, div 0E,™ = 0
[

Multiplying equations (18) by 6Nb and averaging, it is possible
from the equations obtained as a result to determine the order of
all quantities interesting us, if functions change sufficiently
smoothly. From the fourth equation of (18)

(OE,"ON ) ~ herds‘(bNab.\'b) dp

From the second equation of (418)

BE"8N,) ~ 2 (BH"B.Vs)

From the first equation of (18)

(OH™8N,> ~ 47" reed® S‘(bNaa.-m dp, or

QES"8N,> ~ 7 ree§ (AN B dp
Using these estimates and taking the ratio of (16) to (417), we
find that this ratio is great, and term (17) can be ignored as
compared to (416), if
MLt (19)
i.e., we should consider the gas nonrelativistic. Instead of
equation (13), with fulfillment of inequalities (14), (15) and (19),

we have equation

~~~~~
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-+ v )gab az Zn*ﬂ,——_f_“—'i-i- gbcdq'dp"i;ﬁ' - -
o, o[ e o O
aq2”° Vg ot 0 =5 (lqe % 1){ = 35 ’“} (20)

- coinciding with the equation obtained by Yu. L. Klimontovich.

For the case of a three-dimensional uniform plasma this equation
was extracted earlier in [4].
Making analogous calculations in equation (6) and using the first

formula of (10) and formula (12), instead of (6) we obtain

af ofg /a T egln Eab
-5‘1+v#+ea( +-—\xﬁ\5—_z \ (lq q\l)apd' ‘dp’ (21)

To obtain the kinetic equation for the first distribution
function it is necessary to solve equation.(QO) for the correlation
function and to substitute this solution in the right side of equation
(21). In order to find from (20) a solution which brings the right
side of equation (21) to the form of the integral of collisions in
Landau form, it is neceéssary. as shown in the work of Yu. L,
Klimontovich (see footnote on p. 86), to make certain other
assumptions.

Let us assume that distribution function fa varies little during
the time of correlation (correspondingly, the length of correlation),
i.e., we consider characteristic times t (length 1), much larger than
the correlation time T, (lengths of correlation rk) during which two
particles, near one another and moving with thermal velocity will
cveparate distance rys at which these twoe particles become statistically
independent (do not interact).

From the solution of equation (20) for the case of equilibrium

distribution »f particles by velocities it follows that Tor that case

ry ~ rq, rk~rd/v°=i/m0

N
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(here Wy — frequency of Langmuir oscillations), since, when

r—ry (r =~lq.— q !)’ fav = fofo (8 — 0

This also follows from the Debye-Huckel theory for electrolytes.

Dur%ng solution of kinetic equations we usually always linearize
around the equilibrium distribution, i.e., we consider small deviation
from equilibrium. Due to this one may assume that Ty differs little
from rd/v° = 1/& , and e differs little from ry Thus, introducing

the characteristic frequency of the problem Q = 1/t, we assume

Q

o <1 (22)
upon which in (20) it is possible to omit term dg,, /dt, since by
virtue of (22) initial correlations attenuate after the considered

characteristic time. Applying tc equation {20) the Fourier transform

and assuming
Krai>1 (23)

(k — reciprocal of the length of the wave vector), which means that
dielectric constant & = 1 (see for instance, [10]), as a result we
obtain the equation for the correlation function, the solution of
which, substituted in the right part of equation (21), leads to the
integral of collisions in Landau form. If we pass to equations of a
£o0lid medium, using Boltzmann's equation, it is necessary to consider
characteristic times, much greater than 7% = the time of establishment

¥

of' on equilibrium state —the order of magnitude of which is determined
by the order of magnitude of the ’iee path of particles and is equal
to rd/uvo, where y — plasma parameter, determined by formula (8),

N z 0.0 ;.0
Considering = ~ v 1~ (1

— so-called length of establishment), for
transition to a solid medium we should assume that Zo & L (L~

characteristic dimension), i.e.,
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Td
i <1 (24)
System of inequalities (8), (14), (45), (49), (22), and (23%)
means that for description of processes in plasma with parameters
wnich satisfy these inequalities 1t is possible to use a closed
. system of equations, consisting of the kinetic Boltzmann equation with
integral of collisions in Landau form and Maxwell equations for the
é&ectromagnetic field, where function <Na> = na*fa corresponds to the
rirst distribution function, usually appearing in the Boltzmann
equation.
Por transition to magnetohydrodynamié equations [2] it is
necessary to make assumption (24). -
In the diagram, in the same coordinates as the known diagram of
- Kantrovits and Petchel [11], there are depicted regions in which
rarious inequalities are satisfied. Along the axis of abscissas 1is
the decimal logarithm of temperature, expressed in ele¢tronvolts,
and on the axis of ordinates, of electron density. For characteristic
Length we take magnitude L = 410 cm; for order of magnitude of
electrical field E we take magnitude E ~ VOH/C, 1.,e., maximum possible
mirnitude of separation of charges during motion of the medium with
respect £o the magnetic field. Below line 1 inequality (8) is satis-
ficd; above line 2 inequality (1%) and above line 3 inequality (15) are
satisfied (for phe latter two lines H = 1o§e; if, however the field
iz less, these inequalities in the marked regions are long since
" satisfied).
Above 4 is the condition of solidness of the medium (24); to the
_lert of 5 — condition (19); the dotted line corresponds to thermal

ionization of hydrogen (to the right, more than 50% ionization), where
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for gases with an ionization potential,

smeller than for hydrogen, this line is

20 & < \\ - |
\\}\\\\\>/ \\\\\\ﬁ\&\ shifted to the left.

L .\\\\:/ N \ ' \\\\\\\
gt

Line 6 corresponds to o 1, = 1 (w, —

cyclotron frequency of rotation of

I R A N T
Fig. 1.

electrons, T, — "time of free path" of
electrons, Tq ~ % for completely ionized
zas, H = 103e for -this line).

Region A corréesponds to classical magnetohydrodynamics (wewé &K 1).

Region B corresponds to magnetohydrodynamics with anisotropic trans?ort

properties £ [42, 13]. If we are in region C, for description of

processes in plasma it is necessary to use the kinetic Beocltzmann
equation with integral of collisions in Landau form. Region D corre-
sponds to a kinetic equation with an integral of collisions which
depends on the magnetic field [14, 15]. Inequality (22) is not
marked on the diagram, since we consider it always satisfied.

With decrease of the magnetic field lines 2 and 3 shift downward:
and correspondingly regions A, B and C increase in size. In region
C far rrom line 4 it is possible to disregafd the integral of
~nllisions, since we have ZO > L, and for description of processes
in plasma it is possible to use the equations of a self-consistent
1"ield of A. A, Vlasov [16]. Near line U4 the integral of collisions
chould be accounted for. A generalization for relativistic plasma
is contained in [8].

In conclusion the author thanks Yu. L. Klimontovich, A. G.

Kuliko 'skiy, and N. N. Shirokov for valuable advice and discussion.

Submicted
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Note during proofreading. It is necessary to noté that assumption

(23) leads to divergence of integral of collisions at infinity. In [3]
this divergence was removed by means of cutting off the integral of

collisions at distances ~Td.

‘ Thus, assumption (23) leads to ignoring the interaction of elec-
trons with plasma oscillations, and also their influence on transport
factors [2].

Recently there appeared a work [17], in which there is revealed
the influence of these interactions on transport factors for a com-
pletely ionized gas. It is shown that, when temperatures of electrons
and ions are comparable, calculation of interaction of electrons with
plasma oscillations leads only to small corrections in transport

factors, which, in general, can be ignored. With sufficiently strong

nonisothermainess of plasma these interactions play a determining role.
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1.

THE ELECTRICAL FIELD IN A MAGNETOHYDRODYNAMIC
CHANNEL OF RECTANGULAR SECTION WITH
NONCONDUCTING WALLS

S. A. Regirer

(Moscow)

The two-dimensional problem of finding the electrical
field in a channel with parallei nonconducting walls with
constant and changing conductivity of the liquid was
considered earlier [1-3]. The obtained distributions of
electrical potential and current could be interpreted as
the result of averaging of the corresponding distributions
in a channel of rectangular section [4], ~For certain other
quantities, e.g., Joule dissivation, such a connection with
average characterisivics of a rectangular channel, in general
does not exist, if the velocity of the fluid changes in the
direction of the magnetic field. At the same time, calcu-
lation of these changes is of interest, in Particular,
during calculation of the influence of the "transverse edge
effect," i.e., of closed currents, circulating in the plane
of the channel cross section. Below there is set forth
a complete solution of the three-dimensional problem of
distribution of currents in a channel of rectangular section
with nonconducting walls, valid for any given dependence

d

2

c™ vectors of velocity and the magnetic field on coordinates.

There is also investigated a solution, corresponding to the
particular case of rectilinear flow in a nonuniform trans-
verse field. In conclusion there are discussed conditions
which should be satisfied, in general, by the magnetic field
assigned in the solution.

Let us consider rectangular channel |x| <, [y]| <5, [z] < a

with noncondueting walls, in which there occurs stationary motion of

an irotropically conducting fluid (Fig. 1), If the external magnetic
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field B(x, y, z) and distribution of velocities V(x, y, z) are knowun,
and the induced field can be ignored, the distribution of electrical

potential ¢ and of current density j can be found from system [4]

1
_‘\\\8 . Ag=—BrotV (1.1)
, 2 v .. .
f A /// p j=u('—-V?+—c—‘>~B) (3 = const) (1.2)
o Z
Iy
20— with boundary conditions
Fig. 4.
,ﬁ;aj(._%_,,/t)_:o wheny = 4 (1.3)
Jz= 0(—-%—}-gt)=0 when z = +- @
Here
folz, 9 ="5(VxB), wheny—18
g:(z,3) = +-(VxB), wen s = 4l
~ We assume, further, that V and B — bounded functions of coordi-

nates, where
v

B—’O, ',—-—'O as ¥—r — 20

dx
. !
A -0 asz—+t ‘-1'4)

B - Bw (yo Z),

i dx

and we seek the solution of system (1.1)-(1.3), satisfying asymptotic

conditions
(p-—;o a8 I~ — oc
. 0 {
]x=5[—%+ T(Vx B)_\-]—>O 8s T (1.5)
It is easy to prove that function
o_ (E—aplw+5Ffi—08—yP/L] , =61 ta)Pg—(a—)g] 1.6
¢ = 46 [(zr—a%)* - (v° — 6% Y (O e e O (1.0)

~atisfies boundary conditions (1.3). Introducing auxiliary potential

¢ =9 - @O and considering
A (z, 9, z)=-zl_-'BroLV—A(p° (1.7)

we obtain for ¢ a boundary value problem
A(D=A (z, Y, 2) (1.8)

2‘2:() wien ¥y = -8, ?—(2-_—_:0 whenz = +a

dy 03
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with asymptotic conditions
-0 asx——o, %%;—»—-(V B), as sz~ (1.9)

It is known that the problem at hand has a solution, if the right
sides in (1.8), (1.9) satisfy certain integral conditions. These
conditions and limitations imposed by them on V and B, together with

iimitations ensuing from other considerations, are considered at the

end of the article. Here it is assumed that a solution exigts and can

be presented as a series

[+
nY g,
o = ?[Z(ﬁtl‘oslﬂH+Nnocho;T
n=t
% . ime R rms <1 40)
+ ‘J (th oS = + Tt)m sSin T)] + M
m=]
00 CO )
oy M Jam: nny m:
+ 3 {M,,,,, $in —"rcos —— -+ N €05 —— €05 ——- -+
n=gm=1 '
’ r L :mq re3 )
-+ Sum sin '6 sin — 4+ Tun 5 = ) .
Then Mnm(x), N (%), 8 (x). T, (x) — solutions of ordinary
equations, bounded as |x| — oo
Mayn"” — Pmn:Msm = Mnm, Non” — Vam®Noam = lam
S,‘m' -— onm:Sm = Sum» Tnm' - Tum-Tnm = tnm
Here r, = m(n - 1/2) and
a 3
T A “’ms i . rl ¥ xniz
Hom = -8";—-]——4—,—, Mum = —= g v Asin —— cos—=dy dz
o] m—
\ a 3
nh? | md nny nmz
Vn,:= T+T’ nnm=;6‘S S‘ACOSTCOSTdde
—
;2 r2 s a 3 y
q$=-§4-$, sm=;g§‘AmwT4m——@ﬁ
a8
2 g ‘a8 s
q4 Xind Fen 1 \ wny . ™m®
Tam =~ + thm = 25 ‘ '5Acos 5 sin —— dy dz
—_— -
When n and m are not 51mu1tancouolJ equal to zero
i 7
Mum= = 5= \ M (2) exp (— pun ]z — §]) d} (1.12)
Ham A2
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Analogously N is expressed through v . and nnm(x), Sy 1S

nm
expressed through o, and snm(x), T, — through 7 - and tnm(x). When
n=m=20
Ne= | na® -0k
- _\w , (1.13)

After the distribution &f potential is found, from Ohm's law

(12.2) we determine current density

j=o(—v®— V(p-{— va) (4.14)

Joule dissipation Q is calculated after this, by formulas

. oo a & w n 3
0=+ 3 L”dydzdf: %“_S _‘ _Ss jVBdydzdz (1.15)

The second equality of (4.45) is valid only for channels with
nonconducting walls,

2. Of interest is consideration of rectilinear flow with a
cymmetric velocity profile in the presence of a flat magnetic field,
*onstant algng one of the transverse coordinate axes. Let us azsume,

f'or instance that

v = Cx”(.'/. Z), B = eXBX (.’t, Z) + ezBl (.’t, Z) (2. 1)

where

v(y, g =vly, —2) =v(—y, 2, B:(z,z) = B, (z, — 2)
m B =0, limB =¢,B,, By = coust

X~o—00 Z~-»00

In this casea
g:.=01 +=I_=/(xz)

o __ w(zt—a?f - _ o
? T E-aEF(F =0 A "_B"éj,— AN (2.?)

‘%’ Function A(x, y, z) turns out to be even with respect to z and

with respect to y, and in its trigonometric expansion differing from

zero there are only coetficients m, .. Therefore, solution of boundary

TR D T e T .
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value problem (1.8) is presented by series

©0
: y
O =4 5 Musin L 33 Mo sin 2 cos 272
T u=t n=1 m=t a

coefficients of which M, are expressed according to (1.42) through

Moo where in this case a
- Fa ¢ nmz
npyy = ‘a';" S v, B; cos_ldz -+ l‘nn"an
-
3 a B .
1 oY ° 1 nm: 2. 3)
. =5 gb v oS —'8'-— dy, Pun® = — K \ @°sin ——cos M dyd ( »

Setting P = Mnm + @nmo’ we obtain formal expansions of the

potential and components of current density

_ t <« r. r.y nmz
q"‘__)"‘_!q)nos-‘ 3 “a (24)
n=1 'n=l m"'l .
a ¢ 0 oo
. ¢ g R ames )
o= — 0 = — 2 Yo sin 2= —0 3 3 @un’ sin — cos 1
= n=\1 n=] m=1 .
o LY
ag B, ) S A § [ Tl . o rY
. h==o\gt=l=—7 2% ( Puo T Mhao = o™ Pra” | 008 5= —
v 5 (™ 2
e ray nmz .
=0 2 2 (5 Qo + M — b nn” ) cos T cos 77 (2.5)
. n=f m=1
. o \ am r.y ams
o= —06—=0 EZ(p,lm —sin —g—sm —

Let us note that functions A(x, y, z) and o (x, y, z) do not
depend on the longitudinal component BX of the magnetic field. There-
tore, the solution of (2.4), (2.5) also does not depend on it.

Joule dissipation in the channel is calculated by one of the

rormulas
Q= 006:\:,0{% .%;[ P 5 ('6: a0+ Mo — Bu’Puo )2] +
' + g .;; [0 00t 25 (52 @+ 1t — ™) + Pt 0} (2.6)
. Q =0ad zr} S_‘ [ > ((«,;%' F ity — Bao"Quo )("_luo—lluo”%f)] +
+ : ‘_1 [ (5 o = e = B 0un) (s = ) ] (2.7)
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These expressions have meaning when Qw = 0, where the field
attenuates along x as |x| — o sc fast that its energy is bounded, i.e.,
when BZ is & function, square-integrable along the whole x-axis. Ir
this condition is not observed, then integrais in (2.6) and (2.7)
diverge, and it is possible to investigate only the "linear density"
2f dissipation, determined by the integrand in (2.6). The integrand
in (2.7) for this purpose is unfit, since it is not equal to the
integral from,jg/aﬁo2 with respect to the channel section.

The obtained solution is intimately connected with certain
previously known. ones. Thus, when X = o, Bz-ﬂ-ﬁn # 0, it asymptotically
approaches the Longuet-Higgins solution [5]. In another case, when
V and B do not depend on z, the double sums in (2.4)-(2.7) disappear
and there is obtained a solution of the corresponding two-dimensional
problem of distribution of potential, which for special forms of

dependence of V and B on coordinates x and y is considered in [1-3].

B Al pnres e+ My ittt

%, Let us assume that the velocity distribution satisfies

conditions of adhesion on walls and is expressed by series

[ +]
ne / n
p=UOZx,,(z)cos-r6—’ \Zn =i" Zu(i")=0) (3'1)

n=tg Us

Let us assume also that change of the transverse magnetic field
along axis z, at least in section |z| < a, can bhe ignored and we can
set B, = Boyb(x). Function b(x) we consider even and attenuating
rather rapidly as lxl-ﬁ(n. Constants UO and BO have the meaning of
characteristic values of velocity and field, respectively. With the

indicated assumptions

“°

s ‘o . dam Y ams
; 9" =0,  mu=—0"UBb (@, A = | 1 () cos B dz
- ru ( 3 * 2)
Mum = "_—g'BoUo‘pmn (I) Xum
4
T I
\an (.’L‘) = — -TP'—_ .\ b (g) exp ("" Rum l I — < !) ({S
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From formula (2.6) for Q we obtain

= 3-“..(_}.-.6__.( \‘ x"() dno '}' 2’_} ‘\_‘! X'lm:qnm) (3. '5)
”_l n=1l m=t
=0 o0 o Ll'
Q = Q‘ [i + 2 ‘\J (:'}_} Xu,,."'l],.m / }_} x“uﬁqm‘)] (3. )
) m=f nN=] n=t N
Here
o«
- @ = sa('](‘o;énu 2" x"o qno, Qum = _;S{:o(éibg‘ -+ ruzb\pnm) dx > 0

If velocity changes along axis z practically only in narrow
boundary layers on walls z = *a, then, in general, coéfficients Xy
are small (for m 2 1). In the limiting case, when v = v(y) when
|yl s 8, |z|] < a, from (3.3) we obtain the formula of two-dimensional
theory Q = Q*. It is obvious that two-dimensional theory gives a
satisfactory approximation to the more exact result (3.4), if

. o= 231(2,17..... G s / ‘2 Xna? Tno | <1 (3.5)
Functionals qno{b(x)} in this formula are bounded from above by

a certain number, not depending on n and the form of function b(x),

ir only,b(x) is bounded (b = 1). Functionals qnm{b(x)} whenm 2 1

do not possess this property. Therefore, if the extent of the region

where the field is substantial, i.e., b ~ 1, is great in comparison

with 6, q__ can become so large that inequality (3.5) obviously will

nm
not be satisfied even for small values of Xpm * Investigating
quantity o for the given v(y, z) and b(x), it is possible for each
problem to indicate the maximum extent of the zone of the magnetic
field at which the contribution to dissipation from closed transverse
currents still remains negligible.

Quantity o in general can be calculated as follows. Let us

assume that

Guen < 3“ Uyin > 3., o <33 weenn > 1, m>1 ( 3. 6)
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Then

’3-)(:' | S ) <o < B SR
_(31 ,,‘,:'l M l,;:'l Anv -Zm"ha;:, ,,:_:___Jix"m (3.7)

Sums in these inequalities are calculated in final form by the
Parseval formula. It is obvieus that (3.7) can be modified and
improved, for instance, by more precise definition of inequalities
(3.6).

4, As an example,consider flow in an exponentially attenuating

magnetic field [4]:

( PVINid hen x

b(z) -- 1T when |2 <2 (41)

l -plx-2)15. whenr > A

when functions ¥ x) and corstants qyyy 2TE expressed by formulas

nn (

(Mers S g oy PambN) (2
1 By}

Yo == — ST 2(1 — Mg iz R 2) (dz1<2) (4 . 2)

‘ Me-vtx=2)/ 5 “[_g_p;llll('v-)‘) _ “ll+c‘$"um(-"+” (=>1)

T 2™y " ry? , & L o=
Qun (P B) = — M_(1 — M g™ + (o- - ) (m».-;) (4.3)
P ) Pam™ P,
2,2 p/8
M = Fom W = P/

=p’”"$_.p'-'/o'.l’ T P,Alu:Fp/Q

The velocity distribution, following [2, 5], we take in the form

ot the product

.

v=Ug® (¥, 1) 1* Vs, 2)

3 , » Vs r
X = ; (‘.\\.'l) (ch Ny — ch Ny /8), 1= =7 (ch N — ch ¥,z / a) (4. 4)

f(N&) = Npch Ny — sh N (i=1,2)

Here UO -- mean velocity, Nk — geometric parameters, characterizing
tuliness of the profile., With a real Nk, varying from O to w, the
velocity profile in plane z = const (for k = 1) or y = consnt (ror k =
= ?) iz deformed, passing from parabolic to uniform. When Ny = i/

in the ~orresponding planec there is ob*ained a 2osinusoidal profile
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and serier (3.1) then is brcken on the first term. For larger

M, the relative thickness of boundary layer on walls y = #5 and z. =

. . . . -1
= ta in order of magnitude is equal to N,

*‘»/a.

and Néi, respectively.

Coefficients of trigonometric expansion of x(y, z) have form

. Z.'Vg’.'vg (— i)"" ch le ro__ .
xn (2) = Fl (VT (VD) FE v (ch ¥. — ch N.z/ a)

(%.5)

dlvl’ (._ lj’l+l ch ‘\7‘ ‘,"‘ l)lly'ln“vz: sh 1"2
= 2N, L = e VA TN L
b =T W) ET A (@m* - N3 [ (V)

Joule dissipation in this case depends on parameters Nk’ P, )\/b,

n order to investigate their influence, we consider w, for

which, taking into account (4.5), we obtain

o -
=2 Z En@pm
. (4.6)
b me SR (s"w" _i-m___,) (\"4 __;’_"__)
Y X =M U TV R P IR

=1 i =1

For D here we can establish more exact estimates than (3.6)

(, ] + ) << o < 82, & :_:;<qnm < 6:’15 (1;. 7)

_ _®pr (i =R o P
U= TEeFR/F *TEe Al
_16a | 4as e (9 Ao, _1_)
b= 30 T M= TrwyeE C P (4.8)
PP —e ) 4 plpun s g
Az = [T T 3 - ‘.‘-—-"6'"'1'_
B’ (p 4 dpn) ) p
Taking into account identities
) . AN ch 2V — 3sh 2V 2 4V
2V ch2V —3sh 2V -4,
v‘ (N) = n_::]l rn_ (’, 3 ___ ] -2)-_’, = 8.V5 Cll= ‘\- = ——
_ \-1 .1 2V (N —6)eh 2.\'-1;)4: 2V L2V (N9
%)= 2 rai(r, ‘—-—z\’)- 4.VT etV
n=1
N = \“ 1 — (AN3=20N32-90.9) ch 28 — 105 sh 2N 24 N5 90431 1908
¥a = TSIV [EIACIITERY
n=

proved by the Parseval formula, we find for o,

2 (V1) 2541 (V1)
(hlpl(\,)< m \:zl‘l:s(\x)--:x_ﬂ'(\,,) (l}q)
From thirs, turning to (4.6), we find as estimate ror
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-

s

A

—kd - -

a : . as¥3(Ng)
;i—‘yl (Nl)‘ya (Ng)<(ﬂ< Gx‘ya(Nl)-i-az\y!(Nl) (4‘10)
Here
. N __ NI NVshNchN.—2sht ¥
‘rl ¥ ’ w!'—'-irr W’(N)_ =2 2/:(N) =

Curves of functions ¥, (N), ¥,(N) and YB(N) are presented in Fig.
2. For large vaiues of N

1

1 2 g
lyxz':s, TF.:‘z Wsz?ﬁ

5
Dependence of au/dB on \/6 for different values of p and §/a = 1

is depicted in Fig. 3 for /6 = 2 and p 2z 1. Let us riote that with

further increase of /& ratio a4/63 increaseg almost linearly. Decrease

of p leads to more rapid growth of ah/dB’ since from (4,8) it follows

that aa/a3 ~p “ when p s 1. With growth of §/a values of az./a3 also

increase, but they preserve the same order of magnitude as when 5/a =

=1,

From consideration of these results it follows that when §/a z 1

. 1
parameter o has an order of magnitude at least as large as N2 , and

auk for /8 z 4 or p < 1 it exceeds N,
Tl T~ v

4
order. Therefore, even with small relative

by an

az . thickness of the boundary layer on walls,

N'E

perpendicular to the magnetic field the

% :
] contribution of transverse currents to
0 10 F1Y N
Fig. 2. dissipation can be marked. For instance,
for N, = 0,05, A/6 2 4, p =3, 6/a = 2

we have w > 0.2, i.e., real dissipation by more than 20% exceeds that
calrulated by two-dimensional theory. With greater relative thickness
of the boundary layer on walls z = *a ([lor smaller N2) the influence
of ¢rocs currents becomes essential correspondingly for smaller )\/5

and larger values of p.




Thickness of boundary layers on walils

% 1IN/
= Is \
16l - 225 y = t6, parallel to the magnetic field, is
VAR A/
Vs characterized by parameter N,. As can be seen
/( / 1
. 3/,/;2;2;2/4( from the given calculations, its influence on
géz,// - w is small, and conclusions, made above, are
/ ) A
: 0 o wiy' valid for any N,. At the same time, in the
Fig. 3.

expression for total Joule dissipation (3.4)

this paramter enters not only in w, but in Q*, where Q* strongly
depends on Ni‘ Thus, with change of N1 from O to o, Q* and, conse-
quently, Q decreases by a factor of one and a half [2].

5. The solution investigated above was obtained on the
assumption that V(x, y, z), B(x, y, z) are given functions. It is
obvious that solvability of system (1.1)-(1.3) requires only fulfili—

ment of equality

e

) tim: m B rot VaD = lim “ (V % B),dS
D

under D, = — volume and surface of parallelpiped |x| s 1, |y| < 5,
]zl < a. This condition is fulfilled exactly if B — arbitrary
pvotential vector. It also takes place for different cases of joint
assignment of V and‘B in special form, for instance in such a form as
in Sections 2-4%, when V rot B = 0.

During solution of problems there frequently arises the necessity
of introducing in system (1.1)-(1.3) a simple approximate expression
ror the external magnetic field P instead of the exact expression,
which satisfies.equations div B = 0 and rot B = 0 and having, as a
rule, very comple£ form. Here it may be (as in Seaxtions 3-4) that the
introduced vec~tor does not satisfy equation rot B = 0. If the (low
o' liquid is nonrectilinear, then condition (5.1) may also be

dirturbed, Therefore, in such cases the classes o' approximating
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functions of V and B are bounded by condition (5.1) or the equivalent

requirement

'E;S;SVrothD%) (5.2)

The latter can be considered the condition of conversion into
zero of the V-weighted average value of rot B, Let us note that
current density J found from the solution exactly satisfies equation
div Jj = 0, if requiremént V rot B = O is fulfiiled better than
(+.2). Otherwise equation div J = O on the average throughout the
volume is satisfied exactly, and at every point it is satisfied
approximately.

Selection of function B, introduced in the calculation, is also
determined by other considerations, the essence of which it is possible
to explain from the example of the problem considered in Sections 2-4.
In this problem of sigrificance only is selection of the component of
magnetic field Bz@g z) transverse to the flux. If in direction z the
channel has relatively small width (6/a > 1), then within section
lz] < a it is possible to expect small change of Bzin comparison with
the magnitude of B_(x, 0). Considering therefore B (x, z) = B, (x, ©) =
= Byb(x), we arrive at the formulation of the problem in Section 3.

It however the ratio of transverse dimensions of the channel is the
opposite (8/a < 1), although the whole system of the problem is close
to two-dimensional, approximation B (x, z) =~ B(x) can be unsuitable
'or not too great an extent of the zone of the magnetic field a’ong
Lhe channel, )

Solution of the problem, considering change of the magnetic field
across the channel, is easily obtained from general forumulas of

Seciion 4, Nonuniformity of the field, just as nonuniformity of

velority, leads to appearance of a transverse edge effect.
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Let us note that there exist such fields for which B (x, 0) <
< B,(x, a) for small values of x and B,(x, 0) > B,(x, a) for large x.
In this case the transverse edge effect, caused by nonuniformity of
- velocity, will be weakéned near the central section of the channel

and will be strengthened far from it.

Submitted
12 March 1964
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ON COOLING BY RADIATION OF GAS, FLOWING PAST 4 FLAT PLATE

A. F. Kurbatskiy and A. T. Onufriyev

(Novosibirsk)

In a number of problems of aerodynamics it is necessary

to consider transfer of energy by radiation and thermal

~ conduction through an absorbing medium. Finding the mutual
influence of both forms of energy transfer is the subject
of a number of works. 1In [1-3] there was considered the
case of stationary one-dimensional transfer of energy
between two plates. For flow in a laminar boundary layer
the problem was -~onsidered in [4-8]; for turbulent flow.
in [9]. For description of energy transfer by radiation
there were used different approximations: one-dimensional,
diffusional and of nonlinear thermal conduction. In the
present work in the simple problem of a thermal boundary
layer there is shown the influence of radiation on the
magnitude of the energy flux, depending upon the parameter
characterizing the relative magnitude of densities of
energy fluxes caused by radiation and thermal conduction,
and we compare different approximations.

Designations
qi ~ dimensionless magnitude of density of the energy flux, deter-
mined by radiation;
qo — the same, but determined by molecular thermal conduction;
QAi — the came, but determined by radiation in the approximation of

"monlinear thermal conduction;"
q — the same for the tctal energy flux;

o — dimensionless magnitude of dencity of energy of radirtion;
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®” — equilibrium density of energy of radiation;
¢ — velocity of light;
6 — Boltzmann's constant;
T — dimensionless temperature;
1 — path length of radiation;
u — component of velocity of flow among axis X;
p — density of gas;

P — Prandtl number;

cp — specific heat capacity at constant pressure;
x' — coordinate lengthwise along the plate;

1
y — transverse coordinate;

e — magnitude of the parameter, characterizing the relative role
of molecular thermal conduction and radiation;

k — coefficient of molecular thermal conduction;
p — coefficient of viscosity;

I, (x) — Bessel function of imaginary argusent (n = 0.1);

L (aY) (2% @ 07!
1= i ] = q° .}- " = =i, Jd = —
*T=9rx’ T=5T3 7=4q"-tq P= o TN
: .. A4oT* _ Sy _ T _ By P
V= =g, TS P T YT

1. The problem consists of finding the distribution of density
v the energy {lux the length of a semi-infinite ideal black plate
during stationary Tlow past it of radiating hot gas. The plate is
located along axis x. Gas flows parallel to the plate. We take the
hypothesis of local thermodynamic equilibrium. The gas is gray.
The process of energy transfer by radiation will be described in the
ditfusional approximation [10]

831 div(q') = e — e, (q") = —slgrad (e:D)
Concider 'low in the boudnary layer of an incompressible f{luid

during small changes ot temperature for small Prandtl numbers P, In
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this case there can be obtained a solution in final form. When P « 1
it remains to consider the problem of a thermal boundary layer, in
which dissipation of energy due to viscosity will be ignored [6, 11].
Transfer of energy by radiation will basically occur in the direction
to the plate with a value of parameter A K 1.

With these assumptions the problem is reduced to solution of

system

ar o’T
&=t T

4
'g'aya=q’—(4T—3) (1.1)

with boundary conditions

=17, Y op /oy =¢ — (4T, — 3)  wheny =0

T =1, =1 sheny=20 (1%)

and with initial condition
z =0, y>0 whenT =1

System of equations (1.1) can be reduced to an equation for the

magnitude of the density of radiation energy

32—t ARt =0 (1.3)
with boundary conditions
g.a_f;:%;_:‘;_—_(p_(ﬂl—?,) wheny=0, @ =1 ynep y=c0 (1.4)
and with initial condition
@ =¢(0,y) when r-=0 (1.5)

Quantity ¢(0, y) satisfies the second equation when T = 1 (1.1).
Magnitudes of densities of energy fluxes are determined by

or s[aq) 463(p]

A dg o __ s SU Al 4
ql=—"§"'_— 9 = dy 9 ¢y

dy
Value of parameter g = w correszponds to the case of no radiation,

and ¢ = O corresponds to the absence of thermal conduction. The
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ijatter case was considered in [12]. The density of the energy flux

on the wall when ¢ = 0 will be

¢ (0, 2) = — 4 — Ty) e (a2) + I, (/:2)]

(1.6)
2. Equation (1.3) with the corresponding boundary and initial :
i conditions is solved with the help of the Laplace transform. For the
transform of the density of the energy flux we obtain
* 0, s)=--4(1—Tl)[ (4+8+;/3}/]-/;_§+‘/93)'If;_%.] (2.1) ’
¢ 0, 5) = -—‘—“—f%;lﬁ (2.2)

Expression (2.1) on a plane with a cut along the negative

remiaxis has only one singular point s = 0, and the complex integral

in the expression for the original is reduced to an integral with

B

respect to a real variabie

T e I
0
- 0oy =—20zT b (2.4)

From (2.4) it is clear that in the considered linear problem the
density of energy flux, determined by molecular thermal conduction,
does not experience the influence of radiation.

Quantity q1 we find as the difference a - qo = ql.

%3, When £ = 0 the expression for density of the energy flux

i1l be

-

8(1—T
Q(013)=— { ')\

o)y el (3.1)
0
Expression (3.1) can be converted to form (4.6). Correction to
] qﬂ ror small values of ¢ will be a quantity of the order of 51/3,
which it is possible to see from series expansion of (2.3)., As
¢ = 0 we obtain

L _A0—T) Ve >
7 (0. 2) TV Ve
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which corresponds to molecular energy transfer. The first term in

q‘l corresponds to calculation of quantity

9.1 0, 2) = —\ 3T, (g, 2) — 31 et dy'+ (4T, — 3)

v

by the temperature profile, which is obtained from solution of the
problem during allowance for thermal conduction alone; for large

values of x:

8({—Ty)

9:’(0,3)z—————3},:-_‘;z- (3.2)

For large values of x we can obtain an asymptotic expression for

density of the total flux of energy,

q(O’x),:._!n(i—Tl)Vm[, 4

3V TG T eral (3.3)

and for the density of the flux of energy, determined by radiation,

g' (0, z)z—%l}—;—-%'—)ﬂ/’t-i-e—}’ra (3.4)

From (3.4) and (3.2) it is clear that the latter can be used for
large values of g, i.e., when thermal conduction plays a predominant
role,

4, Approximation of "nenlinear thermal conduction" corresponds
to the value of the effective coefficient of thermal conduction
K, = k + (16/3)10T 7.

The density of the energy flux is

A0—THYVi—-¢

70, 2) = — e (4.1)

This quantity for large values of x coincides with the solution
in diffusional approximation (3.3). But if we are interested iﬁ/the
radiation component in the energy flux, there is no coincidence
[T, 13]; in this approximation we obtain that which should be

compéred with (3.4). As 1 =0,

e Chhe? x A
— . RS- Sl e Mo, i e .




God = — —2i=T0 (k.2)

3Y ar(ite)
we [ind that x is great, and £ = w and q**i/qi-+ 2. When 1 is small,
but X = 0, £ =+ 0, and x is great, and q**i/qi-* 1,

But in the molecular component of the density of the energy flux
there is obtained here a great difference. When 1 — m, but I is
finite, ¢ = 0 and x = O. 1Instead of (3.4) it is necessary to take
(1.6), which gives qi(O, x) = 1 and q%*l/q1 = .

5. Results of calculation of the magnitude of density of energy
rluxes are given in the form of dependences on x of g/(4 - Ti) in
FPig, 1 for £ = 10, Fig. 2 for ¢ = 1 and Fig. 3 for £ = 0.14. 1In each

figure curve 1 corresponds to density of

9 .
AN €10 total energy flux; curve 2, to density o1
N . L
$q;\\\ energy flux determined by radiation; curve
[} L r\ l\’\ .
« ‘1”’i 3, to density of energy flux determined by
Nl | thermal conduction; curve 4, to density of
v \r -T ——--—4}.'__..#_-______?____. 2 s y
n ¥ ol I ” .
total energy flux, calculated in the
Fig. 14
approximation of "nonlinear thermal
v . S | I 1 -
\ ‘%ﬁ 10 conduction'; the curve, marked by small
4 Nast= :
\& \\\\\ ] crosses, corresponds to the quantity
A i
2 \\§hg B determined by (1.6); the curve, marked by
Iz ] .
—— —— q . .
M e circles, corresponds to q*i.
0 az alu T Comparison of curves shows that for
Fig. 2 small values of parameter g the difference
¥
y Ku 0] between results in the diffusional approxi-
\_" ;\s~ . . . .
AN mation and the approximation of nonlinear
T2 b
- R . . s e
e \\ wftijifq thermal conduction may be significant.
[
NE T I ! From comparicon of curves in Fig., 7 it ir
l ¥
0 02 0 Z Pt . 4 Ay e : ,
clear that the magnitude ot densily of thi
i A
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total energy flux, determined by (1.6), when we completely ignored
the action of thermal conduction, is close to the solution in diffu-
sionazl approximation. When we allow for thermal conduction there
occurs only a certgin redistrioution in energy fluxes,

This considera%ion of the linear problem allows to see the regiocn
of validity of different approximations utilized in describing the
transfer of energy by radiation, which preserves it qualitative
meaning in the more general case.

The authors thank V. P. Zamurayev and V. N. Vetlutskiy for

useful discussions.
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LAMINAR BOUNDARY LAYER IN A RADIATING-ABSORBING GAS
NEAR A FLAT PLATE

V. P. Zamurayev

(Novosibirsk)

Xy The stationary problem of laminar flow of a radiating-
absorbing gas in a boundary layer near a flat plate was
considered in a number of works [1-6]. However, due to
assumptions made about radiation, the region of applicatic.:
of the obtained -olutions is limited; for the same reason
accuracy of the utilized methods of calculation of radlation
is not known.

\\N

In the present work there is considered a laminar boundavy
layer near a plate with more exact description of the
transfer of radiation. Heat transfer is carried out by
normal thermal conduction and radiation. About radiation
there ~re made a series of simplifying assumptions, utilized
also in the works mentioned. Thus we take the hypothesis
of local thermodynamic equilibrium — emissivity and the
coefficient of alsorptions are connected by Kirchhoff's
law. The medium is assumed to be gray. Radiant fluxes
along the plate will be disregarded in comparison with
fluxes across it., This is permicssible if change of tempera-~
ture along the plate on the radiation path length is small.
In radiant fluxes across a plate weak change of temperature
along plate will show up in such a way that these f{luxes will
be determined by the temperature profile in the considered
section., The wall is assumed ideal black: Physical
properties of the medium can depend on temperature.

We show the character o1 asymptotic behavior of heat
{ transfer far from the front point of the plate. TFor
solution of the problem along the whole plate there ie
applied a differential method of soiution of the .yrhem
: of partial dif'ferential equations with a complex irtegro-
e dirrerential equation of energy. Thi: method in its bkacio

5
5
3
. 120
r:""

R I o el R T e b .xz«u,-.;7~ s ;::..%ﬁﬁ%w

-, e M L S
B R T T T T s

et 87 XA e

e i e S e 2 e el S Eene 9602 5 e e T
e ——— P ————————— p—



e e et

Teatures is similar to the differential metnod applied for

solution of equations of the boundary layer without ca.~:i-

lation of radiavion [7-9). In conclusion there are given

results of calculations for one of the cases considered in

[4]. Here, we show the character of heat transfer and theo

possibility of accounting for radiation in approximation of
- radiant thermal conrduction.

- 1. We conrider a stationary laminar boundary layer rear a flat

In variables x (longitudinal coordinate) and y (transverse coordi-

nate) the problem at hand is described by system of equations

- Jdpu i)_r;r )

or T oy
Je . On P Ju '
Mo T T Ty My (1.1)
oT . . oT aqg . { ou\2
s 00ty = — g+ {7

Here u and v are components of velocity along and across the
plate; T — temperature, p -~ density, p — coefficient of viscosity,
. cP — specific heat capacity at constant pressure, q — total flux of
heat along y, equal to the sum of fluxes from normal thermal conduction

qp, and from radiation q,

q = qQw-tqr (i’:?)
Flux of heat Ay is determined by usual method
qu=—>MAaT [dy (1.3)
vhere A — coet'ticient of thermal conductivity.
The {lux of heat [rom radiation q, can be found by using its
i exprecsion, obtained by integration with respéct to the spectrum and
colid angle of the intensity of radiation in the form of a rormal
colution of the transport equation, multiplied by the ~osine ot' the
am"le between the dirextion of radiation and axis y, taking into
arount the acosumption of grayness ot the medium and ignoring change R

1 tempersture: along x for several radiation path length. .
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Gr= 25T Esiv) + S?_J,T‘ E.(x—1)dt —:8'23 T4 Eq(t —T)dt (1.4)

[ ] <

Here o — Stefan-Boltzmann constant; En(r) — integral exponential
fanction; 1 — optical thickness of the layer f 3as, determined by
equation (% — radiation path length)

4 d .
[ ]
Subscript O characterizes values of parameters on the wall.

Cuantities p, W, ¢ Xy, 1, In general, are functions of temperature.

p’ )
Instead of continuity equation it is possible to consider two

equivalent equations (% — stream function)

=20 pp= — 20 (1.6)

Solution of system of equations (1.1)-(1.5) is sought in region

- : X > 0, y 2 0 with boundary conditions: )

u=v=0, T=T, veny=0 B=18yx, T=Tyg wheny=oo (1,7)

2. The above problem is solved numerically. Here, the front
point x = y = 0 is singulax (stress of friction and flux of heat
from normal thermal conduction behave in the vicinity of this point
ar 1/ Vx), therefore for creation of a single algorithm of numerical
*nleulation in all the region there are introduced new independent
ariables

. L
. 25Tt x __'(Q‘uoc /:'_ﬁ_d
Prig e, Th, 0 ? = wm= / S Pt y (2.1)

0‘
and instead of stream function ¢(x, y) — we have a new function r(#, 1)
, Y=V piuop rf (2.2)

‘g As a result all derivatives in the equations of conservation

become finite, and searched functions f, u and T in the new variable.
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vary slowly along the plate, thanks to which calculation with the same
1ceuracy can be 2onducted with a larger step with respect to €.
Boundary conditions for y = o should be considered at a certain
i'inite distance i'rom the plate, starting from which functions u and T
dif'fer from their limiting values Us and 2w a magnitude, not ex:eeding
errors of the differe‘ce diagram. In new variables the thickness of
the boundary layer changes little,and the solution can be sought in
standard region £ 2 0, 0 s o = Tep-
We introduce Jimensionless quantities

r_ U A P [ TS ’ A 3’—;. = - 3
u—-—,T _T;v P ""_)' ‘p' ———,Cp = A‘ T l'= =y 4 —‘S'I';‘ (2’))

“&: 3 l.}'l ll

where 71°'"sinal parameters, marked by index 1, are taken at temperature
T,. System of equations (1.1)=(1.6) with boundary conditions (1.7)

in dimensionless quantities will tegke form

e 31
] o' ,8:4 f a/ au’ oy
aq *“ - g(az:, —u 3{)"0 (2.5)
j' d , ,aT' 8[ aTv . ’ot g_'i'_ :'= .
_ 1 8qr' 'y — (f6 . T4 L
—_—EV_{_;.W, p' D = (6, T-)Eg(l') :
+ (Ot — T By (to — 7) + S T8 () — THLE, (jx —t])dt (2.7)
ﬂ 4
=vea{ (2.8)
(; t

Boundary conditions are

f=u =0T =10, uhenn=0 u" =1, T’ =0 when 17 o (2. Q)

Here P, = is the Prandtl number;
k 4
_ it By, T _ Yeo! -
Py = F R &= ﬂ'x‘ll & e (? L10)

The expression for ¢ is obtained taking into account the I'act

i

1 " .
that T = #_ when 7 Noo' Fluxes of heat can be found according Lo

the tollowing 1ormulas :
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. 2Ve ,oT N .
qm - —PIYE px i)n (2‘1‘) ,

-

7, = 26Es () — 200 s (to— ¥) + 2\ TE, (v — 1 dt —

(1}

-

—2\ THE, (¢ — vyt A (2.12)

3. From equation (2.8) it is c¢lear that for small values of &
the boundary layer is optically transparent, where the smaller e, the
longer it remains transparent. The term in energy egquation (2.6),
connected with radiation, is the product of £ and bounded function
b and for small ¢ it is small in comparison with other terms of the
equation. According to this the influence of radiation is small.
When £ - 0 it disappears. The temperaturé profile here seeks a
self-similar profile in the absence of radiation. However, singularity
wheh € = 0 Qdoes not completely disappear. Being bounded, funct.ion
b has unbounded derivatives with respect to €. Its first derivative
behaves as g‘1/2 in g: This is gonnectgd with the fact that the
optical thickness of the boundary layer grows as ¥ £ (for small £).
As a result function ¢ varies very sharply.

4, Integrating in the right part of equation (4.%) by parts

st uging (1.5), we can obtain an expression for q, in dimensionless form

ro AL aT 1 ot AV e53) - ' an ) "
9. = 3 }l’g'-; {1k + = Vt:‘, UL !1=0 2b4 (}’ (-.,,1) ] ( a = é -a.[.‘
2 ¢ e 2 O *
e\ S BV E G 0] - FA TR B E el (x.1)

If +/e€ - 0, the integrands in (4.1) seek zero everywhere as
(Vet|a - tl)"1 exp (-Ve€|a - t|) with the exception of the vicinity
o' point L = a, which seeks zero, where they are finite. As a result
the corresponding terms have order (aﬁ)'i. Therefore, when Vef >‘1;z

! .
instead ot (2.42) for qp it is possible approximately to use expreasci -




45T .

: Ll
o (2.2)

___4
. = -.TV:

'.

£
or QN
’J’,-_ 3

Thus, for large values of £ the radiant flux outside the wall is
obtained in the approximation of radiant thermal conduction.

The matter is different near the wall in a layer of thickness of
several path lengths of radiation (thickness of this layer in variables
n, & seeks zero as 1/VEE). Thus, when 1/L = O, L — characteristic
dimension of the problem (and, consequently, 1/+ve€ — 0), for the
radiant flux in this layer we obtain

g, _.;*[1 [‘,(r)]—‘/—- o'l avn* (4.3) ,

differing from (4,2) by factor {1»r(3/2)E4(%)]? which changes from
9.5 on the wall to 1 in the gas flux {when 1 = 4 the difference of it
from one consiitutes less than 0.4%). The mutual portion of heat

fluxes 1s determined correspondingly thus:
9,
9in

sT3!

~ [1———1:()] : ,

Thus, for small 1 /L near the wall in a layer of gas of a thickness
of several path lengths there is redistribution of the heat, transferred
by radiation and by normal thermal conduetion, in the direction of
increase of the molecular fthermal flux and corresponding decrease of
the radiation flux (total thermal flux almost does not change). This
is carried out by sharper lowering of temperature toward the wall.

Rut the relative thickness of this layer is small: Therefore,
ronsidering radiation in the approximation of radiant thermal conduc-~
tion, we can obtain the correct total thermal flux ol heat; the
radiation component o1 the thermal {lux will be overstated a minimum

oi' 2 times with change of parameter 1/L from zero to infinity.

In [1] this shortecoming of approximation of radiant thermal conduction

Lo a ~ertain extent is removed by inirsducticn of a thin near-wall
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layer, where the coefficient in the expression for the radiation thermal

flux is less than in the remaining erea by a factor of 2.

-

5. We solve system of equations (2.4)-(2.8) with boundary

condicions (2.9) by the method of finite differenceés.

oo

We consider arithme.ic mean values of the

=

s

= = ¢const is divided into character-

Region of flow £ 2 0, 0 s q =

istic strips of width h.

sought functions fp(f =f, u, TJ) on the left (i - 1)-th and right

p
i-th boundaries of the strip

2 =Yl s+ 100

(5.1)

Index i here means that %he function is taken for £, equal to

).

These mean values differ from exact values on the center line of

the strip by a magnitude of the order of he.

5
"1

in(i = 0, 1, 2,

System of equations (2.4)-(2.6) with boundary conditions (2.9)
is written on the center line of the characteristic strip, where exact
quantities are replaced by mean fpo, and derivatives with respect to

£ are replaced by their differential analog

?,i) - /po_lj).i-l
T onf2

(5.2)

@5,
In order not to resort toaniterative process, greatly increasing

uce of machine time, when radiation is present, and at the same

time so0 as nutl to increase the error of spproximation of the system,

1 |>\! 1
s P ) Cp

quantity ¢, describing radiation, and, simultaneously, p'u
and velocity u in (2.4), each of these quantities is replaced by a

linear combination of its values on boundaries of the preceding strip,
co that the error of approximation of the system remains ot the order

I

ol' h” :

fo= g = (0 ) fo iy = Vbl ice © = hally)

(5.3)




where hi is the preceding step, and h2 is the new step.
As a rerult the system of linear partial diffTerential equations

(2.4)-(2:6) is rviuced to a system of ordinary linear differential

equations
L/ i— (5.4)
dn i
) d . du £ du® e (_,’___.__._._'- fizy a’ - ___da_u_i_“'_'. =
Fr T =W T TR ) 0 (5.5)
| d 4. dT° f° . dI? a.(f‘hqdr _>7"*Tm')
™ T e Y\ T T
+ 50 o) (S = 0 (5.6)
v dy
Boundary conditions are
P=uw =0 T =02 wen n=0. =1, T°=0_" uhen N ==y (57)

This system is solved in this sequence. First, from equation
(5.4) we find function £f°(q). Then we solve equation (5.5) for u°(y). ~
And, last, from equation (5.6) we find: funciion Te(nj.

After system £5.4)<{5.6) is solvea, from algebraic relationships

Us =-¢fp -~ fpji—l’ a corollary of (5.1), we find values of the

' 1 !
sought functions f; u and T for & = &i = ih with error of the order
of hg.

For solution of the linear system of ordinary differential
cquations (5.%)-(5.6) the region of flow in plane £, 3 is divided
into n horizontal ctrips of width A = na/n, and each of equations
(5.%)-(5.7) is approximated by a difference equation of the second
order of accuracy. As a result values of function £°(q) for n = jA
are found by formula

A

=l fu), (=0 (=1,2..,0—1)

+ And instend of equations (5.5) and (5.6) we use, correspondingly,

difference equations
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EKach of these -equations is & second order equation with known

values of the sought functions at different ends of the interval.

They are solved by the method of successive approximations [2].*

A 11
Quantity (p 1 @)ij,is calculated by the formula

(P"'m);,' = (0g% -~ Ti,"‘) £, (‘q,‘) + (00t "—-Ti,"‘) L, ('gmi,"-' '-g,') +

A "
+ Vb 5 ) (Fuyj +Fy))
=1

where

1
Fig; = (T’ — T'ij‘)JE‘ (=ix— =551 ’(p—,‘,x:
Optical thickness Tij, is calculated by a difference dnalog of

equation (2.8):

t .
T =% TV T [(Pl),_1+({"l')ij] G=12...n

"i0=0

In order to start computation, it is necessary to know profiles of
velocity and temperature in the initial (€ = 0) and the first (£ = h)
sections. Solution in these sections is sought by the method of

suc-eessive approximations,

- - R Raiu g i ot v ioan 2 C ity M

‘Cyr11¢1c ! rogonka comes from a verbal root with the sense of

"drive away" or "drive through" — hence it possibly implies sucressi e
approximation [Tr. Ed. note].
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©. Results of calculations are given for the case: Qn =1,

By = 0.1, g = 0.2, P1 = 1, €4 = 0. Physical properties in this case
' 1

. . ! 1 ! ! f 1
are assumed constant — quantities p u , p X , ¢c_ , p L were equated

p
/ 1}
- 7/ . to one. All these conditions accurately
e .
B correspond to one of the variants in [1].
;73 i/ |
p},, -;zﬁf . The problem was considered with step
varying with respect to €. Accuracy was

checked by calculating with -othér values of the

% ‘ y

7 -z £ step both with respect to €, and with respect
Fig. 1.
to . Initially calcusation was made for
the following values of the step with resvect to £:
h=0.002 whsn0 2 < 0.008
h=0.004 when 0.008 <% <0.02
~h=0.008 yzen 0.02 <<E<0.06
h=0.02 when0.06 <§<<O0.¥
R=04 ween 0.3 <<Z<54
The step with respect to 1 in this case was equal to 0.4, and the
value of n on the external boundary was 16. Calculation on a computer
took f, minutes.
Calculation was repeated up to £ = 3.1 with values of the step

halt as large both with respect to £ and with respect to 7. The

0.5 was assumed

value of Mo to &

¢ N\
o1 NI : _ equal to 13, an¢ then it was increased
— A
0 : \\ to 160
o : I~ The maximum difference between the
] 16 a2 48
) Fig. 2. first and second calculation in values

of temperature was 0.3, and in thermal
"luxes on the wall it was 0.7% (for £ = 3.1). The difference in
“alues of ¢ reaches several percent.
Resulte off the calculalion are presented in the form of curves.

The dotted line plots corresponding curves from [1].
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’ e % In Fig. 1 there are depicted temperature
: \ ¥ P »
sk — " profiles with respect to variable . for
K /1 diTferent values of €. With growth of ¢ the
25 - -5 , ‘ ’
' ' 921. " temperature profile is deformed from a self-
prE——y _ ’ ‘ o -
7 7 s similar orie witiout radiation into a profile;”
Fig. 3.

corresponding to consideration of radiation in
the approximation of nonlinear (radiant) thermal conduction. Deforma-
tion occurs in such a way that hot gas in the presénce of radiation
becomes cooler, and gas near wall becomes hotter, In. the physical
plane this corresponds to the hot gas cooling faster, and the gas
near the wal¥l cooling more slowly (in comparison with the case when

radiation is not considered). This is explained by the fact that hot

4

gas gives off heat not only by molecular thermal conduction, but also

by radiation, while cold gas near the wall absorbs more than it radiates

é ] —— = - Y (Fig. 2), where for different values
! AN LT T 4£\, of ¢ there is depicted the dependence
vt //' ‘ N
‘ ’ on n of magnitude ¢, proportional to
0.1 N k
1A ' — '
0% T2 - TR 7

In Fig. 3 the thickness of
Fig. 4.

. boundary layer mn, is constructed,
calculated from a value or temperature, differing from the maximum by
1%, For small é there 1is observed very sharp thickening of boundary
layer. Subsequently, thickness of the boundary layer witﬁ respect to
1 almost does not vary and is close to its maximum (as £ — ).

In the considered conditions deformation of the temperature
'! prof'ile for small values of ¢ occurs sharply, which is connected

with rapid growth of the optical thickness of the boundary layer

(Fig. 3), where in the midst of the flux it occurs more rapidly.
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"he latter rcignif'ies *he approximation of nonlinear thermal conduction
ffor radiation becomes acceptable initially in the hottest region of
the boundary layer. The same fact is seen from Fig. b, where circles
mark radisiion thermal fluxes, calculzaied in the approximation of
nonlinear thermal conduction fromﬂthé non-self-similar temperature
profile for &€ = 3.1,

The region, where the temperature

q

9 e=a0£
, \\\\\\: profile is close to linear, in the presence

TN
>\\4g \\\\ of radiation is narrowed with growth of

7 \“ S~ ]

— 1 ¢ ] €. This one may see directly from Fig. 1,
L B B R TR and also by examining Figs. 4 and 5, where
Fig. 5. there are plotted thermal fluxes Q =

= (q/'O)TOO4 because of radiation q , and
normal thermal conduction qO and the total g, depending upon mn for
# equal to 0.02 and 3.1. For small values of £ the molecular thermal
lux near the wall decreases more slowly, and for large £, more rapidly.
Since the thermal flux from normal thermal conduction is proportional
to the glope of the temperature profile, curvature of the profile grows

with growth cf #.

115+ e
,%_ I e
,;ifﬂ;t;’—i; 42 ‘
2 ; v Y 1.
= A/ 50
;0. A &
L —] NI
Vi &4 P—— e —
! T o
/ 7. l’é [
05 7 2 K] Yy 5 / 2 ¢
Flg. G, Fig. 7.

For small values of ¢& the radiant flux changes slowly with

thieknes: of the boundary layer (Fig. ), since the boundary layer
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is still optically transparent (Fig. 3). But at £ = 0.02 in the

| ronsidered case there clearly stands out a maximum of radiation flux,
zonnected with the fact that heat is initially transferred by radiation,
and only at the wall does there occur redistribution, and heat is
nlso transmitted by molecular thermal conduction, where the total
flux of heat almost does not change. For large ¢ this effect is seen
to a greater degree. This one may see well from Fig. 6, where there is
fepicfed the portion of radiant flux which depends on £. 1In a rather
wide region inside the boundary layer the share of radiant flux
grows with growth of £, espécially rapidly for small values of ¢. This
growth of the share of radiation in heat transfer is connected with
the fact that the temperature profile in this region becomes more
gentle._ Near the wall, conversely, steepness of profile grows, and
the share of the radiant flux drops. (For small £ the share of the
radiant flux also grows near the wall due to sharp drop of the
molecular flux).

In Fig. 7 we constructed the flux of heat on wall from radiation,
the flux of heat from normal thermal conduction, and also the total
tlux. In the same place we plotted total fluxes of heat allowing for
radiation in the approximation of nonlinear thermal conduction (from
[1]). The difference in the considered conditions is somewhat greater
than 10%. The difference in the radiation component of the thermal
"lux was greater (for £ = 3.1 they differ in the considered conditions
by a Tactor of 40).

In conclusion we thank A. T. Onufriyev for useful discussion of
this work.
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‘MEASUREMENT OF PARAMETERS OF GAS FLUXES WITH
THE HELP OF A BEAM OF FAST ELECTRONS

A. M. Trokhan

(Nevosibirsk)

There is considered thé possibility of using a thin beam
of fast electrons as a probe for determination of parameters
of gas fluxes: local velocity and density of gas, and also
for local visualization of fluxes. To this end there are used
fluorescence and x-radiation, excited during passage of a
beam of elections through a given region of the investigated
flux.

Finding the local velocity of a gas, and also velocity
fields in the investigated flux, is a necessary component
part of most experimental gas dynamics problems. During
work with rarefied. gas fluxes the Pitot tube, usually
utilized for this purpose, turns out to be far from satis-
factory. For Reynolds numbers, smaller than two hundred
(for conditions of a free flux and diameter of the probe),
the pressure, given by the Pitot tube, deviates from ideal
values; given by Rayleigh's formula, and for Reynolds numbers.
smaller than several tens, the geometry cf the probe tegins tc
have a substantial effect. The influence of compressibility,
slippage, and also delay of excitation of vibrational
degrees of freedom of molecules of the gas still further
complicate interpretation of the pressure, given by the
Pitot tube, making it an independent very difficult problem.
In view of this it becomes necessary to develop new means’ of
measuring velocity, capable of giving reliable results
during research of fast fluxes of rarefied gas.

Good results in this direction were attained during
tracing of fluxes by ions, formed by means of pulse irradin-
tion of a moving gas by a beam of fast electrons [1-3].
These methods have two valuable properties — they will ko
absolute, i.e., they do not require calibration and at the
same time they do not require introduction in the flux of
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external probes. However, tracing by ions allows us to find
only a certain velocity averaged through the irradiated
section, where the base of measurement in view of small
directivity of electrodynamic detectors should be great. At
the same time most valuable for most experimental problems

is the possibility of finding the local velocity, the velocity
"at a point," i.e., the base of measurement should be minimal.
Thig problem can be solved, apparently, only by optical
methods.

Designations

v — velocity of the medium;

A" — positive ion;

B — negative ion;
L — base of measurement of velocity;
B — image scale;

1,1' — distance from principal planes of the objective to con,.gate
planes;

F — focal length of objective;

=
!

particle density;

s
I

cencentration of excited particles;
D — coefficient of diffusion;

P — density of excitation of particles;
Q

— density of deactivation of particles;

3

— lifetime of excited state;

A — wavelength ;

v — frequency;

h — Planck's constant;

¢ — velocity of light;

a -~ ngle between line of observation and vector of velocity;
0 — argle between vertex of light-dividing wedge and axis of

image ~of the spectral line,

1.4, Fxeitation of {luorescence ol pas. Local Teed Hf
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energy to gas by a electric discharge or a flux of fast particles
leads to corresponding local change of its parameters. Moreover, in
the gas there appears a series of processes, leading to dispersion

of the introdiuced energy. Some of these processes are accompanied

by radiation of light. Most of them are very fast, in a time interval
of the order of 1072 to 10"8 sec, but individéual processes have
significantly greater duration, as a result of which upon cessation of
feed of energy the glow does not cease instantly, but lasts for a
certain time, called the time of éfterglow. The duration of aftzrglow
and its intensity in different gasses can vary within very wide

limits. For instance, duration of afterglow of pure nitrogen under

favorable conditions attains 5 tc 5.5 hours [4]. This is the so-called

Lewis-Rayleigh afterglow of active nitrogen, caused by triple collisions

including atomic nitrogen in the ground state. At the same time

nitrogen also has significantly brighter afterglow, lasting about 0.1

sec, determined by double colliisions [5]. Argon has prolonged afterglow,

Tt is determined both by recembinidtion and luminiscence of metastable

states, TFor instance, state BPO of argon has life duration of the

order of 0,0005 sec, and state 3P, has a duration 0.00% sec [6].
Afterglow of air has mainly a hemiluminescent nature and is

determined by reaction
NO + 0O— .\-03 -+ hv

giving a green continuum with luminscence duration of the order of

10'5 sec, and by
NO + 03— NO; -+ O, 4 v

giving a red continuum,

Turthermore, there is recombinational alfterglow,

At B = AR Ay
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where AT is a positive ion, and B~ is a negative ion or electron.

A process, giving very prolonged (and correspondingly very weak)
afterglow in air, is luminiscence of so-Galled atmospheric bands of
molecular oxygen, connected with a metastable state. Its Iife attains
7 sec [7]. Suffiriently bright prolonged afterglow in air was observed,
hcwever, only during excitation by an electric discharge. .

Spark discharge is a very simple and effective means of excitation |
of gas flow; however, it cannot be used at a pressure below several |
tens of millimeters, since with lowering of pressure the discharge
loses its local character. IFor excitation of" glow in fluxes of
rarefied gas there can be used beams of artifically accelerated
charged particles. The spectral composition and. time of attenuation
of afterglow in gasses practically do not depend on the kind of exciting ¢
particles, if only these particles are sufficiently fast [8, 9].
Apparently, the most convenient particle is the electron. Beams of
o tificially accelerated electrons are a very effective and flexible
toel for local excitation of glow in a gas medium. The diameter
ol the'électrOn'beamnEan vary in wide limits, e.g., from 100 K [10]
to tens of millimeters., Density of current in the beam can be very ,
sreat. Thus, there are obtained beams with current density of 200
wmps/bm2 {11]. The path length of the beam in gas is easily regulated
by an accelerating voltage [12]. For the considered purposes very
valuable also is the possibility of comparatively easy realization of
modulation of the beam of electrons.

For drawing an intvense beam of electrons from the vacuum,
ghere it is tormed, into the investigated gas medium thefc are used

dirterential gas-dynamic® windows [13] with pump evacuation f{rom

vfor o description see 8. T. Sinitsyn. Instrument for preserving
a vocuwn with an open resorvoir aperture. Author's cert., No, 35LY03,
cleos 21 d. 47, 31 March 1934,
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intermediate chambers, With work which is not very prolonged the gas-
dynamic window can be somewhat simplified by freezing of a special
vorking gas.¥

In examining different gases from the point of view of the given
applied problems two factors are important: what is the brightness
of glow and what is the durggion'of preservation of an excited state
by the gas. Here, the considered gases can be divided into three
groups:

1) gases, yielding a prolonged, bright afterglow;

2) gases, long preserving an excited state, but giving a weak
afterglow;,

3) gases, having a short afterglow,

Accordingly during research of gas fluxes there can be used
different methods of measuring local velocity.

1.2, Methed of fluorescent tracing. As an example of a gas,

giving off a bright, prolonged afterglow, we can use helium. In

Fig, 1 is given a photograph of

a stream of helium, emecging from

a nozzle with a cross-sectional

diameter equal to 3 mm., In the

photograph on the left the stream

has subsonic velocity, on the righ-

it is supersonic., The stream is

Fig. 1. intersected by a beam of electrons
possessing an energy of 20 kev,

The diameter of the beam is about 0.3 mm; current is 0.2 ma. As can

*¥IPor description see A, M. Trokhan. Method of gas-dynamic wind
Authorts cert. No., 128949, class 21 d. 35, 30 May 41859,
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be seen Trom the photograph, from the place of intersection of the
stream by ithe beam oi electrons downstream there spreads a well-
defined luminescent sheet.

The method of fluorescent tracing* consists in forming, by pulse
irradiation by a narrow intense beam of fast electrons in the given
region of the investigated flux, a luminescent plasma "trace." Thanks

to the presence of afterglow the velocity of

¢
P the trace, which is part of the flux,can be
z_ ; measured by optical methods by finding the
!
/ time of its flight a given distance in the
/
g2 / space of the flux, Turn to Fig. 2. Let us
N4 . - .
VAR J ~ assume in a wind tunnel behind wall 1-1 there
: N7
l moves the investigated flux of gas., On the
Z
k& R outer side of the wall there is lotated source
2, emitting a narrow beam of electrons 3-4,
modulated in the form of shért pulses. As
Tig. 2. a result of electron shocks a certain volume

of gas, located along line 3~%, at the moment of passage of the current
pulse starts to gleam, and there will be formed a luminescent gas
column, moving together with the remaining flux, Perpendicular to

Lhe plane of the drawing there is located an optical system, consisting
ol ubjective 7 and diaphragm 8, having two small apertures. Behind
diaphragm 8 is located photoeleciric multiplier 9, coupled into a
rceording network, As a result of the presence of apertures in

diaphragm 8 light reaches the cathode of the photomultiplier only

*For a description see A. M. Trokhan, Method of Weasuring the

.véimcity of a pas flux. Author's cert., No. 131109, class 42015, 30

De-cember 19459,
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irom points of the flux, which are located along two straight lines,
intersecting the plane of motion of the column at points 10 and 11.
Thus, when the luminescent cclumn at a certain moment of time, passing
through point 10, occupies position 3-5, depending on the velocity
profile, in the photomultiplier there appears a current pulse, A
sccond pulse appears when the column, passing through point 11,
sccupies position 3-6., Knowing the distance between points 10 and 411
and determining the time between pulses, corresponding to moments of
: passage through them by the luminescent colgmm, we can find the average
velocity of the flux along base 10-11,
Typical oscillograms, obtained in
this way, are presented in Fig., 3: in the

upper part of each of the pairs of oscillo-

; | \'(§;~)“"." grams there is given the signal from the
é ; '¢§wmdﬂMUJWUWf; ;f\f?f photomultiplier; in the lower is the beam

current; the value of time marks is 0.2

microseconds; width of apertures in the

BAE TE BU OEN

diaphragm is 0.4 mm (in the flux scale);
the gas is helium; pressure in the chamber

was 10 mm,

The upper oscillogram of Fig. 3

Fig. 3.

corresponds to a pulse value of current
in the beam ~f 0.8 mé with accelerating voltage of 20 kv, and the
middle nscillogram corresponds to a current of 0.1 ma; the base of
weasurement is 3 mm. A8 can be seen, decrease of signal level leads
o the necessiby »f certain‘time—averagings of the results in view of
the fluctuating nature o the signal.

Av the dete2ior in the present work we used an uncooled photo-

mulr Tpricr PEU-1TA with objective Jupiter-3
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During measurement by the given method the velocity of gas is
found by determing the time of flight of the luminescent trace known

distance, base L

L=L B=L"1JU (1)
1 .
Here B — image scale; L. — distance between diaphragm apertures;
l, - distances from principal planes of the objective to conjugate

planes, correspondingly to the object and to the diaphragm.

Maximum error in determining the base is determined by expression

AL [ AL BAI Al Y 5
- =[5 + gt wEer (2)

Here F — focal length of the objective.

In the case of average accuracy of measurements maximum error in
determining the base is of the order of one percent. Error can be
lowered by one more order if one takes special measures, such as usc
of long-focal=length objectives and moré precise diaphragms. Maximum
error in finding the interval of time depends on the method of record-
ing. When using a very simple method — linear oscillograph scanning —
error of measurement is 1-5% depending upon the quality of the
oscillograms. N

Thus, maximum total error during mzasurement of velocity by
the given method has a magnitude of the order: of 2 to 6%. Let us note
that perturbation of the flux by the measuring tool — the beam of
electrons — is practically nonexistent, and accuracy of measurement
is determined only by accuracy of determination of distance and time,

For measurcment there can be used both single-channel and two-

channel circuits, Application of a single-channel circuit (both

r

yt

signals mov- t» one multiplier) is advisable when pulses do not

overlap.
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A+ the m_ment of irradiation under the action or scattered and

- gvondary <lectrens a flash occurs in the whole volume of gas

(ianencity ~f flash drops approximately exponentially with distance
p leam axis); therefore; measurement of the flight time can be
cacsiod out aiso with a single-channel circuit with one aperture in
v diaphiragm.

In the lower part of Fig. 3 is given a typical oscillogram of
pio o Iorm, The base of measurement in this case is the distance from
- 21 ot the beam to the investigated point,

Oseillaoraphy is the most graphic, but néé always the most
¢ onvenient means of measurement of flight time., In a number of cases,
."., when the signal level is low and the .Schottky effect of radiation

begins to be substantial or when it is required

S/ ot 7

to investigate statistical laws governing

fluctuations of velocity, it 1s more expedient

a

to use a delayed coincidence circuit.

7 k- “l\ As an example, in Fig, U4 there is given
the dependence of the number of coincidences

1 M
L bfi §¥“k»_~J: 2f pulses in thousands of pulses per minute
/

depending upon a delay in microseconds for

two points, 9.6 mm downstream. Resolving

T tine of the counter is 1 microsecond. The

L= Ilnn

base is located along thea axis of the stream.

The precence of a more gentle trailing edge

g;; of the coincidences curve is caused,

apparently, by the presence of a large

. AN
&3 16 48 g a8 18 2§ velocity gradient along the line of observa-

tion, which is clear from Fig. 5, which gives
th Loty ooy Ly In oa c¢ross section of the rucleus of the stream.
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This curve is obtained —ith that same base of measurement L = 9.6 mm
and at the same chamber pressure, egqual to 4 mm, but by means of oscil-
lographic recording.

Spatial resolution with respect to the position of the base in
the space of the flux may be very high., Apparently, it is fully
practicable to obtain a spatial resolution with respect to the position
of the base of measurement in the space of the flux of ‘the order of
hundredths of a millimeter. Since the base is selected optically,
change of its position can be reaiﬁzed practically as fast as one
wishes, e.g., by means of introduction in the system of the necessary
revolving prisms or mirrors.

Fully practicable will be obtaining of a base of measurement of
the order of 1 mm or less,

The range of pressures, in which for a ccncrete gas we can use
the given method, is determined first of all by the sensitivity of
the recording system and power of the exciting beam, In our experi-
ments with helium of industrial purity pressurc. varied rrom 0.8 to 5u
mm. The lower limit was determined by sensitivity, the upper, by
operation parameters of the installation, Under the considered
cxperimental conditions the lower limit apparently can be in,.roved
by an order by means of introducing cooling of the multiplier and
increasing the beam current.

Application of stroboscopic photographing of the motion of the
'luorescent trace with the help of the electron-optical converters allows
us to find the instantaneous velocity field in a gas flux,

1.3, Usc of "blow-away" of fluorescence. Tn Iig. 1 on the left

t¢ aiven a photograph of glow, caused by a stationary electron beam,

intersectineg a subsonic stream of helium, Downstrecam {rom the poind
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of intersection by the beam there extends a tongue of luminescence.
The length of the tongue is a function of a series of parameters,
including velocity of the flux.

| For the density of particles, excited in the moving gas medium

by the electron beam,we can write the following equation:

2 (08)+ 3 (0-53) 4 3 (048) - o -

a a . . +
— 5!7 (nry) ~ 5 (nb'z) +- P‘(.T, y,z.n, ‘\) — Q (n, :\r) — %L

(3)

Here n — density of -excited particles; N — total particle density;
D — coefficient of diffusion; v — velocity of the medium; P — density
of xcitation (density of sources); Q — density of deactivation
(@ensity of drains).

For the very simple one-dimensional cace of steady flow of an
incompressible fluid, irradiated by a flat beam of electrons, assuming
D = const, n << N, and also on the assumption of monomolecularness of

the reaction of luminiscence, we obtain

(I<O, ’l""O)
ﬁ:“’”%——:——}-q=0 (O< < B, q=const) (4)
(B<I, q=0)

Here B — width of beam; q — density of excitation, T ~ duration

of excited state,

Solution has the following form

ks
A= Qe (1 — ehB) ehs (zr L0)
k k ;
nE=gr [kl —:ks el (e=ll) — ky —tkz et o+ 1 ] SRR
. (5)
n = qrm(i —_ e ‘B) ek=s (B<Lx)
1 1\
( 1= 3y £ {7p: + iy
e e e e e e R A T T R S ST~ sy, T ety




Thus, we have three regions of flow: region 3, irradiated by
electruns; regicn 1, lying upstream; and region 2, lying downstream
from region 3,
! J The solution is shown graphically in an
Az arbitrary scale in Fig. 6 for the geneyal case:
(1) D, 7, v # 0, ®; and three limiting cases:

(2)V=O, D, T%O,(I); (3)‘T=!m,D=O;v}éo,

r w; (4) D =0; v, T # 0, o,
Fig. 6. Geometrically roots ki and k2 coristitute
quantities, the reciprocalsof sections of axis x, lying in the
¢ rresponding regions, in which function n = f£(x) changes by a factor
of e,

Experimentally, quantities k; = 1/x1 and k, = 1/k2 can be found
vasily by photometry., It is5 possible to write the following system,
connecting three unknown magnitudes v, D, ¢ and the two magnitudes Xy

and X found from experiment

v=2D Ii_:;lﬂ ’ v = —.:- (.1': - 1'1) (6)

Any additional condition, connecting unknowns or determining
one of them, makes the system determinate,

Note that the velocity of the gas will, apparently, be far from
the most important quantity yielded by this system, Measuring the
velocity independen.ly and finding thus the other two quantities, we
pr tably can obtain information about the pressure and temperaturc of
the gas.

In the cunducted experiments what was said above found confirma-
tion only qualitatively. Small dimensions of stream (3-5 mm) led to
large gradients of velocity and density. The region of irradiaticn

did not have sharp boundaries and had a rotational form, and not of a
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parallelepiped. Furthermore, in view of the smallness of the investi-
gated volume, and consequently, of the luminous fluxes, it turned out
to be difficult to conduct monochromatization of radiation, as a
consequence of which we measured the integral luminous flux, corre-
sponding to different reactions. Taken together this substantially
complicated calculation and hampefed realization of exact quantitative
measurements,

As an example of a gas, having a dim aftérglow, but preserving
excitation well for a prolonged time, we can use argon. For research
of fiows of such gaSes by the method of fluorescent tracing we can use
an admixture to the basic gas of a certain amount of an auxiliary gas,
which illuminates upon receiving excitation from the basic component.
Thus, for instance, addition to argon of several percent bf nitrogen

sharply increases the hrightness of afterglow. Adding as an admixture

various gases, we can ob%ain afterglow in the required spectral region.

1.4, Use of luminescent probes., As a detector, perceiving

excitation of gas in a fluorescent trace, we can also use usual solid
phosphors, introduced in the flux by micic-probes.* The phosphor is
illuminated as the result of energy transfer either when excited

atoms, molecules, or ions strike it, cr as the result of abscsption

o' quanta of vacuum ultravio;et radiation, suspended in the gas,

[lere, the efficiency of the phosphors turns out to be very high. Thus,
the quantum yield of willemite for shoritwave radiation is greater than
unity, constituting, for instance, during irradiation by light with

A = 1850 A a quantity of the order of 2-3 [14].'\

The very fact of use of a mechanical probe is undesirable in

view of the inevitable perturbation of the flux. However, as compared

*For a description see A. M. Trokhan. Device for measurement
of the velocity of a gas flux, Author's cert. No, 142018, class 42015,
15 September 1960,
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to other probe methods this method has this merit, that the dimensiors
Ladof probe are minimal, measuremedt is absolute, and the base of measure-
pr ment is located higher up the flux relative to
the probe., Thanks to increase of signal level
use of luminescent probes will :allow us,
apparently, to expand the area of applicability

of fluorescent tracing in the direction of low

pressures and small velocities of flow, In

Fig. 7.

Fig. 7 there is given :an oscillogram, obtained
by a probe, covered with willemite, in a stream of argon.

For measurement of the velocity of gases with short afterglow
one can use the Doppler shift of spectral lines. Determination of the
Doppler shift is rather widely used for finding the velocity of fast
fluxes of gas [15, 16]. Here, they use either natural radiation of )
the gas, or the glow of a specially introducéd admixture, most
frequently sodiwn. This method is applied only for gases whose
temperature is sufficiently high for thermal exXcitation of radiation,
or for gases directly in the area of electric discharge. The velogity
found by them, will be a certain average magnitude for the flux
along the line of observation, where error due to averaging may be
very great.

1.5. Doppler shift of spectral lines. Use of a beam of fast

electrons for excitation of local glow in a gas flux allows us to apply
the Doppler shift method to research of fluxes of both weakly-lumines-

cent, and alsc nonluminous cold gases.* Here it turns out to bLe

*I'or a description see A, M. Trokhan. Device for determining
the velocity of gas. Author's cert, No. 134495, class 42015, 29
February 1900, :
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passible to measure the local velocity of gas with the smallest possible
spatial averaging.

A diagram of the instrument for measurement of local flux velocity
by Doppler shift of spectral lines of radiation, caused by a beam of

fast electrons, is shown in Fig, 8. Bean

" . < of electrons 1, emitted by electron gun 2,
w; _:’ jg aPNJ . is introduced through the wall of wind
gﬁéaﬁ;‘ ; ‘ ;§ tunnel 3% in the investigated region of the

‘__"_—7—-1;";-7“-—“_q flux. Light, emitted by region 4, through

leﬁ}%iﬁig'7 : objectives 5 and 6 and lightguide 7 moves

Fig. 8. , .
= to a spectrograph or moncchromator 8.

Here, light, emitted by region U4, strikes objective 5 at an angle a
against the flux, and strikes objective 6 at an angle o with the flux.
As a result radiation, passing through these two channeis, should. be
shifted mégnitude

A =.2l—:—cosa (7)

Here A — wavelength of spectral line; v — velocity of the flux;
¢ — velocity of light.

Leaving spectrograph 8 radiation of the given
spectral line strikes a light-dividing wedge 9 and then
proceeds to photomultipliers 10 and 11, Unbalancing
of the wultiplier, caused by displacement of the spectral
line, is fixed by recording device 12,

The principle of recording shift of the wavelengtli

¢

of" the spectral line is explained by Fig. 9. Let us

assume that the image of spectral line in the plane of

the exit slit of the monochromator is bounded by paralledl

lines ab and mn. Let us assume also that &(x) — the
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distributi-n 1 intensity in cross section of the line — has a form
which is arbitrary, bul constant in all- the-height. The exit slit
does n&t pass adjacent lines of radiation, and also does not cut off

- the investigated line. Width of the exit slit here is equal to A + 24X,
where‘Ax is a quantity intentionally chosen larger than the magnitude
of displacement of Wavelength under the given conditions of the
experiment. At an angle 6 to the axis of the line there is fixed a
light-dividing wedge with face EF. The whole luminous flux, passing
through the plane of the exit slit above line EF, strikes one enlarger;
the whole luminous flux, passing below EF strikes the other. Both
miltipliers have the same gain factor. Let us assume that at aicertain
moment we have radiation from a gas, not moving in the direction of
the line of observation, We set EF in such a way that the luminous ,“‘

fluxes above and below the light-dividing wedge .are equal:

) “ O (z)ds = \S O (z)ds = - \S O (g)ds = @ (8)

ablh Afnm abnm

Here ¢ is the total luminous flux,

Let us assume now that a&s a result of motion of the medium the
line is shifted along the x-axis a magnitude dAN. This 1is equivalent
to line EF, with line &(x) fixed,shifting in height a distance
Jd Ntg o, sccupying position E'F’. The magnitude of luminous flux,
passing in the channel, will vary here by magnitude

-

i a0 = | ©(@)ds = 2T (9)
cdef >

Herce d 1s linear dispersion of the spectrograph..
Thus, if glow of the gas medium is observed alternately, first
rith the flux, and then against it, the corresponding photocurrents

A the pultiplicrs will differ by the following magnitude:

dh  rcosa by 4
— == 9 — — _-....‘... AT S 3 J ()
[ —1,==2 = Tte0 b = coust v ( )
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Here y — integral sensitivity of the multiplier. The result
does not depend on the width and form of the spectral line. Difference
of currents is greater, the less angle 6; however, here it is necessary
that, shifting, line EF intersects only the lateral face of rectangle
abnm, Absolute error in determination of velocity by Doppler shift
of spectral lines constitutes 15-30 m/sec [15, 17]. Thus, the method
can be used with success for measurement of high velocities, In Fig.
10 we give the spectrum of glow of industrial helium, argon and air
(from top to bottom). Below is given the spectrum of an iron arc,
Characteristically almost all the energy of radiation of air in fhé
visible range was amportioned to one band of the molecular ion of

nitrogen.

-

! o . .
[T T SRR AN B ] S S
. .

Fig. 10,

For recording it is also possible to use a Fabry-Perot etalon
united, when necessary, to fast recording with an image converter,
Since glow occurs in cold gas, Deppler broadening is minimal, At low

pressures Stark broadening also is small, In view of this Doppler

150

.. R > v -
e n——— Sb PRl St b G s e o 4 -WW‘ CRICATAIE] b (M acct KW nin s Y2 n I YSNPTIIRY,
-  mmm o weseaaeTS ST, e e - L o dodid DR A e AT S K3y




LGy o aty i

> by EY PR~ Tl
T e bor gt Al AT S F SN I NI R S e e, B PRI e e o

shift can be measured with high accuracy.

2.0. Measurement of local density of'g gas. Measurement of local
density of rarefied gas can be realized by recording the glow, emitted
by the gas under the influence of electronic impacts [18, 19]. During
emanation of definite spectral lines the intensity of radiation
emitted per unit volume of gas, other things being equal, turns out
to be proportional to the local density of the gas.

Deficiencies of this method are:

1) Intensity of visible radiation, emitted by a givéen volume of
gas, with identical conditions of irradiation depends not only on the
density, but élso on the temperature of the gas, which is caused by
the presence of processes of quenching of fluorescence, which depend
on temperature [20];

2) Measurements can be made only in the absence of natural
radiation of the gas, and also in the absence of any outside sources
nf light, i.e., the method only is useful for research of cold fluxes.

In the present work there is considered the possibility of using
x-radiation for determining the local density of gas emittecd during
slowing-down of fast electrons by it.

Measurement of the integral intensity of radiation, conducted by
a rmas-discharge counter through a mica window, showed that in wide
timits there exists a linear dependence of the intensity of radiation
on gas density.

In Fig. 11 are photographs of x-radiation in an argon medium at
pressures, equal to 0.85, 1.7, 3.4, and 6,8 mm, excited by a beam of
clectrons with beam current of 0,7 ma and accelerating voltage 25 kv,
Minimum exposure was 15 minutes. Expesure time was inversely propor-

ti~nal to pressures. Photometry of negatives showed that here within
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the limits of accuracy of the exy-siment
blackening in the region of entwrince of the
beam into the gas is identical., For photo-
graphing we uced a camera obscura, having a
hole of diameter 0.2 mm in a lead shield,
coated with aluminized mica. Distance from
the screéen to the beam axis was 100 mnm.
Photographing was on X-ray {ilm of type RF-_.
As can be seen from these photographs,

brightness of radiation changes with distance

from the place of entranc~ of the beam into the gas. However, if the

density of gas is sufficiently low (accelerating voltage is sufficiently

great), these changes arve small, If in the path of the beam there are

regions of increascd or lowered density of the gas,

these changes of density cause corresponding changes of

locel brightness of the X-ray glow.

(o

pr-

I o
Lo

Thus in Fig. 12 there is presented a photograph

a 25 kv beam of electrons intersecting a thin

-

amc ter of approximately 3 mm) stream of argon at a

-ssure >f 5 wn., In Piz. 3 the point of intersection

distinctly visible, The glow in the upper part of

the ohotograph is caused by the impact of electrons on

the surface of a copper collector. Brightness of the

X-ray glow depends b.th on the kind of «as and its density, and on

the power oI" the electron beam,

e diacsnestic purposes it is expedient to use low-power beams;

thoretore,

de-tecetorg,

e B e n e s

it is mrcessary to apply the most scnsitive radiation

In Vi, 43 is a alarvem o uc 2ossible device for

e ————— —— ———




A measuring gas density. Into chamber 1,

6
i ;/@)} \ containing the investigated gas 1iux, there
st] 4— T is introduced .a beam of fast electrons 2,
1 emitted by electron gun 3 and trappeld by

collector 4, With the help of X-ray unit

fig. 13. 5, consisting of a thick diaphragm with
holes in the form of cones having a common vértex on the beam axis;.
from the whole volume, irradiated by electrons, there is separated a
rmall region, radiation from which, passing through diaphragm 6, opague
to visible light, reaches scintillator 7. Radiation of the scintil-
lator is recorded by photomultiplier 8.

The described method of measurement can be used both for research
of pulsations of gas density in a given regien, and for measurement
or visualization of density fields. Natural radiation of gas or
Llight from outside sou;ceS'does not affect results of measurements.

For research of unsteady flows 1t 1s necessary to use more
powerful beams of electrons, and to photograph with the help of image

converters.,

3.0, Visuvalization of flows. Usual methods of visualization

of flows of gas, using an interferometer, shadow and schlieren
photography, turn out to be unfit for research at pressures below
several mm, Therefore, for visualization of fluxes of rarefied gas
we use either the afterglow evoked by a high-frequency discharge
[21], the glow discharge directly in the investigated region [},
oY absorption of ultraviolet radiation [23].

All these methods allow us to visualize the flux as a whole; to
study the "fine" structure of the flux turns out to be difficult,

with the exception of certain particular cases. The fact is that
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are intograted, i.e., glow or absorption of light
by a siven region of a flux is part of the glow or absorption along
e wiele line of observation. Lf the region is small, then the share
inteosdwecy by it to the overall quantity is small., This makes results
moré erude, and railses uncertainty about interpretation of them.
s o1 Leams of fast electrons allows us to solve this very
important problem, Depending upon the duration of afterglow the

solution may dirver,

red

Coue introduce a normodulated thin beam of fast electrons into
a gas flux, possessing prolonged afterglow, downstream from the

L$méuﬁﬁdiat€d recion there will spread a solid luminescent sheet, After-

ik : . . :
‘ m§$& o L glow in streams of a gas, irradia-
RN YoV 3
e &

Wk

ted by a beam of electrons, was

t el

;G B first observed in [24]. Photo-
IR

o ek graphing the sheet, we can find

| R o S I the flow surface, passing through

a given line (axis of the beam).
Ceroe e L e ams chgslng in the flux, corresponding photography
v w0 I'ind the spatial position of the flow line, passing
through the point of inter-
section of the beams. Local
brightness of the sheet of
afterglow is a function of
local density. Brighter
regions correspond to
denser gas. This allows us

to visualize flow in the

given flow surface. 1In

Figs, 14-10 are examples

-

- e e ar  r— T Yy T S N - o r— ATy NPT ~7‘v;':(g§§;a
i o w— “c - Erale e MBhE ;‘,*‘mnra;z’lﬁmaﬁmm&w&' w'f"t'xo"’ 3 T FRENDIE




1 visualization =f flow past very simple models by a stream of helium:
a wedge, a cylinder and a flat wall, normal to the flux. This method
allows us to determine position of shock waves, the thickness of the
boundary layer, the region of separation of the flow, etc. It should
be noted that in the given method of research only visualization

is nossible; quantitative determination of local density, apparently,
is impossible inasmuch as local brightness depends not only on local
density, but also on change of density along the flow line from the
point of excitation of glow to the considered one, i.,e., on the
prehistory of the flow,

This method is unsuitable for research in air, or in other gases
which have weak afterglow. TFor visualization in ‘this case we can use
a Tlat beam of electrons, Since under identical conditions of irradia-
tion the brightness of glow of gas inside the irradiated region is a
linear function of density [18], it turns out to be possible not only
to obtain visualization of the field of densities, but also to find
its exact quantitative values, The beam can be arbitrarily oriented
to the flow; therefore, it turns out to be possible to investigate the
field of dens'ties in any given plane of the flow.

3.1 Visualization by scanning of the beam., Introduction of flat

.=y

heam in a gas is more difficult than introduction of a thin circular
teram; in the present work we used a scanning beam. Scanning of the
beam in the plane, parallel to the axis of flow, was carried out with
the help of a small electromagnet,
located at the entrance of the beam

into the gas medium., The [ield

In Ii.g. 17 is an example of visuali-
L)

zation of flow, thus obtained, Tf

155

.-

strength was varied by sinusoidal law.

e - - o N A% i - o - - M“
NI R f T Y GRS T A TN L e T o et e o T, L R i Uithiok S D G i 2 ? s




ve need guantivative results, 1t is expedient to photograph in X-rays.
iy obtain gquantitative values sinusoidal scanning is inconvenient.
¢ ensure uniformity of the velocity of the beam, intensity of the
deflecting field should change by sawtooth law.
The author is thankful to S. A. Khristianovich feor attention
pald to this work,
Submitted
17 December 19¢™
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DETERMINING DENSITY FIELDS ¢F THREE-DIMENSIONAL
GAS-DYNAMIC FLOWS ON THE BASIS OF
OPTICAL METHODS

S. M., Belotserkovskiy, V. S. Sukhorukikh and
V. S. Tatarenchik

(Moscow)

There are given certain results of research of three-
dimensional gas-dynamic flows by optical methods. .Integral
values of density are determined directly, and local values
are found from integral equations, In these equations
density is a function of three space coordinates., One of
the coordinates plays the role of the parameter. If from
density, as a function of two coordinates, we can pass by
some means to a dependence on one variable, the considered
relationships will be ordinary integral equations. Such a
transition is obvious in the case of flat and axisymmetric
distribution of density.

I'or the shown reason in experimental gas dynamics optical
methods up to now have been applied only for study of flat
and axisymmetric flows [1]. The authors proposed a method
of research of three-dimensional gas-dynamic flows on the
basis of quantitative optical methods [2]. Its essence
is as follows,

On the basis of preliminary information we select approxi-
mating functions, which describe the field of densities,
including also the form of the surface of discontinuity.

For determination of approximating functions there are used
results of interference or shadow measurements, obtained
for different directions of movement of light rays through

the gas flux. The necessary quantity of directions depends *

on the form of investigated flow and is established in the
process of research,.
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Designations

Py — density of gas in normal conditions;

Ny — index of refraction of the gas in normal conditions;
P . — density of gas in an undisturbed flux;

p — pressure on the surface cf the bedy;
— pressure of the undisturbed flux;
M. = Mach number

a — angle of incidence;

W, = angle of half-aperture of the cone;

A — wavelength of light;
nax wgvelength of light at maximum transmission of interference
light filter;
AN — half-width of transmission band of interference light é
filter.
§ 4. Basic relationships. In Fig, 1 is depicted one section of
the investigated gas flux. The perturbed region is included between
the contour of the body (1) and the external
boundary (2). In supersonic flows this external
boundary is a forward shock. The velocity of
undisturbed flow is perpendicular to the plane
of the drawing, and incident rays are parallel to
it,
We introduce rectangular system of coordi-
nates Oxykzk, whose x-axis is directed along
the velocity of undisturbed flow; axis Zy. is directed along incident
rays. By P we designate the angle. between a certain fixed plane
uoi and axis Vi » In the given direction of radioscopy we obtain
experimental data, corresponding to angles P and P+ T since change
ol' the direction of rays to the opposite does not change the result,
159
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These data are different, if axis Z) does not coincide with the plane
of symmetry.

The contour of the body in the considered section x = const is

~

described by equation t = t(y); the contour of the external boundary
is given by equation R = R(y). The current point is defined by

coordinates r and y:. By h, and Hk we designate maximums of coordinate

K
yk on the contour of the body and on the external boundary.

Consider some ray, entering the perturbed region at a point with

coordinates 3 z,
Jk’ Ki;

its path in the perturbed region chord Ve = const. The point of

Disregarding distortion of the ray, we take for

departure of the ray from the perturbed region has coordinate N

Zke.

Results of interference measurements will be distributions of
functions mk(x, yk), which express change of the optical path length

of light passing through the perturbed region, Functions m. are

<
connected with the dist}ibution of density along the light raj by

relationship
X

S (p* — 1) dzx = ey (yi)

lkl
v

A SR . LI
(Po_pm. = plmo—1) ) (1.1)
flere A — wavelength of light; Pos Bp — density and index of

refraction of gas in normal conditions; — density in an undisturbed

Peo
flow,

The result of shadow measurements will be changes 4(dx/dz, ) and
’(dyk/dzk) of directions of light rays passing through the perturbed

region., These magnitudes are connected as follows with distribution

of components of the density gradient along the light ray:

s - W - v, g,




k2

An® , ’ 4 d
S S—dz = (i +pe*) B (*‘;) + (—ﬁ;)l(ﬂz" —pe*)
E
Zhk»
* 9p* ) di d)
(2% dn = e+ o) A (22 4 (32) 0 — 0
zk[
tky
dp* . Po \
g —é;dzk - pg* - 91‘ (uk - Poo (R0 — 1) ]

Zkl

—~~
XN
no

S’

* * g
Here Py s Po — values of p+ at points of entrance and exit of

the ray from the region.

§ 2. Solving integral equations. ILet us turn to a cylindrical

system of coordinates with the same direction of the x-axis and

polar coordinates r, vy in plane x = const.

Density in the section X = const is considered a function of

polar angle vy and a dimensionless radial ccordinate

On the body surface &€ = 0; on the boundary of the perturbed region
€ = 4, For definitiveness we assume that OO1 is the plane of symmetry

of the flow., We present periodic continuous depehdence

on the angle in the following form:

Ge—1

P(5:-7) = 3 pm (§) cosmy

m=0

Contours of the external boundary of the perturbed region and of

(2.1)

of density

(2.2)

the body in section x = const are approximated by expressions of the

same type:

. 181
R (T) = 2 Rm COS"‘T

m=0Q

qr—t ( 2.% )
‘(T) = 2 b cos™y
m=0
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where Rm and tm — coefficients, determined according to measurements
Hk and hk‘

The highest degree of polynomials (2.2) and (2.3) is selected in .
accordance wicth the expected character of the approximated functions;
in process of treatment these numbers can be modified and definitized,

We designate by g the number of different measurements, determined
by angles @k. If the zk—axis does not coincide with the plane of
symmetry of flow,

g=2u
where u — number of directions of radioscopy. With coincidence of

one of the directions of radioscopy with the plane of symmetry,

g ="2u—1
Number q-should not be less than the largest of numbers qp, A
qi. Substitution of expansions (2.2) and (2.3) in relationships (1.1)
and (1.2) Leads tc system of integral equations for functions p (§)

or their derivatives.

For interference method when gq = qp we have
1L ke
2 \ pm (8) cos™y dzy = Ziw — 2z + g (L)
=0 i (2.1)
=, =%, k=12....9

System of integral equations (2.4) is solved numerically by
means of division of range O s £ £ 1 by dividing points &i at N small
intervals, within limits of which functions pm(&) are replaced by
constants Py *

As a result of this the system of integral equations is turned

into a system of linear equations for unknowns Ps

R LTl ot
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-1

Z a'mhpms =
m=g
s—1 q—1

= q)"‘—" Z Z amihrpmi

i==1 m=0

(k:i,&.“.q) (2.5)

s=1,2,... N

Here s is the largest odd number i for Vi = const,
When q > qp system (2.5) in accordance with the method of least

squares takes form

9p—1 q
E Pms (Z amxhansh) =
m=0 k=g
q
= 2 mluamh -
k==
s—y 91 q

| ~ S oo (5 e

i=] m=g X=]

(n=0,1,....gp-—1) (?2.6)

4

Calculations were done on a digital computer. Details of calcula-

tions are not considered here,

§ 3. Examples., Results of determination of the field of
densities near a cone with half-angle ® equal to 150 with an angle
+f incidence @ = -7.5° and values of Mach number M = 3.5 and M = 4.2
are given,

The experimental part of the work was executed on a four-mirror
Mach-Zehnder interferometer with field of view 225 mm, As the light
source we used a spark discharge between cadmium electrodes.
Interference pictures were photographed simultaneously in white and
in monochromatic light. Photographs in white light were used for
measurement of the whole part of change of optical path length,

expressed in the wavelength of light. To obtain photographs in
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monochromatic light we applied an interference light Tilter (Kmax =
= 644 mu., AN = 5 lﬂ!..L).
The experiment was conducted for three and five values of angle

@k(q = 3 and q = 5). Change of angle @k was carried out by turning

EE]

the model about an axis, parallel to the velocity of the undisturbed
vflow. Data tor angles @k’and 9 + T were obtained in one blowing
with a fixed position of the model, Values of g turned out to be
odd due to the fact that one of the values of P Was equal to 1/2 w,
and the flow had a plane of symmetry.
The obtained photographs in monochromatic light for M = 3.5 are

presented in Figs. 2, 3, ahd 4. To them the correspond angles Py s

- equal to O and T (Fig. 2), (L/4)7 and (3/4)r (Fig. 3) and (1/2)7

e GRAPHIS NOT
__ REPRODUCRLE

Fig., 2. Fig. 3. Fig. 4,

Results of analysis of the experiment by the above method are
presented in Figs. 5 and 6 in the iform of dependence p/pa‘= p*(&, Y).
'‘ay Y = 0 is lccated on windward side of the flow. Experimental
w}- values of p* are given by points, and s3lid lines show results of
¥ numerical calculation of density according to method of [%]. Every
curve has its own origin of coordinates with the same index as the
number of the curve, The reading unit along the axis of ordinates i-
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is marked by a brace.

Experimental data in TIig. 5 correspond to values M= 3.5, q = 5
in Fig. 6 we have values M = 4.2 and g =3. WNumber of intervals N, into
which the range 0 £ £ = 1 is divided, in both cases was equal to 20.
Due to this relationships (2.5) for the first case were reduced to 20
systems of 5 equations; for second they wére reduced to 20 systems of

5 equations,

]

o
i~
)
—_—r
~

P L T 0G0 90" 1260 150° 160
Fig. 5. Fig., 6,

From the given data it is clear that during determination of
density near a cone, flowed past at a small angle of incidence, it
Ls possible to limit oneself to number q = 3.

The shape of the shock wave for M = 3,5 is shown in

Fig, 7. Curve (1) corresponds to the considered experi-

ment; curve (2) is obtained by the method of [3].
In Fig., 8 are given results of recalculation of
density in pressure p on the surface of the body (¢ = 0),

on the assumption that on surface of the cone entropy

L
Figo 7. runction $ = p/pm is constant and is equal Lo its value

+n the windward side of the shock wave front. Pressure on the

165

B T i T < Stvaa e i e o o i e il st TR

~m

B ekt NSk e s D P SR




" W

undisturbed flux is designated P’ M= 3.5,

$°(om

R “w
y,
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ON MECHANISMS OF DISINTEGRATION OF A DROP MOVING
IN A GAS FLOW

V. A. Borodin, Yu, F, Dityakin, and
V. I. Yagodkin
(Moscow)

In work [1] there was an attempt at theoreticali study -f
unstable axisymmetric forms of perturbations of a spherical
drop of an ideal fluid, flowed past by a flux of another
ideal fluid, leading to its disintegration. For sclution
of this problem there was used the method of small pertur-
bations,

We found the critical valuesof the Weber number and also
forms of neutral perturbations. Below there is considered

the case of increasing perturbations, and also their form
for different values of the Weber number.

According to Rayleigh's hypothesis, cf 2l1ll possible forms of
increasing perturbations,in reality there is realized the form having
the biggest value of increment Z = -aBpiﬁg/T, where a — radius.of the
drop, Py — density of the fluid of the drop, T — coefficient of surface
tension, B in the given problem is the purely imaginary frequency of
oscillaticns [1]; therefore, for determiring the form of perturbation
for a given value of Z from the equation of eigenvalues one¢ should
1'ind the least value of the Weber number W = anU?/T, since the values
ol 7 monotonically increase with growth of W; here Po = density of

the medium, U - relative velocity of the drop.
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In [1] there is obtained the system of equations

(1)

@ = Cpln_s + Bnlnys An==0,1,2,..)
where . .
Ch,a = 74 R, — AW, Cn.n-2 = Cusall’, Cn.nez = BulV, ( 2)

A = Y a2 (n 1) (203 2-n—2) Co = 9 (n—A) (a2
T2 @@=y "TTTA En—1) (20 =)

_9 () (r+ (43 _ _ Lo
=% "mragrn » Hmn-De+3)

from which, after eliminating constants, we obtain an equation for

eigenvalues of the problen.

System of eguations {1) disintegrates into two systems:

=2k k=1,2,...), n =2k 11 (k=0,4.2,..))

a, = B.a,, a; = B,a,

a, = a,a, + fea,, ) ay = a;a; + pa; (3)
Aok = Aoy T Bardoksa, Bakst = Qagn@ieg + Barni@ives

The equation, corresponding to k = 0, can be rejected, since
a2 = 0, and the equation of ncdal lines on the pertﬁrbed drop sur-
face does not include ap - The remaining coefficients are defined
simply in terms of a5

ve introduce designations

&
2k+1 . —
o = %% .- FunSuin Ty =4 1Bty (*=0,1,2,...)
& ) h
2% ( )
i UG« + - AokSaky Tox = Aarfak-2 k=1,2,3...)

Then we present system (3) in the following form:

1 =18, 1 =174
‘)=1+ Tasss 34=1+T‘S‘ (r)
)
5 = 83 -+ 71455, Ss = S¢ -+ TsSs
Sak+1 == Sok=1 -+ Tyyy Sakeas Sak = Sak-2 + TyipoSrkea

MC ORI WAL e i ,.wg_,q:,...‘r'.ﬂtﬁu
no~ - R "
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Quantities 72k+3 and Y o0 with increase of k, how calculstions
showed, rapidly diminish; therefore, to facilitate calculations i%t is
convenient to apply continued fractions.

In equations (5) for a certain sufficiently large k we set
Y2k+3 = 0, Vopip = 0. Then for s3 and 5y we obtain expressions in

the form of continued fractions

—_ 1 TS T'l .i ~g -r‘ 6 4 -
s=t BT god 3o (6)

-1

The general solutions of systems (5) in continued fractions have

the form
_ 1 Takiz  Tokis )
321‘{1 = s‘_lk_l (\ T—— l -. -..T—. e -) ('7 )
) ~ o~ ‘
. 1 T2k+2 fIIT] )
Sgk = Sag-o T— T — T ...,

Determining s3 and Sy from the first equations of systems (5) and -
substituting them in equations (6), we obtain equations of eigenvalues

oI the problem, written in continued fractions

1= % T _... 1= 3 & .. (8)
From equations (2) and (3) we easily obtain expressions for Lk
— B.’JH-X Cakﬂ ws
TN = T T = A W @+ Ry —ely W)
_ By g Copp WV? { 9 )
1= T, — A, W)+ Ry, — A, . W) \

ssigning values of dimensionless increment Z and finding the
value of the least roots W of equations (8), we can establish the
dependence of least roots W on Z for both systems of equations of (3).
These calculations gave the dependences depicted in Fig, 1 in logarith-
mic coordinates. 1In Fig. 2 are given forms of perturbations, corre-
sponding to the calculated values of W and 7.

Then we carried out calculations of forms «f perturbalions, which
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lgz //// have the largest increment, for differen.
uy ///qw values of W by the formula of the rate
1/ // of lifting of the surface of the drop
W [1]
J oo
| | v, =-%-’"§‘;.om,.p,,(;r)e~im (19)
o-1
2 b A Coefficients of the equations were
/ calculated by formulas (4)-(7).
'c‘j/ ‘;. L mw; As can be seen from Figs. 1 and
Fig. 1. : 2, for values of the Weber number 1.63 <

< W < 1000 three forms of increasing
perturbations are possible. For 1.63 < W < % there appears a form
with two nodal lines (here n is even).
When 4 < W < 5 there occurs a transition from the shown form to
a form with four nodal lines., Last, for W > 5 the most rapidly
growing form of perturbations will be the form

with one nodal line (n is odd).

The form with two nodal lines, apparently,
can lead to formation of two drops in the

direction of flow or one torus. The critical

value of W for this form will be W = 1,63,

which is confirmed by [2].

The form with four nodal lines can exist

in a narrow interval of values of the Weber

rig. 2.

number, and, therefore, the probability of ite
real appearance is minute., This form could lead to the formation

ol two drops and a torus or two tori,

The form with one nodal line may, apparently, lead to formati n

P RO N uline Ll
o N A :




.oz PR . 1 |1 . PN | 1 . .
¢ e QFﬁ, vcj Q<§ CiJ of a "pocket, Actually, such forms were

observed (photographs in Fig. 3) immediately
V;J é:) (s o at Wz 5 in [3].
Fig. 3. Duality of theoretical forms (Fig. 2)
Tfollows from the fact that linear formula-
tion of the problem gives a solution with an arbitrary factor of
indefinite sign. In fact deformation of the drop should occur in such .
a manner ithat energy of the drop is increased at the expense > energy -

O

=

the flow. TFor this, it is necessary that at points of the surfacec
uof the drop where pressure is maximum the velocity of deformation

is directed into the drop. Then there is realized the form depicted
in Fig. 2 on the right for the case of even n. For n, odd in the frame-
work of the theory of an ideal fluid, both forms are equivalen.
(corollary of the D!Alembert-Euler paradox). However, in fact,
pressure on the front side of the drop is greater, and this should

lead to formation of a "pocket," stretched along the flow (I'ig. 3).

Thus, from these conclusions concerning different forms of
perturbations, appearing during mction of a fluid spherical drop in
a medium of another fluid, it beccmes evident that oscillation and
hreaking phenomena in part of a fluid torus should play én essential
role in the process of disintegration of such a drop.

The form with one nodal line leads to such a'ring with a "pocket"
of very thin film (Fig. 3), which subsequently breaks into a great
number of small drops, and the ring is turned into a torus, divisilile
into twu big drops and many small ones.

The form with two nodal lines also leads to a torus, but without

f . 4. N
an enclosing "pocket.

ITn Fig. 4 are consecublive slides of the molion of a drop of ink,
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dropped into water (photographs were taken from above). It is clear
that from the drop of ink there appears a torus, in which there
further form antinodes, and it breaks into drops, and each again

turns into a torus, in which there again appear antinodes, etc.

AR AN
X

e,

Fig. 4.

It 1s necessary to note that the number of antinodes appearing
in the ftorus may be two, three, or more; it decrecases with decreasce of
the diameter of the torus.

The problem of oscillations and breaking of a fluid torus is

1 considered, apparently, only by S. Oka [4]. He made the very
complex calculation of the number of dr:ps, into which a motionless

b1

torus disintegrates, depending upon ths ratin of the torus radiuc I
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to the radius of its cross section r only for values R/r 5; in

[4#] there are given following values:

10 11 ¢

Rir=5 6 171 8 2
6 7 8 8

9
m=3 4 5 6
From the formula given in the same place it follows that when

R/r =3 toh4, m=2,

These results can be obtained from the following ele.sentary
considerations,

If ratio R/r is great, splitting of the torus can be considered
splitting of a rectilinear cylindrical stream of round section under
the condition that in length 2rR there are packed a whole number of
waves m.

Since, according to Rayleigh [5] the maximum of instability
corresponds to 2MR/A = 0.697, with condition mA = 2rR we obtain

m = {0:697 R [ r} (12)

Here symbol {x)} signifies the integer nearest to x. TFormula
(11) gives all the above-cited values of m, and also values m = 2
and 3 for R/r = 3 and &, This shows that allowance for toroidalness
does not influence the number of drops formed from the torus. It is
vasy to see that the torus can be divided:

into two drops with fulfillment of inequalities
R/r>2/0.697 =287 or R~/a>1.é (12)
into three drops with fulfillment of inequalities
R/r>3/0697=43 or Rfa>1.58 (13)

Here a - radius of initial drop.
Comparison of these results with the above experiments can be

made only for very slowly moving tori. Thus, in Fig. 4c¢ it is clear
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that ratio R/a for the case of division of a torus into three drops

is approximately equal to two. The circumstance that in experiments
ratio R/a is significantly larger than it is according to formulas
(12) and (13), apparently, is explained by the influence of transverse

flow past of a filament the length of the maximum growing perturbaticn.
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INFLUENCE OF THE RELATIVE VELOCITY OF A GAS BUBBLE IIf A

LIQUID ON CHANGE OF ITS DIMENSIONS

Yu. N, Kalashnikov

(Leningrad)

During research of the bubbly form of cavitation the basic
problem is to find dependences characterizing change of
dimensions of cavitational bubbles in the liquid. Principal
attention here is usually allotted to mechanical processes
caused by disturbance of the equilibrium of force on the
boundary of the bubble, since these processes determine
such known phenomena of cavitation as cavitational noise
and erosion of the surface of the flowed-past body. At
the same time during flow past sufficiently extended bodies
or motion of liquid in closed channels, e.g., cavitational
tubes, appearance and development of the indicated form of
cavitation is greatly influenced by diffusion of the gas
dissolved in the liguid. Due to disturbance of diffusion
equilibrium on its boundary, the bubble changes it
dimensions (even in the presence of an equilibrium of forces
on the boundary) either due to dissolution of gases contained
in it, or due to liberation in it of gases dissolved
in the liquid, This process, called bubbly gas cavitation,
has been investigated by many authors, and for the case of
a bubble, motionless relative to the liquid, there were found
equations which describe change of its dimensions., Results
of calculations by these equations sufficiently well agree
with results of measurements of dimensions of growing or

dissolving gas bubbles [1].

At the same time, for bubbles moving in liquid such coordi-
nation up to now has not been obtained, possibly, because of
the sufficient complexity of experiment with respect to
measurzment of the dimensions of these bubbles,

In the book of V, G, Levich [2] there is a solution ¢f the

problem of diffusion in liquid, containing a moving droup of’
another liquid. According to this solution, and also similar
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solutions for solid particles [3], the diffusion flow of gas
into a bubble moving relative to the liquid shoui? be
proportional to the relative velocity to a certaln degree
However, measurements conducted by Liebermann during surfacing
of bubbles in a field of hydrostatic pressure [3] did not

show dependence of the degree of intensification of

diffusion on the velocity or surfacing.

Below there are derived equations of state of a gas bubble
moving in llquld, taking into account diffusion of the gas ;
for comparison there are given certain results of experi-
mental research into the influence of the relative velocity
of the bubble in a liquid on change of its dimensions.

1. Let us consider the diffusion flow of gas in a bubble floweu
past by a liquid., We consider that motion of the gas bubble in the
liquid takes place with Péclet numbers N >> 1. For water solutions
of gases contalned in the air, the Prandtl number
Pr will be of the order of 103; therefore, the
indicated condition will take place for Reynclds
-2

numbers NRe > 10 7, which corresponds g dimensions

Tig, 1. Spheri-
cal system of

, of bubbles, surfacing in water under the action
coordinates.

of the hydrostatic pressure gradient, R > 10_5 m:
N

N _ )'ﬂif .\' — LI_'.{L . .\' = 7’.’:._
( I Re v I'r .\ Ite )

We connect the spherical system of coordinates with the center
of the moving bubble (Fig. 1). Considering axial symmetry of problem,

we have the equation of steady diffusion of gas in the liquid:
de 1o, [o% 2 I 9 dr .
"”a?"‘"TT""[JF?"LT’? + sy v (510 e‘)] (1.4
with boundary conditions
€=¢, wenr=R, € =1Ly when—©
Here ¢ — concentration of gas dissolved in the liquid; V.. and

vy~ components of velocity of the liquid on axes of the spherical

system of coordinates; k — coefficient »f molecular diffusion of gac
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in the liquid; R — radius of the bubble; Cq — saturaticn concentration
on the bubble boundary.

Since the bubble is flowed past by llquidvﬁjﬁuNPe >> 1, on its
surface there will form a thin diffusion layer, in which there occurs
a sharp change of concentration from cg on the boundary of the bubble
to almost Cy On the boundary of the layer. In this case derivatives
of concentration with respect to the angular coordinate are small as
compared with derivatives with respect to the radius vector and,

furthermore, for values of r close to R we have

R or X2

Accordingly equation (1.1) will be simplified:

dc 1 dc 0% A
gyt g = ke (1.2

We will introduce stream function ¢, connected with v and Vg

by relationships

e f L4 4 _ 1 ap 1.3
U8 = " 5in0 or * Ur = =5in0 96 (1.3)

and turn to new variables ¥ and 9. Such a Jnange of variables will

allow us to transform (1.2) into an equation of thermal conduction

type:
dc dc b . c
or T oy or — T TSin0v 5
% d (dc\ b d . de\ 4. 9%
G = 5 (ar) = arag (750 0 ) = r*siar Ot

Substituting values of derivatives with respect to concentration

in (1.2), we have

=kr’sin’ﬂve~:)3—;% ‘ (1.4)

8%

Since equation (1.4) is valid in the diffusion boundary layer,

it is possible to present r = R + €, where ¢ << R and changes from
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7ero to the thickness of the diffusion boundary layer. Then r =
= R(1 + &/R), and v is appreximately equal to RO,

In distinction from motion of a solid sphere in liquid, tangential
velocity on the boundary of the bubble is not equal to zero, but
according to [2], it is

(ce)-=a = v, sinB (1.5)

where vy — absolute value of velocity on the boundary of bubklie when
vo= 900. Velocity Vs depending upon hydrodynamic conditions «f
motion of the bubble, varies from (1/2)v, for Np, << 1 (the solution
of Rybchinskiy-Adamar [2]) to (3/2)vO for very larce Reynolds numbers
(when Npo 22 1 distribution of velocities on surface of the bubtle -
becomes close to that in the case of flow past a solid sphere by
an ideal fluid).

Tangential velocity in a diffusion boundary layer differs little
from (1.5) due to the facst thét thickness of th= diffusion layer on

order is less than the thickness of the hydrodynamic boundary layer

. 1/3
by NPr .

Taking these assumptions intc account we give eguation (4.14)
the form
ac

. &c
.0_8.:,\']131715|n,8—df‘{-é (1,6)

where the value of ng/awz is taken for small values of &, when the
fcllowing approximate expr.ssion for the stream function, obtainel
bv integration of (1.3), is valid:

P = — Ry, sin® e

We introduce the new variable

.

s = kR’z:,Ssin“OdG = &it*r, ("5 — cos 0) + 4

[
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where the integration constant A is selected from the condition that
s = C when ¢ = 0, Consequently, A = (2/3)kR;vi. As a result of

this,equation (1.6) will become

== o (1.7)

with boundary conditions
C=C; when $V=0(z =0), C = ¢, wﬁonrp:oc

To this we should add one more condition, namely, in the {ront
critical point of the bubble (r = R, 6 = 0) concentration of the
incident flux should be the same as at infinity, which corresponds
to ¢ = o when s = 0,

Equaticn (1.7) is easily solved by operation method. Its intcugral

is equal to

c= “V;'f‘- (e; — C,)(Se“' dx

where

b Rrysin® 0e
2 Vs = 2 Vkl(’r; (L3c0s? 0 —cos 0 - %)

=

The gradient of concentration on the bubble boundary is

e %, =0 9 (& .\ ou 915107 6 (¢ —c,) 1.8)
()= B (e . - ’ (2.8)

e V—-:‘ vi : Je l":xkla'n (173 cos 0— ¢os 0 gy

From this we find, according to Fick's law, the flow of mass of

the gas from the bubble per unit time (Fig. 1).

n

2aR*%ery (Co — cs) §
= == 0) d9
=0 V:r".l'l l{ ;) (P ( )
sin®*0
V 330053 O c05 0 - 213

g}; - _ S 2nR sin OR dOk(%%)

o

@)=

In Fig. 2 is a graph of integrand ¢ = 9(0). Calculation gives

for the integral a value, equal to 2.30. Considering vy = (1/2) Vi
1 (a}l
e v e———




LS we have
1 17 \\
o/ N ™ = 578 RV Rz, (e — .) (1.9)
=y : _ In the case of a motionless bubble [L4], .
T I
g d
0 r 2. s S = 4Rk (¢ — c,) (1.40)
Fig. 2. Graph of - . _
Tunction ¢(6). Thus, increase of the intensity of

diffusion of gas from the tubble due to flow

past it of a liquid is equal to

A= {ﬁ:‘f‘iﬁi = 0.46 (“2)" = 0.46 (¥} (4.44)

Here, subscript 1 significs the value of the derivative for
Npe >> 0, and subscript O is the value for Npe = 0,

This result allows us to consider a bubble moving in liguid
motionless, for which the gas diffusion coefficient is increased,
as it were, by a factor of A,

It is obvious that the value of A for small numbers NPe will lie
between one and the value given by (41.11). Therefore, for these

numbers NPe it is possible to write an interpolation formula

dm (1.12)

dt

=4akR (l -+ 0.’16.’\'1@_/,) (Co - C,)

dhich for Ny >> 1 passes into (1.9), and for Np, = 0, into (1.10).
Expression (1.9) was obtained on the assumpiion of constancy of
the bubble radius R.
In reality, with growth or dissolution of the bubble its radius
-hanges., This circumstance raises the necessity when solving a
yroblem on diffusion to satisfy wvoundary conditions on a mobile boundary,
shich 1s a comolex problem.
For small values of the velocity »f the bubble wall, occurring

‘n processes of gas cavitation, cxpression (1.9) can be uscd,
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obviously, also in the case of a bubble radius varying in time,
considering the phenomenon qguasi-stationary.

2. Expression (4.42) obtained in the preceding section allows
us to obtain equation of state of a spherical gas bubble, using

the equation of'equilibrium of forces on its boundary

P(t):=l’g'+ I’«l—'—zl—:: (2'1)

Here p(t) — pressure in the liquid; pg-— pressure of gas in the
bubble; bgq — Pressure of saturated vapors of the liguid; o — constant
of' surface tension,

The mass of gas in the bubble is

m =, (n= )
where pg — density of gas in the bubble, determined Ly the Boyle-

Mariotte equation; p in turn, is density of gas at atmospheric

ga’
pressure p, . Consequently,

[ s

Py Loy
m =3 R _I_;i[p & — pa + 22 (2.2)

o

Differentiating (2.2) with respect to time and comparing with

(1.12), we have

an _ ! kpg (1 - 0.46 N R dp (1)
.d_‘—=-”(’)_1’d+'/:0/1f ( R (CO_'CS)—‘-J—T) (

N
il
~

Pga

The saturation concentration on the bubble boundary in accordance

with Henry's law can be expressed as follows:

Pg (2.4)

€, = —Cyq
]
Here Cog — concentration of saturation at atmospheric pressure,
determined for the given temperature from known tables,

Substituting (2.%4) in (2.3) and designating o - C/Fya’ wherc '
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a — volume of gas reduced to atmospheric pressure, dissolved in a

unit volume of water, taking into account (2.1), we finally obtain

dR = ! % ] 23
dr P(Q"‘Pa'{""i:’/:‘}lf {"u‘“[gzpa—[l(t) - Pd— 7&'] X

x (7 - 0.4 l’i.) ~ L)

" VR 0t (2.5}
with initial condition R = RO for t = 0.
With constant pressure in the liquid,equation (2.5) can be
integrated. We introduce dimensionless quantities
o R — k. o_ o_ PPy
R_Et T""h»o-gto a_a_;;' "‘T
20 — p° —_ _ 3 ”u?) T
—-T‘;p—a, 6 P’—:J' ¢— Po 1; , l-—-olﬁ('-——)
(2.6)

In this case dp/dt = 0; therefore, it is possible to reduce

equation (2.5) to form

o=l ) i) o g ) (2.7)

with initial condition R =1 for 7 = O,
DesignatingVRo = W, we rewrite (2.7) as follows:

2a? (80 - @) do
CrPRo+D - Tadt

Integrating this equation and returning to the old variable, we

have

T 6 ) 3 g—pyr (S 29 _ % 5
Tere g U —VE) — g (1~ RB) o+ (5 + 5 5 —F) U-VE) +

Aottt —8g2 1, R +9 /o Vi { :
S T E [z Ty + Ve (arctg e ety |+

A4 Ysp—Bp, AVIP -1
+—mwe M Tr (2.8)




Tfor ¢ > 0, which corresponds to dissolving bubbles, and

Fr= 0=V — g (1 —B) + (S + 52 - 8) 1 VR +
Ao +he'—8° 1 R+ , 4 (VR — Vet +V¥iel)
LT =) [ i+‘v+ Viel "(VR"+VM>1)(1—VI¢I)]
"B +-r9—80 , AV R
+2 e Ty wen (2.9)

for ¢ < 0, which corresponds to growing bubbles.
Considering in (2.8) R® = O, we obtain the following relationship

for determining the time T of total dissolution of the gas bubbles

b, ) 3 6 4 .
2R"“.=T”'6T(2“T+7?+’T_6m)+
L4 D e 2 .
_*_1'*601- 1 ¢* — OS¢ (—;_-)nl—————).]/(parctg V )+

A+ 1
r6++¢ — 8¢ i
+ =D lnlfﬂ (2.10)

Expression (2.10) allows us to calculate the time during which
for certain conditions a gas bubble will be completely dissolved,

and to compare it with the experimental value.

o __ .

5

B I
1

|

Fig. 3. Fundamental scheme
of the experimental installa-
tion, 1 — vessel; 2 — micro-
scope with movie camera; 35—
system of condensers; 4 — source
of lignt; 5 — tanks; 6 — vacuum
manometer; 7 — instrument for
determining air-content of fthe

* water; 8 — clamps; 9 — connecting
hoses; 10 — feed to compresser
and vacuum pump,
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t 3. The fundamental diagram of the experimental installation is
shown in Fig. 3. Vessel 1 for observing the bubble is a round
t::ivessel, made of organic glass (Fig. #). In the upper part of the
£X vessel is a window of thick plate glass,
which ensured small deviations of form of
bubbles from the spherical (organic glass

is hardly moistened by water, and on it

bubbles have a flattened form). Water
Fig. 4. Vessel for flowed into the radial gap between the outer
observation of bubbles, .
wall of the vessel and the inner circular
partition. From gap through holes in the partition water reached the
lower central part of the vessel, and then through a hole of diameter
10 mmn in a diaphragm it enters the upper central part and through
upper holes in the circular partition gnd radial clearance it leaves
the vessel. Such a labyrinth is created in order to ensure the most
exact flow of water to the center of the lower surface of the inspec-
tion window, in which the gas bubble is located, since with small
deflection the bubble is easily carried off by the water.
The flow of water was created by the difference of water levels
in two tanks. The velocity of the flow of water through the hole
in diaphragm of the vessel was determined hy the flow rate and could
be regulated by the relative location of tanks in height, In the
tanks, with the help of a vacuum pump and compressor, it was possible
to assign any pressure from deep rarefaction to 4 atm (abs),
Observation and filming of bubbles were produced on a micro-
1 'ilming installation of type MKU-1, which allows us to obtain a
é 100-pover magnification on film,

with return movement the water was passed through an instrument
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X Fig. 5. Influence of the
velocity of flow past an air

bubble U, cm/sec, by water
on its growth and dissolution.

Temperature of water is

20°C; ay = 1.79%. Curve 1 —
U=0; 2—=U=27 at p =
= 10750 kg/mgg curve 3 —

U =16 at p = 10250 kg/m°;
curve 4 — U =0; 5 —U = 13;

6 —U=2.6 at p = 6850 kg/m".

for determining the gas-content of
the liguid, and we measured the
quantity of air dissolved in the
water,

On the described installation
we conducted a large number of
experiments in observation of the
growth and dissolution of air
bubbles with different velocities
of flow past them by water. In
Fig, 5 there are shown some of the

experimental curves of change of

radii of dissolved and growing butktles in motionless water and with
different velocities of flow past them by water, and in Figs. 6 and

7 are photographs of these bubbles.

Sequential photographs'of dissolving

‘Fig. 6.
bubbles: 200 sec; U = 0; 30 sec, U = 16
cm/sec; 15 sec, U = 27 cn/sec,
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Fig., 7.

Sequential photogfaphs of growing -
bubbles: 120 sec, U = 0; 30 sec, U = 2.6

cm/sec“i; 30 sec, U = 43 cm/sec"i.

From experiment the velocity of flow past a free buvble by
liguid remains unknown, which is embodied in expression (1.42),
although we know the rate of flow of water through the hole in the
diaphragm of the vessel, Therefore, it would have been possible to
try to find this velocity from one sxperiment, solving for this
purpose equation (2.8) for A, and, by determining the ratio of the
velocity of fiow past a free bubble to the velocity of flow througnh
the diaphragm hole, to calculate from the same (2.8) the time of
growth or dissolution of the bubble for another experiment and to
compare this time with its experimental value. It is somewhat unclear,
here, what nmagnitude of the coefficient of diffusion to put in the
calculation, since in motionless liquid during contact of a spherical
bubble against a flat wall the intensity of diffusion decreaseé by 8
factor of 1n 2 [3].

We shall consider the intensity cf diffusion the same as in the
case of an infinite fluid, since with such a scheme of flow past a

bubble the influence of the wall on diffusion of gas through scctions

¢f the surface of the bubble turned toward the flow should be small,
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and flow of gas through thesce sections, ac can te seen from Fig, 2,
constitutes the prevailing parti in th 1cotel flux across the whole
surface of the bubble. Obviously, with dccrease of the velceity

of flow past the bubble ithe influence »f the wall on intensity of
diffusion should increase,

To this purpose, for conditi ne ¢orrecponding to curve 2 of
Fig. 5, we graphically sclvedequation (2.10), as a result of which
we obtained X = 9,60, and, consequently, U/VO = 24, vhere U — velocity
o1 Tlow through the hole in the diaphragmn.

Thus, f~r a bulble, chanve - f whose dimensions is depicted by
curve 3 of Fig., 5, we have’ﬂ) = 5.7 mn/sec andX = 7.20, From equa-
Lion (2.10) we obtain T = 4150 cec; the experimental value of the time
of total dissolution of this Labble, as can be seen from Fig, 5, is
equal to 170 sec.

Matching should be considercd satisfactory, considering inevitable
errors in determination of conditicns ¥ the experiment and a ccrtain
influence of the wall on diffusilon,

Thus intensity of diffusicn of gas into a gss bubble during
its relative moticn in a liquid lnereases proporiionally to the
velucity of flow past the bubble to the 1/2 power. Even with suf-
'iciently small relative velocitieg, wifh which hubbles at a dimension
o1 the »rder of 0.1 mm surface, intensity o1 diffusion is increased
Ly an order or more as cumpared t. the casc of a motionless bubble.

Results of experimentel rcscarch confirm our theoretical

conelusions, Submiilted
] ) 0 349
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ON THE STABILITY OF A COLLAPSING GAS CAVITY IN ROTATING LIQUID

V. K. Kedrinskiy and G. M. Pigolkin

(Novosibirsk)

This work, basically, is devoted to experimental resear:h

of the stability of the shape of a cocllapsing gas cavity,

y formed by a rotating liquid volume and filled with air or
a mixture of acetylene and oxygen, In the latter case we
determined the influence of ignition of the mixture at the
moment of maximum compression on stability of the cavity
shape during its subsequent expansion, At the end there is
an attempt to construct certain diagrams of the observed
phenomena,

Experiments were conducted on installation presented in Fig., 1,
The working chamber was cylindes 4 with transparent walls 2, filled
with water, High-pressure chamber 3 with a 50% mixture of acetyl:ne
and oxygen was separated from the working chamber by a diaphragm,

, The basic working part of the installa-

!5%; AN

tion -~ a "rotator" — consisting of two

éﬁ/ ”I parallel plates, rigidly fastened by
s
= four thin ribs. The lower plate rests
on shaft 5 with a hole for admission of
gas. During supplying of gas through
Fig. 1. the hole in the shaft during rotation

between the plates there will f{orm
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cavity 4, Motion of the cavity walls was fixed by high-spec.. photo-

R o

¢

recorder 6, At the moment of opening of the shutter of the photcre-
corder a synchronizing pulse ignites air gap 7 in the circuit of

3 capacitor 8, which, discharging in gap 9, ignites the mixture. During
- discharge of capacitor 8 a Rogovsky strip placed in the circuit of
this capacitor, starts pulse transformer 10, which, in turn; starts

3 the pulse tube, standing in the circuit of capacitor 11,

In Fig, 2a is a typical photograph of pulsation of the gas cavity.

Scanning of the process is downward, cavity is somewhat skewed on a

B oS WLy

s

cone, The moment of collapse is ¢learly seen in the nineteenth frame,
The cevity at the moment of maximum compression is a cylinder over-
A compressed at its center., Compression is unstable, and during the

following expansion of the cavity it is significantly eroded, In

i,

. this photograph is the case of compression of a cavity, filled with

el A
-
.

a mixture of acetylene and oxygen (the moment of igniting is seen weil

: in the eighteenth and nineteenth frames), The fact of ignition of

Sidedar s vdid

sz

the gas is detérmined by the self-glow, fixed at the moment of maxi-
mum compression without illumination of the process., Repetition of

the above experiment for the case of a cavity filled with air showed

[N

that the infiluence of ignition of the mixture inside the ca?ity essen-

Sl SAS T2\

i tially does not affect subsequent expansion. Figuyre 2h depicts the

Cren

final moment of collapse and subsequent expansion of the air avity (th~

piaua

»

initial radius in this case is somewhat less than the preceding). As

cL T8 T E

can be seen from the photograph, instability in this case is stronger.
The cause 1s the decrease of the minimum radius and, as a result,
3 strong disturbance of centering at the moment of maximum compression.

In such cases we always see total destruction of the cavity.
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Location of the "robtator" in a transparent hollow cylinder per-

mitted us to achieve significant improvement of stability (Fig. 2c).

.
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However, the above scheme of the experiment did not give a possibility
of improving the stability by increasing of the rate of rotation of
the liquid due to the appearing eddies, Installation above the "rota-
tor" of a lattice allowed us only slightly to increase the rate,
since appearance of small eddies led to instability of the initial
shape of the gas cavity.

We succeeded in significantly increasing the rate of rotation
and freeing ourselves from eddies by rotation of the whole "vessel—
ligquid" cystem and introduction of a piston (Fig. 3%. Ins'cad of the

"potator® there is .. tablished a transparent cyiinder 1 with piston 2.
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Be.sween the piston and the bottom of cylinder we filled in water,
Regulating the admissicn of gas under piston durjing roilation of the
cylinder, #e obtained c¢avity 3 of the desired dimensions. The rate
of rotation of the cylinder was in the order of 30 rev/sec; initial
pressure of the mixture in the explosion cshamber varied from 200 to
50¢ mm, the height of the cavity was 10-80 mm; diameter of cavity
was 40-70 mh, In Fig, Ya is a typical photograph of compression of
the .cavity By a solid (along the diameter of the cylinder) piston.
Compiession ocecurs in two ways: by radius and by height., This, one

may see especially distinctly in Fig. 4b. 1In the direction of motion

et B s S

of the piston cn the surface of fhe cavity there moves a compression
wave, reminiscent of "bora" in low water, Naturally, with such very

unstable compression expansion of the cavity leads to its total destruc-

tion, Obviously, for stability it is necessary to preserve the height

Y g al

i of the cavity during compression, For this the solid piston is
| replaced by an annular one (Fig. 5). In this case the cavity is com-
pressed symmetrically; the shape of the cavity remains during pulsa-
tion close to cylindricalj; the surfgce waves are insignificant
(Fig. 4c). ,
As a result of experimental research there

is revealed the basic possibility of obtaining

sufficient stability of walls during collapse.

Let us consider briefly certain diagrams

of axially symmetric flow of an initially twirled

»___z_, A liguid with a free surface,
:3 : E SIS The liquid revolves together with a cylin-
Fig., 3. drical vessel of radius R, as a solid with con-
stant angulaw.velocity w. During rotation inside
192
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This solution~gives a simple wave, leading to formation of a
v
shack, . Flow, illustiuted by Fig. l4a and b, is reminiscent of flow
with a shock, The equation of motion in the axially symmetric case
is satisfied when
¢ = const, r=0, N = N(Ft)

where u and v — axial ané radial velocities, respectively., Conse-
quently, flow with & shock is theoretically possible, However, inte-
gral relationships in our case do not give the pessibility of deter-
mining the velocity of the shock as depending on its amplitude and
parameters of motion before the shock,

Study of experimental data showed that, in
distinction from discontinuous flows in shalliow

water, here we have a free surface without any

S s U med gn AT

traces of turbulation., However, it 1is easy to

II'II“I

show that flow, in which at infinity the free

|
|
|
1

O )
I
[\Y)
11

surface has various values of radius, cannot

|
|
Al

Y&N&h
© °  everywhere satisfy Euler's équations,

Pig, 5, Consequently, the zone of turbulent motion
should exist .somewhere inside the liquid, so
that the free surface does not become turbulent,

Let us assume that the turbulent zone adjoins the zone of regular
flow, The shock moves here toward the zone of regular flow, On the
free surface contact can be realized only on a circumference of mini-
mum radius, Taking all these assumptions, we obtain absence of tur-
bulence on the free surface and the expression for the velocity of

‘ % the shock 1s

r 2.z
D_.—.(n L _.—E____'..__._
"n y ,Ir' - ru' _:vo.‘
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where D — velocity of the shock, &O ~ minimun radius of the free '
surface., Axial velocity after the shock is determined from the condi-
tion of conservation of mass of the liquid
(t — DY (I = £ = — (I -— 1)
The question of the existence of the mentioned regular flow has
encountered significant difficulties and remains open,
Thus, for the case with a solid piston the criterion of stability

of shape of the cavity during compression is analogous tc the condi-=

. b A e Lo § T DA AR E

tion of adiabaticity of compression of a gas volume %

ng(

where u — velocity of the piston., When u ~ C (Fig. 4a and b) u=~ C = %

Lo AN <

~ % m/sec we obtain unstable motion with a shock,
In the case with an annular piston the collapsing cavity is the
most stable in shape. However, the authors did not manage to find
} a physically acceptable model of motion, calculation of which would
be sufficiently simple and at the same time, gave satisfactory explana-
tion of stability of cavity shape,
The authors are grateful to B, V., Voytsekhovskiy and R, I.

Soloukhin for their attention to this work.
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A THEORY OF THERMAL EXPLOSION. IN UNSTEADY STATE

V. V. Barzykin, V., T. Gontkovskaya,
A, G, Merzhanov, and 3. I, Khudyayev

(Moscow)

With the help  of computers we analyze and give a solution
of the system of equations -of thermal explosion in partial
derivatives fer a reaction of the zero and first order during
conductive heat transfer in the reaction zone and Newtonian
heat exchange on the boundary.

We definitize determination of basic characteristics of
thermal explosion, The obtained results are presented in
the form of approximate formulas, relating characteristics
of thermal explosion with all parameters of the problem in
a wide range of their variation,

4
B L RN - N NRANAS SIS s LTS

We give the criterion of applicability of the equation
averaged by volume for calculation of the period of induc-
tion in the case of conductive heat transfer in a reaction
volume, We offer a method of averaging the system of equa-
tions of thermal explosion,

1, The unsteady-state system of equations on the assumption
of ccAductive heat transfer in a reaction volume and of constancy of
thermophysical coefficients in dimensionless variables has the follow-
ing form (see, e.g., [1]):

heat-conduction equation

(2..1)

% o 1 700 n a9
=0 exp 5+ ¢ (()" + = T;’g‘)
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equati~n of chemical kinetics

an .0
oo = TE () exp

]
\,-,

_ _E _ _ QFkg K .
V= gz (T —To), Ry 3 “'( HYh)' >

) 6 P QFI' LO { : L\ , - R l'pll’7n' 3 ﬂ (132)
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3

Here, 9-4 heating up, T — time; £ - coordinate, & — Frank-
Kamenetskiy criterion,n = 0, 1, and 2 correspondingly for plane-paral-
lel, cylindrical and spherical vessels, n — the degree of conversion.
The variables wifhfdimensions are:x T(x, t) — temperatu}é in reaction
volume, TO — ambient temperature, Q — thermal effect of the resction,
ko —-preexpohent, E — aétivation energy, X ~ coefficient of thermal con-
ductivity, ¢ — specific heat capacity, p — density, R — universal gas
constgnt, r — radius of véése; (for a plane-parallel one; half the
thickness).

This system was not investigated in detail., In the theory of ther-
mal explosion in unsieady state [2-7] various simplifications are
reaction volume, decomposition of the exponential factor, etc).

Below there are described results of solution .of system (1.1)-
(1.2) for the case of a reaction of the zero and first order (¢(n)
correspondingly is equal to 1 and {1 - n)). The system was solved

for the following initial and boundary conditions:

"n‘ﬂ_—..O’ =0 whenv -0

‘L?:() when 3 -- 0 (1.3)

9
—B) whon 3= 1(B--F)
Here B — Biot criterion, a — coeffitient of heat transfer from
the charge surface, Case B — ® corresponds to assignment on the sur-
face of a constant temperature (£ =1, 0 = 0),

Solution was carried out on a computer. We found functions 8(&, T)

and n(€, v) for different values of pa.aneters n, 5, B, vy, B. The
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basic purpose of calculations was to determine,
thé critical condition
3, =8,(n,B.v,3) (1.4)

and the period of induction
70 = ’TO (6, n, Bv Tv .3)
when 3 >0, (1.5)f

Calculations were conducted in the following ranges of variation

of parameters:

35T qu T "ﬁi ’assia : 0.50, <8< 108, 0.001<B
1 / / / 0y <001, 0<8<0.00

2 : AV

o ;“//',5ﬁ,ﬁ’\ e, 2. Before passing to presentation
! (] R B, K| of quantitative regularities of thermal

, ‘ ‘Z? explosion, we shall emphasize certain

0 2 4 6 8 10 ’ '
Fig, 1. Dependence o () aspects of the physical picture of the
ghiﬁwn =0, B =0, v =0.005, phenomenon and definitize determina-

tions of basic characteristics.

As it is known, a distinctive feature of thermal explosion is
the presence of two clearly expressed regimes, For small & the reac-
tion flows aimost steadily with small heating up; for large & there
is observed progressive thermal self-acceleration of the reaction,
leading to explosion, ¥For a reaction of zero order¥* change of regimes
during change of parameter 6 takes place with a discontinuity at & = b, :
here there exists thé largest value of steady heating up.

Analysis shows that with burning out of the substance (y # 0) a
mathematical discontinuity, dividing these two conditions, does not
exist, Transitién from one regime to the other during change of b

(or of other parameters) occurs continuously, where the greater the

*3o that system (1.1)-(4.2) describes the behavior of a reaction

of zero order, it is sufficient in the second equation to formally
set vy = 0,

. FJoR

o . AR I




burning out (the greater <y), the wider the transitional region [2].
Ry the actual meaning of the phenomenon, a thermal explosion corresponds
to a narrow transitional region, which is obscrved usually for vy of

) the order of 10'2—10"3, In Fig. 1 is a typical picture of 0(r) for
different 5, The presence of a trangitional region leads to the neces-
sity of certain more precise definitions .of determinations of basic
characteristics of a thermal explosion,

o . . . ns . .
17, Preexplosion heating up — a characteristic, obtained in

steady-state theory for reaction of zero order gmaXimum steady-ctate
heating up of a system). According t0 steady-state theory [1, 8? 9]
we have 1 s 6, s 4.6, PFrom analysis of an unsteady-state system of
equations with allowance for burning out it follows that such a char-
acteristic, strictly speaking, does not exist. The magnitude of the
maximum value of heating up emcg, t) with increase of ® continuously
increases (Fig. 2) and here becomes larger than 6,. However, heatings
up Gm > 8, occur in a very narrow range of variation of parameter b
and in concrete cases are realized comparatively rarely. In this
connection observation of maximum heatings during experimental
research of thermal explosion and comparison :of them with preexplosion
heatings, determined by steady-state theory, are always useful,; Thus,
for instance, systematic observation of excessive heating during
research of the thermal explosion of Tetrfl in ;a melted state allowed
us to establish complex convection mechanism of heat transfer in the
reaction zone, caused by mixing of the liquid phase by bubbles of the
products of decomposition [10],

2°, Qritical criterion (or limit of self-ignition) is relation-

ship between parameters of the system &,.(n, B, v, B), separating two

regimes of the reaction, Since transition from one regime to the

Zala by S R ]
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other -occurs continuously, -as 6, it is possible to select a value of

0, corresponding to the bend in curve Gm(ﬁ) (Fig, 2)..

~

3%,  Tnduction period., In the literature there is upheld the

e e

definition éccexdﬁpg t¢ which by the induction period we understand

the time éf*aeﬁié&ingfgf preexplosion heating up (see, e.g., [2, 5, d]).
Here, it is assuimed that the time of flow .of a process when 6 > 6

is considerably less than the induction period, This definition is
inaccurate, since, first, preexplosion heating up, as such, does not

exist, and therefore, the timé of its achievement 6, will not be a char-

actéristic quantity, and second, the time of the process when 6 > 9,

cannot be ignored (Fig., 1, Table 1),

It is more correct to characterize

T , n (T induction period Ly time 7, of achieve-
24

ment of the maximum velocity of non-

26— i

isothermal reaction, Such a definitioun*

29¢

e e i o wr

22"““‘r’/* &

]
, ; I allows us to trace the rules of change
L8025 Y7 //:
1
l
]
!

7

— 1 ; |5 conditions (Fig. 3). Depehdence 10(6)

W oM G LK 12

of the induction period in transition
/4

fe
12 /et

has a maximum, corresponding to D .
Fig. 2. Dependence Gm(ﬁ)
when n =1, B = 0,03, v =
= 0,005, B = 2, " sharply increases, seeking its maximunm

When & — 6, (from both sides) 7,

- value T,., Quantity T, strongly depends on. <y and when vy = 0 (zero

order of reaction), as noted by D. A, Frank-Kemenetskiy** [3], vy = @,

*When & > 6, in the interval of change of v shown above, for T,

with error not worse than 1-2% it is possible to take a time of achieve-
ment 8 = 5, convenient for practical computation.

**In works [2, 4] they incorrectly obtained finite values T, tor =
reaction of zero order.
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It is necessary to note that in the considered case of simple non-

self-accelerated reactions 7, is not a

Table 1, Difference At

Bebween Time of Achieving
= 5 and 6 = 1,2 Depen=-

dlng upon & for n = O

i v‘— 0. 005{ B.= 0, 7 thanks to the very sharp dependence 1,(9)

convenient characteristic of thermal explo-

sion, since during experimental research,

; “ Ter RS near the limit, it is practically impos-
I3 102 0.7 31 sible to find 7.

A 1.1 0.74 3 *°

l 4.1 2.31 44 o . .
0:95 8 3.4 57 4~, Degree of preexslosion reaction
0948 9.3 345 (T - ‘

is a conditional characteristic, cometimes
introduced in consideration for estimating burning out of the substance
during the induction period, which near the limit, as can be seen
from Fig, 4, can attain comparatively great values, Let us note that
y the degree of preexplosion reaction, as a characteristic, has clear
meaning in the framework of the theory of quasi-steady thermal explo-
sion [14].
3. Dependence of 8, on all parameters (1.4) with a degree of
accuracy* fully sufficient for practical calculations (¥10%) can be

presented in the form
3= 0%, (B) @2 (7).935 (B)

f'_"_.':'.__ —_
o B) = S (VB == B exp YEZ =P (3.1)

@2 (1) = 1 -+ 2.4¢%, @) =1+ F

is the value b,, obtained by D. A. Frank-Kamenetskiy in

Here 60
. steady-state theory (n =0, &y = 0.88; n =1, d
o= 3032)0

Function ®q is obtained from the steady-state boundary value

=2,00; n=2, 0

0 0~

¥Determination of d, with the help of a computer was conducted
with ¢ rror, not exceedlng 5%.
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. problem [9]; function 9, expresses correction for burning out during
the induction period; the form of this function was approximately
obtained by D. A. Frank-Kamenetskiy [3]; as a result of solution of

system (4.1)-(1.,2) the coefficient before y was somewhat definitized

(2.% instead of 1.39);‘function QB was obtained by the .authors as a

.
result of reworking the calculations of Parks [12], Dependence (3.1)
5p: _ is checked in a large number of variants

1, j ? )
M (more than 50); part of them is given in
Table 2.
1ol , :
. ! \ J-
- H o 20 . P .
= ] Table 2, Dependenge of by on Dif-
- 'l s ferent Parameters,
ST & s, W02 — : SRR -
! X . X I 3 i Error
n n yefoo | pete 5‘(per3.l)'(c°m :xter) °
Fig. 3. Dependence 74(5) . L bl :
when n = 1, p =0.03, L I I e N
. f - . Y b L+ i ).
vy =0,005, B = 2, 0o | 27 13 o4 |04 0
0 | 1o 10 | 5 | 0.8 0.87 2.3
0 |20 50 0 |08 0.8% 1.2
0 oc 1 3 | 0.3 092 1.1
0 o 5 0 | 0.94 10.9% 0
D155~ 0 oo 10 5 - 1.o3 104 t
1 6:01 51 0 ] 0008 | 0.079 1.3
1 0.05 d 0 0.039- | 0.039 0
’ 1 0.1 51 0 |00 oo 0
: 1 | 1 10 3 0.66 0.67 1.5
ag - 1 | 5 t | 5 | L5 1.48 1.3
N\ . £ {2 o] 1 |1.8 1.50 1.7
! : i !
: / 5 1 ) 1 5 2.15 2.14 0.5
] 3 = | - 00 3 4] 2.14 - 2.1-0 0.5
ﬁL P £ P 101 3 | 2.2 2,31 1
: N\ ° : 2 0.0 51 0 [ oms ;oo 8.3
005 —RA ] z | 6. 50 o [og2 o f
- P 2 ! 510 0 |10 fom 7.5
0 ~~— 2 2 ]t |17 L6 6.2
) a“‘~=::::::::3 2 |10 1 3129 2,493 1
: 8 —— 2 .00 0 5 | 3.5 345 1.5
_ - ] 2 oo t | 3 |35 3.42 2
039 1 7 4 2 00 51 0 | 3.6 3.54 1.8
2 20 10§t | 3.7 ©3.66 i.1
Fig. 4. Degree of conver-
sion 1, corresponding to
different temperatures Thus, the influence of different
depending ugon A, Dotted
curve — 7, corresponding parameters on the critical criterion with

q to maximum of temperature,

3 shown: accuracy can be considered indep: 1~
dent, which is very convenient for concrete calculations.
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4. On the basis of numerical solutions of equations (1.1)—(1.é)
we analyzed the dependence of 7, on all parameters of problem (1.5)
. in the shown range of variation of them. The character of this depen-
dence 1is rather complicated: in this connection, to show the whole
picture, it was neceéssary to conduct a rather large humber of calcu-

lations, Part of them is given in Tables 3-6,

~
Table 3., Dependence of 70 Table 4, Dependénce of
on v for Different A = 6/6* Ty On N for Different
forn=1;, =0, B=0,01, Values of A for B = 0,
B =mo, vy =0,005,
s | y=o ,o.om 0.005 6.91 N l =0 I PR
el ase 40| a6 | 3.2 i o335 | 3.7 | 2.8
1.2 ['3.47 ] 2.98| 2.74 2.57 £.2 | 257 2.35 2145
1.5 12,07 ]2.00 | 0.9% . 1.88 1.5 | 1.80 1.65 £.51
2.5 [1.42]1.40] 1.39 1.38 2.5 1 1.28 1.19 (.12 ~
4 1.22 { 1.22 1.2 1.2 4 1.12 1.06 1.03
. 6 114014 113 1.13 6 6 | 1,02 1.01
10 1 1.08]1.08] 1.08 1.08 10 1.02 1.01 108
Table 5, Dependence or To On B for Difflerent. . I
A for y = 0,005, n =1, B =0, )
a B=0.01 0:: ) 0.5 1 5 1w . x {
vl 3sel 36 | o33 | B4 | 3a 307 | 3.07
1.2 | 2.74 | 274 | 2.7 2,63 2.36 2.35 2,35
1.5 | 1.94 | 1.9 1.91 1.85 1.66 | 1.65 [ 1.65
2.5 | 1.39 | 1.38 1.36 1.32 1.20 (49 119
4 1.24 1.21 1.18 1.14 .07 | 1.06 1.06
6 1.13 s | 1o 1.07 1.03 :03 1.02
10 1.08 1.08 1.05 | 4.03 .15 1 1.0 1.0t
From the tables it is clear that the induction period is most
N strongly influenced by parameter 6, The influence of the other param-
eters is signifircantly weaker. We shall discuss the influence of
: each of the parameters,

The dependence of 7, on 0. The form of dependence 10(6) wa.s

known long ago. As follows from the works of Todes [2], with increase

of 5, T drops, approaching its least value ~— the induction period in
=03
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adiabatic conditions t_ . Dependence 70(6) is conveniently presented
in form TO(A), where AA= 5/6, — relative distance from the limit of
self-ignition, With such a prgsentation it is easier to comprehend
the character of the infliuence of other parameters, and also to select

approximate formulas,

The dependence of 1, on vy is especially noticeable near the

0
limit, With increase of & it weakens and when A > 7 it is practicall
absent.,

The dependence of Toigg B in accordance with the concepts of

D, A, Frank-Kamenetskiy is weak and has a purely correcting character.

The dependence of Ty O D and B, Solution of system of equations
(1.1)~-(1.2) in partial derivatives allows us to consider the question

of the dependence of T, on the shape of the

0]
vessel and conditions of heat exchange on

Table 6, Dependence
of Ty on B When v =

= = = . . . . . .
0, n,’ 1, B * the surface, which in principle was impossible

A =2 <)

—- in theories using the assumption of the

{13 absence of distribution of temperature in

L

|
the reaction zone, From Fig. 5 and Table 5

it is clear that dependence TO(B) has two limiting cases as B— 0

and as B— o, With identical distance from the limit (A = const)

the induction period is less; the more intense ‘the heat transfer,

The shape of the vessel affects the induction period analogously.

The larger the surface-to-volume ratio, the more intense (for identical

B) the heat removal, and the less the induction period. Minimum T

other things being equal, is obtained in a spherical vessel., For

large A, when (just as for small B) temparature distribution is insig-

nificant, the dependence of Ty On 0 and on B disappears,




Calculations of the induction period were conducted with error, -
not exceeding 5%, All obtained results in interval 1,1 = A £ 10
could be described with the same accuracy by approximate formula

=T &) [ (A7) B, A), L3 I 23 (4.1)

Here T, — adiabatic induction period, practically not depending
on vy in the selected range of variation of vy. TFunction

(] T et A1 :
jl (A’ T) l 0'6.‘ ‘-‘ — ”'95)!).’ (!+ * 2)

does not depend on n and B and describes basic variation of T from
A in limiting case B~ O for different -y: function

_ [t 151 =013l B a
f‘.‘. (nr Bv A) =1— 16(1 - B) ()‘{'-3)

describes change of the induction period due to shape and heat
exchange, The dependence on A here has a corrective character,

) 5. In connection with these results the question of the possi-
bility of using the well-known ([2, 3, 4, 6] and others) system of

equations,; written on the assumption of constancy of temperature in

2~

the reaction volume is of interest, Such a system of equations in

the designations used here has the form

0 0 . dy ) )
e @ (M) exp . 3-(-;—( i v -x@(n) exp T (5.1)

When using this system two approaches are possible, Either it
s assumed that temperature distribution in the system is lacking
for physical reasons (for instance, purely convective heat transfer
in the substance, weak heat emission) and then notation of equations
(5.1) does not contain additional assumptions, and constant C is
expressed through the coefficient of heat transfer a, which has the
clear meaning of the coefficient of heat emicgsion from the surface of
the reaction volume to the environment, and other parameters are as

follows: L
1 ¢ 0T, O Rr,

T R TIY L SSRRATEI AR, TR B TN R R AR Y
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Here S = surface, and V — volume,
Or the notation of system (5.1) is treated as a certain approxi-

mation (averaging by volume), i.e,, the mathematical methcd for facill-

™  tating solution of system (4.41)-(1.2), In this case with the following
definition of averaging
[}
s =\ g2z
.
we imply two assumpticns
2 ra 0\ - Rz ¢ 0 ,
; oo ooy e T (G e~ ®
« ' Furthermore, it is nescessary from independent considerations to

determine the constant, Frank Kamenetskiy offered [1] a method of
finding cénstant C1 by using findings of the steady-state theory of

thermal explosion, namely
C::—rcﬁp
It is obvious that the solution of system (5.1) fior finding

which it is necéssary to assign only the initial condition, should

N .
R SR Sttt i 2 il st oot K

completely zoincide with the solution of system (1.1)-(1.2) with the
same initial conditions and for B — 0 in bouadary condition (4.3).
For comparison we solved systei (5.1) and system (1,1), (1.2) for

B = 0,01, Coincidence of solutions in a wide range of variation of
different parameters is within the limits of accuracy of calculation,
" The structure of formula (4.1) for the induction period, in

connection with this, can be treated as follows.

Function 4 = 7, (B)L; (4, v) (see

28
sl = [~ (4.1), (%.2)) can be considered the
‘ NN
20 , o] \\\‘§\A n result, obtained from solution of aver-
g zg{is L ] A 1935 aged system (5.1), and function K =

Fig. 5. Dependence T4 (B) for _ f5(n, B, A) (see (h.3)) constitutes
three vessel shapes (n =0, 1,

2) when A = 1,1, B =0, v = a factor, showing how much 7, calculatod
= 0,005,
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from the averaged system, is larger than 7 obtained from the system
of partial differential equations, and is in point of fact the criter-
ion of possibility of use of the averaged system for calculations

of the induction period., As can be seen from (4.3) and Fig. 5, the
biggest divérgence is attained at n = 2, B— 0, and 4 —~ 1,

It is pessible to offer another method of averaging system (1.1)-
(1.2), containing only one assumption and free of the necessity of
ucing findings of steady-state théory — the so-called weighted aver-
aging, |

Let us consider this method in the example of a reaction of zero
order for p = 0,

Equation (1.1) for arbitrary three-dimensional region G with

surface S will be written as follows:

il | I
30 =exp 0 + 5 VO (5.2)

The. initial condition is 7 = 0, 6 = 0; the boundary condition ic
d0/dn = -BO on surface S,

We average equation (5.2) with weight (&1; g2;-g3) (gi; ﬁe; &5 -
coordinates) ; Uy will be the first eigenfunction of equation

Veu 4+ 2 = O with boundary conditions on surface S du/dn = -Bu. We

normalize uo so that

Szumu=|_ (dV — an element of the volume),
() v
- The law of averaging will be written as follows
OEH = Q 0.3y 855 353 7) uodV’
©
After simple computations, averaging equation (5.2), we obtain

i;.:’i - 5 e xp OV’ —:%ﬂ 0>
;)

where xo — correspondiiy eigenvalue. Tunction exp 0 — convex function,
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and exp 6 2 (1 + 6 - <6>) exp <6>; therefore, assuming

‘ -ue exp 3V = exp <0) (5-5)
we obtain averaged equation
<0 __ X
= exp <) 3 0>
with initial condition <6(0)> = 0. Here there is error of the order
of
£ g u” exp <0) di’

{G)

The critical criterion in this case, obviously, is written
<§*> = xo/e (the sign of averaging < > means that 6, is obtained from
the averaged system); <8,> is somewhat overstated, since by assumption
(5.3) the source is somewhat weakened, For greater detail on such
fh estimates see [13]. Let us note that if we analyze results on induction

periods in the form 7,(4), the values of T,

obtained from both
" methods of averaging coincide,
It is possible to show that averaging of equations in the problem
taking into account burning out and also for B # O requires no new
assumptions,

Submitted ’
23 January 1964 ¢
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THE BURNING VELOCITY OF POWDER UNDER VARIABLE PRESSURE*

Ya, B, Zel'dovich
(Moscow)

With a powder burning in solid phase there will form a
heated layer thic¢kness of the layer depends on the burning
velocity; in turn the burning velocity is connected with

the temperature profile in the heated layer. One can expect
that durlng rapid change of pressure the heated layer can

not reconstruct itself in time, and the burning velocity
turns out to depend not only on the instantaneous pressure,
but also on the curve of its change, We tr-oce the dependence
of burning velocity on pressure during rapid changes of
pressure for certain cases,

In the theory of burning of powder developed since 4942
[1], it was shown that the relaxation time of processes
occurring in a gas is minute compared to the relaxation
time (time of change) of distribution of heat in powder,
Therefore, if we limit our consideration to intervals of
time, significant. as compared to the relaxation time of
processes in a gas, we can assume that the state of the
gas layer nearest to the surface, in which the chemical
reaction is concentrated, each moment is in accordance with
the thermal state of the thin layer of the k-phase (powdor)
nearest to the interface; distribution’of temperature 'in
deeper layers does not have a direct influence on the proce..s
occurring at the surface, If, furthermore, we assume that
the zone of gasification of the solid substance is very
narrow and that gasification occurs with ceastant tempera-
ture (this corresponds to a reaction with rery great acti-
vation energy), the relaxation time of the zone of gasifi-
cation of powder also can be ignored, and we can relate the
zone of gasification to the layer of gas above the surface

*Published from materials of a report to the Institute of Chemical
Physics, Academy of Sciences of USSR in 41944,
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of the powder, The thermal state of the part of the heated
layer nearest to the surface of the powder here should be
completely determined by only one magnitude — the temperature
gradient at the surface. This quantity characterizes the
transfer of heat from the gas and the zone of gasification
into the heated layer of powder. Thus, at each moment the
burning velocity is determined by the current value of pres-
sure above the surface of the powder and the magnitude of

the temperature gradient at the surface ¢:

u=ulp,q) (0.1)

Quantity ¢, just as the whole distriLution of temperature i

in the powder, depends on those actions, which the powder )

experienced up to the considered moment; this distribution ;

we find by solving the problem of thermal conduction for a :
bedy, extended in one direction and limited in the other

direction by a surface of given temperatnre Tk (temperature

of gasification), moving by a given law ,
x ="z (1), dejfdt = u () (O . 2()

§ 1. Steady-state regime and the limit. In the frequent, most
important case, when the burning velogity is kept constant for a
prolonged interval of time, quantity ¢ seeks a definiteée limit, depend-
ing on the purning velocity and the initial temperature or the powder ’
%o

Qe =G (u, To) = — (T — T)
where n — coefficient of thermal diffusivity of the powder,

Substituting this expression for ¢ in (0,1), we obtain an expres-
sion for determining that unique value of velocity, for a given pres-
mre and initial temperature, which should be realized during pro-
longed maintenance of a given pressure: 1vhis state ol burning we call
a steady-~state regime and we denote quantities pertaining to it by

subscript c:
uc=ulp, g (u, 7y)| ,(:1_«.2) c
"c:uc(pt T") (1.3\

The steady-state regime obeys simple relationships, which follow
from equations of conservation; therefore, uc(p, TO) can be directly

expressed through p and TO, thermal and kinetic properticc of the
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powder and products of its gasification without the help of equations
(0.4), (1.1), and (1.2).

Dependence (%.3) we shall subsequently consider fixed by the
corresponding experiments, in which burning velocity was m2asured at
constant or sufficiently slowly changing pressure and with dirferent
values of T.. We sﬁall use this dependence of u on p and TO’ fixed
by experimeﬁt, in order to determine the dependence of velocity u on
pressure and the temperature gradient ¢ (see formula (0,1)); the tem-
perature of gasification Tk we consider known and constant,

In reality measurement or calculation of Tk is a difficult problem,

For its solution it is necessary to investigate the thermal decompo-

sit¥on of powder at high temperature, when this decomposition proceeds

,
NP A

-with great velocity., Coistancy of Tk'aiso, strictly spe%§ing, does
&

not occur, Quantity Tk should be such that it ensures a velocity of

gasification which is eqwal to the burning velocity. However, due to

Y
e SRR AN A B .+

the very strong dependence of the gasification velocity on temp -ature
with high dctivation energies (doubling of velocity during change of
Tk by ~5Q), significant change of the burning velocity causes only

small change of Tk’ due to which it is possible to consider 7. con-

k
stant,
Having a table of measured values of u,(p, Ty) for different p

and TO, by formula (1.1) we calculated for each pair of values of p
and TO the magnitude of gradient ¢; comparing quantities u, p and ¢
partaining to this experiment, we obtain a table, expressing depen-
dence (0.1),

For To, close to Tk’ the burning velocity seeks a definite limit

v, ; magnitude ¢, according to (4.1), here is close to zero,
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Direct observation of w, is hindered by the rapid decomposition
of powder at a temperature, close to Tk; quantity u, can be found by
extrapoiation to Tk of the dependence of u on TO’ measared at lower
temperatures, Both theoretical considerations, and also, experimental
material shows that the burning velocity does 1ot increase without
limit as T, approaches T,

With decrease of TO there occurs growth of ¢ due to increase of L
Tk - TO; this growth is delayed 5y simultaneous drop of velocity u.
(Lowering of TO decreases the temperature of burning of the powder
T),; barning velocity depends on T, as exp (—EV2RTb).) That value of
To’at which ¢ reaches 4 maximum is the natural limit of steady-state
burning; this condition is easily Iormulated'mathematically (all deriv-

atives are at constant pressure)

. T—To ( du, 0 - (‘:’l"r \ '1"""‘__1— (1.4)
0. p 3

U’I'H 7 7z . “(‘

(?Tu ) 4

In [i] the theory of a limit was considered with definite assump-
tions about the form Of dependence uc(p, To), connected with chemical
kinetics of a burning reaction. The advantage of formulation (4.4%)
will be the use of only one constant Tk in addition to the experimen-
tally studied dependence uc(p, To)u

Subsequently, we shall assume that we are above the iimit, with

such a TO at which steady-state burning at constant pressure is stable
and pcessible, for which we should have inequality
1 u 1 .
W (57), <T=T (1.5)

Simultaneously, formula (1.4) allows us to determine the actual
maximum value of ¢ at which (at a given pressure) burning in the gas

phase 13 possible; for that we put the value of TO, found from (1.4),
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and the corresﬁonding u, in formula (1,4). This maximum value of the
gradient, earlier {i] designated Ppo plays an important role: for
ignition of powder it is necessary to heat it in such a mahner that
at‘surface temperature Tk the gradient is less than PRe Conversely,
if in the course of burning we reach gradient ¢ > @Bu(for instance,
due to a drop in pressure, causing decrease of @B), there occurs
extinguishing of the powder, and burning ceases, Expression (1.5)

is general, Considering constant the derivative

.

(), = ms), =8 (1.6)

we find the dependence of u, on Ty by integrafing (1.6)

0
uc (T,) = const &7 (1.7)

Inequality (1;5) in this case we can rewrite as

(1.8)

B (Tk - To)’< 1
agluc = & Tx T (e (1.9)
u. > upe = 0.37ux (1.20)

»

In the latter form the condition of stability of burning was
also found in [41] with certain assumptions about the kinetics of the
reaction of burning, which approximately led to a dependence of form
(1.7).

Substituting expressions TO and:uc at the iimit of stability in

(1.,1), we determine the critical value of the gradient:

“k

Po= 7, (4.41)

The ratio of the critical gradient P to the steady-state one
at a given pressure depends on the product {S(Tk - TO), determining

the "margin of steadiness" of burning

Pu 1 LA T =Ty 1) 112
q‘c ) .3(7“-""‘Tu) ¢ ( . )
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§ 2, Very rapid change of pressure, Formula (41,3) for constant

TO gives the dependence of burning vel.city on pressure for very siow
change of pressure and complete reconstruction of the layer, In the
opposite extreme case of very rapid change of pressure the layer

- absolutely does not succeed in beiné reconstructed; thus, the sought
dependence of u on p for very rapid changes of p is given by function
u(p, @) (formula (0.1)) for constant ¢, The method of transition
from uc(p, TO) to u(p, @) described in the preceding section in prin-
ciple completely solves this problem, Along with the functional

dependence, ‘of great interest is comparison of partial derivatives
du Jdu,, .
lw e (&)

dp T, up Iy

We compose the expression of the total differential of (1.3) aad

] (1.1) dut “"(Z“Z)-r."f":“ (,_‘;_)' dT, = v & dp -+ Budl, (2.1)
T, —T, : T
dq): ‘_ \du——--:-dTo=%du_ka'l'udTo
=v3gp {1 . _g)edr, - 2,2
= P P krk—‘r" )q) ] ( . )

Here the following designations are introduced:
. P [ o lnney . 2-3
vo LG G (2.2)

i’ -7'7((:;!: )1' - (.i’.‘_'.l,;!_':i_)" ‘ (2°4)

Quantity v constitutes the value -of the exponent in the exponen-

tial law of burning: considering

uooup (2.5)
we directly obtain the equation written above for v, However, the
calculation is not based on the special assumption of correctness of
the exponential law of burning, since the assumption that v is constant
is not obligatory; expression (2.3) for v we can write for any law
with this differenge only, that with a law of burning, differing from

(2.5), exponent v ié variable, Thus for a linear law we find
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. ] on b
u oa-=bp, v P2 p

u  dp a-3-bp ) (2.6)

Magnitude of the temperature coefficient of the burning velocity
B we also do not consider constant, and, thus, we are not limited to
a particular case ‘of any definite dependence of u on TO’

With the help of (2.2) we express dTO by dp and d¢ and substi-
tute in (2.,1), We find, after simple transformations,

3(Te—To) . u (0 7)

- N w2V e =,
du = W= 3m—Ta e @

T—3(l,—1Ta) P

Comparing (2.7) with the expression of the total differential

on . [fOu

da..:: (57)-4"11' v (‘T‘f)v 4 (2.8)

we find \
TR v . "

(or)e = imvw=T5 7 (2.9)

or
dlnw s piowy v "
(irp), ), == (2.10)
- H(T—Tol
%), —ERr=y (2.41)

Formulas (2.9) and (2,10) respond to the question of the law of
change of burning velocity during very rapid change of pressure; in
this case, for constant ¢, the derivative of velocity with respect
to pressure turns out to be larger with respect to 1/[1 - @(Tk - TO)]
as compared to the derivative of velocity with respect to Lressure
during slow change of pressure, In that same respect the effective
value of the exponent in the exponential law during rapid change of
pressure also increases, As can be seen from the formulas, quantity
B(Tk - TO), which we encounter in the theory of the limit of stabi-
1lity of burning (formulas (1.5)-(1.8)), also plays a role here, The
closer to the limit the system is — condition of 1limit B(T), - Tp) = 1 -

the more labile it is, and the greater the changes of velocity causea
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by rapid change of pressure,

As we know, in the internal ballistics of reactive systems the
value of the exponent of the law of burning has greatest significance;
Tfor the possibility of steady burning in a semiclosed volume it is
necessary that v < 1, From what has been said it is clear that pow-
der, satisfying this condition during slow change cf pressure, may,
during rapid change of pressure, give an effective exponent larger
than one;

In a semiclosed volume under conditions which allow rapid change
of pressure it is possible to expect unsteady burning, Steadiness of
the burning regime of powder in the chamber of a missile was considered
in detail by the author using the method of small perturbations [2]. N
In this work we also obtained formulas (2.7)-(2.11).

Finally, on the assumption e¢f a ceonstant temperature coefficient
of burning velocity B and constant exponent v, we f£ind how many times
pressure should instantaneously drop so that extinguishing occurs,

From this Wwe formulate such a condition: gradient @(pi), which
corresponds to steady-state burning with initial pressurc Pys should
be equal or larger than the critical gradient @B(pe), causing extin-
guishing at pressure p,. Using (1.12), (1.4), and.(2.5), we {ind

v 1 “H(Tg=To)-
L%)=mu—mﬁk l (2.12)

We give ratio pi/pQ’ calculated on the assumption that v = 2/3,

for different values of B(T, - T,):

B(T—To) 0 0.2 04 046 08 1o
(pr/my 2o 225 138 L2 Lo 1o
3400 162 148 Loy L
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§ 3. Graphic presentation of relationships of the preceding

paragraphs. The relationship derived above can be illustrated by

diagrams, which facilitate understanding of the qualitative aspect
of the matter,.

In Fig, 1 is the distribution of temperature at the surface of
the powder., Temperature gradient ¢ depends on the angle of inclina-
tion o of the tangent to the curve at point A(x =0, T =T, ¢ = tg a).
In this figure there are shown two methods of determining the thick-
ries§ of the layer, Strictly speaking, temperature only asymptotically
seeks To'with increase of x, sc that even at point E, far from the
surface, the tewpirliavure, although slight; differs from‘TO; therefore,
we can speak about the thickness of the layer only conditionally,

The first method of determining the conditional thickness consists

in passing through point,A a tangent and finding the point of inter-
section of C with line BCE, on which T = T,(&x, = (T, - T,)/®¢). The
second method consists in constructing rectangle ABCD in such a manner
that its area is équal to the area ABCE, bounded by curve T(x) and

line T = TO:

In the considered case with temperature distribution (4.1) both
definitions of Ax coincide and give Ax = n/u,

The distribution of temperature (Fig. 1) is obtained for pro-
longed maintenance of constant pressure and for a given constant tem-
perature in the depth of the powder TO. At the same pressure, but
with a different temperature T.', the powder will burn with another
velocity, the distribution of temperature and the magnitude of gradient

¢ will be different, In Fig., 2 curves (a) and (b) give, accordingly,
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dependences u(TO) and @(TO) pressure-constant, corresponding to steady-
state burning.

To bring TO to Tk is practically impossible due to the fact that
the powder is rapidly decomposed already at .a 1owef'temperature; there-
fore, corresponding parts of the curves afe shown by a dotted line,*

The value of velocity extrapolated to Tk is
designated Uy .

Curve @C(TO) passes through a maximum with

T

coordinates Tys Pge The value of velocity cor-

9

[ responding to TB is designated Up = uC(TB)u
Fig. 1, Let us construct a graph of u depending upon §
¢ for a given pressure (Fig. 3); for that we take

u  various values of TO and plot in plane ugp the

a '/':Jn
Pt corresponding u(T,) and o(T,). This process is
. 8.~ .
FE ——==~"% easily traced by points A, G, B, ‘General consid-
) - ? ‘
. I T .
T : erations of theory show that the dependence of

u on ¢ for a given pressure should be the same,

|
| ]
B

G~ | A %

£ ! regardless of whether the process as a whole 1is

1 .
f N\

- 1

\{I, steady-state, i.e., regardless of the distribu-

N tion of temperature in deeper layers of the pow-
rie. 2. der .and régardless of whether, in the course of
burning, ¢ is kept constant. Figure > graphically shows that: 1) for
P> Pg there is no corresponding velocity, i.e., burning is impossible;
and 2) for ¢ < Py to each ¢ there corresponds two possible burning

velocities (see, e.g., points A and G).. Segment BG of the curves ot

FFig, 3 in reality is not realized and should be rejected, Jonsequently,

*We can get closer to temperature '1‘k during the study of burning .
of low boiling secondary explosives, e.g., methylnitrate,

—
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steady-state burning is also impossible at temperatnre TO <'TB (in
Fig, 2 corresponding parts of curves BGF are obtained by extrapola-
tion or calculation). How is one to conceive of this impossibility?
In Figs. 4 and 5 solid lines give the dist:ibutions of tempera-
tures, -correspondinhg to points A and G, at which ¢ a}e identical for
different‘To and: u,
In regime A, to which Figure 4 corresponds, steady burning is
stable; with passage of time the distribution as a Whole shifts into
the ‘depth of the powder, and the width of the thermal layer and gradient
¢ are kept without change — see dotted curves of Fig. 4, In regime
¢ steady burning would be possible, if it occurred with low velocity,
But To gradient ® in this regime there also corresponds a second
possible velocity — such as in regime A — sincé gradients are identi-
cal, There will be realized just this, high velocity; but distribu-
tion of temperature is not in accordance with high velocity, with
burning the deep layers are not sufficiently heated, distribution
becomes.steeper and gre...env ¢ grows. When it reaches Pps burning
ceases, Thus, if one were to prepare a powder of very low temperature
TG for corresponding slow burning, creating for that a very deep
heated layer (Fig, 5), in fact, instead of slow burning there will
occur a fast flash, the heated layer will be expended, and the powder

will extinguish,
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We plot on the same greph curves of u(9), pertaining to different
pressures (Fig, 6); here, we depict only the practically realizable
upper part of each curve,

Considering Tk constant, as we did in all calculations, we note
that points describing steady burning at different pressures, but at
one and the same initidl temperature of the powder TO, are locgted on
siraight lines, emanating from the origin oﬁ,coordinates; from (1.1)

it follows that ratio

is constant on lines TO = const,

If, e.g., at a temperature of the powder TO' pressure slowly
increases from Po to Pys the powder burns steadily at each pressure,
In Fig, 6 the point depicting the regime of burning shifts from M to
3 (slow — slow chahge of preSsure); increase of pressure is accom-
panied by growth of burning velocity and reconstruction of the layer,
causing incregse in the temperature gradient ¢, Rapid change of pres-
sure 1s accomplished without reconstiliciion cf the layer, with con-
stant @; change of velocity is depicted by segment MR (rapid — rapid
change of pressure)., As can be seen from Fig. 6, increase of velo-
city here is great, At pressure Pq in the first moment the powder
burns as if its temperature is higher than it is in fact. The differ-
ence between change of velocity along a ray (TO = const) and along
the vertical (¢ = const) is minimal at T,, close to T, (ray To =Ty
in Fig. 6 coincides with the axis of ordinates) and increases as we
near the limit (T, — Ty) in accordance with formula (2.10).

With decrease of pressure change (decrease) cf velocity is also

greater in the case of the rapid process than in the case of the
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slow one, As can be seen from Fig; C,*during rapid pressure decay,
for instance, from Po (pﬂlnt M) to Py, W€ wil.l
find no solution; that ¢, which was steady fov Po.s
exceeds maximum 2 at pressure Py puring slow
change of pressure we¢ cross at point L, correspon-

ding to a sileady-state regime of burning at pres-

sure p). Thus, Fig. 6 explains extinguishing of

powder with rapid pressure decay.
Fig. 6. As can be seen from the figure, the higher
the initial temperature of the powder, the lower should be the final

pressure o achieve extinguishing (compare with data of § 29,

§ 4, Small changes. of pressure, We formulate the problem of

the law of change of burning velocity during arbitrary small changes
of pressure, In this case change of the burning velocity and change
of temperature distribution in the powder can also be considered small
and we can limit ourselves to the first terms of the series of expan-
sions;

With a constant burning velocity the temperature distribution
in the heated layer of the powder (the examination is conducted in a
system of coordinates, in which the surface of the powder shifts

with constant velocity — burning velocity uo) has the form
’I‘ — To+ (7‘,‘ — TO) cxp[—“- -';—0(2' —_ uot)] (l‘l'.i)

We find now the temperature distribution, which differs by a

small component from distribution {%4.1). The additional small com-

. mx+nt .
7 ponent we also take in the form Ae . From heat conduction equa-
tion
or 91

TR (4.2)
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and boundary condition T =Ty as x—=> 0 we find n = %ma, m < 0,
Assigning the position of the surface of the burning powder as
the surface on which T = T, we determine the law of motion of the

burning surface (we consider A small):

- ®
Z|r=T) = Uob + > 7,——-_--‘,—0 i ) ( 4 3)

The burning velocity of the powder is

dx

b=

A
= Uy - (Mug 4= xm?). -.1, =7 ‘T clmudxmi t (4.4)
. \

T=Tg
The temperature gradient &t the surface of the powder is

¢ = = "-{5— o -'i/’— (Tp— Ty — 4 (-’%’- -+ m) el amiy t (4.5)
Relationships (%4.3)-(4.5) were also obtained in work [2], devoted
to research of stability of burning of powder in a thrust chamber,
We denote by p,, that pressure at which we have
w0 (T~ Ty (4.6)
Then with the help of (2.8), (2.9), and (2.11i) we find the law

of change of pressiire, substituting

AN _ du— Qu g J
du:——u.(;;(-{_-)" d¢ -+ (;;;;),v_dﬂ, dp =— Wi epy (k. 7)
Bty — (01 / 99),, (§ — Gu)
pP—h= @u j op),
) % , wm? .
p=pt B gt {m S =BT =T — (%-8)

—B(F—T,) (-— - an)}A exp [(mug - nm?) t]
If we set
P = po + Pe*! (4.9)

. and express m and A in terms of ®w and P, for velocity we find

Vi Pe¥!
U= Uy —— (n~‘23‘_)

" 1—aw.-nmﬂ~1~vwmanﬂz T (%.10)

Formula (4.120) is valid for any values, including complex or
}
purely imaginary, of Q; here the complex ratio of change of velocivy

to change of pressure indicates a phase shift between variations of

R23




pressure and variations of burning velocity caused by them,

Formula (4.40) contains the limiting cases considered earlier:

. U — g .\-’-‘ﬂ(p Po) YD 00 (4.11)
u—uy= muﬁgﬂafzmr‘Wm(m»m (4.412)
in accordance with (2,8)-(2,11),
Considering o small,
vk, o<l | (#.13)

we evmand (%4,10) In a series and remecve the term, containing w.

We find
= g 2 Peot 4 8 B (T — 7o) Peet (4.14)
%; Noting that
Vit Yoo _ [ ey ot 4P
i ot 3, Rei=u(p), = =35, oPet= (4.15) -
: we rewrite (4.44) in final form .
; du, w d -
g w=v o+ (5e), BU—TO A% (4.16)
3 or, substitating expression 8 in form (2.%),
.. . Our) ka'ic %(T;‘h— TU) ([p 4 . .
= g Rkt (7»?)7. (m\,. T (4.17)

Formulas (4.16)-(%.47) give an answer to the question of devia-
tion of velocity uc(p), obtained at the same pressure if we continue
to keep this pressure constant, This deviation is proportional to
the derivative of pressure with respect to time, It is easy to show
that the formulas are applicable not only for a simple exponential -
(or harmonic, in the case of an imaginary ) law of change of pres-
sure in time, but also for any law p(t), since it is always possible
! to present it in form
p(t)=po+ S P, e

By virtue of linearity, each component in pressure gives a cor-

responding component in velocity. We recall, however, that all
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calculations of this section are performed on the assumption that
changes of pressure, velocity, and other variables are small; and in
deriving (4,16)-(%4.47) we were limited to the same low frequencies.,
Thus, formulas (4.16)-{4.47) are applicable only to a smooth curve of
the pressure-time relationship, not containing high=frequency com-

ponents (see condition (4,13)).

§ 5. Burning and extinguishing during dropping pressure, Solu-

tion of the problem of burning with variable pressure for any law of
dependence p(t) in the preceding section we found on the assumption
of small changes.,

Let us find by dimensional theory a criterione determining the
role of unsteady phenomena for any changes of pressure, On this cri-
terion there should depend not only deviation of velocity from its
steady-state value, but also the presence or absence of extinguishing
of the powder, 6ccurring with sufficiently rapid and deep pressure
decay. The sought criterion should reflect the relationship between
the rate of change of pressure and that time which is necessary in
order that, after change of pressure, the thermal layer‘can be recon-
structed in accordance with the new conditions of burning, i.e,, the
relaxation time,

The relaxation time T of a heated layer of powder can be deter-
mined if'we know its thickness Ax, the time during which a layer of
such thickness 7 = Ax/u burns, or the time of levelling off of tem-
perature in a layer of given thickness T = (Ax)g/%. Substituting
expression Ax = n/u, which follows from the solution of thermal prob-

lem (4.1), one can prove that both determinations of relaxation time

T, given above, coincide and give
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The rate of change of pressure is characterized, obviously, by
derivative dp/dt. In order to construct the dimensionless criterion,

we compose the relative change of pressure for the relaxation time

B=-I"££—==—3‘7—'ig' (502)

s " s s v
Assuming we have an exponential law of burning u, = Wyp , we
obtain another expression of the criterion:

+ d(u™)
B = * —l-r:‘%_-:_TiL «(5,3)

uy? 3 vt

This.ériterion, gnd also dimensionless constants of the powder v
and B(Tk - TO) determine for unsteady phenomena the change of velocity
and spontaneous combustion or extinguishing of the powder,

Derived above for small and slow changes of pressure, formula

(4.16) can be recorded by the criterion B in the form

- =1+ —T)B, 1Bt (5.4)
For the cdse of falling pressure (B < 0) we solve the problem,
considering any B (not small), Given a definite value of B, we should
expect. that
=¥ (5.5)
will ve a constant quantity, which it 1s necessary to determine, Con-

stant B corresponds to a definite law of change of pressure, which

we obtain by integration of (5.3)

pr = __2v1:=31lt (5.6)
From this we find the law of change of burning velocity -
T e A (5.7)
and the law of motion of the burning surface

8)

pez \udt = 2 Vit = AT (5.

T &u == Vxt=2C) xt ( = V:.i"\r/?)
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Thus, a constant negative value of B corresponds to motion of
the burning surface in which the path covered is proportional to the
square root of the time of motion., Solution of the equation.of thermal
conduction, in which temperature depends on ratio X/JEE (in particular
T = T, when x/#mt = 2C), we easily find by substituting T = T(x/V/nt)
in-eqﬁatigp.%4.2). Here (%4.2) will turn into an ordinary differential

equation, Solving the latter, we find

=T L — _z . -__E_i -3ty
T=T,- D[i erf(2 &?)] (er--l/.;éc az). (5.9)
We determine constant of integration D from condition
_ . T, —T
- 1 - — 1y ,ﬂ—,zﬂ _'k e o
z=2Vu} T=Ti=T,+D1- ezf(“m)], D =it (5.10)
For the gradient of temperature at the surface we obtain x
aT 2 et Tp—Te et
= —— | — = —— — =z — — ‘]
? ’ (31-' )Tk V:ID?. V xt Vot Va(—erdC) (5..’1.,0)

The three magnitudes u, p, and ¢ are connected by the one equa-
tion of the dependence of burning velocity on the pressure and the
gradient of temperature (0.1). If the velocity of steady burhing of
the powder is connected with initial temperature TO and pressure p
by formulas (1.7) and (2.5), for dependence (0,1), using the method
described in § 4, we can obtain

e [0 = 7ol i 1] (5.12)

Substituting for u and ¢ their expression (5.7) and (5.11), we

. obtain an equation, solution of which gives the change of velocity ¥

depending upon the rate of pressure decay, which is characterized by

B, and on constants of the powder v, fS(TK - TO)
-
. T e AN -
b eprMT‘ ﬂo( V;C(L—NTC)”' ¢ V—avh (5.13)

As one would expect, for small values oif B the solution of (5.15)

cowneides with expression (5.4), derived earlier by another method,
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More interesting is the question of the rate of pressure decay, caus-
ing extinguishing and corresponding tc the value of B, For its deter-
mination we use the expression of burning velocity Uy at the limit of
stability of burning and compare it with the steady velocity for the
given pressure (see (1.9)-(1.10)):
ap = __:_L . "o = ute_mT"rT') , b5 = %:;_ - cﬁ(Tk-T.)-l ( 5, 14)
Substituting this expression in (5,13) we obtain an equation

whose solution gives the critical value of BB’ ~eading to extinguish-

ing:

expB(Te—T)—tl=exp[B(Tu~ T (1——=H=TN ] (5 45

Hence
B(Tr—Ty) exp (—CH =V = C(1 — erfC) (5.16)

Given different values of auxiliary quantity C, we obtain cor-

responding values of B(T, - TO), ¥, and B, Calculations give

c 0 0.2 05 1.0 15 oo
B{T,—Ts 0 0.285 0.5 0.76 0.855 1.0
—wByg oo 3.0 0.82 0:3i 0.167 0.0

As can be seen from equations and the obtained data, for the
burning velocity and the condition of extinguishing product vB is
essential; the greater the dependence of burning velocity oa pressure,

the lower the rate of drop of pressure B which causes an equal action,

§ 6. Comparison with experiment. One of the conclusions of the

developed theory of burning of powders and condensed explosives [1]

is the conclusion that stable steady burning of powder is possible
only if dimensionless magnitude B(T, - TO) is less than or equal to

ig one, Experiments of K. K. Andreyev on burning of nitroglycol at low
temperatures, evidently, coafirm this, There are, however, experimen-

tal data, indicating that the criterion of stability of burning is not

<8
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always satisfied, We give, for instance, data on quantity B(TE - TO)
for powder H. For that we use values of the temperature ccetficient
of the,burning velocity of this powder obtained in [3] and the magni-
tude of the temperature of the surface of the powder acéording to
data of A, A, Zenin. Below in the table we give these data for vari-
ous pressures:

Paru lz 20 50

g-10* 5, 8.2 8.2
Te—To . 300 360 400

3(T,—Ty 1.53 2.8 3.28

Divergence of theory and experiment béars witness to the limited
nature of the theory, the cause of which lies in idealization of the
mechanisin of burning of the powder, In particular, in theory =2 used
an idealized concept of the zone of gasification of powder; it was
assumed that the activation energy of the gasification feaction is
very great, so that the reaction occurs in a narrow inertiales. .one
at. a constant temperature, not depending on the burning velocity. In
reality, the zone of reaction has finite thickness and inertia; the
temperature of the surface, although it changes little wilh change
of the burning velocity, can substantially affect the gradi nt orf
temperature at the surface. These factors affect the magnitude of
the criterion of stability of burning., From physical considerations
it is possible to assume that complete allowance for the reaction in
the condensed phase will lead to easing of unsteady effects and to
increase of stability of burning of the powder,

0f interest are experiments in interruption of burning of powder,

In *the experiments of G. A, Barskiy and 0. I. Leypunskly, per-
t'ormed at the Institute of Chemical Physics of the Academy of Lciences
of the USSR in the 1940's, a charge burned in a chamber with no:ile

equipped with a deflecting flap. Impact of the incident losd on the
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hook freed the flap. Pressure fell from 100-200 kg/cm2 to atmospheric
in time At lessAthan 0.1 sec. Burning velocity of the powder at atmos-
pheric pressure was near 0,04 cm/sec, Substituting these values in

the expression (5.6) of the law of change of pressure for constaht B,

we find (we take n = 2310"3‘cm2/sec)

—_ B\' e ¥ (le"lv —_ ,"n".‘..‘) . 9.10-3. | — . (6 o 1)

T M = Thoeor

Heretpo — initial pressure; Poo — final pressure,

According to data of § 5, such a rate of pressure decay by sev-
eral times exceeds that mecessary for extinguishing the powder (when
{S(Tk - TO) = 0,5 - Bv = 1), This conc¢lusion agrees with the fact
that in éxpériments of G. A, Barskiy and 7., I. Leypunskiy there was
indeed attained cessation of burning,

Certain information about experiments in extinguishing of powder
has been published recently [4, 5]. In the experiments of Price [4]
it was found that the depth of pressure drop, necessary for extinguish-
ing, grows with increase of initial pressure in the combustion chamber,
This result agrees with formula (2,12), In the work of Ciepluch [5]
there was studied interruption of burning of a mixture powder (v =
= 0.337). The rate of pressure decay, dp/dt, required for extinguish-
ing turned out to be roughly proportional to initial pressure, This
also is in qﬁalitative agreement with theory (see formula (5.3)).

After extinguishing repeated ignition of the powder from contact
of the surface with hot gasses or from heat supplied by radiation is
possible, If the powder is heated by hot gas by means of conductive
thermal conduction, then it is easy to prove that heating of the sur-

face of the powder will be small, As is known from the theory of

thermal conduction [6] (p. 88), temperature on the interface of two
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media 1 and 2, having initially temperatures T, and T2, constant
throughout the mass, during propagation of heat remains constant and
is equal to

_ Tt ToV Goc) ol

e =V osenton: | (6.2)

A
(’Cp

density of the media). Assume that medium 4 is a gas; the temperaiure

s p — correspondingly thermal conductivity, heat capacity and

ef the gas is equal to the temperature of burning of the powder Ti =5

L3

= 24000K; and medium 2 is a powder; the temperature of the powder i

equal to initial temperature T2 = BOOOK. The ratio of density of the

gas to density of the powder we consider equal to 4-10‘3, which cor-
responds to pressure in the combustion chamber of ~50 atm, Heat

capacity of the powder Cp, = 0.36 cal/(g.deg), of the gas cp =
2 ‘ 4.
= 0,40 cal/(g-deg); thermal conductivity of the powder Xz = 5-10"4

cal/(cm.sec.deg), of the gas A= 2-10-4

cal/(cme.sec.deg). In this
case the temperature of the surface of the powder, calculated by for-
mula (6.2), will be equal to 377°K, which is insufficient for irnition,

However, if there is convective supply of heat to the powder
(hot gasses blow over its surface) or if there is heat transfer by
radiation from heated parts of chamber (intensity of radiation of
which slowly decreasés in time), then repeated ignition of the powder
is possible,

In conclusion I take this opportunity to express sincere grati-
tude to K., K. Andreyev, O, I, Leypunskiy, I, P, Grave, M, Ye,
Serebryakov, and I. M, Shapiro for their interest in my work, 1 am
very grateful to Yu, B. Khariton wno turned my attention in conncction

with work [1] to the phenomenon of extinguishing of powder in the
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barrel of an artillery pieée after firing of the shell, I alsc thank

V. B. Libro&ich for help in preparation of the article for publicatvion,
Subnitted

29 Pebruary 1964
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AN APPROXIMATE METHOD IN THE THEORY OF UNSTEADY
BURNING VELOCITY OF POWDER

A, G. Istratov, V, B, Librovich, and
B. V. Novozhilov

(Moscow)

During change of pressure the burning velocity of powde.
changes, If change of pressure is slow, so that the tempora-
ture profile in the heated layer of the powder can reflect
the varying pressure, there are quasi-stationary condition.
of burning., During fast change of pressure the temperature
profile in the powder will lag behind the pressure, and the
burning velocity of the powder therefore, differs from
quasi~stationary,

Unsteady conditions of burning of powder were considered
in the works of Ya, B. Zel'dovich [1, 2]. In [3] there was
conducted numerical calculation of transient processes from
steady-state conditions of burning at one pressure to steady-
state conditions at another pressure on an electronic com-
puter, In it there are investigated cases of a sharp rise
of pressure and rapid narrowing of nozzle in the combustion
chamber of a powder-propellant rocket engine. The influence
of instantaneous rise of pressure on the burning velocity
of powder was aliso considered in [4], in which there were
used assumptions about the mechanism cof burning of powder,
differing in many respects from those in [1-3].

Below, with the help of the method of approximation of
integral relationships [5-7] we derive analytic expressions
of the unsteady burning velocity for a model of powder,
whose burning velocity is determined only by pressure and
the temperature gradient at the surface of the condensed
phase., We consider cases of instantaneous and exponential
change of pressure, We obtain conditions of extinguishing
of powder during de:zrease of pressure., We make a compari-
son with results of numerical calculation [3]. We investi-
gate cases of linear and exponential dependences ol stendy
burning velocity of powder on its initial temperatwre.

233

—

CATRE T s Fmﬂ'«:m@ﬂ:‘?“’"’f‘“‘“ sl
=, Ld ~ .

. . e TR e e
. s . et RSP e
P il B R e R R

8 e

<3 amate e

2 s
SN 2V S Tt



) 3

k}

§ 1. Fundameiital equations. Application of the method o1 inte-

gral relationshipns. In steady-state conditions the burning velocity

of a powder
u® = Bp* {(T,)
is determined by its initial temperature TO and pressﬁre P..

As it is known [1], during steady burning there is a simple
relationship between initial temperature and the temperature gradient
on the boundary of the condensed phase,

o=|5 ] = (=T (1.1)

where n — ceefficient of thermal diffusivity and Ti — temperature of

the surface of the powder, Expressing from (1.1) temperature T, as
a function of ¢ and p, it is possible to present burning velocity in

’ the form u = F(p, ¢). This dependence will also be valid for unsteady
burning, which was shown by Ya, B. Zel'dovich [1], However, in this
case relationship~(i.i) no longer will be satisfied, and for deter-~
mination of ¢ it is necessary to solve the heat-conduction equation
in the solid phase,

Before formulating the problem, let us turn tc the following

dimensionless variables

0=

- |
t) -

=

. (1.2)

Here x — space coordinate (x > 0, x = 0 — surface of the powder),
t — time, U - burning velocity, U, — initial value of burning velocity
(when t = 0), Py — initial pressure.

The problem consists of finding functions w(rt), €(t, ), which
determine the unsteady burning velocity and Jdistribution of tempera-

tures in the solid phase from heat-conduction equation

® 8 (80 , : =
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the law of burning
w= F(z,l Al

95

J (1.1)

and the given dependence of pressure on time z(t) during transition
from one steady-state regime
20 =1, w0 =1 '0(@0,8& =e (1.5)
to another
z() =z, w(w)=w =z, § (0,8 =ew (1.6)
with boundary conditions

0w 0=1  (7), =0 (L.7)

S

In [3, 4] solution of the thermal conduction egquation (1.3) was
produced numerically on an electronic computer, In this work the
sclution is found by the method of approximation of integral rela-
tionships [5-7]. This method was first applied by Karman and Pohlhausen
in boundary layer theory.

The méthod consists of seeking, instead of the solution orf the
thermal conduction equation, the solution of the integral relation-

ship obtained from (1.3) by integ ation with respect to ¢ from € = 0

2

alm
IO

%§°d§= —w—(55)., (1.8)

The integral relationship is solved if we are given the distri-
bution of 6(€), depending on a certain parameter, The approximate
solution should satisfy boundary conditions and qualitatively correcily
describe the character of temperature distribution. In our case it
was expedient to select the following temperature distribution:

0(v,8) = [1 — /()] es + / (x) e (1.9)
where f(7) — a function, changing from zero (for 7 = 0) to one (whcn

T =),
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Substituting (1.9) in (1.8), we obtain an ordinary differential

equation for determining dependence f(T):

wl—i-ﬂ=w—1—(w‘—""‘{)f (1.10)

wy dr

The dimensionless temperature gradient of the surface is expressed
in the form

x|, =1 =101 (4.14)

For Tinal solution of the problem it is necessary to make the

law of burning (1.4) more concrete and give function z(rt),

§ 2, Unsteady burning velocity for linear dependence of burning

velocity of powder on initial temperature, If the velocity of steady

T burning of powder depends linearly on initial temperature TO(uO =

= Bp” (1 + aly)), law of burning (1.%) in dimensionless variables has

PETR RN

the form [3]

3 w=z1~‘.§§[i+(1 43

ETENIE

AR

00

7

,)..,J’ ﬁ ___:z(’l‘;—-T..) (2’1)

! + :!Tu

In [3] there is used another quantity n = 2/(1 + B).
Relationship (2.1) together with (1.41) allows us, instead of an

equation for f (1,10), to write an equation for velocity w

LIy PRE w\dw , wdz . (w 2.2

-:;.(1 ' 3_2—5—) dt + s dv Mul( z 1) ( )

It is convenient to introduce a new functicn W = w/z, It has a
simple meaning, During steady burning W = 1; deviation of W from

onc¢ characterizes the degree of unsteadiness of burning, TFor this

function from (2.2) we obtain equation

! {43 =21 di : oy 1od: . -
» L ) (3= W) wi (V= 1) (2.3)
Il Let us investigate the transient process from steady-state con-

ditions w = z = 1 to steady-state conditions Wy = Zy with the followiug
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dependence oOf pressure on time:

2 s gt wh )
;-— t! == u‘ft‘sz;ns: when Ta < T < oc (2.4)
Using initial condition W = 14 for = = 0, we obtain
T = :r—“—_gr—-[(i =3 In iV — 7(1-:—;3';:L;(l—-_’3) b4 (2.5)
.\ln(l-%— (T*—u",:s(l—w)‘)] (v <) )
r= [t —pm =t _}- t+Hhie] > (2.6)

where Wy — value of W when 1 = 7,, determined from (2.5),

With infinitely fast change of pressure (y = W) the solution
comes from expression (2,6) for To = 0+ In order to determine W, in
this case it is necessary to consider the limit of (2.5) as y—
with condition YTy = -1n w,, or more simply, set z = z, =w, in (2.1)

on the condition that 169/6&,0 =1, For WO we obtained expression

Woes S52 [0 (1= ) | k

Function f(t), necessary for finding the temperature distribution

of the solid phase, we express from (2.1) and (1.44) through W and z:

(3= —3 5 8
/= 8(z1i—1) . ( . )

The given solution is valid both for decrease of pressure (y > O,
z, < 1), and for increase of pressure (y < C, 2z, > 1),

Fer illustration of the results obtained in Fig., 1 we give the
dependence of unsteady burning velocity w on time for share (1)
and exponential (2) pressure decay., The dotted line shows steady
valocity (or pressure to power v), Curves correspond to the following
parameters: B = 0,6, w, =0.95, v =0, v = 0.25, It is clear that
the burning velocity differs more from steady burning velocity the
sharper the pressure decay. The veloclity of steady burning is greater

than that of unsteady due to the fact that the latter occurs with a
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less heated surface layer of the powder, In Fig. 2 the dotted lines
depict the dependences of burning velocity W on time with a sharp rise
when pi/pO = 10 and p,/p, = 200 (v =2/3, B =0,74)., Solid lines in
this figure give the same dependences taken from [3], which were
obtained by numerical integration of the equation on an electronic
computer, It is clear that the method of approximation gives satis-
factory agreement with results of exact calculation,

In Fig, % are profiles of temperature in

k't \\1~z .| powder, calculated by formulas (1.9), (2.6),
“J\(:*“'“"‘W::: and (2.8) for two different moments of time
1 :>(JZ:::; ' (dotted curves), and there also are plotted the
é&ﬂ/// v .| results of exact calculation, taken from [3]
o as (solid curves 1, 2, 3, 4 correspond to v = 0,0, '
rig. 1. 0,16, 0,237, © when B = 0,74, pi/pO = 10)., Also
there 1s observed satisfactory coincidence of
wl results,
\\ In Fig, 4 is a comparison of dependences,
1.4 :i\‘. obtained by approximate formulas and by exact
1.2 % \§£¥“>\~ calculation, for pi/pO = 10, v = 2/3 for differ~
1 t\ii il ,; ent values of B: B = 0.905 (curve 1) and B =
rig. 2, = 0.6 (curve 2), It is clear that as P approacher

one (the criterion of stability of burning of
powder according to Ya, B, Zel!dovich [1] is condition B < 1) accuracy
of' approximate calculation lowers,
With sufficiently rapid pressure decay there can occur extin-
guishing of the powder. For instantaneous change of pressure this
can be seen from formula (2,.7). If

43
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the expression under the radical is negative, and a solution does not

exist,

10y
- The temperature gradient at the surface of

the powder, produced unc:r the initial pressure,

is equal in this case to the critical gradient,

il
/
/

3:5\\\; with which, as we know from the theory of Ya. B.
L \\ﬁl: Zeltdovich [41, 2], there still can exist a
F‘J- ¢ @ flame above the surface of the powder, With
8. 2 great decrease of pressure the gradient exceeds
1.aLW the critical,
\\\, With smooth change of pressure it is neces-
kh?\\ sary to investigate the more general formula
;‘- @ (2.1), from which it is clear that the critical
\xgis:ggr\\h value of W is 4/2(1 + B). A smaller value of W,
105 T 3= 04 in principle, cannot be attained. When W¥ =
Fig, 4, = 1/2(1 + B), which corresponds to achievement

of the critical gradiént, there occurs extin-
guishing of the powder. From equation (2,3) it follows that under
this condition dW/dt becomes an infinitely large negative quantity.
If we are given a finite value of Zys two cases are possible,
For small values of v (weak unsteadiness) W is always greater than
W*, and the powder is not extinguished, For large values of vy, W at
a certain moment attains W¥, and there occurs cessation of burning,
We obtain the critical value. of y* (for a given z,), if we set

W

W¥* in the moment most dangerous for extinguishing, i.e., at

T"'TO-

Here, z, = exp (-y7y), W = i/2(1 + B). Then from (2,5) for

zq (v*) we obtain transcendental eqﬁation

<39
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’zi*——-exp-r-—_—_T:———{(i-{-Q)lnii-‘:i—-
' 4 8) —r(l=-3j L (=n(=2 oz (2.9)
SR R
Hence Zi = (1633)* as 1*— oo
43 _ 4_3 L9 ______ _ o
wm g | e (s *ai“" (1-p)]  (2.10)
7‘S>i

For sufficiently small values of y there is no extinguishing
for any values of z,. In this case dW/dv becomes equal to zero befor.
W attains value W¥, The point of termination of the extinguishing
curve zi(v*) is determined from the condition of equality to zero of

the second term in braces in expression (2.9), Its coordinates are

123
A a3 (2.11)
o= (-52)", e

In Fig. 5 are curves 1-5 of dependence zi(v*) when B = 1,0, 0.7,
0.5, and 0,3,0. The dotted line shows the locus

’g\l_,~ i
YL,/_Z ~ of points of termination of the extinguishing
g
1 M curve,
| L
9/’
// § 3. Unsteady burning velocity with an
/' ' exponential dependence of the burning velocity
i s| ¥
0 I of powder on initial temperature, Absolutely

¥ig. 5. analogously to the preceding case it is possible

to investigate unsteady burning of powder, the velocity of which

14 QTO)

° - Bpe

depends on TO exponentially (u . Dimensionless burning
velocity is related to z and the temperature gradient by the relation-
ship

w=zexp{3(l——'——iw—l-3—‘,}|), 3=a(l,— T (3.1)

1)

For determination of w we have equation

(3_1_‘\)___4_([3 )—--:-E-_u,l\ ' (.\Elll—:i') (3.2)
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It is easy to show that for B << 1 relationships (2.1) and (3.1)
and equations (2.3) and {(3.2) change into one another, as it should
be, since a linear law is obtained from exponential under just this
condition,

If pressure depends on time according to law (2.5), the solution

of equation (3.2) will be

T—wm ($ —8) l"h_*_(zr;-—-'{)\] A

T T o= w— 1 (3.3)
(xt <7a)
| PV
T=T, + —w——[(l — 3) In A ’T"(-\O”'_ .'\)]
' (3.4)
(x> To)
With instantaneous change of pressure AO is determined from
equation
= —lnw, (I —\o3) (3'5)

Minimum possible AO =B - 4, and the critical value of pressure,

at which powder extinguishing occurs [2] as vy — ©

1
\all Zpso = BetP (3'6)
;(/,5+ The curve of extinguishing is sought from
[ 4
/ //ﬂ*’“"”i transcendental equation
200
y
1 l—r(l—3 . (=3 —r .
2 R N  ad EN
/, 5 al
0 1 When v* >> 1
I:‘i . 6. —~ -3 ’Bel-ﬁ ' ! ’, 3.8
& a=Bes (1B (1 —20-y)]}  (3-9)

The point of termination of the curve of extinguishing is deter-
mined by relationships
(1 =3 I
zl*=exp[——( 3‘)J._ r* T—3 (3.9)

In Fig, 6 are curves 1, 2, 3, 4, 5 built by formula (3.7), cor-

respondingly for values B = 1, 0.7, 0.5, 0.3, and O,
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INFLUENCE OF PRESSURE ON THE NORMAL VELOCITY OF THE
FLAME OF A METHANE~-AIR MIXTURE
V. S. Babkin, L. S, Kozachenko, and I. L. Kuznetsov
(Novosibirsk)

The influence of pressure and temperature on the normal
velocity of the flame in a methane-air mixture is studied
with the help of a bomb. of constant volume in the pressure
range 1-60 atm (abs.) and temperature range 16-2200C. The
apparent velocity was determined in the initial section by
means of high-speed filming using an optical schlieren sys-
tem, Normal velocity was calculated as the resuit of divi-
sion of apparent velocity by the calculated coefficient of
expansion. In the pressure range 3-60 atm (abs.,) the normal
velocity obeys dependence S, A'p"o‘5.

1., Study of the influence of high pressure on the normal velo-
city of a flame began relatively recently on the basis of methods
developed for measurements of normal velocities at low pressures
(0.1-3 atm (abs.)). ‘“he method of a bomb of constant volume was used by
Yampol!skiy and Price [1] for research of explosions of hydrogen-air
mixtures up to 900 atm (abs.). Smith and Agnew [2] used this method to
determine the velocity of the flame with initial pressures up to 20
atm (abs.,) in methane-oxygen-nitrogen mixtures, A modified method of a
bomb of constant pressure was successfully applied by Strauss and

Edse [3] for a series of fuel-air and fuel-oxygen mixtures, burning

under a pressure of up to 90 atm (abs,). In a wide range of pressures

ot ey
s ters o cH it i

o




Nf up to 40 atm (abs,) the Bunsen-burner method was applied by Diederichsen
? and Wolfhard for methanc-air mixtures [4]. The influence of pressure
on the velocity of the flame of mixtures of methane, propane, ethylene
and propylene with air in the range of 0.5-9 atm (abs.,) was studied
by the tube method by Egerton and Lefebre [5].
During transition to increased pressures application of the
above-enumerated methods encountered .certain difficulties, As
Diederichsen and Wolfhard show, application of a Bunsen burner with

a pressure chamber at high pressures requires a decrease of the diame-

b - 4

ters of the burner to very small dimensions (in their experiments at
20 atm (abs,) the diameter of burnér was 1,7 mm) which to significant

extent. hampers observation of the flames, On the other hand, this

leads to the necessity of measurement of minute consumptions of gas,

which is connected with increase of error, In the experiments of

N
)

Diederichsen and Wolfhard, with a stoichiometric relationship in the

E mixture and 20 atm (abs.) pressure, the consumption of methane was
about 0,1 ml/sec, In [L4] there is also indicated the difficulty of

stabilization of the flame on Bunsen burners,

The method of a bomb of constant volume

N
NNEYERY ‘ i

with application of pressure-time recording,

although an old method, does not allow us to

obtain reliable values of normal velocities of

a flame, since different authors offered contra-

dictory equations for their determination [6, 7].

" Strauss and Edse [3], working with high

pressures with a soap bubble, noted the diffi-

culty of registration of boundaries of the bubble;

therefore, instead of the coefficient of expansion
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of products of burning usually determined experimentally, they used
its thermodynamic computed value.

A very successful attempt at determination of the normal velocity
of a flame is the method with application of ionization transducers,
used by Smith and Agnew [2], in combination with measurements of appar-
ent velocity of the flame by means of these transducers in the early
stages of burning, when the process of flame propagation in a closed
bomb can be considered a process* under constant pressure [8],

In this work there is undertaken a further study of the influence
of pressure on the normal velocity of the flame of methane=air mix-
tures with initial pressures of up to 60 atm (abs.) and its dependence
on temperature up to 220°¢ at atmospheric pressure, Measurements
of normal velocity were conducted in a closed spherical bomb with
central ignition in the initial section of flame propagation, with
application of filming by the schlieren-~method,

2, Description of experiments. The closed spherical bomb was

a thick-walled steel vessel with a working cavity of 183 mm, equipped
with inspection windows on opposite sides of the bomb of optical

glass of 72 mm diameter and 48 mm thickness. The bomb was equipped
with steel regulated electrodes for igniting the mixture by a centered
spark and high-pressure valves for filling the bomb with the fuel
mixture and evacuation, Recording of the flame was produced by means
of high-speed filming using an optical schlieren system and a serial

spark discharge as the source of light, A typical schlieren system

*¥In 1960, D, G, Nikitin investigated by the method of a bomb of
constant volume with application of ionization transducers f[or regis-
tration of the flame the dependence of the normal velocity of f[lame
propagation on pressure for mixtures of certain hydrocarbons with air
durin% chan%e of initial pressure from 41 to 8 atm (abs.) (cand, diss,

u

Institute of Chemical Physics of Academy of Sciences of USSR, M, 1950) .
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with two long-focal objectives of type Telemar-2, where the bomb was
located in the parallel beam of light between these objectives,

Propagation of flame was studied in the ini-

i . tial section of its motion, when the radius of the
- :
X v R
o /;r’$“\\ spherical flame does not exceed 1/4 the radius c*

i/ \\g the bomb, Here, increase of pressure in the bomb

‘ &;f was not more than 1.5%, and, thus, it is possible
to consider that propagation of the flame occurs
//,,'—« at constant pressure, equal to the initial pressure,
”/// — \\ Analysis shows that the principal error in deter-
_ X mination of normal flame velocity, caused by this
ﬁ ' ﬁ\\\\\ approximation, also does not exceed 4.5% and, in
' ; ( ‘\ f ’ general, can be allowed for, The section of flame
‘ %<\
é 4 _ . formation directly after spark ignition was excluded
% :;:T from consideration, since spark energy and curva-
| s s n I ture of the front of the flame have a strong influ-
Fig, 2, ence in this section on tae apparent velocity,

This last circumstance allowed us easily to deter-
mine the extent of this section directly by photographic recording of
the flame,

Later stages of the process of propagation of flame are connected
with significant increase of pressure in the bomb,‘which_with suffi-
ciently high initial pressure can lead to destruction of the installa-
tion, To prevent this during expansion of the range of initial prec-
sures the bomb was equipped with a safety diaphragm of pure copper

3 foil, which sustained the initial pressure, and then, bursting, ensured
drop of the heightened pressure after the process of flame propaga-

tion in the initial section was already fixed, With comparatively
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low initial pressures, of the order of 10 2tm (abs.), when there was
no danger of destruction of the bomb, the safety
Sumog diaphragm was +eplaced by a steel diaphragm,

CM
70 ' .
///)V ‘\\2\ which was not destroyed after the explision.
)

60 Change of the initial temperature of the

$ Wk<i\‘ mixtvre was attained by heating the bomb by

7
g

50
electrical heaters, Evenness of preheating is

40

ensured by the great mass of the bomb,

5. Results of experimenis, As a result of

Jo —
analysis of motion picture records we determined
20g ] 071 ‘the apparent velocity of the flame S, and normal
Fig. 3. velocity S was found from relationship § = S/E,

. where E is the coefficient of expansion of pro-
ducts during burning in conditions of constant pressure, The latter
was calculated from thermodynamic relationships taking into account
dissociation. Appafent velocity was determinéd by the slope of the
straight line, tangent to flame developing in time spheres. Although,
as was indicated, the state of the fresh mixture before the flame
front and the state of products of burning changed with development
of the process, nonetheless, the apparent velocity of the flame
remain:d constant in the considered section with accuracy up to error
of measurement, As was noted, the energy of the igniting spark ren-

- ders . certain influence on formation of the flame; therefore, for
ignition of the mixture we used a spark with minimum energy. Such a
spark was selected experimentally. Spzacial measurements of energy
of the spark were not conducted,

It is necessary to note that in certain experiments there formed

nonspherical flames and, although in the given method, rigorous
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sphericalness of the flame is not obligatory, nonetheless such motion
picture records were not analyzed,*

In all experiments we investigated flame propa-

?3qui { gation in mixtures of methane with air, Chromato-

gz—-wg ( graphic analysis of the methane showed its composi- .
4o % : tion to be the following: 98.2% CH,, 1.33% Ny, 0.32%

30— €0, , 0.033% 0,, unknown component — 0.117%. Tor the

Z%m o] z; given methane a stoichiometric mixture with air cor-

Fig, 4. responds to 9,65% methane and 90,35% air,

In Fig, 1 are given dependences of apparent
velocity S (cm/sec) of flame propagation on volume content (in %) of
methane in the mixture: curves 1, ..., 5 correspond to values of
initial pressure py = 1.0, 3.5, 10, 36, and 60 atm (abs,). Initial
temperature of the mixture for these measurements was 1600. On the
besis of these experimental dats and relationship Su = S/E we built
dependences of the normal velocity of the flame on the volume contents
of methane in the mixture for different pressures (Fig. 2) and the
dependence of the normal velocity of the flame on pressure for a mix-
ture of stoichiometric composition (solid line in Fig, 5). The depen-
dence of normal velocity S (cm/sec) of the flame on the content of
methane for different initial temperatures TO is presented in Fig. 3,
where curves 1, 2, 3, 4, 5 correspond to values of TO = 16, 40, 70,
140, 220°C, These experiments were conducted at atmospheric pres- -
sure, In Fig, 4 in logarithmic coordinates there is given the depen-
dence of normal velocity of the flame on temperature for a stoichio-

metric mixture,

*At heightened pressures in methane-air mixtures there is observed
a tendency toward formation of anisotropic spherical flames. Such
flames were taken into consideration,
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4, Discussion of results. The influence of pressure on the nor-

mal velocity of a flame in methane-air mixtures at low pressures proba-

bly has been given more diverse study than any other fuel mixtures.
Hewever, the contradictory nature of published data testifies to the
difficulty of exact determination of this influence. As for high
pressures, information on the dependence of normal velocity on pres-
sure is very limited, In Fig. 5 there is given in logarithmic scale
a summary- of data on the dependence of normal velocity of a flame on
initial pressure for a stoichiometric methane-air mixture from certain
published works, and also results of this work (points 7). Such a
presentation of experimental results allows us to analyze the depen-
dence on pressure in the rorm K
Sy = const p™

From Fig., 5 it is clear that normal velocities of a flame,

obtained in this work in the range from 3 to 60 atm (abs.), lie mostly

along a straight line, corresponding to n = 0.5, In this range flame

velocity can be expressed by dependence Su; 37.4/¢§1 Below 3 atm (abs.)

there is observed a tendency toward lowering of n, An analogous
behavior of the dependence is noted in the work of Diederichsen and
Wolfhard [4], the curve of point 4., In this work there is a break

in the line at 2 atm (abs,), where the line f;om 3 to 40 atm (abs.)
corresponds to n = 0,53, and from 0,1 to 1 atm (abs.) to n = 0,2,

In good conformity with results of the authors both in magnitude of
the exponent, and in absolute values of Su are the results of Lefebre
and Egerton [5], the curve of point 2, in the pressure range from 3
to 9 atm (abs.). The mentioned tendency of the dependence of normal
velocity at low and high pressures can be traced in work [3], the

curve of point 3, and in [8], the curve of point 4, If the dependence:

&




on pressure in these works is considered in the above form, it is pos-
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sible to see that n constantly increases for Agnew and Graiff [8] in
the range from 0.2 to 20 atm (abs.), for‘Strauss and Edse [3] from

1 to 90 atm (abs.)., In Fig. 5, point 5 in [9] matches well witl the
data of this work, and point 6 (data of Strauss and Edse, obtained
by burner method [8]) agrees in exponent n.

Regarding pressure lower than atmospheric, analysis of experimental
results in [4, 8-10] shows that for mixtures, close in composition to
stoichiometric, exponent n lies be@ween 0.1 and 0,2, 1iIn lean methane-~
air mixtures there is obtained the value n = 0,49 [41], Thus, it
seems, by a dependence of form Su = const-p'n it is possible satis-
factorily to describe the influence of pressure in a wide range, say
from 0,1 to 100 atm (abs.).

Very contradictory are the maxima. of normal velocities of flame
at atmospheric pressure. Here velocities vary from 28 to 40 cm/sec.
liere the experimental values are concentrated in two regions: from
32 to 34 em/sec [3, 8, 9, 12] and from 37 to 40 cm/sec [2, 4, 10, 13,

147, With respect to [2, 10] it is possible to note that here normal




velocities may be overstated due to understating of the local expan-
sion coefficient [T], in particular for a stoichiometric mixture, by a
magnitude of the order of 8%,

In this work at atmospheric pressure maximum normal velocity of
flame is equal to 30 cm/sec, This is partially Jjustified by the low
initial temperature of the mixture (1600). Divergence in normal
velocities, possibly, originates also from divergences in caicuiated
coefficients of expansion; therefore, in the present work along with
normal velocities we also give apparent velocities of the flame (Fig.
1). Thus, for a mixture of stoichiometric composition of methane
with air as in [8] the value of apparent velocity is about 235 cm/sec,
which is very close to this work — 231 cm/sec. Regarding error in
nermal velocities dﬁe to the possible disequilibrium state of producis
of combustion, this question still remains open to debate,
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DEPENDENCE OF THE BURNING VELOCITY OF VARIOUS
FUEL SYSTEMS ON INITIAL TEMPERATURE -
A. D. Margolin, 0. N. Nefedova, and P. P. Pokhil

(Moscow)

There 1is conducted experimental study of the dependence of the
burning velocity‘of representatives (hexogene, mixture of potassium
perchiorate with tungsten, zirconium and potassium benzoate) of various
groups of fuel systems on initial temperature (from -140 to %1500). In
the experiments we varied the relationships of components of the
mixture, discharge density and pressure of the inert gas in which
burning was produced.

Experiments showed that the logarithm of the burhing velocity
u(lg u) of hexogene and of mixtures of potassium perchlorate with
metals is linearly connected with the initial temperature of the
substance Ty. The dependence lg u = f(TO) of the mixture of potassium
perchlorate with potassium benzoate has a discontinuity.

Results of experiments are compared with the hypothesis of
Lransition of the leading stage, determining burning velocity, with
growth of temperature from one spatial stage of burning o another.

Study of the dependence of the burning velocity of explosives on
initial temperature is of great value for combustion theory [1, 2].
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Farlier [3, 4] it was shown that the dependence of burning veloc-

ity u of powder H on initial temperature T, has an anomalous character

0
(a discontinuity in the curve at coordinates T, and 1lg u). On the
basis of available ideas on-the mechanism of burning of powders [5]
there was advanced the hypothesis [6] that in the region of the dis-
continuity the leading role passes from one spatial stage of burning
to another. Here, the higher the discontinuity temperature, the more
iikely that the dominating role is played by burning in the reaction
layer of the condensed phase; and the lower the discontinuity point,
the more likely predominance of burning above the surfaée of the con-
densed phase (in the smoke-gas and gas phases).

To check the mentioned hypothesis we conducted an experimental
study of the dependence of burning velocity on initial temperature
(from -140 to + 1500C) for various classes of fuel systems: hexogene,
which according to known data* burns in the gas phase [5]: mixtures of
potassium perchlorate with tungsten and zirconium, during burning of
which reactions in the gas phase, apparently, practically do notv affect
burning velocity; and the mixture of potassium perchlorate with potas-
sium benzoate. During experiments we varied the composition of the
mixture, density of substance p and initial pressure p. Experiments
were conducted by the method described in [4]. Samples of the studied
fuel systems of 5 mm diameter and 10 mm height were prepared by
bilateral extrusion. Samples of lesser density were prepared by batch
extrusion in Plexiglas pipes with internal diameter 5 mm and height
0 mm., Por burning velocity in this article, we take mm/sec dimension.

The dependence of the mass burning velocity pu of hexogene on

initial temperature at a pressure of 5 atm(gage) is presented in

*A, I, Belyayev. The mechanism of buraing of explosives. Doc-
toral dissertation, Moscow, 1946,
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Wﬁ,aﬁ Fig. 1. Points show the mass burning

fﬁ?’ velocity of charges with density 1.72
a4 g/cmB, and points with crosses indicate

/
£r~/}y/ 03

the burning velocity of charges with

1% density 1.20 g/cmj. In Fig. 2 is shown
=120 -60 -40 0. U0 +80 -+120

the dependence of the burning velocity
Fig. 1. of hexogene, having a density of
1.72 g/cmB, on temperature at pressures of 50, 60, and 100 atm(gage)
(curves 1, 2, and 3, respectively). By these experimental data we

determined the value of the temperature coefficient of burning veloc-

ity B = @ 1n u/dT,.

l 1.3 o o_——&r
_J>,4;UL~*V‘ J The dependence of the logarithm
e

1.2

of the burning velocity of hexogene
2
:Lr—<f”qff Efg:' on initial temperature in the whole
~«;—‘J}‘;JL,ZFA'L - studied range of temperature frorn
. o
09 i ~140 to +150°C and the pressure
/ 1,°C range from 5 to 100 atm(gage) is

| -
~160 <120 -80 40 0 40 +80 +lif +60
rectilinear and can, with suffi-
Fig. 2.
cient accuracy, be described by a
constant temperature coefficient. At a pressure of 5 atm, B = 2.8 %
- -1 - -
x 10 3 deg ~; at a pressure of 50 atm, f = 1.17-10 3 deg 1; at
60 atm(gage), B = 1.0-10-3 deg'lg and finally at 100 atm(gage) B =

= 0.7-1072 geg L.

In accordance with literature data, with growth of
pressure the temperature coefficient decreases [17.
As can be seen from Figs. 1, 2, the process of burning of hexo-
geone does not change qualitatively with increase of temperature.
Under the conditions studied here the burning velocity of hexo-

gene is best determined by reactions above the surface of the con-

densed phase, by the mechanism discussed by A. ®. Belyayev. Thot
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burning of hexogene occurs basically in the gas phase is also indi-
cated by the independence of the mass burning velocity from iﬁitial
density ([1] and Fig. 1 of the present work).

Earlie; it was shown that hexogene in a vacuum does not burn,
which glsc indicates the important role of the gas phase during burn-
ing of this substance [5].

In Fig. 3 there is shown the dependence of the burning veloccity
cf a mixture of 57% Zr + 43% KClOu on the initial temperature at
atmospheric pressure; in Fig. U there is shown the same dependence at

pressure 5 atm(gage) for a mixture

-

- 1
] lgu 5¥»(/4{/f/ of 50% W + 50% KC10y; and in Fig. 5
e
[~ - 4 I.U lg u ’.Z —l
Pl 13 u i ]
‘ // . t L0 - e L0
12 .,Z/O/ 08
A — ]
T,C < L.°C
60 -120 -80 -40 0 +40 +80 160 -120 -80 -40 0 +HO 80 120
Fig. 3. Fig. U,

at atmospheric pressure for the mixture T4% W + 26% KC10, (lines 1
and 2 correspond to density p = 5.59 g/Cm3 and p = 3.60 g/cmB).

From Figs. 3, 4, 5, and Table 1 it is clear that the dependence
of the burning velocity of mixtures of potassium perchlorate with
metals — tungsten and zirconium — on the initial temperature with suf-
ficient accuracy is described by a constant temperature coefficient.

The mixture 50% W + 50% KClO4 2t atmospheric pressure burns
mstably (at a temperature +20° the ignited mixture goes out, at ~14(”

the mixture cannot be ignited).
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Since experimental dependence lg u = f(TO) is smeooth, 'rithout a
break, it mey e concluded that the mechanism of burn.ng does not

change qualitatively with increase of initial temperature. Componenis

lgu)o of the mixtures studied — the metals
i
- 06 /A(; i tungsten and zirconium — at the temper-
gﬁf’ ature of the surface layer of burning
/Af/‘f/’au ‘ of the condensed phase practically do
)y/}}y/ a7—L not evaporate; the oxidizer potassium
I: T e perchlorate is not capable of indepen-
160 G120 60 400 HO 80 4120 gepg burning. Experiments, conducted
Iig. 5.

by P. P. Pokhil and L. D. Romodanova,
showed that. these mixtures burn in a vacuum (p ~ 1072 mm Hg) with
flameless burning without preheating, i.e., in the reaction layer of

the condensed phase of such mix-

Table 1
tures there are intense exother-
Composition, wt. %, &g@ k&&ﬁ 8, deg-l mic reactions, capable of sup-
porting combustion.
740 W - 2695 KClOg 5.89) 1 |5.7-10-3
7404 ®°§{°§é‘§'%etgéio4 serl 1 [1.9.40 On the basis of what has
5005 W - 3500, KClO; 4201 6 |4.9.1078 oL .
3704 7r -k 4300 KCI0, 3.091 1 13.4-10-3 been presented it is possible to

consider that in conditions of
the conducted experiments the leading stage, determining the burning
velocity of these mixtures, is in the reaction layer of the condenscd
phase in the whole temperature range studied.

With decrease of density of the mixture of potassium perchlorate
with tungsten the mass burning velocity increases, and the tcmpera-
ture coefficient decreases (Fig. 5). It is possible that this eflfect
is connected with anomalies in the reaction layer of the condensed
phase. Not excluded is the possibility *that there also occurred a

Jump of combustion in pores of a low-density mixture.
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More complicated was the dependence of burning velocity on the
initial temperature of a mixture of potassium perchlorate with organi=:
fuel — potassium benzoate. This dependence at atmospheric pressure is

shown in Fig. 6. Curve 41 pertains to

1 -
ngU ; .A/}/p7 a mixture of potassium benzoate with
= %i{/ fsz% potassium perchlorate with a weight
Arﬂ"’“’*rﬂfﬂr %;;;?f( :f/” relationship of components 30% + 70%
’Ayadf/,‘ ‘f/“ and with density 1.39 g/cmB. Curves «,
ﬁfrj ' 3, and 4 describe burning of mixtures

=

~ 06 ' i .with a relationship of compcnents
.t :
1 \ T,°C 30% + T70%, 15% + 85%, and 40% + 60%
160 -120 <80 40 ¢ 4O +80 +120
and with a density 2.16, 2.38, and
Fig. 6.

2.04 g/cmB, respectively.

As can be scen from Fig. 6, this dependence cannot be described
by a coefficient of burning velocity constant in the whole temperature
range. Such anomalous dependences, characterized by a sharp change
of the temperature coefficient in a narrow interval of initial temper-
atures, were observed earlier only during burning of nitroglycerine
powder [1, 3, 4].

In Table 2 there are given temperature coefficients B~ below the
point of discontinuity and 6+ above the point of discontinuity of a
mixture of potassium perchlorate with potassium benzoate and the
temperature at the point of discontinuity of the curve at coordinates
TO and 1lg u. From Fig. 6 it is clear lhat temperature -at the point
of discontinuity TO decreases as the composition of the mixturé

approaches stoichiometric.
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Table 2

Composition, wt. % g/c;n3 T,C°| 8-, deg 1 [ deg-l
709% KClO4 + 30 CslisCOOK 2,46 | =30 1.4-1072 4.3-10"8
309 CH;COOK - 709% KCl04 1.39 0 1.4.1073 4.1.10-3
853 KClO4 - 159, CoH;COOK 2.38 o) 2.1.10°3 4.3-40°3
609 KClO4 - 409 C.H;COOK 2,04 | +60] 2.3.107® 5.8-10-3

The anomalous dependence of burning velocity of the mixture of
potassium perchlorate and potassium benzoate from the point of view
ol our hypothesis is explained by the fact that at temperatures below
the region of discontinuity the leading role is played by reactions
in one spatial stage of burning, and above the break, in another. It
is possible tc consider that the leading stage of burning below the
region of discontinuity are processes in the gas and smoke-gas phaseos,
and above it, in the reaction layer of the condensed phase.

To check this hypothesis we conducted experiments with a mixture
of different density, since when the leading stage of burning is in
the gas phase the initial density should affect the mass burning
velocity little [4, 7], and when the leading stage of'burning is in
the reaction layer of the condensed phase it is possible to expect

Lthat the mass burning velocity will increase with increase of densiiy,

first, due to increase of thermal conductivity and, second, duc to the

reacting particles of the oxidizer and fuel coming close Lo orc
another. Experiment showed that at high initial temperatures mass
velocities will differ by approximately 20%, and at low initial tem-
peratures they will differ by 10%. These values differ little from
.ne another, so that by these data we can confidently judge a changc

' the mechanism of combustion.

It ic necessary to not. that potassium perchlorate in the reacticn

layer of Lhe condensed phase is in & melted state, which conceals the
influence of density.
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Data of G. K. Oranskaya [i] show that &t 2% the mass burning
vglocity of pyroxylin does not depend on de:s: %y, and at 9800 the mass
burning velocity increases with increase of density above 0.5 g,/cm3
(experiments at atmospheric pressure). Apparently, this result is
explained by the fact that with increase of initial tempera .re the
role of the reaction layer of the condensed phase increases in accor-
dance wifh our hypothésis. ‘(Let us remember that according to A. I.
Korotkov and 0. I. Leypunskiy [3], the break of the curve at coordin-
ates TO and 1lg u for nitroglycering powder H, consisting of more than
half pyroxylin, occurs at a témperature of 20—4000.)

It would be interesting to determine the temperature of the
leading stage of a reaction by the value of the temperature coefficient,
as this is done, e.g., in [2]. However, in our work we basically
investigated mixtures whose kinetics have not been studied. Further-
more, the temperature of the surface of the reaction layer of the con-
densed phase inh many cases changes not additively to chahge of the
initial tempeérature of the mixture [8].

Indeed, our experiments showed that the temperature on the sur-
face of the pyroxylin powder burning without flame (pressure p ~
2

~ 10" mm Hg), heated to 9OOC, is egual to ~5oooc, and of powder

heated to 140°C is equal to ~320°C.

Using these values of initial temperatures and temperatures on
the surface, and also values of burning velocity u = 0.7 mm/sec at
90°¢ and u = 1.4 mm/sec at 140°C, given in [5], by the formula of
voel'dovich [7] we calculated the activation energy of pyroxylin I =
= 10,000 cal/mole and preexponent B = 10777 gae™t (the coefficient
of thermal diffusivity of the powder is taken equal to 1077 cm?/sec).

The values of I and B obtained here are close to the kinetic data o




B. S. Samsonov [1], who, for slow decomposition of pyroxylin in =
vacuum, obtained E = 44,600 cal/mole and B = 1017'8 sec"1

Measurement of the surface temperature during flameless burning
chowed that heat, liberated in the reaction layer of the condensed
phase, with inerease of initial temperature of the pyroxylin powder
from 9 to 140°C decreases by 15% (from 8% to 72 nal/g). Heat capac-
ity of the products of the generated smoke-gas mixture and powder was
consider equal to 0.4 cal/g-deg.

The authors thank N. N, Mikhaylov for the design and manufacture

of the installation for cocling the samples.
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STUDY OF THE TEMPERATURE DISTRIBUTION DURING
BURNING. OF AMMONIUM PERCHLORATE

V. K. Bobolev, A. P. Glazkova, A. A. Zemin,
) and 0. I. Leypunskiy

(Moscow)

Study of the laws of burning of ammonium perchlorate is of
interest in connection with the anomalies revealed during the study

of its burning. Friedman, Nugent, et al. [1] discovered the phenom-

enon of an upper and lower limit of burning with respect to pressure,

and also measured by thermocouples qunction ~50'u)‘the‘maximum
temperature of the flame, which turned out to be equal to 93000 and
weakly grew with increase of pressure up to *50 atm. Subsequently,
Levy and Friedman [2] established that application of an asbestos
shell removes the upper limit. However, experiments of one of the
authors of the present article [3] showed that burning of perchloratc
is very sensitive to change of experimental éonditions and, in par-
ticular, of the shell; for unarmored charges 7 mm in diameter in the
pressure range above 150 atm, in distinctiom from charges 4 mm in
diameter vused by Friedman, burning takes place, but it proceeds
unstably, with pulsations, and the dependence of burning velocity on

pressure has an unusual form, depicted in Fig. 1, from which it is
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‘ clear that increase of pressure above 150 atm

- i
U, g/cmzez-o L
entails a drop of burning velocity. Drop of
L il / burning velocity with pressure was also
- 1. 7 observed for samples 12 mm in diameter, which
¢ is significantly larger than the critical
) ( Y diameter of burning in these conditions (see
‘2 o / (31). :
g 0/0
T g e Drop of burning velocity with dressure
CPEL % . |
7 ~ Tn vas observed alsd in the experiments of A. F,
I"ig. 1. Pressure Belyayev and A.. I. Korotkev [1] for potassium
dependence of burning ]
velocity for unaim- picrate. This phenoménon is unusual and ic
ored T-millimeter \ ,
samples of ammonium therefore of special interest. One proposcd
perchlorate according O
1.0 experiments of explanation of this phenomenon was expressed
Glaskova. -

by K. K. Andreyév and Sung Ts'Uan=Ts'ai,* con-
nected with vhase conversion of perchlorate at 240°¢ (at this temper-
ature there occurs conversion of orthorhombic modification to cubic,
which, by data of Bircumshaw [5], decomposes with considerably less
velocity).
Temperature measurements during research of burning (surface

Lemperatur > TS, maximum flame temperature Tma temperature gradient

X’
at the surface 9, etc.) are one of the most effective means in clar-

ification of the mechanism of burning. Arden, Powling, and smith [6]
attempted to determine T% of burning perchlorate by an infrared

pyrometer and T by thermocouples (see [1]). They found that at

max
. almospheric pressure TS = 450 * BOOC does not depend on burning veloc-

Y

ity and the nature of the combustible addition, and Tmax increascs

*K, K. Andreyev and Sung Ts'iian-Ts'ai. Research of thermal
decomposition of ammonium perchlorate and certain mixtures based on
it. Dissertation, Moscow, 1961,
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with increase of pressure. Basei on constancy of TS and increase of
Tmax’ they stated thefhypothesis wnat the temperature gradient at the
surfe ce increases with growth of pressure, and that the foremost mech-
#piem during burning is sublimation. Subsequently, Powling and Smith
[7], investigating burning of heated anmonium perchlorate (pure and
with small additions of fuel) at pressures less than atmospheric, by
the same method, arrived at the conclusion that burning velocity is
limited by the equilibrium endothermic dZcomposition of NH40104 into
NH3 and HClOA. However, analysis of data given in that work for the
temperature distributiorn in the .zone of burning shows that on thé sur-
face of burning perchlorate there is an exothermic process.

In the present work we“studied the temperature distribution
during burning of ammonium perchlorate by the method of thin thermo-
couples, developed-py A. A. Zenin¥* (see also [8]).

For measurements we applied li-shaped thermocouples W + Re-W + Re
(5 and 20% Re), round ones of diameter 15 and 30 @ and laminar ones,
5, 5, and 7 u thick, respectively. Experiments were set up with
7-millimeter samples of unsifted perchlorate (pressed to a density,
close to its specific gravity — 1.93 to 1.94 g/cmE) for which the
phenomenon of a drop of burning velocity with pressure appears most
charply. Experiments were conducted in the pressure range 40-350 atim
in a nitrogen atmosphere,

The method of embedding the thermocouples was defeloped in two
variants. By the first we first molded columns of perchlorate LO mm
hhigh and in them at an angle of ~45? at a distance of ~5 mm from the
upper face we drilled holes 250 p in diameter, through which there was
inserted a II-shaped thermocouple, after which the sample was placed in

a die of somewhat larger diameter, where there was preliminarily

*¥A. A, Zenin. Stuady of temperature distribution during burning
ol ¢ ndensed substances. Dissertation, Moscow, 1862,
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poured a porition of perchlorate, and it was pressed at a pressure of
3000-3500 kg/cme. In the second variant a ll-shaped thermocouple was
inserted between two portions of powdery perchlorate and pressing was
performed in one step. To obtain transpe.2nt samples it was required
{o maintain them at this pressure for some 15-20 minutes. Simultaen-
eously with recording of the temperature distribution on a loop os<cil-
lograph N-700 (thermocouples were connected through a preamplifier)
there was recorded the velocity and nature of burning by a photo-
recorder. This allowed us to study the nature of burning in the
region of drop of burning velocity with pressure in more detaili. In
particular, it was found that along with stops of burnihg there are
regular oscillations of temperature in the éés phase with a period
~50 milliseconds and amplitude of oscillation up to 500° (2000 - 5“50).
Ogscillations in temperature of the flame and the plateau on the temper-
ature recording agree well with decrease of brightness of glow and
with stops on the photographs of burning. This gave us grounds to
call the region of pressures 160-350 atm the regioéon of unstable burn-
ing. |

In accordance with dependence u, = f(p) obtained earlier {3]
(where U, — mass burning velocity in g/cmgsec, p — pressure in kg/cmp)
oscillograms of the temperature distribution have a different characiern
In the region of stable burning (below 150 atm) they have normal form,
similar to that obtained earlier, e.g.; for powder H. In Fig. 2
there are presented the most characteristic oscillograms of stable
and unstable burning (160—350‘atm).’ Oscillograms in the region of
t"mstable burning are characterized by the presence in most oscillo-
grams cf a "plateau" with a stable temparature ~27OOC and pulsation
ot temperatures in the flame. A typical oscillogram with .scillations

cf temperature in ithe gas phase with a period ~50 milliseconds in
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presented in Fig. 2b. In the upper part of the given oscillograms

are seen time marks with a Trequency

'L‘t‘\l Y v . v e l , . - .
S of 50 cps. At present final analysis
bl of oscillograms during unstabile
S O ) , , o
) ?« 3. burning is not possible; they wili be
oL .
= T analyzed after additional experimenrt.,
;
s 2 in which simultaneously with temper-
A\:'.:.""J .‘ : ) PR
e 2 A ature we will more exactly record
S4 o o -
= '{“p;‘.'-.':’.: N I . o 'Y . s s
- &ﬁ}; ., ) oscillations in burning velocitics by
:Q ?;T.}.: f-'- E ,T-Lf-r.n . . R .
v B i - - height of the sample (e.g:, with the
. X
T : T E help of & high-speed movie camera].
~ AN : N
. L " . < Let us note that in certain
‘ pa— —= experiments burning went out upon

reaching the thermocouple; in all

© e P e

Fig. 2. Typical oscillograms

of burning: a) in the stable these cases the surface of the
region, p = 50 atm; b) in the
unstable region, p = 250 atm; extinguishing discharge was stvict.y

¢) oscilXogram, illustrating
oscillations of temperature in horizontal and even, and the maximmn
the gas phase at p = 250 atm.

recorded temperature was, on the
average, ~27OOC, which was taken as ﬁhe surface temperature.

In the region of stable burning surface temperature was deter-
mined bocth by the method cited above - by peak intensity of heat
emiscion in the condensed phase in analysis of oscillograms — and
also by direct measurements by the method offered by P. F. Pokhil | 'j.
For this, in a cylindrical column of perchlorate a distance ol 2-3 i~
we drillea longitudinal holes 250-300 p in diameter for the thermo-
- couple, from whose ends we suspended weights of 4-6 g; the column ws.
??g ignited by a tablet of perchlorate, and when burning reached the

i thermocouple, under the weight of the weights it moved over the svr-

face and recorded its temperature.
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Analysis of oscillograms in the region of stable burning allowed

us to obtain the temperature distribution /in the zone of burning

7op oa} (1t > 0 — gas phase, 1 < 0 — condensed
ww —2 gy .
. h . phase), and analysis of temperature pro-
ﬂ’fﬂkg/omz files : A - Ty g4 ot . L ;
gave us the distribution in the zone

J.nmé of the intensity of heat emission ¢. These

:l 7/ A
:/;7// \; results are shown in Fig. 3. In the graph
¢, M

-

of Pig. Y4 are shoim th- pressure depen-

P L TS——
ar J 4 - S .
dences of total heat emission, heat emis-
ror ol sion in the condensed and gas phawes, and
P 1000 %5?3« ’
’ 4 also the heat increment from *he ges
- 2 g
£~ f0ke/cen phase (q)
5o s10¢ In pressure range 40-150 atm (stable
'\\\\\ conditions) there is observed an increase
. y l.”” - \_r—‘ e c:i/g 4 N g
77 7 27 . %/— o ?
j ) ’C ?o—ro / 40
. omdseo ] 2-
T 1000 0:10% i
I .
4 2= 150k em® 2w :
» . ° >
. \ i .
500 b/Ad %i\
, ! ‘
{ 2 am : ] p 2 Kefei2
a7 V4 - J Q == : )
V///4 240 J07
Fig. 3. Temperature pro- Fig. 4. Pressure dependence of
files and distribution of total heat emission 1, heat
i Lthe rate of cmission of emission in the gas 2 and con-
heat during burning of densed 3 phases, and also the
ammonium perchlorate in heat Increment from the gas
the stable region. phase 4 during burning of ammo-

nium perchlorate on pressure.
of total healt emission 1, which is connected with its strong growth

-~

in gas phasé 2, while heat emission in condensed phasc 3 drops wit.
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increase of pressure. However, it would be incorrect to consider that
growth of burning velocity is causéd only by growth of heat emissiun
in the gas phase, since the supply of heat from gas phase y is small
and changes little with pressure, and heat emissicn in the condensed
phase, although higher by one order, sharply drops with pressure, and
therefore ohe cannot explain the .observed growth of burning velocity
with pressure by the usual thermsal mechanism.

The cause of increase of burning velocity with pressure one
should seek, probably, in the naiture of* chemical reactions cccurring
here, the mechanism of which can vary with pressure (for another
hypothesis of one of the authors, see %elow).

Tn principle there is also possible sharp increase of dispersion,
which may cause an increase of burning velocity: This hypothesis
requires experimental proof. Dispersion, undoubtedly, cccurs during
burning of ammonium perchlorate;* however, the quantity of unburned
particles carried into the flame zone and precipitated on walls of
the protectivé glass at a height, sometimes exceeding the height of
the sample by 2-3 times, was larger for a lower burning velocity (at
50, 250-350 atm).

Possible also is growth of burning velocity due to change of
surface structure; this too requires experimental proof. However,
at present it is difficult to imagine the reason why the surface of
perchlorate would be less friable at a higher surface temperature,
C.8. 42500 at 50 atm,and more friable at lower surface temperature
(32506 at 150 atm), which differs less from the temperature of phasc

transition, possibly also accompanied by loosening.

*¥P, F, Pokhil in this connection noted that, apparently, to
burning of ammonium perchlorate it is possible to extend the mechaniru
of burning of ballistite powders, i.e., burning with participation »f
dispersion and formation of a smoke-gas phase and signiflcant heat
emission in the condensed phase.

-~
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A number of authors [6, 7] consider that during burning of
ammonium perchlorate on its surface there occurs eithér sublimation,
or endothermic decomposition of perchlorate. Levy and Friedman [2]
calculated the width of the reaction zone in ithe gas phase, proceeding
from the endothermic character of the process on the surface. It
turned out to be equal to 0.4 u for 210D atm.

Profiles obtainéd by us show that the width of the reaction zone
in the gas phase is 100C times greater than that calculated by Fried-

man and Levy. Moreover, from our results it follows that in the

Fig. 5. Pressure dependende of teméeréture

(o o7 T on surface of burning ammonium perchlorate:
I8 o2 1 — surface temperatures, determined by cplash
' ﬁé :J on oscillogram; 2 — surface temperatures,
0 i determined with the help of thermocouple with
~ .?\\\YL-—ik loadsi 3 — surface temperatures at 200 atm .re
' Dl obtained during Stabre burning of preliminarily
;ﬁ—-u%—r—cﬂg;’ heatéd (to 40-50°) samples; 4 — temperatures
a = y ".béaj; of the break in the témperature distribulion

in the condenhsed phase in certain experiments
during burning o6f ammonium perchlorate.

~ondensed phase during burning of ammonium perchloraté there is 1lliber-
ated a significant quahtity of heat (80-120 cal/g) (Fig. 4). Further-
more; during sublimation or equilibrium decomposition Ts should grow
with pressure, and not conversely as this follows from our eXperiments,
presented in the graph of Fig. 5.

It is necessary to remind one also that Bircumshaw and Newman
[5] could not detect a noticeable quantity of sublimated perchlorate
during heating of it for 4.5 hours at 260°C at atmospheric pressure.
In our experiments pressures were significantly higher.

The presented facts force us to doubt the validity of the
hypotheses of works [6, 7], at least for the studied pressure rangc.

As can be seen from the graph of Fig. 5, surface temperature

of burning ammonium perchlorate drops with growth of pressure and iu

269

o

-

H

P o e e i e - e T e kT Y sk P = s

TSRS TG 5 3 e AR AN IR T BNEIT B A TR R S e e . W"'ﬂ"‘
T T A R S A T or N e, @3 TR TRIE TN ."‘" ST SSSERC Biiaii ¢ ‘ T D A LY




the region of unstabie burning nears the phase transition temperature.
Incidentally, one éheu&dvnote that in certain oscillograms in the
fegion of temperatuyes of the order of 25090 there was observed a
small break with a practically thermoneutral effect, which, possibly,
is connected with the temperature of phase transition and weakly
depends on pressure, as follows from the graph of Fig. 5. ‘

Above it was notéd (see Fig. 4) that heat emission in the con-
deﬁsed phase drops with increase of pressure. This phenomenon was
not observed earlier for any of the studied substances.

Upon approximation of TS to the témperature of phase transition
during growth of pressure, heat emission in the condensed phase should
drop more rapidly, since phase transition occurs with absorptiocn of
heat. This circumstance may be the reason for the drop of velocity,
and in separate, unfavorable cases, the reason for extinguishing of
burning. Incidentally, one should note that one of the possible
factors suppcrting burning during pulsating conditions may be heat
emission during reverse phase transition of cubie modification into
orthorhombic with decrease of surface temperature to the temperature
ol phase transition.

Results of Fig. 5 in interval 50-150 atm are surprising not only
in the drop of surface temperature with increase of pressure (i.e.,
according to Fig. 1, with increase of burning velocity), but also the
low value of tempercture. Known data on the kinetics of decompositi-n
of perchlorate, obtained at a temperature of up to 280°C and extra-
polated to 42000, give a rate of gasification of perchlorate seversl
orders smaller than the measured rate of decrease of the quantity of
perchlorate during burning. Apparently, the kinetics and mechanism

of gasification at relatively low temperature in experiments on the




decomposition of perchlorate differ from the kinetic and mechanism of

gasification of perchlorate occurring at the same or higher tempera-

ture on the surface of burning perchlorate. One of the authors
- expressed the hypothesis that, perhaps, during burning there occurs
catalysis of the decomposition of perchlorate on‘the surface by pro-
ducts of reaction and by active centers, proceeding from the flame
zone to the surface of the condensed phase. The fact is that the
presence of a flow of heat firom the flame zone to the surface of the
condensed phase automatically signifies the presence of diffusion of
molecules (including radicals) from the flame zone to the surface.
These active products of reaction can render effective catalyticsl
action.

This hypothesis pertains, naturally, not only to burning of
perchlorate, but also toc burning of any condensed system, in which
there exists a flow of heat from the reaction zone in the gas phase
to the surface of the condensed phase, since thermal conduction in
gas is carried out by means of diffusion of "hot" molecules (including
active ones). This hypothesis, obviously, also contains in itself a
possible mechanism by which the gas phase governs decomposition of
the condensed phase. The significance of this mechanism would be
especially substantial in those cases when the heat increment from
the gas phase is small, and heat emission in the condensed phase is
great and almost ensures maintenance of the surface temperature.

On the graph of Fig. 6 there is shown the pressure dependence of

T it passes through its maximum values, 106000, at 100-150 atm,

max?
and then starts to drop, although pressure is increased.

With the help of the previously developed method by distribution
of temperature in the gas phase we calculated curves of the dependence
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of the rate of heat emission in the burning zone. Calculation was

conducted by the method of finite

1280

090 3 : _ﬂ

b b differences with an interval of

r -]

(4]

i' e,

P 10 1. By curves of the intensity

 , 0

290

00 2 xgfem?
of heat emission we calculated totsl

Fig. 6. Pressure dependence of
maximum temperature of burning activation energies and reaction
of ammonium perchlorate.

orders in the gas phase. The obh-

tained magnitudes E and n, although having a formal character, ecan

be of unquestioned interest for establishment of the mechanism of

burning.

The reactidn order was calculated by the pressure dependence of

the intensity of heat emission for a fixed temperature by the formuls

®* = B + n lg p, where ®* — intensity of heat emission at fixed temper-

ature, B — constant (equal to lg Ae

p — pressure.

~E/RT)’ n = the reaction order,

For temperatures 500-6000, corresponding to the region of peak

intensity.of heat emission in the gas phase, the reaction order is

~1l. Activation energy was calculated by the formula u ~ p

n/?e—E/eRTm

where u — burning velocity, B — activation energy, Tm — temperature

corresponding to peak intensity of heat emission. Effective activa-

tion energy in interval of pressures 30-150 atm turned out to be equal

to 10-25 keal/mole. Jalculation of activation energy of reactions in

the condensed phase we plan to conduct in the future by experiments,

where for fixed pressure we will change initial temperature of the

sample and, as a result of this, the burning velocity and surface

temperature.

Small changes of initial temperature of samples, sometimes

occurring in our experiments, led to a change of burning velocity,
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and with it of surface temperature. They permitted us to roughly -
estimate total activation energy of reactions in the condensed phase
at 50 atm, which turned out to be of the order of 20-30 kcal/mole.

Conclusions. 1. We obtained temperature profiles in region of

pressures 40-350 atm, which show the presence of two regimes of
burning of ammonium perchlorate, stable (40-150 atm) and unstable
(160-350 atm). ‘

2. We fixed anomalous preéssure dependences of
surface temperature and heat emission in the condensed phase — a drop
with growth of the latter.

3. We expressed a hypothesis about change of the
mcchanism of burning of ammonium perchlorate with growth of pressure
and about the catalytical influence of products, diffusing from the
reaction zone in the gas phase to :the surface, on the reacliosn of
gasification of the condensed phase..

b, We expressed a hypothesis about the cause of
the drop of burning velocity of ammoniuim perchlorate with growth of
preszure at p > 150 atm.

5. We ascertained the fact of Signifiéant diver-
rence between kinetics of thermal decomposition and kinetics of pas-
ification of perchlorate during burning.
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EXPLOSION ON THE SURFACE OF A LIQUID

V. . Minin

(Wovosibirsk)

I work [1] there is considered a formulation of the pro-
blém of the motion of an ideal incompressible and weightless
liquid of infinite depth, caused by an explosion on its
surface. As the basic parameter, characterizing the effect
of the explosion on the liquid, there is taken the momentun
acquired by the liquid. In this case during self-simulating
motion the graph of the time-dependence of the size of the
funnel, built in logarithmic scale, for a cylindrical explo-
sion should be a straight line with angular slope, equal to
1/3, which is confirmed by experiments given in work [1].
Below are results of experimental research devoted te this
question.

1. Cylindrical explosion. Bxplosion was produced by means of

discharge of a battery of 50 pf capacitors, charged to voltage of

3 kv through Nichrome wire 40 mm long and 0.09 mm in diameter. Dis-
charges were produced in a tank with hard walls of dimensions 1100 X

X 550 x 20 mm, Plexiglas windows 40 mm thick, built into walls of

{he tank, allowed us to produce optical registration of the phenomenon.
The wire was established perbendicular to the long edges of the tank.
The initial level of the free surface of the liquid was fixed by a
line on the tank window, Motion of liquid after the explosion was

recorded by high-speed filming on camera SFR-1 in the beginning of
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the process, but more recentiy by camera Pentazet 16. Speed of filu-
ing during experiment was monitored and was strictly constant during
the time of registration of the phenomenson, which allowed one to
analyze experiments, considering one frame to be the unit of time.

As a result of analysis of experiments of the initial stage of
explosion (filming speed 2-105 frames per sec) in Fig. 1 there is con-

structed the depindence of diameter

19d

Lol - @ (mm) of the funnel at the level of

1. — -

, . A%Mdﬁﬂn¢ﬁ i the free surfacz on time t (sec) (in

aé«"r/{;pé AT o logarithmic coordinates, Fig. la [siz]);
ﬁf/‘p” 2 experimental points lie along line 1;

oobesT 1 | ' 9t}  in a later stage of explosion (film-

G2 66 w0 4 18
Fig. 1. ing 3000 frames per sec) up to a tim-,
equal to 10-2 sec, dependence also is close to straight line 2.

.

Angular slope of straight lines, obtained from the experiment, varics
from 0.45 to 0.48, with mean value for 20 experiments O0.U47.

After :LO-2 sec experimerital points deviate downwards from a
straight line. Acceleration a of the funnel wall on the level of ihc¢
free surface, determined after the explosion, turned out to be egqual
to

a=1lg when t = 1-10'2; a=55g when t = 1.5-10"2 sec;

a =3%gwhen t = 2.107% gec.

Therefore, fully evident is the fact that starting from btimes,
greater than 0,01 sec, the funnel ceases to be geomegtrically similas

in the process of motion (Fig. 2, where d and r are in mm). Thus,

i

further motion of the liquid is substantially influenced by accelera
ticn due to gravity, which was not considered in work [1], where in

conditions of the experiment described here, experimental points 1i«
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on a straight line with slope 1/3, starting from time of approximately -
5'10"2 sec, i.e., in region where weight is substantial.

This regularity is stable

lgd
tor : loos 1 . . s

0.8 ‘ : ] relative to sltight variation of

L~ ¢é§$;=mm»p
ot ~ o1 S immersion of the wire. In our proof
‘ S« A A\ N g
oY - - Ir - we produced explosions both above
- the free surface and beneath it. g
lgt; . . . s . - .

0 T i T > = Essential distinctions in motion ‘
Fig. 2. of liquid here were not detected;

furthermore, which [sic] during explosion above the surface the size
of the funnel at a fixed moment of time is several times less than

with immersion of the wire,

lgd
JA 2 which is obvious. In order to

o
a8 <
. .-;‘19’ M -
5 X > s 2
= 7 ; 5& trace the motion of liquid for
ya i

et
{051 a larger interval of time thsu

04 -
‘rw 1 ‘ 0.01 sec, in_the absence of

A
.’Z - - gt gravity, there was built an
au 28 1.2 18 20 2K .
Fig. 3. experimental installation, con-

sisting of a falling platform with a tank of the dimensions 560 X 300 X
X 20 mm and a movie camera set on it. This device allowed us ﬁo
record motion of weightless liquid for 0.3 sec; in Fig. 3 this case
corresponds to curve 1, and for comparison there 1is given curve' 2,
obtained in analogous conditions to curve 1, but with weight. In
experiments filming speed was 2000 frames per sec. Curve 1 to moment
of time 0.02 sec turned out to be also close to a straight line witlh
angular coefficient 0.47. .

During experiments wich different eg;@gies of the explosion pro-

duced on the surface of weightless liquid, it was found that, starting
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from a certain funnel size motion of the liquid essentially depends
on dimensions of ?he tank. Th?'s can be illustrated by curves 1, 3,
and 4 in Fig. 3, where it is clear that a break in the curves occurs
at the same funnel size, approximately 1/8 the size of the tank. To
check the assumption we performed experiments in a tank 260 mm long
and with explosion energy corresponding to the explosion presented
in Fig. 3 by curve 1. Here, it turned out that the break of the
curve starts earlier and corresponds to moments of time, when the
fuenel size is approximately 1/8 the size of the tank.

Thus, to study the motion of an infinite weightless liquid,
caused by an explosion on its surface, for a time, greater than 0.02
sec, with existing tank sizes did not seem possible.

For a plane explosion on the surface of a liquid it was possible
to obvain iw an experiment the veloeity field in liquid at different
fixed moments of time, which was done as follows.

Water in the bath was replaced by a salt sclution, in which there
were mixed particles of rosin of the dimension 0.1=0.% mm. Concen-
tration of salt in water was seledted in such a way that the specific
weight of the solution and of rosin were identical. After explosion
the liquid was illuminated by pulse tube IFK-120, and was photograph~d
by a camera with open shutter on a photographic plate of dimensions
13 x 24 cm. Moment of time of filming was set in the following mann¢ v.

Upon supply of voltage to detonated wire there was started square
wave generator GIP-2, which formed single square pulse of predelermir»
duration. After differentiation of this pulse thére was trimmed a siznal,
correspornding to the leading edge of the fronil, and by a signal from
the trailing edge there was started a thyratron, working on a puls~
transformer, which ignited the flashbulb. Thus, the moment of {ilminr
was determined by duration of the square pulse and could be rolectad
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f'ron 10_6 ) U~1O'2 sec. Response time of the circuit did not exceed

10*/ sec. [Exposure during photographing, upon desire, could be

i to 5-10'3 sec, by changing parameters of the shaping

rhanged from 10'2
line, composed of inductances and capacitances and feeding the pulse
tube.

However, in the given-egperiments exposure remained constant and
equal to 10_3 sec. IFilming of the velocity field was produced up to
time :LO_2 s€c, i.e., in range, wheré weight is still not essential,
and energy of explosion was selected such that influence of the larnk
walls could be disregarded.

In Fig. & there is given a phctograph of the velocity field with
time from the beginning:of‘the explosion to the beginning of the explou-
sure of the photograph 2.5 msec, which was obtained during an expl. -
sion on the surface. On the photo-
graph there are drawn lines, passed
in such a way that the paths of rosin
particles, 'photographed on the phoilo-
graphic plate, are tangent to these

lines at every point. Considering

the time of exposure of the photo-

graph to be small, it is possible to
speak of the given curves as flow lines, Which, of course, will be a
certain approximation. Experiments showed that, as one should have
been led to expect, the family of flow lines, taken at different
moments of time with a time interval of 1 msec in the time, passed
'rom the beginning of explosion to 10"2 sec, i.e., during the time,
Vhen in our conditions liquid can still be considered weightless,
rema ins geometrically similar with precision obtained in developmsnt

o the pnotograph.
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This fact does not pertain to a sputtering stream, i.e., to thot
region of flow where continuity of the liquid is disturbed.

From these photographs of velocity field it is possible to judge
the potential realized during motion of the liquid. It turned out
that the form of potential in a fairly rough approximation is near t-
that which is given by a source placed in the center of an explosion.
and two flows of half intensity placed symmetrically relative to the
source at an angle of 450 to the free surface, a distance of 1.75r
from the center of the explosion, where r — depth of the funnel,

It is necessary to note that this form of potential of flow does
not pretend to be an exact description of motion of the liquid and in
a certain sense has more of a qualitative than quantitative character.

In Fig. 4 is shown the form of a free surface realized during
an <nlosion.

The interior of the fqnnel, below the initial level of the
liquid, is close in form to a circular semicylinder with ratic of

diameter to depth from 2.2 to 2.36.

2. Po%nt explosion on a water surface. An explosion was pro-
duced in a Plexiglas tank, having dimensions 600 x 500 x 400 mm. The
battery of capacitors in this case was charged to 3 kv and was dis-
charged through a flat spiral 3 mm in diameter, made from wire 0.09 mu
in diameter. Such a flat charge was establiished exactly on the sur-
face of the liquid. Registraticn of the phenomené% was produced witlb
the help of high-speed filming with rate of filming 2000 frames per
sec.

Results of experiments were formulated in graphs with the coor-

dinates indicated above. OCne of these experiments is reprasented in

Fig. 1 (curve 3), where it is clear that experimental points lie on &
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piraight lire with slope»close to 0.4 up to time of 6.6-1077 sec.
Average slope for 20 experiments is equal to 0.38, which also is not
~empatible with the pulse formulation of the problem, from which it
fv,1lows that [or the case of a point explosion slope should be 0.25.

Thus, from these experiments it mey be corcluded that motion of
a welghtless liquid, caused by an explosion on its surface, witﬁ'the
exception of sputtering streams, is close to self-simulating with an
index of self-similation a = 0.47 for cyilindrical explosion and a =
= Ol38 for a point explosion.

The cxperimenial law of motion of a funnel, given in work [1],
{ocs not correspond to motion of weightless liquid.
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REMARK ON SCATTERING OF A GAS CLOUD IN A VACUUM

Yu. P. Rayzer

(Moscows)

In a number of works [1-3], in which the process of expansion of’
gas into a vacuum is considered, it is assumed that in sperically
symmetric free-molecular scattering particles of gas have a Maxwellian
velocity distribution. Such concepts must sometimes be dealt with
during discussion of clesely related questions.

Here one should turn attention to the fact that in order that
during scattering of a gas cloud intn a vacuum asymptotic velocity
distribution of particles be Maxwellian, corresponding to the initisa:
temperature of gas, we need very special initial conditions, almosft
unrealizable in practice. If the final distribution also has general
Teatures of Maxwelliam distribution, this analogy in most practical
cases is deprived of any physical content.

Particles of gas, expanded into a vacuum, have Maxwellian veloc-
ity distribution

f (£)dv = const 2 e~F%" gy (3 = m ] 2Ty) (1)
only when a gas, having temperature TO and occupying some volume,
say a sphere of radius RO, from the very beginning expands without

collisions. In this case upon the expiration of sufficient !time, wr. .

B




the basic mass of gas has scattered distances r >> RO, in space there
is established a linear velocity distribution and Gaussian distribu-
tion of particle density by radius:

_ f()de  const s (2)

’
D = —7, =~y =
[ 4dxrdr 3

However, so that collisions from the very beginning do not play
a role, it is necessary that particle path 1ength~le at the initial

moment is of the order of or larger than dimensions of" cloud RO

Ro/lo=nys Ry < 1 (3)
Here n, — average initial density of partic;es, 0'-effective
collision cross section. Let us note that it is possible to present
(3) in the form M < %ngm/c, where M - mass. For instance, for atomic

weight 15 and o ~ 10”0 cm® we have M < 107'RS (M in'g; R, in cm).

In practice the most important object for application of the
idealized problem of scattering of a gas sphere into a vacuum is the
process caused by an explosion-like heating and transformation into
gas nf a certain quantity of solid matter, in a rarefied medium.

Taking into account the fact that in this case ng ~ 1022—1023 cmB,
and section o in order of magnitude is at least 10"15—10-16 cme, we
find that for satisfaction of condition (3) dimensions of the body
should not exceed ~1O'7 cm, i.e., a magnitude of the order of several
atomic diameters. If, however, e.g., the mass of the body is of the
order of several grams, R ~ 1 cm, and on the length of the initial
gas cloud there are included «407 free path lengths!

Running through all possible velues of initial parameters of the
cloud: density Ngys radius RO’ and mass M = nom%WRg, and considering
that to talk of scattering into a vacuum has meaning only in those

cases when density ng is many orders larger than the density of the

environment (an absolute vacuum does not exist), it is easy to prove
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that relationship {3), with perhaps rare exceptions, is never satis-
fied in cases of physicel or practical interest.

In realiconditions, when ZO,<< RO, expansion of the gas cloud
always starts with a gas-dynamic stage, where the final velocity dis-
tribution of particles is formed, as a rule, in the process of moticn
of a "solid" medium, even before onset of the stage of.free-molecular
scattering. And namely, velocities of particles approximately attain
their final values when the initial thermal énergy of the gas to a
significant degree passes into kinetic energy of hydrocdynamic motion,
i1.e., chaotic velocities of particles become small as compar2d to
ordered radial velocities. Here, there almost ceases the acticn of
forces of pressure, and scattering of gas obtains an inertial char-
acter,

Let us compare tentative moments of establishment of final veloc-
ities and of ceasing of collisions. During adiabatic expansion inter-

nal energy of gas ET decreases approximatvely as
Eqz Eo (Ry | RV

where EO — total energy, which initial internal energy approximates,
R — effective radius of sphere, y — effective adiabaﬁic index. Con-
sidering a highly heated dense gas, it is possible to assume for
estimation that v = % and ET/EO ~ RO/R. Scattering becomes almost
inertial, we say, with ET/EO = 0.1 when R, ~ 10R, (velocities here
on an average attain 0.95 of their final values). The average masec
velocity of scattering becomes equal approximately to u = 4§(E67ﬁ_,
and the radius of the sphere (with accuracy up to a coefficient of
the order of unity) changes in time as R = ut.

The average number of collisions which an atom will experience

from moment t to infinity in order of magnitude is
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Here V — dvevage chaotic (thermal) velocity, n — average density
in the sphere. Integrating, we find with accuracy up to a numerical
coefficient of the order of unity w = nVot, where all quantities in
the right part pertain to'moment t.

For the moment of ceasing of collisions it isAposéible tenta -
tively to take such mome 't starting frem wriich an atom for all time
to infinity will experience only one collision. This moment t2 is

determined from equation

(nVst), 1

Using approximate relgtionships

n Ry \3 v By Ve (RN 3
S I e T SRS >

ng u .

we find the radius of a sphere R2, at which collisions cease

Ry Ry(Re ] 1) (4)
(if RO < ZO’ collisions are absent from the very begifining, in accor-
dance with condition (3)).

Thus, if Ry ~ 10, R, < Ry, i.e., if RO/ZO > 300, scattering becomes
inertial even before collisions cease. This condition is satisfied
in most cases of practical interest, and, consequently, the final
velocity distribution of particles in these cases is established
already in the gas-dynamic stage. It is determined by the asymptotic
density profile, which at the limit t — w is kept unvaried n ~ t_BF X
x (r/t). Asymptotic velocity distribution during inertial scattering
is v = :/t; therefore, final velocity distribution of particles is

determined by function
f@yde=nixridr~ 2 F(@)dr

The asymptotic density profile depends on initial distributions

ol gas~-dynamic quantities. There exists an unlimited number of such




initial distributions, for which function F has nothing in common
with the Gaussian, and VEF(V) has nothing in common with Maxwellian.
There is, for instance, the class of one-dimensional seif-similar
motions shown by L. I. Sedov (4] in which v = r¢(t), and pressure p
and density p are connected by relationship op/or = -\pr(cp2 + de/dt)) .
If initial distributions of gas-dynamic quantities satisfy this con-
dition the densiti prbfile~f(m/t) by virtue of self-similarity is
kept unvaried from the very beginning, and this profile, and conse-
guently, also the asymptotic velocity distribution of particles
V2F(v) can be given arbitrarily (see [5]).

It &s clear that in many practically important cases the density
profile formed in the stage when forces of pressure still act has
common features with the Gaussian curve, and final velocity distri-
bution has coimmon features with the Maxwellian. However, this 1is
nothing more than a convenient approximation, and here there is n»
physical connection with the initial Maxwellian distribution of heate<
gas. It is sufficient to say that "temperature" in the interpolatimwi
Maxwellian law may be several times greater than the initial temper-
ature of gas, since to kinetic energy of radial motion there passes
not only the initial energy of chaotic motion of particles, but alse
the energy of internal degrees of freedom, ionizing energy, initial
thermal'enérgy of free electrons, which in the process of adiabatic
expansion and cooling recombine with ions, etc. TFor more detail on
this see [5].
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EQUATIONS OF STEADY AXISYMMETRIC FLOWS OF GAS IN VARIABLES
"PRESSURE-STREAM FUNCTION"
V. G. Dulov

(Novosibirsk)

Equations of steady axisymmetric flows of an inviscid and non-
heat-conducting gas with an arbitrary equation of state will be con-
verted to such form when pressure and the Stream function can be con-
sidered independent variables. The sought function of these variable:s
is introduced so that dynamic equations are satisfied identically,
and from the continuity equation for this function there is obtained
the Monge-Ampere equation. The sought function itself constitutes
a flow of momentum through a line of constant pressure in the direc-
tion of the axis of symmetry. Through values of this function we
simply express the drag coefficient of a solid of revolution with a
generatrix in the form of an arbitrarily taken flow line. There arc
examples of calculations. In the first there is considered the prol-
lem of external flow by supersonic flow past a body with an arbitrary
generatrix. Approximation of change of the desired function along
an isobar by a polynomial from the stream function allows us to redue

the problem to a system of ordinary differential equations. In tho

sacond problem we approximately find the distribution of parameter:s
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between the shock wave and the surface of a blunt body in a hypersonic
flow. The solution has relatively low accuracy, but is recorded in
elementary form, useful for rapid calculations.

1. Below we use the following designations: x, y — geometric
coordinates in the plaﬁe of theée axial section, p — pressure, p — dens-
ity, i — enthalpy per unit mass, ¥ — stream function, w — modulus of
velocity, u and v — projections of velocity on x and y axis, respec- .
tively, M — Mach number, ¢ — angle of inclination of velocity vector to
axis of symmetry, S -- entropy, a — speed of sound, index ® is used for
designation of parameters of incident flow. All measured magnitudes
refer to parameters of undisturbed flow. Enthalpy i we consider 2
given function of pressure and entropy (equation of state), i = i(p,S).

We introduce as independent variables pressure p and stream
furction ¢¥. Then

d = py (udy — vdz) = py [u (7, dp+ v, d§) — v (x, dp + =, d)]
or
‘pyuy,, — pyrr, — D d§ = {pyvz, —pyuy ) dp, 1/p =i,
In view of independence of dp and d¥ there follow from this the

relationships
Wy~ o= iy, em,—uy, =0 (1.1)
Let us consider dynamic equations for an inviscid and nonheat-

conducting gas

du , -du | 3p 1.2
u"r’;-;-bay— T_a_;=0 ( )
S=850) Vi@ M)+ i=i, = const (1.3)

Subsequently, we shall consider dimensionless enthalpy related to
magnitude mi. In (1.2) let us turn to independent variables ¥ and y;

we obtain

Po=“u-'yw or y,.J—‘-—-up;'y (1.21) g
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In the latter case y is considered the sought function, and
pressure is the indepéndent variable.

Equations (1.1) and (1.4) can be useful for numerical calcula-
tions, since the form of their recording is superficially similar to
the system of equations in characteristic variables: two of the
obtained equations contain derivatives of the sought functions only
in one direction. However, equations (1.4) and (1.%) camnot be con-
sidered as a system of independent equations.

Using isoenergetic relationship (4.3%) for partial derivatives,

we have

Jr=c,  w=—s, (1.5)

Equation (1.%) will be satisfied identically, if we assume that

Ty= () y,  Ty= (0,00 (1.6)
where o = o(p, ¥) — arbitrary function. Eliminating x, by cross-
differentiation from (5) we can obtain an equation, containing only

one function of ¢

2(i,, —i) (Bw’ —3,p 5y _[ iS5 (%) gy + ip MX Spp 1

5
23

+2l'p0¢ 3p$+!'p:+[2(('m—i)—5¢’] iPP=O (1 7)

For A > 0 equation (1.7) will be an equation of hyperbolic typc;
for A < 0 it is an elliptic equation, i.e., hyperbolicness occurs at
supersonic speeds, and ellipticity at subsonic. From theory of
Monge-Ampere equations it is known that if a coefficient in a non-
linear combination of higher derivatives does not turn into zero, tir
boundary problem in the region of ellipticity for such an equation

has two different solutions. If there is a point where this coeffi-

cient turns into zero, the solution will be unique. In equation (1.7

this coefficient will be the square of the modulus of velocity.
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Consequently, when in a flow there is a critical point {(for instance,
in problems about external flow past bodies) there should be a unique
solution. If, in the flow there are local subsenic regions, but total
stagnation of the flow is absent (for instance; in supersonic gas
jets), there can exist two solutions.

We ghall clarify the gas-dynamic meaning of the introduced func-

tion o(p, ¥). The second of equalities (6) gives

s;—\ud\p
Here the integral in the right part is taken along the isobar.
It follows from this that o constitutes the flow of momentum through
line p = const in thé direction of the axis of symmetry. We fix a
certain surface of rotation with a generatrix in the form of a flow

line. The projection X in the direction of the axis of symmetry of

the force of total pressuirc on such a surface is calculated as follows:

-Lﬂﬁw%@=h@%ﬁﬂ

In particular, if X is determined for flow line ¥ = O (surface
of the »o0lid), this last exprersien will give che magnitude of the
drag force, where quantity 2opw = wye for ¢y = 0 is egual to the base
area of the flowed-past body. Thus, to determine the drag coefficient
of the body, it is necessary to know the value of function ¢ only at
one point, corresponding to the trailing edge of the body.

2. Let us assume that solution of equation (1.7) in the vicinity
of a certain line ¥ = 9(p) in plane p¥ can be expanded into a series
of form ‘

o(p,}) =0 (p) + 0,0 (¢ —q (D] 5 2o’ [¢ —q 2+ ... (2.1)

Here, index © designates values of the corresponding quantities

on liné ¥ = ¢(p). If, we assume 0 = o°(p), then, according to (1.6),

o
we have w cos ¥ = -o¢ =0 or ¢ %w, From equation (1.7) we find the
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form of function oo(p) which describes fhe@egenerate case of axi-
symmetric flow — a two-dimensional gas source. Let us assume relation-
ship ¥ = o(p) determines tpe front line of the shock wave in plane

(p, ¥). From mechanical conditions of compatibility we determine

0

values of derivatives of o and 0$ on this line (flow in front of the

front is considered uniform; ¢ is related to pm):

9% (2.2)

0.0 =, 0, =p— 1=k, k=——
It is possible to calculate values. of function o on the front

line of the shock wave:
0> (p) =\ [§ @) + (p — 1 — KM @ (P} dp (2.3)

Retaining the first two terms in expansion (2.1), by means of dif-
ferentiation with respect to p and ¥, we prove that relationships
(2.2) are satisfied everywaére behind the shock wave front. This is
possible only for zero thickness of the shock layer, i.e., such a
presentation of function ¢ corresponds to the Newtonian approximatiun.
Tet us consider the case when expansion (2.1) is performed to
members of the secord ~rder. Differentiating with réspect to p and
¥, ve obtain
1

, ) .(1:,2.3, ’
=90, @ (PP = O -y 2 I =T (P (2.1)

)
2y =P—1=kM 2432, [§—q(p)]

Thus, in this approximation function/op along lines of constant
pressure is approximated by a quadratic dependence on %, and the
axial component of velocity is considered linearly related to the
stream function.

In formulas (2.4) there are two unknown functions of pressure,
O$¢ and ¢(p). To find them we use the condition on the surface of
the body and equation {1.7). The equation of the contour of the

. . . 2 . .
surface we consider given in the form y = f(cos ¢), which, by vivtue
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of formulas (2.4%), gives

4 o RN G ptan, @ ()
7= [ @) =f g =

Further, we assume thet density p, speed of sound &, and conse-
quentliy, quantity vy = dgg/p are known functions of pressure on the
: line of the shock wave front. With the help of conditions of com-
patibility in a shock wave, we can express values of all -nefficients
in equation (1.7) behind the wave front in terms of p, p, and y. Dif-
ferentiating (2.2) along line ¥ = ¢(p), we eliminate derivatives of

o] A 0 .
oww and Op¢5 we obtain

A(p) = 54,” [B(PY @ (P) 4 C M ¢ (p)] =50 (2.6)
where
, [ i p—=1\7 Lt p=1
_ A0 =2 (1- = 557) (1 - Tz
. - BAde =1 1 p—1 yd 1\
B () = FALLE _3(‘?0“W_”&%3“OEAT) (2.7)
— 1 { -1 °
e

Functions ogw and 9(p) are the solution of a system of two n. =
linear first order equations, (2.5) and (2.6).

If in (2.1) we retain members of the third order, similar cal-
~hlations lead Lo a system of three nonlinear first order equations.

%, Let us assume that the relationship between pressure on the
surface of the flowed-past body and the local -angle of ineslination of
the surface, cos $ = F(p) for ¥ = 0 is given.

Introducing expression cos ¢ in (2.5) and (2.1), we obtain

{ R
o (55 @@= [1F ()]
T e (P p—t— kM RUGE I — D ()

If flow is past & blunt body, the first equation is integrated
taking into account the fact that at the point of intersection of the

shock wave with the axis of symmelry, i.e., at p, equal to the pressurc
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'y

behind the direct shock wave freont P @(pm) = 0,
Then, from (2.7) we find
n - Pm
“S o= NGl o= /1F I (2.8)
P )

- ,'
N=td kM 2—p— kM 2V I —0)F(p)
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Fig. 2,

In Figs. 1 and 2 are resul%s of calculations of distribution of
parameters between the surface of a body and the shock wave by for-
mulas (2.4) and (2.8) for the case of spherical blunting. Distri-
bution of pressure on the surface was calculated by a modified for-

mula of Newton, i.e., we assumed that

st =V = VIzpim

wliere Po — stagnation pressure. Gas was considered ideal with con-
stant ratio of thermal capacities, equal to i.4., 1In Figs. 1 and 2
results of approximate caiculations (dotted lines) are compared with
numerical calculations taken from tables [1] (solid curves). TFigures
show values of dimensionless pressure on corresponding isobars. Fully
analogous results of comparison were obtained for blunting in the
form of spheroids at Mach numbers Mm from 3 to ®,
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EVOLUTION OF A WAVE PACKET IN HYDRODYNAMICS
WITH DISPERSION OF SOUND

V. Ye. Zakharov

(Novosibirsk)

As it is known, in meny cases for description of wave motions of
plasma theéy apply hydrodynamic models. However, in distinction from
usual hydrodynamics, in these models it is necessary to consider
effects of wave dispersion, especiaily noticeable for motions with
large spatial gradients. Such are models of "hydrodynamics of ion
sound*" [1], of "hydrodynamics with ion dispersion® [2] and models
describing propagation of sound in cold plasma across a magnetic
rield. To hydrodynamics with dispersion we alsc reduce problems of wav
propagation in channels of finite depth. In these models there exist
stationary waves of finite amplitude with a dimension of the order -r
the dispersion length [1, 2].

For each of these models there may be posed the question of
cvolution of an arbitrary wave packet. At first glance it seems that
if one were to take the amplitude of the packet sufficiently small,

il is possible to disregard the influence of nonlinear terms and to

¥"Ton sound" may refer to propagation waves below ion cyclotron
froguency [Tr. Ed. note].
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consider that evclution of the packet is described by its propagation
resulting from dispersion.

However, it is possible to show that such a consideration is
valid only for very severe limitations on the shape of the packet, and
that for the general case the influence of nonlinearity should be
taken into account for even the smallest packet amplitude.

Let us consider a simple one-dimensional hydrodynamic model of
plasma — model of ion sound. It is assumed that Te >> Ti and there is
no magnetic field. Then plasma is described by velocity v and density
n of ‘fons and by the electrostatic potential 9. For these &ariables

system of equations [3] is valid (m — mess of ions, T, = T — temper-

e
ature of electrons, N, — undisturbed density of plasma)

or . v e Jp dn ) _ _Fe ( _df_)
FTR Pl -&—‘}'5;(!_!1:)—0, 8:’""”“‘ A — ngexp (1)

Henceforth, we assume that we are considereing motions for which

1 ov _ | TN . s :
TEST, (Q‘= 0;;;) Debye radius of the plasma)

so that dispersion effects are small. We shall, furthermore, consider
that the amplitude of the wave is small (M - 1 < 1). Using these
assumptions (M — Mach number), it is possible from the last equation

to express the gradient of potential approximately:
o 1 P

n'
eor =T - 2Trg PN

Then we introduce &n = n - Ny and pass to a reference systen,
moving to the right with the speed of sound
z=ur—cl, T =1 (2)

The system of equations taken on the form

9 v  dv & (@n  dn 3dn . ®0n
Eraly rl O “’"——n—.-(: -;;_5;4-'4--5—:’“) (5)
Mdn ) v v oOn

3 — € s -n.-5;-1‘-6n D—:--i- 0—53—'——-0
Now, due to the fact that effects of nonlinearity and dispersion

are assumed small, it is possible to look for solutions for which

_9?
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derivatives with respect to T are small. This corresponds to con-
sideration of waves rumming to the right and slowly evolving under the
action of nonlinearity and dispersion.

.The second of equations (3) also allows us to approximately
obtain

n 2 B B 90 2ng v ny Ov

¢ 9: T 7 oz VA e TFE s (4)
Substituting expressions (4) in the first of equations (3), we
finally obtain

v . ov P
mtvE =l g w=ed (5)

Equation (55 was obtairied for waves on the surface of water and
was applied in [3] for hydrodynamics with ion dispersion. Depending
upon the law of dispersion we obtained different signs of u.

Equation (5) allows us to estimate the relative magnitude of the
nonlinear term and of the term with the highest order derivative.

Let the characteristic amplitude of the packet be A, and a he ils
characteristic length. From equation (5) it is clear that integral
of vdz 1is preserved. The nonlinear term has the order A?/a, and dis-
persion has the order uA/aB.

Since Aa ~ E, it is possible to record them, respectively, by
Ee/a3 and uE/aq. It follows from this that with propagation cf the
packet a will increase, and the relative role of the nonlinear term
increases.

The nonlinear and dispersion terms are compared at length a, ~
~'u/E. In the considered model stationary solitary waves have exactly
this length.

This consideration shows that only evolution of sufficiently

narrow packets (a < ay) can be considered in the frames of a lineari;:«
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We shall now obtain stricter conditions on the form of the wave
packet, for which evolution is determined basically by linear terms.

For that, in equation (5) we replace variables

y=:-—ul, ~=1 (6)
equation (5) here takes the form
o_, 5t 9 !
v TR T,y T+ =0,
_ 9 8uld: vy (7)
by = oy = { —<0uld:z 9z 1+ v,

u

From the last relationship it is clear that if 1 + v =0, du/oz
turns into infinity, which corresponds to "inversion of the front."
From the equation one can also see that in the description of

the initial stage of evolution of the packet, when 7 is small, it i

possible to replace equation (7) by linear equation .
av Pv .
T (8)

If evolution of the packet for all values of T is described by

equation (9), it differs little qualitatively from linear spreading.

s

For satisfaction of this it is necessary that

|+ 5| < (9)

The solution of equation (8) is expressed in Airy functions:
b (y, ) = p—:—ﬂzo () @ (’{—’-’—) df (ol = v (% 0) (10)

Let us note that y = z when t = 0.

We expand v,(y) in a series of derivatives of d-function

- o A ,
o y) = n 3y — gy [ A —n-th moment
' Eg'” (of function v, (y) (12)

Substituting (10) and (11) in condition (7), we obtain

Vst A Yy A4 Y ) A " ,
AR BCAL TR IR S LA =4 - @+ (__»_'_ )
m ( p1_!/; @ ( p{/,} + PITER {s b ( pr s + (n + 1)1 (lu. /s )rhl ir f‘) , < | (12 )

As 1 — w the main role is played by the first terms of series

(12). TFor satisfaction of condition (12) it is necessary, in any
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case, that
Ay =0, T4 | <23 (13)
Then condition (12) is satisfied for [y| < uTi/E. For larger
values of y it will still be hecessary to consider nonlinear terms due
to growth of derivatives of Airy functions as y — ®. If the first
(k - 1) moments of function vy are equal to zero, as T — 0 conditlich

(12) has the form

] A 4 e
& 4 )1\ K+2 N\ 3L
, ,Iy|<:(( :; )j ﬁ“: 3)k o’

Let us now estimate from expression (10) thé width of the wave

(14)

packet as T — . Let us assume that A is the characteristic dimen-
sion, on which function vo(y) strongly changes. Then v(y, T)
decreases, starting from those y, for which funetion ¢ accomplishes
sevéral oscillations on lengéh A. If vy(y) differs from zero for
[yl < Yo» then y, >> y, for larger values of T.

Then

()= (2 (38 1)

D _ Wi
Characteristic "frequency" of the Airy function is yi/“u 3/21 1/‘5

from this follows the estimate

~ y
Je~ =33 (15)

Approximately at these distances we compared various terms of
series (12).
Comparison of estimates (44) and (15) shows that although one
An differs from zero, there exists a regicn where it is necessary tu
consider nonlinear effects, although the width of this region de-
s creases with growth of n.
M It is possible that there exist initial conditions of specific

form such that all An = 0, for which linear spreading of the packet
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occurs for all T and z.

Recently in [3] there were found self-similar solutions of equa-

tion (5), evolving according to a law, close to linear. Analysis of

these solutions shows that they satisfy conditions (13).

In conclusion the author thanks R. Z. Sagdeyev for -discussion of

the work.
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APPROXIMATE METHOD OF CALCULATION OF OPTIMUM SUCTION
OF FLUID FROM THE BOUNDARY LAYER OF WING
PROFILES WITH A POROUS SURFACE
L. F. Kozlov

(

Leningrad)

. By optimum suction of fluid from a boundary layer through the
porous surface of a wing profile we mean such distribution of the
normal component of velocity on the surface where in every secticr -t
the boundary layer the local Reynolds'! number is equal to its lower
critical value.

The problem of optimum suction of fluid from the boundary laye:
of a porous plate by numerical integration of the equation of L. Provr .
was first solved in [1]. An approximate solution of this problem i
quadratures was obtained by the author [2].

The works of Wieghardt and Wortmann [3, 4] are devoted to appr -
imate solution of an analogous problem for a boundary layer witn 2
longitudinal drop of pressures on the external boundary. Both works
are based on simultaneous use of equations of momentum and enaergy fr:

ﬁ a boundary layer. In the method of Wieghardt for every particular

case it is proposed to integrate the basic system of differential

equations by the very laboriocus numerical method of finite differepc.

Gt m e o S B s N Fon P g srr i W e Y T LTI, e e PP %3 — g




In the derivation of final formulas for optimum suction Wortmann used

functions calculated with application of Schiichting profiles, very

roughly approximating the real change of velocities in the boundary

layer on a porous surface, especially near the breakaway point.

Below, for calculation of optimum suction of fluid from the bound-

ary layer of wing profiles with a porous surface in an incompressible

fluid, there is used a system of equations of zero and second "moments"

[51.

cies inherent in the methods of Wieghardt and Wortmann.

The offered method is fairly precise and free from the deficien-

It is neces-

sary to note that for solution of boundary layér problems, a system

of equations of "moments" was first proposed by L. G. Loytsyanskiy [6].

Designations
X — coordinate along surface of Rk — Reynolds number,
wing profile, -
R** = local Reynolds number,
Xq — coordinate of point of loss s
of stability without suction, RO - lower value of local crit-
ical Reynolds number with-
UO — incident flow velocity, out suction of fluid,

U — longitudinal velocity on ex- Ri* — lower value of local crit-
ternal boundary of boundary ical Reynolds number
layer, during suction of fluid,

Vo local velocity of suction of H — shape parameter of bound-
liquid through porous profile ary layer,
surface, o
6"" — thickness of loss of
{ — parameter of boundary layer, momentum,
T parameter of suction from 5" — thickness of displacement
boundary layer through the flow,
surface,
v — kinematic coefficient of
viscosity of the fluid,
a =044, b =548, B = .12, c = 9.54, H, = 2.59, H, = 4, A,= 26.3,B, = 8
1A%%¥3 - A%k r ‘A% *

Using approximate interpolation formulas for the coefficient of

friction and shape parameter H, we convert the equation of zero moment
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to linear form

- A G la B =2t — b (1)

Differentiating the parameter

='U'6_"3 = !_I{;R‘c: (Ra* . @:)
T v (2)
we find that i
d/ — VU- - 2\'(}’3 " [] vU'd[{“n
dr =TT Y - et g (2)

Substituting formulas (2) and (3) in equation (1), we obtain

v dR*: 0’ o { r
T Y- Rt — @ ar—a=0  (or= ) (o)

Equation of the second moment we use in the following form:

U v’
;;( u' f4 5 l‘; (H — Hy** — H)) (5)
‘ : After substituvion of formulas (2) and (3) in equation (5) and

the necessary algebraic transformations, we have

: v _dR**: vb’ . g e i
U d-l: U (ac—")lt’“--;-uﬁ--v*l * TI-‘-; (())

Eliminating from equations (%) and (6) quantity v,/U, we obtain

a differential equation for calculation of the local Reynolds number

2 (x) a
s = oxp [~ b0 7 = (7)
X
S [aff 4 (B — 2) H] U exp [lu In _li'..{‘::)] d;-}- A D

Integratirg (7) for boundary condition R = Rg* with x = X,, W

find
dR**: U’ . a a”. v a_ 11,
— t v‘ko"“"‘[u. (u = ”)][ u‘(‘ L= ’”o)] =0
. alb—H ¢, _a Il :
ko= [(ac — 2) + —[,—_—@-,-,,](f =N )
§a Calculations of optimum suction of fluid from the boundary layer

XX
t start from the value of the Reynolds number RO at the point of l.oco
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of stability of the layer, up to which without suction of fluid the
flow in the layer is stable to small disturbances. For known velocity
distribution on the external boundary of the layer of a wing profile
U(x) and given values of shape parameter H by formula (8) we calcu-
late R*%. Obtaining family of curves R**(x, H) and knowing local
critical Reynolds numbers, corresponding to every value of shape
parareter H, we graphically determine relationship R:*(x).

The lower values of the local critical Reynolds number Ri* are
calculated by research using the method of small disturbances of
hydrodynamic stability of flow of liquid in a laminar boundary layer.
It is known that hydrodynamic stability of flow basically depends on
the degree of fullness of the velccity profile across the layer, to
significant extent determined by shape parameter H. Therefore, it is
natural that the value of the lower critical Reynolds number R:%
simply depends on shape parameter H. As_proposed in work [3], in
subsequent calculations it is recommenaed to determine values of
Ri*(H), using the following approximate formula:

R = oxp (e Bl (9)

From the zero moment &quation (%) we obtaiﬁ a formula for

calculation of the optimum distribution of the velocity of suction of

fluid:

Yo _ ¥ l ;__L dR**: U (h — 2) o a {
UTTB=27% 4 T g7
dr U B~ 2) F=27% (10)

The first term in formula (10) we find from differential equation

(7). After transformations we have ——— -

7 -

e [ AL X ) —9 {
y 1 td =_“3?T_j&?lp‘_% o _lnd+ H B ) ! (12)
UB—=2T dr C*p =2 B =2l (B =2+ aff;] Tt**

Substituting this expression in equation (10) and producing
necessary calculations, in final form we find the formula for deter-

mining optimum distribution along & chord of a wing profile of the
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velocity of suction of fluid from the boundary layer

a (If — Hy) {

vy _ VU —=2— k) -
(7o = 2) + all] T (12)

T ST =12

R -

Determining, by formula (12), optimum distribution of velocity of
suction by the method of approximation offered in work [5], it is
possible to calculate alli characteristics of the boundary layer and
of friction drag of a wing profile.

For the particular case of a porous plate expressions (8) and
(12) are reduced to an integral exponential function. Comparison of

relationships o¢obtained by various authors

v, 10104
P By e ~ : for velocity of optimum suction on a porcus
A/’Jg§§§§ , plate VO/U for different Reynolds numbers
/ _ \43\\\\' RX is shown in Fig. 1. On this graph there
1 are plotted results of calculations by the
{Wj — 5 K;w p?oposed formula (12) (curve 1), and also
Fig. 1. according to [3, 4] (curves 2 and 3, respec-

tively). Comparison shows satisfactory
coincidence of results of calculations by the offered formul> with
corresponding data from [4]. Obtained results also allow us to con-
clude that distribution of optimum velocity of suction of fluid from
a boundary layer to a significant extent depends on the Reynolds
number.
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RESEARCH OF SPEED OF SOUND IN LIQUID AND GASEOUS ARGON

I. S. Radovskiy

(Moscow)

In {1] there were given certain results of measurements of the
speed of sound in the vapor and liquid phases of argon on a saturation
curve. Construction of an ultrasonic interferometer, created for
research at low temperatures, is described in [2].

Below are results of systematic measurements of the speed of
sound in gaseous and liquid argon in the range of temperatures 84-17: K
and pressures 1-60 bar, including the critical region.

Measurements were taken by isochores, where simultaneously witn
measurement of the speed of sound there was also determined the densily
of argon — in the same experiments and on the same installation with-
out additional complications of its construction. Strictly speaking,
due to the presence of "ballast" volume (valves, connecting capil-
laries, etc.), and also due to thermal expansion the process of chango
of state of gas in the interferometer differed somewhat from isochoric,
i.e., was quasi-isochoric.

The value of density for every experimental point was determined

by means of introduction of corrections for ballast volume and therms!

. . P g T sy g~
e e RNCCN W s, i N



expansion of the interferometer. Maximum total value of both correc-
tions constituted 3%, and for most experiments did not exceed 1-2%.
Accuracy of determination of corrections themselves was in any case
not worse than 3-5%. Consequently, error introduced by corrections
did not exceed 0.1%.

As a result of the conducted measurements there were derived more
than 30 isochores, there were obtained about 200 experimental values
of the speed of sound in gaseous and ligquid argon and 100 values of
the density of gaseocus argon:

By means of extrapolation of isochores to intersection with the
line of saturation, we also determined density of saturated vapors of
argon in range of temperatures 87-146OK.

The data obtained on the speed of sound were compared with cal-
culated data of Hilsenrath [3], which are only for gaseous argon at
low pressures (in the investigated phase region there are no experi-
mental data on the speed of sound in argon).

Divergence with deta of Hilsenrath constitutes 0.1-0.2%. Near
the line of saturation it reaches 0.45%.

Results of determination of density of argon were compared with
data of Michels [4] along the line of saturation (divergence is about
0.5%) and isotherms 133 and 153°K (divergence of 0.2-0.3%).

In Fig. 1 are isochores (solid lines) and isotherms (dotted
lines) of the speed of sound in gaseous argon; in Fig. 2, thc same
in liquid argon; black points correspond to the line of saturction.
Isolherms were obtained by means of graphic analysis of experimental
isochores. Furthermore, in Fig. 1 are plotted calculated data of

llilsenrath on isotherms (half blackened points).
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Fig. 1.

Isotherms of the speed oI sound were extrapolated to pressure
p = 0. The obtained values of the speed of sound were compared with
those calculated by the formula for

an ideal gas

ay= Y3 RT

uon- . .
Divergence between experimental

and theoretical values of g is within

300}~
+0.2%.

Results of measurements of the

200

speed of sound (msec‘l) are also given

in Tables 1 and 2 for whele values of

temperature and pressure.

In the critical region, where
the speed of sound strongly depends on temperature and pressure, we
conducted more detailed measurements. Isotherms of the speed of
sound in the critical region, including the critical isotherm
(150.630K), are presented in Table 3.

’)

Results of determination of density (p, kem~ of argon in the

range of temperatures 90—17OOK and pressures 1-60 har are presented

in Fig. 3.
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Table 1. Speed of Sound in Gaseous Argon

3
) I T=90 o5 ! 109 105 l 16 | 115 | 12) 123 } RY]
~ 3
0 177.0 | 182.5 | 187.0 [ 191.3 ] 1047 | 190.8 [ 2043 : 203.6 ) 2025
l 174.3 1 179.9 | 1849 | 180.6 | st | 4985 | 20800 ;2075 1 2115
5 -~ - — 1S6.7 1 192.3 | 197.6 ) DSt o7z
10 — - — - l’ — - 1&Ln|um-v|muj
. 13 - — — - = - — 86,6 | 194.6
20 — — _ - - — — = 18T )
. ' TR
L T=13 149 l 145 I 159 I 155 160 . 1 | 1in i
H {
0 | 216.0 | 220.0 | 223.0 | 207,81 2314 | 2354 23003 50'3 i
U Tiaa | 2194 | aa3ls | 554 w0 | 350 | msie | anly (
500 220 | 2166 122001 | o3sia ) vagg Poaany §oaria AL )
10| 207.1 | 212.3 | 217.4 L2200 2067, 23000 P 2sson e ‘
15 201 a 207.6 | 203.0 { 2U8.20 2234 0 282 2328w
200 | 19, 200.8 | 2085 C i 20003 1 o954 | 23005 123500
% | 1850 199.8 | 2003 1o | es o226 |28 ':;;"
30 - 186.0 {1 197.0 | 205,61 2530 , 2095 ] 2355zl
35 — - IS.6 1+ 2000 | 20800 | 2063 | 3y el
40 — - | = 3.2 2003 | 213,10 | 22006 ¢ 2260
45 — —_ — 1$2.8 1 1595 | 20000 | 8.2 2ann
30 — — — | = ' 193.0 | 2066 1216.01 223,49
25 ~ - - — | w35 | 2028 [oph2omg
60 - - - — w07 | 200.6 ) 20235 2207

Table 2. Speed of Scund in Liquid Argon o=

1 »
P l = {38 190 132 i 144 i 146  FE 15 ‘
a0 | 4003 - — Y
30 141603 '38) 0 hh 7 — — —_ —
an l - 403.3 _;u»l 3.0 - = P —
-’|5 ' -— A196 7 3902 35650 31652 5045 —
wo b~ - T4y BT6.T 3.6 Wi5H o 8.2
) - —_ 41:3 2042 | A65.7 5.0 295.8
60 | - — — 405 ] 384G - 326,50

Table 3. Speed of Sound in Argon in the Critical
Region .

] i H .
p |T= ! el 2[ n:'.n.'.'t:w.usl 1;'»-..\| 154 l 1:.1..-':»' 152 }I-_.-‘_:.:i... 1:{. L
| ' ! | ! ] ! S DN
45 m_s 153,00 1840 185,97 186,57 1877 T ISO.6L 91,1 1992 T 1eLn 2030
46 PITT.UL RO 1808 IS2.2 (8 NG T IST ) 180, 25 NG 250
a7 lesaortimooali7an 076,53 19805 IS0 ISETL 1865 A L TI0 S R L O
A8 20004 170a0 1008 16T 1700 1T TG OIS 1185 10y 201
48.5 ‘.!2!‘.7"'tv..,rl~=l.'_’ 2.3 1642 6N T IT6.6- INEL2 l I87.7 20805
A9 [231.6; — 2007 OISZZ O Pil 1A EER2, IS 186 N AN)
4.5 1 — - f — s hiSsn 134 Ies0, 17601 | 186G 1.5
. an — —_ 1 = = 208,00 19107588 1729 1 182N 1.0
oy, - _ = = = 1'0‘!.:%[!;'..3; 16G9.0 IS, S m.:;_..
3 - - = = - iLIJ 186.01 13008 1756 17,4
P T AR N U S O T & 00 S (1P S 9 1.9
.u —_ S e A N 1 e 6.7 195.8
- M - —_ - -] - i R 2518 It 00 194.7
59 - e — 1 — = = ! S 03,5 193.6

Temperature everywhere is expressed in degrees Kelvin, absolute;

pressure is in bars.
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Possible error in measuring the speed of sound does not exceed
0.2% for most experiments; error of determination of density was
0.2-0.3%. Real scattering of experimental points, as a rule, is less
than these magnitudes.
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TEMPERATURE STATE OF A SEMITRANSPARENT SPHERICAL SHELL

V. S. Zarubin

(Moscow)

There is considered a thin spherical shell with a diathermal med-
ium in its cavity. In distinction from [1] it is considered that the
shelllis semitransparent and has different optical characterisiitics
in the region of shortwave (solar) and longwave (natural) radiations.
In other respects formulation of the problem is analogous to work [1].
In particular, the temperature over the thickness of the shell is con-
sidered to be invariable, and transmission of heat by thermal conduc-

vion along the shell will be disregarded.

From without, the shell is struck by specific radiant heat flows
;L(s, ¥) and q2($, ¥) varying along the surface, where § and ¥ —
angular coordinates of the point of a sphere (0 s § s 7, O ¢ s 27).
Here and henceforth, parameters with index 1 pertain to shortwave,
and with index 2, to longwave radiation. The degree of absorption,
reflection and transmission by the shell of radiant fluxes ql(S, ¥)

! !
and q2(3, ¥) is characterized correspondingly by coefficients A;, R,,

Di, and Aé, Ré, Dé, which in general "can change along the surface.
! 1
It is assumed that radiant fluxes qul(S, ¥) and Deqp(s, V),

passing ihrough the shell, are radiated from its internal surfacc
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diffusely. Diffuse, also is reflection and natural radiation by the
internal surface of the shelli The balance of radiant fluxes on this
surface for a unit area with cocordinates ¥, ¥ gives
o (0,4) = Ry’ + D/q (0, Y) (1)
g* (B,4) = 10 + Dy (0.9) + €40 (0.4), 0 (B, §) = 0oT* (8, ¢): (2)
Here q*(S, ¥) and qo — effective and incident specific radiant
fluxes; € and R — degree of blackness and reflectance of the internal
surface of the shell, generally depending on % and ¥; Oy — radiation
factor of an ideal black body; T(%, ¥) — temperature of the shell.

For the above assumptions magnitude qO is constant for any point

e ey

on the internal surface and is equal to [1]

q° = \‘ \ lf' (1, 3) Si,ﬂ ad'l d3 = const

. ‘ 3 © Aa (3)

where @ and B — angles, reading cf which is analogous to angles % andy.

From expressions (1) and (3) it follows that

PR e T

ﬁ°=—————S§ 0/ (@ mﬂiﬁma% (1)

r_7r_§\1wmahm“"%md%

. (0, ¢) =D ‘11(0 §) T g At ' (5)

where R1 n — value of reflectance with respect to shortwave radiation

J

averaged over the internal surface of the shell:

- -

R, , = nlilEd d3

L,m

=y
(/-l&

For determination of magnitudes qg and qZ(&, ¥) from expression
(2) it is necessary to preliminarily eliminate radiant flux q)( ).
§§§ This is possible by composing for a unit area of the sphere (he
E cquation of heat balance for a steady temperature state:
AR AR I AR O A

= (= R i (00) — Dy = (1= B) 0 (00 — Dy — w0 (D) (€)
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where e — degree of Dblackness of thé externrnal surface of the shell,
where e’ = Aé; D1 and D2 — transmitting ability of a2 shell with respect
to radiant fluxes qg and qg falling on its internal surface.
- After eliminating qo(ﬁ, ¥) from relationships (2) and (6), we
obtain equation
(e+2) q* (8,4) = [e (1 — RY) + &'D.'| 9. (0, ) -
+ le{l — D) -+ &R:] g0 + et q (B + elygy (7)

whose solution, taking into account relationships (3)—(5), gives

= /11;

{(e ') —[e (1—D,) - ¢’R. Ny

"

S,

[MI—R) ~sulq(aﬁ§m94 dp

w3

+ {8.'211'” (he +

S oy il

-

sﬂfﬂﬂuﬁ)ﬂggdaﬂs (3)

where index m signifies averaging over the surface of the sphere:

i

Later substituting relationships (%), (5), (7), and (8) in for-

c'./‘au

Fm,mﬂﬁgmum

mula (6), we obtain

= oam

(e - &) qo (&, §)=:1y"qy (8, §) o127 g2 (O, §) - ; -,'1_;{____, \ \ Dy (@, B) ~lnad dp =
T mg Y
As {= ¢ 4 sina, N
+e+a-4ﬂ1-&p—ﬂ7]§§&““mﬁ)T;RMﬁ
A <
+1[in);.. \ Q Dl (o f) —— M2y g -
mg o
+“eﬂ-wwwwmmw$¥mm} (2)

From this there is found the distribution of temperature on the

surface of the shell:

JUN S ¢]

If optical characteristics of th2 shell do not vary on the sur-

Tface, expression (9) is somewhat simplifiead:
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(e + &) g0 (0, 4) =i g (O, ) - Ly (D) -

1 ’ - 1’3 ) - ',
T (O (T ) ) X
v sin a . el 4 (8 - €)DD) o sina AN
>.< ,\ X ¢ (@, B) An da "P = oy el - (¢ — &) D, \ q2 (2, f) Tin du df (_LO)
v s ) S un

1 i
In the particular case for an opaque shell (D, = D) =Dy, =Dy = 0)

formula (i0) leads to results obtained earlier [1].
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ONE PARAMETER OF HARDENING

N. S. Vilesovaand V. S. Namestnikov

(Novosibirsk)

Recently Yu. N. Rabotnov [1, 2] advanced the hypothesis that
rate of creep p° is determined by the current value of stress ¢ and a

certain number of parameters qs

p=®(,1q) (1)

where he considered that

dq® == a’dp -+ b'do + ¢*dt - d°dT
where as, bs, cs, and d° — functions of stress o, creep p, time t,
and temperature T.

If ir relationship (1) there is only one parameter, dq = dp, it
is reduced to the normal hypothesis of hardening.

The case when in relationship (1) there are parameters dq1 = dp,
dq2 = pdo was studied in [3]. Here we managed to account for
observed systematic deviations of the hypothesis of hardening {rom
experimental data [#].

Below arc results of study on the basis of another very simple

assumption that

p- ®(o,9) (q = \. odp) (?)

317

| S, .
s -y . PV et R P SIS e S PR S PR S TP 0 A sl
PR PPN s e et

R b v VU i b el it - e

.. - % v PN ITNEITRY BN EISTTYR [ TR ey g e TEFRSYT TR
T T T % e SRR T T T R T T R TR ey T T O L L AT T st Al



ird

We know {4,'5] that a good approximation of the hypothesis of

hardening is given by relationship

’-,-Pa - }:0'" {3)

Consequently, (2) may be taken in the form

Pt = PRLES (L})

When o = const, q = op; (3) follows directly from (4). Thus, the

constants in equations (3) and (%) are the sane.

Let us consider the following experiment. A sample creeps under

econstant stress o©

4, during time t,, and there is accumulated deformation

Py. At moment t, stress suddenly is

increased to 02

(Fig. 1). 1In order to obtain the curve of

, and the test continues

the subsequent hehavior by the hypothesis
of hardening, it is necessary to shift,
section A"B of curve P forward in such a
manneyr that point X' coincides with point A'

(we obtain section A'B'); by hypothesis (2),

as it is easy to show [4], it is necessary to shift section AR forward

t t
to coincidence of points A and A (we obtain section A B ). Point A

3 0, kg/mm?

“Ragig

DisT150°

oo vt e

f‘*‘“‘*m.&,x

=~
O}ch?»-

Fi):mo

0000

t, hr

2505 32

Fig. 2.

64

86

is found from condition P = p*U@/gg- Con-
sequently, the curve corresponding to
hypothesis (2) is located higher than the
curve constructed by the hypothesis of
hardening, and, obviously, should correspond
better to experiment.

If stress is lowered instantly from

magnitude Op to Oy it is easy to prove that the curve after unloading,

by reclationship (2), is located lower than the curve corresponding to
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the hypothesis of hardening. We compare hypothesis (2) with available
experimental data [4, 5]; subsequently, we shall apply it in the
form (4).

With a stress varying in steps on the i-th step, integrating (4)
for conditions

0 =0, = const when t 2 tiO’ P = Pspo when t = tiO

i
we obtain
s 0 m & (‘-ti) n m
Pi= Puy = Pip ¥ {(Piu')" i : 01} (5)
i .
Lo .
Piy =3‘;Z 31 (Pjo = Pjoga)s ma+ =1 6)
i=2
With stress, varying according to the law
O=20,40 (t —t) (7)
and initial conditions
p=po:0=oo: q=q0’ Whent:to (8>
by integrating (%) we obtain
4
P=pt kS{Go 40" (v — 4" g dr (9)

le
co
k.'ao'”a +2

_ m [ ) ___5_'_ _ \Lur:u‘.! l"l
= {""l " o (n -.La=+2)[$':t1i-t Z ) ]l

At py = 05 = Qg = t5 =0 equality (9) is completely integrable;

in this case

p=p4{l -{-...__i_ }l-m (10)

m(n - 1)
where Py — ceformation, calculated by hypothesis of hardening in usual
form (3).
In other cases the integral in equality (9) must be calculated
numerically.
The curve of relaxation of stresses by hypothesis (4) has the

form
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3o
o )

o) o
k(2E)*t )

- -n-2 (su-; _‘Ut)’d; (11 )

——

where E — elastic modulus, and % — initial stress. For whole number
values of a, the integral in the right part is easily taken. It is
not difficult to show that the curve of relaxation (11) lies above the
curve calculated by (3), which, of course, is obvicus if one refers

to Fig. 1 and considers relaxation the limiting case of creep for an
intermittently decreasing load.

In Fig. 4 are curves of creep under a load varyinhg in steps,
reproduced from t5]. In this and subsequent [sic] figures the broken
lines correspond to the hypothesis of hardening (3), and the Jot-dash
lines correspond to hypothesis (4). As can be seen, with increased
load hypothesis (4) better corresponds to experiment than (3) (see
curves 333%-2 and 56-8). If at a certain time part of the load is
removed, and tnen is restored, hypotheses (3) and (4) give the same

curve (curve a-1).

e e e e ) igo, T f cree
3zmkyhﬂ DIEAT In Fig. 3 are curves o eep
* 190 }1# 3n- during monotonically varying load [5].
::"}}, / i /:‘
24— 4/ ‘///ﬂ‘ It is clear that with an increasing
NI 7/ Yo
=1 h -//' /'o"///'i
v i | 85 18 ;
e 1P /R p I DI6AT 201
16 ﬂr 73 A . 150 -1 .
" // /[ /'o 03‘/ /9//J
E-p % Q // L5665 9Y %y‘/fia
| ! 48 1 . 9 el
le W, fi I 09 L g2 g9-
8 dug T ’ " of" | joo2
ll‘ ’ l / d g'//J&’/J-Z
L —> Vo=t
uiz! l p:0’ u’4(’1;0*”§ﬁ’ %, hr
0 08 6 24 72 0 20 40 60 80
Fig. 3. Fig. 4.

load hypothesis (4) better corresponds to experiment than (3), and

for a decreasing load it is somewhat worse.
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Curves of relaxation [4], built by (11); differ little from
curves corresponding to hypothesis (3) (Fig. 2).

Here we have not considered for an increasing ldad the curves
of creep during stresses exceeding the elastic limit, since in these
cases hypothesis (3) gives increased curves of creep [5]; conformity
(4) with experiment here will be still worse.

Leaving aside the last case, it is possible to summarize that the
new parameter of hardening without introduction of additional con-
stants allowed us for nondecreasing loads to obtain better conformity
with experiment as compared to the usual theory of hardening. IFor a
diminishing load conformity of the new theory with experiment is
somewhat worse; however, it is possible to free oneself from this
divergence if, as in [3], one considers that when 0°0 < O hypothesis

(3) is in effect.
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ROLLING A VISCO-ELASTIC CYLINDER ON A BASE
OF THE SAME MATERIAL
R. Ya. Ivanova

(Novosibirsk)

We consider the contact problem of linear visco-elasticity.
Many problems of this class are solved with gpplication of the Laplace
transform; solution of the given problem is based on principles of the
theory of heredity. In the problem there is considered only one form
of nucleus — the exponential, although there may be applied any
degenerate nucleus. The problem about rolling of a cylindrical body
on a visco-elastic support in two-dimensional form was solved by
G. A. Boychenko [1], but with significant simplifications. In recent
years analogous problems have evoked interest in the United States.
Witness to this are many works, and, in particular, the work of
Hunter [?] [2].

Belcw, this problem is solved by another method. The roller and
base are considered prepared from one and the same material. Such

\ material may even be steel, since there are grounds to assume that

:g for small stresses, steel behaves as a linearly viscous material.*

¥V, S. Postnikov. Internal friction of pure metals and alloys at
high temperatures. Dissertation for scientific degree of doctor of
physical-mathematical sciences, Kemerovo, 1959.
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In the solution of the problem there are used the following
assumptions.

1. Motion of the roller starts at moment of time t = -0 and
continues with constant speed c.

2. The problem is considered two-dimensional.

. 3. Material of the roller and base obeys the Boltzmann-Vol'!terra
law:
S =270+ R
where AO, uo — integral operators of form

=2 (l=2"), W= (t—p*)

and
{

‘
LU () == \ A{t—1)@(r)dT, nrq ()= \ W (t — 1) ¢ (x)dr
-00 by

-0

4. There is no volume aftereffect, i.e., 2 ° 4+ uo = A + |.

Here A, u — elastic constants; A(t - 7), M(t - 1) — functions,
determined experimentally. There exist materials, for which these
functions are close to exponential.

Tor the considered medium, in which the roller moves, the problem
will be formulated as the first basic problem of the theory of elas-
ticity, but in the solution elastic constants will be replaced corre-
spondingly by operators, which will give us the possibility to account
for changed elastic properties of the material in time. This propo-
sition was called by Yu. N. Rabotnov [3] Voltterra's principle.

Following Boychenko [1], we shall use the Muskhelishvili rela-
tionships [4]. If the elastic body occupies the lower half-plane'and
the value of stresses on the boundary are Yy = -p(x), Xy = t(x)

(Fig. 1), derivative of boundary values of displacements on coordin-

ate x should satisfy Muskhelishvili relationship

OF (2} 4 xD™ (2) =20 (U - i1,

(B
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Replacing elastic constants A and p by
>‘ operators xo, uo, we obtain for points of the base
’ Dt (2) + %D () = 20 (L) - i) (1)
fer points of the roller
Fig. 1 @, (x) + D (1) = B3 (U - ) (2)
where
O, =— O,
Applying the Sokhotskiy-Plemel' formula for limiting values of
functions ¢, and ¢,, we subtract equation (2) from equation (1). We

obtain a singular integral equation, containing p(x) and t(x)

v |

b
. ] *). >
S POLRO oo rim iy — 0+ 0 =i (= )

Here limits of integration are taken from — a to b, since outside
the contact section p(x) = t(x) = O.

Dividing the imaginary and real part, we write two singular

equations
5 b B
20) AL ; :
—ds =7 (0 - V,)), T ds =AU = U
é‘s ' -X-ab * l (3>

We solve the first of these equations, since tangential stresses
are determined in {1].
Based on the absence of volume aftereffect (Assumption %), we

present operator A° in the following form

° : Atp !
A= 00|t = 5 T

Let us assume that I'(t - 1) will be the resolvent of nucleus

M(t - 1). Then

A° = a4 bT*
(%)
Here
book ) ap o+ pe :
o=a b S EE a= T e {re—aema

-0
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With even motion of the roller, motion of medium can be assumed
steady with respect to a system of coordinates, travelling forward
together with the center of the roller. Then displacement and stress
will not depend explicitly on time but will be functions only of
coordinates.

We introduce a motionless system of coordinates so that
i =, = 2+ el

We substitute for the variable in formula (4):
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Replacing the arc of circumference of the roller by an arc of a

t 1
parabola, one may assume that on the line of contact Vix - V2X ~ x/R.

Thus
lel—'Ve_vt:g(-t‘:z/lf for —a b \
(5}
lrl.\" _Vafl ::g(r):l,l_\.' for z>b (6)

{
Here Vix is a certain, still unknown, function.

Equation (3) in new variables has the form

h

- w=r@ =@

x
-—a

Solution of this equation according to the Carleman method will

— C’
phﬁ=£%iTZ) \u )sgﬂd'FVG¥sz—d (7)

From the requirement of boundedness of p(x) for x = b, it follows
1
that C = 0.

We take resolvent I' of definite form. TFor instance,

:
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dw () = a9 (2) + .{’.LY‘ 2. .

e M) - e\pL—J )](P(-.) dt
i=1 x
i /b G
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b
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ack sy b Ciesd
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a3 \u-f—x) N (5_3} [‘11-.()"—“‘1 ,’\.l‘-
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.3 — 2 b k2 g — =
o e 8 el )
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(8)

We simplify the right side of equation (8)

(5):

considering condition

a - s ‘s co° ..'.".- .
\(b—-.s ;_:;“1:. st-'— \ b e gl
=
We designate
w «
\ . K ! ey gt - '(-
'\.-lie.\'p[—- ’-i"(-‘J v (B d: - L

a

where Vix = g(x) when x > b.

After transformation, equation (8) takes form

i T;:l il TN s===
b k k
{ b—x\"" { (a+ 82 | ay b1 1 sy b
x-—--;‘?(;———;) X(b_') ‘_:[8(—1{'+T_, 1l)+>(‘(p(%-)—c}-)l6—
-a i=3 i=1
&
-—-2 b+ — _b_'.exp -—)-_b.) (7\. _3_.)+lllf.\k‘i g
iJ M)n ( o) P \MiTe R ]s==7
= i=l
b k
() () s+ 2 s (g L) 4 ] (10)
nm\atz/ Y\b—s < = e s—zx
—_a =
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We cannot calculate

(a - s 'y 7.is
= s) exp—-- ds

|
Q"o

in closed form. Therefore, below there are used two terms of the
series expansion of function exp (xia/c):

expz:i__‘s..:i-;-ff.

This is justified for materials with sufficiently large relax-

ation time 7, i.e., when s < cT.

Subsequently, calculation of p(x) is conducted by approximate

formula
L 3 h t
_ (b — x) 2 (a -+ s) my's -+ omy Is
p(r)-'a-i-z' S b—s] “Ts—z © . (j_j_)
—p
k k
my’ = m; - _\: my — my = my - }_; My
i=1 - iz

We calculate the integral in the right part of (40):

b L1 ’ ’
S (a -*_ 8) .2 ny s + na ds — J (,1')
—a

b—s s$—ux
For that we consider another kncwn integral [5]

t {[fa4d-5\" ds
Q)= i \ [(r_—g) my's -+ '"2']: > =
A.

____(a-{-z

.'
(2]
IT__) (m/z 4+ myy—a,z:" —a

St
—z q* -1 v e =y

*
where € belongs to the region bounded by contour A ; aq, aa-i’ e

-

— coefficients of series expansion for sufficiently large £ of

a0
function
1 'i 1 o . 1)
a - g ? s "o . 1 a = b i ab "= RY/O i ]
(b__g) ("“b-i-'":)—-_‘[l+—a~(—£—)+?-(7—_§--itvg_)+... x
b A
X (8 b my)y = — i (m)3 - my"), (1112 =1 :*-; by - my )

Thus

Q () == (mz - my)) (Z——-t“f) i (myz )

We introduce for consideration one more integral:
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—— ’
; a-=sm's+ m
: J.-,:.—.Sl/ 1 :
() b—-s s — = dS
L

where s belongs to L. Subtending contours to arcs, we obtain

J(z) =niQ (2) = xi [(: - :)"" (my'z 4 my’) + i (mz -+ mg")] (12)

Considering that

F() = ).,‘-’(-)-'F* (x) —-,—_t—‘J" (:c) when z — x

by the Sokhotskiy-Plemel'! formulas we obtain

1 N ' v,
, Fr() =3¢ (x)+ _;1—‘ \‘Ps(’) ‘f (¢ (x) = (Z * :) (xS m,'))
’ L
Thus
{ [ -4 v { E ] Yo  rq 0 ’
T J*(2) = =5 (Z‘__ i) (mz -+ my’) -+ 5 \ (g I :) m‘:::’ ds (13)

On the other nand, from (12) it follows that

J(z) = :xi[(g I :_)v, (ng'x = my’) - il -+ m.;')'] (14)
Comparing (13) and (1%), we find

e
(a <4 s) tmy's -+ my'

g T ds — = (my'x == m,")

‘9./15-

Finally, we obtain the formula for stresses:

p(:r)=—_?l‘_c: ) (my)'z -+ my') (15)
For determination of final points a and b of the contact section,

we have two conditions.

1. Requirement of boundedness of p(x) when x = -a:
! 1t
mx +m, = O when x = -a.

2. Condition of equilibrium
I'.
- \l pl)ds=p

amif

From the first condition it follows that

4= my" Sy (16 )
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From the second condition

1]

I ¢ b—s\ ¢ 3 a" {n -
T \ \""—_i‘_‘;) (nys -t ms")ds = m (« - 0) {1, = 12) - (";7_’_’{)“ I
—u
. Or, considering (16),
5 om0t
P = —_iT; E:T - —l'b‘T)If_. b - I”l'b.' (17)

Equation (17) gives the possibility of determining b only in the
case when we know C;(b), on which mi and mg in turn depend. For
determination of b we use the condition of unloadedness of section
X > b. We solve the second basic problem of the theory of elasticity,

considering p(x) known, and replace the elastic constant by operators

200 (U — V)= (x° + 1) () (18)
but
C )+
O = 5 | 2ETEG, (19)
: Substituting (19) in (18) and separating the imaginary and real
part, we have
(5% ¢ p (3 ¢ b (o
, x° ¢ pls R <
Vid =~ T Bs_-rds=—"!‘ .\sp—xds (x>5) (20)
t 1 i

W=mar 1) + 2ap + Tmpe 1t =’ + 8T

lere T,
Here 1

The integral in the right part of (20) no longer has pecvliar-

is determined by formula (5).

ities and is easily calculated

b ]
’ ) a<+b o -5\, .
5 "5_-(_';&.1 =——m + {my” -+ my .r;{i - (x =) ]5= o ()
Now - :
Vo' = —A4°h(0) = —a'fy (o) = T2 (o) = —a'fy (2)—
o & . e )
- b'\ W A4 exp [_ PR I)] {E—;—' nmy' — (my” A+ my'3) | | —(f._:"b) | d3
4 [ S § l\ ¢ 2 S+a j
X oi=|
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If one were to expand fuunction Y(€ - b)/(€ + a) in a series of
powers of é’i, liﬁiting oneself to two terms of the expansion (only

for convenience of recording), it is possible to approximately cal-

culate integral

As a result we obtain.

k

) y e Ax T :
vV, = u«p[ (-‘—]ex'-*-"— — 2L
FAY {=; i vl t, c)“p(c)_*-.r ( )
" Here A ;
Cp=dy—dy—, O =ad =Y byl
* i=1
my . _'- b
d, V= o 7 (3a + 2(,1,‘—9&‘-'),-— -'—_'—m..
4= .ﬂhn_wb_b%_“g@bTuw-—ubulwﬂ

- A - 5 ' » .
Thus, determining by the formula (21) function Vii’ it is pos-

sible by the formula (9) to calculate C,.
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