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SUMMARY 

When the tip vortex from a rotor blade passes close 

to a succeeding blade the resulting spanwise circulation dis- 

tribution has very severe gradients in the vicinity of the 

vortex.  In consequence the lifting line theory for the cir- 

culation distribution is of doubtful accuracy in this region 

and its validity should be checked by a more elaborate theory. 

In this paper, therefore, an extension of the lifting 

line theory is described which is based upon the argument that 

in the vicinity of the vortex the flow pattern will be more 

like that on a low aspect ratio wing, while still retaining 

the characteristics of high aspect ratio well away from the 

vortex. Spanwise circulation distributions are given for a 

blade of aspect ratio 20 for vortex distances from the blade 

varying between chord and one-tenth chord.  The results of 

lifting line and modified lifting theory are compared and it 

is found that, except when the vortex is very close to the 

blade, there is little to choose between the results.  When 

the vortex is very close to the blade, the modified theory 

predicts appreciably smaller circulation and a less peaky 

spanv.ise distribution near to the vortex, but no fundamental 

changes are found and it is thought unlikely that a more 

sophisticated lifting surface theory will lead to any signifi- 

cant changes in the results. Some suggestions are made as to 

the proper procedure for developing a lifting surface theory. 
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I.  INTRODUCTION 

This report is an account of some studies which have 

been made of the effect of an infinite straight vortex on a 

wing or rotor blade of finite span. The purpose of the inves- 

tigations was to extend some earlier work by Scully who had 

found that the vorticity trailed from a blade as a result of 

the interference helps to smooth out peaks in the spanwise 

loading distribution.  Scully also showed that the influence 

of these trailing vortices can be accounted for empirically 

by placing the vortex at a fictitious distance, greater than 

the true distance, from the blade. The main reason for doing 

further work in this area is that the lift distributions cal- 

culated on the basis of lifting line theory show a very rapid 

change in lift coefficient in the vicinity of the vortex.  These 

changes are rapid enough to throw doubt on the validity of the 
2 

lifting line theory in these regions and it has been suggested 

that some form of lifting surface theory should be used to ob- 

tain a more reliable result. 

In principle two approaches to a lifting surface 

solution are available.  There is the "vortex lattice" which 

replaces the blade by a lattice of discrete bound and trailing 

vortices and the wake by discrete trailing vortices only.  The 

strengths of the bound vortices are unknown and are determined 

approximately by imposing the condition that the resultant flow 

induced by the vortex lattice and the interfering vortex shall 

be tangential to the blade surface at a number of control points, 



The alternative approach is the "acceleration potential" or 

"kernel function" method in which the wing is replaced by a 

continuous distribution of doublets, whose strength once again 

is determined by satisfying the tangential flow condition at a 

number of control points. These two techniques require far 

greater skill and insight, and a much larger scale of com- 

putation, than the lifting line theory and it was anticipated 

that the development time of either method would be long.  In 

the case of the vortex lattice method, no actual machine program 

was available so that the work would have had to start from 

scratch.  A program was available for the kernel function tech- 

nique, but all the experience with this was on wings of low 

aspect ratio and it would have been necessary to build up a 

feel for this new problem.  It was, therefore, decided to try 

to devise some alternative form of approximate theory which 

would permit a quick comparison of the lifting line and lifting 

surface theories and at the same time form a basis for the under- 

standing of the more complete results when they become avail- 

able. The arguments used to arrive at this theory and the 

principal conclusions derived from it are set out below. 



II.  STATEMENT OF THE PROBLEM 

Consider (Figure 1) an infinite straight vortex 

which is bflow and at right angles to an otherwise unloaded 

thin rectangular blade of large aspect ratio.  This is the 

sort of situation which arises whenever a "rectangularized 

wake" approximation is used in the calculation of rotor blade 

air loading.  Then the vortex induces a velocity at the blade 

which is skew-symmetric about the projection of the vortex on 

the blade but which is uniform across the chord.  A typical 

such distribution is marked A in Figure 1.  The peak and its 

location depend only on the vertical distance of the vortex 

from the blade. 

But this "induced incidence" will produce a cir- 

culation which is positive on the upwash side and negative 

on the downwash side.  Since the incidence distribution is 

not uniform a trailing vortex sheet will form and the trailing 

vorticity will be of opposite "hand" on either side of the 

infinite vortex. The broad picture is then one of two horse- 

show trailing vortex systems, one springinq from each half of 

the blade (Figure 2).  These trailing horseshoes reduce the 

induced incidence on the upwash side and increase it (make it 

more positive) on the downwash side, i.e. they alleviate the 

influence of the isolated vortex so that the true incidence, 

and, therefore, circulation, distribution is very like that 

sketched as curve B in Figure 1. Thus the trailing system is 

not a pair of simple horseshoes, but is made up of trailing 



vortex sheets which are very dense in the vicinity of the vortex 

and then reverse their direction of rotation and become quite 

diffuse outboard of the true circulation peak. 

Outboard of this peak, therefore, the incidence varies 

only slowly and if the aspect ratio is large enough there will be 

no problem about using lifting line theory in these regions. 

But between the two peaks conditions are very complicated and 

require much closer examination before a plausible approxi- 

mation can be devised.  First of all, it is clear that there is 

no load along the projection of the vortex, because the bound 

vortex lines do not cross this projection but bend around very 

much ass they do at the tip of an ordinary wing  (Figure 3) . 

Thus, close to the vortex the dominant component of vorticity 

on the surface of the blade must be trailing vorticity lying 

parallel to the chord. This means that the induced velocity 

at a point such as P must be considerably influenced by the 

trailing vorticity which is ahead of P.  The bound vorticity 

close to the vortex projection will make little contribution 

to the induced velocity at P, partly because for every element 

of "positive" bound vorticity on one portion of the blade there 

is an element of "negative" bound vorticity on the other half 

(see Figure 4) .  This shows a sketch of the spanwise contri- 

butions to the induced velocity at P due to a spanwise distri- 

bution of discrete lengths of bound vorticity at a chordwise 

station which is ahead of P.  Since the loading is skew-sym- 

metric about the projection of the vortex, for every element of 

bound vorticity on cae side of the projection, there is a 



corresponding element of opposite hand on the other.  Corres- 

ponding elements are not equidistant from an arbitrary point 

such as P, but it is clear from the sketch that the induced 

velocities of the bound vorticities on the two parts of the 

blade will tend to cancel when P is close to the vortex line. 

But a: P moves away from the vortex the number of elements 

contributing increases rapidly and conditions approach those 

which usually arise on a wing of finite span of high aspect 

ratio, i.e. with respect to a point which is not too close to 

a tip the bound vortex lines are effectively of infinite span. 

Thus close to the free vortex the bound vorticity only has a 

small, second order effect.  But the contributions to the 

induced velocity from the trailing vorticity on the two halves 

of the blade are additive and we conclude that the trailinc 

vorticity is the dominant factor in these regions.  It will 

not matter, therefore, how crudely the bound vorticity is 

ureated in the analysis since any errors will make only a 

small difference to the total result.  Conventional lifting- 

line theory will take care of the wake downstream of the 

trailing edge and of those parts of the blade which are well 

away from the vortex.  Thus the only important modification 

which we need introduce into the lifting-line theory is one 

which allows for the effect of that part of the trailing 

vorticity which lies on the surface of the blade close to the 

vortex projection. 

In some respects the blade-vortex problem is similar 

to that of calculating the lift near to a wing-tip--the load 



there falls off to zero and the trailing vortex lines bend 

around to lie parallel to the free stream.  Even close to a 

wing tip the lifting line theory is useful, although this is 

largely because the load carried by the tip is only a small 

fraction of the total.  But in the present case lifting line 

theory may be even more valuable because the load does not 

fall off so rapidly and because the bound vortex contributions 

from the two halves tend to cancel. 



III.  DEVELOPMENT OF THEORY 

Figure 5 shows a constant chord blade at a height K 

above an infinitely long straight vortex of strength I  . 

Take as origin 0 one trailing edge tip of the blade and let V be 

the spanwise coordinate, X the chordwise coordinate. 

We shall assume at this stage that the distribution 

of vorticity over the wing and wake can be represented by a 

distribution of horseshoe vortices, each of finite span. This 

span may be a function of V and the vortex strength «^ C^V/ 

will be a function of X and V .  We now chose to assume that 

the vorticity distribution is continuous across the chord but 

discontinuous in the spanwise direction.  We could, of course, 

also assume finite chordwise-steps in the bound vorticity so 

that the wing surface is replaced by a vortex lattice but this is 

not quite so convenient to our discussion. 

Then due to the element of bound vorticity at QC^/H) 

the induced velocity at  PvX*- Vm )     measured positive 

downwards, is 

V*)   L V-'-V" kZllh      1 



where Sh  is the span of the bound vortex element. 

Springing from  Q 

strength \W - Y^M 

velocity   W. t« given by 

there is a trailing vortex of 

This induces at r  a 

w (v ^ ui 1!_ 1+ 
Xm " ^ 

li%-1*)\iK-*WVt (2) 

To obtain the total induced velocity at  iXw jVw»)  ^t ;'-s first 

necessary to integrate across the chord, i.e. with respect to 

X   and then to sum up all the contribution over  V^ 

If the blade is to be a stream surface the total induced velocity 

due to the bound and trailing vorticity must be just equal and 

opposite to that induced by the interfering vortex.  Ideally 

this should hold at every point of the blade but the assumption 

of discrete spanwise steps in the vorticity distribution makes 

this condition impossible to satisfy.  The best that can be 

achieved is to satisfy the condition all across the chord at 

a limited number of spanwise stations, i.e. if we take N values 

of  •„  then the tangential flow condition must be satisfied at 

N     spanwise stations.  But even with this limited model, 

there is still no hope of an easy solution.  The problems are 

that the form of  o^t^ I    is unknown and that the integrations 

are difficult to carry out either exactly or numerically. 

8 



Therefore,,we must, as in all other applications of lifting 

surface theory, have resort to further simplications.  We deal 

first with the contribution of the bound vorticity. 

If we consider a section of the blade some distance 

from the vortex then it is reasonable to assume that the bound 

vorticity is varying only slowly in this region.  Thus 

Y^ - Yn - VMt       •  We next assume that l>/nrVn+S»^ ^iX'm^i 

i.e. the distances in the spanwise direction are much greater 

than in the chordwise direction.  With this assumption the 

j j  term is (1) becomes zero for Y\ ^.yn 

and 2 for "N »W . Thus the two assumptions combined 

are equivalent to the single assumption that at any spanwise 

station sufficiently far from the vortex the bound vorticity 

can be taken to be of infinite extent. 

This assumption gives 

C 

We now make the further assumption that (3) holds all 

over the wing.  This is obviously not true in the vicinity of 

the vortex where chordwise integral of the bound vorticity 

is varying rapidly in a spanwise direction but, it has been 



argued, the net induced effects of the bound vorticity are very 

small in that region.  Therefore, even if we make a substantial 

error in the representation of the bound vorticity the error in 

the final solution will not be significant.  This assumption, 

and equations (1) and (3) are more formal statements of the 

effects of bound vorticity which were discussed diagrammatically 

in the previous section.  Identical assumptions are made in 

the conventional lifting line theory and this procedure is con- 

sistent with our argument that in the present circumstances it 

is only the additional effects of trailing vorticity that are 

important.  But it will be noticed that the assumption (3) still 

allows a chordwise variation in the bound vorticity and, as later 

discussion will show, it is possible that we shall have to make 

use of this freedom at some stage. 

We turn now to the evaluation of the induced effects 

of all the trailing vortices.  Summing over the blade 

N fi     c 

-_L \    > 

The integration with respect to  K is, of course, necessary 

because trailing vorticity at a spanwise position VL "accumulates" 

across the chovd. 

We notice first of all that those parts of the wing 

10 



where      I^NU ^ ^>"'^ (4)   reduces to 

^(X^V-+T/       /   - y—T     ' (5) 

y»     o 

AKn 

fm-yn (6) 

where    6 K,,2* / L V^""^»-! J ^^        is the strength 
o 

of the spanwise trailing vortex.  Equation (6) is the standard 

formula for the induced velocity as used in the usual lifting 

line theory.  It strictly only applies to points on the wing which 

are remote from the trailing vortex   I    but it is permissible 

to retain it even when a point such as P is close to a trailing 

vortex line provided that P is forward of 0.   Once again the 

reason why this is acceptable is that the induced velocicy in 

this region is very small and errors in it are not significant 

in the overall. 

But if    1 X^X-,.)      is equal to or greater than 

11 



I NU'"'YY», I and P is well behind 0 this approxi- 

mation must fail.  This is easily seen by putting  | X— Xm| 

» Wyn^V-hl     in (4) in which case the term \_ | 

becomes 2 and 

N N 
1    V      AK' 

Hn^m.^n.) ~ Z^ £_    ^->/ (7) 

Equation (7) is a standard result used in the theory of wings 

of very low aspect ratio, i.e. for those wings or parts of 

wings where the predominant component of vorticity is chord- 

wise.  Now this is the case close to the infinite vortex so 

that moving outwards from the vortex conditions must change 

from something like those on a low aspect ratio wing to those 

on a high aspect ratio wing. 

This suggests that the blade-vortex problem might 

be solved approximately by imposing a plausible variation 

from low to high aspect ratio theory as the point Pv^w. jrv») 

moves away from the infinite vortex.  This, of course, is not 

a new idea; it is a standard procedure in some of those ap- 
3 

proximate lifting surface theories which deal with the flow 

in the vicinity of a wing tip.  But if this approach is used 

12 



exactly how is the transition from low to high aspect ratio to 

be accomplished? 

We proceed in the following way.  In equation (4) divide 

the numerator and the denominator by    X^- X     so that the 

expression for the total induced velocity due to the trailing 

vortex system becomes 

N M c 

^%*>p- )^ y^L (v.-v^f ^ (8) 

The first term in (8) is the induced velocity as it would be given 

by a conventional lifting line theory based on the assumption 

t'^it the loading is condensed into a single bound vortex whose 

strength varies spanwise.  The second term is zero if the ratio 

of the spanwise distances to the chordwise distances is very 

large, but the denominator tends to unity as this ratio becomes 

very small, i.e. if the spanwise rate of change of circulation 

is large so that the trailing vortices are closely spaced.  It 

is into this term that the correction for an "effective local 

aspect ratio" must be introduced and because an integration is 

involved this correction is a function of the chordwise loading. 

Thus we should perhaps pu^ 

13 
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X(M)-2V[w^^+|fl#slMse ] (9) 

where   * =s (f) [ I ~ CÖS ^J (10) 

so that the chordwise loading has its customary two-dimensional 

form, but its scale can vary spanwise since the unknown coef- 

ficients   n^Y' |  ns W) |   etc. are functions of  y 

Substituting (9), (10), in (8) the integrals can be evaluated 

numerically for each value of  V   so that at each spanwise 

station the chordwise loading is given as a known function of 

several arbitrary coefficients. To get numerical values for 

these coefficients we have to impose the condition (or some 

variation of this) that the downwash due to the trailing 

vortex system just cancels, at. the blade surface, the induced 

velcjity due to the infinite vortex.  The problem then reduces 

to the solution of a number of simultaneous equations; the number 

of unknowns is the product of the maximum number of chordwise 

loading terms and the maximum number of spanwise stations. 

This process is basically quite simple, and is not much dif- 

ferent from the "kernel function" technique, but it is in fact 

too sophisticated for our purpose, since we are no developing 

a lifting surface theory, but merely seeking a modification 

14 
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to the lifting line theory.  The lifting line theory itself 

is based upon the assumption that only the first term in the 

chordwise loading series is important and this, since it gives 

a constant induced velocity across the chord, leads directly 

to the first term in (8).  A comparison of the first and 

second terms in (6) suggests that an adequate second approxi- 

mation might be got by replacing the integral by some mean 

value across the chord.  If we take only the first term in 

the chordwise, loading series, i.e. the two-dimensional flat 

plate loading, then it is probably accurate enough to replace 

X^ — X by some average value across the chord 

and the expression for the induced velocity of the trailing 

vortex system then becomes 

1 \   A k 

where      b       is   some  average value of       X^ — X 

(ID 

'w 

Clearly,   the values  obtained  for  the   induced velocities, 

and,   therefore,   for  the   circulation distributions,   will  depend 

upon  value   assigned  to   the  parameter     o       .     Although we  can 

(see  below)   obtain  plausible  estimates  the  basic   idea of  a 

mean   (average  across  the  chord)   correction will  only be useful 

if  the  calculated circulation  distributions   are   relatively 

insensitive  to the  actual values  chosen.     One  of  the  first   steps 

which must be  taken,   therefore,   is  to vary     D      over a reason- 

15 



able range. 

All  these  assumptions  and considerations   finally reduce 

the model  of  the   flow to the  form  shown   in Figure  6.     Since only 

one known chordwise  loading distribution  is used  the bound vor- 

ticity can be  condensed  into  a  single   line vortex   so  that  at  a 

spanwise  station       V we merely assume a bound  circulation 

Kft together with  a trailing vortex of  strength   K n4.."'  Kn 

at the   station  1/2   (    yn   f   V^ )   i.e.;     y     is 

measured  to  the center of each   spanwise  segment.     The  assumption 

that at  any  spanwise  station  the bound vorticity   is  of  infinite 

extend means  that we essentially are considering  the   flow as 

two-dimensional with the   incidence  at  that  station equal  to the 

algebraic  sum of  the  induced velocities divided by  the  local 

free  stream velocity        V .     These  two assumptions  are  to- 

gether equivalent  to the  single assumption that  at  any span- 

wise  station  the  flow  is  two-dimensional,   so  that  the   lift 

curve  slope   is     Gl0    ,   but   the   incidence  is  the  algebraic  sum 

of  the  contributions  of  the  free   infinite vortex   and   the 

trailing  vortex   system. 

t 

2) Since  the   lift  per unit   span =/0 V Kn ^ jT ^-i    yö ^ »     (1 

Z     is  the   local chord ' 

K^-K/V (i3) 

CLn--a0Nv + wT)/v (i4) 

so that K     =   -  (<l./2,)(viy+WT) 

where 

but 

(15) 

16 



where     Wy     is the   (downward)   velocity  induced by the   infinite 

vortex  and    wT   is  the   total   (downward)   velocity  induced by  the 

trailing vortex  system. 

At  any spanwise  station     V^    we have 

(16) 

4ir 
» = i 

fl 

^-ruJL^^ [4( 

where 
k^n^ Kn+,-K n+\       ^n AKN = -KN 

AK, = -K. 

and     fl        is  a parameter which can have  the  values of   1  or  0.      It 

has  been  introduced  so  that  loading  distributions predicted  by 

the   lifting  line  theory   (   ^ = 0       )   may be  compared with 

those  by the modified   theory   ( R =  j     ) . 

17 



From   (15) 

^ = -^)[vy(YJ+v/T(Ym)] 
(18) 

and   substituting  from   (15),    (16)   leads  to a   set  of     M     simul- 

taneous  equations  for  the  unknown   \{    , 

To solve we  put  the variables   in non-dimensional 

form by means of  the  substitutions. 

7^= c ^ 
(19) 

and  a digital computer  program has been written which calculates 

the  coefficients   in   ,   and   solves,   the resulting   set  of equations. 

The  data  necessary  for  the  program are   the vortex height  and 

spanwise  position  -  in  chords   length -  the   selected value  of  B 

and  the  positions which have been chosen  for  the  trailing 

vortices.     This  latter   is   a matter  for  experiment but obviously 

the  vortices  should be  closely spaced close   to  the   infinite 

vortex,   and more widely space  elsewhere.     The program output 

is  all  the values of       k,,       i.e.the  local bound vortex strengths 

expressed as  a fraction of  the   infinite vortex  strength. 

The parameter  B   is  a non-dimensional measure of  how 

the   induced velocity  of   the   trailing vortex   system  is  to  be 

18 



averaged across the chord and we may obtain an approximate idea 

of its value in the following way.  B = ^^ rr\ ~ \ ^^ 

and is obviously less chan unity.  If we put B = 0 the denominator 

of terms multiplied by A becomes infinite and the problem reduces ■ 

as of course it should since B = 0 means that the chord vanishes - 

to the lifting line solution.  Thus a first guess perhaps would 

be B = 0.5.  But most of the load on an aerofoil section is 

developed over the front half of the chord so that the trailing 

vorticity has accumulated to almost its maximum strehgth by 

mid-chord.  The induced velocity must, therefore, become virtually 

constant somewhere between the mid-chord and the trailing edge 

and a more reasonable guess might be to put B = 0.75.  In the 

calculations whose results are described in the next section B 

was allowed to take the values 0.5, 0.75 and 1.0 in order to 

test the sensitivity of the solutions to this parameter. 

19 



IV.  RESULTS 

The following cases were evaluated using the methods 

described above. For a blade of aspect ratio 20 lifting line and 

modified lifting line theories have been used for vortex dis- 

tances below the blade of 1, 0.5, 0.25 and 0.1 chords length 

(see Figures 7, 8, 9,   10,   11 which show the spanwise distri- 

bution of circulation on one-half of the blade).  Some cases 

were evaluated for various values of B, but the calculated 

distributions are far from sensitive to this parameter (see 

Figures 7, 8, 10), and it is suggested that B • 0.75 should be 

used in future.  A few loading distributions have also been 

calculated for a blade of aspect ratio 6 (see Figure 11).  In 

all these examples the vortex was taken to be underneath the 

mid-span point of the blade and fll0 was put equal to Z-IT 

Basically all the loading distributions show the 

same features.  The infinite vortex induces an incidence dis- 

tribution which on one side of the vortex rises rapidly to a 

peak and then falls away again in a more or less hyperbolic 

manner (on the other side of the vortex the induced incidence 

distribution is the same, but of opposite sign). 

Immediately above the vortex the induced incidence is 

zero.  Each peak occurs away from the vortex at a spanwise dis- 

tance equal to the vertical distance of the vortex from the 

blade.  In the absence of trailing vortices this incidence 

distribution can be converted directly into a circulation 

20 



distribution.     If we denote  this primitive circulation distri- 

bution by      K0       then      |<o s.       Ko   /V ^  given by 

(20) 

which has  a maximum value  of   1/4">?     (5i   'tL =■ ^ 

The effect of the  trailing vorticity   is  to  reduce  the 

height  of  the primitive circulation peak and  to   smooth out  the 

variation  somewhat,   but  apart   from their dimensions  the actual 

and primitive circulation distributions  are  very  similar and 

Scully's     idea of a  fictitious  height  seems   to be  quite valid. 

If  the   lifting   line theory  is  used the  reduction   in peak height 

is  about  60% of  the primitive  value   for  a vortex distance  of 

one chord  and  this  attenuation   increases with  decrease  of vortex 

distance  until     the peak   is  about  35% of the  primitive  for  a 

distance  of  one  quarter chord   (Figure  12) .     It will,   however,   be 

appreciated  that  this does not mean that the  actual  peak cir- 

culation  falls  to  zero as  the vortex approaches   the  blade.     In 

fact,   the  actual peak circulation becomes   infinite  under  these 

conditions,   although  it   is   still   infinitely  smaller  than  the 

primitive.     This  raises  a point  of   interest   in  connection with 

the  strength  of   the  trailing  vorticity  since   this  must  actually 

pass closer  to  the  next   following blade  than  the   free vortex 

which   is   its  canse.     For   small  vortex  distances   the  vorticity 
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which   is  trailed  close  to  the vortex   is  sufficiently bunched, 

i.e.   the  trailing  sheet   is  locally sufficiently strong,   for 

there  to be virtually a concentrated vortex   in that vicinity. 

The   strength of  this  concentrated vorticity  is  twice  the  peak 

value  of the circulation  - twice because  although  the  trailing 

vortices  from the  two halves of the blade  are of opposite  hand 

their  strengths  combine  near  the vortex.      (This  is  apparent 

from Figure  2^     Thus,   some very strong vortices might  appear 

in  the wake and   for  the  case of  a vortex of  0.1 chord distant, 

from the blade  Figure  10   shows  that,   on  a basis of  lifting  line 

theory,   the  strength     is  about  95% of  that  of the  free vortex. 

But  this diagram also  shows  that  the  closer  the vortex   is  to the 

blade  the  sharper   is  the peak of the   loading distribution.  Thus 

on  either  side  of  this very dense  trailing vortex  sheet   is 

another,   rather more diffuse,   sheet  of  opposite hand  and  total 

strength of the  order of half the  p^ak value.     Close  to  the  free 

vortex,   therefore,   when  that vortex   is  close  to the blade,   the 

wake  contains  three   fairly concentrated trailing vortices whose 

net  strength   is  only  a  fraction of   that  of  the  free vortex. 

Succeeding blades  should,   therefore,   be   free of any undue  extra 

interference,   but  this  feature undoubtedly adds  to the  compli- 

cation of  the   flow pattern and  its  computation.     For  the  examples 

given here,  where   the  free vortex   is   symmetrically placed on  the 

blade,   there   is  no direct change   in  the  total  lift,   but  the  loading 

distribution exerts   a couple on  the  blade which undoubtedly modi- 

fies  the  flapping  and will cause  the  blade  to bend. 

If  the  modified  lifting   line   theory  is used  the peak 

22 



vortex  strength   is  less   than  that given by  the   simpler  theory 

and the   spanwise distribution   is   slightly  smoother.     But,   except 

when  the  vortex   is very close  to  the blade,   the  rate  at which 

the  peak  circulation  is   reduced with vortex distance   is virtually 

the  same   as  for  the  lifting   line   theory   (Figure  12).     As   is   to 

be expected  the greatest  difference between  the  two theories 

arises  close  to the vortex  and  is accentuated when  the vortex 

is  close   to  the  blade.     When  the  vortex   is  very close,   it   is 

obviously necessary to  use   the modified  theory,   but  there   is 

little  difference  between   the  peak values   of   circulation given 

by the   two theories when  expressed as  a percentage  of  the primi- 

tive.      It   seems unlikely,   therefore,   that   a more  elaborate   lifting 

surface  calculation will  predict  further  significant changes   in 

the   loading  distribution.     The  actual value  of  the peak  is 

slightly  affected by the  assumed value of  B   (Figure  8),   but 

well  away  from the vortex  the predictions  of   the   two theories 

are  virtually  indistinguishable   for all values of  B  and this 

is  clearly not  a significant parameter.     Some  explanation of 

this  can  be got  from an  examination of equation   (17).     The 

induced velocity at  any  spanwise  station   is   the  sum of  terms 

which depend upon the  difference   in circulations  between  segments. 

Thus,   with the  sort of values which are  appropriate  to B,   it will 

not  make much difference  to  the   induced velocity whether we 

take A =  0 or   1 unless   the  circulation   is varying  rapidly.     Thus, 

in  regions where  the   loading changes only  slowly  spanwise  the 

lifting   line  theory and  the modified theory  should  lead to 

virtually the  same  answers.     This means   that  the  greatest dif- 

ference  between  the  two   theories  should be   found  near to the 
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infinite vortex. 

The difference between  the  results  of  the  two theories 

are  accentuated by a reduction   in aspect ratio.     Figure   11 

shows that  for an aspect ratio of 6  the spanwise   loading curves 

are not  so peaky as  for an  aspect ratiocf  20  and the  actual 

peaks are   slightly reduced.     Although the curves  predicted 

by the two theories  appear  to remain much  farther apart than 

for the high  aspect  ratio,   this   is  only because  the distance 

from the vortex to the tip  is much shorter  in  the   low aspect 

ratio blade.     In any case not too much significance  should be 

attached  to  this  since both the methods are   inaccurate near 

the tip.     Once  again,   it is  found that B  is not  a significant 

parameter. 
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V.      CONCLUSIONS   -  FURTHER DEVELOPMENTS 

The principal conclusion of  this paper  is  that 

lifting   line  theory  should be  adequate  to predict  the   loading 

distributions on  a  rotor blade   in forward   flight,   although 

if   a vortex passes very close to the  blade modified  lifting 

line theory might be  used.     Ideally  this conclusion  should be 

checked by a more  elaborate calculation  and   it may  indeed  be 

that  there  are cases when the use of   lifting  surface  theory 

proper  is  really necessary.     One situation where  this might 

arise   is when a  free   tip vortex  is  close  to,   and parallel  to 

the  span of,   a  following blade.  Then  the chordwise  pressure 

distribution will be  quite unlike  that  of  a conventional  aero- 

foil and this difference will hold over a substantial part  of 

the  span.      (A study of the variations   in  rotor blade  chordwise 

pressure distributions  in forward  flight would be  a good  topic 
4 

for  further research.     There  is already experimental evidence 

that these differ considerably from the usual.     If vortex   inter- 

ference  is  a partial,   and unavoidable,   cause of  this deviation, 

it   is  possible  that   some   improvement   in  rotor performance  and 

control  loads  could be brought about by designing  a more  ap- 

propriate profile.)      But  if  it does become  necessary to  establish 

a more precise  lifting  surface  theory then  it  is  suggested  that 

the   improvements  be  confined to the vicinity of the   interfering 

vortex.   The extra effort  is  not  just   in computation  time   and   ir- 

relevant data  for  regions well away  from the vortex may  impede 

understanding. 
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Although in principle the vortex lattice method could 

give the loading distribution more accurately without further 

detailed knowledge of the flow pattern, in practice better results 

and faster convergence would be obtained if at least an exact, 

limiting, solution for the surface vorticity distribution were 

known.  The important features to be represented in the vicinity 

of the vortex are the correct chordwise loading, since this 

determines exactly how the trailing vorticity accumulates across 

the chord, and the correct shape for the spanwise loading since 

this determines the distribution of trailing vorticity in the 

wake. A very interesting and valuable contribution would be 

obtained if a solution could be devised for the case when the 

vortex actually passes through the blade.  It would probably 

be sufficient to assume the blade to be of infinite span but 

of finite chord.  The incorrect behavior well away from the 

vortex would be irrelevant and the theoretical chordwise and 

spanwise loadings would be excellent "first terms" for a more 

general case, particularly if the kernel function approach 

were used.  The importance of having the correct chordwise 

loading is brought out by the fact that the accumulation of 

trailing vorticity across the chord will lead to a higher in- 

duced velocity at the trailing edge so that there will be an 

induced camber close to the vortex.  This "effective warping" 

of the section will be of opposite sign on either side of the 

vortex and must lead to shifts in the position of the center 

of pressure. 

Although the theory described is Section 3 and its 
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associated digital computer program are quite general, there was 

initially no time to exploit all the possibilities.  This work 
5 

was, therefore, taken up later by I.A. Simons  and it is sug- 

gested that his paper be read in conjunction with the present 

report.  Simons gives more examples of spanwise loading dis- 

tributions, particularly when the vortex is very close to the 

blade, and studies the effect of offsetting the vortex from the 

mid-span of the blade.  He also examines the concepts of effective 

strength and effective height and shows that the assumption of 

a finite core for the free vortex has a marked effect upon the 

loading distributions. 
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the  free  vortex. 

31 

.-»•■ 



A 

X-        ,1(3    .&>   .Id^ m* 

Figure 4.   Bound vorticity  contribution to  the induced  velocity 

32 



P(Wm) 

—~sn-r •Sn*r 

|y(x) y(l)1 

Figure   5. Diagram   for calculation   of induced   velocity  due to 
bound and trailing  vortices. 

33 



^r 

^ 

.K, 

^K, ^ VS 

K m 

m 

^        \Kn*1 vK 

') 

\  n* 1 |NN 

Kn-f1 ~Kn 

Yn+1+Yn AK ̂N 

Figure 6.   Notation   for calculation   of circulation distribution 

3^ 



020 

_K_ 
r 

0 15 

010 

VORTEX   AT  ONE   CHORD   PROM   BLADE 

0 05 

PRIMITIVE     CIRCULATION {K0 /p) 

MODIFIED   LIFTING   LINE 
 0  B = 0 5 
 Q B  :=1   0 

SPANWISE   DISTANCE   FROM   VORTEX j CHORDS 

Figure 7. Spanwisc loading distributions  A R = 20 
comparison of theoretical   results. 

35 



0'50 

OAO 

_K_ 
r 

0-30 

0-20 

CMO 

VORTEX    AT  ONE    HALF  CHORD 

PROM   BLADE. 

PRIMITIVE   CIRCULATION (K0/r) 

2 3 4 5 
SPANWISF    DISTANCE      FROM      VORTEX ,   CHORDS. 

Figup?-8   Spanwise    loading   distributions   AR. = 20 
comparison  of theoretical   results. 

36 



0 30 

r 

0-20 

010 

LIFTING  LINE VORTEX     AT       ONE   QUARTER 
CHORD   FROM    BLADE 

MODIFIED 
LIFTING  LINE 
B =0 75 

3 4 5 6 7 

SPANWISE   DISTANCE   FROM    VORTEX,  CHORDS 

Figure  9 Spanwisc   loading distribution A R .= 20 
comparison of thöorctical rcsuts 

37 



056 

0-48 

0-40 

_K_ 

r 
0 32 

0-24 

0-16 

008 

LIFTING  UINE0-1 CHORD   DISTANT 

(B^075) 

LIFTING     LINE    1 CHORD    DISTANT 

MODIFIED    LIFTING 
LINE. 

MODIFIED    LIFTING (B = 0-75: 

X X I X J_J_ 
2 3 4 5 6 

SPANWISE     DISTANCE    FROM   VORTEX,  CHORDS 

Figure 10   Effect of vortex   height and   method of solution 

on   spanwise   loading   distribution. A .R. 20 

38 



. 

0 40 

_K_ 

r 

0-30 

0'20 

0-10 

LIFTING    LINE ^    CHORD DISTANT 

MODIFIED   LIFTING >i 
LINE 

LIFTING   LINE   1    CHORD >i 

MODIFIED   LIFTING 
LINE 

B =(0b) 

B-d-O) 

VO 
SPANWISE 

2-0 
DISTANCE FROM 

3-0 
VORTEX,CHORD. 

Figure 11   Effect of vortex   height and method  of solution   on 
spanwise   loading   distribution.     A   R.6 

39 



1-6 

00 

< 
UJ 
Q. 

< 
O 

UJ 
cx 
O 
UJ 
I 

1 4 

x     12 

g 

< 
Q. 

< 
i— 
u < 
Li. 
o 

< 
er 

VO- 

fl- 

oe 

< 
ui 
fl. 
UJ 

^     06 

04 

02 

LIFTING  LINE 

MODIFIED   LIFTING 
LINE . 

0 02 04 06 0-8 10 

DISTANT OF VORTEX  FROM   BLADE,   CHORDS 

igurc 12   Influence   of vortex height and method of calculation on peak 
circulation. 

^40 


