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FOREWORD

The wide difference in strength between what is presently realizable

the materials oi commerce and what is assumed to be theoretically poss

is of continuing concern to materials specialists. A committee of the

Materials Advisory Board, ia report MAB-187-M, December 1962, ma

an extensive study of the situation with respect to metals, and expresF -(

the results in terms of the so-called metal gaps between the practicai'y

obtainable and the theoretically possible. The report aroused widespreý

interest both as to technology and as a guide in supporting metallurr,. Za

programs.

The question arose as to whether a similar analysis could be applied

materials generally, recognizing the difficulties presented by such dive

substances as metals, ceramics, glasses, and polymers. In a letter i

Dr. Earl T. Hayes, Assistant Director (Materials) of the Office of Dir

of Defense Research and Engineering to Dr. Frederick Seitz, President

the National Academy of Sciences (Appendix), it was requested that a sti

be conducted to summarize the procedures for estimating theoretical

strength, together with discussion of assumptions and their limitations.

and examples of calculations of maximum strength for different classes

materials.

The project was assigned to the Materials Advisory Board which

organized the Committee on Theoretical Properties of Materials, with

membership as shown on page iii.
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ABSTRTCT

This report is in six sections, i.e., Introduction, Theoretical Con-

siderations for Ideal Soliea, Cohesive Strength of Crystals, Strength o

Inorganic Glassy Solids, Strength of Organic Polymers, and Example.s

Theoretical Strength Calculations. Equations suitable for engineering

purposes are developed for each class, along with a discussion of th.

assumptions involved, and the ]imitations and uncertainties applicable

to the expression of strength in terms of other properties which are

measurable experimentally. The report sets farth the consideratioiis

upon which the concept of theoretical strength is based, the methods b.

which calculations can be made, the information required to make the

calculations quantitative, the sources of such information, and the lev-

of confidence to be placed upon the results applicable to various typce.

materials.



SECTION I - INTRODUCTION

The advances of present day technology are in large measure limited

by the pioperties of the materials of which useful structures and devices

are made. A limiting property of particular interest is strength and a

tremendous effort is being devoted to a materials development program

aimed at the improvement of the strength properties of known substances

anc the discovery of other substances, not now known, which will exhibit

superior properties. In the prosecution of such a program it is only natural

that attention should be given to the fundamental ultimate strength of a sub-

stance, a strength determined by the basic physical or chemical forces

which hold the individual atoms together to form the solid. That such a

strength is theoretical and cannot directly be measured must be obvious

because neither a kindly nature nor the skill of man has provided us with

substances in bulk form which are so perfect in structure that the basic

interatomic forces can manifest themselves to their utmost.

Nevertheless, a knowledge of the theoretical strength of a suostance

would be very useful for a number of reasons. In the first place, it rlearly

indicates the ultimate potential of particular substances for particular

applications in which the material acts as a structural element. Secondly,

the theoretical strength provides an important index by means of which one

may judge the progre. s being made in development programs directed

toward the achievemE it of higher strengths in particular substances. And

thirdly, in the searcl- for new materials, the ability to predict the theoreti-

cal strength provides a powerful tool of great utility in the organization of

an efficient and systematic exploration.

A general definition of theoreltical strength may be stated in relatively

simple terms. One can imagine a body of the ideal substance that is com-

pletely homogeneous and free from all defects. The surfaces of the body

are so remote from the area of interest as to have no influence. The
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geometrical model of such an idealized substance presents no particular

problem for crystalline substances but will involve some assumptions if

the material is non-crystalline. Consider now a plane passing through the

body and an exte-nal force appliea such that a uniform uniaxial tensile

stress p•cts normal to this planeproducing elastic deformation of the body.

Across the plane, a separation of the atoms to distances greater than their

normal spacing results. As the separation increases, the resultant of the

interatomic forces, acting across the plane and opposing the applied stress,

increases, at first rapidly and then more slowly, until a maximum is

reached, after which the resultant stress decreases. If a stress less than

the maximum is applied and then released, the body returns to its original

configuration. If the applied stress reaches the maximum value, however,

the body will fracture. The theoretical strength or cohesive strength,

therefore, is the maximum value of the stress, resulting from the inter-

action of the atomic f:nrce fields, which opposes the separation of the atoms.

A calculation of the theoretical strength would require not only an under-

standing of the interatomic forces themselves, but also a knowledge of the

atomic configuration so that an appropriate summation of the forces could

be carried out.

Tremendous progress has been made in the last quarter century in the

understanding of the structures of all sorts of materials and a large collec-

tion of quantitative data on a variety of properties has become available.

It should be possible, at least in principle, to calculate the theoretical

strength of a substance on the basis of its known physical and chemical

characteristics. If the results are to be quantitative, the required proper-

ties must be known quantitatively or must be measurable. It would be parti-

cularly advantageous if it could be shown that the theoretical strength

cotuld be expressed in terms of properties which are relatively insensitive

to those aspects of structure which distinguish the real frorn the ideal sub-

stance, but to which the observed strength values of the real material itself

are very sensitive. These measurements would provide the basis for a

quantitative determination of the theoretical strength.
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Because of the complexity of the problem on the one hand and present

limitations of the theory on the other, it is inevitable that certain assump-

tions must be involved in the expression of strength in terms of other and

more basic properties. In attempting to give quantitative answers to the

problem, thes;., assumptions must be examined with great care and a

thorough assessment made as to their influence upon the reliability of the

result.

It is the purpose of this report to set forth the considerations upon which

the concept of theoretical strength is based, the methods by which calcula-

tions can be made, the information which is required to make the calcula-

tions quantitative, the sources of such infjrmation and to indicate the level

of confidence which can be plac .1 upon the results which apply to various

types of material.

Before defining the theoretical cohesive strength of a solid in more

specific terms or considering the controlling factors, it is useful to make

a general classification of solid types since a soinewhat different approach

may be required, depending on the nature of the solid. Any such classifica-

tion must be rather arbitrary because of the wide variety which is evident,

but it is possible to make a grouping into three main categories if emphasis

is placed upon those materials which %ave, or may have, engineering

possibilities.

These categories are:

1. Crystalline solids

2. Glassy solids

3. Polymeric solids

The crystalline solids are in many ways the simplest and easiest to

describe. The elements of the structure are atoms (or ions) and the dis-

tinguishing feature is the regularity of the arrangemcant. The structural

elements are considered as occupying the points of a three-dimensional

lattice which repeats itself at regular intervals in all directions throughout
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the crystal, however large or small it may be. The repeating pattern may

be simple or very complex but the fundamental characteristic is a long-

range order in the structure and consequently it is susceptible to an exact

geometrical formulation. The environment in which each atom finds itself

may be exactly specified. Examples of crystalline solids are the metals;

the covalent crystals such as diamond, silicon and germanium; the ionic

compounds typified by the alkali halides; the refractory oxides and silicates

of ceramics; the hard and refractory compounds of the transition metals

such as carbides. borides, and silicides; and of course many others.

Cc.ntrasted with the orderly atomic array in crystalline solids is the

amorphous substance in which the .-toms pack themselves in a disorderly

fashion in which no regular repeating pattern can be recognized. Truly

amorphous substances are rare, for nature has a strong inclination to be

orderly in her ways. Occupying an intermediate position are the glassy

solids which are characterized by order on a localized atomic scale but a

lack of order on a long-range basis. Perhaps the simplest example is

silica glass in which the basic structural elements are silicon atoms sur-

rounded by four oxygen atoms at the corners of regular tetrahedra. The

tetrahedral units are distinctive but they join up in the glass by sharing the

oxygen atoms at their corners to form a structural network which is ir-

regular in the sense that it does not show long-range order. The sharing

is controlled primarily by the fact that a finite piece should contain twice

as many oxygen atoms as silicon atoms. Important engineering glasses

are more complex than this simple example but in recent years great pro-

gress has been made in understanding them. It is clear that in approaching

the problem of strength, the case for the glassy solids will be somewhat

different from that for crystalline solids.

Still another class of solids is composed of molecular groapings of

atoms as the structural elements. In general, the forces that act within

the molecules are similar to those in the simpler crystals, but the forces
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holding one molecule to another are of a somewhat different and usually

much weaker nature. The molecular solids of engineering interest usually

are those with very large molecules formed by the aggregation (polymeri-

zation) of simpler molecular units. The polymerized molecules may be in

the form of linear chains, two-dimensional sheets, or three-dimensional

networks and frequently contain a very large number of individual atoms.

Some polymeric substances are truly crystalline, as for instance when

chain-like molecules are packed together in a regular repetitive fashion

to produce a three-dimensional order capable of exact specification. Usu-

ally, however, the degree of order is quite low. Furthermore, complica-

tions are created by the existence of strong cross-links between molecules,

or connections through branching chains. This makes an exact description

of the structure extremely difficult and poses serious problems for one

attempting to irake theoretical calculations of the strength. These solids

exhibit a wide variety of strength properties which are susceptible to modi-

fication and control in various ways. Consequently, considerations of

theoretical strength are particularly pertinent for them.

The relations between theoretical strength estimates and the behavior

of current engineering ma.terials creates serious problems of judgement

because of the complex structures of many materials. Consider, for

example, the case of a high steel strength. Such a steel contains atoms of

several elements in addition to iron and carbon. These atoms are grouped

to form several distinct phases, each phase having its own internal struc-

ture. Furthermore, since the material is polyphase, it is also polycrystal-

line and the various crystals are packed together in a complex textural

configuration. It becomes a matter of questionable judgement to choose

what is to be considered to be the "basic substance." Should it be the

matrix phase, in this case an iron-rich solid solution? Or should one

arbitrarily decide that the basic substance is pure iron itself, even though

in some temperature ranges the crystal structure of the solid solution and
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pure iron may be different? This dilemma point up the need for develop-

ment, on theoretical grounds, of basic relationships between strength and

other properties such as the elastic moduli or thermal expansion coeffici-

ents which are relatively structure-insensitive. Even though these relation-

ships may be approximate ones, and provided the uncertainty involved is

recognized, such measures of the theoretical strength should be valuable

and useful concepts in the field of materials development.
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SECTION II - THEORETICAL CDNSIDERATIONS FOR IDEAL SOLIDS

A. CRYSTALLINE AND NON-CRYSTALLINE SOLIDS

When a piece of solid material is formed from its constituent atoms, the

many possible arrangements can possess various degrees of regularity.

The extent of the regularity can be described in terms of a set of vectors

drawn from any particular atom or molecule to all other identical atoms

or molecules in the specimen. At one extreme of organization, if each of

these vectors can be expressed as a sum nlaI + n2 :2 + n3 a 3 , where the

n's are integers and the a's are not coplanar, then we say that the

piece of material is perfectly crystalline. In more visual terms, in a per-

fectly crystalline material the same pattern of inter-atomic vectors is

repeated throughout the entire region of space occupied by the material.

This pattern is referred to as a crystal structure. At the other extreme

of atomic organization--or, in this case, disorganization-there is no cor-

relation at all between the various inter-atomic vectors, and we say that

the material is amorphous. Thus, in an amorphous material, knowledge

of the direction and distance from one atom to another identical atom tells

us nothing about the locations of any other atoms.

Neither extreme is found in nature. Although most solids are-for

energetic reasons-highly crystalline, none are perfect crystals. They

may contain impurity atoms, vacant atomic sites, interstitial atoms, lines

of crystal dislocation, and-especially at elevated temperatures--small

transient vibrational displacements. Thus, for real crystals, the vector

condition stated above holds only approximately--but sometimes to a very

good approximation for most of the atoms. Similarly, few if any, solid

materials are completely amorphous. They tend not to be because of the

rather well-defined radii of atoms, plus the fact that the interatomic

forces usually reduce the interatomic spacings to the sums of two radii,

thereby ensuring a relatively small spread in the spacings between any
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atom or molecule and its nearest neighbors. Moreover, the stereo-

geometry of valence bonds, plus spatial limitations on how one sphere can

be surrounded by many equivalent spheres, further tends to reduce the

randomness. Thus, it is not surprising that even in materials which lack

long-range crystalline order, considercable short-range order still exists

around each atom. A gradual increase in the definition and range of such

short-range order produces a gradual transition to the crystalline state.

Therefore materials are found with structures that range over the whole

spectrum of regularity between the perfectly crystalline and the completely

amorphous states.

Since solids do not evaporate at low temperatures, there must be attrac-

tive forces between their atoms and molecules. These attractions can be

expressed in terms of a binding energy. This binding energy of the solid

may be measured relative to a gas of isolated atoms (as in the case of

copper metal), a gas of isolated molecules (as for anthracene crystals),

or a gas of positively charged metal ions and negatively charged non-

metallic ions (as for sodium chloride); the choice of reference state is a

matter of convenience.

The most universal-and also the weakest-of the binding forces be-

tween two atoms or molecules results from interactions between electric

dipole moments on each. Even if neither has a permanent dipole moment

(as in the case with all atoms and with many molecules of high symmetry),

such a force will still exist because of transient induced moments. That

is, fluctuations in the electronic charge density on atom A will induce a

dipole moment on B, and vice versa, giving rise to a net attraction. This

attraction is known as the van der Waals interaction, and is the only source

of binding in suth materials as the solidified rare gases and many non-polar

organic crystals such as naphthalene and anthracene. In these "van der Waals"

crystals, the binding energy is very small, typically one or two tenths of

an electron volt* per molecule. If the constituent molecules have, in

*One electron volt (eV) = 1,6 x 10-19 joules; 1 eV/atom = 23 kcal/gm mole.
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adution, a permanent electric dipole moment (due to an inequality in the

affinities of the constituent atoms for valence electrons) or can form

hydrogen bonds between strongly electronegative atoms such as oxygen,

then the binding energy is somewhat larger-up to about half an electron

volt per molecule. Thus, ice has a much higher melting point than does

hydrogen sulfide because it has a larger dipole moment and forms stronger

hydrogen bonds. Similarly, the extensive hydrogen bonding between fibrous

protein chains gives the hard-boiled egg a greater mechanical strength that

an unboiled one, in which proteins are globular. The binding in van der

Waals crystals, however, is never very strong compared to typical chemi-

cal bonding. Thus, the formation of such a solid perturbs the electronic

structure only slightly so that a crystal of anthracene, for example, has

an optical absorption spectrum very like that of the isolated molecule.

If van der Waals forces were the only interactions producing solid-state

binding, then the field of "strength of materials" would be better charac-

terized as the "weakness of materials." Fortunately, however, for many

materials there exist much stronger attractive forces. These forces are

wave-mechanical in nature and have their origin in a decrease in the total

energy of the outer, or valence, electrons upon bringing the atoms into

close contact. We recall that electrons, as is the case with other particles,

exhibit wave properties. For any particular state of the particle, these

properties are determined by a "wave function, " a function of the spatial

coordinates which gives the probability of finding the electron in each

region of space. The kinetic energy of an electron is proportional to the

square of the momentum and hence, according to de Broglie's equation

(momentum equals Planck's constant divided by the wavelength of the wave

function), varies inversely as the square of the wavelength, The potential

energy, on the other hand, depends on the average distances between the

electron and the positive nuclei of the atoms involved, as well as on its

proximity to other electrons. The potential energy will be algebraically
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small when the wave function describing the electron has large amplitude

near nuclei. The nuclei, of course, are not fixed but vibrate relative to

one another. This nuclear motion, however, is so slow relative to that

of the electrons that at any given moment the electron "sees" the nuclei

as essentially at rest. The study of binding forces is thus concerned with

the way in which the proximity of other atoms can so distort the wave-

lengths and the shapes of the wave functions of the outer electrons that a

large decrease in total energy is achieved. Increasing the wavelength of

a valence electron decreases its kinetic energy, whereas distortion of

shape of the wave function affects the potential energy, since the electron

is mainly found in those regions •;hrre the amplitude of the wave function

is large. These two factors form the basis of the covalent and the metallic

bonds.

Just as the coupling of two identical pendulums results in a more com-

plicated motion involving a superposition of two different frequencies, so

the interaction between two atoms "splits" each original energy state or

wave function into two new ones. In general, one of these new states will

have a lower energy than the original value and the other will have a higher

energy. This effect of interatomic interaction on the electronic wave func-

tion, together with the fact that no more than two electrons in a crystal can

exist with a given wave function (as demanded by the Pauli exclusion

principle), gives rise to the varied types of bonding found in solids.

In the case of hydrogen atoms, for example, a new low energy state is

formed by placing two such atoms very near one another. This state can

hold the two electrons supplied by the two atoms. Addition of a third atom,

however, would not lower the energy of the original two electrons suffi-

ciently to compensate for the resulting increase in energy of the last

electron; a third atom cannot, therefore, bond to the others. Solidified

hydrogen thus consists of a collection of diatomic molecules, held together

only by van der Waals forces.
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In the case of germanium or diamond, on the other hand, the electronic

structure of the atom allows each one to form strong covalent or homopolar

bonds with four others, rather than with just one other as for hydrogen.

With four linkages per atom, one can build up a three-dimensional structure

with no limitation on the number of atoms in this giant "molecule." Such

"a "molecule," as in the case of a crystal of germanium, is referred to as

"a covalent crystal. Because the atoms are bound to one another with chemi-

cal bond energies (of the order of ten electron volts), covalent crystals are

generally very stable.

A metal might be thought of as a material which sets out to form a

covalent crystal, but in which there are more low-energy states than there

are valence electrons to fill them. The net effect of the resulting electronic

freedom is that the electrons behave in many ways like a gas, giving rise

to the familiar metallic conductivity and specular reflection. Each electron

is distributed over the entire crystal, and the resulting increase in average

wavelength (compare with the free atom, where the electron wavelength is

of the order of the atomic radius) gives rise to a binding energy of a few

electron volts for simple metals and up to about ten electron volts for

transition metals (with unfilled inner shells). The excess of available low

energy states makes the interatomic bonding much less directional than in

the case of covalent crystals; hence, metals form crystals with high co-

ordination number (8 or 12) i'nd are typically quite plastic.

Consider now a covalent crystal made up of two types of atoms, say A

and B. Suppose we could gradually increase the potential energy of a

valence electron when near A and similarly decrease it when near B. in

chemical terms, we are making A more electropositive and B more electro-

negrtive. The effect of this is to encourage the electrons to spend more

time in the vicinity of B atoms than near A atoms; we have introduced ionic

character into the bonding. An extreme case of ionic bonding would be that
+n -nin which A and B existed in the crystal as A and B , where the charges
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shown are those exhibited by the same ions in aqueous solution. This

model appears to be a rather good one for many alkali halides, such as

NaCi, where the binding energy calculated on the basis of undistorted

spherical ions is very close to that observed. This energy is of the order

of 5 to 10 electron volts for crystals of moihovalent ions, and is several

times larger for crystals containing polyvalent ions. The ionic model is

also useful for discussing cases intermediate between pure ionic and

covalent, where the lack of complete ionic charge separation can be

allowed for by the introduction of terms describing a deformation, or

polarization, of the ions by one another.

Below is a table of typical binding energies for various types of solids.

The binding energies are measured relative to the free molecules for van

der Waals binding, to the free atoms for covalent and metallic binding, arnr

to the free ions for ionic binding. Binding energies are given in electron

volts (eV) per molecule or atom ( multiplication by Z3 converts these valu.

into kcal/gm mole).

Binding Energy
Crystal Type in eV

van der Waals (without permanent dipole moment) . -0.1

van der Waals (with permanent dipole moment or
hydrogen bonding) ...... ........ 0.3 - 0.5

Covalent ....... ....... ............. 8 - 15

Metallic (no partially filled d-shells) . . . . . . 1 - 5

Metallic (transition metals with partially filled d-shells) 4 - 10

Ionic (monovalent ions, such as alkali halides) . . . 5 - 8

Ionic (divalent ions, such as alkaline earth oxides). . 10 - 18

For comparison, the energy of the'O-H bond in water is 5 eV and that

for the single C-C bond in organic molecules is 2. 5 eV.

These binding energies may be roughly correlated with cohesive strengt

within a given type of solid (e.g., ionic, metallic, etc.). One cannot, how

ever, compare different types of solids without additional information, suc



13

as the distances over which interatomic forces act in the different types of

bonding. This is evident from the fact that energy = force x distancu; thus,

the cohesive strength depends on the maximum slope, rather than depth, of

the plot of energy vs. interatomic spacing. These concepts are treated

more fully in thf- following sections.

B. USE OF POTENTIAL FUNCTIONS

If one considers a solid as an assembly of atoms and applies an external

force, the potential energy of the assembly or a unit volume thereof will be

changed as a result of the work done by the external force in producing a

strain or a change in the relative positions of the atoms within the body. If

it were possible from first prir ciples to predict the potential energy both

qualitatively and quantitatively as a function of the strain, it would be pos-

sible to calculate the theoretical strength of the material. Such a mathe-

matical relationship between potential energy and strain is cel"i. a

potential function.

From a qualitative point of view it is quite easy to predict the gener:di

form of the potential function from a simple consideration of the nature of

interatomic forces. The very simplest example which illustrates the nature

of the potential function is the one-dimensional crystal consisting of a linear

chain of equally spaced identical atoms. Because of the interaction of the

outer electrons of the atoms, attractive forces exist between them for

otherwise the crystal would not be stable. At the same time repulsive

forces must exist which effectively prevent two atoms from occupying the

same space, forces which also result from electronic interaction. With

no external force acting, the normal spacing of the atoms ropresents an

equilibrium between attractive and repulsive forces and the structure has

the lowest potential energy.

If a tensile force is applied along the axis of the chain, work must be

done to separate the atoms against the attractive forces and the potential

energy rises. Similarly if a compressive force is applied, work must be
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done to push the atoms together against the repLllsive forces and again the

energy rises. Using the convention that the potential energy of the system

is zero when the atoms are separated to such large distances that they have

no mutual interaction and using the interatomic spacing itself as a measure

of the strain, the potential energy vs. strain curve would have the form

shown in Figure II-1.

On this basis the p3tential energy curve will be negative over most of

its range and have a minimum at. the ec'uilibrium atomic spacing Xo0. The

curve rises steeply for spacings less than X because the repulsive forces

are short-range in character but rises more slowly at larger values of X

because the attractive forces are long range. The curve must have an

inflection point at some value of X greater than Xo since it approaches zero

asymptotically at very large values of X.

A corresponding force curve can be derived from the potential curve

which represents the resultant force acting between atoms at different

values of X and equals the external force which would have to be applied

to produce a separation equal to X. By definition, the force curve is the

first derivative of the energy curve. Thus the force passec through zero

at X = X0 and rises to a maximum at a value (f X corresponding to the in-

flection point of the energy curve as shown in the lower half of Figure II-1.

In principle, the value of X at the force maximum would be the extension

at which the crystal would break and the value of the force at the maximum

would be the theoretical strength. Thus it can be seen that if a potential

function can be established which truly describes the behavior of a substance,

it provides a useful vehicle by means of which the v-rious properties of the

substance can be related. The development of relationships between proper-

ties which are capable of direct measurement on real materials and the

theoretical strength which is not measurable directly constitutes the basis

for a practical approach to the theoretical strength problem.
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The potential function for the hydrogen molecule and for a very few other

substances has been computed by quantum mechanical methods. For most

substances accurate quantum mechanical calculations are not feasible even

with the highest-speed computers now available; hence, empirical functions

fitted to various experimentally determined properties are employed instead.

By empirical fitting of assumed potential functions to sets of observed data

a satisfactory correlation of several properties has been achieved in some

of the simpler types of solids (argon, alkali halides, etc.).

The recognition that the behavior of many solids is primarily controlled

by a particular type of bonding has led to the employment of assumed poten-

tial functions having characteristic mathematical forms. Thus in the case

of metallic and covalent bonding, the so-called Morse function is commonly

used. For ionic crystals a function af the Born or Born-Mayer type has

given good results. For crystals in which van der Waals forces play the

primary role, the Lennard-Jones type of potential function has been ex-

tensively studied.

All of these potential functions* may indeed in a given case be applicable.

However, there are real differences in the shape of the potential function

for different classes of binding as illustrated in Figure II -2. Metallic and

covalent bonding yield steeper and sharper potential functions than found

for ionically bonded solids or van der Waals bonded solids.

*The several potential functions may be expressed in their simplest form

as follows:

Morse U= D [1- -a(X'Xo)]
2

A B

Born U = A I B

X X

Lennard-Jones U -= + B
Xni
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The mathematical form of the potential function is rarely determined

uniquely by empirical methods. The only exceptions are the potential

functions for a few diatomic molecules for which very complete sets of

accurate spectroscopic data are available. In these few cases, potential

functions derived from experimental data deviate from all of the simpler

potential functions, such as the Morse function, by amounts which would

correspond to 25 to 100 per cent error in the calculated theoretical

strength of a solid having interatomic force fields similar to those of the

molecules.

Unlike the spectra of the few molecules mentioned above, the available

experimental data on solids do not provide information sufficient to define

the precise mathematical form of the potential function. In other words,

there is no experimental means of determining completely the shape of

the potential curve, although portions of the curve can be obtained readily.

Elastic constants, which may be measured directly, and force constants

(derived from optical spectra, neutron scattering and other data) give the

curvature at the minimum in the potential energy function; X-ray data give

the equilibrium atomic positions corresponding to the minimum; and the

cohesive energy (derived from the thermodynamic data) is related to the

depth of the potential well.

If one of the simpler types of functions (e.g., Morse function) is

assumed, the above data for simple solids are sufficient to determine all

of the adjustable parameters in the potential function. Other properties

derivable from this potential function may be compared with experimental

values. The greater the number of properties that can be treated satis-

factorily, the more confidence one has in the utility of the potential function.

The agreement often is remarkably good for several properties of sub-

stances like the alkali halides. However, the properties amenable to

quantitative treatment in this manner are not sensitive to the part of the

potential curve relevant to theoretical strength, that is, the region of the



19

inflection point. Furthermore, significant deviations do occur in a suffi-

cient number of cases to indicate inaccuracies in the form of functions

assumed.

The single interatomic potential function usually employed in the treat-

mnent of highly symmetric solids, such as the alkali halides and the solid

state of rare gases, neglects all directional effects in the force fields;

i. e. , central force fields are assumed. Although this is a fairly good

approximation in the substances mentioned, the approximation is not

consistent with all experimental observations, such as stability of differ-

ent crystalline forms and the relationships between elastic constants.

Theoretical studies also lead to the conclusion that small directional

effects exist even in the rare gases and alkali halide solids. Furthermore,

X-ray and neutron scattering data clearly indicate deviations from the

additive central force fields usually assumed. The effects of such devia-

tions on the calculated theoretical strength may be neglected in cubic

solids but probably not for other close-packed solids. Neglect of direc-

tional effects is likely to introduce serious errors in other cases.

Nevertheless, with these limitations being acknowledged, the use of

M rse functions, Born or Born-Mayer, and other similar functions is

recommended in studies of theoretical strength. A formal statement of

how they may be employed follows.

One or more potential functions may be selected to represent the various

types of interatomic force fields considered appropriate to th type of

chemical binding and to the structure of the crystal. In general, these

functions will be related to changes of interatomic distances and angles

(i.e., internal coordinates), combined in a manner corresponding to the

crystal symmetry. The internal coordinates should also be related to the

direction of the external force. The potential functions then are summed

over the internal coordinates to obtain the potential energy of the solid.

This corresponds to the energy of the solid at OK referred to free atoms
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(or ions). At other temperatures, entropy must be included so that the

energy becomes the Helmholtz free energy in thermodynamic terminology.

Having constructed the potential energy function of the solid as a func-

tion of interatomic distances and angles, we now seek methods to transform

the function to the external coordinate having the direction of the applied

force. A relationship between a large number of internal coordinates and

one external coordinate is required. Since the strain is uniform throughout

the solid, one need consider only a small typical region of the solid. The

size of this region is determined by the symmetry of the strained solid and

by the number of different types of interatomic force fields relevant to the

particular solid. The transformation becomes more tedious as the com-

plexity of the solid increases. For small displacements, methods employed

in the study of vibrations in solids and large molecules could be used.

However, for large displacements corresponding to maximum elongation,

iterative procedures may be required to determine the relationship be-

tween interatomic displacements and the external displacement.

The potential energy function of the solid may now be differentiated with

respect to the appropriate external coordinate to obtain forces. The maxi-

mum force is the required theoretical strength. It occurs 4. an inflection

point in the interatomic potential function in simple cases where a single

force field gives an adequate representation of the properties of the solid.

Elastic constaots for the 00 K temperature are derived in an analogous

manner. The equations for the elastic constants, together with the condi-

tion equations for the cohesive energy and zero force in the normal atomic

positions, may be used to evaluate some of the parameters in the potential

energy function of the solid. Other properties, such as the vibrational

frequency distribution, may also be correlated by appropriate extension

of these methods. The application of lattice dynamics, in turn, leads to

temperature dependent properties. Thus, in principle, many different

properties are correlated with the solid potential energy function.
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Examples of theoretical strength evaluations are treated in other sec-

tions of this report. A polymer, one of the more complex examples, is

amenable to treatment. Other cases, such as graphite and silica, could

be treated in a similar manner. The simpler solids such as cubic crystals

are covered earlier.

The formal methods described above are applicable to any solid, but are

likely to require an excessive effort in many of the more complex cases.

The principles, if not detailed analysis, may be applied in other ways;

e. g., to obtain approximate relationships between theoretical strength and

other properties. The potential function concepts also provide a coherent

basis for comparing the various methods for obtaining theoretical strength

since all properties that are related to the dynamics of a crystal lattice

and to interatomic forces are related formally through the potential treat-

ment described above. Utilization of an ensemble of data on structure,

elastic constants, thermodynamic properties, etc. , in a manner consistent

with the geometry of the solids and with concepts of interatomic forces

should yield satisfactory estimates of theoretical strength.

Theoretical strength may be considered as being a product of several

factors each of which may be appraised separately in light of our knowledge

of the properties of chemical bonds and of interatomic forces in molecules

and solids in order to estimate the reliability of the strength prediction.

The cohesive energy density is the product of the number of bonds per

cubic centimeter multiplied by the bond energy when a single type of

potential function is adequate or a sum of the latter, if more than one is

required to represent the properties. In any case sufficient information

is available either from experimentally determined thermodynamic and

related properties or semiempirical correlations thereof to permit

assignment of numerical values to the parameters with reliabilities

varying from about one to ten per cent in most cases that are likely to

be of interest. This is essentially an estimate of the availability and
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reliability of thermodynamic and structural data needed to evaluate two

parameters in the potential function: position of the minimum and depth of

the potential well (bond dissociation energy) . In addition, one can obtain

values for bond force constants or the equivalent elastic constants fairly

readily but with somewhat less accuracy, say 5 to 25 per cent.

A second factor arises from the non-linear nature of the stress-strain

function. This in turn may be considered to be the product of two factors.

One is a shape parameter in the interatomic potential function (e. g., "a"

in the Morse potential function); the other is a more complex transforma-

tion function which gives the relationship between the strain and the changeb

in interatomic distances and angles.

The former probabl- contributes from 25 to 100 per cent to the uncer-

tainty in any evaluation of theoretical strength. This opinion is based upon

consideration of the empirical nature of the functions and the paucity of

experimental data relevant to the part of the potential function (inflection

point) related to theoretical strength.

The other factor can be evaluated quantitatively only in those cases

u'here a complete potential function treatment is feasible. It is obtained

from a summation of components of the internal displacement and forces

in the direction of the external displacements and forces. It has the value

unity in the linear molecule with one type of bond and is near unity in planar

structures cimilar to graphite. The mathematical relationships involved

are similar to the transformation from interatomic force constants to the

appropriate elastic modulus. The latter have been derived for some of the

simpler solids. The difference arises from the difference between Hooke's

lav forces applicable to small displacements and the nonlinear forces

occurring in large displacements (Z0 to 30 per cent elongation) relevant to

theoretical strength. Errors arising from this factor 1-robably can be

neglected in cubic solids, and possibly in other close-packed solids as

we]l, if the deformation is such that it does not lead to ar.other stable

crystalline form. In other cases, such as the crystalline polymethylene



Z3

treated in Section V, errors arising from neglect of the transformation

factor may be comparable to the other errors.

In those cases where structural data are not available the potential

energy treatment cannot be applied. Furthermore, in such cases the

simple approximation of strength, - 1/20 of the modulus may be subject

to large errors. Elastomeric and glassy materials above their softening

temperatures are excluded. (See sections on glasses and polymers.)

A general statement concerning reliability of estimates of theoretical

strength is that for cubic solids, the estimate should be within a factor of

about two. For more complex solids, this probably is too optimistic anc

a more reasonable figure is an error not greater than a factor of three

with 95 per cent confidence.

A prediction of the upper limit of theoretical strength of any substance,

known or unknown, may be appropriate. From considerations discussed

above and from current understanding of the nature of the chemical bond,

a maxim-Lm theoretical strength of greater than 1 - 3 x 10 dyne/cm 2

seems highly improbable. Few real substances are likely to approach

this upper limit and later sections of this report give estimates for

different solid types which may be compared with this ultimate value.
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SECTION III - THE COHESIVE STRENGTH OF CRYSTALS

List of Symbols

Of - constant in theoretical shear strength expression.

a I - vectorial thermal expansion coefficient.

a - constant = (rm+l)/(n+1).

A - atomic area.
0

b - constant = n-m; also magnitude of Burgers vector.

f - constant in theoretical cohesive strength expression.

C 1l,C 44' - elastic constants in direction of interest.

C1ll'C1,C44 - elastic constants referred to cube axes.

D - equal to (x-x ) at the maximum force value in the variable lattice
potential.

D' - D for the special case of the Morse potential function.

e - Napierian base of logarithms; also the charge on an electron.

V1  - vectorial surface energy.

H - heat of sublimation.
S

h - Planck constant.

k - Boltzmann constant.

m - exponent in Lennard-Jones potential function.

A - shear modulus.

n - exponent in Lennard-Jones potential function.

N - Avogadro number.

r - interatomic spacing.

a - tensile stress.

icoh - theoretical tensile cohesive stress.

afrac - theoretical stress for crack nucleation.

1T - shear stress.

Ir - theoretical maximum resolved shear stress for shear failure.max
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T - absolute temperature.

U - potential energy.

U - vector binding energy per atom.0

U - average value of U
0

u - bond energy.

V - atomic volume.

x - displacement of atoms in a given direction.

x - equilibrium spacing of atom in a given direction.

x - displacement at energy maximum.max

X - mean distance of thermal vibration.

0 - Lennard-Jones potential.

I - constant in theoretical cohesive stress calculation.

A. INTRODUCTION

Materials that are used specifically for their ability to resist high

mechanical stresses are almost always built up from crystals. This ib

true for metallic, ceramic, and polymeric materials. There is a good

reason for this; a solid is in its lowest possible energy state

when its molecules are neatly arranged according to some simple periodic

pattern. Because its energy is very low when it is crystalline, a solid

endeavors to maintain its crystallinity when subjected to stresses

that tend to deform or break it. This gives a special and relatively simpl,.

character to the modes of failure of crystalline solids. Failure in tensir,

occurs by ihe formation and growth of planar cleavage cracks; failure

by shear occurs by the formation and growth of dislocation loops.

In the continual search for materials of great strength, it is important

to be aware' that an upper limit of feasibility exists for crystalline solids,

and to kiow what the magnitude of the upper limit is. Certain existing

matetials, such as steel, already have great strength and this strength

approaches the upper feasible limit for iron-carbon alloys in polycrystalline
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form. Because the chemical bonds in diamond are the strongest ones

known, the intrinsic strength of mono-crystalline diamond (or graphite)

imposes an absolute upper limit that is only about 100 tirnes the strength

of steel. Thus it is unlikely that very strong substances will be found by

pure chance. Because of defects in them, solid materials usually 1ýave

strengths much weaker than their intrinsic cohesive strengths. This i1

especially true when they are first synthesized, so it is important to be

able to estimate what strength could be expected of a substance if it had

optimum form and structure.

In principle, theoretical strengths, both tensile and shear, can be

calculated from the quantum theory of chemical binding. However, this

is not a practical procedure for dealing with a large variety of materials

tor several reasons. One is that such calculations are very tedious.

Another is that most of the background of such calculations is concerned

with the isotropic property, cohesive energy, whereas the cohesive

stress is an anisotropic property.

Semi-empirical force laws based on quantum mechanical principles

are also difficult to apply to strength calculations, because in their

simplest form they can only be applied to central force models in which

the energy depends only on the distances between atoms, whereas crystal

bonding in most cases involves directional bondirg. When these laws are

modified to take account of directional bonding, the resulting calculations

again become tedious. The difficulties that arise because of directional

bonding are more severe for calculations of the theoretical shear strength

tha-a for the tensile strength, because directional bonding is relatively

more important in the former case.

Finally, one notes that existing theory has notoriously little predictive

power, being mainly a kind of retrospective analysis.

The approach taken here is to find relations bet,o.en readily-measured

anisotropic physical properties and cohesive stresses, thereby making it
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possible to estimate cohesive stresses for various crystallographic direc-

tions. Anisotropy is not of prime importance for cubic metals, but it is

quite important for such things as hexagonal metals, layered silicates,

and fibrous high polymers.

Tensile cohesive strength will be related to: Elastic stiffness, thermal

expansion, and surface energy, as well as roughly to cohesive energy and

atomic diameter. An empirical atomic force law will be used for sample

calculations througl out this treatment. The same method may be readily

applied for any other force law, and the effect -f changing the functional

form of the force law will be indicated.

The term "tensile cohesive strength" is taken to mean an upper limit

of tensile strength (in a given direction) under idealized conditions. Thus

it is assumed that:

a) no allotropic changes occur as the solid is stretched.

b) the solid is infinite in extent so only one strain component is
important.

c) the temperature is low so that thermally activated crack nucleation
cannot occur.

d) no surface notches, inclusions, or other stress concentrators
are present.

e) plastic flow does not occur.

f) no chemical reactions between the material and its environment
occur.

The effect of thermal activation on the cohesive strength will be considered

in a later section, as will chemical reactions.

For the design of new materials, it would be useful to be able to predict

the cohesive strengths of unknown or poorly known substances. The only

practical means for this at present is "'intuitive chemistry;" that is, small

extrapolation from known substances. This will be discv.ssed briefly.

Finally, the theoretical £hear strengths of crystals will be considered.

The conditions under which shear failure or tensile failure should occur

preferentially will be discussed.
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B. RELATION OF STRENGTH TO OTHER ANISOTROPI C PROPERTIES

Consider a piece of solid that is being separated into two parts along a

plane that passes between two planes of atoms. From Hooke's Law it is

known that the initial resistance to deformation must depend linearly on

the separation distance. Since solids fracture suddenly at small strains,

it may also be concluded that the resistance to separation must rise

quickly to a maximum value and then decrease. On the other hand, van der

Waals attractive forces act at relatively large distances so that weak resist-

ance to separation should extend quite far (that is, the binding stress

should not suddenly drop to zero). Since the wave functions that describe

the electronic structure decrease exponentially with distance, it is reason-

able to expect that the condition expressed just above can be represented

by forces that decrease exponentially with distances, for large separations.

a) Choice of a Binding Stress Law

The simplest stress law that combines all of the above properties

is the following:

olx-x°) ( )(x-xo) eD(1)

where x is the initial separation distance, x is a larger distance, U is a0 0

constant that will be shown shortly to be the binding energy, A is the0

atomic area over which the forces act, and D is a constant that may be

seen to be a "relaxation distance." The graphical form of this equation is

shown in Figure III-l. It may be seen that it rises linearly at first, reaches

a maximum at x , and then falls away exponentially in the requiredmax

manner. Hooke's Law determines the.initial coefficient in this equation

quite critically so that only the distance D, is uncertain.

The present stress law is certainly not rigorously obeyed, as compari-

son with even a simple quantum theory such as that of the hydrogen molecule

will show. However, its shape is qualitatively correct, and it will be shown
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here that it gives reasonable relationships between a variety of physical

properties. Also, it must be kept in mind that at the present time, little

theory and few experiments exist that deal with the properties of a solid

that is being subjected to large tensile strains. Therefore, it is necessary

to extrapolate measurements from the small strain regime to large strains.

Without a background of measurements made at large strains it is not

realistic to try to develop any but the simplest of theoretical treatments.

Details of the present treatment, using the force law of equation (1) , are

given in Appendix I, in order not to retard the pace of the main text. It is

emphasized that the method outlined in Appendix I may be applied in general

to any force law involving up to three force parameters.

b) Heat of Sublimation

Equation (3a) of Appendix I relates the tensile cohesive stress to the

vector binding energy per atom U , the relaxation distance D, the area per0

atom A , and the numerical factor e = 2. 72:
0

U
0a coh- eDA(Z

0

If U is averaged over all di'rections, and eDA is taken to be the atomic0 0

volume V, this becomes:

U
coh -" V

so, if H is the sublimation energy per unit volume, the cohesive stress iss

just approximately equal to it:

C coh Hs (3)

After detailed and careful lattice theory calculations, Born and Furth

[Pr:oc. Camb. Phil. Soc. 36, 454 (1940) ] concluded that the tensile cohe-

sive stress for a face-centered-cubic structure, bonded by centrally acting

forces between particles should be given by:
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/ [nm u
coh -4

where u is the interaction energy between two particles and n, m are the

exponents in the Lennard-Jones potential function.* The interaction

energy u, is related to the heat of sublimation by:

u _ 0. 094 H
s

so the cohesive energy is related to H by:S

coh - 0.024 (nm n H (4)

This is certainly roughly true, and may be a good approximation for

isotropic solids. For highly anisotropic solids it will be quite misleading.

For example, graphite has a rather high heat of sublimation and is strong

in the a-axis direction, but is exceedingly weak in the direction of its

c-axis. This emphasizes one of the pitfalls of attempting to correlate

vector properties with scalar properties, and it is believed that equation

(4) should only be used with discretion.

Equation (4) provides a simple means for estimating the effect of bond

type on the tensile cohesive stress. Table I (p. 61) gives values of

(nm/n-m) for the range of n and m that seem to be observed in practice.

The typical extremes are m,n = 1, 10 for a hard ionic crystal like MgO;

and m,n = 6, 1Z for a molecular crystal like solid COZ. Metals and

covalent crystals fall in between. It may be seen that the coefficient re-

lating tensile cohesive stress and the heat of sublimation changes by a

factor of ten between the extremes.

c) Thermal Expansion

A vector property that is useful for present purposes is the thermal

expansion coefficient a1 , because it ran be measured with bulk samples by

*XIf u is the Lond energy and n, m are exponents with n > m, this potential
i.aw is:

W(x) = u ---) X ) + -
I-rn( n x
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dilatometry, or with small particles by means of X-ray diffraction.

Equation (4a) of Appendix I shows how the cohesive stress is related to it:

a coh 0/aV (5)

where 4 is a constant [equal to (k/Ze) for the law of equation (1)1, V is the

atomic volume, and a 1 is the thermal expansion coefficient in the direction

of interest and measured above the Debye temperature where it is nearly

independent of temperature.

Equation (5) is in accord with the general experience that soft solids

expand rapidly with temperature while hard ones do not. Also, for an

anisotropic crystal like zinc, a1 is larger parallel to the c-axis (the

mechanically weak direction) than it is perpendicular to the a-axis (the

mechanically strong direction) . This expression also has the advantage

that it does not depend on the relaxation distance, D. The relation must

be used with some caution, however, when substances with complex

structures are considered (fused silica and Invar being notable examples)

because bulk expansion is not always simply related to the expansion of

interatomic bonds.

d) Elastic Stiffness

Through the use of modern ultrasonic methods, elastic stiffnesses

can be measured readily, making this property useful for estimating

cohesive stresses. The measurements do require somewhat larger samples

than thermal expansion measurements, but have the advantage of being

more directly related to the cohesive stress. The equation relating stiff-

ness and cohesion is (5a) of Appendix I:

0 coh (= (

where Cilt is the elastic stiffness in the direction of interest. Since (D/xo)

is expected to be nearly independent of material and direction because an

increase in x will tend to be associated with an increase in D, this rela-

tion is often simplified to the "rule-of -thumb":
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coh = C 1 1 /I (7)

where 0 is a constant approximately equal to I (. If it were possible to

measure D independently, equation (6) would certainly be more reliable

than (7), but this is in fact not possible, so one is forced to be satisfied

with (7). However, in dealing with the cohesion of polymers it may be

desirable to make independent estimates of D and x so that equation (6)0

can be used.

The dependence of P on the type of binding can be estimated by using the

Lennard-Jones Potential to express the binding between particles. Then the

ratio between elastic stiffness Cl" and tensile cohesive stress acoh'

becomes:

C = Lael)b nl) /b]=

acoh a (m+)/b- a (n+1

where n,m = exponents in the potential law and:

m= l b=n~m
a = n =nlrn+ 1

Table II (p. 61) lists various values of •, and it may be seen that the change

in P between hard ionic crystals (m, n = 1, 9) and soft molecular crystals

(m,n = 6, 12)is by a factor of uinly about two.* This supports the assertion

that the elastic modulus is a good measure of cohesive strength for strong

crystals and a conservative value of 0 is 20, whereas favorable circum-

stances might allow S to reach values as small as 10.

*Estimates of values for (m, n) and 8 for various types of binding are:

(m,n)

Ionic (19) 15.0
Covalent (Z-,1 Z) 20.2
Alkali metals (,I Z) 7.0
Noble metals (3,9) 18.4
Transition metals (4,9) 19.9
Molecular crystals (6,12) 28.Z
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e) Surface Energy

Most techniques for measuring surface energies yield an average

value which may be quite diffe.'ent from the maximum and minimum vector

values. However, the method of quantitative cleavage provides vector sur-

face energies that can be applied to cohesive stress estimates, using

equation (6a) of Appendix I:

IFZy C 
t  l/2

acohL e2j(

where yl is the specific surface energy of the plane across which the

stress acts. Since y (measured at T = 0°K) is the work of decohesion per

unit area, it should be closely related to cacoh" Note that the range parame-

ter D does not appear in this equation, making it somewhat more reliable

than the other estimates.

f) Comparison of Estimates

Examples of the theoretical strength as estimated by equations (7)

and (8) are listed in Table III (p. 6Z), along with the result of a detailed

lattice calculation for NaCI by Zwicky.

C. THERMALLY ACTIVATED CRACK NUCLEATION

According to simple crack nucleation theory [J. C. Fisher, J. Appl.

Phys. 19, 1062 (1948)] the fracture stress at a finite temperature T,

should be:

F6.z3y 3 ( 1/4

•f rac k T ln (NkT/h) (9)

where yl = specific surface energy, C1 1' = elastic stiffness modulus in the

appropriate direction, k = Boltzmann's constant, h = Planck's constant, N -

Avogadro's number. Some calculations from this theory are presented in

TableIV (p. 63) [data on glass from Fisher's paper; data on water f am L.J

Briggs, J. Appl. Phys. 24, 488 (1953)]. It may be concluded that the ten-

sile cohesive stress is not reduced very much by thermal nucleation at

room temperature.
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D. PREDICTION OF COHESION FROM CHEMISTRY

In the search for stronger materials it is useful to be able to predict the

strength properties of compounds for which physical property data may not

be available. It is not possible to do this in any absolute sense, but study

of elastic constant data shows that it can be done on a relative basis because

of the systematic dependence of elastic stiffness on atomic size, valence

electron concentration, and atomic polarizability.

Once quantum mechanics has given the electron distribution in a chemi-

cal bond, the bonding forces can be calculated from electrostatics, except

for the relatively small dispersion forces. The electrostatic force between

oppositely charged centers varies as e /r where e is the magnitude of

charge on each center and r is the distance between them. In a closely-

packed crystal, r is simply the mean interatomic distance and the cross-

sectional area per atom is proportional to r 2 so that the stress b-tween

atoms is proportional to e 2 /r 4 .

Elastic stiffness data for some 20 ionic crystals (Figure 111-2) and for a

number of b.c.c, metals (Figure 111-3) and h.c.p. metals (Figure 111-4)

verify the proportionality of attractive stress and eZ/r 4 , and in addition

show a small increase in stiffness with decreasing atomic polarizability.

Also covalent crystals with the zincblende (or diamond) structure nearly
-4 -6

obey the r relation (Figure III-5), but f.c.c. metals show an r depend-

ence (Figure 111-6). The stiffnesses of the b.c.c. transition metals (Figure

111-3) show very little dependence on atomic size, but a strong dependence

on atomic number (valence). Therefore, it may be said that if other factors

are equal, the cohesive strength of a substance will increase with:

(1) decreasing atomic volume

(2) increasing valence electron concentration

(3) decreasing atomic polarizability

For molecular crystals, where dispersion forces constitute most of the

binding, the third rule is inverted.
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E. THEORETICAL SHEAR STRENGTH

As noted at the outset, the semi-empirical force treatment of the theo-

retical shear strength is more tenuous than that for the cohesive strength

because of the greater importance of directional bonding; i.e. , variation

of the force with bond angle, in the shear process. Nonetheless, based on

the present state of knowledge, it appears that a reasonable estimate of the

theoretical resolved-shear-stress required to cause a permanent shear

displacement of one lattice period is given by

T max = a115 (10)m1"ax

where 11 is the shear modulus and a is a numerical factor given by

2 > a > 0.5 (11)

Equation (10) is based on analysis of the shear strength of a perfect

crystal, and of the nucleation of dislocations in crystals. These analyses

are briefly reviewed below, together with some other considerations that

bear on the accuracy of equation (10).

The theoretical shear strength was first treated by Frenkel [A. Phys.

37, 572 (1926)] who approximated the periodic force that is required to

shear a perfect crystal by a sinusoidal function. His treatment is outlined

in Appendix II. As shown there, by invoking the condition that the force

law must reduce to Hooke's Law for small displacements, he found that

the maximum force corresponded to a theoretical shear strength of

Smax = (p/Zff). Mackenzie [thesis, Bristol University (1949) 1 noted thatmax

the use of a sinusoidal potential probably led to an overestimate of the

theoretical strength, because the corresponding force increases more

rapidly with displacement than would be the case for lattice potentials

such as a Morse potential or a Lennard-Jones potential. For close-

packed metal structures, Mackenzie used a central force model and

obtained 'r = (M/30) as a lower limit for the theoretical strength. Thermax

real strength must be somewhat greater because directional forces will

also contribute to the shear resistance. Attempts (T. J~ssang, private
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communication) to calculate stacking fault energies (stacking faults are

formed by large shears of the lattice) using central Morse forces have

shown that much of the energy arises from the directional forces. This

occurs even in the case of copper which has a more nearly spherical

Fermi-surface than other f.c.c. metals, so that it should be most

amenable to a central force analysis.

In the case of ionic crystals, the class whose binding is best approxi-

mated by central force laws, there remains the same problem of estimating

the contribution due to directional forces, because the role of such forces

is maximized during a shear displacement. Therefore, there is a large

uncertainty in the theoretical strength, and it remains unresolved at this

time. The actual value should be in the range A/Zy > T > A/30, however,

so we choose A115 as a rough average value, and this would suggest

choosing a = 1 in equation (10).

F. EFFECT OF DISLOCATION NUCLEATION ON THE
THEORETICAL SHEAR STRENGTH

The stress at which plastic shear deformation would be started by

homogeneous nucleation of dislocation loops inside a crystal has been

considered by several authors.* In all cases that have been considered

the room-temperature shear stresses at which the nucleation rate became

appreciable were in the range TmY > >/ 1 5 . Therefore, such nucleation

would not change the strength predicted above.

*A. H. Cottrell, "Dislocations and Plastic Flow in Crystals," Oxford
University Press, Oxford (1956).

F. C. Frank, in "Symposium on Plastic Deformation of Crystalline
Solids, " Carnegie Institute of Technology and Office of Naval Research,
Pittsburgh (1950).

F. R. N. Nabarro, Advances in Phys. 1, 332 (195Z) .

J. P. Hirth, "Proceedings of the N. P. L, Conference on the Relation
between Structure and Strength of Metals and Alloys," H. 1. Stationery
Office, London (1963), p. 217.
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At free surfaces, on the other hand, image forces and the presence of

surface ledges may lead to dislocation nucleation at lower stress levels

( see Hirth' s paper) . The results in Table V (from Hirth' s paper) indicate

that for crystals with perfect surfaces such as the surfaces on some

whiskers, the nucleation of dislocations at the surface occurs at about the

sarne stress level as the theoretical strength noted above. However, for

materials such as copper with low stacking energies ( so that imperfect

dislocations may form in them) , nucleation occurs at lower stresses,

particularly if surface imperfections (ledges) ;are present.

These considerations of nucleation suggest that the value ae - 1 should

still be a rough approximation for materials in which only perfect dis-

locations may form, but that a value of a-• 0.3 would be a better approxi-

mation for materials in which imperfect, or partial, dislocations may form.

To the same order of accuracy as the above estimates, the temperature

dependence of p may be introduced into equation (10). In addition, however,

the nucleation of dislocations occurs at lower ratios of "r to U at highmax

temperatures so that a in equation (10) should also decrease with tem-

perature. For example, the critical stress required to nucleate disloca-

tions at a copper surface is? =m ( 12(00K)/100 at 1200I K versusmax

7max = M( 300 0 K) /50 at room temperature. Again very roughly, one would

expect a to decrease by a factor of about 2 from room temperature to the

melting point.

Where data are available [see the review of H. B. Huntington, Solid

State Physics, 7, 214 (1958) ), the appropriate value of the anisotropic

elastic constant C 4' should be used for the shear plane in question. For

metals, in most cases the use of the average value a = C44 - 1/5

(2C44+ C+G2 - CG1) should not lead to uncertainties greater than those

already present in the above estimates for m"maxe
For non-metals, in many cases gross uncertainties would be introduced

by the use of average modulus values, so that the value appropriate to the
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slip plane must be used. As an example, the shear modulus in the basal

slip plane of graphite has a value one-tenth of that of the average shear

modulus.

G. INTRINSIC RESISTANCE TO DISLOCATION MOTION

Even when dislocation nucleation is possible, dislocation motion must

occur in order for shear failure to occur. In metals, both theory and

experiment indicate that the intrinsic lattize stress that resists dislocation

motion (often termned the Peierls stress) is less than the stress for homo-

geneous shear displacement or for dislocation nucleation. On the other

hand, for ionically or covalently bonded crystals, the intrinsic lattice

resistance is of the same order as the above theoretical shear strengths.

This is clearly illustrated by Figure 111-7 which compares the variation of

hardness with elastic modulus for covalent and metallic crystals

[J. J. Gilman, Mechanical Engineering, p. 55, September (1961) .

The upper line in Figure I-7 is drawn through the data for crystals with

the zincblende structure which are insulators or semiconductors. The

lower line correlates data for several face-centered-cubic metals. In

both cases the hardness is proportional to the elastic modulus, but the

proportionality constants differ by a factor of 500,

Hardness is a measure of the yield stress, or the ease with which dis-

locations move in a crystal. Thus for metals, in which dislocations move

easily, the hardness value is a small fraction of the elastic modulus (about

5 x 10-3 for the data shown). In contrast, the hardnesses of covalent

crystals are a much larger fraction of the moduli (about 10 per cent) .

Since this As close to what the cohesive shear strength is expected to be,

it is concluded that dislocations have great difficulty in moving through

covalent crystals. The reason for this is suggested by Figure 111-8.

The solid circles in Figure I11-8 are arranged as the atoms are along the

direction of glide in the diamond (or zincblende) crystal structure. The

central core of a dislocation line is shown at two positions of symmetry.
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Figure 111-8. Schematic Motion of the Core of an Edge Dislocation in the
Diamond Crystal Structure. Each Atom has Four Bonds in the Lattice.

A) Strip of atoms lying along the glide plane in a (110) direction;
(1123 plane lies parallel to paper. No dislocation present.

B) Dislocation core in symmetric position.

C) Dislocation core moved to second symmetric position.
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Only one atomic plane is shown, but the next one behind the one shown has

the same geometric form; it is simply shifted by b/Z with respect to the

ribbon shown. Since nearest neighbor interactions determine the behavior,

only the one strip needs to be considered. According to the data of Table I,

a covalent bond breaks at a strain of about 65 per cent. Therefore, the

energy of the dislocation core changes markedly between the two con-

figurations, B and C. In the configuration B, the equivalent of one bond

is broken and at C, roughly two bonds are broken. As the dislocation mL.it

along then, its energy fluctuates by an amount equal to one C-C bond. The

period of the fluctuations is b/2, and very little of the energy iF conser- '.

most of it being converted directly into heat. Then, since the force that

acts per atomic plane is approximately Tb2 (where T is the applied shear

stress), the work done per fluctuation is Tb 3/4. This must equal the bond

energy of 6.22 x 1012 ergs, so the required shear stress is - 10 12d/cm2

or about C4 4 /10 as suggested by Figure 111-7.

The idea that nearest neighbor interactions control dislocation motions

in covalent crystals is given further support by recent measurements of

Chaudhuri, Patel, andRubin [J. Appl. Phys. 33, 2732 (1962)1. They

measured the velocities of individual dislocations in several crystals

(Ge, Si, GaSb, and InSb) as a function of stress and temperature. They

found that the temperature dependences of the dislocation velocities in

these crystals can be described by Arrhenius equations. The activation

energies that they determined from these equations are shown in Figure III

to be proportional to the elastic shear stiffnesses of the crystals. Further.

more, it may be noted that the activation energies for dislocation glide

are quite nearly equal to the energies of single bonds in Ge and Si as given

',y Pauling (1961). Thus the rate determining step for dislocation glide

through these crystals is the breaking of individual chemical bonds.
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H. TENSILE FAILURE VERSUS SHEAR FAILURE

In addition to considerations of the directional strength of crystals, the

state of stress will influence the mode of failure of a crystal. For example,

in a simple tensile test of a f.c.c. crystal, m = the ratio of the maximum

resolved shear stress ( 111 (IO0) to the tensile stress, will be 0.5 for a

tensile axis oriented in position 02 in Figure III-10, and will be only 0. 28

for a tensile axis oriented in position (D. In hydrostatic tension (triaxialli

balanced stresses) the resolved shear stress will always be zero. Thus

in general, the state of stress will oiways tend to favor tensile failure

because the maximum resolved normal stress will always exceed the

maximum resolved shear stress by at least a factor of two. This factor

approximately equals the ratio of Young' s modulus to the shear modulus,

making the tensile and shear strengths of isotropic crystals nearly equal

in simple tension. Anisotropy of a crystal may often overcome the equaliz-

ing effect of the stress state, however.

Based on the above discussion, it is expected that, at room temperature,

perfect metal crystals will fail by shear, whereas perfect crystals of

ioniically and covalently bonded crystals will fail by cleavage. Crystals of

mixed bonding, which tend to be markedly anisotropic, may fail by either

mechanism, depending mainly on the state of stress relative to the crystal

axes. Thus one would expect a large perfect crystal of mica or kaolinite to

fail by shear if stressed in simple shear parallel to the basal plane, but to

fail by cleavage under a tensile stress applied either normal to or parallel

to the basal plane.

'.t cryogenic temperatures, h. c.p. and b.c. c metals are likely to fail

by cleavage below some critical temperature, because, in these metals,

the resistance to dislocation motion increases rapidly with decreasing

temperature.
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Figure III-I0. Unit Stereographic Triangle with Two Stress Axes Indicated,
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I. COMPARISON WITH EXPERIMENT

There are two lines of evidence indicating that the estimates of cohesive

tens.le stress and maximum shear stress made here are not grossly in er-

ror. The strongest evidence is provided by quantitative cleavage z-Xperiments.

[J. J. Gilman, J. Appl. Phys. 31, 2208 (1960)] in which the stresses

needed to cause cleavage are measured and the corresponding surface

energies deduced. The results are consistent with the estimates given

here.

Other evidence is provided by the highest values of strength that have

been measured. Measurements have been rviade fc- a number of filamen-

tary specimens (whiskers) and also for more massive specimens. The

measurements indicate that: a) strengths nearly equal to theoretical

estimates can be achieved experimentally, and b) observed strengths

never exceed theoretical esti. ates,

Table VI lists the highest strengths attained by various filamentary

crystals and their modes of failure. These slender crystals have very

smooth surfaces, and perfect internal structures, and so approach the

idealized forms that have been under discussion.

In agreement with expectations based on the above discussion, the

ionically and covalently bonded materials failed by fracture, while the

metals failed by shear. Also, in agreement with the rough trend noted

in Tables III and V, the ratios of (A/l/) are on the average larger than the

ratios of (E/o). Finally, it is not-worthy that in the case of the h. c.p.

metal whiskers, zinc and cadmium, the mode of failure changed to

cleavage at sub-zero temperatures (below 160 0 K for zinc, 800K for

cadmium).

Crystals need not be small in order to be strong. This is shown by

ýdata in Table VII for bulk specimen crystals that were tested with care-

fully prepared smooth surfaces. It may be seen that their strengths are

comparable with the strengths of whiskers. Some data for polycrystalline

stevl and glassy silica are included in this table for comparison.
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J. SUMMARY AND CONCLUSIONS

The ultimate theoretical strength of a crystal can be estimated in terms

of measurable physical properties within a factor of about two, provided

judgement is used to avoid pitfalls in special cases.

The mode of mechanical failure will depend on the state of stress, so

this must be given. Then estimates of both the shear and tensile cohesive

stresses must be compared with the given stress state to decide whether

failure by crack formation or dislocation nucleation can be expected.

Loss of cohesion will occur at large strains where pertinent experimen-

tal data are not available. Therefore, it is necessary to extrapolate from

the small strain regime and then justify the extrapolation by comparison

with representative experiments.

Shear and tensile cohesion change with orientation in a crystal. Tilere-

fore, they have been related here to anisotropic physical properties in

addition to the heat of sublimation. Using the simplest binding stress

law that is consistent with elasticity and quantum mechanics, it is shown

that the tensile cohesion in a given direction is proportional to:

a) elastic stiffness

b) inverse thermal expansion coefficient

c) square root of surface energy

Therefore, these properties can be used to rank the strengths of crystals

and directions in a given crystal. It is also shown that strength of an iso-

tropic crystal increases in proportion to its heat of sublimation and the

reciprocal of its atomic or molecular volume.

The simplest procedure for estimating the magnitude of tensile

cohesion is to divide the elastic stiffness constant for a given direction

by a coefficient that is called 8 here. For various bonding types, approxi-

mate values for ft are:
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Ionic . . . . . 15

"Covalent . ... 20

Alkali metals . . 7

Noble metals. . . . 18

Transition metals . 20

Molecular crystals . . 28

It is shown that shear cohesive stresses tend to be about half as great

as tensile ones. However, for simple stress states a given load yields only

half as much applied shear stress as tension, Thus these two factors tend

to cancel. Also, shear failure requires mobile dislocations and in many

non-metallic crystals dislocations are highly immobile. All this makes it

difficult to predict the mode of failure, but there seems to be a tendency

for metals to fail via shear and for non-metals to fail by cracking.

Experimental measurements of both surface energies and strengths of

carefully prepared specimens approximately confirm the theoretical

discussion that is given.

The chemical factors that tend to increase the strength of a crystal

are the following:

a) small atomic volumes

b) high valence electron concentration

c) small atomic polarizabilities (except for molecular crystals)
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APPENDIX I

Derivations of Relations between Tensile Cohesive Stress and

Other Properties

The potential energy function that corresponds to the stress function

(Equation 1) is:

U(x-xo) = -U + D e-(XXo) /D ( a)

The stress function is obtained from this by differentiation:

S(X-X) (x-xo) e (x-x )/D (Za)

where A is the atomic area across which the forces act. The maximum
0

value of the stress is found by setting the derivative of the stress equal to

zero, solving for the value of (x-x ) at the maximum, and substituting

this value back into the expression for the stress:

Uo -(x-x )/ -

hence: (x-xo) = D at the maximum, and:

U
= ((D) (3a)(max eWD D- '7 coh

0

Here we see immnediately that the cohesive stress increases with the

vector binding energy and decreases with the relaxation distance of the

forces (i.e., localized bonds are strongest). This equation also indicates,

since DA e is approximately an atomic volume, that the cohesive stress0

should be proportional to the cohesive energy per atom (or molecule) of

the solid.

The third 2erivative of U(x-x ) will be needed shortly and so will be

written down here:
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3 U (0 1-X0)D1

ýx3 D13 )[D

According to Hooke's Law a change in stress is given by:

dc a= C (d)
!x

where C1 1 is the elastic stiffness in the direction of interest (C1 1 is the

elastic stiffness referred to crystallographic axes; Cllwill be related to

C1 1 by a tensor transformation, J. F. Nye, "Physical Properties of

Crystals," Oxford, 1957). Then:

x U

x 0 
0X0

0 )x A° D

X=X 0
0

which is one relation between U0, D, and known physical properties;0

another is needed to evaluate them separately. This is obtained by con-

sidering thermal expansion which is related to the first anharmonic term

of the Taylor expansion of U(x-x ) about the point x = xo. The potential

function and its first three derivatives have the following values at x = x 0
0

U(o) =- U
0

U'(o) =0

U1''(o) =U ID 2
0

U"' (o) -ZU ID 3
0

Therefore, the Taylor expansion about x = x is:0

U(x-x 0 -U + C(x-x ) z G(x-x )3 .....

where C = U /2Dz
0

G = U /3D 3

0

and this represents an anharmonic oscillator whose average displacement

during thermal excitation at high temperatures [C. Kittel, "Introduction

to Solid State Physics," J. Wiley & Sons (195 6 ),p. 15Z] is:
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3kTG kTD
42C Uo

wherc T is the absolute temperature and k is the Boltzmann's constant. From

this, the thermal expansion coefficient normal to the plane of interest is:

Zx ZDk
C- ý-T xU

o o0o

and using this second relation for U , D, and known physical properties,

the tensile cohesive stress can be found:
u

o k
coh eDA - 21! x eA

o o o

but x A = V = atomic volume; so:

or k (4a)•coh - Z1 eV

and we see that the cohesive stress is inversely proportional to the ex-

pansion coefficient. This is in accord with empirical correlations.

Rearranging the relation for the elastic stiffness:
Uo a D

D-A- x Cl1
0 0

and since:

aCo h(D)Ccoh e eAO

the cohesive stress may be related to elastic stiffness:

acoh = -e

The ratio of the relaxation distance to the interplanar spacing (D/x ) is not

expected to vary much from one substance to another because they tend to

both increase or decrease together. Therefore, this rlation indicates

that acoh is simply a constant fraction of the elastic stiffness.

Next, and finally, we seek to relate a coh to the surface energy of the

solid for the specific surface formed by the fracture. This can be done
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because the energy required to separate the solid into two pieces and

thereby create two new surfaces is just the area under the stress-distance

curve. Since two surfaces are created, the work must be divided by two,

and so the surface energy is given by:

SFI a(,x-x d(x-x)
1 2 0 0

U= 0
2A

eDacoh

2

but: exao
D 

-

Cll

so that:
2 Y 1 C 1 16 

a
acoh = (6a)

x e
0

It may be noted in passing that these equations yield a relation between

surface energy and other properties that may be useful for estimating

anisotropic surface energy values:

2

Z '

YI - Z 7a)
al V

In general, using the above relations involving the elastic stiffness, the

thermal expansion coefficient, ,and the surface energy, force laws contain-

ing up to three unknown parameters may be expressed in terms of physical

constants for the crystal in question. For example, if one used the well-

known Morse potential function:

U(x-xo0. _= Uo e (xx0)/D - (x-x'0) (8a)
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by the same procedure one would obtain:
f

U
cy = c--0 (9a)

ZA D
0

Zx U
C =x 0 Uo 1aI1 '2 (l~a)

A(D)
0

a,,or 3k (Ia),-oh 16al1 V

4 ) 1 
(12a)

APPENDIX II

Derivations of the Theoretical Shear Cohesive Stress

Unlike the case of the tensile cohesive force, in failure by shea- the

crystal will be restored to essentially its original configuration (neglecting

small surface steps) periodically as the crystal is sheared on a given plane.

The period of the force (or energy) will be b, a distance related to the

interatomic spacing in the shear plane. Frenkel [Z. Phys. 37, 572 (1926).)

assumed that the periodic shear stress function was sinusoidal:

T = Tmax sin [Z (XX)b ] (16)

Here, as in Figure IIl-1, (x-x ) represents the displacement from the

equilibrium position x , For small displacements, Hooke's Law holds,

so that:

d(x-x 0 - 1
T- d ('o<<1(26)
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where d is the interplanar spacing normal to the shear plane. Equating

(16) and (26) in the limit of small displacements, one finds

Tr 7 A1(',. •21' (36)
max = 2(3

Unlike the casc of the tensile strength, the surface energy does not enter

the shear process. Also, it is questionable whether one could associate

the thermal expansion coefficient with the third order term in a Taylor's

series expansion of the shear strain energy per atom as a function of x.

Thus, rather than a three parameter fit of an empirical force law, one

has only a one parameter fit as in equation (36) . The use of other force

laws, suqb as the Morse function, involves a detailed, and rather tedious,

consideration of the displacements of the atoms in shear [Mackenzie,

thesis, Bristol University (1949)1. Also, as discussed earlier, the use of

such semi-empirical central force laws is questionable because of the

importance of directional bonding in shear processes.

One may, of course, obtain a one parameter fit of such force laws. For

example, assuming a law of the form of equation (8a) to hold up to m'max

one calculates, c.f. equation (12a),

max x C44 (46)
max
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TABLE I

Values of the Ratio (nm/n-m) for Various n,m (n>m)

m
n 1 2 3 4 5 6

2 2 .0 . . .. . .. . .. . .. . .

3 1.50 6 ---.. ..

4 1.33 4 12 .........

5 1.25 3.3 7.5 20 ---

6 1.20 3 6 12 30 ---

8 1.14 2.7 4.8 8 13 24

10 1.11 2.5 4.3 6.7 10 15

12 1.09 2.4 4 6 8.6 12

TABLE II

Values of the Coefficient 0 for Various n, !.n (with n>m)

m
n 1 2 3 4 5 6

2 7.1 ---..--...-- -.

4 9.4 10.6 12.2 ---. ...

6 10.8 13.2 14.5 16.2 17.3 ---

8 13.9 15.6 17.2 18.7 20.2 21.8

10 16.0 17.9 19.6 21.2 22.8 24.2

12 18.2 20.2 22.0 23.6 26.4 28.2
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TABLE III

Tensile Cohesive Stress Estimates

(stress unit = 1010 d/cmz)

Expression for Diamond Sodium Chloridt.
Cohesive Stress coh 3 %coh Is

C 59 20 3.2 15

i , .1/2

-C - 1 / 94 13 2.7 18

Zwicky -. 0 24
(lattice theory)

References:

Diamond (I 11) plane normal

C - 1. ?- 1013 d/cm2

1= 5650 d/cm [W. D. Harkins, J. Chem. Phys. 10, Z69 (1942)]

Sodium Chloride (100) plane normal

C11l 4.9 x 1011 d/cm2

= 155 d/cm CR. Shuttleworth, Proc. Phys. Soc. 62A, 167 (1949) J

Lattice theory CF. Zwicky, Physikal. Zeit, 24, 131 (19Z3)]
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TABLE IV

Fracture Stresses for Glasses and Water at Room Temperature

Surface C', Fracture stress
Material Energy 9 2 (10 9 d/cmZ)  C

(d/cm) (10 d/cm.) calc. exp. 11 f ac.

Soft Glass 150-300 400-500 30-38 34 13

Pyrex Z50 610 55 120 11

F'uised Silica 350 700 76 90 9

Water 75 500* 1.5 1 1 500

":This is the compressibility since C1'is not defined for water.

TABLE V

Effect of Surface Stress Concentrations on the
Stress for Dislocation Nucleation

Critical Stress

Crystal Smooth Surface Surface with Ledges

Copper

Perfect dislocation A/15 L/Z5

Imperfect dislocation A125 u/30

Aluminum

Perfect dislocation $/15 1/20

Iron

Perfect dislocation /I4/10
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TABLE VI
Highest Observed Strengths of Various Filamentary

Crystals at Room Temperature

Tensile Failures

Strength Young's Modulus:
Crystal (mpsi) Modulus (mpsi) Strength Ratio Reference

BeO 2.8 49 17 Ryshkewitch

A 2 03 2.2 72 33 Brenner

Si 0.94 24 26 Evans

NaC1 0.16 6.3 40 Gyulai

S,C 3.0 70.0 23 Carborundum

AIN 1.0 50.0 50 Davies & Evans

Shear Failures
Shear Shear Modulus:

Crystal Strength (mpsi) Modulus (mpsi) Strength Ratio Reference

Fe 0.71 12 17 Brenner

Cu 0.13 6 45 Brenner

Ag 0.13 4 30 Brenner

Zn 0.03 2.5 83 Coleman

Cd 0.02 1.4 71 Coleman
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TABLE VII

Highest Strengths Observed for Bulk Materials
(one mm or more in outside dimensions)

Young' s Modulus:
Strength Modulus Strength

Material (mpsi) (mpsi) Ratio Reference

Crystals

Al 203 1.03 72 70 Morley

Ti C 0.08 70 87 Williams

Si 0.75 24 32 Pearson

Mica 0.43 -- -- Orowan

B 0.35 51 145 Talley

Others

Fused silica 1.90 14 7 Hillig

Ausformed
steel 0.45 29 64 Shyne

Music wire 0.40 20 72 NBS
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SECTION IV - THE STRENGTH OF INORGANIC
GLASSY SOLIDS

As stated previously, concepts of the strengths of solids imply a theo-

retical limiting strength derived from the forces required to separate

atoms. In inquiring into the factors that control strength it is necessary

to consider the binding and spatial arrangements of these atoms. Glasses

may generally be considered to be composed of sub-units, each well

ordered and each consisting of only a few atoms. Lack of order in the

assembly of these units results in the amorphous characteriszic of glasses.

Since the most important technical glasses have compositions based on

silica it is of advantage to use silica and silicate structures as the basis

for a discussion of strength. In general, the results for glasses based on

other compositions (phosphates, borates, aluminates, etc.) will differ

only in degree rather than in kind.

The building blocks of most silicates are tetrahedra of oxygen atoms in

which each of the oxygen atoms shares a partially covalent a:id relatively

strong bond with a centrally enclosed silicon atom. Each of the tetrahedr'i

has a strong tendency to join with others by sharing oxygen atoms and thus

an excellent mechanism is set up for building chains of oxygen tetrahedra

In most crystalline silicate minerals the characteristic Si-O-Si angle

between tetrahedra is around 1450 and allows ordered and relatively cluse

packings of individual units. Most of these minerals show characteristic

chains which are oriented in special crystallographic directions. It is

apparent that if, in the cooling of a molten silica mass, insufficient

time is allowed or if the chains are insufficiently segmented because of

other charged ions which compete for association with oxygen atoms, then

great difficulty may be encountered in arranging silica chains in a definite

pattern. In such a case the chains may become rigid in much the same

degree of disorder as is exhibited in the melt,and the rigid, amorphous
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structure which results is termed a glass. The low densities of silicate

glasses indicate inefficient packing of the tetrahedral building blocks.

A simple two-dimensional picture of a silica glass structure, pertinent

to later discussion, is given in Figure IV-1. For purposes of illustration

the silicon atoms in this figure are considered to be trivalent rather than

quadrivalent. The simple mechanism by which a high degree of disorder

may be introduced into a substance that readily forms chains is clearly

evident. It is also clear why the glass technologist refers to such an

arrangement of atoms as a "network structure" and why the oxygen atoms

are referred to as "bridging." 2ne network may be modified by the addition

of bulky cations (alkali metal and alkaline earth ions) which associate, mainly

ionically and therefore more weakly, to the oxygen atoms in the chains.

Introduction of these catinF external to the chains, necessitates that some

oxygen atoms no longer bridge between silicon atoms and the structural

picture given in Figure IV-2 results. The particular oxygen atoms that

associate external cations to the network are termed, again for obvious

reasons, "non-bridging" or the cation-oxygen atom assemblies are

referred to as "terminal structures."

With due allowance made for special glass compositions, in which

other small and highly charged ions may substitute for silicon as network

formers, the logical conclusions have been arrived at that the ratio of

network structure to terminal structure in a glass might control many of

the physical properties of such a glass-including its strength. This

conclusion is substantiated by the fact that many glass properties, such

as density, refractive index and dispersion, expansion, heat capacity, etc.,

can be calculated on an additivity basis with some degree of success. Fr-,111

the preceding discussion of glass constitution, it is apparent that the ,

work structure provides cohesiveness and thus supplies the major

resistance to an applied stress.
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Figure IV-1. Schematic Two-Dimensional Representation of a Crystal and
Glass A2 0 3 According to Zachariasen (A represents a network-former).
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Figure IV-Z. Schematic Two-Dimensional Representation of the Structur(
of a Glass According to Biscce and Warren.
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Further, in the open network structures of glasses, it is evident that

accommodation to tensile stresses will be not only by atom separation

within individual ordered units but by alterations in the spatial inter-

relationships of the building blocks themselves (i.e. , translations and

rotations by shearing, flexing, and twisting). Given the characteristics

of external forces applied to a macroscopic piece of glass one can specify

the macroscopi . stress state within the glass but because of the network

structure one cannot specify, with much degree of precision, the alterations

in stress state between the atoms. For this reason the use of a very

simnple and approximate force -separation diagram is warranted for dis-

cussion of the expected ultimate strength of inorganic glasses.
A two-atom force-separation diagram can be applied to a block of glass

of arbitrary dimensions and one can approxima'e the major portions of the

separation curve by a half-cycle sine wave. Thus, with the parameters

defined in Figure IV-3,

(a= ath sin (2-T X/\) (1)

At the equilibrium atom separation distance,

-_(2)

dx a

where E is the Young's modulus ot the material. Since, in this region

coX 1 (3)
then

d_ 2 1rath SE/adX )

and
EXE z(4)

Even though no further derivation can be made without additional assump-

tions, equation (4) gives important information for glasses in which the

main cohesiveness is supplied by the Si-O linkage. It would be expected
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X/2X

Figure 1V-3. Interatomic Force as a Function of S'pacing.
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that X/a be relatively constant, regardless of over-all composition, anI

thus the theoretical strength of a particular cilicate glass would be ex-

pected to be proportional to its Young's modulus. For an order of magni-

tude estimate on glasses, a value of V/2 equal to about the interatomic

separation would not be unreasonable and, thus, for fused silica a theoreti-

cal strength of about 3 to 4 million lb/in2 is obtained.

An energy balance of the separation process may be obtained, utilizing

equation (1), for the work of fracture appears as the surface energy, ZS,

of the new surfaces produced. Thus

zs =So/ Z Xth (5)
0 fT

and from (2)

21rah a
X th (6)E

and

1 i (7)
th a

Existing thermochemical dat.a and data on the gaseous species

present in the Si-SiOC system at high temperature indicate that a reason-

able value for the heat of vaporization of silica would be about 150 kcal/mol.

Because of the low heat of melting of silica, the above value may be used

as an approximate heat of sublimation and thus continue the estimate of th(

theoretical strength of silicate glass from a surface energy standpoint.

Converted to c. g. s. units, the above value gives the energy of rupture of a

single Si-O linkage as about 10" ergs.

The probable number of Si-O-Si linkages that are severed in fracturing
2.

a bar of fused silica 1 cm in cross-sectional area may be estimated from

the crystal structure of the mineral 8-tridymite which has very nearly the

same density as silica glass and is comnposed of silica tetrahedra with the

same Si-O-Si angle. P-tridymite exhil its two sets of planes in which

separation would occur at the junction i of adjacent tetrahedra. The
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number of linkages severed per square centimeter, averaged over these

two sets of planes, is about 3.3 x 1014 linkages/cm 2 .

On this basis, the estimated energy of fracture of the fused silica bar

is equal to (33.5 x 10 14) x 10-11 = 3500 ergs and the estimated surface

2
energy would be 1750 ergs/cm . Substituting this value into equation (7)

and assigning "a' equal to the equilibrium oxygen-silicon separation

(1 6A) a value of tLe theoretical strength of 2-8 x 1011 dynes/cm or

about 4 million lb/in is again obtained. In this case, however, all

parameters necessary for the calculation have been derived from

measurable quantities.

It is of interest that a number of investigators have shown fine glass

fibers to possess a strength in excess of 1 million lb/in2 and of these the

presently reported record value is 3. 5 million lb/in which was obtained

on an extremely fine fused silica fiber. Recently experiments have shown

that carefully prepared fused silica rods (approximately I mm in diameter)

can be pulled in direct tension to a stress of 2 x 106 psi. A further result

from this work has bearing on the calculations performed at the beginning

of this section. For most materials one expects a theoretical strength

varying between E/20 and E/5 where E is the Young's modulus. The

generally quoted E for fused silica is about 107 psi and thus the previously

calculated theoretical strength would be between E/3 and E/2. 5. Direct

measurements give a theoretical strength of between E/5 and E/Z. 5. The

remarkable demonstration in the above experiments is that E for fused

silica increases as the load level exceeds 106 psi. In a simple mechanistic

fashion this result is interpreted to mean that at low load the extension of

silica is achieved mainly by flexing oxygen tetrahedra at corners whereas

at high loads the extension is associated with atom separation. Thus the

appropriate E to be used in estimating theoretical strengths is not presently

available and thus these strengths may indeed lie between 10% and 20% of

the effective high load modulus.
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In this connection there are other recent high strength measurements

which are similar to those given above except that the glass involved was

of a window glass composition containing relatively large amounts of

sodium and calcium rather than the simple silica glass. If not taken too

literally, Figure IV-Z may be considered to represent a two-dimensional

analogue of such a glass. In this glass it was noted that at high loads

(approximately 106 psi) the Young's modulus continuously decreased

from the value exhibited at low load. It is concluded that the alkali

cations present in the glass must severely limit local modes of deforma-

tion of the silica network structure such that the forces applied result

mostly in atom separation. With reference to Figure IV-3 it is noted that

this is the most generally expected behavior.

The foregoing discussion has been based on what may be a highly ideal-

ized concept of glass structure (i.e., Figures IV-I and IV-2). Increasing

evidence is presently forthcoming that multicomponent silicate glasses

exhibit a fine structure related to the prevalent tendencies of these glasses

to unmix. Such unmixing may play a significant role in the response of

these systems to stress and it is felt by many that an important factor in

preventing experimental strength measurements in excess of one or two

million psi may have to do with these structural and compositional

fluctuations.

Further, there has been reawakened interest recently in the possibility

that inorganic glasses should be considered as elastic-plastic materials

even at low temperatures. Thus, it is claimed, perfectly formed glass

fibers may never exhibit their ultimate strengths but will rupture at some

lower stress at which macroscopic flow occurs. Evidence in favor of this

concept is meager but two types of observations would not be inconsistent

with this idea. One of them concerns the fact that diamond point indenta-

tions on glass cause a permanent set which, whether it be due to irrever-

sible compaction or time dependent flow, results in a change in the spatial
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arrangements of atoms. The second is concerned with the fact that numer-

ous investigators have reported a remarkably small scatter in high strength

data for fine fibers. The conclusion is made that either these fibers fail at

their true ultimate strengths or that a well defined flow stress is operative.

It is also shown that the actual strength levels observed seem much lower

than those expected for ultimate values and thus there is a possibility that

flow intervenes to assist failure. Further, much of the limiting crack

velocity data cannot be correlated simply to the Young's moduli of the

investigated glasses as is expected. A better correlation is obtained using

a function related to diamond indentation hardness. Over-all, it appears

that if one permits a small amount of plastic work to occur during glass

fracture, the existing data on fracture velocities can be better interpreted.

In summary this outline is concerned with some present concepts of

glass structure and the relation of theoretically expected and experimentallq,

obtained strengths to this structure. Theory and experiment show reason-

able agreement but one may conclude that further correlation will require

significantly greater precision in defining fine scale glass structures. For

the present, compilations and empirical relationships that predict elastic

properties of inorganic glasses as a function of composition are of most

use in assessing theoretical strengths of these materials. Methods and

data such as given by Phillips [Glass Technology, 5, No. 6, pp. 216-223

(1964)] are particularly useful.
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SECTION V - THE STRENGTH OF ORGANIC POLYMERS

A. INTRODUCTION

The basic structural feature of organic polymers is the chain of cova-

lently bonded atoms. However, the chain may contain branch-points, and

consequently a large number of topologically different molecular structures

are possible-e.g., "ladder" molecules, planar nets, and three-dimensional

networks. Some of these are indicated in Figure V-I.

In general, the polymer molecule contains "pendant" atoms or groups

which are attached to the chain or net by covalent bonds. Adjacent polymel

molecules are held together by intermolecular forces whlich are much

weaker than the covalent bonds which constitute the molecular skeleton.

However, diamond may be looked at as a limiting case of a highly cross-

linked three-dimensional network polymer; and graphite may be considered

as a limiting case of a highly cross-linked two-dimensional (planar) network

polymer. In such limiting structures, every atom is part of the primary

skeleton.

The term "organic" implies that carbon is involved in the structure,

but even in organic polymers atoms other than carbon can be present in

the molecular skeleton as well as in pendant groups.

Linear polymers may be crystalline or amorphous. Current technology

cannot produce large single crystals of crystallizable organic polymers.

Useful objects composed of crystalline polymers are polycrystalline masses

with complicated morphology, including many crystal imperfections.

However, theoretical strength calculations (for crystalline polymers)

should be based upon the idealized large perfect crystal if upper limits

are to be placed upon possible strengths.

Because intermolecular forces are much weaker than the skeletal

covalent bonds, the tensile strength of a pe-fect crystal (or of a highly

oriented amorphous linear polymer) will be highly anisotropic. This
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H2  H2  H2  H2  H2  H2
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H2  H2  H2  H2  H2

Figure V-1.
fact must be kept in mind when such theoretical strengths are used. Com-

plete uni -directional molecular or'zantation leads to the highest possible

theoretical tensile strength in the direction of orientation, but this is

necessarily at the expense of other physical properties (such as transverse

tensile strength; and as a corollary, resistance to multiaxial stresses).

in practice, when molecular orientation is controlled in polymeric materials,
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th, highest attainable uni -directional orlentation ubua.ly is deliberately

avoided in order to obtain somne desired compromise set of physical

properties.

Bond angles must also be considered in the attempt to estimate theoreti-

cal strengths of polymers. Acetylene (H-C•C-H) is; a truly linear molecule,

in the sense that all four atoms lie on a straight line; presumably the poly-

ene( -CaC-C-;C-C-C-C•C-C=C- -- ) would also be truly linear. Most so-

called "lineir" polymers, however, are zig-zag structures even in their most

oriented (extended) conformations. Typical approximate bonded angles are:

C 0 N C=C•

\ 1090; c/ 0\c >900; c/ N\c >900; C, 1200.

When such a zig-zag chain molecule is subjected to tension, bond angles

as well as bond lengths are altered. This is also true in the case of double-

stranded chains, planar networks, and three-dimensional networks.

The analysis of the stress-strain behavior of the single zig-zag chain

molecule can provide a basis for rough theoretical strength estimates for

many multi-stranded chains and network polymers, provided that the

symmetry of such structures is appropriate. To be more specific on this

point: Whenever a multi-connected structure (e.g., two-stranded chain, or

two-dimensional network) possesses a symmetry which insures that the

response to a uni-directional tension can be reduced to the symmetrically

repeated displacement of individual atoms relative to adjacent covalently

bonded neighbors, this displacement being opposed by a bond-angle stiff-

ness and a bond-length stiffness, the problem of calculating the stress-

strain curve to failure becomes basically identical with the corresponding

problem with linear (zig-zag) polymethylene.

B. THE LINEAR (ZIG-ZAG) POLYMETHYLENE CHAIN

As stated previously, both covalent bonds and intermolecular forces

are encountered in organic polymers. The primary structural elements

are chains, or sheets, or three-dimensional networks, of covalently bonded

atoms. The chains or sheets are attached to their neighbors by (weaker)

intermolecular forces.
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In this discussion, consideration mill be given to the theoretical strength

of a linear polymer containing only C-C single bonds in the chain-i. e. ,

H2  H2
.C .C•

C/ \C C\. The highest theoretical strength in one

H2  H2  H2

direction would require that the chains be extended in the direction of the

aDplied tensile stress, thus exhibiting the hypothetical behavior of a large

perfect single crystal of very high molecular weight, perfectly linear,

polyethylene. Since the intermolecular forces between hydrocarbon mole-

cules are much weaker than the covalent C-C bonds, such a crystal would

be relatively weak in the transverse directions.

The polymer chains in such a crystal will respond to a uni-directional

tensile stress in two ways: stretching of the C-C bonds, and opening of the

(C\C /C) bond angles. By symmetry, the response of the entire chain can

be reduced to the displacement of a single carbon atom relative to its

covalently bonded neighbor.

In the unstressed equilibrium arrangement, the C-C bond length is

1. 54A, and the bond angle is approximately 1090. The location of a chain

atom relative to its neighbor can be expressed either in Cartesian coordi-

nates (x, y) or in polar coordinates (r, 9).

The potential energy of this system, when deformed in an arbitrary

manner away from the equilibrium arrangement, is not known satisfactorily

for the present purposes; therefore, various estimations of the potential

function V(r, e) or V(X, Y) must be made.

For very small displacements from equilibrium, V can be satisfactorily

represented by the expression: ZV = ZV + K (r-r )Z + K (8 - 6 )2.oepreente by
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X= r cose

0Y= r sins

1.54 x 158

r 1e =35.50

0

Figure V-2.

Furthermore, spectroscopic data can provide numerical values for

K and K?, which are sufficiently accurate for the present purposes.

Also, V can be satisfactorily estimated from thermodynamic data.0

Potential energy contours, for small displacements, are ellipses with

principal axes aligned parallel and perpendicular to the bond direction

(i.e., at 35.50 and 125.50 relative to the X-axis).

The se:ious uncertainties arise when large displacements from the

unstre sed equilibrium arrangement are examined.

The general character of V(X, Y) is indicated in Figure V-3.

For large displacements, V cannot be adequately represented by a sum

of two separate functions, one depending upon bond length (r-r ) and one

depending upon bond angle (e- 8 0). However, a start can be made by

examining the manner in which V varies with r (holding e = e0) and with

0 (holding r = r0), designating these two functional relationships by the

respective symbols V"(r) and V*(e).

The function V' (r) can be approximated by the Morse function, using

the three known quantities (Vo, ro, and KI) to fix the Morse parameters,

designating the Morse approximation to V*(r) by the symbol V "n'(r).
m

Although it can be expected that V 1 (r) will be a good approximation to
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t
Y

0

Solid curves: Equipotentials
Dotted curve: Response-path to unidirectional

stress O*XX,

Figure V-3.
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V "'(r) in the vicinity of r , its ,Lcq ra,-y nfear the inflection p-int is subject

to the same uncertainties which have been discussed in earlier sections of
the report. With this qualification, the following estimate for V m (r) can

It ll madc:

S(. 12 -4.04x 108 (r-1.54 x 10-8
V 0 (5.5 x 10 ) Le

8
e -2. 02 X 10 (r-1 . 54 x 10

0

(V0=-D)

Figure V-4.

The angular potential function, V'(6). corresponding to r = r , is of the

general form indicated in Figure V-5.

In attempting to develop a satisfactory approximation to this (unknown)

VW(6), the estimations are handicapped by the fact that only two reasonably

accurate known quantities are available to start with: 0 and the value of
0

(diY-( O)' at 6 = . The height of the potential maximum (VL: - V\de /z a 0 L °

c -nnot be derived from thermodynamic data.

A simple expression which exhibits the required qualitative form shown

in Figure V-5 is given below, and designated at VI* (8)-i.e., as a first

approximation to the unknown V* (e): (Note: 6 is measured in degrees.)

VI 2 4
V '(6 =Vj - C1 6 + G2CIL 1
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V*(e)

VL =Potential E

of Linear

arrangement,
S~~~with ,. ,~

Vo

I I I.

"-900 "600 -:300 0 ÷•'10° +600 + 900
35.50 -,

Figurze. V-5.

This approximate function can be fitted at 8 = 19 , where the se.-..nd
o

dorivative is obtainable ft.om spectroscopic data, th.ereby resulting in the

tI)pecific e.quation:

Vz (8) =(Vo+2.o~ 08 x 10
0 e in degrees

-3.3 x 10"1(Z V in ergs

+ 1.31 x 10 " 18 (94)

This approximation, Vi:() cannot be considered to be reliable for

I.-jr-, i•ngular displacements. It forces the "inversion energy" of the
i t-

';i n tob .8xI r /t m(p ro .I clroeI ae
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discussion, an improved approximation will he advanced, V (0), which

can accommodate different values for this inversion energy. However,

before doing this, the crude function V* (6) can be used, tegether with the

function V `(r), to illustrate the problems encountered when large dis-
m

placements of bond length and bond angle are simultaneously present.

If the system is first deformed to a large (A 6) and then the bond lengtl s

are increased from r to infinity, the total energy required should i,,e thie

same as if the bonds were stretched at 6 e . An approximate expression
0

for V(r, e) which exhibits this feature can be constructed from V`"(9) and
I

a Morse function in which the dissociation energy depends upon 6:

specifically, D= - ':(6). The resulting approximation to V(r, 0) will be

designated as VI(r, e).
-lZ -15 2Z -.1x l010)

VI(r, 6) = (-3.42 x 10 -3.3 x 10 6 7-31 x 10 864).

-4.04 x 10 8(r l.54x 10-8 + Z -Z.02x 10 8(r-l.54x1O-80
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This function is plotted in Figure V-7.

t • -35

to

08- .The deformation path

0.7-" - Z•,, .

04-

02

010

0 L .3 .4 .5 As .7 .8 ý9 10 11 1.2 L3 14 /'\I 17 fe 19 20 X--

Figure V-7. Contour Plot of V (r, 8).

The response of the system to a uniaxial tensile stress, a x , ca,: now

09x

be examined, which results in a force F xexerted upon the atom by itsneighborT The force F is zero. Since F = .V', the ppatom

(assuming elastic equilibrium as F is slowly increased) is defined by thý-,

locus~~ ofpit heeTefrc- sgve y( , and the

07 la' - xxb

maximum value of this force corresponds to the theoretical strength of

the polymer.

3~4

The density of the model polymer is very close to I g/cm . In the X
direction, there are 7.41 x 107 carbon atoms per centimeter. There are

5.84x 1014 chains per cm of area (y-z planes). Hence the theoretical

strength (dynes/cmp o) is given by:

TheoreticalhStrength 5r 84x 10F14 i ( SV) t h

b- a x " (N o te : • • m x i
tn by

locus iumvau of pant whereo0. thefred Flisggive andh theneb

) x
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The complete theoretical stress-strain curve of the polymer, correspond-

ing to the approximate potential function VI(r, 6), can be similarly developed.

'14 IýV \
At any point the nominal stress = 5.84 x 10 X 1and the strain4

A3X1 8 
.This is given in Figure V-8.

1. 35 x 10

N U

IC
I C

00

0 3 3

0 005 0I0 015 020 025 030

Figure V-8. Theoretical Stress-Strain Curve Corresponding to VI(r, 6).

Having now used the crude approximation V'(e) to illustrate the approach

to developing an approximation to V(r, 6), and the method of estimating the

theoretical strength therefrom, the angular dependence can now be re-

examined and an improved approximation VI (8) developed. An alternative

function, which is of the desired qualitative form in the region (-35.5 <

e < + 35.5), would be V + C(1 + cos 5.07 e). If this is forced to fit the0
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known second derivative at 6 = , we obtain: V + (. 69 x o-12
0 0

(1 + cos 5.07 0). While this function, by itself, does not provide a good

approximation to V*(O), it can be combined with V'(6), introducing an

adjustable parameter a and arriving at the following approximation for

V I(6) = V + (Z.(08 x 10-1 - 3.3 x 10-15 02 + 1.31 x 10-18 84

+ (1 - a) (1.69 x 10 lz) (1 + cos 5.07 8)

This function can be adjusted (via a) to fit any desired value of VLP as

well as the zegion near 60.
V"(8) can now be combined with the Morse potential for r, to obtain

a second approximation to V(r, 9):

V r,9) =V 1  ( -4.04x 108 (r - 1.54x 10-8

- 2.0x 108 (r - 1 54x 10-8))

This potential function has been evaluated numerically for several

values of the parameter a, corresponding to several assumed values of

the inversion-energy (VL - Vo). Table I gives the results of these

calculations.

TABLE I

(V V Young's Theor. Theor. Theor.
L 0 Modulus Strength 2 Strength Breaking

a (ergs) (dynes/cm?") (dynes/cm) (psi) Strain

0 3.38x 10-12 1.6x 10 3.3 x 1011 4.7x 106 31.5%

0.5 2.73 x 102 same 3.25 1011 4.6x 106 32.0%

1.0 2.08 x 10-l same 3.1 x 4.3 x 106 32.0%

1.5 1.43 x 10-12 2.85 x0 4.05 x 106 32.5%
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It is seen that the theoretical strength and the theoretical breaking strain

are not very sensitive to the value chosen for the "inversion energy,"

(VL - Vo).

As the parameter a is varied from 0 to 1.5 (corresponding to more than

a 2:1 variation in (VL - V ), the theoretical strength changes only from

2.85 x 10 to 3.3 x 101. The breaking strain is even more insensitive.

The approximate potential function Vii(r, e) must be used with the

same reservations which have been pointed out for the Morse potential

itself. However, V ii(r, 9) does generate a smooth surface of the correct

general form in the region of interest (-35.50 < e< + 35.50); and it can be

made to fit all of the following quantities:

V , r /6, e,-7 and (V V )
o o o0 r o L o
Vo'(2_V )o 0o t / t e )o' v,

Five of these quantities are experimentally accessible, and by choosing a

set of reasonable values for (VL - Vo), useful insight into the la'ge defor-

mation behavior should be obtainable from this function.

The line of reasoning represented by the potential function Vii(r, e) thus

leads to the following estimates:

Theoretical Strength: approximately 3 x 1011 dynes/cmr

Theoretical Strain: approximately 30%.

These estimates are subject to all of the uncertainties of the Morse

potential. However, present lack of knowledge of the "inversion energy"

does not seem to contribute a large additional uncertainty in theoretical

strength.

C. EXTENSION TO OTHER MOLECULAR STRUCTURES

The theoretical stress-strain behavior of the oriented linear poly-

methylene chain provide; a basis for estimating theoretical strengths of

a variety of other polymeric structures. The following sections will con-

sist of qualitative and semi-quantitative comments regarding various

structures, without going through actual numerical analyses.
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a) The Conjugated Linear (Trans) Polyene Chain

H H H H H
I I I I I

C \C // \CC

I I I I I
H H H H H

The close similarity of this problem to the polymethylene problem is

obvious. The above structural formula is drawn with the double bonds

localized, but resonance with the alternate electronic structures makes

all C-C bonds equivalent (roughly "I-1/2 bonds" between each pair of

carbon atoms). The bond angles are close to 1200. The CC bond lengths

are intermediate between the normal C-C and C=C distances. The number

of chains per square centimeter would be somewhat greater than in poly-

methylene. The significant difference between the two cases is the increase

in bond-order from 1. 0 to 1. 5; consequently, a crude estimate of theoreti-

cal strength would be:

5 x 10 dynes/cmi.

b) The Polyphenylene Chain

This material would have a density of approximately 1.3 -and herce

approximately 4.5 x 1014 chains per cm (compared with 5.84 x 1014 in

polymethylene). This chain is an alternating series of strong, rigid units

and weaker, more compliant units (respectively the phenylene rings and

the single C-C bonds which connect the rings), The Young's modulus of

such a structure will be significantly higher than that of polymethylene,

but the expected theoretical strength will be lower. An estimate for this

strength is 2.5 x 1011 dynes per cm?.
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This. example brings out the fact that no universal ratio between theoreti-

cal strength and Young's modulus can be expected to hold for all polymeric

structures.

c) The Truly Linear Molecular Solid

Consider a hypothetical solid consisting of linear molecules of nearly

infinite length in a hexagonal array with strong covalent forces between

atoms in the chain and weak van der Waals forces between chains. A single

potential function will be used for the covalent bonds. Van der Waals will

be neglected. A unit cube will be assumed for convenience. Then the

potential energy is

U =nU..
1j

where "n" is the number of bonds per unit volume and U.. is the potential

energy of the bond.

Taking the same direction for the bonds and the external force, the

external displacement is the sum of equal bond displacements in one

molecule.

AZ = EAr

= Ar/re = 0

where the reciprocal of the equilibrium bond distance, re is the number of

bonds on a one centimeter length molecule.

The potential energy of the solid may be differentiated with respeLt tu

the displacement to obtain the strength:

du ndU..
d-:- = I/Z aDn

if the Morse function is assumed. "a" and "D" are parametezs in the

Morse potential function:

a = re

re being the normal bond distance, K the bond force constant, and D the

bond dissociation in energy, nD is the cohesive energy per unit volume of

solid.
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If the linear molecules in the solid are assumed to be carbon atoms with

double bonds, the bond parameters may be estimated from similar molecules:

re, 1.33 A, K, 7.4x 105 dynes/cm; D, l x 10- erg/atom; nD, 8x 10ol

ergs/cm 3 ; a, 2.5. These estimates give a strength of approximately 1012

2
dynes/cm . The elongation is about 28 per cent at the maximum strain.

d) The Double-Stranded Linear Chain Composed of Condensed
Aromatic Rings

This double-stranded chain could be expected to have a density of

approximately 1.5, corresponding to 4.36 x 1014 double chains per square

centimeter. By symmetry, this double-stranded chain can be postulated to

respond to uni-directional tension in the same general manner as the single-

stranded polymethylene chain. (This postulate should be made with reser-

vation, since there might be some asymmetric mode of large deformation

of these aromatic rings which would accommodate a large macroscopic

tensile strain at a lower stress level than the symmetric mode.)

Taking into account the large number of chains per unit area, and

assuming a bond-order of 1. 5 for the zig-zag sequence of bonds, a rough
11 2

estimate of theoretical strength would be: 6.7 x 10 dynes/cm

e) The Two-Dimensional (Graphite) Network

Taking graphite as the limiting case of a two-dimensional carbon

network polymer, the following is obtained:
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The density of graphite is Z.Z, and the bond length is 1.42A - correspond-
14 Z

ing to about 13 x 10 zig-zag chains per cm . An assumed bond order of

4/3 leads to the following rough value for the theoretical strength of this

structure:

17 x 1011 dynes per cmn2

A large graphite single crystal should exhibit a high (theoretical) tensile

strength in all directions in the plane of the layers, but not necessarily

equal values in all directions. Unlike all polymer structures considered

earlier, this two-dimensional net should have a high (theoretical) strength

in biaxial loading in the plane of the layers. It would be much weaker in

in the third direction.

f) Use of Foregoing Ideal Carbon Chains and Networks to Provide
Upper Limits for Theoretical Strengths of Various Other Polymer
Structures

The previous theoretical strength estimates for linear polymethylene,

linear poly-ene, polyphenylene, double-stranded condensed aromatic rings,

and graphite, can be used as upper limits to the theoretical strengths of

various other polymers, as follows:

1. Polymethylene chain with sparse substitution of some other atorn

for C in the skeletal chain, e.g.:
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H2 H2 H2 H2 H2

C H2

H2  H2  H2

The optimum assumptions for such a system are that the geometry is

not seriously altered from that of the parent polymethylene, and that

the C unit is at least as strong as the C C unit. The theoreti-

cal strength of the modified structure will, under these optimu condi-

tions, be essentially equal to that of polymethylene. If the C

unit (or the r:.•.. C unit) is significantly weaker than the C C

unit, the theoretical st:'ength will be lower; but if the modified units are

stronger than C CNC, this fact will not lead to an appreciably higher

theoretical strength. Thus the theoretical strength of polymethylene

can be taken as an upper limit to the theoretical strengths of this general

class of polymers; but without further investigation of individual struc-

tures it should not be taken as a lower limit. Cases where every second

carbon atom is replaced require further analysis.

2. Polymethylene Chain with Pendant Substituents

H2 H2 H2
C C .C

H2 H® Hp H®

Bulky pendant groups require space. They must reduce the number of
2

skeletal ch:.ins per cm . Their own load-bearing'contributions (via

relatively weak intermolecular forces) will almost certainly be less than

required to compensate for this reduction in the density of covalent

chains. In vinyl polymers, which have a substituent group on every

second chain atom, the skeletal chain will usually be forced out of the

planar zig-zag conformation (by rotation about the C-C bonds). Such
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a helical structure might turn out to, have an unusually high ratio of

theoretical strength to inoduluis, but thi- w-,,jiri he wecausc of . rdlatively

low modulus, rather than a high the,,rui .1-±l strength. It is difficult to

imagine the theoretical strength of sucl, ýtructuru exceeding that of

linear zig-zag polymethylene; again, thl5 cn.tn be t;aken as an u-jper limit.

3. Substituted Double-Stranded Carbmn Ci. -n,

R R R R R R R R R

R R R R R R R R R

By the same reasoning as employed above, the vajue of 6.7 x 1011

dynes/cm car be taken as an upper limit for theoretical strengths of

this class of structures.

4. Comments Regarding the Estimation -.f Theoretical Strengths
of Polymers from Young's Moduli by Means of Some Univer,,al
Ratio

A nearly universal structural featur, 04 organic polymers is

the presence of bent covalent chains as the strongest structural ele-

ments. The valence forces are strongly directional. The potential

energy of a given atomic configuration depends upon bond angles as

well as bond lengths. A tensile stress parallel to the general chain

direction tends to open bond angles as well us to stretch bonds.

In the small-strain region, a substantial part of the elastic

compliance results from bond-angle alteration. As the bonds become

oriented more nearly parallel to the direction of stress, the ratio of

bending moment (acting on the bond angle) to tensile force acting along

the bond decreases. Consequently, the stress-strain curve exhibits a

different form from that characteristic of (for example) a close-packed

metal crystal pulled along a line of atoms. In extreme hypothetical
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cases, the predicted elastic stress-strain curve of a zig-zag polymer

chain can be S-shaped, as below:

00t

This effect probably leads tc a ratio of theoretical strength to Young's

modul us which is somewhat higher than that of many atomic crystals.

In the case of chains which are twisted out of the planar zig-zag

conformation, this characteristic feature is probably accentuated. Tnus,

in a crystal composed of parallel helical molecules (e.g. , isatactic

polypropylene) the Young's modulus taken at very small strains might be

considerably lower than that of a linear polymethylene single crystal.

In addition to bond angle and bond length response, the system could

deform elastically by forced rotation about the out-of-plane single bonds.

The chief resistance to this bond xotacion would reside in the relatively

weak intermolecular (actually inter-group) forces between non-bonded

bulky pendant grotups which would be forced more closely together. The

.'ress-straii, curve for such a polymer might be strongly S-shaped, and

the ratio of theoretical strength to Young's modulus might be quite high.

No attempt has been made to analyze such twisted chains quantitatively,

but it seems extremely probable that the use of a standard ratio of theo-

retical strength to Young's modulus would significantly underestimate

the potential theoretical strengths of these materials.
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SECTION VI - EXAMPLES OF THEORETICAL

STRENGTH CALCULATIONS

A. SUMMARY--DISCUSSION OF METHODS OF CALCULATION

From the material presented in previous sections of this report, it is

clear that there are several approaches to the problem of estimating the

theoretical strengths of materials. Each has its basis in the fundamental

nature of interatomic forces and their interactions in an assembly of atoms.

Each approach is beset by characteristic difficulties which seem to preclude

an exact calculation. The situation really resolves itself into the problems

associated with making calculations which are clearly approximate, and

then attempting to assess the magnitudes of the u.icertainties in the results.

These difficulties arise because of the present lack of understanding of

the detailed behavior of an array of atoms. It is obvious that a better

understanding is needed, but because of the complexity of the general

problem it is questionable whether any simple extension of present under-

standing would represent a significant advance. A whole new dimension of

the problem is needed. However, in spite of the apparent difficulties, the

concept of theoretical strength is important for the characterization of

useful materials.

It may be helpful to summarize the methods of strength calculation

whic¢h have been discussed earlier. Baoically there are two methods which

have as their common root a potential energy function. In the first, one

sets ouý to establish, as accurately as possible, the actual potential energy

function appropriate to the material at hand. This involves knowledge of the

interatomic forceb. the structure, and the mode of deformation under

applied stress. As pointed oat previously, a quantitative evaluation of the

potential energy as a function of strain leads directly to the theoretical

strength. Unfortunately, the region of critical strain is incapable of ex-

perimental verification because it involves strains considerably greater
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than can be observed with real materials. For any except the simplest

cases, this approach is one of very considerable complexity, the available

data are someLhing less than adequate, and the approximations involved

may sometimes be unrealistic.

The second method is much more practical, although not necessarily

more reliable. It is based on the consideration that if the potential energy

function is assumed to have a particular mathematical form, it is possible

to develop quantitative relationships between the theoretical strength and

other properties of the material. These are properties which are suscep-

tible to measurement, and which minimize the differences between real

and ideal substances; such as the heat of sublimation, Young's modulus of

elasticity, the coefficient of thermal expansion, and the surface energy.

The second method ifý more practical in the sense that it leads directly to

a result, but the uncertainties involved in the result must be estimated.

One must recognize that magnitudes of the properties which a substance

exhibits can be more or less dependent upon direction. A property slich as

heat of sublimation is a scalar (isotropic) quantity, whereas the Young's

modulus, or the thermal expansion coefficient can have quite different

values associated with specific directions of measurement. The suggested

methods of calculation take this anisotropy into account to a limited extent.

The user oi these methods should recognize the degree to which the

assumption of isotropy is involved and be especially careful when con-

sidering substances with pronounced directional behavior.

Still another source of uncertainty is encountered when one considers

a substance that is composed of several phases in intimate combination,

e.g., a high strength steel. In such a case one "s forced to assume, on

the basis of present knowledge, that the same general relationships be-

tween properties and theoretical strength will hold as for a simple single

phase. However, the interphase boundaries in certain cases rtiay be

quite weak.
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Th,- temperature dependence of theoretical strength is important, and

here -.gain a detailed ý,.reatment of the problem presents great difficulties.

The dependence of mez.sured properties upon temperature provides some

basis for calculation, but it is obvious th.:•t some properties provide more

reliable indications than others. Some substances undergo phase trans-

formations which may change the critical mode of deformation. Other

properties, as for instance the thermal expansion of the iron nickel alloys,

have a quite anomalous behavior in certain temperature ranges. Neverthe-

less, a general knowledge of materýial behavior can go far in ruling out

obviously unreliable solutions.

In spite of all of these uncertainties, it is possible to estimate the reli-

ability of the results obtained. Such an estimate must be based upon the

best judgment of people closly concerned with the problem, and should

provide a suitable guide to those interested in the application of the results.

For substances of relatively simple structure and substantially isotropic

behavior, the calculated theoretical strength should be reliable to within a

factor of two. In the case of substances having complex structures or

exhibiting considerable anisotropy, the factor would be between three and

four depending to the extent to which pertinent data were a~ailable. A cal-

culation reliable to within an order of magnitude should be possible even

with quite limited information concerning a substance and its properties.

The following illustrative examples will indicate the way in which the

calculations are made and the nature of the results.

B 1. SAMPLE CALCULATIONS FOR THEORETICAL STRENGTH
OF IRON CRYSTALS

General References for Data:

K. A. Gschneidner - "Physical Properties and Interrelationships of
Metallic and Semi-metallic Elements," Solid State Physics 16, 275
(1964).

H. B. Huntington - "The Elastic Constants of Crystals," Solid State
Physics 7, Z14 (1958).
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W. B. Pearson - Handbook of Lattice Spacings and Structures of Metals
and Alloys, Pergamon Prese, London (1958).

C. J. Smithells - Metals Reference Book, Third Edition, Butterworths
(1962).

R. A. Swalin - Thermodynamics of Solids, J. Wiley & Sons, New York
(196Z).

Method I - (heat of sublimation)

Equation: W 0-n 0.4/n•\ H
coh ý -m s

Required Data:

Suggested values of (n, m) for iron, taken from text = (4, 9); this

yields:

m) --6 =7.2

Thermodynamic data from J. F. Elliott, M. Gleiser - "Thermochemistry

for Steelmaking," p. 58, Addison-Westey, Reading, Massachusetts (1960).

Reaction Heat

Fe(t,3150OK) Fe(v,31500 K) AH +84,180 cal/mole
v

Fe(s,Z980 K) -Fe(s,3150 0 K) A = +25,650 "CS

Fe(v,3150°0 K) - Fe(v, Z93DK) AH- = -16,240 "cv

Fe(s,31500 K) -Fe(t, 31500 K) AH = + 3,700 " "
m

Sum = Heat of Sublimation at 298 0 K = AM 97,300 " "S

Substitution and Results:

a, -0.024 (7.2) AH =0.173A•-- S S

cal 7____ 1 mole
-'0.173(97,300_ -- 1e) (4.18 x 10 7 oe) ( -..1 )

S9.9 x 1010 d/cm2 
cm

"(9.9 x 10 d/cm2 (1/6.89 x l04 psi-cm )

d

J 1,400,000 psi
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Method II - (elastic stiffness)

Equation: (C
coh

where (C 11 ) is the average elastic stiffness in order to make this method

comparable with the other examples.

C11 (44 - dI/5) (2Cd1 2 • C11

(C 4 4 + C1 2 - Zd/5)

d = C44 + C 11 C 1

Required Data:

Taken from K. S. Aleksandrov, T. V. Ryshova, Soy. Phys.

Crystallography 6, 228 (1961).

C 1 242 x1011 d/m2C = 14.2 x 10 1 d/cm2

C 14.6 x 10 d/cm12I

C4 = 11.2 x 10 d/cm

d 2. 60 x 10 d/cm

(Cl> aZZ.3 x 10I1 d/cmn = 3.25 x 107 psi

Value for B suggested in the text = 20.

Substitution and Results:

acoh _22.3/Z0xIC d/cmz

I11 21 .lZx lO d/cm

, =1,600,000 psi]

Method III - (thermal expansion coefficient)

Equation: ah -k
coh ZeV



-€

102

Required Data:

Expansion coefficient is high temperature (nearly constant) value

taken from Pearson (1958; see list of general references).

a 1  = 15.4x 10 6/0C
31023

V = (7.1 cm 3/mole) (1/6.023 x 10 mole/atom)
1-23 3/

= 1.18 x 10 cm /atom

k = 1.38 x 10 ergs/lC

e = 2. 718

Substitution and Results:

a coh ( 1.38 x 10 6ergs/ 0 C)+ [2(15.4x 10- 6/ C)10-23

(2. 718) (1. 18 x 1023 cm3

- 1.37x 10 dlcm

2, 000, 000 psiý

Method IV -

Equation: 2y C 1/2

fcoh- 2
x e

0

Required Data:

From the book by Swalin (1962, see list of general references):

"y (liquid iron) = 1450 ergs/cmZ

y (2 x grain boundary value) = 1500 ergs/cm2

,y (cleavage on [100] planes) 2: 1360 ergs/cm2

so we take (y) = 1450 ergs/cm2

(C'll) = 22.3 x 10I1 d/cM2

X =d = a/ = x 10-8 cm
o 110 1.41

= 2.02 x 10-8 cm

e = 2. 718
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Substitution and Results:

2(1450ergs/cm2 )(22.3 x 10 d/cm2)]

O~coh N (2.02 x 10 -8) (2.718)

_ (4.35 x 10 )1/2

11 2
_ 2.08 x 10 d/cm

' 2,900,000 psi]

2. THEORETICAL STRENGTH CALCULATIONS FOR A TYPICAL
GLASS COMPOSITION

The following glass is representative of a large group of glasses in

commercial use and exhibits the following measured propertlvs;*

Composition-69.Z% SiO•, 12. 0% K 0, 0.9% Na O, 11.8% Al0 3 , 4.5%
2' 2 3

CaO, 0.9% MnO. Young's modulus--6.4 x 1011 dynes/cm? (9.01 x 106 psi).

Poisson's ratio-O. 251. Density-2.4 gins/cc. Surface tension at 298CK

(extrapolated)-560 ergs/cmZ.

a.)Theoretical Strength Estimate Based on Young's Modulus

The silicon-oxygen bond, which predominates in this glass, is

partially ionic and partially electron sharing whereas the alkali-oxygen

bonds are ionic. Therefore, on the basis of Table II, Section III, a ratio

of a coh/E ; 1/10 appears reasonable. Thus

acoh 0 (6-7) x 1010 dynes/cm z (9 x 105 psi)

b.)Estimate Based on Surface Energy

Since the glass under consideration is one based on a network of

silica tetrahedra joined at the corners, the equilibrium spacing of atoms

pertinent to strength calculations is the Si-O or Al-O separation. This

spacing has a value of approximately 1.6 A. Equation 8, Section 3, based

on a force-separation law with exponential characteristics, gives therefore,

*Griffith, A. A., Phil. Trans. A221, 163, 1921.
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a /2 YE 1/2 0.52 (560(6.4)1011 I/z

coh eeZ X 0 ) \1.6 x 10- 8

= 7.8 x 1010 dynes/cm 2 (1.1 x 106 psi).

Equation 7, Section IV, based on the simpler sinusoidal approximation,

gives a somewhat higher value,

c oh = 1.5 x 10 dynes/cm

(Z.2 x 10 psi)

c.)Estirrate Based on Sublimation Energy

On the basis that the energy required to separate atoms and form new

surface may, by Zwicky's hypothesis, be approximated by the heat of sub-

]imation per unit volume (i.e., approximately _S ), Equation 8 (Section III)

,-nd 7 (Section IV) take the forms 0

/EI 1/2 E4H /a

a. 5 ( ) (E1 i/) ormS
coh or coh 2

where AH is the sublimation energy in ergs/mole and V is the molar

volume of the material.

For the glass under discussion the molar volume calculates to be

27.3 cc. In such a glass, consideration of bond types leads to the con-

clusion that the alkali metal oxide bonds contribute little to strength,

Young's modulus or sublimation energy. It has been shown (Phillips)

that additivity theories for Young's moduli of glasses are reasonably

accurate-, and thus we might also expect additivity theories for sublimation

energies to be reasonably accurate. The following table may therefore

be constructed.
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T.\I3LE I

Sample Calculations

CaluLI.tted Calculated
Modulus Contriib)ttiiun LI-, Contr ibution

mole% Factor, to Mod,.1us ergs/mole to AH-s/mole
Component wt % M f(a) (f x M) of Component of Glass

SiO 2  69.2 76.8 7.3x.10 9 5.60x.1011 6.3x 10 1 2 (b) 4.82x 1012

K2O 12.0 8.5 0 0

Na O 0.9 1.0 1 0.01 ....

A12 03 11.8 7.6 12.1 0.92 18.8 (c) 1..42

CaO 4.5 5.3 12.6 0.67 2.8 (d) 0.15

MnO 0.9 0.8 -- --...

Calc. Total= 7.Zxl101 Total 6.4x 101L

dynes/cm' ergs/mole
(measured E = 6.4x 1011 z 150 kcal/ mole

dynes/cir 
2

(a) Phillips, C. J., Glass Tech., 5. Ne 6, pp. 216-223 (1964).

(b) Bethe, H. A. and Adams, M. C., J. Acro-Space Sci., 26 (6),

321 (1959) and also Porter, R. F., ( iupka, W. A., and
Inghram, M. G., J. Chem. Phys. 2-., 216 (1955).

(c) Goldsmith et al., Handbook of Thermophysical Properties of
Solid Materials, Vol. III, Ceramics, Pergammon Press, N.Y.
(1961).

(d) From (c.), estimated from value for SrO.

Thus,( 6.4 x 6 11(6.4)101 /

2V ( 2(27.3)

(7..5 x 1022)1/2 ý 2.7 x 1011

and therefore the two values for acoh' depending on the forms illustrated

previously would be
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•zoh = 1.4x 1011 dynes/cm2 (Z x 106 psi) or

2.7 x 1011 dynes/cm2 (4 x 106 psi)

d.)Estimate Based on Thermal Expansion

Because of the structural complexity of glasses and their often ir-

regular behavior in thermal expansion, no attempt is made to utilize this

approach to the theoretical strength.

These several methods all lead to theoretical strength estimates

lying between 1 and 4 million psi. It may be noted from the previous list-

ing of properties of this glass that the example considered here i3 the

glass chosen by Griffith for the experimental demonstration of the cele-

brated theory which bears his name. It is of interest that Griffith substi-

tuted a minimum conceivable crack length of ZA into his equation and

arrived at a theoretical strength (I x 106 psi) comparable to the above

values.

3. SPECIFIC EXAMPLE OF CALCULATION FOR ORGANIC POLYMER

The dissociation energy of the C-C single bond is taken as equal to
-12

5.5 x 10 ergs. The pertinent valence force constants are taken from

Schachtschneider and Snyder, Spectrochimica Acta 19, 117 (1963).
KI = 4.47 , mdynes/A (Stretching)

K = 1.04mdynes/A/(rad) (Bending)
2 4 ye//rd

When converted to metric units, these iorce constants take the values:

K1 = 4,472 x 105 dynee/cm

K = 3.3 x 10"1i ergs/(degree)2

Since the angle Oused in our potential function is half the bond angle, we

must multiply the second force constant by 4:
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ýzv• 
4. 47 x 10 5

at r = 1,54x 0 1
6 = 35.5°0

= 1.3?x 10-14

at r = 1.54x 108

9 = 35.50

Further,

( =) = L at0 r -1.54x 10- 8

and V -5.5 x 10

For our potential function in this example, we will use:

VBr1) [) J !Ir-

and evaluate the numerical parameters to fit the above values at

r =1.54x 10 8, 0 = 35.50.

(1.0) 2 A cos 5. U76e
57.3 ýdpvz) r =l. 54x 10-

A =\5 .073 x 1.3Zx 10 1 4

A = 1.69 x 1012

1 2 B
(~v\ -(-5. 5x l0 12 B e-B o~r + e r2 )1

B2

35 05 -12 B2
4.47x 10 -5.5x010 x T2

B 4.04 x 108
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Thus, )ur potential function is:

V(r18) 2 [-5.5 . 10-1" + 1.69)x 10-1' (1 + c,,s 5.07 9)1

r -4.04 x 10 8 (r-r ) -2..02 x 108(r-r)j
L- e o + Ze

(where r 1. 54 x 10"8)

"-IV = 1 0 - [-5.5 + 1.69(1 4 cos n.07 e)( / 2 1
y J ÷y

4 04e-4. 04x 108(r-r ) -4.04x 108(r-r

-10- 1218. 56 ) (sin 5. 07 8)

[l-4.04 x 108 (r-r o) -e 2r0210 -r

-5'•-) x 10-4 -"5.5+ 1.69(1 t cos 5.07 e)( 2 ( 2-

S-4.04 x 10 8(r-r 0 ) - 4.04 e - 0 x 10 8 (r r ]

-10 IZ(8.56) (sin 5.07 81

8 +8e 4.04x 10 8 (r-r ) -. 20x 10 (r-tr

TX and (and . av iirv ewvuatud numcrric,'i1y it ,- larg, number onhWcrt-

tiors (x,y) The locus of the relation ( 0 0) is, determined, and thc

valtv-.s of (LY along this path arc notedl. The maximam value of (d_ \
(Ox / y

found on this path is used to estir rtte thi' the,,reticl strength of the

polymer.
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for a material with 5.84 x 10 chains per square centimeter of cross-

section.
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APPENDIX

OFFICE OF THE DIRECTOR OF DEFENSE RESEARCH AND ENGINEERING

Washington 25, D, C.

11 July 1963

Dr. Frederick Seitz
President
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington 25, D. C.

Subject: MAB Assignment on Theoretical Properties of Materials

Dear Dr. Seitz:

Materials personnel within the Department of Defense believe it would
be advantageous to know the theroetical limits of high strength - high tem-

perature materials in order to guide research and development programs.

It is recognized that current theory cannot predict the expected strength
increases and temperature resistance with a high degree of accuracy.

Nevertheless, a summary of the procedures for making such estimates,

together with a discussion of the assumptions made and their limitations
should provide a useful framework to guide materials research people in

selecting objectives and approaches for the development of advanced
materials.

rhe experience gained by recent activities of Committee Z, Metals,
MAB supports the desirability of such a study. In this exercise the maxi-

mum theoretical fracture and flow stresses were calculated as a function

of tempe-ature and used as a reference frame for presentation of current

capabilities and estimated future progress and requirements. The reaction

of all personnel acquainted with this experience has been quite favorable.

Since the methods of predicting theoretical strength vary with the type

ot bonding, e.g., metallic, ionic and covalent bonds and van der Waals
forces, it is suggested that only examples of calculations Gf maximum

strength be described for each case. Given the procedure for calculating
theoretical strength and temperature limitations for any class the user

could proceed with calculations for his specific material.

It is requested that an ad hoc group be formed io accomplish the above
objectives.
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It is understood that this project will not require additional MAB
funding.

Sincerely yours,

(signed) Earl T. Hayes

Earl T. Hayes
Assistant Director (Materials)

cc: Secretary of the Army
Secretary of the Navy
Secretary of the Air Force
Dr. C. Sherwin
Mr. R. B. Crozier, MAB
Lt. Col. L. G. Klinker, Army Research Office
Mr. N. Promisel, BuWeps
Lt. Col. J. B. Shipp, Jr., AFRST-AS
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