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SUMMARY

The maximum likelihood equations used to determine estimates
of the mean and standard deviation for the Bruceton method of
statistical analysis were solved numerically, A digital computer
algorithm was developed to reduce the time associated with the
numerical calculations, The method of successive approximations
(Newton-Raphson method) was suitable, Test data was evaluated to
determine the relative difference between values of the means and
standard deviation as obtained from the numerical solution of the
maximum likelihood equations and as obtained from formulae
approximating these equations, Results of the analysis showed
that the differences between means were slight while those between
standard deviations were more pronounced. Calculated high and
low probability levels, because of their dependence on the mean and
standard deviation, differed widely from one method of calculation
to the other, The analysis also showed that the most adverse effects
occur-ed for the smallest samples, Because the maximum likeli-
hood equations yield better estimates of the mean and standard
deviation than can be obtained from equations approximating them --
especially for small samples -- solution of the maximum likelihood
equations by the Newton-Raphson method is advocated for determining
the best estimates of the population mean and standard deviation,




CONCLUSIONS

The maximum likelihood equations used to estimate the mean
and standard deviation in conjunction with a Bruceton analysis are
readily solvable by the INewton-Raphson method of successive
approximations with. the aid of the digital computer codes of
Appendix A and B.

The code of Appendix B appears to be superior based on higher
reliability and safety criteria,

RECOMMENDATION

Because of its apparent superiority, the code of Appendix B
should be used to calculate the maximum likelihood estimates of
the mean and standard deviation for samples analyzed by the
Bruceton method.




BACKGROUND

The Bruceton method of statistical analysis is used to determine
the probability of explosion or non-explosion for a given explesive
item as a function of input stimuli, The procedurecs used for calcu-
lating the statistical parameters (mean, standard deviation,
percent points, etc.) are based on approximations to the maximum
likelihood equations which wiil be discussed at greater length in the
Study section, However, the validity of the approximations fall off
rapidly with decrease in sample sizes less than 100, Consequently,
it is desirable to use the maximum likelihood equations for small
sample analysis,

Before the advent of the digital computer, exact solutions of
the maximum likelihood equations required complex, wholly
impractical cornputational schemes. As a result of the difficulties
formerly encountered in applying the likelihood theory, approximate
methods were always used to estimate the maximum likelihood
quantities, In the case of small sample analysis, blatant deviations
frequently occurred between sample and population statistical
parameters. The Franklin Institute of Philadelphia, Pennsylvania
investigated the affect of approximate methods on the data obtained
from small samples and their findings indicate that the expected
deterioration of the approximate formulae as applied to small
samples, does in fact occur.

It must be emphasized that in any statistical analysis large
samples are preferable, But if emall samples must be used in
a Bruceton tesf, the use of maximum likelihood techniques become
in a realistic sense, mandatory, Furthermore, the maximum
likelihood valries associated with small sampies should be treated
with care, since small samples tend to yield poor statistical
results, This is especially true for this particular problem.




STUDY

A method of statistical analysis frequently utilized in evaluating
explosive devices is known as the Bruceton Staircase Sensitivity
Test, The method was developed by the Expiosives Research
Laboratory cf Bruceton, Pennsylvania, It is used to ascertain the
safe and sure-fire energy levels associated with a given explosive
item. In performing the experimental procedure the tester is first
required to home in on a 50% firing level (mean) and on an
approximate standard deviation (interval between cansecutive energy
levels). This can be accomplished easily if the past history of the
explosive under investigation is available, Otherwise trial and
error techniques are adequate, Once having chosen the 50% firing
level and the step interval (based on an approximation of the standard
deviation) the tester may then proceed as follows:

An attempt is made to actuate the explosive using the
50% energy estimate, If successful a second specimen is tested
at an energy level one step interval bzlow the 50% value., On the
other hand, if the specimen failed to detonate, the second explosive
item is tested at an energy level one step interval ahove the 50%
level, Thus denoting any test level as H; and the step interval as
d,then H;, | = H; - d, for the case where the i' th test produced
an explosion and Hj,; . = H;j + d if the i' th test produced a non-
explosion,

In this way, a sequence of explosions (xs) and non-explosions
(0s) will be generated., Figure 1 shows a typical sequence., It may
be noted that the bulk of the testing occurs in the neighborhood of
the mean energy level, Thus a minimal number of tests will permit
a good estimation of the mean, However, because of the
approximate nature of the methods of calculation used to estimate
the mean and standard deviation, samples of at least 100 specimens
are required. Also, sensitivity data does not consist of exact
measurements, Consequently the information contained in them is
reduced by about one-half that which would be contained in
measured data of a comparable nature,
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To reduce the bias associated with the Bruceton method,
large sample sizes {at least 100 specimens) should be used.
For very expensive explosive devices, large sample sizes are
prohibitive, Consequently, tests are conducted using smaller
sample sizes often 50 specimens or less, But it is known that
for sample sizes below 50, the approximations of the mean and
standard deviation become rather poor, Therefore, more
elaborate methods using the maximum likelihood equations for
estimating the mean and standard deviation must be used,
However, these equations cannot be solved in closed form by
any direct method (Equation 47, p, 38 of Reference 4), Of
course, numerically the equations can be solved and the maximum
likelihood estimates of the mean and standard deviation determined.

Owing to the time involved in the numerical solution of the
maximum likelihood equations, no attempt was made tc utilize
them until the advent of the digital computer, However, once
the computer algorithm developed in this report was estahlished
it became a rather simple task to demonstrate the effect of
sample size on the calculated mean and standard deviation
.:specially since it is this parameter which strongly affects the
outcome of the extrapolation calculations, That is, the validity
of the approximation formulae for estimating high and low percent
points is doubtful -- especially if small sample sizes are used,
Therefore, the purpose of this report is to present a numerical
procedure for sclving the maximum likelihood equations and
suitable for application to a digital computer, The effect of
sample size on the results of both the approximate and the
numerical techniques will be emphasized,

) To determine the maximum likelihocd equations for estirnating
the mean and standard deviation of a normelly distributed random
variable x with mean A and variance Sz, a random sample of size
N is drawn from the population and tested in the manner described
so that a sequence of ones and zeros is obtained, I:

N, = total number of ones
Np = total number of zeros
H; = energy at test level i
N; = number of ones at Hj
M; = number of zeros at I




s s, ] P i - -

then
N; = XN
Ng= 2M
and N=N.+N

0 1

Further, it may be assumad N < N, then the probability that an X
will be a one at the H; level is:

(x—4)
:7_2-75’—/ ""zs*) dx

and the probability that X will be a zerois: Q;=1- P;.
Then, the probability of generating a sequence of N; ones and Ny
zeros is obtained from:

P=K PiNi QiMi
;/. ;

where K is a function of the Nj and M;. This probability is based
on generating a sequence of N independent outcomes (ones and
zeros) from a muliti-nomial distribution. Although this assumption
is not strictly applicable to the current problem, only slight
adjustments need be made to the general theory to apply it in the
asymptotic case, This is denoted by the likelihood:

and differentiating with respect to A and S maximized likelihood
equations are obtained, Before proceeding further the following
derivatives are defined:

ap

N
,..a
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aA=§Zi

and aQi-Hi-A
95 ~ g2 4

where Z. = 1 - (Hi’A)Z
s © 7=

Then, the maximum likelihood eguations for estimating the mean
and standard deviation are:

(1)

and

H. | - A)Z;_ (H; - A)Z;
3 : (H; ) i-1  {Hj il-0@2)
S Q4 P;

These equations cannot be solved by direc* =sthods. However, if

good estimates of the mean and standarad iation are available a
method of successive apg~oximations (7 .on-Raphson method) is
applicable, Th. method 3 follows: Let the maxi-

mum likeiinood Equation (! «. -,

F, (S, A)=0 (3)
F, (S, A) =0 (4)

Also, let Apg, So be approximate solutions of Equation (3) and (4)
such that the true roots of Equation (3) and (4), A and S are
related to Ag and SQ by:

S=So+H
A=AO+K
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where H and K are the corrections for SO and Ao, respectively,
Rewriting Equatioa (3) and (4):

Fy(Sg+H, Aj+K)=0 (5)
FZ (SO+H, A0+K)=0 (6)

Equation (5) and (6) may be expanded by Taylor's theorem for a
fanctior of two variables giving:

F_\
Fj (So + H, Ag + K) =0 = F; (Sp, A0)+H(~?___1) +K(9Fl +
25 /q Ao
Terms in Higher Powers of H,K

F, (Sp + H, Ag + K} = 0 = F, (S, A0)+5{3F2) +K(3 F2) +
a5/ 2 4AJo
Terms in Higher Powers of H, K

Since the values of H and K are small, their squares, products,
and higher powers are neglected so that:

Fl (SO’ Ao) +H_9_—}?_l. + K a_ Fz =0 (7)
2° /o 2 4/

F (Sg» AC,)+H(9 Fl) +K 2 T2 =0 (8)
25y 2% ),

Using Cramer's rule (assuming D # 0) solution for H and K
are obtaired from:

=F1 (S, A) ( %’1)0

OET —F2(Se, '4") ('aa','?')o _J

/L'/; - (9)

D




F"'\F - (S, o“'
and .s_'.:-s-!)o [{ ,A)

D Fi
ET L-a_:_si")o ";z(s"/ /4-)

O

N
|

(10)

where } _
p-|(3. (&)
(Qf_'z.) QFL)

A lati 2o

Using the values of H and K obtained above new approximations are
gotten for S and A as:

If the process is repeated using 5; and A}, new corrections, H,
and K p are obtained., Continuing in this manner, a predetermined
degree of convergence may be achieved, The subscripts 0, I,...,n,
refer to the values A, 5, K, and H to be used, That is ( Fi )

F, ( gS\ 0
pm
Also, examination of Equation (7), (8), {9) and {10) shows that for

large D and correspondingly small H and K, the assumptions made
are applicable and convergence should be expected,

means that is to be evaluated for S = S5y, A = Ap, and so on,

In accordance with this method, Equation (1) and (2) must be
differentiated partially with respect to S and A. However, before
proceeding the following quantities are needed:

13
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0% _ (HizA) ,

A = s &
?..@3_ Z;

’A - Q’AS

9( ¢') (ﬁ!_ﬁ>
@S ~ —(QIS)" Z,

Then for Equatioa {1):

QF» _J_ZM 92/-: ,-/> 2 ( 0,, >2¢—/ -
92/ ..L. ;(‘#)Z] & Z/V &""_g_i]

oS Q- Ay

s
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Qﬁ S ZA/[QZM(Q YA ;( "321-/

25 (F)~ 280 2 J
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Repeating the preceding for Equation (2) the following results are
obtained:

/L" ___Z__ ///—/ m)QZ r [/%-/ /4)9(._-
g‘_—s’:‘; - A/ [47// <;$[ 7 a‘%JZ/‘/ —

!
V)
N

CONEZR —(#, -A) ”/f.f._ / ~
/~, o /’_,,
»‘-:- \ / N /""’4) _ (#i~A)
{ ‘-,// ~/ t 7 /), Zl.

IF N iy Z
i - ; 2_/1/' il ;2/-/ ,.///._,jﬂ( ’./2..,

A ‘ O/’/ 9
“'..Z_'.’_‘: o ¢ =/
o - 5 2Bl “A.Zc-/pé—/

-t P A

= *;’7;,4 x

Using Equation (9) and (10) repeatedly, corrections (H and K) are
calculated for S and A until the desired degree of convergence is
achieved, Of course, owing to the lengthy calculations required
by this method, a digital computer program for working out the
details was essential, Otherwice, the method would prove

impractical,
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Two sirnilar FORTRAN codes for calculating the results of a
Bruceton analysis are in Appendix A and B, The two programs
are basically the same, A comparison of them follows,

The main program entitled BRUCE in both codes is used to
read in information pertaining to reliability and confidence levels.
Then subroutine FOREST is called, {(This subroutine is a
modification of a FORTRAN code written by Forrest L, McMains.
(Reference 3),)

Subroutine FOREST is used to read in the basic data generated
in the Bruceton analysis and then calculate estimates of the mean
and standard deviation from approximations of the maximum likeli-
hood equations, However, the estimates returned to BRUCE differ
for the two codes, Using the code of Appendix A, the estimates of
A and S are calculated for both the number of fails and fires -- the
one obtained for the smaller of the preceding quantities being returned,

Actually, the choice is made in BRUCE after returning from FOREST,

A subroutine called SWAP is called when the number of fails is less
than the number of fires, In this event the number of fails will be
retained for further calculation, If the number of fires is less than
or equal to the number of fails no transfer to subroutine SWAP will
take place, Thus all calculations using the code in Appendix A
depend on the smaller of the two quantities, number of fails and
number of fires, This approach is advocated in Reference 4,

Using the code of Appendix B, the number of fires and fails
are equally weighted regardless of which is smaller, The basis
for this approach is described in Reference 3, Both the number
of fires and fails are used throughout the program, Subroutine
FOREST computes approximations to the mean and standard
deviation by first calculating estimates of these quantities based on
the number of fails and fires alone and then averaging them, These
averages are weighted so that the quantities calculated using the
smaller value between the number of fires or fails is more heaviliy
favored,

Thus using either code approximate estimates of A and S are
obtained using FOREST ., After writing out the information read
in plus the starting values of S and A just chosen, a subroutine
entitled PROB is called. This subroutine calculates the probabili-
ties P; and Q; associated with each energy level H;, The procedure

followed in this subroutine is a modification of an existing program

16




used for calculating the probabilities of normally distributed
random variables (Reference 2), The program which was
modified is used to calculate probabilities from the normal
probability integral defined as:

¢ L s2
P(x):vi—{-_-r_-r e"z.f df
\"'-f

The integral gives the probability that the normalized random
variable t will be between -t and t on the normal probability
curve shown in Figure 2, That is, the probability P(x) is equal
to the area under the curve from -t tot, For small t the integral
above can be evaluated from a power series:

et ¢
e = rr)f[ /I3 RIS 2337
+e],

Fort > 2,90 a more efficient method of evaluating P(x) is achieved
by using the asymptotic series defined as:

-~ I/Iv .3 , 2,8
p()-/—/ .__..._..(/.. ;—,_/?3_34.

For small t, (t < 1,20), the economy of calculating the normal
probabilities is enhanced if use is made of telescoping the power
series, For all terms beyond andincluding t8, use is made of
the telescoping effect produced by:

8 4 2

8- L (2568 - 160tt + 32t% - 14 T8
128

which is deduced from Chebyshev polynomials (Reference 2),
For the range 1.2 <t <2,9 application of the original pcwer
series is satisfactory.

17
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For each range, t< 1,20, t> 2,90, and 1,20 <t < 2,90,
probabilities were calculated and compared with those recorded
in statistical tables. Because of the good agreement between
the calculated and tabulated values and the relative ease with
which a desired degree of accuracy was achieved, the approach
using approximating series was emplcyed,

However, as indicated, the method had to be modified,
The reascn for this is evident frem Figure 3, It may be
seen that the desired probability is equal to the area under the
probability curve from - 80 to t, Because of the symmetrical
nature of the normal probability curve, the following technique
was applicable, The area under the curve was cbtaired for the
interval -t to t, This value was halved and either subtracted
from 0,5 (for negative t) cr added to 0,5 if t was positive., Thus,
the probability for - €@ to t was determined,

In addition, the subroutine PROB calculates the normal
random variable associated with the random variable x from:

where A is the mean and S is the standard deviation, In terms of
the symbols used in the code:

_H;-A

Yo
TS

The value of Z is adjusted tco, using the expression:
p 2
- (A =A)
% € 4 s

each tirne PROB is called, This is necessary since Z; = {(A, S),

The corrections for S arid A are calculated using the current
values of P, Q, and Z as cbtained from the subroutine PROB,
The new values of S and A are used to evaluate Fy(S, A) and
F,(S, A) and then compare these with zero, I both are sufficiently
close to zero, the order cf accuracy may be determined by the User,
For instance, 1 x 103 ard 1 x 10~% were chosen for F1(S, A) and
F,(S, A}, respectively, for the code shown in Appendix A while

19
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1x10°% and 1 x 10-3 were chosen for the code of Appendix B,
The mean, standard deviation, F}{S, A) and F2!(S, A) are then
written out ard transfer is made tc subrouvtine SOLVE, This
subroutine is used to calculate such statistical quantities as the
standard error of the mean, standard error of the standard
deviation, the sure-fire probability point and a corresponding
safe or NO-FIRE prcbability level, If the values of F} {S, A) and
F2(S, A) are not sufficiently clcse to zero, hewever, the
iterations are continued so that new corrections for A and S are
obtained, This process of iteration is allowed to contirue until
Fl(S, A) and FZ(S, A) become as small as desired cr until the
number of it=rations reach some predetermi=zed value chousen by
the User {1,000 iterations were chczen in the cwde shown iz
Appendix A, 100 for the code shown in Appendix B).

The values of F)(S, A), F,(S5, A) the next to the last values of
S and A, the final values of S and A and the number cf iterations
are written out for each run, This is done so that if all 1,000
(or 100) iterations are carried out because the error in either
F1(S, A) or F5(S, A) is larger than the bound specified for each,
one is able to observe two suc.essive values of S and A and
decide whether convergence has actually been achieved, The
results as computed by each code forthree tests are shown at the
end of the respective code, Note that for these three tests only
two, three or four iterations were required. This rapid
convergence is cue to the gcnd approximation of the mean and
standard deviation obtained using subroutine FOREST,

Once the maximum likelihcod estimates of A and S are
approximated, subroutine SOLVEiscalledfor purpcses of
estimating the standard errors associated with A and S ard
calculating the sure-fire and safe or NO-FIRE energy levels,
To estimate the standard errors two parameters G and H must
be deterinined, These are defined by:

2 L
G2 = Z;_M/;M[%.:% +.§fc—7)

Z / r L2l xratr
e' /,Z ?/-’/: p,’;,

and

/
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where:

Subroutine SOLVE makes use cf the definitions of G and H

-1
.. 7 2
Jeo N
W,=
" -
W: = p

and calculates these twc quantities directly,
calculates the high and low probability points and the other
seccndary statistics (stardard errors),

———— P o L "

Furthermore it

The standard error of the mean is calculated from

0,',, 236//';/- , the standard error of the standard deviation
, the standard error at the P

from

:SH/W

percent energy level from (2 =S/ 5+ 4 4 & Z-/
In the above, N is the iotal number of fires and K is a constant
associated with a particular percent point,
safe or NO-FIRE energy levels are then calculated from:

Sur~-Fire = A + KS
NC FIRE = A - KS

for the 50% confidence band.

points, adjustment to Eﬁua
Fire = Sure-Fire + CT+

The sure-fire and

(1D
(12)

To add confidence to these reliability
t(i:qn (11) and (2) are made using Sure-

av

where C and C! are constants associated with a particular

coxafidence interval,

and NO-FIRE = NO-FIRE - N+ C

o

/Y

That is, the estimates of the sure -fire and

NO-FIRE energy levels shouid be correct P percent of the time
or the risk of being wrong is anticipated for conly 1-P percent of
the time (p = 90, 95, 99) . 'o)o

As stated earlier, the code in Appendix A computes all
quantities based on the smaller value between the number of fires

or fails obtainied in the Bruceton test,

On the other hand, the

code in Appendix B computes all quantities withcut regard tec which

value is smaller except in weighing averages in which case the
smaller is more heavily favored,

Firally, the main program writes out the desired statistical

values

22
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Rcgardless of which code is used the data cards are arranged
identically. The following describes this arrangement:

Card 1 -~ Six fie'ds of 10 columns each are reserved,
Columns 1-10 and 11-20 are reserved for constants associated
with the reliability and confidence level, respectively,

Columns 21-30 and 31-40 are reserved for specifying the
reliability and confidence level, respectively, Columns 41-50
are reserved for specifying the NO-FIRE energy level, Columns
51-60 are reserved for a second constant associated with the
confidence level,

Card 2 ~-- Four fields, one of 20 columns, one of 5
columns and 2 of 10 columns each are reserved., The first field
is used for identification, The second contains the number of
energy levels in the test, The third and fourth contain the
lowest energy level in log units and the difference between
successive energy levels (step interval) in log units, respectively,

Card 3 -- Twelve fields, ai2rnating between eight and
four columns each are reserved, The fields of eight columns
each contain the energy levels in ascending order., The
corresponding number of fires at each energy level is specified
in the right adjacent field of four columns.

Card 4 -- Six fields.of 10 columns each are reserved,
The number of fails at each energy level -- starting at the lowest
energy level -- is placed in these fields from left to right,

Table II on Page 52 and Page 20 and 21 of Reference 4 contain
the constants associated with several reliability and confidence
levels,

This example will demonstrate the input data cards for an
actual set of test data, The table below shows the typical re sults
of a Bruceton test. it is desired to calculate the 99,9% sure-fire
and safe-fire reliability levels at the 95% confidence level:

B
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be prepared,

24

Firing Log of Number of | Number of
Current |Firing Current | Test Level Fires Fails
374 2,57287 1 0 4
392 2,59329 2 4 10
410 2,61278 3 10 10
429 2,63246 4 9 2
450 2,65321 5 i 0

From this table and Reference 4 the data cards for input may
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The output using these data cards was obtained for both codes
and is shown at the end of each (Appendix A and B).

The code of Appendix B appears to be superior. First, both
the number of fails and numbers of fires are utilized in computing
the various statistical quantities, Thus, a larger effective
sample size is employed which for non-exact measurements is
advantageous, Also, examination of the results at the end of each
code shows that a higher ALL-FIRE and lower NO-FIRE are
obtained using Code B if the number of fires and fails differ. This
is desirable for increased reliability and safey, If the number of
fires and fails are equal, the results using either code are identical,
Consequently, for the two codes use of that of Appendix B is
advocated,

In certain instances, the estimates of A and S from the first
two moments (approximation methed) are poor approximations to
the maximum likelihood values, . ' .. In particular when
the step size between test levels becomes large (d > 2S) and when
small sample sizes are used (<50) the approximations to A and S
become poor -- that is, the rnaximum likelihood estimates of A
and S are not well approximated by the first two moments,

If a difference in the two estimates does exist, the maximum
likelihood quantities should be used because they are expected to
be better than those generated by the first two moments,
Furthermore, the standard errors of the mean and standard
deviation are based on their respective maximum likelihood
estimates and will not be applicable to the approximation values
when a large difference exists, This means that the calculated
extremes (sure-fire and NO-FIRE energy levels) will be poor
estimates of the true gquantities as well,

To determine the effect of sample size on the estimates of
the standard deviation, a series of tests were conducted using
sample sizes of 20, 30, 50 and 100 items, The mean and standard
deviation for each sample were calculated by estimating the
maximum likelihood quantities and by utilizing the first two
moments, Because the Bruceton method is constructed to provide
test data near the mean, that quantity is nearly always a good
estimate of the population value, However, the standard deviation
is not so well determined, Therefore, in what follows, special
attention is paid to the effect of sample size on the standard
deviation only,
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Appendix C shows calculated values of the mean and stardard
deviation as determined by the maximum likelihood equations and
from the first two moments, It is immediately obvious that little
difference exists between the means as calculated by either method,
But for small samples the standard deviation as caiculated from
the first two moments differs quite appreciably from that obtained -
utilizing the maximum likelihood equations. As stated, standard
errors are based on the maximum likelihood gquantities, In turn,
the extremes of the probability distribution are likewise influenced
because of their dependence on the mean, stardard deviaticn and
associated standard errors,

It is apparent that samples containiag cver 100 items should
be used, The use of maximum likelihood theory for the cases in
which the sample size is less than 100 is equally advocated,
Specifically, Table 9 shows that for samples of 20 and 30 items
large differences between the standard deviations occur frequently,
For samples of size 50, better precision is achieved, Neverthe-
less, some poor results are still evident, For samples of size 100
even closer agreement betweern the two methods of calculation is
achieved and it is anticipated that larger sample sizes would
produce results differing only slightly from one method to the other,

It should be poirted cut that the good results in the 50 item
samples were due primarily to a knowledge of the past history of
the test vehicle, However, the usual situation is one in which
little or no data is available for the item since il is the purpose
of these tests to generate such data, In these cases it is imperative
to use large randomly chosen samples or if this is not practical,
the maximum likelihood equations shouid be applied in calculating
statistical quantities,

An example will best illustrate the effect of using small sample
data in calculating the extremes of a pcpulation, For a sample of
size 30, these were the results:
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Maximum Approximate
Likelihood Eguations Formulae

Mean 2.20095909 2.18977
Standard Deviation 0.18969359 0.14878
Standard Error of

Mean 0,041085 0.03283
Standard Error of

Standard Deviation 0,073707 0.05342
Sure-Fire Level 3.27356932 2.78843
NO-FIRE Level 1,12834880 1.59111

These values are recorded in log volts, If the sure-fire
and NO-FIRE levels are converted to volts, the potential danger
becomes obvious -- that is, using maximum likelihood eguations
the sure-fire level is about 1,877 volts as against 615 volts using
the approximation, and the corresponding NO-FIRE levels are
13,5 volts and 39 volts, the former value was calculated from
the maximum likelihood equations, Consequently, within the
probability limits indicated, the sure-fire and NO-FIRE levels
differ roughly by a factor of 3, Practically, this means that for
this case in which a firing voltage of about 1,877 volts is required
to provide sure-fire conditions, only 615 volts might be made
available by a User relying on approximate formulas only, For
similar reasons, safe voltage levels may be inaccurately specified,
Thus, anticipated reliabilities are not closely achieved,

Although the discrepancies between the two methods become
less pronounced with increasing sample size, maximum likelihood
methods should be employed in view of their assumed superiority
and the availability of a digital computer algorithm.,
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APPENDIX A

FORTRAN CODE FOR DETERMINING THE MEAN AND STANDARD DEVIATION
FROM THE SOLUTION OF THE MAXIMUM LIKELIHOOD EQUATIONS BY
MEANS OF THE METHOD O¥ SUCCESSIVE APPROXIMATICNS
(METHOD A)
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BRUCE - EFN SIURCE STATEMENT - [IFN(S) -~

BRUCE STATIS MAX LIKE ESTIMATORS
DIMENSION H(99), 20991,P{99),0(99),XN(99)+X(99),Y(99),W(99)
DIMENSIBN, DZS(99), DZA(99),0Q5(99),0QA(99),+DPS{99),0PA(99)
DIMENSION XNF(99),ANTH(.30),IDENT(22)
CAMMBN GSQRD , HSQRD , SIGSQA , SIGSQS , SIGMAP , FIRSO
COMMBN FNBTSy,FIREK,FNBTK
I=N@. BF ENERGY LEVELS , S=STEP SIZE(DIST. BETWEEN 2 ENERGY LEVELS
A=M[DDLE ENERGY LEVEL(IF I IS ©2DD) @R AVG. OF MIDDLE 2 ENERGY LEVE
11S EVEN)
1 READ (5 12) RELKyCONKRELVCONLV) XRELV4CST
2-FBRMAT{ &F13.0 )
CALL FOREST (XN XNFsIyANTH,nFIRE,AFAIL,SFIREyIDENT,SFAIL )
DB 7855 J = 1,1
7855 H{J) = ALBGLI(ANTH(J)) ,
H(J)=ENERGY LEVELS , XN(J)=N@. BF FIRES AT A GIVEN H{(J) , Y(J)=NBR

LRANDEM VARIABLE s X(J)=ABS. VALUE #F Y(J) o P(J)=PRéB. BF FIRE ,
Q(J)=PRBB. AF NG FIRE o T(JI=DERIVATIVE BF.P(.1)

SUMN = 0.0

SUMNF = 0.0

DO 1216 J = 1,1
SUMN = SUMN +XN(J)
1216 SUMNF = SUMNF . +XNF(J)
IF (SUMN = SUMNF ) 8571,8571,1758
8571° A = AFIRE
S. = SFIRE
G2 TO 8%¥8
1758 A = AFAIL
S = SFAIL
8576 [F ( SUNY.GT.SUMNF -1 CALL SwaP (XN, XNF,X7)

24 WRITE (64100 )LIDENTIJ) d=1,20 )

100 FORMAT(1H1/1X,20vA2/30X,66HCALC. OF MEAN AND STD. DEVIATIBN BY SALN
le @F MAX. LIKELIHGOD EQNS.//)
WRITE (6 y10)

10 FORMAT{40X,12HENERGY LEVEL,25X+18HN@. OF FIRES/FAILS//)
WRITE (6,21 JEH{J) XN(J),Jd=1,1)

11 FORMAT(4IX,F10.5,30XsF4.07/)
WRITE (6 P LOL0VA, S, !

1010 FORMAT(5IX,THAVG. = 4F1J45//50X,1THAPPRX STND DEV ‘= ,F10+.5//50x%,23

1HN@. DF ENERGY LEVELS = ,14// )

COUNT 2F THE NOB. OF ITERATIENS

ITCNT = )

CALL PREB (HyXsYsZyA9S9PyQy1)

BEGIN SUCCESSIVE APPROXIMATIZNS{NEWTIN RAPHSBN METHOED)

DERIVATIVE BF 2 WITH RESPECT T8 S AND A

DERIVATIVE OF Q WITH RESPECT T S -4ND A

DERIVATIVE @F P WITH RESPECT T8 S AND A

DB 436 J=l,l

DZS{J)zi(H{J)=A)ww2-SnS)/SendnZ(J)

DZA(J)=(H{JI=A)/{SnS)eZ"J)

DOS(JI==(HIJ)=A)/Z(QiJ)w3)en2aZ(J)

DQALJI I ==2{J)/tulJ)en2e)
DPSIJ)={H{JI=A)/(P(J)wSine202(J)
DPALJISZLJ)/(PLJI#P(J)®5)

436 CONTINUE
SUM1=0-0

A\
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BRUCE - EFN STURCE STATEPENT -~ [IFNiS) -

SuM2=0.90

SUM3=3.0

SUM4=L .0

SUM5=0.0

SUM620.0

SUM=g.u

-SSUM=),.D

D9 555 J=2,1,
'SU"I’SUHI*NNEQ)'(OIS(J°I3/Q‘J‘l)*ﬂﬂS(J“l)’l(J°1)'DZS‘J]/P‘J)‘C?S‘J
1)eZ(J4)) 7.

SUM2=aSUM2+XNRJI»(Z(J-13/7Q(2-1)-2(3)/P(J3))

SUM3=SUM3+ XM J) o (DZA(J-13/C(2-1)«DQA(J=-1)e2(J=1)-DZA(J}/P{J)-DPALJ
1)e2(J)) .
SUﬂ‘SSUHQ*K“KJ)O((H‘J“l)'A)’DIS(J'I)IQ(J'll*(H‘J‘l)“)OCGS(J‘l)GZL
1J=11=(H(J)-A)eDISEJ) /PLI)-{H(JI-A)DPS{J)sZ(J)}
SUH53$U55’:ﬁ?Ji‘((H(J'l)’“!'l(J‘ll/Q(J'l)’(H(J)'A).Z(J)/P‘J?)
SUMb=SUMb+XNf.!) 8 (H(J-1)8D24(J~-1)/Q{J-11+H{J-1)2DCA{ J-1}e2(J-1)-1(J
1-11/7Q(J=1)=-A/Q(J-1)eDZA{J-3 )-As (J-122DQA(J-1)-H{J)/P(i)eDZA(J)-DP

RALCIISHII)IoZ(J)+Z(JIV/P{J)+A«2(J}=»DPA(J)+A/P(J)=DZA(I))

555

2 XaXa)

333

O O o0 o

17

151
16
6666

32

SUM=SUM+XAIKJ) ¢ (Z(J-13/Q(3=-1)-2(3)/P(J))

SSUM=3SUME X[ J) @ ({HII-1)-A)e2(J-1)/Q(J-1)~(H(J)-A)eZ{J}/P(J))
CONTINUE

DERIVATIVE 3F F1{S,A) WITH RESPECT T3S AND A

DERIVATIVE 3F F2(S,A) WITH RESPECT T@ ¢ AND A
FAS=F1(S,A) 3 SAS=F2(S,A)

OFDS=1.0/5#SUK1~1.3/SeeZ «SUM2

DFUA=1.0/S#SUM3

DSDS=1.0/Swe2 sSUM&=2.0/See3 eSUMS

DSDA=1.3/Sss2 sSUMb

FAS=1.J/S*SUM

SAS=1.0/S%s28SSUM

D=DFDSsDSDA-DFDA#DSDS

CBRRECTION FOR S

XH=(DFDA#SAS-DSDA=FAS) /D

CORRECTIEN F2R A

XK=(DSDS*FAS~DFDS*#SAS) /D

CORRECTED A

AA=A+ XK

CPRRECTED §

$5=S+XH

$=SS

A=AA

VALUE OF F1{A,S) AND F2(A,S) UBTAINED FRAM FINAL A AND S
ZERZL1=0.0

ZERB2=2).0

08 69 J=uy1 _
ZERDL=LERBL+XN(JI®(Z(J=1)/CLI-11=2( 31 /P(I})
ZERP2=ZERBZ+XN(JIO{ (H(J=1)-A)e 2(I=11/Qid=1)=(H(J)=A)Z(3)/P(J)])
IF(ABS{ZERQL)~1,E=3) 68,68,15

IF{ABS(ZERB2)-14E=4) 16416,15

ITCNT = ITCNT + 1

IFCITCNT = 1000 ) 151,1641¢

6o T2 6

WITE (6 16666) LERBL ZERD2 yAvAA+S 4SS

FORMAT(S0UX,8HZERGL = 4E20.£//55X,8HLERE2 = ,220.8//50X,9HNLMEAN =
l,FlU.B//SOX.THMEAN z yFlOoﬁ//$OX'15HNLSTNDQ DEVe - 'FIOOB/ISOX'
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BRUCE - EFN SOURCE STATEMENT - IFN(S) -~

221HSTANDARD DEVIATISN = -,71..6//)
WRITE (6 s L1L)ITCNT

131 FIRMATISIX,25HND. 3F ITERATICNHS = ,1577)
CALL SQLVE(?QQ'XN'Ytl'iOAvSvHvRELKvCJNKycsr)

WRI1TE (6 + 17} )
77 FIRMAT(4IX,4GHCALCULATIAN OF ALL-FIRE AND N3-FIRE ENERGY LEVELS//)
KRITE (6 +9T1IGSURO,HSQRD,SIGSTA,SIGSQS +SIGMAP,FIRSD, FN3T50

1,RELV,CENLV FIREK XRELV,CANLY,FR2TK

971 FIRMATISIX,11KSSQUARED = ,F13.6//5%K,22HHSQUARED =,F10.6//55X29HS
LTAND. ERRZR OF MEAN SQRD. = ,F12.6//53X,36HSTAND. ERRBR 3F STAND.
2DEV. SGRD. = ,F1lU.B//50X;35HSTAND. ERROR AT P PERCENT HEIGHT = ,F1l
33.8/7/50X535499.9FIRE AT SICINFIDENCE LEVEL = ,F1J.8//50X,32H0.1FIR
&S AT SOCINFIDENCE LEVEL = 4F10.8//504,F6.2,THFIRE AT,F6.2,194HCONF]
SODENCE LEVEL = 4F10.8//50X,F6.2,THFIRE AT,F6.2,19HCANFIDENCE LEVEL
6= 4F13.8/7 )
GB 18 1
"END
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BROP - EFN SPURCE STATEMENT - [IFN(S) -~

SUBRIUTINE PREB( Ho¥sY9lsAsSsPsQyl)
DIMENSISN . B{99),X(99),Y(99),2(92),P({99),Q(99)
08 74 =1, 1
HMASQ = (H{J)-A)es?
EXPNT = HMASQ/(2.25¢5)
Z8J) = (1e/2.55663)/EXPIEXPNT)
YiJ} = (H(J)-A)/S
X{(J) = ABS(Y(J)])
IF (X(J)-1.20 ) 21,21,22
21 XSQ = X(JleXx(J) -
PlJ)=0.79788455¢X(J)2(D.99999774-XSQe(0.16659433-XSQe(.2463831JE-0
11-XSQ*.23974867E-02))) - - -
IF ¢ Y § J ) ) 450, 491, 4(2
403 P L 2 ) = 0.5~-P ( 4 )/ 2.0
G T8 493
401 P ( J ) = $.5
Ge T3 4)3
402 PlJI=P(J)/2.0%U.5
603 Q (U ) = 1.0-P ( J }
G8 Y0 7
22 IF (X{(J) = 2.9G ) 25,2626
25 XSQ = X(J) = X(J)
PlJ) = i.0
PT =-1.0
FACT = 1.0
60D = 3.0
29 PT = —-PTeXSQ/{2.0*FACT )
T = PT/30D
PlLJ) = P(JY) + T
IF (ABS(T) = 0.033937 ) 63,70 ,70
T3 FACT = FACT + 1.9
‘80D = 2D0 + 2.D
Go T8 29
63 PlJ) = D.T79788455+X(J)»P(J)
IF (Y J)Y ) 300, 501, 502
S0 P (i J ) =05 =P ) / 2.0
. GO T8 5953
0L P J ) =
. GB T8 503
502 P(J)I=P(J)/2.0+0.5
503 Q (J ) = 1.0-P { J )
GO 19 7
26 RXSQ = 1.,0/{XiJ)eX(J))
PlJ) = 1.0-3.79788455-EXP(-X(J)OX(J)IZ.D)IX(J)0(1.0-RXSQ¢(I.O‘RXSQ
ML (3.0-RXSQ®(15.0-RXSC¢iC5.01})))
IF (Y C J) ) 630, 601, 672
607 P ( J ) = Q3.5 =P { J )}/ 2.0
G9 T8 693
601 P L J )} = 0.5
Gg 7¢& 693
602 p(J):p(J)/2l0+UO5
603 Q (J ) = 13=-P { J
T CINTINUE
RETURN
END
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FORTES - EIN SAURCE STATEMENT -~ [IFN(S) =

SUBRBUTINE FGREST(FIA,FAX.N,X.UFlX,UFAX.VFlX.lDENT,VFAX ) L

ALCGIW) =.4343#ALRG(W)

ANT(W)=EXP (MW /.43543)

DIMENSIUNX(5J), IDENT(23)Fix(99),FL5x{99]),S (30,15}

caTA S /o#')-,ZS..“O.,43.,46.749.7510v16'00v2
15¢927 0931093501370 0420 08¢ 0 rtle 490,510 ,12900925012641284129.931043
2‘0.'36.'39.,‘0'}0"'30,46. 14(1. ,‘o‘?.,il..Q'O. 1250 '270 '280 '310"320'3"0036
30!37.139.1450’“1014200490946.v“3.9490151.94'0ap25-p260127o'270’28'
4'3on3ﬁ01310'3201330l35~v36.'370139.1“1.1429'439'440'460'490t49015
510'250!26-)270927-'280'xgo'30.1300131.'320y33-134.3350'36.'37.’38'
6'40014101“207430995'|46-14707490pSlo'52~925-1250'260127-1290'290'3
TU9300932¢9320133093401350136.13800394260.:420143.,444145.946.,47.
8969¢9510952¢2250926092T3274¢294925043009314932¢933.434.935.936.+3
9701380'390v40094101430'L“o1450'4701490y5000510'53o12600260'27o'280
.A'29¢'3°-v31"3101320134.,35-7360137-13001390'4&.'41-'42.1440'44.14
8501470'“90'5301520|530'360'27.,280!2801290v310'310'33.'3“o'3“0'360
_p'37.'38.'39"40.'41.'42"430'44.'45.'“6."7"«90'51.'52.'53.'26.'2
0707280)290'3007310132.'330,34.7350[36!1370138013900“000410'420'430
514QO,45.'46.’470149"5&)'5201540/

READ (5+639) (IDENT(J)yJd=1420) yNeCyD

639 FPRMAT(20A1,15,2F10.0)

READ(5,637) (X{1),FIX{I)sI=1,N)

03T _F2RMAT(6(FBeOyF&.D)),

READ(5,638) (FAX(I)yI=21,N)

638 FORMAT( 6F12.0 )

3.

1%

AFIX=G.0
AFAX = 0.0
8FIX=0.0
.BFAX3000
SFIX=0.0
SFAX=0,0
=0

10 wW=1

AF [ X=AFIX+WeFIX(I*l )
AFAX=AFAX+WeFAX(I+1)

BFIX = BFIX + (Wee2 ) o FIX(I+]1)
BFAX=0FAX+(Une2)eFAX(]14+]))
SFXX=SF(X+FIX(}+{)
SFAX=SFAX+FAX(I+l)
[=]+]
iF(I-N+1)3010,3010,1115

1115 R = D

TFIXa({(SFIXeBFIX)-AFIXes2)/{SFIXne2)
TFAX=((SFAX#BFAX)=AFAXw#2)/{SFAX##2)

13 UFIX=C+R#(AFIX/SFIX=0.5)

UFAX=C+Re {AFAX/SFAX+D.5)
IF(TFIX-0.3) 118,23,23

118 CIX=TFIX#103.

LIx=CIX

4111 WEEIX = 500.

[=0

112 WEEIX = AMINL{WEEIX,ABSIUFIX-ALCGIX{i+¢1i)))

[=1+1
[F(I=-N+1)112,112+113 35

113 RIX=ABS{WEEIX/R]
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2424
117

l114
115

116

23
2525

PR e

FORTES - EFN SSURCE STATEMENT

KIX = IFIX (RIX ¢ 22. ) + 1
VEIN={ S{LIX,KIX}/100.])R
IF(TFAX~-0.3)117,2525,2525
CAX’TFA"%OO.

LAX=CAX

WEEAX=500.

=y ‘.

WEEAX = AMINL(WEEAX,ABS{UFAX-ALCGIX(I+1))))
[=]+1

IF(I-N+1)115,115+116
RAX=ABS(WEEAX/R)

KAX = [FIX (RAX#22.)}+1]

VFAX =.{ S{LAX;KAX)/10C.)*R

G2 Ty 26
VEIA=1e620R*(TFIX#CedchisSOURT(SFIX/ISFIX=10
GO Ty 2424
VFAX=1,62¢R*(TFAX+{ )20} eSQRT(SFAX/(SFAX~1,

RETURN
£ND

)}
)

JFN(S)




4143

;

PAWS -- EFN SOURCE STATEMENT - IFN (S)

Subroutine SWAP (XN, XNF, 1)
Dimension XN(99), XNF(99)
D§ 4143 J=2,1

XN(J) = XNF (J-1)

RETURN

END
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VALVE - EFN SOGURCE STATEMENT = [IFN(S) -

SUBREUTINE SOLVE (PyQys NoYelel sAgSsHsRELKyCONK,CST )
COMMON GSQRD,HSQRD,SIGLQA,SIGSAS+SIGMAP,FIR5D, FNBTS0,FIREK,FNITK
OIHENSLON H{G9} 4P({99) 50 (99)4XN(99)4Y(99),2(99),H(99)

SUmMNJ = 0.0

Wil) = 1.0

WJISUM = Jed

GSUM = 2.9

HSUM = 0.0

08 51 J=2,1

W(J)=Q(JI=11/P(J-1)eW(J-1)

D@ 61 J’lII__.

SUMNJ = SUMNJ + XN{J)

AJSUM = WJISUM + W(J)

DO 7641 U=2,1

GSUM = GSUM + W(J=1)2(2(J=1)202/Q(J-1)ue2¢Z(J)ua2/P(J)ne2)

T4l HSUM = HSUMeW(J=-1)8(Y({JU-1)ee2u2(J-1)002/QlJ~1)002eY(J)002a2(J)un2/ .

12(J)ee2)

GSQRD =-WJISUM/GSUM

HSQRD = WJSUM/HSUM

SIGSQA=S#*S/SUMNJ*GSQRD

SIGSQS = SeS/SUMNJ#HSQFD

SIGMAP = SQRT(SIGSCGA+RELK##2#S1GSQS )

FIRDJ =~ A+RELKeS

FNOITSO = A-RELK#*S

FIREK = FIRS0+CANKe( (SUMNJ+CST)/SUMNJ) #SIGMAP
ENSTK = FNATSO-CONK#{ (SUMNJ+CST)/SUMNJI) #SIGMAP
RETURN

“END
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M2 Squib Test D

CALC. @F MEAN AND ST
ENERGY LEV

2.57287

2.59329

2.61278

2.63246

2.65321

CALCULATI®

D. DEVIATION BY SOLN. OF MAX. LIKELIHBOD EQNS.
EL N8. OF FIRES/FAILS

0.

4o

10.

9.

1,
AYG: = 2,60870
APPRX STND DEV = 0.02159
NB. @F ENERGY LEVELS = ]
lERQL = ~0.52526593E-04
TERB2 = 0.28066803E~04
NLMEAN = 2,60874474%
MEAN = 2.60874474
NLSTND. DEV. = 0.02079978
STANDARD DEVIATION = 0,02079978
Nd. @F ITERATIONS = 2
N @F ALL-FIRE AND N@-FIRE ENERGY LEVELS
GSQUARED =  0.696013
HSQUARED = 0.791929
STAND. ERRBR #F MEAN SQRD. = 0.00001234
STANO. ERR@R OF STAND. DEV. SQRD. = 0.00001428
STAND. ERRQR AT P PERCENT HEIGHT = 0.01220044
99.9FIRE AT SOCANFIDENCE LEVEL = 2.67301604
0.1F[RE AT SOCONFIDENCE LEVEL * 2.54447341
99.90FIRE AT 95.00CONFIDENCE LEVEL  2.69812483
0.LOFIRE AT 95.00CONFIDENCE LEVEL = 2.51936489
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M6 Cap Test A

CALC. OF MEAM AND STO. DEVIATIGN BY SOLN. OF MAX. LIKELIHOBD EQNS.

ENERGY LEV=L N@. 8F FIRES/FAILS
C.14301 c.
Je16435 2%
0.18469 S.
0.20683 10.
0.22531 3.

AVG. = 0.18692
APPRX STND 0DEV = 0.02279
N@. OF ENERGY LEVELS = 5
lERG] = 0.19371510€~05
LERG2 = 0.22351742€-07
NLMEAN = 0.18685731
MEAN = 0.18685731
NLSIND. DEV. = 0.02369443
STANDARD DEVIATIBN = 0.02369443.
N@. OF ITERATIONS = 3
CALCUL! 71BN OF ALL~-FIRE AND N@-FIRE ENERGY LEVELS
GSQUARED =  0.846374
HSQUARED = 1.498057
STAND. ERR@R @F MEAN SQRD. = 0.00001980
STAND. ERROR OF STAND. DEV. SQRD. = 0.00003504
STAND. ERRBR AT P PERCENT HEIGHT = 0.01882551
99.9FIRE AT S0CONFIDENCE LEVEL = 0.26007312
JoIFIRE AT 50CONFIDENCE LEVEL = 0.11364149
99.90FIRE AT 95.00C@NFIDENCE LEVEL = 0.29881602

0.19FIRE AT 95.00CONFIDENCE LEVEL = 0.,07489859




CALC. 3F MEAN AND ST
ENZRGY LEV

2.43993

2.42488

2.44091

2.45484

2.46982

CALCULATI®

M6 Cap Test E

D. DEVIATIEN BY SOLN. BF MAX. LIKELIHBBD EQNS.

EL NDP. @F FIRES/FAILS
0.
2.
9.
12+
Qe
AVG. = 244130
APPRX STND DEV = 0.01477

Nf's OF ENERGY LEVELS = 5

LERDL 0.26762486E-04

lERB2 0.75111166E-06

NLMEAN = 2.,44135469

MEAN = 2.44135469

NLSTND. DEV. = 0.01453041

STANDARD DEVIATION = 0.01453041

NJ. OF ITERATIGNS = 2

N BF ALL-FIRE AND NO-FIRE ENERGY LEVELS
GSQUARED = 0.785916

HSQUARED = 1.171202

STAND. ERRQR @F MEAN SQRD. = 0.00000663

STAND. ERR@R BF STAND. DEV. SQRD. = 0.00000949
STAND, ERRBR AT P PERCENT HEIGHT = 0.01005381
GI.9FIRE AT 50CINFIDENCE LEVEL = 2,48625368

G.1FIRE AT S5)CONFIDENCE LEVEL = 2.39645568
99.90FIRE AT 95.00CENFIDENCE LEVEL = 2.50690502

O.10FiRE AT 95.00CBNFIDENCE LEVEL = 2.37580431 41
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APPENDIX B

FORTRAN CODE FOR DETERMINING THE MEAN AND STANDARD DEVIATION
FROM THE SOLUTION OF THE MAXIMUM LIKELIHOOD EQUATIONS BY
MEANS OF THZ METHOD OF SUCCESSIVE APPROXIMATIONS
(METHOD B)




IN

-
BRUCE - EFN COURCE STATEMENT - (FNI(S) -
¢ BRUCE STATIS MAX LIKE ESTIMAT2RS
DIMENSIZN H(99), Z(9¢),P(99) ,0(99) sXN{F9)+X199),Y{99) W(99)}.
DIMENSI3N  'DZ53(99)s DZA(S9),0QS(99),0QA(99),0P5(99),0PA(99)
DIMENSION XNF(99)+saNTH(50) y IDENT(2J) '
C2MMBN GSQRD , HSQRD 4 SIGSQA , SIGSQS ., SIGMAP , FIRSO
CAMMBN FNBT59,F [REK,FNUTK
C I=N2. OF ENERGY LEVELS , S=STEP SIZE(DIST. BETWEEN 2 ENERGY LEVELS.
C A=MIDDLE ENERGY LEVEL(IF I IS 2DD) OR AVG. OF MIDDLE 2 ENERGY LEVE
C . 1IS EVEN)
1 READ (5 v2) RELK,CONK,RELVyCONLV» XRELV,CST
2 FBRMAT( 6F1J.0 )
CALL FOREST(XNsXNF,[yANTH,A,SyIDENT )
02 7855 4 = 1,1
7855 H(J) = ALBGLO(ANTH(J)) .
¢ H(J)=ENERGY LEVELS , XN(J)=Ng. DF FIRES AT A GIVEN H(J) , Y(J)=NOR
¢ LRAND@M VARIABLE » X({J)=ABS. VALUE OF Y(J; , PlJ)=PROB, OF FIRE ,

C Q{J)=PREB. AF N® FIRE , Z{J)=DERIVATIVE OF P{J)
24 WRITE (6,107 Y{IDENT(J)yd=1,20 )
100 FORMAT(1HL/1Xy20A2/730X,661iCAILC. BF MEAN AND STD. DEVIATIZN BY SOLN
1. BF MAX. LIKELIHOBD EQNS.//)
WRITE (6 v 10)
10 FARMAT(4IXy L2ZHENERGY LEVEL+2%X,18HNO. OF FIRES/FAILS//}
WRITE (6411 ) (HUJ)$XN{J} o XNF(J)y J = 1,41 )
11 FORMAT(4O0XF10e5433X9F4.0:3X.F4.0//])
WRITE (6 vy1310)A,5,1 . L.
1010 FORMAT(SOX,THAVGe = 1F10e5//50X,1TAAPPRX STND DEV = Fl0.5//750X,423
1HNB. BF ENERGY LEVELS = ,[4// )
COUNT @F THE NO. OF ITERATIGHS
_ITCNT = O .
6 CALL PROB (HyX9YeZyAsSysPyrUyi)
BEGIN SUCCESSIVE APPROXIMATIONS(NEWTEN RAPHSSGN METHSD)
DERIVATIVE PF Z WITH RESPECT T# S AND A
DERIVATIVE OF Q WITH RESPECT T0 S AND A
DERIVATIVE OF P WITH RESPECT TO S AND A
DB 436 J=1,1 .
DIS(J)=({H{J)=A)waZ=-SaS)/Sea3uZ ()
DZA(J)Y=(H(J)=A)/(S5%S)=2(J)
DQS({J)=~(H{JIi~A)/(Q(J)sS)we2x7(J)
DQA(U)==2(J)/7(Q(J)en2eS)
OPS(J)=(H(J)=A)/(P{J)wS)ua242{J)
DPALII=Z(J)/(P(J)#P(3)eS)
436 CONTINUE
SUM1=0.0
SUM2=0.90
SUM3=0.0
SUM4=20.)
SUM5=0.0
SUM6=060
SUM=9,0
SSUM=0,0
D@ 555 J=2,1
SUML=SUML4#XNF{J=1)1«(DZ2S(J-11/Q(J4=1)1+0QS(J=1)e2(J=1))=~XN{J)®{D2S(J)
1/7P(J)+DPS{J)*2(J))
SUM2=SUMZ2+XNF(J=11e(Z(J=-11/Q(J=1)1)~XN(JY»(2(J)/PLd))
SUM3=SUM3+XNF(J~1)«(DZA(JI-11/QUJ~11+0QA(J=1)Z(J=1))=XN(J)*(DZA(Y)

43
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BRUCE - EFN SBUICE STATEMENT - IFN(S) -

17P(J)+DPRIJIeZ(J))
SUM4=SUMG s XNF (J-1) e (HIJ=1)-2)#BZS(J-11/G{I-1)+{H(J-1)-A)*BQS{JI- 1)

1020Jd-1))=-X%N(J)e{(H{J)-A)eB2o(J3/P(J)+{H(JI)-A)eDPS(J)e2(J))

SUMS=SUMS+XNF (J-1)e{ {H{J=11-A3e2(J-11/Q{J-1})-XN{J)e{(H{J)-A)eZ(J)
1/P13))

SUM6=SUMG+XNF{JI-1)8 {H{J-1)e[.ZA(J-1)/7Q(J-1)+H(i~1)eDQAL3-1182"J-1)~_
12(3-1)7Q(J-1)-A73(JI-1)eDZA(J-1)~AeZ{J-1)eDQA{I-1) )=-XN{J)e!H(J)}/P(J
2)s0LA(J)+DPALSIeHII) oL (J3-2E35)/P(3)~A2(5)=DPALJ)-A/PLJ)eDIALJ})

SUM=SUMXNFIJ=11e(Z28J-11/72(:-1))-XN{J3)={2(3}/P(J]}

SSUM=SSUMeXNF(J-1)2({H{J-1)-A)e2(J-11/C(J-1})-XN{J)ei{H{J)-A)eZ(J)
1/P8J3))

555 CONTINUE
DEKIVATIVE 8F F1iS,A) WITH RESPECT TE@S AND A

DERIVAIIVE 2F F2(S:A} WITH RESPECT T8 S AND A
FAS=F1(S,A) , SAS=F2(S,A)
DFJS=21.0/S5eSUMI-1.0/7S902 e3UM2
DFDA=]1,.3/S=SuM3
DSDS=1.3/5002 eSUM4L-2.(0/See] oSUMS
DSDA=1.0/S590¢2 25UM6
FAS=1.0/SeSUM
SAS=1.0/5e82eS5S5UM
303 D=DFPSsDSDA-DFDAsDSDS
CORRECTIBN F2R S
XH=(DFDA«SAS-GSDA®FAS) /D
CORRECTIBN FOR A
XK=({DSDSeFAS-DFGSeSAS) /D
CORRECTED A
AA=A+ XK
CORRECTED S
SS=S+XH
17 $=SS
A=AA
VALUE OF F1l(A.:35) AND F2{A,S) SBTAINED FROM FINAL A AND S
1ERBL=0.0
ZERIZ2=3.D
DO 69 J32,1
ZER .SZEROGLI+XNF(J=1)0(2{J-1)/4(J-1))=XN{J)=(Z(J)/P{J)})
69 ZERPZ2=LERZ2+XNF{J-11el (HI{,-1)-8)eZ(J=-1)/Q(J=-1))=XN(-De((H{JI)-A)eZ{
1L43¥/7P4Jd))
IF(ABS(ZERRL!)-1.E-4) 68,468+15
68 IF{ABS(ZERD2)~1.E~5}) .6416415
15 ITCNT = TTONT ¢+ 1
IFCETONY = 100 ) 151,16416
i51 G2 19 4%
16 WRITE (6 y6666)LERDLHyZERI2 1A, AA,S,SS
5666 FARMAT(53X,BH7EROL = ,E20.8//5 X,8HIIRG2 = ,E2De8//750X9HNLMEAN =
1oFLlQ.87/750Xy THACAN = ,F10.8//5.X,15HNLSTIND. DEVe = ,F1l0.8//750X,
221HSTANDARD DEVIATI@GN = ,Flc.8/7})
ARITE 56 +111)ITCNT
111 FORMAT(53X,20.inE- OF ITERATIANS = ,15/7)
CALL SOLVE(P U, XNe Y2yl sAySyHRELK,CONK;CSToXNF )

WRITE (6 2 77)
77 EARMAT{4JY 49HCALCULATIGN BF ALL-FIRE AND N@-FIRE .ENEWRGY LEVELS//)
wkiitc (6 19TLIGSQROVHIGRI 4 SIGSQA,STHSQSSIGMAPLFIRSO, FNBTS)

LeRELV,CONLV,FIREK,XRELV,CONLV,FNATK
971 FARMATI5I)X 11HGSQUARED = ,F17.6//53X,10HI SQUARED =,F10.67//53X,29HS
44




8RULCE - EFN SBURCE STATEMENT - [IFN(S) -

1TAND. ERRSR BF MEAN SQRD. = ,F1D."7/53D0X,36HSTAND. ERRIR IF STANC.
2DEV. SQRD. = ,F10.8//50X;Z5HSTAND. ERRZR AT P PERCENT HEIGHT = ,Fl
30.8/7/750X,33H99.9FIRE AT S(CB2MuFIDENCE LEVEL = ,Fi0.8//52X,32H0.1FIR
4E AT S0CSNFIDENCE LEVEL = ,F15.8//53X,F6.2,THFIRE AY,F6.2,19HCONFI
S50ENCE LEVEL = ,F1D.8//59X,F6.2,7HFIRE AT,F6.2+:19HCBNFIDENCE LEVEL

6= ,F10.8/77 )
Gs 18 1
END

45




BREP ~ EFN SEBUICE STATEMENT - [FN(S)

SUBRGUTINE ?RGB( . H'X'Y'Z'A’S'P'c'i,
DIMERSI3N H(9G3,X{35),Y{991,2({99),P{99),Q(59])
D8 74 =1, 1 "'
HN&ASQ = (H{J)-A)ee2
EXPNT = HMASQ/(2.#S5eS)
Z(J) = (1.72.55663)/7EXPLEXPKT)
YiJi = {(H{J)-A)/S
X{J) = ABS(Y{Ji}
IF {X{J1-1.20 ) 21,21,22
21 XSG = X(J)eX(J)
P(J)=0.T797BB455¢X(J)*(i7.99999T7T74-XS0¢(N.16659433-XS2*(.24638310E-0
11-XSQ#2.23974367E-22) 1))
IF ¢ Y { J ) ) 40D, 401, 402
QO3 P L J ) 20D =-P L J . " 26
Gd T3 4«33
63 T3 493
402 P(JI=P(JU}/2.040.5
493 Q (J ) =1.)-P ( J))
Gg 18 7
22 1IF (X1J) = 2.90 } 25426426
25 X$SQ = X{(J) = X{J)
PlJ) = 1.9
PT = 1.9
FACT = 1.0
pOD = 3.0
29 PT = ~PT#*XSQ/{2.0*FACT )
+T = PY/90D
P = PLIY + T
IF (ABRS(T) - 9.00C27 ) 63 ,7) ,70C
79 FACT = FACT + 1.0
20D = 90D + 2.9
Go T2 29
63 P(J) = 0.79788455=X(J)eP(J)
aF L Y ( J) ) 590, 531, 562
500 P (4 ) =0.5=-P ( J ) /7 23
GO T3 503
S01 P (J )} = 0.5
G8 T2 503
502 P{JI=P(J)/2.0+5.5
503 Q (J } = 13- P ( J )
od TP 7
26 RXS5Q
P(J)

= 1.0/7{X{J)=X(J})
= 1e0=J.T9788455#EXP(=X{J)#X{J)/2.)1/%X(J)»{1ls0-RXSQe(1.0-RXSQ
le {3.0-RXSQ#(15.0-RXSQ#1CS.0))))
IF CYy ( J ) ) 600, 601, 602
$0G P (L J ) =0.5=-P ( J ) [/ 2.0

GO T2 633
601 P ¢ J ) = 0.5

G2 T8 603
602 P{JI=P(J)/2.0+U.5
603 Q (J ) = 13- P { J )

T CONTINUE

RETURN

END
46




FORTES - EFN SBURCE STATEMENT - [IFN(S} -

SUBRBUTINE FBRESTIFIX,FiXyNyXoUyVyIDENT )
ALCGIW)=,4343eAL3G{H)

ANTI(N)=EXP(W/.4343)
DIMENSIBNX(50), IDENT(23),FIX(99),FAX({99),S (30,15)
DATA S /64.60'25.)‘3."30'66."9.'51.’16.00!2

15.1270931.435..370942¢'460,47.949.1510'12.00'25-926.9280'290’31.'3

.2“!36.139.7‘00t430"601480149..510'9.00’250'270'2801310'32.9340036

30!310'3900"301"100‘020 9‘0’. .‘06. v43. "19. .51..400. ,25.926. '270 12709280
"1300'3'301310 ,32-:330 '350'360 ’370 p39. 1‘01. "'20'43-"04o,l'60'l'9"49°'5
510'2509260127012701280t29o'39.9300'310'320'330!3"'350'3600370'380

ﬁ"c°'610l420’630'“50’4601‘70'4901510)520,25.'250y260|270'2Q.'29.'3

TUe9300932¢932¢933¢9340935093609380¢39¢9406942091%30094%0145.9464947.
8"90,5‘.152. 1250'260 127-'270 7290 129. '300 9310,32.'330.3"0|350’360'3
970’380'39l'4oo'410143.'44.’45.'470'4901500051.1530'260.260127..28-

= 1290130.'3101310'320'3409350'369'370'390'390"Oo"10'420"40'44."

B5o|67o.49.1530'520'530'26.'27.9280.2801290'31Ql3101330'3‘0'3“0'360

_C1.37oy380739_o '6901410 '4_2__' "‘030 QIQ('o '65. '('60_'_6_7_0'10_909510'520'530'260'2

0701280'2901300'310'32.'330134.’350936.'370'380'39."0.,41."2.‘#3.

_81‘40'4507‘6.1470149.QSQp,SZQQS‘o,

639

637

638

3vld

1115

13

118
4111

112

113

READ (5,639)(IDENT(J)J=1920}yN,yC,yD
FORMAT(20A1,15,2F10.0)

READ(5,637) (X{I),FIX{I)yl=1,N)
FARMAT(6(FB.O,F4.0))

READ(5,638) (FAX{1),I21,N)

FORMAT( 6F12.0 )

AFEX=20.9

AFAX = 9.0

BFIX=0.d

_BFAX’O.G

SFIX=0.D

SFAX=0.)

120

W=i

AFL . AFIXeWeFIX{I+l )
AFAXsAFAX+WsFAX(I+1)_

BFIX = BFIX + (Wee2 ) & FIX(I+1)
BFAX=BFAX+(Wee2)eFAX([+])
SFIX=SFIX+FIX{I+]1)
SFAX=SFAX+FAX{]I+1),

I=]+]

JdF(1-N#113010,3010,1115

R =D
TFIX=s{(SFIX®BFIX)-AFIX#a2)/(SFIXee2)
TEFAXz{ {SFAXeBFAX)-AFAX®##2)/({SFAX®22)
UFIX=C+R*(AFIX/SFIX=-0.5)

UFAX=C+Ke (AFAX/SFAX+J.5)
JIFCTRIX-D.3) 118,23:23

CIX2TFIX®190.

LIX=CIX

WEELIX = 500,

=0 -
WEEIX = AMINL(WEEIXsABS(UFIX-ALCLIX{I+1))))
[a]+]

IF(I=-N+12112,112,113

RIX=ABS{WEETX/R]J 47
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PR i 0l

VALVE - - EFN SCURCE STATEMENT - IFN(S) -

SUBRZUTINE SELVE (PeQeXNsYsZsI¢sAs3,H,RELK,CBNK,CST, XNF )
CIMMBN GSQRD,HSQRD,SIGSQA,SIGSQS,3IGMAP,FIR50, FNOTSU,FIREK,FNETK
DIMENSIZN H{99),P(99)52(95) 4XN(99),¥(99),2(99),W(99) ,XNF(99]}
_SUMNJ = 3.0
WJISUM = 9.0
GSUM = Je{
HSUM = 3.0
1ZERO = 1/2 + 1
Il = [ZER3 - 1
08 623 J = 1,1
JMl = J - 1
wil) = 1.0
IFtH{J) -~ HIIZERD )) 358,347,223
358 DG 6252 K = J,IM]l
6262 UWiJ) = WIJ) & P(K) /- Q(K)
GB TP 623
347 HWiJ) = 1.0
G2 T2 623
223 D3 T27 L = ILlERB , JHlL
727 W{J) = W(J) = Q(L) /Z_P(L)
623 CONTINUE
D9 741 b = 1,1
WJISUM = WJISUM + KW(J)
SUMNFJ=SUMNFJ4+XNF(J).
741 SUMNJ = SUMN.) + XN{J)
D3 61 4 = 24 1
GSUM = GSUM + W(J-1)e(Z2(Jd=-1)ee2/Ql{J-1)se2¢](J)ea2/P(J)us2)
61 _HSUM = HSUM+W(J-1)e(Y(J=1)se2e7(J-1)e82/Q(J~1)sazeY(J)en2a](J)u02/
1P(J)ee2)
GSQRD = WJSUM/GSUM
HSQRD = WJSUM/HSUM
_SIGSQA=S¢S/SUMNJ«GSQRD
SIGSQS = SeS/SUMNJ#HSQRD
_SGSQAF=35#«S/SUNMNFJ*GSQRO
SGSGSF=S#S/SUMNFJ#HSQRD
SIGMAP = SQRTI{SIGSQA+RzLKe#«24S[GSQS )
SGHMAPF=SQRT{SGSQAF+RELK=#224SGSQSF)
FIRSD = A+RELK#S
FNOTS0O = A-RELKeS
FIREK = FIRSO+CONKe® ( {SUMNJ+CST}/SUMNJI) S [GHAP
FNOTK = FNOTSO-CONKe ({ SUMNJ+CST)/S5UMNJ)«SIGMAP
FIREKF=FIRSI+CUNK»{ { SUMNFJ+CST)/SUMNFJ)#SGMAPF
FNOTKF=FNOTSO-CONKe{ ({SUMNFJ+CST)/SUMNFJ)*SGMAPF
SIGSQA=SQRT((SIGSQA##2 +SGSQAFwe2)/2.)
SIGSQS=SQRT({SIGSQS*»#2+SGSQSFen2)/2,)
FIREK=SQRT((FIREK®*24F {REKF»e2)/2.)
FNGTK= SQRT(IFNUTK & FNJITKF )
RETURN
48 END




2424
117

114
115

116

23

2525
26

—«@%%

FERTES - EFN S3URCE STATEMENT

KIX = IFIX (RIX ® 22, ) + 1
VEIXa( S(LIX,KIX)/1G9.)eR
IF(TFAX-0.31117,2525,2525
CAX=TFAX*499.

LAX=CAX

| 3V .

WEEAX = AMIN1(WEEAX,ABS(UFAX-ALCGIX{I+1))))
I1s1+1

IFCI-N+1)115,115,11%
RAXZABS {NEEAX/R)

KAX = [FIX {RAX®22.)+1

VFAX =.{ S({LAX,KAX)/10C.)=R
68 18 20

VFIX=1.62%Re{TFIX4+J.U29)#SQRT(SFIX/(SFIX-1.1})

G3 19 2424

VFAX=1.62¢Re (TFAX+D,029)eSQRT(SFAX/(SFAX-1.))

Uz ( {SFAX®UFAX)+(SFIX2UFIX))/(SFAX+3F1X]}

VaSQRT((SFAX® (YFAX#e2)+SFIXe(VFIXee2))/(SFAX+SFIX]))
RETURN

END
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M2 Squib Test D
CALC. BF MEAN AND $TD. DEVIATION BY SBLN. BF MAX. LIKEilHDBD EQNS.

ENERGY LEVEL N2. OF #lRESIFAiLS
2.57287 C. b
259329 G 104
2.61278 10. 10.
2.63246 9. ~ 2
2.65321 le C.

AVGe = 2.60967
APPRX STND DEV »  0.02289
NB. 3F ENERGY LEVELS = S
LERL: = €+16199425E=04.
IER@2 = 0.4401£633E-06
NLMEAN_=_2.61094216
MEAN = 2.61034216
NLSTND. DEV. = 0.02415103
STANDARD DEVIATION = 0.02415103
NG, BF ITZRATIONS = 3

CALCULATIBN BF ALL-FIRE AND N@-FIRE ENERGY LEVELS
GSQUARED =  0,.826383
HSQUARED = 1.496004
STAND. ERRBR @F MEAN SQRD. = 0.00001932
>TAND. ERRR @F STAND. DEV. SQRD. * 0.00003498
STAND. ERRBR AT P PERCENT HEIGHT = 0.01916319
99.9FIRE AT SOCENFIDENCE LEVEL = 2.685560884
J.1FIRE AT SOCONFIGENCE LEVEL » 2.53631544

99.90FIRE AT 95.00CBNFIDENCE LEVEL = 2.72416380

50 O.10FIRE AT 95.00CBNFIDENCE LEVEL = 2.49772042




M5 Cap Test A

CALC. OF MEAN AND 5TD. DEVIATION BY SOLN. BF MAX. LIKELIHBBD EQNS.

[ENERGY LFV

0.1643)1

J.16415

0.i8409

0.20683

0.22531

CALCULAT1®

EL Ng. BF FIRES/FAILS
0. 2.
3. 9.
10. 10.
11. 3.
3. 0.

AVG. =  0.18533

APPRX STNC DEV = 0.02337

Né. OF ENERGY LEVELS = 5

ZERD] = 0.15720725€-05 .

ZERD2 = 0.10360964E-07

NLMEAN = 0.186430348

MEAN = 0.18430348

NLSTND. DEV. = 0.02588342

STANDARD CEVIATION = 0.02588342

N@. 3F ITERATIONS = 4

N @F ALL-FIRE AND N@-FIRE ENERGY LEVELS

GSQUARED =  0.835367

HSQUARED = 1.510562

STANC. ERR@R BF MEAN SQRD. = 0.00002206

STAND. ERR@GR @F STAND. DEV. SQRD. & (.00003989
STAND. ERRPR AT P PERCENT HEIGHT = 0.01945744
99,9FIRE AT SOCONFIDENCE LEVEL = 0.26623325

0.1FIRE AT SOCBNFIOENCE LEVEL = 6.10432371
99.90FIRE AT 95.COCBNFIDENCE LEVEL = 0.305433

0.10FIRE AT 95.00CENFIDENCE LEVEL = 0.063157

51
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.Mb Cap_Test E

CALG. BF MEAN_AND_STD. DEVIATISN_BY SOLN._BF MAX. LIKELIHBOD EQNS..

52

ENERGY LEVEL _N@. OF. FIRES/FAILS
2.40993 0. 2.
2.42488 2. 9.
2.44091 9. 12.
2.45484 12. 2.
2446982 2. 0.

_AVG. = 20‘4130
"AbPRX STND DEV = 0.01477

_N@. OF ENERGY LEVELS = 5

LERD] = 0.26669353E-04
LERB2 = 0.75314892€E-06
NLMEAN = 2,4413546°

MEAN 3 2.44135469
NLSTND. DEV._ = 0.01453041
STANDARD DEVIATIGN = 0.01453041

N@. BF ITERATIONS = 2

CALCULATLSN BF ALL-FIRE AND N@-FIRE ENERGY LEVELS

_GSQUARED = _0,.785916_
HSQUARED = 1.171202

_STAND. ERRBR OF MEAN_SQRD. = 0.00000663

STAND. ERRPBR @F STAND. DEV. SQRD. s 0.00000%89
STAND. ERRDR'AT P PERCENT HEIGHT = 0.01005381

_99.9FIRE AT SQOCONFIDENCE LEVEL = 2.48625368

OJLFIRE AT SOCONFIDENCE LEVEL =~ 2.39645568
99.9)FIRE AT 95.00CBNFIDENCE ILEVEL = 2;50690502

_0.10FIRE AT 95.00CENFIDENCE LEVEL = 2.37580431
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TABLE 1

EFFECT OF SAMPLE SIZE ON THE MAXIMUM LIKELIHOOD ESTIMATES OF THE MEAN AND STANDARD

DEVATION AND ON THE APPROXIMATIONS OF THESE ESTIMATES

Mean Standard Deviation

Sample| Maximum Absolute | Relative Maximum Absolute |Relative

Let | Size Likelihood |Approximation] Difference] Differercel Likelihood lApproximation| Difference Pifference

1 20 2,18195006 2. 17227 0.000968 0.44% | 0.10385376| 0.09964 0.00421 4,05%
2 20 2,21658185 2.19198 0.00246 1.11 0.16553961 C.13820 0.02734 16,52
3 20 2.13827476 2.13283 0.00054 0.25 0.05621809( 0.04" 5 0,00846 15,05
4 20 2,20772761 2,19394 0.00i38 0.63 0,12787458| 0,.11754 0,010335 8,08
5 20 2.19128922 2.16616 0.00251 1.15 0.i6074003] 0,14234 0.01840 11.45
6 20 2.08996966 2.0823¢0 0.00077 0.37 0.10841461} 0.10168 0,00674 6.22
1 30 2,19008294 2,18533 0.000475 0.22 0.08301159} 0,07816 0.00485 5.84
2 30 2,21506256 2,19968 0.00154 0,68 0.12404235 0.10417 0,01987 16,02
3 30 2,12057662 2,.11348 0,00071 0.33 0.07922158| 0,06395 0.,01527 19,27
4 30 2,22780049 2.21348 0.001453 0.64 0.10541917} 0.09108 0,01434 13,60
5 30 2,20095909 2.18977 0.00112 0.51 0.18969359| (©.14878 0.04091 21,57
6 30 2,23084623 2.21044 0.90204 6.91 0.19927732% 0.17130 0,027977] 14.04
1 50 2.16937867 2,16685 0.000253 0.12 0,11199255| 0,10624 0,00575 5.13
2 50 2, 18294474 2,17408 0.00089 0.41 0.,09656488; 0,08212 0,01445 14,96
3 50 2.16325137 2,15644 0.00680 3.14 0.12018208] 0,10825 0,01193 9.93
4 50 2,22241090 2.20949 0,000139 0,06 0.09178600 0.08005 0,01174 12,79
5 50 2,17560852 2,16770 0.00044 0.20 0,12332264| 0,11550 0,00782 6,34
6 50 2,17406946 2,16371 0.,00104 0.48 0.16109429 0.14713 0,01396 8,67
7 50 1,85561229 1.85559 0.000002 ] 0,03008042| 0,03016 0.00008 0.27
8 50 2,60968155 2,60972 0.000004 0 0,03420447 0.03689 0,00269 7.86
9 50 2.48498195 2,48500 0.000002 0 0.01677419} 0,01725 0,000476 2.84
10 50 2,60874438 2,60966 0.00012 0,05 .}0,02079704] 0.02159 0.00081 3.89
11 50 2,65637481 2,65678 0.00104 0.39 0.63510309| 0,03536 0,00076 2,17
12 50 2,59181881 2.59000 0.00182 0.70 0.02992462| 0,030271 0,000346 1,16
13 50 2,64898539 2,64875 0,00002 0 0.02977113} 0.02975 0,00002 0.07
14 50 2,63433656 2,63400 0.00034 0.13 0.02211387| 0,02132 0.00079 3.57
1 100 2,19052792 2,18873 0,000180 0,08 0,11471657 0.10855 0,00617 5.38
2 100 2,20945472 2,20808 0,00014 0.06 0.09797628] 0,09314 0,00484 4,94
3 100 2,17530292 2.16557 0,00097 0.45 0.12988110| 0,12325 6,00663 5.10
4 100 2,21319243 2,20060 0.00126 0.57 0.09714309( 0,09394 ve 00320 3.29
5 100 2,22595269 2,22:02 0.00044 0.20 0.15329798] 0,14411 0.00919 5.99
6 100 2,18726733 2,17376 0.00135 0.62 0,13670944 0.13304 0,00367 2,68

Note: Values are in Log units, Relative Difference = Absolute Difference 100

Maximum Likelihood Value
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