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SUMMARY

The maximum likelihood equations used to determine estimates
oi the mean and standard deviation for the Bruceton method of
statistical analysis were solved numerically. A digital computer
algorithm was developed to reduce the time associated with the
numerical calculations. The method of successive approximations
(Newton-Raphson method) was suitable. Test data was evaluated to
determine the relative difference between values of the means and
standard deviation as obtained from the numerical solution of the
maximum likelihood equations and as obtained from formulae
approximatifig these equations. Results of the analysis showed
that the differences between means were slight while those between
standard deviations were more pronounced_ Calculated high and
low probability levels, because of their dependence on the mean and
standard deviation, differed widely from one method of calculation
to the other. The analysis also showed that the most adverse effects
occur-ed for the smallest samples. Because the maximum likeli-
hood equations yield better estimates of the mean and standard
deviation than can be obtained from equations approximating them --
especially for small samples -- solution of the maximum likelihood
equations by the Newton-Raphson method is advocated for determining
the best estimates of the population mean and standard deviation.



CONCLUSIONS

The maximum likelihood equations used to estimate the mean
and standard deviation in conjunction with a Bruceton analysis are
readily solvable by the Newton-Raphson method of successive
approximations with the aid of the digital computer codes of
Appendix A and B.

The code of Appendix B appears to be superior based on higher
reliability and safety criteria.

g
RECOMMENDATION

Because of its apparent superiority, the code of Appendix B
should be used to calculate the maximum likelihood estimates of
the mean and standard deviation for samples analyzed by the
Bruceton method.
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BACKGROUND

The Bruceton method of statistical analysis is used to determine
the probability of explosion or non-explosion for a given explosive
item as a function of input stimuli. The procedures used for calcu-
lating the statistical parameters (mean, standard deviation,
percent points, etc.) are based on approximations to the maximum
likelihood equations which will be discussed at greater length in the
Study section. However, the validity of the approximations fall off
rapidly with decrease in sample sizes less than 100. Consequently,
it is desirable to use the maximum likelihood equations for small
sample inalysis.

Before the advent of the digital computer, exact solutions of
the maximum likelihood equations required complex, wholly
impractical computational schemes. As a result of the difficulties
formerly encountered in applying the likelihood theory, approximate
methods were always used to estimate the maximum likelihood
quantities. In the case of small sample analysis, blatant deviations
frequently occurred between sample and population statistical
parameters. The Franklin Institute of Philadelphia, Pennsylvania
investigated the affect of approximate methods on the data obtained
from small samp4.s and their findings indicate that the expected
deterioration of the approximate formulae as applied to small
samples, does in fact occur.

It must be emphasized that in any statistical analysis large
samples are preferable. But if small samples must be used in
a Bruceton test, the use of maximum likelihood techniques become
in a realistic sense, mandatory. Furthermore, the maximum
likelihood 'vzl,:es associated with small samp.es should be treated
with care, since small samples tend to yield poor statistical
results. This is especially true for this particular problem.
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STUDY

A method of statistical analysis frequently utilized in evaluating
explosive devices is known as the Bruceton Staircase Sensitivity
Test. The method was developed by the Explosives Research
Laboratory cf Bruceton, Pennsylvania. It is used to ascertain the
safe and sure-fire energy levels associated with a given explosive
item. In performing the experimental procedure the tester is first
required to home in on a 50% firing level (mean) and on an
approximate standard deviation (interval between cQnsecutive energy
levels). This can be accomplished easily if the past history of the
explosive under investigation is available. Otherwise trial and
error techniques are adequate. Once having chosen the 50% firing
level and the step interval (based on an approximation of the standard
deviation) the tester may then proceed as follows:

An attempt is made to actuate the explosive using the
50%6 energy estimate. If successful a second specimen is tested

at an energy level one step interval below the 50% value. On the
other hand, if the specimen failed to detonate, the second explosive
item is tested at an energy level one step interval above the 50%
level. Thus denoting any test level as H, and the step interval as
d, then Hi+ 1 = Hi - d, for the case where the i' th test produced
an explosion and Hi+ 1  11, + d if the i' th test produced a non-
explosion.

In this way, a sequence of explosions (xs) and non-explosions
(0s) will be generated. Figure 1 shows a typical sequence. It may
be noted that the bulk of the testing occurs in the neighborhood of
the mean energy level. Thus a minimal number of tests will permit
a good estimation of the mean. However, because of the
approximate nature of the methods of calculation used to estimate
the mean and standard deviation, samples of at least 100 specimens

are required. Also, sensitivity data does not consist of exact
measurements. Consequently the information contained in them is
reduced by about one-half that which would be contained in

measured data of a comparable nature.
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To reduce the bias associated with the Bruceton method,
large sample sizes (at least 100 specimens) should be used.
For very expensive explosive devices, large sample sizes are
prohibitive. Consequently, tests are conducted using smaller
sample sizes often 50 specimens or less. But it is known that
for sample sizes below 50, the approximations of the mean and
standard deviation become rather poor. Therefore, more
elaborate methods using the maximum likelihood equations for
estimating the mean and standard deviation must be used.
However, these equations cannot be solved in closed form by
any direct method (Equation 47, p. 38 of Reference 4). Of
course, numerically the equations can be solved and the maximum
likelihood estimates of the mean and standard deviation determined.

Owing to the time involved in the numerical soluti.on of the
maximum likelihood equations, no attempt was made tc utilize
them until the ad-vent of the digital computer. However, once
the computer algorithm developed in this report was established
it became a rather simple task to demonstrate the effect of
sample size on the calculated mean and standard deviation
(.specially since it is this parameter which strongly affects the
outcome of the extrapolation calculations. That is, the validity
of the approximation formulae for estimating high and low percent
points is doubtful -- especially if small sample sizes are used.
Therefore, the purpose of this report is to present a numerical
procedure for solving the maximum likelihood equations and
suitable for application to a digital computer. The effect of
sample size on the results of both the approximate and the
numerical techniques will be emphasized.

To determine the maximum likelihood equations for estimating
the mean and standard deviation of a normlly distributed random
variable x with mean A and variance S 2 , a random sample of size
N is drawn from the population and tested in the manner described
so that a sequence of ones and zeros is obtained. If:

N, = total number of ones

No = total number of zeros

H i = energy at test level i

N i = number of ones at H i

Mi = number of zeros at Ili



then
Ni = JN i

and N= N0 +NI

Further, it may be assumed N 1 < N0 , then the probability that an X
will be a one at the Hi level is:

_ p(X-4)2 d

and the probability that X will be a zero is: Qi = 1 - Pi .

Then, the probability of generating a sequence of N 1 ones and
zeros is obtained from:

P = K 7P iNi Qi 1 i

where K is a function of the N i and Mi . This probability is based
on generating a sequence of N independent outcomes (ones and
zeros) from a multi-nomial distribution. Although this assumption
is not strictly applicable to the current problem, only slight
adjustments need be made to the general theory to apply it in the
asymptotic case. This is denoted by the likelihood:

L= Ni LOG PiQi_ 1

and differentiating with respect to A and S maximized likelihood
equations are obtained. Before proceeding further the following
derivatives are defined:

dP.- 1
A -§ " Zi

Pi H i - A
S - S zi
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OA ;z i

and dQi H i - A

where Z. 1 i - A)2

whee Zi= ,, - 2S 2

Then, the maximum likelihood equations for estimating the mean

and standard deviation are:

&I L Ni P -4-O (1)
i L

and
(3 L 1N (HRI l A )z i - l (Hi - A)Zi

i

These equations cannot be solved by direc* ethods. However, if

good estimates of the mean and standard ration are available a

method of successive app-oximations (T. 'on-Raphson method) is

applicable. Tht- method f .o lows: Let the maxi-

mum likelihood Equation - -

F 1 (S, A) 0 (3)

F (S, A)= 0 (4)

Also, let A0, SO be approximate solutions of Equation (3) and (4)

such that the true roots of Equation (3) and (4), A and S are

related to A0 and So by:

S =S + H

A= A 0 + K

!1



where H and K are the corrections for So and A 0 , respectively.

Rewriting Equation (3) and (4):

F 1 (S 0 + H, A0 + K) = 0 (5)

Fz(SO+H, A 0 +K)=0 (6)

Equation (5) and (6) may be expanded by Taylor's theorem for a
f-nction of two variables giving:

Fl (S 0 +H, A 0 + K) =0= F1 (SO, AO)+ Ht - F '2 +I F IFl +
I; SJ /o A )/0

Terms in Higher Powers of H, K

F2 S0HA 0 K=0F (SO, AO)+ + K F +(So~~/ +/ , A/o ) =F
S0 ItA/O

Terms in Higher Powers of H, K

Since the values of H and K are small, their squares, products,
and higher powers are neglected so that:

F1 ,so. O, ,+) F 1o (7)

F, (SO, A0 ) + Hl + K( 2) = 0 (8)

Using Cramer's rule (assuming D 0) solution for H and K
are obtained from: ]I

04T 4.)

D
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and

o "(10)

where

Using the values of H and K obtained above new approximations are
gotten for S and A as:

S 1 = SO + H 0

A 1 = A0 + K0

If the process is repeated using S1 and A1 , new corrections, H1
and K 1, are obtained. Continuing in this manner, a predetermined

degree of convergence may be achieved. The subscripts 0, It ...,
refer to the values A, S, K, and H to be used. That is (&_El

means that jS is to be evaluated for S = So, A = A0 , and so on.

Also, examination of Equation (7), (8), (9) and (10) shows that for
large D and correspondingly small H and K, the assumptions made
are applicable and convergence should be expected.

In accordance with this method, Equation (1) and (2) must be
differentiated partially with respect to S and A. However, before
proceeding the following quantities are needed:

13
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Then for Equation (1):

and
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Repeating the preceding for Equation (2) the following results are
obtained:

5 /" . ~. j) %, " .

-3_. _,,, ,,_ -
- i i / ."-,

and

of 19 ,004 4 204?<' -4' - z- 7,

Using Equation (9) and (10) repeatedly, corrections (H and K) are
calculated for S and A until the desired degree of convergence is
achieved. Of course, owing to the lengthy calculations required
by this method, a digital computer program for working out the
details was essential. Otherwise, the method would prove
impractical.

15



Two similar FORTRAN codes for calculating the results of a
Bruceton analysis are in Appendix A and B. The two programs
are basically the same. A comparison of them follows.

The main program entitled BRUCE in both codes is used to
read in information pertaining to reliability and confidence levels.
Then subroutine FOREST is called. (This subroutine is a
modification of a FORTRAN code written by Forrest L. McMains,
(Reference 3).)

Subroutine FOREST is used to read in the basic data generated
in the Bruceton analysis and then calculate estimates of the mean
and standard deviation from approximations of the maximum likeli-
hood equations. However, the estimates returned to BRUCE differ
for the two codes. Using.the code of Appendix A, the estimates of
A and S are calculated for both the number of fails and fires -- the
one obtained for the smaller of the preceding quantities being returned.
Actually, the choice is made in BRUCE after returning from FOREST.
A subroutine called SWAP is called when the number of fails is less
than the number of fires. In this event the number of fails will be
retained for further calculation. If the number of fires is less than
or equal to the number of fails no transfer to subroutine SWAP will
take place. Thus all calculations using the code in Appendix A
depend on the smaller of the two quantities, number of fails and
number of fires. This approach is advocated in Reference 4.

Using the code of Appendix B, the number of fires and fails
are equally weighted regardless of which is smaller. The basis
for this approach is described in Reference 3. Both the number
of fires and fails are used throughout the program. Subroutine
FOREST computes approximations to the mean and standard
deviation by first calculating estimates of these quantities based on
the number of fails and fires alone and then averaging them. These
averages are weighted so that the quantities calculated using the
smaller value between the number of fires or fails is more heavily
favored.

Thus using either code approximate estimates of A and S are
obtained using FOREST. After writing out the information read
in plus the starting values of S and A just chosen, a subroutine
entitled PROB is called. This subroutine calculates the probabili-
ties Pi and Qi associated with each energy level Hi . The procedure
followed in this subroutine is a modification of an existing program

16



used for calculating the probabilities of normally distributed
random variables (Reference 2). The program which was
modified is used to calculate probabilities from the normal
probability integral defined as:

P(x)

The integral gives the probability that the normalized random
variable t will be between -t and t on the normal probability
curve shown in Figure 2. That is, the probability P(k) is equal
to the area under the curve from -t to t. For small t the integral
above can be evaluated from a power series:

P(x*) -MWMMM '2,.1: -3 '2. 2 ., ,.o, 7

Fort > 2. 90 a more efficient method of evaluating P(x) is achieved
by using the asymptotic series defined as:

For small t, (t < 1. 20), the economy of calculating the normal
probabilities is enhanced if use is made of telescoping the power
series. For all terms beyond andincluding t 8 , use is made of
the telescoping effect produced by:

t 8 _ 1 (256t' - 160t 4 + 32t' - 1 + T8)128

which is deduced from Chebyshev polynomials (Reference 2).
For the range 1.2 < t < 2.9 application of the original pz-wer
series is satisfactory.
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For each range, t < 1.20, t > 2.90, and 1.20 <t <2.90,
probabilities were calculated and compared with those recorded
in statistical tables. Because of the good agreement between
the calculated and tabulated values and the relative ease with
which a desired degree of accuracy was achieved, the approach
using approximating series was employed.

However, as indicated, the method-had to be modified.
The reason for this is evident froni Figure* 3. It may be
seen that the desired probability is equal to the area under the
probability curve from - 00 to t. Because of the symmetrical
nature of the normal probability curve, the following technique
was applicable. The area u.nder the curve was r;:otainred for the
interval -t to t. This value was halved a!ud either subtracted
from 0.5 (for negative t) or added to 0.5 if t was positive. Thus,
the probability for - 00 to t was determined.

In addition, the subroutine PROB calculates the normal
random variable associated with the random variable x from:

tx-At = ----
S

where A is the mean and S is the standard deviation. kn terms of
the symbols used in the code:

Yi = Hi - A

S

The value of Z is adjusted tco, using the expression:

z i e

each time PROB is called. This is necessary since Z i = f(A,S).

The corrections for S and A are calculated using the current
values of P, Q, and Z as obtained from the subroutine PROB.
The new values of S and A are used to evaluate FI(S, A) and
F 2 (S, A) and then compare these with zero. If both are sufficiently
close to zero, the order of a,,;c,;rac.y may be determined by the User.
For instance, 1 x 10- 3 ar.d 1 x 10- 4 were chosen for FI(S, A) and
FZ(S,A), respec ively, for the c)de shown in Appendix A while

19
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1 x 10- 4 and 1 x 10- 5 were chosen f-r the code of Appendix B.
The mean, standard deviation, FI(S, A) and F27(S, A) are then
written out and transfer is made to subroutine SOLV1E. This
subroutine is used to calculate such statistical quantities as the
standard error of the mean, standard error of the standard
deviation, the sure-fire probability point and a corresponding
safe or NO-FIRE probability level. if the values of FI (S, A) and
FZ(S, A) are not sufficiently close to zero, h.,wever, the
iterations are continued so that new corrections for A and S are
obtained. This process of iteration is allowed to continue until
F 1 (S, A) and Fz(S, A) become as small as desired or until the
number of it-rations reach some predetermined value chosen by
the User 1 , 000 iterations were chrsen in the z,_.de shown irt
Appendix A, 100 for the code shown in Appendix B).

The values of F 1 (S, A), F 2 (S,A) the next to the last values of
S and A, the final values of S and A and the number cf iterations
are written out for each run. This is done so that if all 1, 000
(or 100) iterations are carried out because the error in either
FI(S, A) or F?(S, A) is larger than the bound specified for each,
one is able to observe two suc.;essive values of S and A and
decide whether convergence has actually been achieved. The
results as computed by each code forthree tests are shown at the
end of the respective code. Note that for these three tests only
two, three or four iterations were required. This rapid
convergence is due to the gold approximation of the mean and
standard deviation obtained using subroutine FOREST.

Once the maximum likelihood estimates of A and S are
approximated, subroutine SOLVE is called for purpcses of
estimating the standard errors associated with A and S and
calculating the sure-fire and safe or NO-FIRE energy levels.
To estimate the standard errors two parameters G and H must
be determined. These are defined by:

2. 7

and

H2 -
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where:

,d~
Wo

Subroutine SOLVE makes use of the definitions of G and H
and calculates these two quantities directly. Furthermore it
calculates the high and low probability points and the other
secondary statistics (standard errors).

The standard error of the mean is calculated from
S^ G/V , the standard error of the standard deviation

from~~ .- V/ i7 ,the standard error at the P
percent energy level from 0, r S 'r 1 . t. / %r .
In the above, N is the total number of fires and K is a constant
associated with a particular percent point. The sure-fire and
safe or NO-FIRE energy levels are then calculated from:

Sur'!-Fire = A + KS (11)
NG FIRE= A - KS (1Z)

for the 50% confidence band. To add confidence to these reliability
points, adjustment to Equatiqn (11) and (Z) are made using Sure-
Fire = Sure-Fire + C-N+ and NO-FIRE = NO-FIRE - N +C

where C and C' are constants associated with a particular
confidence interval, That is, the estimates of the sure -fire and
NO-FIRE energy levels should be correct P percent of the time
or the risk of being wrong is anticipated for only 1-P percent of
the time (P = 90, 95, 99,...).

As stated earlier, the code in Appendix A computes all
quantities based on the smaller value between the number of fires
or fails obtained in the Bruceton test. On the other hand, the
code in Appendix B computes all quantities without regard to which
value is smaller except in weighing a-verages in which case the
smaller is more heavily favored.

Finally, the main program writes out the desired statistical
values

22



Regardless of which code is used the data cards are arranged
identically. The following describes this arrangement:

Card 1 -- Six fields of 10 columns each are reserved.
Columns 1-10 and 11-20 are reserved for constants associated
with the reliability and confidence level, respectively.
Columns 21-30 and 31-40 are reserved for specifying the
reliability and confidence level, respectively. Columns 41-50
are reserved for specifying the NO-FIRE energy level. Columns
51-60 are reserved for a second constant associated with the
confidence level.

Card 2 -- Four fields, one of 20 columns, one of 5
columns and 2 of 10 cblumns each are reserved. The first field
is used for identification. The second contains the number of
energy levels in the test. The third and fourth contain the
lowest energy level in log units and the difference between
successive energy levels (step interval) in log units, respectively.

Card 3 -- Twelve fields, av.rnating between eight and
four columns each are reserved. The fields of eight columns
each contain the energy levels in ascending order. The
corresponding number of fires at each energy level is specified
in the right adjacent field of four columns.

Card 4 -- Six fields.of 10 columns each are reserved.
The number of fails at each energy level -- starting at the lowest
energy level -- is placed in these fields from left to right.

Table II on Page 52 and Page 20 and Z1 of Reference 4 contain
the constants associated with several reliability and confidence
levels.

This example will demonstrate the input data cards for an
actual set of test data. The table below shows the typical re sults
of a Bruceton test. it is desired to calculate the 99.9% sure-fire
and safe-fire reliability levels at the 95% confidence level:

23



Firing Log of Number of Number of
Current Firing Current Test Level Fires Fails

374 2.57287 1 0 4
39Z 2.59329 2 4 10
410 2.61278 3 10 10
429 2.63246 4 9 2
450 2.65321 5 i 0

From this table and Reference 4 the data cards for input may
be prepared.
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The output using these data cards was obtained for both codes

and is shown at the end of each (Appendix A and B).

The code of Appendix B appears to be superior. First, both
the number of fails and numbers of fires are utilized in computing
the various statistical quantities. Thus, a larger effective
sample size is employed which for non-exact measurements is

advantageous. Also, examination of the results at the end of each
code shows that a higher ALL-FIRE and lower NO-FIRE are
obtained using Code B if the number of fires and fails differ. This

is desirable for increased reliability and safey. If the number of
fires and fails are equal, the results using either code are identical.

Consequently, for the two codes use of that of Appendix B is
advocated.

In certain instances, the estimates of A and S from the first
two moments (approximation method) are poor approximations to
the maximum likelihood values,, , In particular when
the step size between test levels becomes large (d > ZS) and when
small sample sizes are used (<50) the approximations to A and S
become poor -- that is, the maximum likelihood estimates of A
and S are not well approximated by the first two moments.

If a difference in the two estimates does exist, the maximum
likelihood quantities should be used because they are expected to
be better than those generated by the first two moments.
Furthermore, the standard errors of the mean and standard
deviation are based on their re spective maximum likelihood
estimates and will not be applicable to the approximation values
when a large difference exists. This means that the calculated

extremes (sure-fire and NO-FIRE energy levels) will be poor
estimates of the true quantities as well.

To determine the effect of sample size on the estimates of
the standard deviation, a series of tests were conducted using

sample sizes of 20, 30, 50 and 100 items. The mean and standard
deviation for each sample were calculated by estimating the
maximum likelihood quantities and by utilizing the first two
moments. Because the Bruceton method is constructed to provide
test data near the mean, that quantity is nearly always a good
estimate of the population value. However, the standard deviation
is not so well determined. Therefore, in what follows, special
attention is paid to the effect of sample size on the standard
deviation only.
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Appendix C shows calculated values of the mean and standard
deviation as determined by the maximum likelihood equations and
from the first two moments. It is immediately obvious that little

* difference exists between the means as calculated by either method.
But for small samples the standard deviation as calculated from
the first two moments differs quite appreciably from that obtained
utilizing the maximum likelihood equations. As stated, standard
errors are based on the maximum likelihood quantities. In turn,
the extremes of the probability distribution are likewise influenced
because of their dependence on the mean, standard deviation and
associated standard errors.

* It is apparent that samples contain-ag cver 100 items should
be used. The use of maximum likelihood theory for the cases in
which the sample size is less than 100 is equally advocated.

* Specifically, Table 9 shows that for samples of 20 and 30 items
large differences between the standard deviations occur frequently.
For samples of size 50, better precision is achieved. Neverthe-
less, some poor results are still evident. For samples of size 100
even closer agreement between the two methods of calculation is
achieved and it is anticipated that larger sample sizes would
produce results differing only slightly from one method to the other.

It should be pointed out that the good results in the 50 item
samples were due primarily to a knowledge of the past history of
the test vehicle. However, the usual situation is one in which
little or no data is available for the item since it is the purpose
of these tests to generate such data. In these 'cases it is imperative
to use large randomly chosen samples or if this is not practical,
the maximum likelihood equations should be applied in calculating
statistical quantities.

An example will best illustrate the effect of using small sample
data, in calculating the extremes of a population. For a sample of
size 30, these were the results:
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-n-, C-m. -° °

Maximum Approximate

Likelihood Equations Formulae

Mean 2.20095909 2.18977

Standard Deviation 0. 18969359 0. 14878

Standard Error of
Mean 0.041085 0.03283

Standard Error of
Standard Deviation 0.073707 0.05342

Sure-Fire Level 3.27356932 2.78843

NO-FIRE Level 1. 12834880 1.59111

These values are recorded in log volts. If the sure-fire
and NO-FIRE levels are converted to volts, the potential danger
becomes obvious -- that is, using maximum likelihood equations
the sure-fire level is about 1, 877 volts as against 615 volts using
the approximation, and the corresponding NO-FIRE levels are
13.5 volts and 39 volts, the former value was calculated from
the maximum likelihood equations. Consequently, within the
probability limits indicated, the sure-fire and NO-FIRE levels
differ roughly by a factor of 3. Practically, this means that for
this case in which a firing voltage of about 1, 877 volts is required
to provide sure-fire conditions, only 615 volts might be made
available by a User relying on approximate formulas only. For
similar reasons, safe vbltage levels may be inaccurately specified.
Thus, anticipated reliabilities are not closely achieved.

Although the discrepancies between the two methods become
less pronounced with increasing sample size, maximum likelihood
methods should be employed in view of their assumed superiority
and the availability of a digital computer algorithm.
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APPENDIX A

FORTRAN CODE FOR DETERMINING THE MEAN AND STANDARD DEVIATION
FROM THE SOLUTION OF THE MAXIMUM LIKELIHOOD EQUATIONS BY

MEANS OF THE METHOD OF SUCCESSIVE APPROXIMATIONS
(METHOD A)
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BRUCE - EFN Shu4CE STiTEMENT -IFN(S)-

C BRUCE STATIS MAX LIKE ESTIMATORS
DIMENSION H(99), -(99),P(99),Q (99),XNC99),X(99),Y(99),W(99)
DIMENSION, DZS(99)9 DZA1(99),DOS(94) ,DQA(99),DPS(99),DPA(99)
DIMENSION XNF(99)tANTiIL50)vlDENT(C'j)
COMMON GSQRD , rSQRD , SIGSQA , SIGSQS i SIGMAP q FIR50
COMMON-FNOT5;jPFIREKtFNOTK

C I-NO. OF ENERGY LEVELS , S=STEP SIZE(DIST. BETWEEN 2 ENERGY LEVELS
C A=MIDDLE ENERGY LEVEL(I'- I IS ODD) OR AVG. OF M~IDDLE 2 ENERGY LEVE
C 11S EVEN)

I, READ (5 *2) RELKCONKjRELVtCONLVtXRELVCST
?.,-FORMAT( 6F1ZJ.0

CALL FOREST (XNtXNF, I ANTHMFIREAFAILSFIRE',IDENTtSFAIL I
DO 7855 1 - 1,1

7855 H(J) - AL0G1I'(ANTHCJ))
C H(J)sENERGY LEVELS t XN(J)=NO. OF FIRES AT A GIVEN H(J) 9 Y(J)=NOR
C IRANDOM VARIABLE v X(J)zABS. VALUE OJF Y(J) ,p P(J)PROB. OF FIRE t

Q(J)=PRoB. OF NO FIRE t ZI-)aDERIVATIVE SF.P(.II

SUM?4F =0.0
00 1216 J a ltl
SUMN a SUMN *XN(J)

1216 SUMNF a SUMNF.+XNF(J)
IF (SUMN - SUMNF ) 8571,8571,1758

8571- A = AF4IRE
a~ SFIRE

GO TO 85*.8
1758 A zAFAIL

S = SPAIL
"87 IF ( SuNM4-.GT-.SU.'*;NlF-r CAlL SWAP (~X~-

24 WRITE (6tlO) )(IDENT(J),J=1,20
100 FORMAT(lHl/lX,2.vA2/30X,66HCALC. OF MEAN AND STD. DEVIATION BY SOLN

is. OF MAX. LIKELIHOOD EQNS.//
WRITE (6 910

13 FORMAT(4OXt12HENERGY LEVEL,25X,18HNO. OF FIRES/FAILS//)
WRITE (6,11 )fH(J),XN(J),J=l,I)

11 FORMAT(43X,F'10.5i30)XF4.0//)
WRITE (6 t,'C1J)AtStl

1010 FORMAT( 5)Xt7HAVG. - tF1J.5//50X,1THAPPRX SIND 0EV- 9FlO'*5//50Xt23
1HNO. OF ENERGY LEVELS =14/

C COUNT OF THE NO. OF ITEi ATIONS
ITCNT -=

Ao CALL PROB (HvX,Y#Z,A,Sl),QI)
C BEGIN SUCCESSIVE APPROXIMATIONSINEVITIN RAPHSON METHOD)
C DERIVArIV5 OF Z WITH RESPECT TO S AND A
C DERIVATIVE OF Q WITH RE;PECT TO S-AO40 A

C ERIVATIVE OF P WITH RE;)PECT TO S AND A
DO 436 J=1,I
DZS(J I aUH(J hA I o2-S*S )/S**30Z CJ)
DZA(J)a(H(J)-A) /(S*S)*Z',J)
DOS(J)I=-(HCJ I-A )/( QIJI) C***Z

DQA( JI -Z (J)I/U(J I *2*.
DP$(J)=(H(J)-A)/(P(J).S)u.2*ZIJ)

436 CONTINUE
SUMlO0.0
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BRUCE -EFN Sf URCE STATEMENT -IFNISI

SUM2 =0.*0
SUM 3=0.Co
SUM4:t=eo.O
SUM5xG.O
SUM6*O.0
SUM-a.;
SSUMzO.0
09 555 Ja2,I

-SUM1 SUM1.XAJ) (DLS(J-1 I &(J-1 I .DQS (J-1)*Z (J-1 )-DZS(JI Pt J)-C?S(J

SUM42uSUM42.Xt4,jI.(Z(J-15/Q(j-l)-L(J)/P(j))
SUM3=SUPI3+XMJ).lot(J-11/G(-1) *OQA (J-1) OZ(J-1 I-9ZA( J) /P (J3PA(J

SUM4=SUM4+XJ)((HtJ-1-A)OZS(J-1)IQ(j-l).(H(J-1)-A)@CQS(J111*(

DFDA= I. .3/S.SUM3J-I)Z()/Pi)

DS=1.c?/S*SM11/*2 *SU N2

FAS=Io ./S*SUM
SAS=1.0.uS**2*SSUM

333 D=DFDS*DSDA-DFDA.DSOS
C CORRECTION FOR S

XH*(DFDA*SAS-DSDA*FAS) /D
C, CORRECTION FOR A

XKx(DSDS*FAS-DFDSuSAS) ID
C CORRECTED A

AAzA+XK
C, CORRECTED S

ssZS+XH
17 s~ss

A=AA
C VALUE OF F1(AtS) AND FZ(AtS) OBTA114ED FROM FINAL A AND S

ZERO0nU.0

DO 69 J=,I~t
ZEROIaLERO1+XN(J).(Z(J-I)/.(J.1)-l(i)/P~J))

69 ZERO2=ZERO24XN(J).( (H(J-'&)-A) Z(J-1)/Q(J-1)-(H(J)-A).l(j)/P(J)J
IF(ABSiZEROI)-l.E-3) 68,68,15

68 IF(AtBS(ZER02)-l.E-4) 16t16,15
10 ITCNT ITCNT +. 1

IFUITCNT - lCiOL) 1 151,16916
151 GO TO 6
163- N.ITE (6 ,6666)ZERO1vZFR029,A,AA,S,SS

6666 F ORMA T ( 5X,8HZ ERO 1 ,E20. f:// 5,X t8f E R 02 Z2 20.8/ /50XI9HNL MEAN z
1,FIJ.8//50X,7HMEAN - ,Fl0*8//f~f'-,liiNLSTND. DEV. -- ,1./5X
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BRUCE -EFN~ SOURCE STATEMENT -IFNIS)

221HSTANDARD DEVIATION .l~bI
WRITE (6 gall)ITCNT

III FaRMlAT(53Xw2:M'a. OF ITER4Tl.-*S =,vi,/)
CALL SSLVE(?,Q,XNYZtihA,S,H,RELKC'JNKCST)
WRITE (6 717)

77 FOR14AT(43X,49HcAL-'"ULAT1a.' OF AtL-FIAZ AND NO-FIRE ENERGY LEVELSM/
WRITE £6 ,971UGSQRD,HSQRSIGSQjAtSlGSQSSIGMAPFIR53, FN3T50

1,RtELvCBNLV;F IAEKtxaELVCMJ4Lv,F'2TK
971 FORMAT (51~X 91 tiSQUARED - ,FI!.6//5%-X,'&jHtiSQUARED z,Fl).6II53iXt29HS

ITAND. ERROR OF MEAN SrORD. =F~Il.6//i'%flJ,36HSTAN0. ERRORl OF STAND.
2DEV. SORO. - ,Fj~j.8//5CXj35HSTAND. ERROIR AT P PERCENT HEIGHT = ,FI
33*.8II5vXp334199.9FIRE' AT 5)CONFIDENCE LEVEL a ,F1;).b//50X932H3.lFIR
4E AT 5j'%"NFIOENCE LEVEL a tFI3.8II5OA,F6.2,1HFIRE ATF6.2,194CONFI
5DENCE LEVEL x tFIU.8//53X,F6.2,?HFIRE AT,F6.ZI9HCaNF1DENCE LEVEL
6- vF13.8// J
G9 TO I
END
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BRSP - EFN SOURCE STATEMENT -IFiJIS)-

SUBROUJTINE PRS&5( HY,Y*Z.ASPQI)
DIMENSION4 H 99),X(99),Y(99),Z(99),Plg99bQ(99)
00 7 j 1, Io
HMASQ x (h(J)-A)**2
EXPNT a HMASU/(2.*S*S)
Z(J) -(1./2.5,663)/EXP(EXPNT)
Y(J) - (H(J-A)IS
X(J) aBs(Y(j)j
IF £X(J)-l.20 ) 21921922

21 XSQ -X(JilX(J1
P(J)aO.79788455.X(J).(0.99999774-XSQ.(0.16659433-XSQ.( .246383I3E-0
!I-XSQ*.23974867E-02))) - --

IF (Y ( J ) ) 4,50, 401, 402
403 P 1J = 0.5r - P £J I / 2.0

GO TO 433
401 P ( J ) I ,

GB TO 433
402 PIj)-?(J)/Z.o*o*5
403 Q (.1 ) 1.3- P 41

GO TO 7
22 IF (X(J) - 2.90 125,26,26
25 XSQ Xli) * x(J)

P(JJ 1,
PT -- 1.0
FACT z1.0
ODD 3.0)

29 PT a-PT.XSQI(2.3*FACT
T aPT/ODD
P(J) = P(!) +T
IF (ABS(T) -- .jo037 V 63-970 970

73 FACT z FACT + l.a.
-000 z ODD + 2.i)
GO TB 29

-63 P(JI v .79708455*Xfj).P(jl
IF ( Y1( J) ) 500, 531, 502

'500 P i J ) = 0-.-5 - P- ( J- 1/2.0i

4 GO TO 503
501 P ( J ) = 0,5

GO TO 503

503 Q U p ( 1.-P1j
GO TB 7

26 RXSQ 1.0/f X(J).X(J))
PUJ) 1 . -).7978&455*EXP(-X(J)*X(J)/2.0)/X£J)(.0..RXSg.(1.0.RXSQ
~0(3.0-RXSQ*(15.0-RXSC.V05.0~)

IF IY ( J ) ) 6,)0, 601, 6f.2
60)3 P 1J ) -3.5 - P I J I/2.0

GO TO 603
601 P i ) = 0.5

GO TO 6)3
602 P1 J)-P(J)I/2.0+J.-5
603 Q W ) It1.0- P i1 J

7 CONTINUE
RETURN
END
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FORTES - EIN SOlURCE STATEMENT -IFN(S)-

SUB~ROUTINE FORESTIjAFAXNXUF IX,UFAXVFIX, IOENTPVFAX
ALCG( W) =.4343.AL'0GlW)
A,%T(W) :EXP(,W/.4343#
D IPENS I X(5i, LENT 23) ,F iX('99) ,Fti('99) S (30,15)
DATA S /o4u).,25.,4'J.,43.t46.,49.,5l16 0 .Z.

15.,27.,26..,27.t37.,2.,o4439.,31.3L2*Cj,2.,2.,2.,2.,31*
38

3-t37.,39.,42-.,41*,45.,4+. t6 4 6o 49,51.51* t25.,25. 26* 27,27o2 8o

A,29.,3).3131.,32.,3.35.,36.,37. 39 ,3.42,43o,4.2,44o6, 4 49*t

6v407.,41.,42-,43-t.4. 4.,4.,51.,52. t25.,25.,26., 27.,5 2 2., 3

-84., 5.,2.,25.,2.,2. t2.#2. 29-3.,3. 3.,3.,4,3.t36.t3

E,44.9,45. ,46. ,47. ,49. ,50-. ,52. ,54./
READ (5,639)H0EDNT(J)rJ=1r20) ,N,CtD

-639. FORM4AT( 20A1, t15,, 2F10 .0) .
READ(5v637) (XHi),FIX(I),I1,N)

-637--FORMAT (6 (F8. 0, F4. 0)-..
READI 5,638) (FAX( 1), IalN)

..638.FORMAT( 6F10.0
AFIX=0.0
AFAX = 0.0
BF[K=0.0
*BFAXO. 0
SFIX=0*0
SFAXx0.0
1=0

U.1 0 W=I
AF,1X=AFIX+W*F[X(1el )
AFAX=AFAX(+W*FAX( 1+1)
DFIX =BFIX + (W**2 ) *FIX(I+1)
SFAX=BFAX+ C ** ) *FAX)((1+1)
SFIX=SFIX+FIX(I+ ,)
*SFAX=SFAX+FAX( 1+ )
1= [+1
IFH(-N+l)3010,3010,115

1115~ R =0
TFIX-(.( SF:IX*FIX.-AFIX*..2) /(SFIX**2)
TFAX-(CSFAX*BFAX)-AFAX**2)/(SFAX**2)

13 UFlXzC+R*(AFIX/SFIX-0o5)
UFAX=C+R*(IAFAX/SFAX4). 5)
IF(TFIX-0. 3) 118P23t23

118 CIX=TFlX*lZ,-,.
LIX=CIX

4111 WEEIX - 500.

112 WEEIX - AMIN1(WEEIXABS(UFIX-ALC(;(XH141i)))

IF( I-NiI) 112,112,113 35
113 RIXxABS(WEEIX/Rl



FORTES - EFN SOURCE STATEMENT -JFN(S)-

KA2IFIX (RIX * 22. + I
VFIX=( S(LIX.KIXI/100.)*R

2424 IF(TFAX-O.3)11lr,2525t2525
117l CAX-TFAAtsCI.

LAX =C A
114WEEAXz500.

115- WEEAX a AMINI(WEEAXABS(UFAX-ALCG(X(I+1))))
1-1+1

116 RAXxABS(WEEAX/R)
.KAX z IFIX IRAX*22.)+l
VFAX =.( S(LAXvKAX)/10C.)*R
GO TO 26

2~VFI(=1.62-R.(TFIX4C. )',iSfTScIX/'%SFIX-1.))
GO TO 2424-

Z525 VFAX=.,62*R. (TFAX+C'.)29).SQRT(S;:-AX/(SFAX-1.))

SRETURJ4
F-ND
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PAWS -- EFN SOURCE ST&VrM - IM (S)

Subroutine SWAP (IN9 XNF, 1)

Dimension XN(99), XNF(99)

DO 4143 J - 2.1

4143 XN(J) - XCNF (J-1)

RETURN

END
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VALVE -EFN SOURCE SYATEMENT I FN(S)-

SUBROUTINE SOLVE (PQ,,.NYL,I,ASHRELKvC0NKCST)
CIMI4SN GSQRDI+SQRD,SI-GQA, SIGSQS,SIGMAP,FIR539 FNST5OFIREKFNOTK

SUhNJ 0.0
W(1) 1.0
WJSUM .0
GSum o33
HSUM 0.0D
DO 51 J=291

DO 61 J-1.,1
SUMNJ aSU14N*J +XN(J)

61 WJSUM aWJSUM +w(J)
00 741 Jx2.I
GSUM a GSUM + W(J-1).(Z'(J-1)**2/Q(J-1l)..Z+Z(J)*.2/P(J)**2)

741-HSUM HSUM+W(J-1).(Y(j-1)..2*Z(J-1)..Z/Q(j-l)..2+Y(J)..2*Z(J)**2/
IP(J)**2) .

GSQRD --WJSUM/GSUM
HSQRD x WJSUM/HSUm
S IGSQAzS*S/SUMNJ*GSQRD
SIGSQS x S*S/SUMNJHSQiFO.
SIGMAP = SQRT(SIGSQA+RELK**2*SIGSQS
FIR5,J ft- A+RELK*S
'FNIT50O =-A-RELK*S-
FIREK z FIR50+CONK*( (SUMNJ+CST)/SUMNJ)*SIGMAP
-FNT4t1( = FNST50-CONK*( ($UMNJ+CSTI/SUMNJ)*SIGMAP
RE TURtN
-EN0r
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M2 Squib Test D

CALC. OF MEAN AND STD. DEVIATION BY SOLN. OF MAX. LIKELIHOOD EQNS.

ENERGY LEVEL NO. OF FIRES/FAILS

2.57287 0.

2e59329 4.

2.61278 10.

2.63246 9.

2o65321 1.

AVG. x 2.60870

APPRX STND DEV a 0.02159

NO. OF ENERGY LEVELS x 5

ZER01 = -0,52526593E-04

ZER02 a 0.28066803E-04

NLMEAN - 2.60874474

MEAN a 2.60874474

NLSTND. DEV. - 0.02079978

STANDARD DEVIATION x 0.02079978

NL° OF ITERATIONS a 2

CALCULATION OF ALL-FIRE AND NO-FIRE ENERGY LEVELS

GSQUARED = 0.696013

HSQUARED x 0.791929

STAND. ERROR OF MEAN SQRD. - 0.00001254

STAND. ERROR OF STAND. DEV. SORD. - 0.00001428

STAND. ERROR AT P PERCENT HEIGHT a 0.01220044

99.9FIRE AT 5OCONFIDENCE LEVEL x 2.67301604

0.IFIRE AT 5.'CNFIDENCE LEVEL a 2.54447341

99.9JFIRE AT 95.OOCONFIDENCE LEVEL L 2.69812453

0.1OFIRE AT 95.OOCONFIDENCE LEVEL x 2.51936489
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M6 CalD Test A

CALC. F MEAN AND STO. DEVIATIIN BY SOLN. OF MAX. LIKELIHOOD EQNS.

ENERGY LEVEL NI. OF FIRES/FAILS

0.14301 0.

*0.16435 2.

0.18469 9.

0.20683 10.

0.22531 3.

4VG. 0.l8602

APPRX STND DEV = 0.02279

NO. OF ENERGY LEVELS a o 5

ZERI - 0.19371510E-05

ZER02 = 0.22351742E-07

NLMEAN = 0.18685731

MEAN = 0.18685731

NLSrND. DEV. - 0.02369443

STANDARD DEVIATION = 0.0236,.9443,

.10. OF ITERATIONS a 3

CALCULr NIN OF ALL-FIRE AND NO-FIRE ENERGY LEVELS

tSQUARED a 0.846374

HSQUARED a 1.498057

STAND. ERROR OF MEAN.SQRD. a 0,00001980

STAND. ERROR OF STAND. DEV. SQRD. - 0.00003504

iTAND, ERROR AT P PERCENT HEIGHT a 0.01882551

)9,9FIRE AT 50CONFIDENCE LEVEL - 0.26007312

j,.FIRE AT 5OCONFIDENCE LEVEL a 0.11364149

99.9QFIRE AT 95.OOCONFIDENCE LEVEL = 0.29881602

0.I0FIRE AT 95.OOCONFIDENCE LEVEL x 0.07489859
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M6 Cap Test E

CALC. OF MEAN AND STD. DEVIATION iY SOLN. OF MAX. LIKELIHOOD EQNS.

ENERGY LEVEL NO. OF FIRES/FAILS

2.43993 0.

2.42488 2.

2.44091 9.

2.45484 12o

2.46982 2.

AVG. 2.44130

APPRX STND DEV = 0.01477

N. OF ENERGY LEVELS - 5

ZERO1 = 0.26762486E-04

ZERO2 = 0.75111166E-06

NLMEAN = 2.44135469

MEAN = 2.44135469

NLSTND. DEV. = 0.01453041

STANDARD DEVIATION = 0.01453041

NO. OF ITERATIONS = 2

CALCULATION OF ALL-FIRE AND NO-FIRE ENERGY LEVELS

GSQUARED = 0.785916

HSQUARED a 1.171202

STAND. ERROR OF MEAN SQRD. 0.00000663

STAND, ERROR OF STAND. DEV. SQRD. = O,00000989

STAND. ERROR AT P PERCENT HEIGHT m 0.01005381

99,9FIRE AT 30CONFIDENCE LEVEL a 2.48625368

C.lFIRE AT 5)CONFIDENCE LEVEL x 2.39645568

99.90FIRE AT 95.OOCONFIDENCE LEVEL = 2.50690502

0.IOFIRE AT 95OOCONFIDENCE LEVEL 2 2.37580431 41



APPENDIX B

FORTRAN CODE FOR DETERMINING THE MEAN AND STANDARD DEVIATION
FROM THE SOLUTION OF THE MAXIMUM LIKELIHOOD EQUATIONS BY

MEANS OF THZ METHOD OF SUCCESSIVE APPROXIMATIONS
(METHOD B)



BRUCE - EFN OURCE STATEMENT - cNtS)-

C BRUCE STATIS MAX i.IKE ESTIMATORS
DIMENSION H(99), Z(9-),P(99),Q(99),XN(99),X(99),Y(99),W(99'.
DIMENSION 'DZS(99), DZA(C-9),DtjS(99) ,DQA(99),DPS(99),0PA(99 )
DIMENSION XNF(99),ANTH(50),IDENT2,)
COMMON GSQRD t HSQRD , SIGSQA v SIGSQS.. SIGMAP-, FIR50
COMMON FNST5-JFIREK,FN5TK

C I=NO., OF ENERGY LEVELS , S=STEP SIZE(DIST.- BETWEEN 2 ENERGY LEVELS
C A=MIDDLE ENERGY LEVELf IF I IS ODD) OR AVG. OF MIDDLE 2 ENERGY LEVE
C 11S EVEN)

I READ (5 ,2) RELK,CONKRELV,CONLVtXRELV,CST
.2 FORMAT( 6F10.O

CALL FOREST(XN,XNF, I ANTH,A,S, IDENT)
00 7855 J = li1

7855 H(J) =ALOGladANTH(J))
C H(J)=ENERGY LEVELS , XN(J)=NO. OF FIRES AT.A GIVEN 11(J) ,Y(J)=NP.
C 1RANDOM VARIABLE t X(J)=ABS. VALUE OF Y(J; r P(J)uPROB. OF FIRE t
C QIJ)=PROB. OF NO FIRE , Z(J)=DERIVATIVE .0F P14)

24 WRITE (6#100 )(IDENT(J)vJ=1,2J )
10) FORMAT(lHl/lX,2JA2/3QX661;CALC. OF MEAN AND STO. DEVIATION BY SOLN

le OF MAX. LIKELIHOOD EQNS.II)
WRITE (6 110)

13 FORMAT(43X9L2HENERGY LEVEL,2'iX,18H'I. OF FIRES/FAILS//i
WRITE (6,11 ) (H(J),XN(J),XNF(J), J - 1,1)

11 FORMAT(4OXF10.5,33X,F4.0r3X,F4.0//)
WRITE (6 vl1dO)AStI

*1010 FORMAT( 50X97HAVG., ,FlO*5//-)'tX,17HAPPRX STND DEV qF1O,,5//50Xs23
)N 1HNO. OF ENERGY LEVELS a21/

C COUNT OF THE NO. SF ITERATIO'JS
_ITCNT = 0

6 CALL PROB (HpXY,ZASPpopI)
C BEGIN SUCCESSIVE APPROXIMATIONS(NEWT2N RAPHSON ME-THOD)
C DERIVATrIVE SF Z WITH RESPECT TO S AND A
C DERIVATIVE OF Q WITH RESPe-CT TO S AND A
C DERIVATIVE OF P WITH RESPECT TO S AND A

DO 436 J=1,1I
DZS(J)ZU(H(J)-A)**2-S*S)/S*41*Z(J)
DZA(J)=(H(J)-A)/(S*S)*Z(J)
DQS(J)=-(H(J)-A)/(Q(J)*S)**2*Z(J)

DPS(J )=(H(J)-A)/(P,(J)*S)**2*Z(J)
DPA(J)(J)/(P(J)*P(j)*S)

436 CONTINUE
SUMI=0.0
SUM2=O.0
SUM3=0.0
SUM4x0. 3
SUM5=0.0
SUMb=uoO
SUM~ao.

DO 555 J=2,1
SUMIsSUMI+XNFCJ-1)e(DZS(J-1)/Q(J-I)N)QS(J-1)eZ(J-1))XN(J)e(DZSUi)

SUMl2zSUM2+XNFCJ-1)*(Z(J-1)/Q(Jfl))-Xt(J)*(Z(J)/P(J))
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BRUCE - EFN S61:ACE STATEMENT - FN(S)

1I/P(J))DAJ*()
SUM4zSUM6XF(J-)(HJ)-*Z(J-)/Q(J-1JU(J)QI-IZ SJ1)

IZ.DZI)4DP(JI*(H(JJL(Jl~c(J)/P(J3-AL(J)DA)'AIPJ)(JIZ(
SUM5=SUM5,XFJ-1@*( (J)IQ~) - &) -JJ1XN(JJ* IZ(JJ/-A*P(IJJ

I/P(J) I
555 zU6+U (J1cDI(-1 fZAJ1 /rINJUEjl DQ -1I*'J1-
*DEKIV&TIVE 0F F1JI)ODSA ) WT RSEC OS ANIDQAJ-)XNJ*H)PJ

.DERIVATIVE OF F2(SvAU WITH RESPECT TB S AND A

FASzFI(S,A) # SAS=FZ(S,A)
DFJSz1l.3lS*SLM1-1.*/S*+2 *SUM2
OFOA=I .u/S*SUM3
DSDS=1.0IS**2 *SUM4-Z.0IS**3 *SUM5
DSDAz1.DIS*+2 *SUM6
FAS* .O/S. SUM
SAS=1 .OIS**2&SSUM

303 D=DFPS*DSDA-DFDA*DSDS
CORRECTION FOR S
XH=(DFDA*SAS-DSDA*FAS) /D
CORRECTION FOR A
XK=( DSDS+FAS-DFIOS*SAS) ID
CORRECTED A
AA=A+XK
CORRECTED S
SSxS+XH

1T SzSs
AzAA
VALUE OF Fl(Air) AN~D F2(APS) OBTAINED FROM FINAL A AND S
7-ER0I=0.0
ZEkJ2v~i.0
00 69 J=29t

lJ)/P(J))
lF(ABS(ZERO1.)-l.E-4) 68,68,15

68 IF(ABS(ZER02)-l.E-5) .6,16t15
15 ITCNT =ITCNT + 11

IFt.ITCNIT - lUU 151,16,16
151 GO TO S
16 WRITE (6 t6666)ZERO'&tZER02#A,AAvS9SS

$666 e0RMAT(53X,8H7ER01 - ,E20.8//5,X,8H7RO2 = E20.8//50Xq9HN4EAN
1,F10.8//50X.?H...A4 = ,FlD.8//5..X,15H.I"JLSfND. 0EV. = FJO.8//50XO
221H-STANDARD DEVIATION x F,F1.8//)
WRITE ;46 ,ll1)ITCNT

111 FORMAT(53X,2,.iNO. OF ITERATIINS = ,15//)
CALL SOLVE(P,(J,Xt,,Z,I,A,SH,RELK,CONK,CST,XNF
WRITE (6 ,77)

77 COMAT( 43Y 949HCALCLJLAT ION OF ALL-FIRE AND NO-FIRE -ENERGY LEVELS/I
WKITE (6 ,971 )G$JQRDH3QRJ, SIGSQA,SJ;;SQc-,SIG'MAP.FIR5O, FN0T50
LRELVC0NLVFIREKtXRELV,CONLV,FNOTK

971.F9JR0MAli5)X 1.HGSQUARE'D x ,Fl).6//'53x,cili SQUARED =,FlO.6//53X,29HS
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ORUCE -EFpi $ZURCE STATEmE!4T - FN(S)-

ITAND. ERROR OF MEAN SURD. - Fl3.-//50X,36HSTAND- EFR2R OF STANC.
2DEV. SQRD. z ,Fio.bII50Xs,-5HSTANG. ERROR A! P PERCENT HEIGHT * #FI
3-3.8/5OXt33H99.9FIlRE AT 5iC~'IFIDEN4CE LEVEL z ,FlO.8I/53X,32HO.3Fla
4.E AT 5OCSNFICENCE LEVEL x v,I;.8//5-0XF6.2,7FIFIRE ATF6.Z,19hCINFI
5DENCE LEVEL Y F1D.S//50X,F6.297HF IRE -AT9F6.2919HCBNFIDENCE LEVEL
6= IF8II I/
GO TO I
END
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BR0P - EFN SBUICE STATEMENiT -iF?J(SI

SUBRSUTINE PROM( ltXvyvZvAvSvPPCvi
DIMEN~SIONc H(99sx(99),Y(991,Z(99),P1993,Q(99 )
09 7 1 - li I I
HKASQ= HJA*2
EXPNT aHMASQ/(2.*S*S)
Z(J) a(l.;2.53)6631/EXP(EXPkr)
YIJ) a (H(Jl-A)/S
X(JI - ABS(Y!J,3
IF IX(J)-1.20 ) 21,21,22

21 XSQ aX(J)*X(JJ
P(J)=0.79788455*XIJ).(D.99999774-XSQ.(0.16659433--X5~g(..2Z463831OE-0
ll-XSQ*.23974867E-02) )
IF I Y IJ ) ) 409, 401, 402

403 P ( J1 1 i5 - P ( J *2.
GO TO 433

401 P ( J I = Z.5
.GO TO 403

402 P(J)SP(J)/2.0+3.5
403 Q (J ) =1I)- P ( J

GO TO 7
22 IF (X(j) - 2.9Zi 25t26926
25 XSQ zX(J) * X(J)

P(J) = 1.0
PT = 1.3
FACT = 1.0
ODD x3.0

29 PT z-PT*XSQ/(2*0*FACT
'T =PT/0DD
P(J) = P(J) +T
IF (APS(T) - 0.00007 ) 63 173 970

70 FACT - FACT + 1.0
ODD = 0DD + 2.Z;
GO TO 29

63 PUJ) - 0.79788455.Xlj)*P(J)
C- Y-C J) ) 5009 .011 502

50D P J ) =.5 -P 1 J ) 1 .0
GO TO 503

5a1 P i ) = 0.5
GO TO 503

502 PCJ)=P(J)/2.0'-O.5
503 Q (J ) = 1.-P ( J

GO TO 7
26 RXSQ = 1.0/(X(J)*X(J))

P(J) = 1.0-X.79788455*EXP (-X(J)*XfJ)/2. )I/X(J)(.-RXSQ(.-RXSQ
1* (3.0-RXSQ*(15.3^-RXSQ10.0))))

IF CY (J ) ) 600t 601, 602
600 P -J) 0.5 - P i J II2.J

GO TO 633
601 P (J ) = 0.5

GO TO 603
602 P J )=P(J )/2.0+Ci.5
603 Q (J ) 1.3- P ( J

7 CONTINUE
RETURN
E N 0
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FORTES - EFN SOURCE STATEMENT -IFN(S)

SUBROUTINE FOREST(FI XFAXNXqUqV, IDENT
ALCG(W)=*4343*AL3G(W)
ANT(W)ZEXP(W/,4343)
OIMENSI0'4X(50),IDENT(2O,FIX99,FAX(99JS (30t15)
DATA S /64&.. 25. ,40. 43.,46. ,49. ,51.9,16*O..2

15.,27.031..935.937.942. t4'..47. t49.,51. 912.9.25.,26.928.,29.,31*93
24,36.,39.,4'.9.43.46,48.,49.,,1.,9..25.t27. *28. P31-932.034-936

40U(.35.931.,32.933. 935-936.,37. 939.*41. 942.j43.j44.,46eq49ot49*t5
51-925-t26.927.927.928. t;9.,930. 930. 31. 32. 933.,3. t35.9 36.#37.9 38.

8,49.951.952.125-926- 27.927ot29* 92593o 931.932.933.034.035.06.0
9T.,38.,39.,43.,41.,43.t44.t45.947.949.t50.,5l.,53.,26.926.,27.928.
At 29-9303.931.931. 02. 934.935.,36. 937. #39.939. 940.,#41.942.944.v44.,4
B5.#47.949.53.952ot53. 926. 927. 928.,28-929. 931.931- 33. 34. 934 a 936.
C,.37.938. 139.940. t4l t42.,9439,44.945. 46._147.949.951.,52.953.,26.tZ

E944.,45.,46.147.,49. ,50 .952.954./
READ (5,639)(IDENT(J),J=l,20)tNtCD

639 FSRMAT(ZMAlt15t2F10.0)
READ(5,637) (XCI )qFIX(I),I=1,N)

637 F.RMAT(6(F8.0,F4.0)_)

638 FORMAT( 6FI0.0
AFIXzD.O
AFAX = .
BFIX=0.0)
*BFAXx0.0
SFLX=0.0
SFAXxO.O
120

3C1ol Wzi
AFI, AFIX*W.FIXtU+l
-AFAXnAFAX+W*FAX( Ii)-
BFIX a BFIX + (W**2 ) *FIX(I+1)
BFAX=BFAX+(W*.23.FAX( 1+1)
SFIXSSFIX+FIX( 1+1)
SFAXzSFAX+FAX( 1.1).
1-1+1
1F( I-X+1)30.10,31011115.

1115 R a D
TFIXz(.(SFIX*BFIX)-AFIX..2)/(SFIX..2)
TFAX=((SFAX*BFAX)-AFAX*'2)/(SFAXo.Z)

13 UFIXuC+R*(AF[X/SFIX-0.5)
UFAXzCeR. (AFAX/SFAX43. 5)

118 CIX=TFIX.1,.
1.IX=CIX

4111 WEEIX - 500.

112 WEEIX - AMIN(WEEIXABS(UFIX-ALCG(X(+1))))

113 RlXaA8S.'WEE!X/A,) 47



*VALVE-. - EFN SOURCE STArEMENT -IFN(S)-

SUBROUTINE SOLVk (PQXN,YLI,AS3,HRELKCBNKCSTXNF
COMMON GSQRD,HSQRDtSIGSQA, SIGSQSvpS1GMAPFIR509 FNBT509FIREKtFNVTK
.DIMENSION~ H(99),P(99) ,j(99) ,Xt(99) ,"(99) ,z(99),W(99),XNF(9.91
SUMNFJ=3.0
SUMNJ - -3.0
wJsum-60
GSUMa 0.
HSUM = 3.0
IZERO = i/2 + ~

IIa IZER3 - I
09 623 J a1,1
JKl = 1 I
Wi-i) =1.0

IF(H(J) - MIILERB 3589341,223
358 DO 6252 K x JIMl

6262 W(J) = W(J) * P(K) I-Q(K)
GO TO 623

347 Wi-i) = 1.0
GO TO 623

223 DO 727 L z IZERO Jil
727 W(J) a W(JI * Q(L) l-P(L)
623 CONTINUE

00O 741 J - 1,1
WJSUM = WJSUM * W(J)
SUMNFJ:SUM'FJ+XNF(J)-

741 SUMNJ = SUMNJ + XNiJ)
00 61 J = 2, 1
GSUM = GSUM +- W(-)(Ljl*20J1*2ZJ*2PJ*2

6j-.4SUM = HSUMeW(J-1).(Y(J-1)*.2*Z(J-1).2/Q(!-11.2Y(J)...2.l(J)..2/.
1P(J)**2)
GSQRD z WJSUM/GSUM
HSQRD = WJSUM/HSUM
SIGSQA=S*S/SUMNJ*GSQRD
SIGSQS a S*S/SUMNJ*HSQRD
SGSQAF=S*S/SUV.NFJ*GSQRD
S GSQ SF =S *S/S UMi4F J *HSQ R
SIGMAP = SQRT(SIGSQA4-ELK**2.SIGSQS
SGMAPF=SQRT( SGSQAF4RELK..2*SGSQSF)

*FIR50 a A+RELK*S
FNOT50o A-RELK*S
-FIREK '=FIR53+CONK*((SUMNJeCST)/SIJMNJ).SIGM 'AP
FNOTK = FNOT5O-CONK*( ISUMNJ+CST)/';UMNJ).SIGMAP
FIREKFFIR5,+COiNK( (SUMNFJ+CST)/SIJMNFJ) 'SGMAPF
FNOTKF=FN0T50-C0ONK*( (SUMNFJoCST)/SUMNFJ).SGMAPF
SIGSQA=SQRT( (SIGSQA..2*SGSQAF**2)/2.)
SIGSQS=SQRT((SIGSQS..2fSGSQSF**2)/2.)
FIREK=SQRT((FIREKe.2+FIREKF..2)/2.)
FNOTK- SQRT(FNOTK * FNZ~TKF
RETURN
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FORTES - EFN SOURCE STATEMENT -IFN(S)-

KIX =IFIX (RAX * 22. + I 1
VFIXa( S(LIX,KIX)/103.)*R

2424 IF(TFAX-0.3)11t,2525t2525
117 CAXxTFAX.IID3.

I AX =CAX
-114 WEEAX=503.

115 WEEAX = AMIt4IWEEAX,ABS(UFAX-ALCG[(I.11))))
11x+1
IF( I-NY.U115,115 11.6

116 RAXzA8S(WEEAX/K)
KAX x IFIX (RAX*22.).1
VFAX =.( S(LAXKAX)/100.)*R
GO TO02

23 VFIX=1.62.R*cTFIX+a.29.*SQRT(SFIX/(SFIX-1.))
GO TO 2424

2525 VFAX=1.62R(TFAX.029).SQRT(SFAXI(SFAX-1.))
26 UI (SFAX.UFAX)*(SFIX.UFIX) )/(SFAX+i'IXI

V=SQRT( (SFAX.(vFAX*eZJSFIX.(VFIX..2) )/(SFAXISFIXI)
"RETURN
END
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,.4

N2 squib Test D

CALC. IF MEA, AND STO. 0EVIATIIN. BY .Si.N. OfF MAX. LIKELIHIO EQNS.

ENERGY LEVEL Ni. IF FIRES/FAILS

2.57Z87 0. 4.

2.59329 4* 10,

2.61278 10. 10.

2.*63246 9. .12.

Z.65321 1.. 0.

AVG. 2.60967

APPRX STNO 0EV - .0.02289

N . OF ENERGY .LEVEL;5 a 5..

_ERZ I.- ._:C..16199425E -.. 4

.ZER02 - .o4401f.6l3.E..-06

NLMEAN _= _26.10.942.16

MEAN a 2.61014216

N.LSTNDO.. DEV....0. 024.1510_3_

STANDARD. DEVIATION _ 0.02415103

NO, OF IT'-RATIONS 2 3

CALCULATION OF ALL-F.IRE AND NB-F.IRE ENERGY LEVELS

GSQUARED a 0,8263.83

HSQUARED a 1.496004

STANDo -ERROR OF MEAN. SQRD, a P.OO001932

br.AND. ERROR OF STAND* 0EV, SQRDo " 000003498

STAND. ERROR AT P PERCENT HEILHT 0,01916319

')9,9FIRE AT 50CNFIDENCE LEVEL a 2.68556884

.._IFIRE AT_50CONF.IGbNCE LEVEL m 2.53631544

q9.9OFIRE AT 95OOCONFIDENCF LEVEL a 2.72416380

O.IOFIRE AT 95.0OCONFIOENCE LEVEL - 2.49772042
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H5 Cap Test A

CALC. OF MEAN AND,-TD. DEVIATION BY SOLN. OF MAX. LIKELIHOOD EQNS.

ENERGY LFVEL NO. OF FIRES/FAILS

0.143)1 0. 2.

0.16435 3. 9.

0.184(,9 10. 10.

0.O2063 11. 3.

0.22531 3. 0.

AVG. = 0.18533

APPRX STND DEV = 0.02337

NO. OF ENERGY LEVELS - 5

ZER01 - 0.15720725E-05

ZER02 a 0.10360964E-07

NLMEAN = 0.18430348

MEAN a 0.18430348

NLSTND. DEV. = 0.02588342

STANDARD DEVIATION a 0.02588342

No. OF ITERATIONS 4 4

CALCULATION OF ALL-FIRE AND NO-FIRE ENERGY LEVELS

GSQUARED = 0.835367

HSQUAREO = 1.510502

STAND. ERROR OF MEAN SQRD. a 0,00002206

STAND. ERROR OF STAND. 0EV. SQRD. L 6.00003989

STAND. ERROR AT P PERCENT HEIGHT a 0.01945744

99.9FIRE AT 50CONFIDENCE LEVEL = 0.26429325

0,,1FIRE AT 50CONFIOENCE LEVEL 0.10432371

99.90FIRE AT 95.OOCONFIOENCE LEVEL - 0.305438

0.10FIRE AT 95.00CONFIDENCE LEVEL - 0.063157

51



.zt. Cap._] ua_

&L i.tM EAN AND_$)..OEVIAII0N.BYS5L&._iFAAX..LIKELIHO EQNS..

ENERGY LEVEL Ng. 'F. FIRES/FAILS

2.40993 0.. 2.

2.42488 2. 9.

2.44091 9. 17.

2.45484 12. 2.

.2,46982 2. 0.

-AVG. a 2.44130

..APPRX STND DEV .090147T

_NI. OF ENERGY LEVELS a .5

LERO1 a 0.26669353E-04

ZER02 = 0.75314892E-06.

.NLMEAN . 2.44135469

MEAN a 294413.5469

.NLSTND. OEV._.=.0,Ql4530j1

STANDARODEVIATION - 001453041

NO. OF ITERATIO.NS * 2

CALCULATI.IN F .AL-F.IRE. AND NO-FIR.E ENERGY LEVELS

GSQUAREO = _O 785916_

HSQUARED P 1.171202

_STAND. ERROR OF MEAN S QR. -0.00000663

STAND. ERROR OF STAND. DEV. SQRD, e 0.00000989

STAND. ERROR AT P .PERCENT HEIGHT * 0.01005.381

.99.9FIRE AT 50CONF[DENCE LEVEL 2 Z648625368

O.1FIRE AT 50CONFIOENCE LEVEL - 2.39645568

99.93FIRE AT 95,OOCINFIDENCE LEVEL= 2.50690502

0.10FIiRE AT 95.OOCINFIOENCE LEVEL x 2a37580431
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APPENDIX C

TABLE



TABLE 1

EFFECT OF SAMPLE SIZE ON THE MAXIMUM LIKELIHOOD ESTEIATES OF THE MEAN AND STANDARD

DEVATION AND ON THE APPROXIMATIONS OF THESE ESTIMATES

S Mean Standard Deviation

Sample Maximum Absolute Relative Maximum Absolute Relative

Lot Size Likelihood A ation Differenc2 Difference Likolihood Approximation Difference Difference

1 20 2.18195006 2.17227 0.000968 0.44% 0.10385376 0.09964 0.00421 4.05%
2 20 2.21658185 2.19198 0.00246 1.11 0.16553961 0.13820 0.02734 16.52

3 20 2.13827476 2.13283 0.00054 0.25 0.05621809 0.04- 5 0.00846 15.05

4 20 2.20772761 2.19394 0.00138 0.63 0.12787458 0.11754 0.010335 8.08

5 20 2.19128922 2.16616 0.00251 1.15 0.16074003 0.14234 0.01840 11.45

6 20 2.08996966 2.08230 0.00077 0.37 0.10841461 0.10168 0.00674 6.22

1 30 2.19008294 2.18533 0.000475 0.22 0.08301159 0.07816 0.00485 5.84

2 30 2.21506256 2.19968 0.0014 0.68 0.12404235 0.10417 0.01987 16.02

3 30 2.12057662 2.11348 0.000-1 0.33 0.07922158 0.06395 0.01527 19.27

4 30 2.22780049 2.21348 0.00145 0.64 0.10541917 0.09108 0.01434 13.60

5 30 2.20095909 2.18977 0.00112 0.51 0.18969359 0.14878 0.04091 21.57

6 30 2.23084623 2.21044 0.00204 0.91 0.19927732 0.17130 0.027977 14.04

1 50 2.16937867 2.16685 0.000253 0.12 0.11199255 0.10624 0.00575 5.13

2 50 2.18294474 2.17408 0.00089 0.41 0.09656488 0.08212 0.01445 14.96

3 50 2.16325137 2.15644 0.00680 3.14 0.12018208 0.10825 0.01193 9.93

4 50 2.2241090 2.20949 0.000139 0.06 0.09178600 0.08005 0.011-4 12.79

5 50 2,17560852 2.16770 0.00044 0.20 0.12332264 0.11550 0.00782 6.34
6 50 2.17406946 2.16371 0.00104 0.48 0.16109429 0.14713 0.01396 8.67

7 50 1.85561229 1.85559 0.000002 0 0.03008042 0.03016 0.00008 0.27

8 50 2.60968155 2.60972 0.000004 0 0.03420447 0.03689 0.00269 7.86

9 50 2.48498195 2.48500 0.000002 0 0.01677419 0.01725 0.000476 2.84

10 50 2.60874438 2.60966 0.00012 0.05 0.02079704 0.02159 0.00081 3.89

11 50 2.65637481 2.65678 0.00104 0.39 0.03510309 0.03536 0.00076 2.17

12 50 2,59181881 2.59000 0.00182 0.70 0.02992462 0.030271 0.000346 1.16

13 50 2.64898539 2.64875 0.00002 0 0.02977113 0.02975 0.00002 0.07

14 50 2.63433656 2.63400 0.00034 0.13 0.02211387 0.02132 0.00079 3.57

1 100 2.19052792 2.18873 0.000180 0.08 0.11471657 0.10855 0.00617 5.38

2 100 2.20945472 2.20808 0.00014 0.06 0.09797628 0.09314 0.00484 4.94

3 100 2.17530292 2.16557 0.00097 0.45 0.12988110 0.!23Z5 i.00663 5.10
4 100 2.21319243 2.20060 0.00126 0.57 0.09714309 0.09394 ,.00320 3.29

5 100 2.22595269 2.22:02 0.00044 0.20 0.15329798 0.14411 0.00919 5.99

6 100 2.18726733 2.17376 0.00135 0.62 0.13670944 0.13304 0.00367 2.68

Note: Values are in Log units. Relative Difference Absolute Difference x 100
Maximum Likelihood Value
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