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PREFACE 

This Memorandum reports recent results of continuing 

RAND research on the theoretical and computational aspects 

of ideal chemical systems [1-13]. This research is com- 

panion to studies on the use of mathematical models to 

investigate the chemistry of physiological subsystems 

[14-21]. Specifically, the Memorandum deals with theo- 

retical properties of the type of ideal chemical system 

suggested by problems involving semipermeable membranes 

in biological systems. 

The discussions, results, and informal proofs should 

be intelligible to mathematically literate biochemists, 

physiologists, research physicians, etc.  Some of the 

formal proofs, however, require more mathematical back- 

ground. 
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SUMMARY 

This study mathematically investigates equilibrium 

properties of certain two-phase chemical systems.  The 

different types of equilibrium compositions and the con- 

ditions that govern them are determined. The effects of 

linear variation in the chemical inputs are studied; e.g., 

the effects on a multisubstance fluid, separated by a 

semipermeable membrane, to which another fluid is slowly 

added. Among other results, it is shown that the rela- 

tive sizes of the two phases will always change monoton- 

ically, but that the absolute sizes may fluctuate. 



-vti- 

ACKNOWLEDGMENTS 

The authors thank James De Haven and Marian Shapley 

for their advice and assistance.  Some of the computations 

were performed with RAND's newly developed JOSS-412. 

it 
JOSS is the trademark and service mark of The RAND 

Corporation for its computer program and services using 
that program. 



<A.fc. 

-IX- 

CQNTENTS 

PREFACE   iii 

SUMMARY   v 

ACKNOWLEDGMENTS   vii 

SYMBOL GLOSSARY   xi 

Section 
I.     INTRODUCTION     1 

II.     THE CHARACTERISTIC FUNCTION    9 

III.     TYPES  OF EQUILIBRIUM COMPOSITION  11 

IV.     NUMERICAL COMPUTATION     21 

V.     GAS-LIQUID SYSTEMS     23 

VI.     INTRODUCTION TO VARIABLE SYSTEMS     27 

VII.     CLASSIFICATION OF VARIABLE SYSTEMS     36 

VIII.     MONOTONICITY THEOREM     40 

IX.     LINEAR RESPONSES     46 

REFERENCES     55 



-xi- 

SYMBOL GLOSSARY 

b. Input for X., number of 

moles of X. in system. 

b° Total number of moles of 

X. in S(0). 

b.(t) = b? + tAb, Total number of moles of 
ix '   i     i 

X. in S(t). 
i 

Total number of moles in 

system. 

n 
b = Z: b. + q + q1 

i=l 1 

n 
b(t) * q(t) + q'Ct) + T b.(t)  Total number of moles in 

i=1 L    S(t). 

c. Gibbs Parameter for X.. 
t i 

cl Gibbs Parameter for X. . 

Ab. Rate at which number of 

moles of X. in S(t) is 

changed per unit change in t. 

Aq Rate at which number of moles 

of impermeable material in 

Phase I of S(t) is changed 

per unit change in t. 

Aq* Rate at which number of moles 

of impermeable material in 

0 Phase II of S(t) is changed 

per unit change in t. 

F Free energy. 

g Characteristic  function. 

t Index of permeable species. 
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k. Equilibrium constant for the 
1 I   II 

reaction X. ^ X, . 
i   i 

n Number of permeable species. 

q Number of moles of impermeable 

material in Phase I. 

q' Number of moles of impermeable 

material in Phase II. 

q Number of moles of impermeable 

material in Phase I of S(0). 

q ' Number of moles of impermeable 

material in Phase II of S(0). 

q(t) = q + t^q Number of moles of impermeable 

material in Phase I of S(t). 

q'Ct) = q ' + tAq' Number of moles of impermeable 

material in Phase II of S(t). 

p. Partial pressure of X.. 

p. Vapor pressure of X.. 

R Gas constant. 

S(t) Variable system at t. 

s Variable ranging from 0 to b. 

s0 Root of the characteristic 

function. 

T Temperature. 

t Used in connection with variable 

systems. 

X. Name of the  iLn permeable species. 
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X'f X.   in Phase I. 

x}1 X.   in Phase II. 
1 L 

x. Number of moles of X. at 
L i 

equilibrium. 

xl Number of moles of X.  at 
i i 

equilibrium. 

x.(t) Number of moles of X. in 
i i 

equilibrium composition 

of S(t). 

x! (t) Number of moles of X.  in 

equilibrium composition 

of S(t). 

Mole fraction of X.. at 

equilibrium. 

x. 
A 

xl- - 
X 

X1 
T T 

x!  = — Mole  fraction of X.     at 
i-  -i L 

x equilibrium. 

xi(t) I 
x,(t) =   Mole fraction of X. in 

y.(t) L v  ' equilibrium composition 

of S(t). 

xKt)  =    i(t) Mole  fraction of X,     in 
1 x(t^ 1 v  / equilibrium composition 

of S(t). 
n 

x = Z x.  + q Total  number of moles   in 
i=l ;L L~ Phase I at equilibrium. 

n 
x' = I x! + q1 Total number of moles in 

i=i1 
Phase  II at equilibrium, 
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n 
x(t)   - q(t)   + Z x.(t) 

i=l 1 

x'(t)  = q'(t)  + E xlCt) 
1=1  L 

Total number of moles  in 

Phase I in equilibrium 

composition of S(t). 

Total  number  of moles  in 

Phase II  in equilibrium 

composition of S(t). 
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I.     INTRODUCTION 

The archetype of the mathematical system explored in 

this Memorandum is  a multisubstance fluid partitioned by 

a single semipermeable membrane,  although it is exemplified 

by a variety of other chemical equilibrium problems  (e.g. , 

a gas over a liquid).    More explicitly,   the Memorandum 

studies two-phase,  constant-pressure-temperature,  chemical- 

equilibrium systems  that  satisfy the following assumptions: 

1) There are no charged species; 

2) There are no intra-phase reactions--!.e.,  the only 
possible "reactions" are the migrations of molecules 
from one phase to another phase; 

3) The substances  are mtscible in all proportions. 

Although such simple systems rarely occur  in physiological 

applications,  their  study  is important  for  several reasons. 

First,   they permit a more thorough mathematical analysis 

than more complex systems.     Second,  much of the behavior 

of the latter can,  at least qualitatively,  be explained in 

terms of the behavior of the simpler  systems--which,   from 

one point of view,   are zero    -order approximations to many 

physiological systems.     Finally,  despite their apparent 

See below for  an exact definition of these systems. 
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slmplicity,   the systems we study display a wealth of com- 

plex  -«nd interesting behavior. 

We call the type of chemical equilibrium systems 

studied  in this Memorandum primitive chemical equilibrium 

systems,  or more briefly,  primitive systems.     A primitive 

system will  involve two types of chemical substances:     im- 

permeable substances,  whose molecules cannot pass  through 

the membrane,   and permeable substances,  whose molecules 

can pass  through the membrane. 

Note that  for primitive systems  the only practical 

effect  of the presence of  impermeable  substances   is on the 

mole  fractions of the permeable substances.     For  this 

reason,   there is no loss of generality in aggregating all 

the impermeable substances  to  a single impermeable sub- 

stance.      (This would not necessarily be the  case  if assump- 

tions  1  and  2  above did not hold.)    We shall  deal  therefore 

with a  system containing n permeable substances,   named 

X1 ,...,X.,... ,X  ,  and one  unnamed impermeable substance. 

And  since we can always  say that the amount  of  impermeable 

material  present happens  to be  zero,   the  fact  that we have 

specified an  impermeable substance does not  preclude us   from 

studying problems  in which there are no  impermeable 

substances. 
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We designate the two fluids separated by the membrane 

as Phase I and Phase II.  Note that one phase might lie 

above or to the side of the other phase; or the membrane 

might be a surface enclosing a volume, the two phases 

being the inside and outside of the membrane; or the 

membrane might be several such closed surfaces and the 

two phases might be the collective interiors and the 

exterior.  An example is the blood plasma and the interiors 

of the red blood cells. 

When the substance X. occurs in Phase I, we shall call 
i 

it X.; when it occurs in Phase II we shall call it X. . 
1 L 

Thus,   the migration of X.   across  the membrane  is  repre- 

sented by  the  "chemical reaction" 

X1  ^ X^1   . (1) 
ii 

Let x.   and  xl   be the number of moles  of X.   and  X.   , 
i i   i i   ' 

respectively;   let  q and q'   be  the number of moles  of  im- 

permeable material  in Phase  I  and Phase II,   respectively; 

and let x and x1   be the  total  number  of moles  in Phase I 

and Phase  II,   respectively.     That  is, 

n 

x = q  + ^ x.   ; (2) 

i=l 
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and 

n 

x'   = q'   +    ^   . (2') 

i=l 

Let x.   and x!   be  the mole fractions of X.   and X.   , 1 L   i 1 
* 

respectively. That  Is, 

x,   =~       for      1=1,...,n   ; (3) 
x 

and 

x! * t xl  =        for      1=1,...,n   . (31) 
1      x' 

Let b.  be the  total number of moles of X.   In  the  system. 
1 i. 

That is. 

x.  + xl   = b.       for       1=1,...,n  . (4) 
ill ' 

We call b.   the  input  for X..     Let b be the total number  of 
L —c— i 

input moles.     That  is. 

* - A - 

If x = 0 then x. is undefined, and if x1 =0 then 

x! is undefined. 
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n 

b  = q + q'   +    ^ bi   . (5) 

Equations   (2),   (2'),   (4),   and   (5)   show that 

x + x1   = b  . (6) 

We  assume  that the system is  in equilibrium when its 

free energy,   as  defined below,   is  minimized with respect 

to the variables x, ,...,x  .K! ,. . . fx.\  constrained by Eqs. 1'       '   n'   1' n' J    ^ 

(4)  above and the following: 

x.   ^ 0      for       i=l,...,n  ; (7) 

and 

x'.   ^ 0      for       1=1,.. . ,n  . (7') 

Finally,  we assume that  the  free energy  is  given by 

an  equation of the form: 

F =    )[ xi (^i + lo8 0+ ^  loS ^ (8) 
i=l x 

n 

+ ^[U- + log Ax[)+ q' log ?7 • 
i=l x' 

■. .T" W'<•-•»•. •   s:*imk ■■     •   ■  „.   mtmtHB0WKm t* 
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Here c.   is the Glbbs parameter  for X.,  and cl   is  the Gibbs 

parameter  for X.   ,   and x,,  xl,  x,   and x1  are defined  in 

terms of the x.   and xl by means of Eqs.   (2),   (2'),   (3), 

and (3f). 

Several comments concerning  the equation  for the  free 

energy function are in order: 

1) The right-hand side is  equal to what  is classically 

called  the Gibbs Free Energy divided by  the  constant 

factor RT,  where R is  the gas constant  and T  is 

the absolute temperature. 

2) Its  form assumes  that  the  system is  ,,ideal"--to 

the extent that the so-called mole fraction  activity 

coefficients  are  independent of composition.     While 

not true  in practice,   this  assumption is often suf- 

ficiently accurate over  a wide range of compositions. 

3) At  first glance,   the parameters c.   and cl  would seem 

to be necessarily the same.     However,  on further 

reflection,  this  is  seen  to be true only when  the 

membrane  is chemically  symmetric  and  inert,   when 

the pressures and  temperatures on both sides   are 

equal,   and when the compositions  of the  two  phases 

are  sufficiently similar  that  the mole  fraction 

activity coefricierts  are  equal.     None of  these as- 

sumptions  need hold.     Furthermore,   if we take  as 

our model  of a primitive system a liquid-gas  system 

(instead of two liquids  separated by a semipermeable 

tm -^w-v«».««« 
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tnembrane), then there is absolutely no reason to 

suppose that c. = cl. 

4)  Equation (8) as written defines the free energy 

only if each x. > 0, each xl > 0, and q > 0 and 

q1 > 0,  The free energy must also be defined 

when one or more of these quantities are zero. 

This can be done; for a discussion of this and 

related matters, see Ref. 8, Theorem 8.3. 

It turns out [11] that the behavior of a primitive 

system depends on the Gibbs parameters only to the extent 

that it depends on the differences, c. - cl.  Thus, if 
c.-cl 

we define k. = e    , then a primitive system can be 

specified by the number of permeable substances, n; the 

inputs, b..,...^ »q^1; and the constants, k, ,...,k . 

For equilibrium compositions in which x > 0 and x1 > 0, 

we must have: 

xl 
— = k.  for  i=l,. . . ,n . (9) 
A 1. 
X. 
1 

Equation (9) expresses the law of mass action for the 

"reaction" (1). This motivates us to refer to the k. as 

is 
See Ref.   8,  p.   44,  Theorem 10.3. 

—  ■ ——awn 
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equllibrium constants.     (The k.   are sometimes called 

"partition coefficients".)    The equilibrium constants are 

more convenient parameters  for discussing the behavior of 

chemical equilibrium systems  than are the Gibbs parameters. 

Conversely,  any composition x..,...,x  ,q,  xi,.,.,x',q' 

which satisfies x > 0,  x*   > 0,   the law of mass balance 

Eq.   (4),   and the law of mass  action Eq.   (9)   is  an equilibrium 

composition of the system in question. 

Note that  0 < k.   < •.     From Eq.   (9),   it would  appear 

that  if we allowed k.  = 0,  then we might regard X.   as being 

impermeable material  in Phase I;   and that  if we allowed 

k.  = «s   then we might regard X.   as being impermeable ma- 

terial  in Phase II.    The precise sense in which this is 

true is  treated for general chemical equilibrium systems 

in Ref.   11.     In this Memorandum,  we continue  to  assume 

0 < k.   < eoy   and  to treat  impermeable species  in  a  special 

way. 

Note  that  since we have defined equilibrium in terms 
of the free energy function,   this statement requires proof. 
Also,   note  that  it says  nothing  about equilibrium composi- 
tions  for which x = 0 or x*   =0.     See Ref.   8,  p.   44,  Theorem 
10.3,   for a proof. 

vmgsmmm 
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II.  THE CHARACTERISTIC FUNCTION 

Assume that x-,.. . ,x ,q, x',...jX1 jq1 form an equi- 

librium composition and that x > 0 and x1 > 0.  If In Eq. 

(9) we replace x. and xl by their values from Eqs. (3) 

and (31) and apply Eq. (4), then 

and 

b .x 
x.  (10) 

X + k.x1 
1 

k.b.x' 
xl = -i-i  . (10') 

x + k.x' 

If we replace x.   In  Eq.   (2) by  Its value  from Eq.   (10), 

then 

b. 
! + y z—L— -1 • en) 
X .   ,   x + k.x' 

1=1 L 

If we use Eq. (6), then Eq. (11) can be rewritten as g(x) = 0 

where 

b. 
g(s) = f + y —i i.        (i2) 

A s + ki(S " s) 

.'".j.^—n ii»i imgtmmm 
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We call g the characteristic function of the system. 

We have shown that, If x > 0 and x' > 0, and If the 

x, and x! define an equilibrium composition, then x is a 

root of the characteristic function. The characteristic 

function plays an important role in the theory of primi- 

tive systems. 

Now drop the assumption that x > 0 and x1 > 0. As- 

sume first that x = 0. Then each x. =0, and hence, by 

Eq. (4), each xl = b..  Inspection of Eqs. (10) and (10') 

shows that they are satisfied; similarly, they are satis- 

fied if x1 = 0. It follows as above from Eqs. (10) and 

(101) that g(x) = 0 for these cases. Thus, we have shown 

that for any primitive chemical equilibrium system Eqs. 

(10) and (10') are satisfied and x is a root of the charac- 

teristic function. 

T '''T^B*mm**'*>*,IB9r^^!ZZ^^SS^BE^!ZZ^'~^^mm^mm''*:rv***'wie' 
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III.  TYPES OF EQUILIBRIUM COMPOSITION 

This section states and proves our principal results 

concerning the types of equilibrium compositions possible 

in a primitive chemical equilibrium system, the conditions 

for each type to occur, the properties of the character- 

istic function of a primitive system, and the relationships 

between the characteristic function and the equilibrium 

compositions.  This requires the definition of two 

conditions. 

Condition I:  Either q>0  or   Air>^- 

i=l 1 

n 

Condition II;  Either q1 > 0  or   V k.b. > b . 

i=l 

Observe that if Condition I is  false,   then we must have 
n    b. 

q = 0 and    Z    —  s; b.     Similarly,   if Condition II  is  not 
L=1     i n 

satisfied,   then q1   = 0 and    E    k.b.   ^ b. 
i=l 

THEOREM 1 

Consider a primitive chemical equilibrium system 

with n permeable species having inputs b. ,...,b  and 

equilibrium constants k, ,...,k , and with an impermeable 

• 'i *——im 
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spectes having input q in Phase I and input q' in 
n 

Phase II.  Let b= Zb. +q+ql. 
i=l 1 

(i) The characteristic function g(s) of the system 

is defined and convex on the interval 0 < s < b. 

(ii)  If both Condition I and Condition II are 

satisfied, then g has exactly one root, S-., in that 

interval, and the system has exactly one equilibrium 

composition, given by 

b's0 
x^  =    for  i=l,...,n ;    (14) 

s0 + k.Cb - s0) 

and 

k b (b - s ) 
x[ =  L^ —      for  i=l,...,n .    (15) 

s0 + k^b - s0) 

Furthermore, 

x = s0 , (16) 

A function is convex if its graph is such that it 
lies below all its chords.  For example, a function having 
an everywhere-positive second derivative is convex. More 
detailed discussions of convexity appear in Ref. 23, pp. 
149-156. 
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x'  = b -  s0   , (17) 

bi x.  =       for       1=1,...,n  , (18) 
s0 + k^b -  s0) 

and 

k.b. 
^ L«l        for        1=1,...,!!   . (19) 

s0 + kt(b -  s0) 

(ill)     If either Condition I or Condition II  is 

satisfied,  but  not both,   then g has  no roots  in the 

interval 0 < s < b. 

(iv)  If Condition I is satisfied but not Condition II, 

then the system has exactly one equilibrium composition, 

given by x. = b. and x! = 0, for i=l,...,n. 

(v)  If Condition II is satisfied but not Condition I, 

then the system has exactly one equilibrium composition, 

given by x. =0 and x1 = b., for i=l,...,n. 

(vi) If neither Condition I nor Condition II is 

satisfied, then q = q1 =0, and b. = 0 for all i, 

1=1,...,n, for which k. ^ 1.  Conversely, if q = q' =0 

and b. = 0 for all i, i=l,...,n, for which k. ^1, then 
i i 

neither Condition I nor Condition II is satisfied. 
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In this case, the system, with trivial exceptions, 

has an infinite number of equilibrium compositions, 

given by x. = tb. and xl = (1 - t)b., for i=l,...,n, 

where each t, O^t^l, gives a different equilibrium 

composition. 

Proof of Theorem 1; 

If any b. =0, then x. = xl =0 for every equilibrium 

composition.  Thus, if we ignore every species for which 

b. = 0 and appropriately decrease n (the number of perme- 

able species), then the characteristic function is un- 

changed, the satisfaction of Conditions I and II is un- 

changed, and none of the statements of the theorem are 

affected.  We may accordingly assume that each b. > 0. 

Also, the theorem is trivially true if n = 0, so we will 

assume that n > 0. 

The characteristic function as defined by Eq. (12) 

is obviously defined on0< s ^bifq>0, and on 

0^s^bifq=0.  Its first two derivatives are easily 

calculated: 

If every b. = 0, or if n = 0, then there is a unique 

equilibrium composition. 
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11      b.(l - k.) 
^ = - -3- - Y  i i   •        (20) 

i=l [s(l - k.) + k.bj 

,2   0      "     b.(l - k.)2 ±^ = la + 2 Y  i i  (21) 

=1 [^s(l - k.) + k.bj ds 
i= 

The consequences will be detailed in several Lemmas.  First, 

it is apparent from Eq. (21) and from the definition of 

g, Eq. (12), that 

Lemma 1 

The characteristic function, g, is continuous 

and convex on 0 •" s -^ b.  It is strictly convex every- 

where on this interval unless each k. = 1 and q = 0, 

in which case it is constant and equal to - ^—. 
b 

By examining the behavior of g near 0, it follows that 

Lemma 2 

If Condition I  is  satisfied,   then g(€)   >  0  for 

all  sufficiently small positive  c.     If Condition  I  is 

not  satisfied,   then  g  is  defined  at  0,   and  g(0)   £ 0. 

By examining  the behavior of g  and  its  derivative  at b 

it  follows  that 
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Lemma 3 

If Condition II is satisfied, then g(b - c) < 0 

for all sufficiently small positive e.  If Condition II 

de 
is not satisfied, then g(b) = 0 and -r1   s 0. 

s=b 

It then follows from Lemmas 1, 2, and 3, that 

Lemma 4 

If Conditions I and II both hold, then g has 

exactly one root in the interval 0 ^ s < b; if exactly 

one of these two conditions hold, then g has no roots 

in that interval; if neither condition holds, then g 

vanishes identically and, hence, every k. = 1. 

Lemma 5 

The equilibrium solutions of the system in which 

x > 0 and x1 > 0 are in one-to-one correspondence with 

the roots of g, in 0 < s < b.  This correspondence is 

defined by Eqs. (14) and (15) and it satisfies Eqs. 

(16), (17), (18), and (19). 

To prove Lemma 5, the discussion of Sec. II shows that 

every equilibrium composition with x, x1 > 0 satisfies 

Eqs. (14) through (19) for some root, sn.  Conversely, 

given any root, s«, we may define x. and xl by means of 

Eqs. (14) and (15).  Equations (16), (17), (18), and (19) 
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will then be satisfied, and also x. > 0, xl > 0, x. + 

xl = b,, and xl = k.x,.  Thus, the x. and xl are positive 
11      ill      '     i     ir 

and satisfy the laws of mass balance and of mass action 

for the system.  Hence, the x. and xl as defined from s» J '     i     i 0 

constitute an equilibrium composition.  Since sr= x 

(Eq. (16)), the correspondence is one-to-one. 

Lemma 6 

If Conditions  I  and  II are both satisfied,   then 

the only equilibrium composition  is  the one defined 

by Lemma 5,   associated with the unique   (Lemma 4)   root 

of g  in 0 <  s < b. 

To prove Lemma 6,  we need only  show that  the system 

can have no  equilibrium composition with x =  0 or  x1   =0. 

But  the only equilibrium composition with x = 0  is given 

by x.   =0  and xl   = b.,   and  the only equilibrium composition 

in which x'   = 0 is  that  for which xl   = 0 and x.   = b..     But 
i ii 

if the system had more than one equilibrium composition, 
-k 

it would have infinitely many equilibrium compositions    and. 

hence,   infinitely many equilibrium compositions with x > 0 

and x'   >  0,  contradicting Lemmas 4 and 5. 

See Ref.   8,  p.   38,   Lemma 9.3. 
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Lemma 7 

If Condition I Is satisfied, but not Condition II, 

then there Is exactly one equilibrium composition.  It 

is given by x. = b. and xl = 0. 0     ^  L    i     i 

To prove this, observe that by Lemmas 4 and 5 every 

equilibrium composition must have x = 0 or x' =0.  That 

is, the only possible equilibrium compositions are those 

given by x. = 0 and xl = b., or x. = b. and xl = 0.  Exactly 

one of these two compositions must be an equilibrium com- 

position, because the system possesses at least one equi- 

librium composition,  and if there were two there would 

have to be Infinitely many, as in the proof of Lemma 6. 
n 

If q > 0 then, since x=q+ Zb. >0, the equilibrium 
1=1 L 

composition must be given by x. = b. and x! = 0, as asserted 

in the lemma.  To show that this is also the case when 

q = 0, let us modify the system, producing a new system 

^(q) by changing q.  Thus the original system is </(0) . 

Since ^f(0) satisfies Condition I but not II, so must ^5(c\) 

satisfy Condition I but not II for q > 0.  But, for q > 0, 

we have already shown that ^/(q) has the unique equilibrium 

composition x.(q) = b., xl(q) = 0.  Hence 

,CSee Ref. 8, p. 42, Theorem 9.9. 
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lim x.(q) = b.        i=l,...,n 
q-0  1      I 

and 

lim xl(q) = 0 i=l,...,n . 
q-CT 1 

By the continuity results of Ref. 11, it follows that 

x. = b. and xl = 0 define the equilibrium composition for 

_<f(0), as required. 

Lemma 8 

If Condition II but not Condition I is satisfied, 

then the system has exactly one equilibrium composition, 

siven by xl = 0 and x. = b,. 

The proof of Lemma 8 is similar to the proof of Lemma 7, 

or follows from Lemma 7 by reversing the roles of Phases I 

and II and replacing the k. by their reciprocals. 

All that remains to complete the proof of Theorem 1 

is to observe that if q = q1 =0 and every k. = 1 then 

clearly neither Condition I nor Condition II can hold, and 

to discuss the nature of the solutions in this case.  By 

Lemmas 4 and 5, the compositions described in the theorem 

for this case are equilibrium compositions for 0 < t < 1. 
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But  the equilibrium compositions  are known to  form a closed 

set.       Thus,   the compositions  described are equilibrium 

compositions  for 0 ^ t ^ 1.     That there are no  other 

equilibrium compositions  also  follows  from Theorem 9.2 

in Ref.   8. 

See Ref.   8,  p.   38,  Theorem 9.2. 
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IV.     NUMERICAL COMPUTATION 

The practical,   numerical  computation  of the equilibrium 

compositions  of  a primitive system,   given   its  equilibrium 

constants  and  inputs,   can be accomplished  either by means 

of  digital  computer  programs  designed   for   the solution  of 

general  chemical  equilibrium programs   (e.g.,   Refs.   1,   5, 

10),   or with the  special   techniques  described   in  this 

section. 

A procedure  for   the  determination  of  the equilibrium 

composition of  a primitive system would   first determine  the 

values  of the x.   and   the  xl.     From these,   other quantities 

such as   the mole  fractions,   x.,   xl;   volumes;   concentrations 
'  i   i'        ' 

in other scales, etc., could be calculated.  The x. and the 
i 

xl may be calculated from x and x' through Eqs. (10) and 

(10') of Sec. II.  Since x' = b - x, the calculation re- 

duces to a technique for calculating x.  To do this, one can 

evaluate the validity of Condition I and the validity of 

Condition II of Sec. Ill, and then use Theorem 1 to deter- 

mine that x = 0, or x = b, or x is an Indeterminate be- 

tween 0 and b, or that x is the unique root of the charac- 

teristic function in the interval 0 < s < b. The charac- 

teristic function being convex on 0 < s < b guarantees that 

eiMV—^^ 
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Newton's method will converge to the root as long as we 

begin with an initial value in the interval 0 ^ s ^ b. 

Although g(s) = 0 can be rewritten as a polynomial 

equation, this is of little practical use except for very 

small systems.  For example, the primitive system treated 

in Ref. 21 has a characteristic function whose root can be 

determined by solving a quadratic equation, and thus can 

be solved analytically. 

See, for example, Ref. 22, pp. 81-82, or any good 
numerical analysis textbook. 



V.  GAS-LIQUID SYSTEMS 

In this section, to illustrate the application of our 

results to other than membrane phenomena, we consider a 

gas-liquid system of n substances, X, ,...,X , at a pressure 

P and temperature T. 

We assume that under these conditions each substance 

will be distributed between a single liquid phase and a 

single gas phase.  Thus, we are assuming that the substances, 

in both liquid and solid form, are completely miscible in all 

proportions, and that no solid precipitates are formed. 

We also assume that the substances are involved in no 

chemical reactions other than evaporation and condensation. 

We shall show that if this type of system satisfies certain 

further assumptions it is a primitive chemical equilibrium 

system. Thus all our results concerning primitive systems 

will be applicable to this type of gas-liquid system. 

We designate the liquid phase Phase I, and the gas 

phase Phase II, and let x, , x'., x. , x! , b. , x, x', etc., 

have their usual meanings. 

Let the vapor pressure of X. at the temperature T be 

p.. We assume that each p. is positive and finite; i.e., 

we assume that each X. is neither completely volatile nor 
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completely non-volatile.  This is analogous to the con- 

dition, for a membrane system, that there are no impermeable 

substances.  We assume that the liquid obeys Raoult's law-- 

which we take to be that the partial pressure, p., of X. 

is equal to the product of the mole fraction, x., of X. 

and the vapor pressure, p., of X.: 

p. = p.x. . (30) 

We assume that the gas obeys Dalton's law of partial pres- 

sures—which we take to be that the partial pressure, p., 

of X.  is equal to the product of the mole fraction, x'. , 

of X.  and the total pressure, P: 

p. = Px! . (31) f1    1 

Since at equilibrium X, must have the same partial pressure 

in liquid as in gas, we have 

A i    o x!   p. 

-T'T   ■ (32) 

X. 
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Thus, the system is a primitive system with the equilibrium 

constant, k., of X. given by 

o 
Pi 

ki ' F • (33) 

As an example of the application of our general re- 

sults  to gas-liquid  systems,   let us  find  the conditions 

for  a non-unique solution.     According  to Theorem 1 of 

Sec.   Ill,  there will be  a non-unique equilibrium composi- 

tion  if and only  if k.   =1 for  every  i  for which b.   / 0, 

or,   applying Eq.   (33),   if and only if p.   = P for  every  i 

for  which b.   ^ 0.     In  other words,   there will be  a non- 

unique equilibrium composition at pressure P and  tempera- 

ture T precisely  if,   for every substance present  in any 

positive amount,   the vapor pressure is  P when the tempera- 

ture  is T;   i.e.,  precisely if the boiling point of every 

substance present,   at  the pressure P,   is  T. 

As  another  example,   let us  find  the circumsl inces 

under which a liquid phase can  exist  at equilibrium without 

the  formation of a gas  phase;   i.e.,   the circumstances  re- 

quired for  either  a non-unique solution  or  a unique solution 

with no gas phase present.     Applying Theorem 1 of Sec.   Ill 
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shows  that  these  are precisely the circumstances under 
b, 

which Condition  II  fails--that is   (because x.   = —): 
1  b 

M 

I ki*i £ 1 ; 

i-1 

or, replacing k. by its value from Eq. (33) and using 

Eq. (30), 

n 

^ p. ^ P • (34) 

1=1 

Thus,   we have obtained  the familiar  condition  that 

a  liquid  phase can  exist  at   equilibrium without  the   forma- 

tion  of  a  gas phase  if  and  only  if the sum of  the partial 

pressures   of its  constituents  does   not  exceed   the hydro- 

static  pressure. 

Similarly,   we can  obtain the condition   for  a gas 

phase  to   exist  at  equilibrium without   the   formation of  a 

liquid phase: 

n 
r  pi 

•    i    P • 1 = 1   rl 
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VI.      INTRODUCTION TO VARIABLE SYSTEMS 

Previous  sections have  investigated the properties   of 

a   fixed primitive chemical  equilibrium system.     This  and 

the  following  sections  study  the manner   in which the  equi- 

librium properties  of a variable  system vary when  the  in- 

puts are varied.     By  a variable system we mean specifically 

a primitive  system with n permeable  species  and   fixed  equi- 

librium constants,   but with  inputs  that vary  linearly with 

a parameter  t which may or  may  not  denote time.     In   any 

case,  we  emphasize  that we  are not  studying kinetic   effects- 

at  each value of  t,   the system is   allowed to  come to 

equilibrium. 

Thus,   the  amount of X,   input   is  given by  a  function 

b.(t)   = b0 + tAb. 
i i i 

Similarly,   the  amount of  impermeable  material   in Phase   I  is 

q(t)   =  q0  +  tAq   , 

and the amount of impermeable material in Phase II is 

q'(t) = q0' + tV 
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We assume that  ^b.       0,   Aq   ^ 0,   Aq'       0,   and  t   >  0. 

Although some of our  results  are valid without  this  as- 

sumption,   it   is  more  convenient  to make  it  throughout. 

Thus,   each  t   -   0 presents  a primitive chemical  equi- 

librium system,   which we shall call  S(t).     If Aq  = Aq'   =  0 
n 

and     1 Ab.   =  1,   then S(t)  may be  interpreted as  the result 
i=l    1 

of  adding t moles  of a mixture of the permeable substances 
n 

with mole fractions  Ab, ,...,Ab    to  S(0).     If    I Ab.   ^  1, 
In ' •   i     i- i=l 

then  the same type  of  interpretation holds,   except  that  the 

Ab.   are no  longer  mole  fractions  and  t  is  no longer  measured 

in moles.     Finally,   if Aq ^ 0 or Aq1   ^ 0,  we may  think of 

adding a mixtrre of both impermeable  and permeable sub- 

stances  to S(0),   taking care to  distinguish between  im- 

permeable material  destined  for  Phase  I  and impermeable 

material destined   for  Phase II. 

This  section  concludes with a  sequence of examples  of 

variable primitive  chemical equilibrium systems   (leaving 

general results  to  later sections). 

Example 1 

Consider  an  inert  symmetric membrane permeable  to 

H^O but not  to  some macromolecule,   and capable of main- 

taining a hydrostatic pressure gradient.     Suppose we place 

one mole of the macromolecule on one  side  (Phase  I)   of  the 
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membrane,   fix the hydrostatic pressure of both phases   so 

that  the pressure of Phase I  is  higher than the pressure 

of Phase II,   \ )1      oth phases  at  the same temperature,   and 

put t moles  of H^O into  the system.     Thus,  we have q     =1, 

Aq = q0'   = Aq'   =  0,   n =  1,   X1  = 1^0,  b° =  0,   ^  =  1,   and 

k1   > 1  (because of the hydrostatic pressure gradient) .    We 

see that  S(t)   satisfies Condition I of Sec.   Ill  for  all 

t  s 0,   and satisfies Condition  II  if and only  if t  > -r-jr 

moles. 

It  follows   from Theorem 1  that S(t)  has  a unique equi- 

librium composition for all  t   ^ 0,   and that   for  0 ^  t s -r-rr, 

x]   = 0  (i.e. ,   all the H^O will be drawn to the  side of the 

membrane having  the macromolecule) .     But  for  t  > r—r, 
V i 

x-   = r—r and x'   = t - r—r;   i.e. ,   after T—r moles  of 

H^O have been  added,  all  additional H„0 will be  drawn to 

the side not  containing the macromolecule. 

Example  2 

Let n  =  2,  b° = 0,  Ab1  =  1,  b° = 1,  Ab2 =  0,   q0 = 

Aq = q0'   = Aq*   = 0.     Let k2 <  1 <  k1.     In words,   S(t) 

has  no  impermeable substances ,   and has two permeable sub- 

stances,  X1   and X ;  the amount of X„ is   fixed  at one mole, 

vm***» 



-30- 

but S(t) has t moles of X.. .  We will Tirst describe 

several realizations of such a system: 

1) Consider a gas-liquid system of the type de- 

scribed in Sec. V, with two substances X.. and 

X9, each at the temperature T.  The vapor pres- 

sure of X1 exceeds that of X^, and the total 

pressure, P, of the system is held at a fixed 

value between the vapor pressure of X, and the 

vapor pressure of X9. 

2) Consider two substances, X.. and X-, both perme- 

able to an inert symmetric membrane which is 

both rigid (i.e., capable of supporting a pres- 

sure difference) and a heat insulator (i.e., 

capable of supporting a temperature difference). 

Since k, and k« depend in different ways on the 

temperatures and pressures, it is quite possible 

that k, > 1 > k2. 

3) Consider a metabolically active, non-symmetric 

membrane which "pumps" X.. (which might be H^O), 

Vc 
Such membranes can be obtained  from the same  scientific 

supply houses  which furnish  frictionless pistons   and  com- 
pletely   ionizable  electrolytes. 
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from Phase I to Phase II and which "pumps" X? 

(which might be glucose ) from Phase II to 

Phase I. 

We can apply Theorem 1 to this variable system to see 

that, for all t 2: 0, it will have a unique solution.  For 

1-k 

Phase II will be vacuous.  For 

1-k      k 1-k 
  < t < —-  — 
V1      k2 kl"1 ' 

neither phase will be vacuous. For 

k1 l-k2 

Phase I will be vacuous.  Figure 1 shows a plot of the 

3 
composition of the system versus t, for the case k- = — 

k =^ K2  4" 

Note that we must then consider only those values 
of t for which no glucose precipitate will be formed. 
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Example 3 

Consider the result of equilibrating .04 moles of 

methane and .96 moles of normal octane with t moles of 

a mixture of normal hexane (with a mole fraction of .96) 

and normal eicosane (with a mole fraction of .04) at a 

temperature of 40 C and a pressure of 120 mm of Hg, as- 

suming that Raoult's law and Dalton's law of partial 

pressures are satisfied. We have n = 4, X. = methane, 

X0 = normal hexane, Xn = normal octane, X, = normal 
2 3 4 

eicosane, q = q ' = ^q = £q' = 0, b. = .04, b^ = 0, 

b° = .96, b° = 0, Ab1 = 0, Ab2 = .96, Ab^  = 0, ^ = .04. 

* o 
According to Ref. 24,  the vapor pressures at 40 C are 

given by p° = 217549.9 mm Hg, p° = 279.4409 mm Hg, p° = 

31.10092 mm Hg, p° = .0000257 mm Hg.  Equation (33) shows 

that k1 = 1812.916, k2 = 2.32867, k3 = .259174, k^ = 2.1-10 

Note that k, is so large and k, is so small that methane 

and normal eicosane virtually play the role of impermeable 

species. 

Theorem 1 shows that S(t) has a unique solution for all 

t ^ 0.  Figure 2 shows the computed values of x and x' 

-7 

Ref. 24, p. 336 
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sa|oy\/ 
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(the  size of the  liquid and gas phases   in  total  number  of 

moles)  plotted  against  t.     Note  that  the complex behavior 

of x shown in Fig.   2  does not represent  an artifact  such 

as  computational  round-off error.     Intuitively,   one would 

not  anticipate this  complicated  double reversal  in  the 

size of the  liquid phase as components  are added  to  such 

a simple system,   involving no  intraphase reactions  and 

obeying the most  ideal of all possible  laws  for  a two- 

phase chemical  system. 

Example 4 

Reference 21  treated a primitive system with two 

permeable species  and with an impermeable species  repre- 

senting protein,   as  a tutorial model of human renal func- 

tion.     In the  treatment,  Phase  I represented plasma and 

Phase II represented urine.    Far  from being simple,   inert, 

and  symmetric,   the "membrane"  dividing  the two phases 

represented the  aggregated whole of the complex secretion 

and reabsorbtion processes  involved  in human urine pro- 

duction and control. 
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VII.  CLASSIFICATION OF VARIABLE SYSTEMS 

This section discusses the behavior of the variable 

system S(t) for t ^ 0 in terms of the four possible types 

of behavior for a primitive system set forth in Theorem 1 

of Sec. III. 

Consider a variable primitive chemical equilibrium 

system as defined in Sec. VI and let 

n 
ro   V u0 -L 0 .  0i = Z.iq    q 

i=l 

and 

n 

Ab = V Abi + Aq + Aq' . 

i=l 

In addition, we introduce the following six quantities: 

if   q"        0 

) r 
i-1 

üo   . / Hi, 

t-1 

h    - a 

AD  -   Ah 

i f q + Aq       (J 

if q0 -  Aq   -  Ü 

I Ao 

if AD =  " 

"   '{ 

f- If   q"' •   0 

I" 
/kihi 

if   q"' =   0 

L i-1 

, 
1          tx. if   q"' +   Ar)' 0 

n 

',   k.Af,, 
\    L   i    \ 

if    q"' -   A.j' *   0 

K. 1-1 

f 

if   AD . 
AD'   -   Ali 

0 if   An' .   . 
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Note;  T will not be used if o = • or if Aa = Ab; similarly, 

T' will not be used if a ' =00 or if Aa1 = Ab. 

The CT'S are closely related to Conditions 1 and II of 

Sec. III.  Thus, Condition I for S(0) is equivalent to the 

statement o    > b .  The r's represent certain critical values 

of the parameter t. 

Table 1 describes the 13 possible relations between the 

quantities or , b , a ' , Aa, Ab, and Ac' .  We assert that 

every variable primitive chemical equilibrium system satis- 

fies one and only one of these sets of four inequalities. 

Table 1 also shows the types of behavior of S(t), as 

t varies in each of the 13 cases.  The phrase "I only" means 

that S(t) ' i a unique solution and Phase II is vacuous; 

"II only" means that S(t) has a unique solution and Phase 

I is vacuous.  "Both" means that S(t) has a unique solu- 

tion and neither phase vanishes.  "Ambig" (ambiguous) means 

that S(t) does not have a unique solution. 

Finally, Table 1 indicates, for each of the 13 cases, 

the intervals of t in which S(t) has the various types of 

behavior.  (A square bracket means that the endpoint in 

question is to be included; a curved parenthesis means 

* 
See Sec. Ill for further properties for each of the 

four types of behavior. 
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Table  1 

CLASSIFICATION OF VARIABLE PRIMITIVE SYSTEMS 

Case Conditions Behavior                        I 

1 
O    ,     rO 

a      ■  b a0' > b0 Aa   ' Ab Aa1 Ab Both 
0,») 

2 
o       - o 

c      ■  b a0' >b0 Äa •   Ab Aa' ■ Ab Both            11   only 
'0,T)          -T,») 

3 
O    ,     rO 

a         b a0' > b0 Aa    • Ab Aa' ■   Ah Both            1   only 
r0,T')           T',») 

i              -4 
O          rO 

a     ■-  b c0' ■ b0 Au   •-• Ab Aa' • Ab II   only 
'0,0.) 

5 
o       -o 

a    i  b a0' b0 Aa  - Ab Aa' ■ ■ Ab II   omy     Both 
'0,T-            (T,«) 

6 
o       -o 

a     ^  b a0' b" Aa    ■ Ab Aa' •   Ab II   only     Roth 
r0,T-         (r.r1) 

1   only 

7 
o       -o 

a     -  b a0' .   b" Aa   ■■ Ab Aa' ■■ Ab I  only 
ro,»)' 

H 
O   ,     rO 

a     ^  b a0' S b0 Ao       Ab Aa' > Ab I   only       Both 

i        9 o         -0 
a     >  b a0' .  b0 

ACT  ■   Ab Aa' > Ab I   only       Both 
:0,T'

%
        (T',T) 

11   only 
' T ,») 

I     10 o       rO 
a     ^   b c0' .  b0 Aa  ^ Ab Aa' •■ Ab Ambi^, 

ro,-) 

11 
o  ^  -a 

a    < b Oi 
0 s 5° Ao   ^  Ab Aa' ■ Ab Ambit;          11   only 

Oi               (0,-) 

12 
o       co 0| c s b0 Aa  - Ab Aa' s Ab Ambig          I   only 

:0l               (0,») 

13 
o         -0 

a    ^   b a s b0 Aa    • Ab Aa' •  Ab Ambig         Both 
0}               (0,») 
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that it is to be excluded.) Thus, according to Table 1, 

if cr ' s; b < a and AT < ^b < Aa' , then S(t) has a unique 

solution for all t ^ 0 and Phase I is vacuous for t ^ T', 

Phase II is vacuous for t ^ T, and neither phase is vacuous 

for r < t < T1 . 

Many readers may find it instructive to derive Table 

1 from Theorem 1.  We omit this rather long derivation. 
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VIII.  MONOTONICITY THEOREM 

In this section we show that some of the quantities 

associated with a variable system vary monotonically with 

t.  This result is of interest because, as was illustrated 

in Example 3 of Sec. VI, other significant quantities can 

behave very non-monotonically. 

If S(t) has a unique solution, then let x(t), x'(t) , 

x.(t), x.(t), etc., denote the values of x, x', x., x., 

etc., for the unique solution of S(t). 

THEOREM 2 

If S(0) has a unique solution, then S(t) has a 

x1 (t) 
unique solution for all t ^ 0, and the ratio —i—*■ 

x(t) 
(admitting ^  as   a possible value)   is monotonic 

in t. 

Proof of Theorem 2: 

That S(t)  has  a unique solution  for  all t  s Q  follows 

from Table 1.     It  also  follows  from Table 1  that the set 

T  of t  > 0  for which both x(t)   > 0 and x1(t)   > 0  is  an 

interval of  the  form  (0,*),   (0,T),   (0,T'),   (T,»),   (T^
1
), 

(T
1
,«),   (T'JT),   or   (0,00).     Furthermore,   it  follows   from 

Table  1 and  from the  fact  [lH  that x(t)  and x1(t)  are 

continuous   functions  of t  that  it  is   sufficient  to prove 

that       ^y   is monotonic  in the  interval T. 
x(t) 
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x' (t) 
But in T, —*—*-  is finite-valued, and continuous. 

x(t) 
Thus, if this ratio were not monotonic in t, there would 

have to be a real number r and t1, t9 c T with t, < t„ 

such that 

x'Ctp  x'(t2) 

x(t1)   x(t2) 
= r . 

Mo 
x' (t) 

reover, we can choose t1 and t9 such that —^^-  = r does 
1 l x(t) 

not hold  for  any t  in  (t,,   t^) .     Let t = ^(t..   +  t«)  and  let 

xi = ^xi(t1) 4- x1(t2))       for       i=l,...,n 

x[ = W xi(t1) + xl(t2))       for      i=l,...,n 

q   =  ^ UCt^   + q(t2) 

q'   = hQitJ  + q'Ctj)     • 

We will  show that x,,...,x   ,q,   x',...,:'jq'   is   an  equi- 

librium composition for S(t). 

To do  this,  observe  first  that 

mi. ■■ .   ,,»,—;JX"«I 
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xi + x[ = ^ Ui(t1) + x1(t2)) + h  U'.Ct^ + x^(t2) 

h  (xi(t1) + x[(t1)j + h  (xi((:2) + xl(t:2) 

= k (b.Ct^ + b.(tp) 

b^t) 

and that q = q(t) and q' = q'Ct).  Thus, the laws of mass 

balance for S(t) are satisfied. 

We also have 

x' = ^(x'(t1) + x'(t2) 

= | ( x(t1) + x(t2) 

= rx 

It is also clear that x > 0 and x1 > 0.  Hence we may 

write: 
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xl x     xl x     xl(t,)   + xl(t„) 
I            _JL 1V    1 1       1 

x. x1   x. x'   x-CtO  + x. (t0) 
i i i     1           i    2 

x    x'(t1)x[(t1)  + x,(t2)x[(t2) 

x'   x(t1)xi(t1)  + x(t2)xi(t2) 

x    rx(t1)kixi(t1)  + rx(t2)kixi(t2) 

x1       x(t1)xi(t1)  + x(t2)xi(t2) 

= — r k.   = k. 
x1 

Thus,   the  laws of mass  action are satisfied. 

Therefore,   x..,...,x   ,q,   x'...^'^'   is   an  equilibrium 

composition and,  hence,   the unique solution  to S(t).     Ther3- 

- - - - x1 (t)       x1 

fore,   x(t)  = x and x'(t)   = x so that —^—^ = — = r,   a con- 
x(t) x 

tradiction.  QED. 

COROLLARY 1 
x[(t)    x.Ct)    x(t) 

The functions  ,  ,   and  their re- 
xi(t)    b.(t)     b(t) 

ciprocals  are also monotonic  in t. 

Proof of  Corollary 1: 

From Eq.   (9)  of Sec.   I, 

x!(t) x'(t) 
-±  = k.      . 
x.(t) L x(t) 

■ —— --. • • - -  .* *•■ v. _..  • -jr- ■ v*,  , 
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From Eq.   (10)  of Sec.   II, 

x^t) x(t) 

bi(t)       x(t)  + k.x'Ct)       1 + k    x'(t) 
1 x(t) 

From Eq.   (6)  of Sec.   I, 

xitl =  L 
b(t)    1+iLiti 

x(t) 

The reciprocal of a monotonic  function is monotonic.     QED. 

COROLLARY  2 

If for some i, Ab. = 0, then for that i, x.(t) and 
i i 

xl (t) are monotonic functions of t. 

Proof of Corollary 2; 

Because 

x.Ct) 
b? + Ab.t 
1      L bi 

1 + k. 
Lx(t) . 

1 + k 
x(t) . 

(see Eq. (10) in Sec. II), and x^(t) = b° - x (t) 
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COROLLARY 3 

Elther each of the functions x.(t), i=l,...,n, 

and x(t) is monotonically increasing, or each of the 

functions xl(t) , i=l,...,n, and x'(t) is monotonically 

increasing. 

Proof of Corollary 3: 

x' (t) 
If —*—^ is monotonically decreasing, then we observe 

x(t) 
that 

x.Ct) = 
b.Ct) 

1 + k 
x'(t) 

x(t) 

The ratio of a monotonically  increasing,   non-negative   func- 

tion  to a monotonically  decreasing positive  function   is 
n 

mono tonically  increasing.     Since x(t)   = q(t)  +    T x.(t), 
i=l   I 

x(t)   is  also monotonically  increasing. 

Tr x'(t)   . .     .,     . • vu      x(t)      . If —*—^ is  monotonically  increasing,   then     v *     is 
x(t) x'(t) 

monotonically decreasing and the result follows by 

reversing the roles of Phase I and Phase II. 

Note the illustration of this Corollary in Fig. 2. 

-■•^•i»« »»:.-n"^-^-i..^»Mi_tfCl ifummm m» 
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IX.  LINEAR RESPONSES 

The examples of Sec. VI indicate that the x. are 

rarely linear functions of t. Under what circumstances 

will linearity hold? 

THEOREM 3 

Assume that S(0) has a unique solution with 

neither phase vacuous; then x.(t), 1=1,...,n, will 

all be linear functions of t, 0 ^ t < oo, precisely 

if either: 

Case A; There are constants u, u* such that 

ÜDi  = ux.(O) + u'xKO)  for  1=1,...,n ,   (40) 

Aq = uq  , (41) 

Aq' = u'q0' , (42) 

in which case: 

x.(t) = (1 + tu)x.(O) , (43) 

x[(t) = (1 + tu')x[(0) , (44) 
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x(t)     =   (1 + tu)x(O)   , (45) 

x'Ct)   =   (1  -H tu)x'(O)   , (46) 

x.tt)   = x.(0)   , (47) 

x[(t)   = x!(0)   ; (48) 

or, 

x1 (0) Case B:     The constant r = —^—^ is  such that 
x(0) 

n    ^.(1-k.)       ,   , 

ITT^-^-*' ^ 
1=1 

in which case 

b.(t) 

-i^) = rtrir • (50) 

rk.b.(t) 
xKt)   =  :   i \        , (51) is   '        1 + rk. 

L 

x'(t) 
 ^- = r   . 
x(t) (52) 

>  ^ >  ^*%**jr^ff* 
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Proof of Theorem 3; 

Since S(0) has a unique solution, so does S(t) for 

t ^ 0. Assume first that each x.(t) Is a linear function 

of t.  Since bi(t), q(t), q'Ct), b(t) are all by defini- 

tion linear functions of t, then 

x[(t) = bi(t) - x.Ct) , 

n 

x(t) = ^  xi(t) + q(t) , 

1=1 

x'Ct) = b(t) - x(t) 

are also linear.  By hypothesis, x(0) > 0; hence, for any 

t ^ 0, 

x(t) = k (MO)  +  x(20) ^ ^P- > 0 . 

Similarly,  x1(t)  > 0  for t  ^ 0.    We can then assert the 

law of mass  action: 

x:(t)      k.x.(t) 1               It 
  = for      n=l,. . . ,n      and      t   ^ 0   . 
x'Ct)       x(t) 

(53) 
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Hence, 

x^(t)x(t) = k1x1(t)x
l(t)  for  n»l,...,n  and  t ^ o . 

(54) 

A linear function defined for t ^ 0 can be extended 

linearly to the whole real line.  If this is done for 

x.(t), xl(t), x(t), x'Ct), then Eq. (54) remains valid for 

all real t, and represents two ways of factoring the same 

quadratic function of t into linear factors.  But since 

the linear factors correspond to the roots of the quadratic, 

this factorization is unique except for multiplicative con- 

stants and the order of the factors. Thus we have shown 

that either x(t) is proportional to x.(t) or x(t) is pro- 

portional to x^t).  Since x(t) > 0 for t > 0, we have 

shown that:  either for every i 

xi(t) x^O) 
1    is a constant, viz.,    ; (55) 

x(t) x(0) 

or 

*' W       is a constant, viz.,  ^-^ = r .       (56) 
x(t) x(0) 

•mmmm 
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In the first case, we have from Eq. (53) that for 

every 1, 

x[(t) x[(0) 
   Is a constant,    . 
x'Ct) x'(0) 

Define 

d x(t) 
u ■ —-  * * 

dt x(0) 

and 

.  d x'(t) 

dt x'CO) 

since x and x' are linear, u and u' are constants.  Then 

^i-^V^ -Tt[\^ +xl(t> 

"TtGiW^1    + x!(0) ^^M- ux.(0) + u'xl(0) , 
V   x(0)    i   x'(0y   1       1 

which is Eq. (40).  Also, 
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n 

1=1 

^U(t) - 11^(0); 
i=i x(o) 

" x,(0)\ , 

i=l x(0) 

= u ^x(O) - ^ x.WJ = u MO)) = uq0 , 
1=1 

which Is Eq. (41).  The proof of Eq. (42) is similar. 

Then Eqs. (43) through (48) follow by simple manipulations. 

In the second case, Eq. (56), we have 

n 
q(t) + q^t) + I b (t) 

= iÜI ^ (58) 
r+1 r+1 ' ^ö; 

Now x(t) must be the root of the characteristic function 

of S(t); that is, 
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q(t)   "      b (t) 
— + y  i   = i . 
x(t)   ^i *(*) + k x'(t) 

Multiplying both sides of this by x(t) gives 

r'  b, (c) 

M + I rht: ■ '^ ■ 
1=1 

Replacing x(t) by its value from Eq. (58), differ- 

entiating with respect to t, and simplifying, gives Eq. 

(49); then Eqs. (50), (51), and (52) follow easily. 

Finally, it is an algebraic exercise to show that, if the 

condition for either case A or case B holds, then the x.(t) 

have the claimed behavior and hence are linear.  QED. 

Note that Case A of the theorem corresponds simply to 

expanding the two phases separately, without changing the 

mole fractions.  One type of variable system which satis- 

fies Case B is given by Aq = Aq1 =0 and ^b. = 0 for all 

i for which k. ^ 1. That is, if a system is varied by 

changing only the inputs of "undriven" substances (i.e., 

substances for which k. =1), then the response is linear. 

Here the x.(t) and xl(t) are constant for the substances 

whose inputs are not altered. 
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For systems tn which ^q = Aq' »0 and for which 

b. > 0, for all 1, we may simplify Eq. (49). Observe 

from Eq. (10) that 

bi 
1 + rl^ = — 

^(0) 

hence, 

1 - k    x (0) x (0) - x!(0) 
 i i  (1 - k.) = -i i  
1 + rk.   b^ b. 

so Eq. (49) becomes 

l   ^rQiW  -  ^(5) - 0 . (59) 
1=1 1 
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