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Abstract

A Monte Carlo method of solving the fundamental equation of

the kinetic theory of dilute gases has been developed and successfully

applied to two problems, one involving translational relaxation of a

spatially homogeneous gas and the other a plane steady shock of

arbitrary strength (shock strength limited only by the fineness of the

velocity space mesh). This is the first and only method capable of

computing the molecular velocity distribution under conditions far from

equilibrium.

The essence of the problem is evaluation of the non-linear

five-dimensional collision integral. Straight forward numerical

quadrature would require about a -?ar on the fastest present day

computers. The computation time is reduced to a practical value, of

the order of an hour, by a statistical sampling technique closely

resembling the real statistical collision phenomena in the gas.

Computations to date have been restricted to elastic sphere

scattering of molecules without internal degrees of freedom. Differ-

ential scattering cross-sections other than elastic sphere can be

accommodated in the computer program without complications or computing

time penalty. Introduction of one or two internal molecular degrees

of freedom will increase the complexity and computing time, but not

to an impractical degree.

Several technical problems had to be solved in order to

make the method work properly. The "fairness" of the random

collision-selecting process had to be designed with care and verifie'
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thoroughly. Furthermore, a tendency for the theoretically conserved

quantities (number of molecules, momentum and energy) to change

slightly because of interpolation and quadrature errvrs, had to be

corrected to prevent its building up significantly over many time

steps or iterations. In the case of the more difficult shock wave

computation, a tendency for the shock front to creep out of the

computational reference frame in the course of successive iterations

had to be eliminated by choosing density rather than distance normal

to the shock front as independent variable. Finally, a verifiably

convergent iteration scheme had to be devised for successively improving

an initial trial solution. All of these technical problems have been

solved. The initial trial solution so far used has been the Mott-

Smith approximation.

We exhibit for the translational relaxation problem a graph

j of the temporal behavior of the Boltzmann function for Mach numbers

rranging from 0.5 to 6. For the shock wave problem we show, for Mach

number 3.0, contour plots of the Mott-Smith velocity distribution

function, and of the collision integral derived from it, together

with other plots characterizing the Monte Carlo solution of the

I problem.
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9 1. Introduction

VThe basic equation in the kinetic theory of dilute gases is

the Boltzmann equation. Analytical solution of this equation has only

j been possible for conditions near equilibrium and for a limited

number of intermolecular potentials.

The principal obstacle in the way of solving the Boltzmann

j equation is the nonlinearity and complexity -f the collision integral

in it. Evaluation of tae integral by direct numerical quadrature

is too slow to be useful, even on the fastest computers. The senior
1

author therefore devised in 1955 a Monte Carlo method for the numerical

evaluation of the integral on digital computers. The method can

r be applied to any velocity distribution function. We have programmed

the method for elastic sphere molecules but extensions to other molecular

fforces are feasible whenever the differential cross-sections are known.
Since 1955, the authors have refined and carefully testedI *

this method and have applied it to several problems in kinetic theory.

The present paper gives the first complete account of the method. We

made careful studies of accuracy which are especially important for our

work because of the complexity of the collision integral and the wide

usefulness of a reliable means of evaluating it. All indications are

that the Monte Carlo calculations are valid to within the expected

These studies were first described in ;1ine CSL reports published
in the years 1962-1966.
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statistical fluctuations. Lack of space prohibits detailed Clesczintion

of the accuracy studies here.

One problem in kinetic theory to which we have applied our

Monte Carlo method is that of the "pseudo-shock," a kind of translational

relaxation of molecules. '3 Solution of the Boltzmann equation follows

easily once the Monte Carlo method permits evaluation of the necessary

collision integrals, and the solution is obtained with equal ease for

conditions very near and very far from equilibrium.

In a second problem, that of shock structure, a more difficult

iteration procedure is necessary to solve the Boltzmann equation.

We ibave substantial numerical evidence of the convergence of the

iteratioi process. Even apart from the convergence question, the

Monte Carlo evaluation of the collision integral can yield new and

fundamental iziformation about siock structure. In particular it
4

is now possible: a) to test any velocity distribution function

proposed as an approximate solution of the Boltzmann equation for a

shock wave or other flow condition;,and b) to check directly the

various elaborate analytical calculations involved in moment methods.

The Monte Carlo methods of Haviland 5 '6 and Bird '8 have

also been used in kinetic theory problems. Neither method evaluates

collision integrals, so nei:her method can yield deLJiled, accurate,

and explicit solutions of tho Boltzmann equation. Bird's method is,

however, nicely complementary to ours in that, though less accurate,

it is at present fast-r than ours aoJ is therefore already useful in

problems involving more than one iiderndent variable.
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2. Outline of the Method

In the Monte Carlo method the collision integral is first

replaced by an integral over a finite region of velocity space. This

or similar approximations must always be used in numerical evaluation

of integra!s over an infinite region. The finite region, of volume R,

is taken large enough so that it includes most of the molecules. The

average of the integrana over R and over all values of the line-of-

centers vector k is then approximated by the average of a large and

fair sample of N values of the integrand. A Monte Carlo estimate of

the value of the collision integral (with random errors proportional

to N-1 /2) is given by the product of this average value with the

volume R. Note that the integrand is a function of eight independent

variables derived from the three vectcrs, v, v', and k that define a

collision. Nordsieck's Monte Carlo method enforces a fairness of the

sampling in the eight-dimensional space of these variables.

3. The Boltzmann Equation

The units we shall use are the values, denoted by the

subscript 1, of various properties of a reference gas. Thus nl,

TI are the units of number density n and temperature t. The unit

length of length I1 = I/(2rnla2 ) = (mean free path)1 / 12. The unit
of velocity cI = /(2TikT /m) = (mean speed) X (r/2). The unit of

time is therefore (mean free time) I X (J2//TT) and of the velocity

3
distribution function is n1I/C 1 .In these units the Boltzmann equation
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may be written

bf/aT + v x 'a

r(FF'- ff') lk- r Idv' (dk/4 ).(I

where f = f(v,x,T) is the velocity distribution function, x is the

distance variable, and T is the time variable; the unit vector k gives

the direction of the line of centers during a collision; r = W - v;r

and f,f',F,F' denote the four values of f corzesponding to the four

velocities, v,v' V,V' Integration is over the whole 4r solid angle in

order that the k integration limits may be independent of v and v'. The

notation 9f reminds us that this second part of the collision integral

is proportional to f(',x,T), a fact of importance in devising a stable

method of integrating the differential equation for the case of the

strong shock wave.

4. Geometrical and Numerical Assumptions

To develop a specific Monte Carlo algorithm that will yield

estimates of the Boltzmann collision integral we must make a number

of geometrical and numerical assumptions. Most of these may be easily

modified as required in the future. First, as we restrict ourselves to

flows possessing axial symmetry, we represent any velocity vector ;

by its cylindrical components (vx,V ) in velocity space. Because

of the axial symmetry the velocity distribution function will not

depend upon 0. In the sampling, however, we must still treat a collision

as a full three-dimensional phenomenon.
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5 Convenieice of computer programming of the Monte Carlo scheme

requ.res that the region R in velocity space be spanned by a fixed set
r

of velocity cells. We therefore transform f' to a new variable % byU "

introducing as adjustable paraveters, a shift of the origin and a

velocity scale factor K1 . For any given problem these parameters are

fixed so that all but 0.1., for example, of the nolecules are within R.

Because of the rapid (Gaussiac) decrease of density with increase of

f velocity, quadrature errcr in the velocity space is quite insensitive

to the fracticn of molecules excluded from R so long as that fraction

is small.

The quantization of the velocity space T in which we define

fixed cells was designed to yield accuracy of the order of 1% in the

r Monte Carlo estimation of the two parts of the collision integral.

(The values of the components of and k that are used in the caicu-

lations are those corresponding to the centers of the cells in ' space

and k space.) We choose 226 cells in the two-dimensional (v ,v ) space,

as shown in Fig. 1, to cover the semicircular region v < 24 in such
in

Va way that the area of the 226 cells is different from the area of the

semicircular region by less than 0.11o. In our calculations we are

concerned with those functions a,bf, and f that depend only upon the

two velocity components v and v , together with either the time orT x

position variables. Therefore, tables of 226 values of each of these

functions are stored in the computer for each value of the time or

position variable. As examples of the graphical representation of

1 such functions we show, in Fig. 2. isolines of the Mott-Smith approximate
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velocity distribution and the associated collision integral within a

strong shock wave. The v axis in the figures is perpendicular tcx

the shock front.

The quantized values of the azimuthal angle 0 are chosen to

be odd multiples of (90132) so that the range of 0 from 0 to 21T

contains 64 cells. Sixteen values each of sin 0 and cos 0 are stored

in fixed tables corresponding to the range 0 to Tr/2. The other

quadrants zre introduced in the Monte Carlo calculations by randomizing

signs appropriately. The unit vector k is represented by 64 sets of

values of the three direction cosines. The values are chosen in

suci a way as to divide the first octant of the unit sphere into

64 equal parts. These 192 values of the direction cosines appear

in a fixed table in the computer.

Having defined the cells we shall use in and k space, we

can now define the sampling algorithm. A sequence of pseudo-random
10

numbers each containing 37 bits is generated by a modified Juncosa

process. Bits in the same number and in the sequence are practically

uncorrelated over the whole repeat cycle of 237 numbers. From each

random number we derive a random collision by using the bits as

follows: 14 bits for the vector v, 14 for the vector v", and 9 for

the unit vector k. Successive numbers in the sequence then lead to

successive and independent collisions randomly chosen from the

237. (226/256)2 = 1.07 X 1011 cells in the eight dimensional

( , ',k) space. A collision is rejected as "unsuccessful" if either

or V' computed from (vv',k) lies outside the region v < 24.
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The fraction of collisions thus rejected is 0.1583. The val,- s of

(VV 1 ,v', V .,) M are, in effect, rounded to values corresponding to

the nearest cell center in (v ,v) space.
x m

5. Various Monte Carlo Estimates of the Collision Integral

5.1 The Eight Basic Estimates. Let us now consider four

Monte Carlo approximations to each of the functions Av'm and hfv .

The eight approximating functions are:

a J(FF'K)av bf = J!(ff1K av

v V

a' J JIFF'b'f' = JJ (ffK lav (2)

avav av

A J (ff 1Kav-  BF =J(FF I )-
V V

A' J (ff# i av  B'F' = J (FF' I av

V1 V1

In these equations

Jl = (8) 226(KI) = [v-v4' X'(v'-v)I m  (3)

where we are using the "machine units" defined above. The symbol below

each average-value sign in Eq. 2 indicates which of the four velocities

is held constant in averaging over a sample of collisions. Each of

Athe functions a,a',A,A' approaches the function a, and each of the

functions bf, b'f', BF, B'F' approaches the function f as one decreases
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by one means or another the errors of various kinds. For finite errors

of each type, however, the four functions of each type are distinct.

We may expect that the statistical errors in the Monte Carlo

A 1/2
method of evaluating a and f will decrease in proportion to N 2

where N is the sample size. We may expect that the quadrature error,

corresponding to the finite size of the cells in v and k spaces will

decrease as the volumes of the cells are decreased. Our program permits

easy variation of the cell size for the velocity space. The error

owing to the neglect of a few molecules with large velocities will

decrease rapidly as K is decreased.
I

5.2 Linear Combinations of the Estimates. An important

characteristic of the Monte Carlo method is that all of the eight

functions in Eq. 2 can be evaluated simultaneously and, indeed, in

any useful linear combination. For example, let us look at the

evaluaticn of a which is found by forming a sum over the collision

sample

t av 1
(FF'K )a = M- FF'I.

v v

where 0 is held constant during the summation and M is equal to the ao

number of increments or hits for each velocity cell during the sampling

process. Each such sum is formed by fixed point arithmetic to permit

unbiased rounding of the increments.

An increment (FF' 1 /M0) in the value of the sum is made,

for each random sampled collision (9, ',k)-(V,V'), to the velocity -

cell labelled by the velocity v. In forming bf or b'f' we sum
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(ff'K IN/M ) similarly, again making increments in the i' or v' cell,
respectively. In forming A, A', BF, B'F', we make use of the fact

that each collision (for molecules exerting central forces) has an

inverse; that is, if (vv',k)-(VV') is a collision, so also is

S(V,V •-k)--(v,vt). Then to get A we sum (ff'Ki/Mo) over 30i)

while holding V constant, and similarly for A' BF, and B'F'.

In the simultaneous calculation of the eight quantities in

5' Eq. 2 we symmetrize the Monte Carlo summand by multiplication by

v ,. This accomplishes two ends; it increases the speed of calculating

Ithe eight estimates and it makes possible achievement of good statistics
r for the cells near v j = 0 because we can distribute hits uniformly

over (v ,V ) space and then later correct by the factor 2 rv_' to

effect uniform a priori probability of collision over three dimensional

velocity space.

The eight functions defined in Eq. 2 are basic to all

considerations of Nordsieck's Monte Carlo method. In the calculations

discussed in this paper, and in our study of accuracy, we considered

in particular three linear combinations of these basic Monte Carlo

functions. Two of these are

au = 1/2(a + a'), (5)

/2[au(V xvl) + (-vv , (6)

with similar equations for A , (bf) , ... , BF. Eq. 5 expresses an

average over the two incoming (or two outgoing) molecules. Eq. 6

expresses an average of a Monte Carlo estimate of a function and of the
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"reflected" estimate. In Nordsieck's Monte Carlo method the samples

of ' and of 9' are ea .h distributed uniformly and independently over

the (vv L)m space (vm < 24). In our study of hits per cell we then

needed to consider only au, and not a and a' separately.

The other linear combination used is

aA,,= 1/2(a + A)

with a similar equation for (bf) AN. This is an average of the Monte

Carlo functions for the direct and inverse collisions which takes

advantage of the uniformity of sampling in ' and V spaces.

Each of the linear combinations that has been defined is

relevant to the Monte Carlo method because the corresponding

summands in each case can be computed from the two basic functions

(ff'l) and (FF'x1) with almost no additional arithmetic. Therefore,

the size of a Monte Carlo sample can be increased, in effect, by

these exchange operations between primed and unprimed molecules,

between incoming and outgoing molecules, and between a collision and

its reflection.

5.3 Corrections that Force Conservation. The starting

,'oint in deriving these corrections is the observation that accurate

solutions of the Boltzmann equation must satisfy conservation

equations characteristic of the problem at hand. We therefore compute the

smallest corrections of the values of thE 226 values of the collision

integral, in a least-squares sense, that are consistent with enforcing

conservation.
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Why is this correction method appropriate? Any numerical

"Cuadrt-% e method of evaluating the collision integral produces non-

zero quadrature errors. There will consequently be a bias in the

compitted Values of the two parts of the collision integral. (The

neglect of a few molecules with large speeds will cause a somewhat

jsmaller bits.) Solutions of the Boltzmann equation both for the pseudo-

shock and the shock wave require repeated evaluation of the collision

[ integral, so that uncorrected bias tends to build up unacceptable

trends in the computed solutions. If, as in the case of our Monte

Carlo method, the bias is not large, then the least square adjustment

that we have described will produce values of the collision integral

which satisfy the conservation equations and prevent, to a large

extent, the drift or trend in the calculations.

6. The Computer Program

As noted above, our program at present assumes elastic

sphere molecules and axial symmetry of velocity distributions. The

first restriction is easily removable. The program can be modified

to remove the second restriction. However, the present program

without modification is directly applicable to the pseudo-shock, the

shock wave and all similar problems involving only one space or time

variable.

The Monte Carlo part of the program contains about 900 words

(order-pairs, constants, and fixed tables). The complete program

W a contains about 8,000 words which includes the Monte Carlo part of the
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program, integration and moment programs, and many useful auxiliary

programs. As noted earlier, the number of cells in the eight dimensional

(i, ',k) space that is sampled is more than 10 11. (A direct simple,

numerical quadrature of comparable accuracy would require -2 x 109 cells

in a seven dimensional space.) The program computes 226 values (in

parallel) of each of the functions aAN and (bf)AN, according to the

Nordsieck prescription, in three minutes on the CDC 1604 with statistical

fluctuations of 8%.

In any accurate method of solution of the Boltzmann equation

it is necessary to add efficient methods of monitoring and judging

the large volume of numerical data produced. Our calculations generally

produce 226 values of each of the functions f, a, and bf for each

iteration in the shock wave problem or each step in time in a relaxation

problem like the pseudo-shock.

We have two monitoring devices for following this large

output of data. One monitoring device is the calculation and output

of many moments of f, a, or (a-bf). Our numerical integrations in

velocity space are good to much better than 1%, except for high order

moments or sharply peaked integrands. We output 11 independent moments

of the velocity distribution function f (including the two or three

moments which should be conserved, the density, the Boltzmann function,

It must be remembered that in developing a method of solving a difficult
equation like the Boltzmann equation it is necessary to make many more
trials and test calculations than are needed for the final production
run.
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f and its flux). We also output nine moments of a and of (a-bf), some

of which, by conservation, should be zero, or, by the Boltzmann theorem,

should be negative.

As a second monitoring device we output characters denoting

ranges of values of each of the velocity dependent functions f, a,

and bf. Approximate isolines may easily be derived from these characters

and permit immediate and vivid visualization of the nature of the

functions and their changes from one physical or calculational situation

to another. The spacing of the isolines can be set at any appropriate

level by changing the table of the reference function values that

correspond to the characters output. Examples of accurate isolines,

derived by such a procedure, are shown in Fig. 2.

7. Behavior of Solutions of the Boltzmann Equation

We have been particularly interested in using the Monte

Carlo evaluation of the Boltzmann collision integral in calculating

a translational relaxation process (the "pseudo-shock") and in trying

to solve the Boltzmann equation for a shock wave. From each of these

problems we have derived considerable, though indirect, support for

the validity and reliability of the Monte Carlo method. In both

problems we tak', as absolute requirements on the validity of the

method, that the appropriate conservation equations be satisfied

and that the appropriate Boltzmann function decrease monotonically.

Such requirements must clearly be made on physical grounds and are

especially important in the absence of methods other than Monte

Carlo of solving the Boltzmann equation for these problems.
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Using the least square adjustments of the collision integrals

we solved the pseudo-shock problem 3 and demonstrated the accuracy,

stability, and convergence of the solution process, these characteristics

being dependent upon the reliability of the Monte Carlo evaluation of

the collision integral Fig. 3 illustrates several of the favorable

characteristics of our Monte Carlo solution for this pseudo-shock.

The Boltzmann function decreases monotonicaliy, for each value of the

Mach number M, and Monte Carlo fluctuations have negligible effect

until late in the relaxation process. Even for the rather small samples

used (10,000 collisions for each forward step in time) we were able

to calculate the slope of each of the curves in Fig. 3 and show that

there was no significant difference between the slopes.

It has been our objective since 1958 to solve the Bol-zmann

equation for shock waves using our Monte Carlo method. It has been

apparent for several years that it is the convergence and stability of

our iterative method of solution of the Boltzmann differential equation,

rather than the difficulty in evaluating the collision integral in it,

which has been impeding our progress toward solution of this problem.

We have recently been using the correction method which forces the

conservation equations to hold and have begun obtaining stable and

convergent results in treating the internal structure of shock waves.

Let us illustrate these remarks with data for a shock wave

that is described by the values of f( ,,x) and of (a-bf) at nine

positions within the shock. Fig. 4 illustrates the rapid convergence

13obtained for a typical Monte Carlo run for M =2.5 with 2 collisions
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in each Monte Carlo sample used. The rms change, 6f, of f from one

iteration to the next, decreases by a factor of seven in the first

three iterations. By the twelfth iteration the rms value of 6f has

decreased to 0.00013, although the largest value of f, near the cold

boundary of the shock, is close to unity.

f The data shown in Fig. 5 were obtained by averaging the

values from four independent runs of twelve iterations each, with

I2 collisions in each Monte Carlo sample. It has been shown

11earlier that the density profile n' is appropriately represented

by a plot of the density gradient dn/dx against the reduced number

density n=(n-nl)/(n2-ni) , as in Fig. 5. For a Mott-Smith shock

the curve is a parabola. Even at this exploratory stage of our

calculations, with samples of 213, there is some evidence that the

shock is significantly asymmetrical. As expected from the Boltzmann

theorem, the Boltzmann flux derived from the same four runs decreases

monotonically through the shock.

Further indirect checks of the Monte Carlo evaluation of the

collision integral will depend upon comparisons with accurate

analytical solutions of the Boltzmann equation for very weak or very

strong shock waves. The Navier-Stokes equations should describe

accurately the internal structure of weak shock waves, and also the

characteristics of shocks of any strength near their up- and down-stream
II 1

boundaries. Although it has been suggested 12 that the Mott-Smith

model is asymptotically correct for strong shocks, it predicts the

wrong value of the Prandtl number near the down-stream boundary.
I1



16

In view of the errors of the various methods we do not know at this

time whether there is any value of the Mach number for which the errors

of the methods would be small enough so that comparisons of the predicted

details of shock structure would be meaningful. Efforts to make

such meaningful comparisons are obviously important both to check

further the solutions based on the Monte Carlo evaluation of the collision

integral and to define the range of validity of the analytical theories.

8. Future Studies

We shall outline here briefly a variety of directions that

may be taken in future research, now that there is a reliable

method of evaluating the Boltzmann collision integral. These various

researches may involve either modifications of our method or

applications of it, and these aspects of course will often overlap.

Let us first consider modifications and studies af the

Monte Carlo method which will be useful in all of the applications of

this method that will be outlined below. These are: a) Many random

collisions calculated once for all and prestored on tape or disc.

Use of such prestored collisions should speed up the Monte Carlo

part of the program by a factor of five on our present computer,

b) Higher accuracy Monte Carlo calculations of the collision integral

by using more cells in velocity space and larger samples of collisions,

c) Modification of the program so that it will accept differential

cross-sections corresponding to arbitrarily given intermolecular
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potentials, d) Comparison of our Monte Carlo calculations of the Boltzmann

collision integral for far-from-equilibrium conditions with accurate
r
J and direct numerical quadratures.
t

Now let us consider a whole class of kinetic theory problems

for -onaroic, single component gases that can be studied directly

with our present Monte Carlo program and its auxiliary programs without

major modification. These problems are those in which there is just

one independent variable of position cr time in the Boltzmann equation.

Typical problems are those of translational relaxation (any such

relaxation, not just that in the pseudo-shock); shock waves for a

variety of Mach numbers and intermolecular potentials; and rarefied

gases in which there are large gradients of temperature, velocity, or

pressure (in other words, problems of heat and momentum transfer, of

diffusion and thermal diffusion, and of gase 3ubjected to strong

perturbations by high-frequency sound or light).

Useful comparisons will be possible of Monte Carlo solutions

of any of these probiems with algebraic and substitute theories

of shock structure and with appropriate approximate theories of other

physical phenomena. The range of calculations we have just described

could also be used as a basis for describing phenomena in non-

aequilibrium monatomic gases that contain a small fraction of other

species. Understanding of a number of physical phenomena in these

impure monatomic gases then could be aided by the results derived

from the Monte Carlo calculations for monatomic gases, namely:

1 I rotational and vibraticnal excitation; the initiation of ionization
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and of chemical reactions; electrostatic fields produced by a shock

wave in a gas already slightly ionized; and the phenomena of shock

precursors.

There are also interesting calculations, which hitherto have

not been possiole, which will require more extensive but not basic

modifications of our program. One set of problems concerns phenomena

in binary and multi-component mixtures of gases. Treatment of such

problems requires some modifications of the algebra and bookkeeping

in the Monte Carlo program to account for collisions between unlike

species. A second set of problems which is closer to the interest

of aerodynamicists, involves two independent variables of position or

time. Problems of this type are: shock.initiation; the classical

problem of transient heat flow, which would provide a useful check

calculation; and hypersonic flow and heat transfer in the stagnation

point region and over slender bodies for Knudsen numbers less than

one.
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Abstract (continued)

Computations to date have been restricted to elastic sphere

scattering of molecules without internal degrees of freedom. Differ-

ential scattering cross-sections other than elastic sphere can be

accommodated in the computer program without complications or computing

time penalty. Introduction of one or two internal molecular degrees of

freedom will increase the complexity and computing time, but not to an

impractical degree.

Several technical problems had to be solved in order to make the

method work properly. The "fairness" of the random collision-selecting

process had to be designed with care and verified thoroughly. Further-

more, a tendency for the theoretically conserved quantities (number of

molecules, momentum and energy) to change slightly because of interpola-

tion and quadrature errors, had to be corrected to prevent its building

up significantly over many time steps or iterations. In the case of

the more difficult shock wave computation, a tendency for the shock front

to creep out of the computational reference frame in the course of

successive iterations had to be eliminated by choosing density rather

than distance normal to the shock front as independent variable. Finally,

a verifiably convergent iteration scheme had to be devised for succes-

sively improving an initial trial solution. All of these technical

problems have been solved. The initial trial solution so far used has

been the Mott-Smith approximation.

We exhibit for the translational relaxation problem a graph of the

temporal behavior of the Boltzmann function for Mach numbers ranging

from 0.5 to 6. For the shock wave problem we show, for Mach number 3.0,

contour plots of the Mott-Smith velocity distribution function, and of

the collision integral derived from it, together with other plots

characterizing the Monte Carlo solution of the problem.
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