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Abstract

A Monte Cario methoed of sclving the fundamental equation of
the kipetic theory of dilute gases has been developed and successfully
applied tc two problems, one involving translational relaxatior of a
spatially hLomogenecus gas and the cther a plane steady shock of
arbitrary strength (shock strength limited only by the fineness of the
velocity space mesh). This is the first and only method capable of
corputing the molecular velocity distribution under conditions far from
equilibriurm.

The essence of the problem is evaluation of the non-linear
five-dimensional collision integral. Straight forward numerical »
quadrature would require about a v=2ar on the fastest present day
computers. The computation time is reduced to a practical value, of
the order of an hour, by a statistical sampling technique closely
resembling the real statistical collision phenomena in the gas.

Computations tc date have been restricted to elastic sphere
scattering of meclecules without internal degrees of freedom. Differ-
ential scattering cross-sections other than elastic sphere can be
accommodated in the computer program without complications or computing
time penalty. Introduction cf one or two internal molecular degrees
of freedom will increase the complexity and computing time, but not
to an impractical degree.

Several technical problems had to be solved in order to
make the method work properly. The "fairness'" of the random

collision~selecting process had to be designed with care and verifie’
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theroughly. Furthermore, a tendency for the theoretically conserved
quantities (number of molecules, mcmentum and energy) to change
slightly because of interpolation and quadrature err¢rs, had to be
corrected to prevent its building up significantly over many time
steps or iterations. In the case of the mcre difficult shock wave
computation, a tendency for the shock front to creep out of the
computational reference frame in the course of successive iterations
had to be eliminated by choosing density rather than distance normal
to the shock front as indepeadent variable. Finally, a verifiably
convergent iteration scheme had to be devised for successively improving
an initial trial solution. All of these technical problems have been
solved. The initial trial solution so far used has been the Mott-
Smith approximation.

We exhibit for the translational relaxation problem a graph
of the temporal behavior of the Boltzmann function for Mach numbers
ranging from 0.5 to 6. For the shock wave prcblem we show, for Mach
number 3.0, contour plots of the Mott-Smith velocity distribution
function, and of the collision integrai derived from it, together

with other plots characterizing the Monte Carlo solution of the

problem.
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1. Introduction

The basic equation in the kinetic theory of dilute gases is
the Boltzmann equation. Analytical solution of this equation has only
been possible for conditions near equilibrium and for a limited
number of intermolecular potentials.
The principal obstacle in the way of solving the Boltzmann
equation is the nonlinearity and complexity ~f the collision integral
in it. Evaluation of tue integral by direct numerical quadrature
is too slow to be useful, even on the fastest computers. The senior
author therefore devised in 1955 a Mcnte Carlo method1 for the numerical
evaluation of the integral on digital computers. The method can
be applied to any velocity distribution function. We have programmed
the method for elastic sphere molecules but extensions to other molecular
forces are feasible whenever the differential cross-sections are known.
Since 1955, the authors have refined and carefully tested
this method and have applied it to several problems in kinetic theory.*
The present paper gives the first complete account of the method. We
made careful studies of accuracy which are especially important for our
work because of the romplexity of the collision integral and the wide
usefulness of a reliable means of evaluating it. All indications are

that the Monte Carlo calculations are valid to within the expected

*
These studies were first described in aine CSL reports published
in the years 1962-1966.




statistical fiuctuations. Lack of space prohibits detai‘ed description
cf the accuracy studies here.

Orne problem in <inetic theory to which we have applied our
Monte Carlc method is that of the "pseudo-shock," a kind of translational

relaxation of molecules. ’

Solution of the Boltzmann equaticn follows
easily once the Monte Carlo method permits evaluation of the necessary
ccllision integrals, and the solution is obtained with equal ease for
conditions very near and very far from equilibrium.

In a second problem, that of shock structure, a more difficult
iteration procedure is necessary to solve the Boltzmann equation.
We bhave substantial numerical evidence of the convergence of the
iteration process. Even apart from the convergence question, the
Monte Carlc evaluation of the collision integral can yield new and
fundamental information about shock structure. In particular it
is now possible:a a) to test any velocity distribution function
proposed as an approximate solution of the Boltzmann equation for a
shock wave or other :~low condition; and b) to check directly the
various elaborate analytical calculations iavolved in moment methods.

The Monte Carlu methods of Havilands’6 and Bird7’8 have
also been used in kinetic¢ thoory problems. Neither method evaluates
coilision integrals, so neivher method can yield decailed, accurate,
and explicit solutions of the Bultzmann equation. Bird's method is,
however, nicely complementary to curs in that, though less accurate,
it is at presznt faster than oury ant is therefore already useful in

problems involving more than one irdependent variable.
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2. Outline of the Method

In the Monte Carlo method the collision integral is first
replaced by an integral over a finite region of velocity space. This
or similar approximations must always be used in numerical evaluation
of integrals over an infinite region. The finite region, of volume R,
is taken large enough so that it includes most of the molecules. The
average of the integrana over R and over all values of the line-cf-
centers vector k is then approximated by the average of a large and
fair sample of N values of the integrand. A Monte Carlo estimate of
the value of the collision integral (with random errors proportional
to N-l/z) is given by the product of this average value with the
volume R. Note that the integrand is a function of eight independent
variables derived from the three vectcrs, v, V', and k that define a
collision. Nordsieck's Monte Carlo method enforces a fairness of the

sampling in the eight-dimensional space of these variables.

3. The Boltzmann Equation

The units we shall use are the values, denoted by the
subscript 1, of various properties of a reference gas. Thus 0y,
T1 are the units of number density n and temperature t. The unit
length of length zl = 1/(2nn102) = (mean free path)lf J2. The unit
of velocity c, = VQEFEEI7HY = (mean speed)1 X (11/2). The unit of
time is therefore (mean free time)1 X (/2/m) and of the velocity

distribution function is nl/clg. In these units the Boltzmann equation




may be written

3E/3T + v 3E/3x = AR

v,r(FF’-ff')Il-(-\'rr|d\7’(dl.(/4n). (1)

where f = £(V,x,7) is the velocity distribution function, x is the
distance variable, and T is the time variable; the unit vector k gives
the direction of the line of centers during a collision; Gr = 3! - v;
and f f' F,F' denote the four values of f cor:esponding to the four
velocities, G,G’,V,V’. Integration is over the whole 41 solid angle in
order that the k integration limits may be independent of v and v'. The
notation Qf reminds us that this second part of the collision integral
is proportional to f{(v,x,T), a fact of importance in devising a stable

method of integrating the differential equation for the case of the

strong shock wave.

4., Geometrical and Numerical Assumptions

To develop a specific Moante Carlo algorithm that will yield
estimates of the Boltzmann collision integral we must make a number
of geometrical and numerical assumptions. Most of these may be easily
modified as required in the future. First, as we restrict ourselves to
flows possessing axial symmetry, we represent any velocity vector V¥
by its cylindrical components (vx,vl,¢) in velocity space. Because
of the axial symmetry the velocity distribution function will not
depend upon ®. In the sampling, however, we must still treat a collision

as a full three-dimensinnal phenomenon.
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Convenience of computer programming cf the Monte Carlo scheme
requ.res ti:at the region R ia velocity space be spanned by a fixed set
of velocity cells. We therefore traansform Vv to a new variable iﬁ by
introducing as ad justable garameters, a shift of the origin and a
velocity scale factor Xl. For any given problem these parameters are
fixed sc that all tut 0.i%, for example, of the molecules are within R.
Because of the rzpid (Gaussia:z) decrease of density with increase of
velocity, quadrarzure errcr in the velocity space is quite insensitive

to the fracticn of molecules excluded from R sc long as that fraction
is smali.

iIhe quantization of the velocity space Gﬁ in which we define
fixed cells was designed toc yield accuracy of the order of 1% in the
Monte Carlo estimation of the two parts of the collision integral.
(The values cf the conmponents of Gﬁ and Em that are used in the calcu-
lations are those corresponding to the centers of the cells in Gm space
and Em space.) We choose 226 cells ir the two-dimensional (VX,YL) space;
as shown in Fig. 1, to cover the semicircular region v < 24 in such
a way that the area of the 226 cells is different from the area of the
semicircular region by less than 0.1%. 1In our calculations we are
concerned with those functions a, bf, and f that depend only upon tne
two velocity components i and v, together with either the time or
position variables. Therefore, tables of 226 values of each of these
functions are stored in the computer for each value of the time or

positicn variable. As examples of the graphical representation of

such functicns we show, in Fig. 2, isolines of the Mctt-Smith approximate
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velocity distribution and the associated collision integral within a
strong shock wave. The v, axis in the figures is perpendicular tc
the shock front.

The quantized values of the azimuthal angle ¢ are chosen to
be odd multiples of (900/32) so that the range of ¢ from 0 to 2m
contains 64 cells. Sixteen values each of sin @ and cos @ are stored
in fixed tables corresponding to the range O to n/2. The cther
quadrants zre introduced in the Monte Carlo calculations by randomizing
signs appropriately. The unit vector k is represented by 64 sets of
values of the three direction cosines. The values are chosen in
such a way as to divide the first octant of the unit sphere into
64 equal parts. These 192 values of the direction cosines appear
in a fixed table in the computer.

Having defined the cells we shall use in V and k space, we
can now define the sampling algorithm. A sequence of pseudo-random
numbgrs each containing 37 bits is generated by a modified Juncosa10
process. Bits in the same number and in the sequence are practically
uncorrelated over the whole repeat cycle of 237 numbers. From each
random number we derive a random collision by using the bits as
follows: 14 bits for the vector v, 14 for the vector v', and 9 for
the unit vector k. Successive numbers in the sequence then lead to
successive and independent collisions randomly chosen from the
237' (226/'256)2 =1.07 X 1011 cells in the eight dimensional
(G,G',R) space. A collisjon is rejected as "unsuccessful' if either

Vor V', computed from (v,v',k), lies outside the region v < 24,

———p BPREG Y s T T T ey - o -~ - . N




The fraction of collisions thus rejected is 0.1583. The valr s of

(V#,YL,V*', Ylf)m are, in effect, rounded to values corresponding to

the nearest cell center in (Vx’YL) space.
m

5. Various Monte Carlo Estimates of the Collision Integral

5.1 The Eight Basic Estimates. Let us now consider four

. . . A
Monte Carlo approximations to each of the functions av, o and QfYLm'

The eight approximating functions are:

= 3 {FF'y Y2V - to, \aV
a =3 {FF'n )’ bf = J,K€£"% )
v v
a' = J_(FF'n, )2V b'f' = J (f£'x )2 (2)
2 1 1, = 1 1.,
v v
A =3 (£ )Y BF = J_{FF'n )2'
-S| /- ~ 1 1/
v v
At = J (££1u )Y B'F' = J (FF'n )"
~ 1 1 o0 ~ 1 1 =F

In these equations
o -40 = ! s (v'-v
3, 0= 8m 226(R)D T wy = [vyv) k@ -9 |1, (3)

where we are using the "machine units" defined above. The symbol below
each average-value sign in Eq. 2 indicates which of the four velocities
is held constant in averaging over a sample of collisions. Each of

the functions fﬁi”é)éj approaches the function Q’ and each of the

functions bf, b'f', BF, B'F' approaches the functicn Qf as one decreases
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by one means or another the errors of varicus kinds. For finite errors

of each type, however, the four functions of each type are distinct.

We may expect that the statistical errors in the Monte Carlo
. A Pe i . . -1/2

method of evaluating a and bf will decrease in proportion to N

where N is the sample size. We may expect that the quadrature error,

corresponding to the finite size of the cells in v and k spaces will

decrease as the volumes of the cells are decreased. Our program permits

easy variation of the cell size for the velocity space. The error

owing to the neglect of a few molecules with large velocities will ;

decrease rapidly as K1 is decreased.

PO

5.2 Linear Combinations of the Estimates. An important

characteristic of the Monte Carlo method is that all of the eight

PRIV,

functions in Eq. 2 can be evaluated simultaneously and, indeed, in
any useful linear combination. For example, let us look at the

evaluaticn of a which is found by forming a sum over the collision

s N

sample

v, 2V ol .
(FF nl)\_, M FF'n (4)

e e 1Y

Brrdeon’ HN

where V is held constant during the summation and M0 is equal to the

number of increments or hits for each velocity cell during the sampling

H
process. Each such sum is formed by fixed point arithmetic to permit :
unbiased rounding of the increments.

An increment (FF'nl/MO) in the value of the sum is made, '
for each random sampled collision (G,Q',ﬁ)*(@,ﬁ'), to the velocity l

cell labelled by the velocity v. In forming Eﬁ or B}f' we sum “

et - - s e D IR IR Y - - - ey v P v Sa——
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(ff'nllnb) similarly, again making increments in the v or v' cell,

respectively.

In forming A, é:, BF, B'F', we make use of the fact

that each collision (for molecules exerting central forces) has an

inverse; that is, if (¥,v',k)~(V,V') is a collision, so alsc is

(V,v',-k)~(v,v'). Then to get A ve sum (ff'nllﬂb) over (3,6',&)

while holding V constant, and similarly for A', BF, and B'F'.

Eq.

v, -
the

for

over (vx,YL) space and then later correct by the factor 2

effect uniform a priori probability of collision over three dimensional

In the simultaneous calculation of the eight quantities in

2 we symmetrize the Monte Carlo summand by multiplication by

This accomplishes two ends; it increases the speed of calculating

eight estimates and it makes possible achievement of good statistics

the cells near v, = 0 because we can distribute hits uniformly

velocity space.

considerations of Nordsieck's Monte Carlo method.

discussed iu this paper, and in our study of accuracy, we considered

The eight functions defined in Eq. 2 are basic to all

r

m ! to

in particular three linear combinations of these basic Monte Carlo

functions.

with similar
average over

expresses an

Two of these are

a, = 1/2(i+ i‘),

= 1/9f -
a 1/2Lau(vx,YL) + au( vx,YL)],

equations for Au’ (bf)u’ ... , BF.
the two incoming (or two outgoing) molecules.

average of a Monte Carlo estimate of a function and of the

-

Eq.

Eq. 5 expresses an

6

In the calculations

(5)

(6)

——yr
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"reflected" estimate. In Nordsieck's Monte Carlo method the samples
of ¥ and cf v' are ea .h distributed uniformly and independently over
the (vx,vl)m space (vm < 24). 1In our study of hits per cell we then

needed to consider orly a s and not a and a' separately.
~ ~

The other linear combination used is

aAN =1/2(a + A)

with a similar equation for (bf)AN' This is an average of the Monte
Carlo functions for the direct and inverse collisions which takes
advantage of the uniformity of sampling in v and v spaces.

Each of the linear combinations that has been defined is

relevant to the Monte Carlo method because the corresponding

summands in each case can be computed from the two tasic functions

(ff'nl) and (FF'nl) with almost no additional arithmetic. Therefore,

the size of a Monte Carlo sample can be increased, in effect, by

these exchange operations between primed and unprimed molecules,

between incoming and outgoing molecules, and between a collision and

its reflection.

5.3 Corrections that Force Conservation. The starting

noint in deriving these corrections is the observation that accurate
solutions of the Boltzmann equation must satisfy conservatior

equations characteristic of the problem at hand. We therefore compute the
smallest corrections of the values of the 226 values of the collision
integral, in a least-squares sense, that are consistent with enforcing

conservation.

TSI WV T AR N T e T e e A
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Why is this correction method appropriate? Any numerical
“quadrdture method of evaluating the collision integral produces noa-
zero quadrature errors. There will consequently be a bias in the
computed values of the two parts of the collision integral. (The
neglect of a few molecules with large speeds will cause a somewhat
smaller bi#s.) Solutions of the Boltzmann equation both for the pseudo-
shock and the shock wave require repeated evaluation of the collision
integral, so that uncorrected bias tends to build up unacceptable
trends in the computed solutions. If, as in the case of our Monte
Carlo method, the bias is not large, then the least square adjustment
that we have described will produce values of the collision integral
which satisfy the conservation equations and prevent, to a large

extent, the drift or trend in the calculations.

6. The Computer Program

As noted above, our program at present assumes elastic
sphere molecules and axial symmetry of velocity distributions. The
first restriction is easily removable. The program car be modified
to remove the second restriction. However, the present program
without modification is directly applicable to the pseudo-shock, the
shock wave and all similar problems involving only one space or time
variable.

The Monte Carlc part of the program contains about 900 words
(order-pairs, constants, and fixed tables). The complete program

contains about 8,000 words which includes the Monte Carlo part of the

T ——— T T STeTR, Tt K — T T SRR R AT T T - 1

-
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program, integration and moment programs, and many useful auxiliary
programs. As noted earlier, the number of cells in the eight dimensional
(ﬁ,ﬁ',i) space that is sampled is more than 1011. (A direct simple,
numerical quadrature of comparable accuracy would require ~2 X 109 cells
in a seven dimensional space.) The program computes 226 values (in
parallel) of each of the functions a

and {bf) according to the

AN AN’

Nordsieck prescription, in three minutes on the CDC 1604 with statistical
fluctuations of 87.

In any accurate method of solution of the Boltzmann equation
it is necessary to add efficient methods of monitoring and judging
the large volume of numerical data produced. Our calculations generally
produce 226 values of each of the functions f, a, and bf for each
iteration in the shock wave problem or each step in time in a relaxation
problem like the pseudc-shock.

We have two monitoring devices for following this large
output of data.* One monitoring device is the calculation and output
of many moments of f, a, or (a-bf). Our numerical integrations in
velocity space are good to much better than 1%, except for high order
moments or sharply peaked integrands. We output 11 independent moments
of the velocity distribution function f (including the two or three

moments which should be conserved, the density, the Boltzmann function,

%
It must be remembered that in developing a method of solvirng a difficult
equation like the Boltzmann equation it is necessary to make many more
trials and test calculations than are needed for the final production
run.
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and its flux). We also output nine moments of a and of (a-bf), some
of which, by conservation, should be zero, or, by the Boltzmann theorem,
should be negative.

As a second monitoring device we output characters denoting
ranges of values of each of the velocity dependent functions f, a,
and bf. Approximate isolines may easily be derived from these characters
and permit immediate and vivid visualization of the nature of the
functions and their changes from one physical or calculational situation
to another. The spacing of the isolines can be set at any appropriate
level by changing the table of the reference function values that
correspond to the characters output. Examples of accurate isolines,

derived by such a procedure, are shown in Fig. 2.

7. Behavior of Solutions of the Boltzmann Equation

We have been particularly interested in using the Monte
Carlo evaluation of the Boltzmann collision integral in calculating
a translational relaxation process (the ''pseudo-shock') and in trying
to solve the Boltzmann equation for a shock wave. From each of these
problems we have derived considerable, though indirect, support for
the validity and reliab&lity of the Monte Carlo method. 1In both
prob!ems we take, as absolute requirements on the validity of the
method, that the appropriate conservation equations be satisfied
and that the appropriate Boltzmann function decrease monotonically.
Such requirements must clearly be made on physical grounds and are
especially important in the absence of methods other than Monte

Carlo of solving the Boltzmann equation for these problems.

i—— s P N L " - -
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Using the least square adjustments of the collision integrals

we solved the pseudo-shock problem3 and demonstrated the accuracy,

stability, and convergence of the solution process, these characteristics

being dependent upon the reliability of the Monte Carlo evaluation of
the collision integral Fig. 3 illustrates several of the favorable
characteristics of our Monte Carlo solution for this pseudo-shock.

The Boltzmann function decreases monotonically, for each value of the
Mach number M, and Monte Carlo fluctuations have negligible effect

until late in the relaxation process. Even for the rather small samples
used (10,000 collisions for each forward step in time) we were able

to calculate the slope of each of the curves in Fig. 3 and show that
there was no significant difference between the slopes.

It has been our objective since 1958 to solve the Bol .zmann
equation for shock waves using our Monte Carlo method. It has been
apparent for several years that it is the convergence and stability of
our iterative method of solution of the Boltzmann differential equation,
rather than the difficulty in evaluating the collision integral in it,
which has been impeding our progress toward solution of this problem.
We have recently been using the correction method which forces the
conservation equations to hold and have begun obtaining stable and
convergent results in treating the internal structure of shock waves.

Let us illustrate these remarks with data for a shock wave
that is described by the values of f(Vv,x) and of (a-bf) at nine
positions within the shock. Fig. 4 illustrates the rapid convergence

obtained for a typical Monte Carlo run for M = 2.5 with 213 collisions
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in each Moate Carlo sample used. The rms change, §f, of £ from one
iteration to the next, decreases by a factor of seven in the first
three iterations. By the twelfth iteration the rms value of §f has
decreased to 0.00013, although the largest value of f, near the cold
boundary of the shock, is clese to unity.

The data shown in Fig. 5 were obtained by averaging the
values from four independent runs of twelve iterations each, with
213 collisions in each Monte Carlo sample. It has been shown
earlier11 that the density profile n' is appropriately represented
by a plot of the density gradient dn/dx against the reduced number
density ﬁ=(n-n1)/(n2-n1), as in Fig. 5. For a Mott-Smith shock
the curve is a parabola. Even at this exploratory stage of our
calculations, with samples of 213, there is some evidence that the
shock is significantly asymmetrical. As expected from the Boltzmann
theorem, the Boltzmann flux derived from the same four runs decreases
monotonically through the shock.

Further indirect checks of the Monte Carlo evaluation of the
collision integral will depend upon comparisons with accurate
analytical solutions of the Boltzmann equation for very weak or very
strong shock waves. The Navier-Stokes equations should describe
accurately the internal structure of weak shock waves, and also the
characteristics of shocks of any strength near their up- and down-stream
boundaries.11 Although it has been suggested12 that the Mott-Smith
model is asymptotically correct for strong shocks, it predicts the

wrong value of the Prandtl number near the down-stream boundary.11
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In view of the errors of the various methods we do nct know at this
time whether there is any value of the Mach number for which the errors
of the methods would be small enough so that comparisons of the predicted
details of shock structure would be meaningful. Efforts to make
such meaningful comparisons are obviousiy important both to check
further the soluticns based on the Monte Carlo evaluation of the collision

integral and to define the range of validity of the analytical theories.

8. Future Studies

We shall outline here briefly a variety of directions that
may be taken in future research, now that there is a reliable
method of evaluating the Boltzmanu collision integral. These various
researches may involve either modifications of our method or
applications of it, and these aspects of course will often overlap.
Let us first consider modifications and studies of the
Monte Carlo method which will be useful in all of the applications of
this method that will be outlined below. These are: a) Many random
collisions calculated once for all and prestored on tape or disc.
Use of such prestored collisions should speed up the Monte Carlo
part of the program by a factor of five on our present computer,
b) Higher accuracy Monte Carlo calculations of the collision integral
by using more cells in velocity space and larger samples of collisions,
c) Modification of the program so that it will accept differential

cross-sections corresponding to arbitrarily given intermolecular
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potentials, d) Co=mparison of our Monte Carle calculaticns of the Boltzmann

collision integral for far-from-equilibrivm conditions with accurate
and direct aumerical quadratures.

Now iet uvs consider a whole class of kinetic theory probiems
for monztomic, single comporent gases that can be studied directly
with our preseat ¥oate Carlc prograa and its auxiliary programs without
@major xodification. These problems are these in which there is just
one independent variable of positicre cr time ia the Boltzmann equation.
Typical problems are those of translational relaxatica (any such
relaxation, not just that in the pseudo-shock); shock waves for a
variety of Mach numbers a2nd intermolecular potentials; and rarefied
gases in which there are large gradients of temperature, velocity, or
pressure (in other words, problems of heat and momentum transfer, of
d¢iffusion and thermai diffusion, and of gase subjected to stroag
perturbations by high-frequency sound or light).

Useful comparisons will be possible cf Monte Carlo sclutions
of any of these problems with algebraic and substitute theories
of shock structure and with appropriate approximate theories of other
pnvsical phenomena. The range of calculations we have just described
coula also be used as a basis for describing phenomena in non-
equilibrium monatomic gases that contain a small fraction of otner
species. Understanding of a number of physical phenomena in these
impure monatomic gases then could be aided by the results derived
from the Moate Carlo calculations for monatcmic gases, namely:

rotational and vibraticnal excitation; the initiation of ionization

) e e -
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and of chemical reactions; electrostatic fields produced by a shock
wave in a gas already slightly ionized; and the phenomena of shock
precurscrs.

There are also interesting calculations, which hithertc have
not been pessinle, which will require more extensive but not basic
modifications of cur program. One set of problems concerns phenomena
in binary and multi-component mixtures of gases. Treatment of such
probiems requires some modifications of the algebra and bookkeeping
in the Monte Carlo program to account for collisions between unlike
species. A second set of prcblems which is closer to the interest
of aerodynamicists, involves two independent variables of position or
time. Problems of this type are: shock initiation; the classical
problem of transient heat flow, which would provide a useful check
calculation; and hypersonic flow and heat transfer in the stagnation
point region and over slender bodies for Knudsen numbers less than

one.
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e =-,003
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l!‘ Fig. 2 Isolines of (a-bf) and f for the center of a Mott-Smith

shock wave in a gas of elastic spheres. (Arbitrary units)
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Fig. 3 Translational relaxation of the Boltzmann function.

The ordinate is the excess of the value of the Boltzmann function,
calculated by the Monte Carlo solution of the Boltzmann equation, over

its predicted asymptotic value.
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13 ABSTRACT

A Monte Carlo method of solving the fundamental equation of the
kinetic theory of dilute gases has been developed and successfully applied
to two problems, one involving translational relaxation of a spatially
homogeneous gas and the other a plane steady shock of arbitrary strength
(shock strength limited only by the fineness of the velocity space mesh).
This is the first and only method capable of computing the molecular veloc
ity distribution under conditions far from equilibrium.

The essence of the problem is evaluation of the non-linear five-
dimensional collision integral. Straight forward numerical quadrature
would require about a year on the fastest present day computers. The
computation time is reduced to a practical value, of the order of an hour,
by a statistical sampling technique closely resembling the real statistica

collision phenomena in the gas. (continued on next page)
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Abstract (continued)

Computations to date have been restricted to elastic sphere
scattering of molecules without internal degrees of freedom. Differ-
ential scattering cross-sections other than elastic sphere can be
accommodated in the computer program without complications or computing
time penalty. Introduction of one or two internal molecular degrees of
freedom will increase the complexity and computing time, but not to an
impractical degree.

Several technical problems had to be solved in order to make the
method work properly. The "fairness' of the random coliision-selecting
prccess had to be designed with care and verified thoroughly. Further-
more, a tendency for the theoretically conserved quantities (number of
molecules, momentum and energy) to change slightly because of interpola-
tion and quadrature errors, had to be corrected to prevent its building
up significantly over many time steps or iterations. In the case of
the more difficult shock wave computation, a tendency for the shock front
to creep out of the computatioral reference frame in the course of
successive iterations had to be eliminated by choosing density rather
than distance normal to the shock front as independent variable. Finally,
a verifiably convergent iteration scheme had to be devised for succes-
sively improving an initial trial solution. All of these technical
problems have been solved. The initial trial solution so far used has
been the Mott-Smith approximation.

We exhibit for the translational relaxation problem a graph of the
temporal behavior of the Boltzmann function for Mach numbers ranging
from 0.5 to 6. For the shock wave problem we show, for Mach number 3.0,
contour plots of the Mott-Smith velocity distribution function, and of
the collision integral derived from it, together with other plots

characterizing the Monte Carlo solution of the problem.
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