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MINIMUM-COST FLOWS IN CONVEX-COST NETWORKS* 
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ABSTRACT 

An algorithm is given for solving minimum-cost flow problems 
where the shipping cost over an arc is a convex function of the number 
of units shipped along that arc. This provides a unified way of looking 
at many seemingly unrelated problems in different areas. In particu- 
lar, it is shown how problems associated with electrical networks, with 
increasing the capacity of a network under a fixed budget, with Laplace 
equations, and with the Max-Flow Min-Cut Theorem may all be formu- 
lated into minimum-cost flow problems in convex-cost networks. 

INTRODUCTION 
Consider a connected network consisting of nodes N. and arcs A.: leading from N. to 

N..   Among the nodes N., there is a special node N    called the source, and a special node Nt 

called the sink. The flow from N. to N. in the arc A., is denoted by x...   If it is possible to 
have flow from N to N. or from N- to N., then the arc A^ is called an undirected arc.  We 
consider the following problem: 

(1) Min z = S c^) 

subject to 

r v  for j = s 

^j-^jk (2) Sx^-Sx-^ 0  for j ;* s, t, 

v  for j = t, 

where c<i(X|i) are non-negative convex functions of XJJ , {c^M) = 0) and the arc flows Xji are 
required to be positive integers or zero.   The parameter v, which is required to be a non- 
negative integer, represents the total flow from source  o sink. Note that Eqs. (2) express the 
conservation of flow at nodes other than the source and the sink.   S xBi is the outflow of N. 

and S xjt the inflow to the sink. The objective function (1) is a sum of convex functions (not 
j    J 

necessarily strictly convex), and is thus convex. 

'''This manuscript is based on RAND Report RM-4265-PR. Views or conclusions contained in 
this paper should not be interpreted as representing the official opinion or policy of the U.S. 
Air Force. The completion of this manuscript was done when the author was at the Univer- 
sity of California, supported by The Office of Naval Research, The Army Research Office, and 
The National Science Foundation. 
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We shall discuss, under Applications, how this problem is related to problems of find- 
ing maximum flow in a network with arc-capacity restrictions, problems in the synthesis of 
traffic or communication systems, electrical-network problems, and certain boundary-value 
problems. Similar work has been done in this area (see [1,3,7,11]). In [3], linear cost func- 
tions c>,(x>i) are considered; the method of [1] deals with bipartite networks and starts with a 
feasible solution. 

The algorithm presented inlhis paper deals with general convex-cost functions in an 
arbitrary network and gives a feasible solution which is optimal for the parameter v.   In 
spirit, it is closely related to that of [1] and [3]. 

A set of non-negative x.- satisfying (2) is called a/low with value v.   A flow which 
minimizes (1) for fixed v is called an optimalflow corresponding to v.   Since the cost of 
shipping the flow along an arc is a convex function of the amount of flow shipped, the cost of 
shipping one additional unit of flow along the arc will depend on how much flow already exists 
on the arc.  Following Beale [1], we define the so-called "up-cost" of an arc as follows.   For 
an arc A.. with x.. = 0 in the arc, the up-cost of that arc is the cost of sending one additional 
unit of flow from N. to N., i.e., 

(3) W = cij(xij + ^ ' cij^V f0r Xij ~ ^ 

Suppose we want to send one unit of flow from Ns to Nt in which we have to send one 
unit of flow from N. to N. along the arc Ai; where there already exists x.. ^ 0 in the arc; 
then this one unit of flow from N. to Ni will cancel one unit of x> ^, hence the cost of sending 
one unit of flow from N. to N. is actually negative. 

We shall call this the "down-cost" of an arc; i.e., the cost of sending one unit of flow 
from N. to N..   In symbols, 

(4) W = "Cij*V + CiJ^XiJ " ^ f0r Xij ~ l' 

We shall assume throughout the paper that c^(0) ■ 0; then it follows from the convexity 
of the cost functions that 

CjjCO) + [cjjfyj + 1) - CJJWJXJJ/CXJJ + 1) 2 CJJCXJJ)  for XJJ > 0. 

Since c^(0) ■ 0, we have 

cij^xij + ^ - ^ij + ^ cij^xij^xij' 

This means the up-cost of an arc is always positive.  Similar reasoning shows that the down- 
cost of an arc is always negative.   Furthermore, for any two non-negativo integers a and b 
with a < b, we have 

(5) u^a) < UjjCb), 

(6) Id^ajMd^b)!. 
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if xj.' and xK' are of the same directions, and 

x^=lx(1>l-lx(2)| xij       ' xij   '   ' xij ' ' 

if x>.' and x>.' are of the opposite directions and x>.' is of the greater magnitude.  We say 
that two flow patterns are conformal if and only if 

J3) _ x(l) . „(2) Xjj        Xj.   +xi. 

for all arcs. 
A particular flow, called a "path flow," is a flow with x . = x^ s ... = xnt = 1, and 

x.. ■ 0 otherwise.  If the cost of a flow with value v is known and we superpose a path flow on 
this given flow, the resulting flow has value v + 1.   The total cost of the resulting flow with 
value v + 1 is the sum of the cost of the flow wHh value v, plus the sum of u.. and d.• used 
in the path flow.   u.. is used if the arc flow of the path flow is of the same direction as that of 
the arc flow of the flow with value v, and d. ■ is used if the two arc flows are of opposite di- 
rection.  The sum of u. ■ and d.- used in the path flow is called the incremental cost of the 
path flow. 

ALGORITHM 
The algorithm for solving the minimum-cost flow problem in convex-cost networks can 

be simply described as follows. 
Starting with all x^ * 0, send one unit of flow from Ns to Nt along the path whose in- 

cremental cost relative to the existing flow is minimum.  (This can be done by any of the exist- 
ing shortest-path methods with Uj- and d.> as the lengths; see, for example [6,11].) In the 
beginning, only the u.. are relevant since there are no positive arc flows which could be po- 
tentially cancelled.  Redefine the u- and d^ based on the new flow pattern obtained, a d send 
one additional unit of flow along the path with minimum incremental cost.  The process of 
using the minimum incremental cost path is repeated until the total outflow of Ns is v (or the 
total inflow of N. is v). 

Many proofs are known for the case where the objective function (1) is a linear function. 
In Beale [1], an algorithm is given for a bipartite network with convex costs, and it starts with 
a feasible solution.  It is easy to convert the existing proofs and ideas into the case of an arbi- 
trary network and convex-cost functions, and to show that at every successive stage of the 
algorithm the flow pattern is optimum for the corresponding parameter v. 

- 

For a given network with directed and undirected arcs, let a flow with value v, be 
in 1 

given and denote its arc flows by xVV.   Let another flow with value v9 be given and denote its 
(2) " arc flows by x>?'.   If we superpose the two flows, then we get a flow with value v, + Vg •   Note 

that if A.. is a directed arc and having arc flow x^ > 0, then it is possible to superpose a 
flow with arc flow x.j > 0 provided lx.j I > 1x^1 

x(3) _ „(1) . „(2) 
xij   " xij   + xij   ' 
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Let us give one example to illustrate the algorithm. Consider Figure 1.  The cost 
function of each undirected arc is Cj. x>., with c^ written beside the arc and c^ = c^.   As- 
sume a given flow pattern as shown in Figure 2. 

Figure   1 Figure   2 

Then the up-costs and down-costs of every arc arc calculated from (3) and (4) with the 
result shown in Figure 3, where the first number beside an arc is the up-cost, the second 
number is the down-cost, and the directions of up-costs are the same as in the flow pattern of 

2 2 Figure 2.   For example, the up-cost of A19 is 2x2   - 2x 1  = 6.   If an arc has no flow, like 
ls2' 

12 2 
the cost of flow from both directions will be 4 x 1 4x0   =4.   If we want to send one 

additional unit flow with minimum incremental cost, we should use the arcs A^, Agj, and 
A.x with total incremental cost 4 + (-2) + 4 = 6, with the resulting flow pattern as shown in 
Figure 4. 

Figure  3 Figure  4 

APPLICATIONS 
Maximum-Flow Min-Cut Theorem 

The problem of finding maximum flow through a network with b.. as the capacities of 
arcs can be formulated as follows:   max v subject to 



f 
CONVEX.COST NETWORKS 

(7) 

r-v  for j = s, 

0  for j ^ 8,t, 

^ v  for j = t, 

and 

(8) 0 < XJJ < bj.   for all i, j, 

This problem can be formulated as a minimum-cost flow in convex-cost networks as in 
(1) and (2).  The cost function of an arc is shown in Figure 5. The up-cost when x^ > b- is 
not defined as it is not permitted by (8), and the up-costs and down-costs are easily seen to be 

uijN) = 0     if xij<bij' 

W= 0  if xij >o. 

U^Xjj)   =   00      if   X^   = by . 

COST 

bii 

VALUE OF 
ARC FLOW 

Figure 5 

The v in (2) is taken as a parameter.  The maximum flow v is obtained when the value of the 
objective function z becomes infinity for v -t- 1.   This means when the value in (2) is v, there 
is no arc in the network with infinity cost, and when the value is v + 1, at least one arc is with 
infinity cost. Since we are minimizing z, there must be a set of arcs which form a cut in the 
flow with value v in which all x.. = b- .   Hence, the value v is the maximum-flow value. A 
proof as well as an algorithm is shown in Busacker and Gowen [3].  We can generalize the ap- 
proach used in [3] to solve the following case: 

(9) 

subject to 

min z = !: c^Xj.) 
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(10) f xij' k xik 

r-v    j = s, 

= -^   0    j ^j,t, 

.v    j = t, 

(11) 0sxijsbij' 

where in (9) z is a sum of any convex-cost functions. The algorithm of always choosing the 
path flow with minimum incremental cost works for the case when the objective function is a 
linear function (see, for example [3]), and its validity does not depend on how many arcs con- 
nect the two nodes.   We shall transform Eqs. (9), (10), and (11) into a linear case as follows. 

Consider an arc b,. as a set of arcs, each with unit capacity. Index those arcs with 
positive integers 1,2 p.   The cost of the k-th arc from Nj to N- is 

CJJOC) = c^k-l)   if xjj = 0, 

and the cost is oc if Xj. = 1.   It follows from the convexity of c^frj J that the up-costs of arcs 
from Nj to N. are always monotonically increasing with the index of the arcs, while the down- 
cost of the k-th arc is negative if it has flow. Assume that x^ > 0; then if we want to send 
additional flow from N. to N*, we always use the arc with smallest index if that arc is not 
saturated; if we want to send flow from N. to N., we always use the saturated arc with largest 
index.  Then (9) becomes a set of linear cost functions of those unit-capacity arcs, since in no 
case would we use an arc with infinity cost. 

Increasing the Capacity of a Network 
This problem solved in [9] can be stated as follows. A network with capacity b,. is 

given.  Now, we want to increase the capacity or construct new arcs such that the maximum 
flow from N   to N. is increased.  The cost of increasing or constructing a unit capacity from 
Nj to Nj is cjj. The problem is to find max z = v subject to c = _  V 

cij yij 

S x^ - 2 x 
k   Jk 

.1 -v   for j = s, 

0   for j ;* s, t, 

L v   for j = t, 

0-xij-bij+yij5 

i.e., with a given budget, we want to maximize the flow from N   to Nt by allocating y.- 
appropriately.* 

*The  cost  function on y^  is like  Figure 5 with the vertical line   replaced by an inclined arc 
with slope  cj;. 
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This problem can also be solved by the algorithm of minimal incremental cost path.  It 
follows from (3) and (4) that the up-cost and down-cost are: 

W = 0 " ^j < bij' 

W = Cij       " "ij ^ bij' 
djify) = 0 if 0 < x^ < by, 

W = ^ij     if "ij > bij • 

Then the solution is to always send from Ns to Nt one unit of flow along the minimal incre- 
mental cost path (since we can consider the problem as min S c- y- and treat v as a param- 
eter), until the total amount of money used up is c.   Then 

y« = 'Hj - bij lf "a > bij 

Electrical Network 
Consider a passive electrical network with one current-input source at N   and one 

current-output source at N..   From Ohm's law, the electrical current x^ from Nj to Nj is 
proportional to the potential difference (p^ and inversely proportional to the resistance r- of 
that arc; i.e., 

Xii =  'ij ' 

2 
The work done by that arc is Xj • (p^ ■ r^ x„.   To solve an electrical network of the preceding 
type, we can solve the simultaneous equations given by Kirchoff's node law and Kirchoff's loop 
law. Alternatively, we can regard Kirchoff's node law as linear constraints of the currents 
x.., and minimize the total work done.  This, then, becomes the following quadratic program- 
l*   -       ,2      ... ming problem (see [5]):   min z = S rj. xf. subject to 

f XiJ "5 XJk " < 

"-v  for j = s, 

0  for j ?= s, t, 

^ v  for j = t. 

This problem can again be handled by the minimum incremental cost-path algorithm by defin- 
ing costs of arcs as follows.  Let 

Cij(xij) = ry Xy 

thus 
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VV = rii(2xij + ^      if xij ~ 0' 

W = "rij<2xij " ^    if xij - 1 * 

Laplace Equations 
The consideration of a network problem as a boundary-value problem was done in [2]. 

Let us consider the Laplace equation in a region G, where 0 is a function of two real varia- 
bles. 

(12) V20 

with the normal derivative prescribed on the boundary of G. If we use difference equations to 
replace (12) and use a uniform grid, then the value of 0» at a point is the average value of its 
four neighbors (see Figures 6 and 7); i.e., 

(13) 40o - 0N - 0s - 0E - </>w = 0, 

0. 
0. 
^o $i 

0s 
Figure  6 

0W 

'NO 

E0 

•js 

Figure  7 

By rewriting (13) and letting X^Q = 0E - 0Q , and so forth, we have 

(14) XE0 " X0W + XN0 " X0S ^ 0 * 

Equation (14) then can be considered as the conservation-of-flow equation, with x™ the arc 
flow from node E to node 0.   The boundary condition of prescribing d0/dn is then interpreted 
as the condition of inflow and outflow at sources and sinks in a network. * The Dirichlet prin- 
ciple (see, for example [8]) for solving a Laplace equation can then be regarded as that of 
minimizing a quadratic objective function. 

(15) min B ■ S Xji, 

subject to Eq. (14) at interior points of region G and satisfying the boundary condition x,* 
d0/dn at the boundary of G. 

*The  multiple source and sinks  can be  easily transformed  into one source and one sink.    See 
page 15 of [8]. 
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We have the objective function 

z = S x 
Ü 

thus 

W = 2xij+1 if x^so, 

dj^Xjj) = -2XJJ + 1      if XJJ 2 1. 

Then the Laplace equation can be solved by min incremental cost path from sources to sinks, 
as done previously. Special examples can be given to show that this approach is better. De- 
tails of this algorithm and numerical examples will be shown in [10]. 
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