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ABSTRACT

This paper explores the relationship between research project
cost and expected time to completion under various scheduling strate-
gies; it assumes that many potential technical approaches to the re-

search problem can be identified; and that each approach has a low but

finite subjective probability of success. It is shown that under a vari-

ety of assumptions, expected time to project completion can be reduced,

but that as a result expected project cost rises at an increasing rate.
Some cases in which this convex time-cost tradeoff relationship might
not hold generally are identified. When the time-cost tradeoff function

is convex, the desirability of concurrent as opposed to series schedul-
ing of approaches depends crucially upon the depth of the stream of

benefits expected to be realized upon successful project completion.

The deeper the benefit stream is, the more desirable concurrent

scheduling is.

INTRODUCTION

Recently the relationship between time and cost in research and development projects

has attracted considerable interest. Empirical estimation of the time-cost tradeoff function is

exceptionally difficult, since R&D projects can seldom be replicated under precisely controlled

conditions. PERT-type analytic studies have suggested a convex relationship, with total cost

decreasing at a decreasing rate as time is increased.t Most of the results presented thus

far, however, depend upon an initial basic assumption that diminishing returns set in as more

manpower is applied to individual project tasks. While plausible, this is surely not the only

and perhaps not the most important mechanism causing cost to vary with time. Notably, the

role of technological uncertainty cannot be overlooked.

In this paper, the relationship between time and cost in what may be called uncertain

empirical research and development projects is explored. Specifically, we consider situations

where a large number of potential technical approaches can be identified and where several of

these approaches may lead to successful solutions, even though ex ante no single approach

promises anything close to certainty of success. Many illustrations come to mind. Edison,

for example, is said to have tested 1600 different filament materials before finding one which

satisfied his incandescent lamp requirements, although his carbon filament solution was not

*The research for this paper was supported by a grant from the Inter-University Committee

on the !Aicroeconomics of Technological Change, sponsored in turn by the Ford Foundation.
Use was also made of computer facilities supported in part by National Science Foundation

grant NSF-GP579. I am indebted to Harold W. Kuhn and S. P. Burley for helpful comments.
tFor a survey of the PERT literature, see [6]. Other approaches to the problem are found in

[5, chapter 9] and [7].
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the only one which ultimately proved workable. The discovery of aureomycin followed testing
of several thousand microorganisms, but later work disclosed a whole class of organic mole-
cules with roughly similar therapeutic properties. Numerous different materials were tried in
the search for suitable Jupiter IRBM reentry bodý ablative coatings and for a high-strengtl-,
low-weight Polaris rocket motor casing. Similarly, in the Polaris program a variety of ap-
proaches to the problem of thrust vectoring were pursued, and several acceptable solutions

emerged.

Given the difficuity of ascertaining actual time-cost tradeoff relationships empirically,
an effort is made here to proceed as far as possible on the basis of elemental a priori assump-
tions. Qualifications associated with real-world complications will be added later. The fol-
lowing greatly simplifying assumptions will be made initially: First, we assume that each
approach to a technical problem has the same prior subjective probability of success p, where
0 < p < 1. From this, we define q = 1 - p to be the probability of failure for a given approach.
Second, we assume that the success probability of any specific approach is independent of the
number and sequence of other approaches pursued. Third, it is assumed that any successful

approach will solve the required problem, and that additional successes are redundant.
Fourth, we assume that each approach has the same dollar cost M of execution, which is in-
dependent of the number and sequence of other approaches pursued. Finally, it is assumed

that each fully-staffed approach normally takes exactly one time period to execute.*

SETTING THE NUMBER OF APPROACHES

Under these assumptions, the probability of overall project success is defined by:

(1) P(p,N) = 1 -qN

where N is the number of approaches executed. The more approaches pursued, the higher the
probability of overall project success will be. To decide how large N will be, one must weigh
the expected cost M of each additional approach against the expected gain from pursuing that
approach. If B is the discounted present value of the benefits realizable upon successful so-
lutior of the technical problem, the expected value E(B) of a project with N approaches is
P(p, N) E = (' - qN) B. As a first approximation (to be modified later), expected profits will
be maximized bv authorizing additional approaches as long as the cost M of the N-th approach

is less than the incremental gain from conducting that approach, which is defined by:T

(2) AE(B) [(1 - qN)- (1- qNI)] B = qNl(1 - q) B.

*An alternative formulation might be to define p as the probability of success associated v ith
a single man-year of research effort. This approach would not alter the results prtesented
here.

tIf the failure probabilities are not identical for all approaches, and if each approach has the
same cost, approaches should be sele Led in the order of lowest failure probabilities first.
If costs vary from approach to approach, a nonlinear progrinmming problem must be solved,
although the basic result is similar to the solution in this simpler case.
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For any given q and B, AE(B) must decline as N increases. For any given q and N, AE(B)

increases with B. Therefore, the greater are the benefits B realizanle upon successful proj-

ect completion, the more approaches it will pay to authorize.*

PROPERTIES OF THE TIME-COST TRADEOFF FUNCTION

Let us now assume provisionally that the number of approaches authorized N and hence

the probability of overall project success P(p, N) is decided upon. It is still necessary to de-

termine how the execution of those N approaches will be phased over time. One possibility is

to run the approaches serially, that is, one after the other. Another is to run all the approaches

concurrently in the first period, guaranteeing project completion (with probability P(p, N) of

success) by the end of that period. Many other distributions are possible when N and the

number of periods are fairly large.

Three quantities vary with the choice of a time sequence of approaches: (1) the number

of periods T required to execute all N approaches, and hence the planned time before the

probability of project success P(p, N) is expected to attain its full anticipated value; (2) the

expected value E(T) of the time required to achieve a successful solution or terminate the

project (the latter after N unsuccessful approaches); and (3) the expected cost E(C) of the

project. These three are functionally related, defining two different time-cost tradeoff func-

tions: the relationship between T and E(C), and the relationship between E(T) and E(C).

Let us consider first the relationship between T and E(C).

Plainly, if the N approaches are distributed over T periods, T periods are required

before the anticipated probability of project success P(p, N) is assured in an ex ante sense.

For example, if 10 approaches, each with p of 0.20, are to be pursued, one can expect the

overall success probability of 0.89 to be attained one period hence if all 10 approaches are run

concurrently in the first period, but only it periods hence if the approaches are run serially.

The expected cost of project execution must be 10 M in the fully concurrent strategy, since all

10 approaches will have been run before any approach is completed under the present assump-

tions. But expected cost must be lower if the series approach is pursued. This is so because

success may come in an early period, making it unnecessary to continue with the remaining,

originally planned approaches.

To study the properties of the function linking T and E(C) further, let us begin with a

special assumption: that the N planned approaches are to be distributed evenly over the

planned project duration T, so that in any single period N/T approaches will be executed.t If

the cost per approach is M, expected cost as a function of T is given by:

(3) E(C) = NM/T + qN/T (NM/T) +... + (qN/T)N-l (NM/T).

Letting t be a running integral time variable, this simplifies to:

*It is conceivable that decision-makers also value certainty of success for its own sake. Then

the optimum depends not only upon the cost and value of incremental approaches, but also
upon the decision-maker's subjective preferences. In this case, which will not be explored
further, the number of approaches usually will exceed the number authorized in the pure
profit-maximizing case.

TNote that fractional approaches may be required; this violates an initial assumption. But this
does not seem unreasonable -- an approach may be stretched over more than one period, even
though it cannot be conducted in less than one period.
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T-1

(4) E(C) = (NM/T)
ý0

Now the larger T is, the smaller the ccst Fer period NM/T will be, but the more periods
there will be in the summation. If the (qN/T) term were equal to 1.0, which is possible only
when N/T = 0, E(C) would be constant with respect to T, since increases in T would simply

mean dividing NM into T equal parts and summing T of those parts. E(C) can increase with
T only when (qN/T) > 1, which is impossible, since 0 < q < I in any uncertain approach
worth trying. It must decrease with T when (qN/T) < 1. And this must normally be true,
since N must be positive and T is not likely to be infinite in any research project worth con-/
ducting. Therefore, expected project cost E(C) must decline as T is increased. Or con-
versely, the more rapidly the project is to be conducted, the higher its expected cost will be.

If the probability of overall project success P(p, N) is to be held constant, q and N
must be held constant. Given q and N constant, the greater T is, the smaller N/T is and so

the closer we approximate the constant cost case of q N/T = 0. Thus as T increases, E(C)
decreases, but at a diminishing rate. This proves that for the special case of approaches dis-

tributed evenly over time, the T, E(C) tradeoff function is strictly convex to its origin. Com-
puted tradeoff functions for P(p, N) of 0.99, 0.95, 0.90, and 0.80, each assuming an individual
approach success probability p of 0.05 with a cost per approach of $1,000, are illustrated in

Figure 1. *

Unfortunately for the cause of simplicity, the equal -number-of-approaches -per-time -

period scheduling strategy is generally not the most efficient strategy if one is interested pri-
marily in achieving a certain probability of project success P(p, N) by time T. Where N. is1

the number of approaches scheduled frr the 1-th time period, the problem of efficient schedul-
ing in this case is to minimize the more general expected cost function:

(5) E(C) = MA 1 + q MN 2 +... + (q1 T -) MNT

subject to the constraint

T

ZL N1 = N,

i=1

with N set at a level which yields the desired probability of overall project success. Under
these assumptions, the most efficient strategy is to schedule a greater number of approaches
in each successive time period. To see this, the scheduling problem can be viewed as a prob-
lem of allocating resources (N approaches) to T activities (periods). Cost is generally mini-

mized in such a case with an allocation which lets each activity come as close as possible
(within limits imposed by the integral number of projects) to having the same incremental cost.t

*The tendency for E(C) to be less variable for lower P(p, N) is quite general. For p ranging
from 0.01 to 0.50, the ratio of E(C) for T = I to E(C) for T = 25 was found to be approximately
4.3 for P(p, N) = 0.99. 3.0 for P(p, N) = 0.95, 2.5 for P(p, N) = 0.90, 2.0 for P(p, N) = 0.80, and
1.4 for P(p, N) = 0.50. Thus, the more confident of ultimate project success one seeks to be,
the more sensitive one's costs are to scheduling decisions.

tSee for example [I], pp. 21-22.
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Figure 1

In the present instance, where ANi is the marginal allocation of resources to the i-th period,

expected marginal costs are equalized when:

(6) MAN1 q0 
= MAN2 q = q= MANT (.qNl+..+NT-1

Since the M's cancel out, and since each successive q term is smaller than its predecessor,

each successive ANi term must be larger to preserve the equality. And since this must be

true for any N (that is, at any overall level of resource allocation), each successive period i

must have a higher total allocation Ni (the sum of its marginal allocations ANi) than the

preceding period i - 1. In common sense terms, this means that when interested in achieving

success by the end of two or more periods, one saves the bulk of his trials for later periods,

hoping that the few early trials will yield a success making the expense of later approaches un-

necessary.

A numerical example of Eq. (5) was computed by dynamic programming methods

[2, pp. 14-181. A 0.05 individual approach success probability was assumed, N was set at 60 to

yield an overall project success probability of 0.95, and optimal schedules were computed for

T from two through six periods. The most efficient six-period schedule was found to require

a 6, 7, 8, 10, 12, 17 time pattern of approaches - a substantial departure from the equal-

approaches-per-period strategy. The computation, however, also revealed that normally this

additional srheduling sophistication does not buy a particularly large reduction in costs. For

p = 0.05 and N = 60, the optimal two-period schedule has expected costs E(C) only 5.9 per-

cent lower than the equal-approaches-per-period schedule. The percentage saving from opti-

mal scheduling declines as T increases; thus, with T = 6, the optimal strategy yields an E(C)

only 3.3 percent less than the equal-approaches strategy. *

Recognition that E(C) is minimized for any T by scheduling more approaches in later

than in earlier periods does not alter the previous conclusion about the time-cost tradeoff

*The percentage saving from optimal scheduling increases rapidly as higher success probabil-

ities P(p, N) are sought. For instance, the saving jumps to about 16 percent in the two-period
case if N is increased to 101). letting P(p. N) = 0.994.
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function's convexity. For the T = 1 case, there can be no difference in scheduling strategies,

and so E(C) is unaltered. But as T increases, strategies superior to the equal-approaches

method can be found. It follows that expected cost must decrease as T increases even more

under the efficient strategy than under the equal-approaches strategy of Eq. (4). And since the
percentage gain from efficient as opposed to equal-approaches scheduling declines as t in-

creases, the convex curvature must be more pronounced with the efficient strategy.
Convexity of the tradeoff function is also preserved when all costs are discounted to

tpresent value by a multiplier such as 1/(1 + r) , where r is the appropriate interest rate. The
greater T is, the more the cost of the last period's approaches will be discounted, and so dis-

counted expected cost must decrease as T increases. But because the second derivative of the

discount multiplier with respect to t = T is positive, the rate of decrease in cost must decline

as T increases.

In sum, under the assumptions set forth thus far, we find that expected project cost

E(C) decreases at a declining rate with increases in the number of periods T over which the

project's technical approaches are distributed.

The task remains of deducing the properties of the function relating expected time

and expected cost. This is perhaps a more empirically meaningful relationship. decision-
makers are probably concerned more about the expected or average length of time to

pr ject completion than they are with the maximum time T required to reach a predetermined

contidence level P(p, N), assuming the worst possible luck in early approaches. "Project

completion" in this context means either the achievement of a successful approach or abandon-

ment of the project after N unsuccessful trials. Expected time to project completion E(T) is
defined as:

()ET= N1  NI+...+NT_1(7) E(T) =I+qN 1 +q ... + +... + N -

Intuitively, E(T) is the sum of the units of time for each of the T periods, each unit deflated by

the probability that a prior success will have made that period's effort unnecessary.

Since E(T) increases monotonically with T, given N and q, the function relating E(C)

and E(T) must have a shape similar to the function relating E(C) and T. The values of the

E(C), E(T) relationship are simply shifted nearer the E(C) axis for all values of E(T) 1.

Therefore E(C) must decrease as E(T) increases, although the fall in E(C) per ui'it of E(T)

will be more rapid than the fall in E(C) per unit of T. And as in previou, cases, thi, decline

in E(C) as E(T) increases must occur at a diminishing rate.

MODIFICATIONS OF THE BASIC MODEL

The time-cost tradeoff functions studied thus far have been based upon assumptions

which obviously violate reality through oversimplification. Most fundamental have been the

"It is appropriate onct a-Aa in to a k, is t ht.r,. a ,tr itt'gy be tt,.r than th. cqtal -app- ror• (-h,. -pe r-
time-period .ttrategy' That is. * there strat ,.v which maintaitns thi. saintvali,- of F(T)
with a lower E(C)" The problem i% ont. of mninimiurinr E(C). sub.i'ct to N arnd also to .( 1) (Wi
defined in Eq. (7)) beingR held con ,tlK int. l'ht. tuo-lj,,riod cise of this problhm turn% out to h,
ovi. rdet', r ined. Ca s,.s for J' .ar,. eth .rtr i n.itte h* it too ( |ompli .tted to yit. ld mun th In the'
way of analytmc insights. Nunw.ri al tri als invulving iany clifft retit s( heduiiing stratt'g,es for
the N 60 c.se siuggv!-tvd that the. equa.l-aliproa clh ,s strateRy is infe.rior t, a s raitt-y which
has the r-nmbrr of approtm he-N set heritltd in . .e iv, periiid d,.clin. %lightly. The differ-
"ence in costs is quite sisiall, hoever,
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assumptions of equal success probabilities for each approach, equal costs per approach, inde-

pendence of approach success probabilities and costs, and redundancy of second and subsequent

successes.* Let us consider now whether the time-cost tradeoff function's convexity is pre-

served when these assumptions are relaxed.

If the probability of success p varies from approach to approach, the conclusion that
E(C) decreases at a declining rate as E(T) increases remains unaltered. The principal change

is that the time savings attainable by increasing E(C) will be less than in a comparable equal-

success-probabilities case. To illustrate, we may compare two projects, one with N ap-

proaches whose failure probabilities q are all equal, and the other with N approaches whose

failure probabilities ql, . . ., q N are unequal. Let the overall probability of project success
be held constant; that is, let

N
S-qN 1-fl qi.

i= 1

Assume also that the cost per approach is constant in both cases. If in each situation all N

approaches are scheduled concurrently for the first period, E(T) = 1 in both cases. If on the
other hand one wishes to minimize expected cost, the approaches must be scheduled serially.

In the unequal probabilities case it will furthermore be advantageous to schedule the approach

with the highest success probability first, and so on. Since the probability that approaches in

any subsequent period will have to be executed must be lower in the unequal probabilities case

than in the equal probabilities case, E(T) for the minimum-cost serial strategy with unequal
probabilities must also be lower. t Thus, the E(C), E(T) tradeoff function will initially have a

steeper slope in the unequal probabilities case, but it still must be of the general convex form

illustrated in Figure 1.

The same conclusion applies when the costs of different approaches, or both costs and

success probabilities, vary from approach to approach. Here the analysis becomes much

more complicated, since an unusual nonlinear integer programming problem must be solved.

But as long as at least some approaches may be deferred to later periods. E(C) must decline

as E(T) increases. This is so quite generally because whenever the probability of incurring a
cost can be reduced by deferring the planned incurrence of that cost, expected cost will be re-

duced, even though expected time to incurrence of all planned costs must be increased.

A third modification in the directiuwa of greater realism is to assume that the probabil-
ity of success or the cost of any given approach is related in some systematic way to the exe-

cution of previously executed approaches - i.e., that learning takes place. Each approach car-

ried out may, for instance, raise the probability of success for subsequent approaches or
permit the identification of approaches with higher success probabilities. It is not necessary

to explore specific Markov process models of this phenomennn to see that expected cost must

continue to be inversely related to expected time. If benefits are to be realized through learn-
ing, two things are necessary: at least one approach must be scheduled for the first period,

and there must be approaches scheduled for later periods whose subjective sucess probabilities

"•The assumption that approaches must be conducted in exactlv one time period has alrv.a,
been relaxed in the footnote on pare 73. It does. how•.ver. raise an econor.,es of scale ques-
tion similar to the one to be .xplored shortly in connection with the inde.penderce astumptions.

tA proof of this assertion is dew loped raqily from Eq. (7) and from the fact that th- sum of
variables (the failure probabilites) whose product is constant is miniminzed when the varia-
bleR are equal.
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will be enhanced or whose costs will be reduced by the prior experience. No learning is as-
sumed to take place with the minimum-time strategy -- with all approaches scheduled concur-

rently during the first period. * Only as trials are deferred into later periods, increasing E(T),

can the cost-reducing (and to some extent also time-reducing) benefits of learning be reaped.

Therefore, E(C) must declire as E(T) increases. What learning does is shift the curves such

as those in PAg'ure I to the left for values of E(T) (on the horizontal axis) greater than 1.
A fourth possibility is that the success probabilities of individual approaches, or their

costs, may be interdependent within a single time period. Beneficial cross-fertilization of

ideas may occur between concurrently scheduled approaches; specialized equipment or talent

m-ay be available on favorbie terms only if some critical scale of concurrently executed ap-

proaches is exceeded; or incentives for vigorous creative effort may be enhanced as the num-

ber of competing approaches is increased. Any of these influences might cause approach suc-

cess probabilities to rise or approach costs to fall as one moves from serial towards some

concurrent scheduling. As a result there may be a tendency for E(C) actually to fall as E(T)

is decreased within certain limits - notably, within the range of relatively high E(T) values.

The final result depends upon the strength of these tendencies compared to the strength of the

opposing probabilistic tendencies explored in the section entitled "Properties of the
Time-Cost Tradeoff Function." This is essentially an empirical question on which

relatively little evidence is available. However, there are a priori grounds for believing

that the forces causing E(C) to decline with E(T) are not overpowering. Cross-
fertilization over time (e.g., interactions following from learning) is probably more effective
than cross-fertilization within a single time period. Specialized talent can often be hired ad-

vantageously on a consulting basis, and independent research organizations offer access to

special experimental equipment. I have argued elsewhere [8, pp. 44-491 titat the incei.tive

benefits of competition reach a peak with relatively few competing R&D projects and probably

decline when more projects vie for a single prize. And when approaches to a technical problem

are pursued concurrently within the confines of a single organization, there is a propensity for
all to hew to a fairly narrow conceptual line favored by the organization's professional leaders.t

If promising but unconventional approaches are thereby excluded from the menu, the overall

probability of success will fall and expected cost to successful completion will rise as a result

of concurrent scheduling. In short, while institutional and organizational factors may well

cause the time-cost function to bend back upward beyond some value of E(T), in contrast to
the continuously declining configuration shown in Figure 1, it is not likely that cost will become

a continuously increasing function of time.
Finally, we must relax the assumption that only the first successful solution obtained in

a multiple-approach project is not redundant. If many approaches are pursued concurrently.

*In (41. Richard Nelson has formulated a somewhat different mod,': of uncertain hardware de-
velopment in which learning occurs within each approach. He considers only the cosi-
reducing and time-reducing benefits of running approaches concurrently when internal learn-
ing take. place, and not the benefits of series scheduling. But in fact. when the latter
possibility is introduced into him model, one finds a relationship bet~veen expected cost and
expected time similar to the one obtained here. Using his numerical example, and assuming
that all but terminal projec.s are abandoned unless a first flight is made within 20 months,
E(C) for the two-approach case is $84 million with series scheduling compared to $88 million
with concurrent scheduling. For N = 3. E(C) is $80.4 million with s'ries as opposed to $91
million with concurrent scheduling. For N = 4, the comparable cost figures are $78.2 million
and $96.5 miilion. Naturally, E(T) increases as one moves from Nelson's concurrent strategy
to series scheduling. But that is precisely the point: that tradeoffs between time and cost
exist and must be made.

tThe Air Force's early emphasis on heat sink reentry techniques is a glaring example.
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more than one success may emerge, and the quality of the solutions meeting minmum stand-

ards of success will undoubtedly vary.* Presumably, the more solutions meeting minimum

standards one achieves, the higher will be the quality of the best solution. In tiis respect

minimum-time strategies and series strategies cannot be completely comparable, since the

concurrent execution of many or all approaches wili yield more su.7cesses tfhan wiii b, ies

execution of the same approaches, with project termination after the first success. Indeed, the

fundamental cost-saving property of the series strategy is the opportunity it provides for avoid-

ing additional trials after one success emerges. Potential quality variation therefore raises

definite complications for the analysis given here. Nevertheless, the series approach does

allow greater flexibility to forego planned future approaches once a high-quality solution is in

hand, and so expected cost must continue to decrease as expected time is increased, quality

being held constant. The most that can presently be said in addition is that the more important

better-than-minimum quality is to the decision-maker, the more advantageous concurrent

scheduling is likely to be, other things being equal.

In sum, the time-cost tradeoff function appears to be convex for a much broader set of

assumptions than those upon which the analysis in the third section was based, although in cer-

tain cases an increasing cost - increasing time relationship may set in for higher time values.

CHOOSING AN OPTIMAL SCHEDULE

If the relationship between time and cost is in fact generally convex - that is, if within

some range decreases in expected time to project completion can be secured only by accepting

accelerating increases in expected project cost- then tradeoffs betwveen conflicting cost mini-

mization and time minimization desires must be made. For a preliminary insight into these

tradeoff decisions, let us assume (risking minor errors) that expected cost E(Cd), discounted

to present value at an appropriate interest rate, is a smooth continuous function of expected

time E(T), holding the probability of overall proiect success P(p, N) const ant:

(8) E(Cd) = f IE(T)I P(p, N)1.

For the range within which expected cost decreases as expected time increases, the first de-

rivative of (8) with respect to E(T) is negative. When, assuming strict convexity. the decrease

in E(C) occurs at a declining rate, the second derivative of (8) with respect to Ef(T) is positive.

To determine how' (,r expected time should be compressed ty increasing expected cost.

we must know how much will be gained by saving time. Typically, the benefits realizable from

a successful research project will flow in for many periods after the project's completion. We

may therefore approximate the benefit stream by the expression.

ýh

(9) [ E(T),tJ = P(p. N) I b(t) e'rt dt;
" E(T)

*For example, if p = 0.05 and N -- 0. the probability that al least one succes.- will be ha 4 
14

o.qZ, asluming that all 50 approaches are executed. But there is also a 0.10 probabdlitV of
five or more successes.
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where b(t) is the instantaneous rate at which benefits are received per unit of time, h is the

decision-maker's horizon or the last year during which positive benefits can be reaped, and r

is the interest or discount rate. "f The conventional criterion of economic rationality calls for

maximization of discountod bonerS minus Jiscounted costs: B [E(T), tI - E(Cd). The first I
order condition for a local naximum in this case is:

(10) f' [E(T)! P(p, N)J = P(p, N) b [E(T) e -rT

Intuitively, the expected incre? ; in benefits due to anticipating research project completion

one period earlier must, at the optimum, equal the expected increase in project cost due to

compressing the schedule by one period. As long as the second derivative of (8) is positive,

the second order conditions for a local maximum will normally be satisfied. If so, then the

greater b(t) is in the neighborhood of the optimal E(T) - i.e., the deeper the stream of poten-

tial benefits is - the lower the optimal E(T) will be. In other words, the greater the payoff in

future time periods contingent upon successful research project completion, the more concur-

rent rather than series scheduling of research approaches should be emphasized.
One final complication must now be introduced. The preceding case assumed the prob-

ability of overall project success to be given. In the second section it was tentatively suggested

that P(p, N) be determined by equating the expected cost of the last approach with the expected

gain from conductin, liat approach. But this optimizing method breaks down when E(T) is

variable, since tlV total amount of benefits to be realized [Eq. (9)] varies inversely with E(T).

The deeper the stream of benefits is, the shorter the optimal E(T) will be, ceteris paribus.

But the shor :r E(T) is, the longer benefits will be reaped, and so the more approaches it will

pay to authorizq. Arid the greater N is, the higher P(p, N) will be, and so the deeper the ex-

pected (pr-::bability-weighted) st"eam of benefits will be. A simultaneous determination of N

and T is required, unles- one is willing to set N (and hence the level of confidence in eventual

success) on the basis of purely subjective attitudes towards risk.

This simultaneous decision-making problem can be formulated as follows: Where t is

a running integral time variable, Bt is the dollar value of the benefits realizable in the t-th

period contingent upon success, M i -the cost per approach, q is the probability of failure of

each approach, N is the number of approaches, and r is the interest or discount rate, we wish

to maximize net present value, defined as:

SqN(t-1)/ N
(11) V - q r) B + (1- qN) (--t Bt

t=-2 t=T+1

T

t=l

"*Thig fcrmrulation assmen that the project is to be initiated at t = 0. A different assumption
would require only a slight change in notation.
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with respect to N and T. Since this expression is impregnable to assault by analytic methods,

a numerical simulation analysis to determine the properties of optimal solutions was executed.

The value of (11) was computed for a wide range of possible combinations of N and T for each

of eight benefit stream depths (assumed constant per period through 25 periods) for success

probabilities of 0.01, 0.05, 0.10, and 0.20. M was assumed to equal $1,000 per approach and

the discount rate r was 0.OC. The results can be summarized as follows: First, for any given
success probability, the optitnal N increased monotonically with the value of the benefits Bt

realizable per time period. No such consistent pattern was evident with respect to the optimal

T's. Second, for any given q and Bt, many different combinations of N and T tended to give
net pre!sent values very close to the maximum observed value. In other words, project profit-

ability was insensitive to certain changes in the schedule variables. But third, profitability

was very sensitive to changes in N/T- that is, to the number of approaches scheduled per time
period. As long as the optimal N/T ratio was maintained, net present value V did not depart

much from its maximum as N and T were varied together by substantial proportions away

from their optimal values. Movement away from the optimal N/T ratio on the other hand

caused a rapid decline in V. -* Finally, the deeper the stream of benefits Bt was, given any q,

the more approaches per peri-d it was prfitable to schedule. This last finding is illustrated

in Figure 2, which plots the optimal N/T ratios as a function of dollar benefits per period Bt

for four different approach success probabilities.
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Figure 2

"'The optimum was sensitive to changes in N/T, but not to proportional changes in N and T,
because what happens in the later years of an uncertain planned project has little bearing on
originally expected costs and returns. This is so because the costs and contingent returns
associated with later years are discounted heavily by both the probability of success in prior
periods and by the conventional interest discount term. The most important feature of opti-
mal project scheduling appears to be that Uf having the correct number of approaches per
time period in early periods, whose costs and contingent benefits are only weakly discounted.
This clearly facilitates a dynamic, heuristic approach to R&D scheduling. One does the best
he can this year, and then reoptimizes next year on the basis of new data and expectations.

'r =. • • •' Pll Ir • •- _.. •i~li i I lip • Ilnml/l/I~m==ftlr o t
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Thus, we find our previous conclusion essentially unaltered in the more complex case
of permitting N and T to vary simultaneously. The deeper the stream of benefits is, the

more approaches one should schedule per time period, and therefore the sooner successful

project completion can be expected.

IMPLICATIONS

Even though the models discussed here are gross simplifications of the real world,
they seem to suggest definite implications for the budgeting of actual research projects. Con-
vexity of the relationship between time and cost tends to emerge from the existence of sub-

stantial empirical uncertainties. And when the time-cost tradeoff function is convex, concur-
rent scheduling of all approaches to a technologically difficult problem is not necessarily

optimal, despite frequent assertions to this effect, especially in military circles. Nor is
serial scheduling necessarily a good thing. It all depends upon the stream of benefits realiza-

ble through a successful solution: the deeper the stream, the more desirable concurrent

scheduling is, and the shallower the stream, the more desirable the series strategy is. Even

when success probabilities and payoffs are difficult to estimate (as they always are), rough

and ready recognition of this simple principle will undoubtedly lead to improved allocation of
scarce research resources.
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