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ABSTRACT

The investigation of fracture of polymeric materials in

hydrostatic tensile fields constitutes an avenue of approach to the

study of fracture in more general three-dimensional environments.

The advantages created by the symmetry of the stress field are

considerable and, in one of the cases studied, facilitates a theo-

retical treatment that includes large deformations, which are

characteristic of this class of materials.

The analysis is developed through the concept of fracture

originating from a flaw, which in this instance is taken to be a

spherical cavity. Through the application of energy principles,

a theoretical prediction of ultimate strength is made for hydro-

-static tensile fields.

Experiments were conducted to. demonstrate the existence

of such flaws and to evaluate the theory. Results of the tests on

specimens containing both residual flaws and artificially inserted

ones indicate a fundamental difference in behavior as contrasted

with cracks. I

An explanation is given linking experimental results and

theoretical predictions. It is based on the concept that a flaw

"I grows" in the material under load using the cavity as a nucleating

point. Upon this hypothesis is built a theory of rupture in which

planar cracks grow radially from the center of the cavity in the _

A
form of Saturn-ring cracks.
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CHAPTER I

INTRODUCTION

PROMINENCE OF HYDROSTATIC FIELDS

Hydrostatic tension (HT) and hydrostatic compression (HC)

constitute stress states of a very special class, possessing unique

characteristics of symmetry. Probably the greatest amount of

effort, and certainly the greatest number of results, have come

from investigations with HC, as opposed to HT, where the outstand-

ing work of Bridgman (1.2) has received wide attention. Although

his work has certainly gone well beyond simple HC, he has done

considerable testing directly with it.

The relationship of HT and HC to the general three-dimensional

stress state is conveniently displayed through a plot in principal

stress space as shown in Figure 1. Here the effects of the sym-

metry are clearly borne out with the location of HT, or equal tri-

axial tension, being along a line that bisects the solid angle formed

by the three principal axes and extending infinitely in the positive

direction. The HC counterpart is the extension of this locus in the

negative direction.

To further illustrate the role of symmetry in fracture it

is possible to construct a failure surface in principal stress space,

defined by

f(cr 1 , o 2 , '3 ) 0 (1.1)

which is a locus of points forming a limiting surface of rupture;

i.e., points whose principal stress coordinates lie within the

77nr
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Figure 1. Locus of Hydrostatic Tension and Hydrostatic
Compression in Principal Stress Space.
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surface will not fail and those lying on or above the surface will

produce failure. Blatz (3) has shown that in general failure, either

from actual rupture or excessive deformation, can be broken down

into a dilatational contribution and a distortional contribution. He

has plotted the pure failure modes of dilatation and distortion in

principal stress space in Figure 2. The stress quality in all octants

may be denoted as follows:

Number of
Octant 0I 02 a3 Positive Stresses

I + + + 3

I + + - 23

m + - + 2

IV+--1

V - + - 2

VI- +-1
vlI - - + 1 0•

VII - - - 0

By virtue of equivalence of the three principal axes, it is noted

that there are only four categories of octants characterized by the

number of stresses of the same sign. Thus octants II, MI and V

are similar, and octants IV, VI, and VU are similar. This means

that, for an isotropic material, only four octants need to be tested.

It also means that since the axes of principal stress must be invariant
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to the group of rotations in the body, the hydrostatic line becomes an

axis of symmetry and consequently fracture in HT and HC become ex-

tremums; i.e., they are limit points on the failure surface.

Now although there are many obvious similarities between

HT and HC, there is a great deal of difference in the manner in which

materials respond to these two environments fracturewise. The

theory cannot demonstrate that there will be a difference in the actual

configuration of the failure surface; however it has been found

through experiment that there are significant differences. Bridgman

(1) has shown that in combined stress states involving high levels of

hydrostatic pressure, none of the standard failure criteria of maxi-

mum principal stress, maximum principal strain, etc. postulated

from tensile results are accurate. He has investigated many stress

states that cover several of the octants in principal stress space -:

and has found large alterations in the levels of ultimate strains and

ultimate stresses in these other octants when compared to the +++

octant. lie has also discussed (2) the fact that it is necessary before U

rupture can occur to have what he terms an energy release mechanism,

or more simply, a place for the material to go so that energy can be

used to create new surface. Reflection upon this point leads to the k

conclusion that in pure hydrostatic compression fracture could never

occur and the ultimate strength would be infinite. However, slight

perturbations from this field would provide enough anti-symmetry

to allow fracture to occur at realistic levels. Therefore in hydro- IT

static compression the failure surface possesses a cusp at infinity,

which would be in strong contrast to the same situation in tension

woo N Uv~
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where there is an energy release mechanism, and fracture can occur

at finite values. It then follows that HT and HC produce quite a dif-

ferent effect upon materials, and the resulting behavior in each case

is not the inverse of the other.

One additional point that needs further emphasis is the mathe-

-matical simplicity that arises as a consequence of the symmetry in

the problem. The number of existing solutions to three-dimensional

elasticity problems is limited, but in this instance the theoretical

analysis accompanying the experiment is not only possible but reason-

ably simple, even in the case of finite deformation theory. (4) It makes

a solution possible where it otherwise may be intractable. All of

these factors combine to make HT and HC fields of considerable

interest, as well as of considerable value.

Hydrostatic Tension in Liquids

Although HC lends itself well to experimentation, states of HT

are not so readily generated in the laboratory. One exception to this

is in the case of liquids where HT can readily be created, and as a

consequence, fracture of several liquids has been investigated. (5)

Studies of this type not only contribute to the fundamental knowledge

of physics, but are )f considerable engineering interest as they relate

to the phenomena of cavitation. Fisher (6) has applied an energy

balance to the growth of a spherical cavity in a liquid, and from this

has been able to derive an expression defining the critical pressure

at which the bubble will grow.
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c r P"

where Pc = critical pressure

i y = surface tension

r = radius of cavity

Pv = vapor pressure (usually neglected)

Irwin (7) has extended the analysis of Fisher and favorably compared

his theory with data on the fracture of liquids obtained from several

other investigators. A large number of experimental uncertainties,

very difficult to control, made the correlation somewhat fortuitous,

and thus led Irwin to conclude that the theoretical strength calcula-

tions for pure liquids were of doubtful practical utility. Nevertheless,

as he states, the degree of completeness permitted in the theoretical

considerations, primarily due to the symmetry involved, make the

pure liquid tensile strength analysis of importance. Furthermore,

it can act as a limit case for the more general viscoelastic material,

which we will refer to in a later chapter.

Hydrostatic Tension in Metals

Fracture studies for general combined stress states have been

pursued for metals quite arduously. (8) With complex testing equip-

ment capable of applying fluid pressure as well as tensile shear and

bending loads, it has been possible to study metallic fracture under

a wide range of loading conditions, but not HT. Nadai (9) has traced

some of the attempts to create HT in metals. Two of the methods

employed, which are of a similar nature, are thermal stresses and
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"grain transformations. Here attempts are made to produce a state

Sin the body such that one portion pulls on another portion , putting it

in HT,. either by thermal gradient or by volume change due to phase

transformation. Although some success has been realized in pro-

j2 ducing the desired condition, it has never been possible to obtain

any quantitative measurements from such tests. Another popular

method has been the use of a circumferential notch on a circular

cylindrical bar. It was believed that the stress state at the base of

a sharp hyperbolic notch was hydrostatic when the bar was under

axiad tension. However, Neuber (10) in his treatise on notch stresses

demonstrated that this was not the case and that near the surface of

the notch the stress ratios were actually 1:1:3, with the largest being

in the axial direction. Unfortunately the test has not been useful for

other combined tensile stress states in the +++ octant due to the

large gradients of stress in the neighborhood of the notch, which is

the region of interest. Still another attemrpt was made by Lehrer

and Schwalzbart (11) as they bonded a thin sheet of brass between

two plates of steel and pulled the plates in tension perpendicular to

the large, flat face. This test has promise but primarily for mater-

ials that are nearly incompressible. This will be demonstrated in

a later analysis.

So in metals it still remains to find a good hydrostatic tensile

test; although almost any other combination of stress can be imposed.

It is interesting that in spite of this missing piece of information

McAdam, (12) from other experiments, postulated that HT would be

an extremum point on a convex fracture surface; i.e., this stress

. .4



state would represent the maximum in ultimate strength that could be

enjoyed by a brittle metal in tension. It is also interesting to note

that this has subsequently turned out to be the case in other engineer-

ing materials, such as polymers, where it is possible to produce HT

in the laboratory.

Hydrostatic Tension in Polymers

Polymeric materials are fundamentally different in their basic

structure and in their behavior. (13,14,15) Their difference is so

pronounced that special methods of stress analysis, upon which frac-

ture analysis is built, have had to be developed. The state of this

art has recently been reviewed by Williams. (16) Differenceri in the

basic structure produce differences in their fracture behavior, which

has been reviewed first by Bueche and Berry, (17) and subsequently

by Williams. (18) Widespread interest in the fracture properties of

these materials has arisen through a vastly expanding usage of poly-

mers in engineering applications where structural integrity is an

item of concern. One primary example, which attracts the interest

of Aeronautical Engineers, is the structural integrity of solid pro-

pellant rocket grains. (19) In this instance, the solid propellant fuel

constitutes an integral part of the structure; thereby requiring analy-

sis of its material integrity like any other structural component.

However, the constitution of these materials is very complex. It

consists of a binder material, which is an amorphous elastomer,

impregnated with a high volume percentage of solid oxidizer parti-

cles such as ammonium perchlorate. This system is neither

71_ !4
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homogeneous nor isotropic, and it is innately very complicated in its

mecl~anical behavior. It therefore is reasonable to seek a simplified

approach to the problem with the aim of discovering some of the

fundamentals of the behavior of the separate components; i.e., to

investigate the fracture properties of the amorphous rubber binder

as a first approach to an investigation of the filled system. An

examination of fracture in amorphous rubber also has its own in-

herent interest as it would apply to other engineering applications

where there is no filler involved; thus the incentive for the investiga-

tion of fracture is two-fold: (i) the attempt to study failure in solid

propellant materials for their own sake, and (ii) to discover general

principles that can be applied directly to the fracture analysis of

engineering components where the amorphous polymer alone is the

structural material.

Related Work. In order to place the HT work in proper

perspective, reference will be made to related work in other stress

states. Most of the effort expended on unfilled elastomers has thus

far been applied to the case of uniaxial tension. Certainly this is the

logical starting point, for it keeps complication to a minimum, so

that experimental results are uot obscured by extraneous influences.

However, even in this simple case much work has been required to

uncover and define basic behavior in terms of mechanical properties.

A comprehensive review of the uniaxial work has currently been

given by Landel and Fedors, (20) which devotes some attention to

the elusive problem of fracture properties under general loading

~ _ 5r. ,12
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conditions. This is the area in which there is still much to be done

even in the uniaxial state, for the concepts of fatigue and cumulative

damage are not only unsettled, but investigations are still in their

infancy even though preliminary information is now coming forth as

evidenced by the work of Knauss and Betz. (21)

Concurrently there has been a similar, but smaller, corps 4:

of investigators working with multiaxial polymer fracture. Two

biaxial tests have been used, one referred to as the strip biaxial

which has probably received the most attention is shown in Figure 3

and the other is that of the equal biaxial test, which can be conducted

by inflating a membrane (Figure 4) or in some instances special

fixtures have been successful. (See Ko (22).) These tests are quite

tedious. Furthermore it is difficult to force fracture to occur away

from the grips, and they require considerable care in the prepara-

tion of the specimen to yield a cross-section that will produce the

desired stress. field; consequently a limited amount of results is

available for these geometries. One extensive work using several

stress fields in uniaxial, biaxial, and triaxial tension to construct

II
failure surfaces has been completed by Ko. (22)

Previous Work in Hydrostatic Tension. There has been even

less work done in the area of triaxial fracture. One of the first

efforts in this direction was made by Gent and Lindley, (23,24) who

performed tests in HT and HC. They were attracted to an unusual

test by which they produced these fields following work reported by

Yerzley (25) on the bond integrity between rubbery materials. In
a,.

IN
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Yerzley's search for an ASTM standard, he glued a single thin rec-

tangular block of rubber between two similar metal blocks and pulled

them apart to test the strength of the interface bonds. In the course

of the experiments, he noted a rather peculiar type of fracture in the

rubbery specimen and discussed it briefly. Twenty years later Gent

and Lindley pursued this test by manufacturing some small circular

disks from a carbon black filled, natural rubber and pulled them by

means of two, rigid, steel plates. With the thin disk of soft specimen

material glued and sandwiched between the stiffer grips, it will be

restrained from contracting laterally as the entire assembly is ex-

tended along its axis perpendicular to the face of the disk. This

creates the triaxial stress field. The amount of restraint is a func-

tion of the aspect ratio (diameter to thickness) of the specimen, but

an elementary analysis can be made by assuming the disk to be

infinitely thin such that the external radius is sufficiently far from

the center to assume that the only non-zero displacement, w, is in

the x 3 direction. With this configuration the boundary conditions

become u v = 0 from which Er = FE = 0. The stress field then

becomes

or a •e0= -z (1.3)

where use has been made of the axial strain

az- (1-2v)(l+v)
'=1 - v) (1.4)

so that the apparent axial modulus becomes

so $V

* ~ Y.sq~ .~- -~ *. -
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where it may be noted that for rubbery materials which are charac-

teristically incompressible, i.e., v = 1/2, the triaxial tensile stress

state approaches hydrostatic with the consequent infinite apparent

axial stiffness. Gent and Lindley's initial experimental work demon-

"strated an internal fracture in the rubber which varied with thickness,

modulus and tensile strength, and they devoted their attention to

documenting and explaining this variation. After completing a pre-

liminary probe into this interesting mode of fracture, they extended

their work to compression using carbon black filled rubber specimens.

Emphasis was placed on defining the load-deflection relation and

obtaining a definition of the stress field in the specimen.

METHOD OF APPROACH

The work of Gent and Lindley will be used as a point of de-

parture for the work to be reported. The first item to receive

attention will be a detailed stress analysis of the test specimen to

provide a means of local examination of the experimental results.

This will be coupled with experimental work made on a modified test

apparatus, which permits a more detailed study of the fracture pro-

cess. Interpretation of these results and analytical extensions

thereof will then be made on the basis of a flaw hypothesis. A word

of justification for this assumption is in order.

Many analytical and experimental techniques currently

applied to polymers were carried over from metal fracture.

l
g

*
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Although several have been found to apply directly, as yet no univer-

sal approach has been discovered. However, in specific instances,

particular approaches have been fruitful. For instance, through

laboratory experience it has been found that many polymers are very

notch sensitive; i.e., their properties are strongly controlled by

imperfections on the surface as well as in the interior of the body.

Such behavior suggests that an investigation'of the fracture phenom-

enon in these materiala may appropriately be made by means of a

flaw hypothesis. This method can be employed on either the molecu-

lar or the continuum level. Physical chemists have studied the

effects of flaws in the chain structure itself, and worked up by

statistical means, through groups of chains, to the continuous

specimen, where correlations can be made between specimen load

and localized stress at the molecular flaw. A consideration of the

bond energies then leads to a prediction of fracture. Early ideas

of this type we-e put forth by Houwink (26) and later expanded by

investigators such as Flory, (27) who was an advocate of molecular

flaws due to dangling chain ends. Currently this approach is yield-

ing results due to improved mathematical techniques, including the

recent work of Blatz (28) and Knauss (29).

An alternate approach is to consider the material initially

as a continuum and then represent the flaws as discontinuities in

that continuum. Through an analysis of a typical flaw, which in one

instance is a spherical cavity taken to be independent of all other

flaws in the material, the local conditions of stress, strain, and

energy, can be computed and fracture predicted through the



application of an energy criterion. (30) This will be done for two

different modes of propagation of the fracture surface, and subse-

quentl) a comparison of the two leads to new insight into the behavior

of holes and cavities. One further point should be noted before pro-

ceeding. Amorphous elastomers characteristically are viscoelastic

(31) and exhibit large deformations in fracture. (32) These charac-

teristics complicate the analysis considerably, especially as the

theory of finite viscoelasticity has not yet progressed to the point

that it is a practical tool for analysis. For this reason the work

referred to hereinas well as this entire effortis predominantly

performed with the classical tools of infinitesimal elasticity (and

in some cases infinitesimal viscoelasticity) and should be inter-

preted as an exploration of the broad concepts of polymeric fracture

in HT rather than a final definitive treatise of the subject.

*f

Schapery (33) has just completed a report that promises to help
rectify this situation and make finite viscoelasticity a bit more
manageable for engineering analysis.

-V
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CHAPTER II

THEORETICAL ANALYSIS OF THE POKER-CHIP SPECIMEN

The mathematical model of the poker-chip configuration,

shown in Figure 5, leads to a mixed boundary value problem that

is almost analytically intractable from the standpoint of classical

elastic theory. Like many elastic problems involving finite bodies

with discontinuous boundary conditions, the poker-chip configuration

presents many mathematit al difficulties if an exact, closed-form

solution is sought. However, for such problems series solutions

are possible and several have been used.

$1 RELATED SOLUTIONS

One of the first theoretical analyses relating to this problem

was published by Pickett. (34) In his analysis of cylirders, he

* employed a Fourier series expansion, which resulted in the final

solution being expressed in terms of a doubly infinite series.

This form is awkward for our purpose, where the results are in-

volved in a subsequent analysis of fracture, especially where

convergence of the solution is slow. This is emphasized near the

corners, where it should be noted that the problem of convergence

is basic due to the peculiar geometrical effects present there.

There is a discontinuity in material, as wel as discontinuities

from stress to displacement boundary conditions, and this may

lead to mathematically infinite stresses. (35) When the stress

singularity does occur, and such singular behavior has not been

explicitly built into the form of the formal representation of the
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"solution, convergence and rate of convergence difficulties are to be

expected.

Gent and Lindley (23) began by solving an analogous problem

of an infinite slab, using intuitive assumptions based on incompres-

sible material behavior and proposed a stress analysis, which can

be shown equivalent to minimizing the potential energy. They then

extended this line of reasoning to the circular disk, and the apparent

modulus deduced from this analysis was compared to a large amount

of experimental data. Qualitatively there was good agreement, al-

though quantitative predictions with the theory were good only for a

very small range of aspect ratios. Furthermore, since the apparent

'S modulus is essentially an average property, the corresponding

internal stresses needed for failure analysis could be significantly

different than the average value.

Energy methods have also been used. One of the first was

a complementary energy formulation in terms of the stresses used

by Williams, Blatz, and Schapery. (19) In cylindrical coordinates

the proposed stress representations were

a-=2v A(I-r n) cosh J2 v

r= z (2.1)

a' =!A [1-(n+l)rn+rP-l-r2] cosh -I~z (2 2)

W fo+[1 21!-rP-1][2Acosh .Z- o] (2.3)

Following Gent and Lindley, the apparent modulus is defined as the

average axial stress divided by the applied axial strain.
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"rz= -A [r-rp] •i sinh 1 - z (2.4)

where the four constants o0, p, n, and A were to be determined by

minimizing the complementary energy. On the other hand, a poten-

tial energy formulation in terms of displacements has been proposed

by Francis and Cantey (36) in which the radial and axial displace-

ments, minimizing the energy, were found to be of the form*

2
u - (I) ] [koJ 1 (J 2 ,r)] (2.5)

2
w =()[I - () I [kJJ0 (Ylr) + Jo(Y2 .r)] (2.6)

In both of these cases, however, the algebraic complexities involved

in the computation were found to be rather formidable, particularly

when parametric variations of aspect ratio and material constants

were desired. Furthermore, as is fundamental with these particular

energy solutions, the complementary principle for stress approxima-

tion usually yields poor displacements and, vice versa, the potential

energy principle for displacements does not satisfy stress equilib-

rium. It will be shown later however that a combination of these

methods can yield good engineering accuracy.

Still another solution came as a result of a preliminary study

for the poker-chip specimen in the form of a potential energy solution

for a two-dimensional slab. (37) It made use of the careful edge

displacement measu-ements of Gent (38) in which he determined the

Note that w = 0 at z = h. This solution is to be superimposed with
the constant strain solution.

-- /I 1
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transverse displacements to be mainly parabolic functions of thep longitudinal (axial) coordinate. Results of the slab analysis furnished

an increased understanding of the complete stress distribution,

including the extent of the boundary influence on the internal stresses

and the fact that the axial displacement of the slab was virtually

constant throughout. Building upon this foundation it was possible

to compute two approximate solutions for the disk. The first in-

volves a technique of averaging the stresses through the thickness

of the specimen and satisfying the equilibrium equations on an

average basis. The other employs the variational approach for

the minimization of the potential energy. Both use assumed func-

tional forms for the displacements, which are guided by the slab

analysisi and the two methods bear a strong similarity throughout.

This will be demonstrated in detail later as both solutions are dis-

cussed.

Finally, numerical solutions to the problem have been

obtained by Messner, (39) and Brisbane. (40) In Messner's solu-

tion, for instance, a finite difference technique has been used,

and the grid size has been progressively reduced until two sub-

sequent sizes produce no appreciable change in the stress state.

The calculated stress distribution wili be presented graphically

later to act on a basis of comparison for the accuracy of the ap-

proximate analytical solution. The convergence at the corners

has been found to be extremely slow, and this is again due to the

presence of stress singularities at these points. This type of

computer program offers great practical advantages, since a

R 4i I •_ T 71•
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solution can be obtained to any desired accuracy in a short time.

However it has the disadvantage that in order to perform a para-

metric study, a separate calculation has to be performed for each

configuration.

APPROXIMATE SOLUTION

This section describes an approximate method for analyzing

a thin, circular disk developed by Lindsey, Schapery, Williams

and Zak. (41) As mentioned previously it uses an extension of the

solution fnr a slab in plane strain. (37) One of the primary advan-

tages of this solution is that the incompressibility assumption

made by Gent and Lindley (23) does not have to be invoked so that

the resulting solution is applicable over a range of material prop-

erties. Figure 5 shows a circular disk of radius a with its axis

in the z-direction, and the faces z = 11 bonded to rigid plates. We

assume that the disk is loaded by increasing the thickness by 2E

and proceed to select two displacement functions, which satisfy

the boundary conditions on that part of the boundary where dis-

placements are prescribed. Note that the third (circumferential'

displacement, v, is identically zero by reasons of symmetry.

Such functions would also be admissible functions for use in the

Theorem of Minimum Potential Energy, although it should be

recalled that the resultant minimization yields a result, in this

case it will turn out to be the function g(r), such that the equations

of equilibrium are not satisfied unless the solution is actually

exact. The radial displacement function is known to be ezaentially
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parabolic from the edge measuiements by Gent. (38) The longitudinal

displacement was found by Schapery and Williams (37) to be directly

proportional to its distance from the horizontal plane of symmetry

over most of the disk. Consequently the displacement functions take

the form

U -(l-z 2 )g(r) (2.7a)

w =6 z (2.7b)

in the radial and thickness directions respectively. Note that the dis-

placement boundary conditions are satisfied at the surfaces z = A1,

and that g(r) is presently an unprescribed function of the radius. The

strains corresponding to these displacements are easily found to be

=r aur g'(1-z2) (2.8a)

= .1- -= (I-z 2  (2.8b)e r r
8w

Fz = aw =_ E(2.8c)

8u &"Wrz z r (2.8d)

from which the z-averaged stresses are found as

1

72'd ( 9 1& (2. 9a)
-1

1

0 To" (3 r- (Z. 9b)

-1

-1

ft- 9• + •I~ ( •2 . _c



-25-

'Trz = Zgz (2.9d)

where g' dg/dr.

The function g is found from the condition that the z-integrated

equilibrium equation for the radial direction is to vanish, i. e.,

.Z OT rz + dz = 0 (2. l Oa)

or

r + T + 0 (2. 1Ob)
dr rz z=1l r

Also, note that because of symmetry the integrated equilibrium equa-

tion for the z-direction is satisfied identically,

10r0- 1
~~~~ rzJ zO(.1ýrz + -Wz +-r dz = 0 .ll

-1

Substitution of stresses (2. 9) into equation (2. 10) yields the

differential equation for g, thus

g,,~ +g _;L + M)g= 0 .l)

where M is a constant made up of a composite of material properties.

= 3 0-Z0 (2.13)
X+211 i 717-V7

Equation (2, 13) is a form of Bessel's Equation and yields modified

Bessel functions as solutions.
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g(r) = AII (rN"') + BK1 (rvr") (2.14)

whereI Il(r-A=1) and Kl(r4M$) are modified Bessel functions of the

first and second kind respectively. Since KI(0) is infinite, and we

require the deformation to be finite at the origin, B = 0. The con-

stant A is found by using the boundary condition that r (a) = 0 from

which it follows that

I1 (a1 =)12.15)
:_ ~I1 (a4-M"

(l-v) I'M Ioav')-ll-Zv) a

Substitution of the solutions (2. 14) into stresses (2.9) using

(2. 15) yields the following stresses:

Io(r -IM) I - -M r- or

fr 3v K [ { 3 rV ?Ioir7¶Mj (2.16a)"(OY "- { 11(,[-
[ I°(aV"M') ~1 -4- M ae oarMM

L 3 -1 (r -K - 1)

•'r 
1 0 ( r rM -) 2 1 i (r4 M( 

. b

TO r ÷+ [ II) (Z. 16b)

M -oI (a - )+ (I -) I O(a,) - af'M

(2. 16c)

-- .1 0 (r 4M- -

z r +m + • • M •• •



(r--3v), v'i ___ z (2. 16d)

<lM I~aM

which, it may be found, approaches a state of triaxial, hydrostatic

tension at the center in the case of an incompressible material. We

expect the stresses (2. 16) to be good approximations for 0 •< v •< 1/2

except for the singular stresses near the free-edge r =a.

Simlplification of the Stress Expression. With this restriction

on the radius, equations (2. 16) can be very well approximated by the

expre ssions:

O]9=%,' 3 K • --(4•) (2. 17a)

loI~(a-

. _= , z (2. lic) '

lola ) ,

It is to be noted that all of the normal stresses are essentially equal

when Poisson's ratio is close to one-half. These expressions are

plotted in Figures 6 and 7 where the strong dependency upon Pois -

son's ratio is quite evident. To show this more clearly, and because

it is a very useful tool for later discussions of experimental results, ,
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a cross-plot of Figure 6 is given in Figure 8, where the relationship

of local stress to applied strain is shown for r = 0.

Strictly speaking the only point of true HT is at the midplane

z = 0; however as seen in Figure 7 the shear stress at the rigid

boundary, which is the region of maximum shear, is only a small

percentage of the normal stresses. Consequently for all practical

purposes the stress field can be considered HT as far out as r = 0. 5a

with very little error. Furthermore for materials with Poisson's

Ratio down to 0. 4975 or below, there is an appreciable central region

of virtually constant hydrostatic stress, which contributes to the ease

and accuracy with which data can be reduced. Large stress gra-

dients make it difficult to know with precision what the local fracture

levels actually are.

Displacement Expression

In addition to the stresses (2.17), the radial displaceinent,

2 3ve K -IM-I(rVri?)(1-z
2 )

u -g(1-Z , a I

(Z.18)

--v r (1-Z 2

-I(a 
E~

is of importance since its midplane value at the boundary, r = a,

can be measured experimentally, and possibly used to deduce the

bulk modulus in view of the sensitivity to Poisson's ratio shown in

Figure 9. Furthermore, as shown in Figure 9, this displacement
"A'

•a ' WNmm m
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may be very large for nearly incompressible materials, even when

the nominal strain, e, is small. In the neighborhood of the radii for

which the radial displacement is not small relative to the disk thick-

nesses, some error due to large strains will be introduced in the

results of the present linear analysis.

Limit-Check of the Solution

In the incompressible limit case (v = 1/2) solutions are

readily found from equations (2.16) and (2.18) to be

yr. =9 1 2r = (a2_-r 2 (2.1 9a)

- 1 (a2-r2) + 2 (2.19b)

rz rz (2.19c)

where it may be noted that for a large aspect ratio, the condition

(r = 0) of triaxial hydrostatic tension is achieved. Further,

3 2uu - Err ( ) (2.19d)

Apparent Modulus

Another quantity of experimental interest is the apparent

i uniaxial modulus EA, defined as the ratio of the average stress

over the bonded surface ca- required to produce the axial dis-

placement w, to the nominal axial strain 6, viz.

ZA 24 ar-azrdr
E = = 0 2 (2.20)

AA ra

7;T
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Upon substitution of a-, equation (2.16c), into (2.20) we find

E 2J 2(alfi)
A~ 3v K _ _ _ _

- v ) "aa i 0 (a -lM-)

(2.21)
"-I, (a-'rM

++� 2 k (aVM) 1 +12._. 0 (i" ]
S" aV Io (aVM

This apparent modulus can be conveniently employed for

determining the bulk modulus of nearly incompressible materials.

Namely, given an aspect ratio a, and experimentally measured

modulus EA# the modulus ratio E/K can be deduced from a graph

of equation (2.21), such as shown in Figure 10. It is observed

that EA/Ea 2 depends on only the parameter a"'E-IK for a ' 30.

The accuracy of expression (2.21) is expected to be good, even

for small aspect ratios. This follows from the fact that the appar-

ent modulus is an average property, and therefore should not be

sensitive to error in stress near the periphery. Furthermore,

EA has the correct limiting value of E for a = 0.

End Effect Parameter

By forming a ratio of expression (2.21) and (2.17b) a measure

of the multiplicity of the local hydrostatic stress over the average

applied stress can be obtained.

z AE 0 (2.22)

- _---r--/-r-
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By evaluating this quantity at a given location in the specimen, the

effect of aspect ratio can be plotted versus material parameters.

Figur-: i is the result for the center of the poker-chip and is quite

usefui as an aid for acquiring an intuitive feel of the geometrical

effects. The abscissa is plotted for values of a greater than or

equal to about fifteen. In other words the limit conditions for

aN'7K- -0 would represent an incompressible material, not a

uniaxial tensile specimen. For most elastomers the ratio of max-

imum normal stress to the average applied stress will be in the

range of 1.8 to 2.0.

The Effect of Corner Stress Singularities

The methods of solution just presented or the stresses in

the poker-chip are not able to predict the co.i.ditions at the bound-

aries where the character of the boundary conditions change, the

reason being the presence of stress singularities, which give rise

to large gradients of stress that become averaged out by the global

methods used. Therefore this region has to be investigated by a

different method capable of describing the local character of the

field variables. Such a methrAd was employed by Williams (42,43)

in studies of plates with angular corners, and then extended by him

'o include bimaterial systems. (44) Zak (45) showed that when the

met'iods employed by Williams are extended to bodies of revolution

the same i :sults are obtained as in the case of plane strain. There-

fcre Lindsey and Zak (46) obtained the solution to the poker-chip

problem through thc use of the plane strain configuration of Figure 1Z.
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i This represents the condition existing at the junction of the free

and rigid boundaries, as shown in Figure 5. Material 1 represents

the grips to which the poker-chip specimen is bonded and Material

Z represents a portion of the specimen near the edge. Material 1

0 0extends over 180 and Material 2 over 90°. This situation cor-

Sresponds to the case where the grips have a larger diameter than

the specimen. A complete analysis of the eigenvalues that produce

Sthe stress singularities is given in Reference (41), including a

matching of the localized singular stresses to the field stresses

obtained by the approximate solution.

COMPARISCN OF RESULTS WITH OTHER SOLUTIONS

Finite Difference

It has been interesting to see how closely the stress distri-

butions obtained from the approximate solution of this section have

been verified by the numerical results subsequently obtained in

Reference (39). Using equations (2. 17) the three average normal

stresses and the shear stress have been computed for the case

a = 10 and v = 0.4 and 0.5, which are configurations analyzed in

Refex -nce (39). The results of this calculation for the axial stress

T are shown in Figure 13, where the stresses obtained from the

two methods of solution are compared. It can be seen fron. these

results that, although the analytical method predicts only the aver-

age normal stress z , the two methods agree very c .,s •ly except

at the edge of the poker chip. At the edges both methods are not

accurate because of the presence of the singularity. The agreement

A
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for the other three stresses is equally good.

Potential Energy Analysis

In a previous section, an analysis was presented which satis-

fied the displacement boundary conditions, and the z-averaged

equilibrium equations and stress boundary conditions. As such the

solution was expected to be a judicious compromise between a best

deformation (minimum potential energy) and best stress (minimum

complementary energy) approximation. It is informative to inquire

at this point what type solution would result if the potential energy

were minimized, particularly as the deformation functions chosen

earlier, i.e. (2.7), are admissible functions for application of this

theorem. It will be convenient for later purposes to use the dimen-

sionless forms, viz.

u(r,z) = - [1 - (z/hv)2 ] g(r) (2.23a)

w(z) = (wo/hv)z (2. 23b)

where h is the half-thickness of the specimen.
V

In the absence of body forces and with zero applied stress

on the stress prescribed boundary r = a, the Minimum Potential

Energy Theorem (47) requires that the potential energy

a h J2

V =S S {Er +Ez] +4+[E +E +62+ dzrdrr.2- (2.24)

v

be a minimum with respect to the variation of functionals involved

in the double integral. Using the expressions for strains (2.8) in
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(2.24) and performing the variation by standard techniques, one finds

the governing differential equation to be

g"(r)l+lg'l(r)- + g(r) = 0 (2.25)

"where

M 5 1-2v 1

h•." V

The boundary condition turns out to be

1 g(a g• a W
9a a V V a (2.26)

•; v

The appropriate solution of (2.25) is for finite displacements

at the center the specimen, r 0,

g(r) = AvIo(r VW-)

where to satisfy (2.26)

A v w0a (2.27)
5v 0w

The basic similarity with (2.12), the z-averaged method, is

very evident. For hv= 1, a 5:6 ratio for M :M is obtained in the

governing equation and nearly the same ratio is found for A :A. Inv

he latter the ratio is not precisely 5:6 because A is a function of

M. Nevertheles& a qualitative idea of the difference in the two and

indirectly a bound on the average error can be obtained by observing

from the differential equation that



-43-

M
Mj -6-7 (2.28)

such that if h = 4 = 0. 912 then the governing equations for a mini-

mum energy solution of hv 0.912, or a =1.088 corresponds to a

z-averaged stress solution in a specimen of thickness h = 1 and as-

"pect ratio, a. Of course, if values of M and A from (2.25) and
SV V

(2.27) are used in the basic solution instead of M and A from (2.13)

and (2.15), then the results for the minimum potential energy solution

can be immediately reproduced.

Because one is generally interested in the stress state at

failure, and hence stresses that satisfy equilibrium of stress at

least in some sense - here taken as the z average - it is recom-

mended that the results from the previous section be used for frac-

ture analysis.

POKER-CHIP SPECIMEN SUBJECTED TO COMBINED TRIAXIAL

LOADS

Having obtained a solution for the hydrostatic tensile field,

" it is of interest to inquire into the possibility of creating a more

general three-dimensional test specimen. One such method has

been suggested by Lindsey (48) which employs an adaptation of the

poker-chip test to a state of combined loading, wherein a shear

producing torque, as well as axial tension, is applied to the disk

through the rigid plates. Such a test is theoretically feasible and

has the capability of producing a general triaxial field, but it has

never actually been attempted in the laboratory. The solution is

given here for completeness.

- --0-0
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The idea is to superpose upon the axial extension of the poker-

chip a torque about its longitudinal axis that will produce a shift in

the magnitude and direction of the principal stresses. The result

will be a general triaxial stress state with which failure surfaces

can be more definitely described and with which the actual failure

mechanisms can be studied. With this modification of the poker-

chip test, a wide range of stress fields can be obtained by varying

&-he ratio of angle of twist to axial extension. Consequently, a study

can be made of the change, or constancy, in the appearance, loca-

tion, orientation and initiation level of the initial fracture point.

Torsion of a Circular Cylinder (49)

The definition of the stress field results from combining

the stress fields of pure extension and that of torsion of a circular

cylinder. It will be recalled from classical theory of elasticity

that for a circular cylinder (and only a circular cylinder) a solution

to the torsion problem can be obtained which leaves the lateral

surfaces free of stress and does not warp the cross-section. The

amount of rotation of a point in a cross-section depends upon its

distance from a base of reference which we will take to be z = +1

from Fig. 5.

e = CL (z-1) (2.29)

where a is the twist per unit length. For a pure torque, the only

displacement is

v 0 = rO = ra (z-l) (2.30)
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The resulting strains are

zra c r =c=yr=y =0 (2.31)

The corresponding system of stresses is

TOz = Gra 0r=O = Gz = TrO = Trz = 0 (2.32)

This solution will now be used in conjunction with the approximate

analytical solution for the poker chip in extension.

Stress Analysis of Combined Torsion and Extension

Following a procedure very similar to the one used previously

on the regular poker chip, the displacement functions are assumed

to be,

2U = -(l-z )g(r) (2.33a)r

v = rci(z-l) (2. 33b)

w = Ez (2. 33c)

In (2• 33) the displacement boundary conditions are satisfied

at surfaces z = ±1 and g(r) is presently an unprescribed function of

the radius. The strains corresponding to these displacements are

found to be
OUr 2

-ra = -(l -z )g' (r) (2. 34a)Ur = rr

r -(l-z 2 ) (2. 34b)

E -= E (2. 34c)

MEMO"---
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ve =o (2. 34d)

Yrr

ave (2. 34e)
Ye z z c

Ou
Yrz = = zzg(r) (2. 34f)

from which the z averaged normal stresses are found as

a-$• rrdz X(c -g'(r) - r) 4Gg (r) (Z. 35a)

T0 = $ rdz = ( -4g'(r) - ) - . G (2. 35b)

a ' =d z = g - (g'r ) -+ ( 2 . 3 5 c )

-1

As will be seen from the equilibrium equation, it is not necessary

to average the shear stresses from the equilibrium equation,

" r0 = 0 (2.35d)

" rz = ZGg(r)z (Z. 35e)

" Oz = Gru (2. 35f)

The radial equilibrium equation is satisfied on the average as before

with the tangential expression becoming,

1 a 8
Oy z 1d1 (2.36)d=[ 8 ] = 0(. 6

-l -

However, "'Oz = Gra and is not dependent upon z. The third equi-

librium equation is satisfied identically due to the symmetry of the



specimen and applied load about the midplane, z 0. Thus the dif-

ferential equation for g(r) remains unchanged

g"(r + gI'(r) (--2 + M) g(r) = 0
r

r
where (2. 37)

3G 3 (1-ZZv)X+Z = G 2 (I-i'

Now it can be seen that the v 0 displacement arising from the torsion

portion of the load produces no effect upon any of the field quantities

from the approximate solution for the regular poker-chip. Therefore

the two loads are superposable just as they would be for exact solu-

tion of infinitesimal theory. The normal stresses for the combined

loading, valid everywhere except near the edges, become the same

as before for a regular poker-chip, equation (2. 17), and the shear

stresses become,

lz 3v E 1 z (2. 38a)

[1I0(a 4Z) J
o"z r P=2 (2. 38b)
EC Z(l+v) C

Principal Stres ses

By seeking for an orientation of stress such that the surface

traction is perpendicular to the surface and no shearing stress exists,

one obtains an equation of the form,



where a, represents the principal stresses. Expanding the determi-

inant

3-( -) 2 22 Z_•
a, 3 (a- + W + Wa- ) +- a-rr- +a +Z - -T 2- 2-T z)0-1r 0 z r r zO rO Toz rz

2- 2

Simplifying to the situation at hand and nondi_,ýensionalizing the

• :• principal stresses S =

S3 (27a i)S+[ +2ir z(TO2 2 S

r2• z -T? rz z ITZ r• (E = o z. C)

-r(To 7-+ Tr ) =0 (.1

Substituting equations (Z. 17) and (2.38) into this expression and

solving the cubic equation for S, we obtain the plots of Figs. 14

to 18.

Observations

There are several things to be noted from this solution, one

of which is the fact that for angles of twist that can be classified P.s

being in the range of infinitesimal displacements, the hydrostatic

condition can be altered considerably. For example a typical mater-

al with E = 500 psi subjected to r = .005 and a = 0.1 rad, S1 =10

psi, S2 = 92 psi, S3 = 177 psi at r = 10. Thus a large variety of

stress fields can be readily obtained; however, for failure studies

Fig. 16 shows that P > 2 must be used in order to obtain stresses

larger than the hydrostatic field in the center. In other words, if
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< < 2 the largest stresses occur at the center of the specimen where

there is always hydrostatic tension, so in order to produce fractures

t under other conditions 1 must be greater than 2.

As can be seen from Fig. 17, one compo_ýent of ihe triaxial

field can be made compressive. This will provide for failure studies

in the + + - quadrant of the failure surface. Little, if any, work has

been done in this quadrant because of experimental difficulties, but

now barring unforeseen laboratory difficulties this failure surface

can be constructed.

One last observation is made from comparing Figs. 15 and

17 and Figs. 1 4 and 18. For 3> 2 the stress distribution at the mid-

plane is identical to that at the interface of the specimen and the

lucite grips. The stress field is virtually constant through the thick-

ness in the central regions a thickness distance in from the edge.

SUMMARY

In summary it may be stated that these analyses have served

to demonstrate the feasibility of pedducing a state of hydrostatic

tension in soft nearly incompressible materials. They have also

opened the possibility of creatiag a rather general state of three-

dimensional tensile stress, useful in the study of failure surfaces.

Furthermore a detailed definition of the field variables has been

obtained, suitable for use in the reduction and evaluation of exper-

imental data. As a side benefit, a means for measuring bulk

properties in tension has been developed. This i-! not only a con-

venient method of obtaining such informatior but correlation can
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now be made with compressive values, obtained from the more

classical tests, for better definition of material behavior.

T -AXT
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CHAPTER M

EXPERIMENTAL ANALYSIS IN HYDROSTATIC TENSION

MATERIAL DESCRIPTION

The selection, procurement and characterization of an

appropriate material areprerequisite to experimental investigation.

This always involves a compromise as one tries to find typical

materials that are readily available and yet still possessing mater-

ial properties that are.amenable to standard laboratory testing.

There is currently in progress a program (50) to find one or more

rubber materials suitable as standards for all interested investi-

gators to use as a basis for interchange of information. One of

the candidates under study is a polyurethane elastomer of a type

employed as propellant binders. It is commercially produced by

the Thiokol Chemical Corporation under the trade name of Solithane

113 (S-113). Chemically, urethane polymers are the product of a

reaction between an isocyanate and a hydroxyl radical. Normally

the process consists of three steps: prepolymer formation,

chain extension, and curing. Although the specific formulation

of S-113 is company proprietary, some general statements can

be made about it. Quoting extensively from "Polyurethanes:

Chemistry and Technology," (51) with occasional annotations, we

will discuss the three steps.

Prepolymer Formation

The reaction of a diisocyanate with a hydroxyl-
terminated polyester, polyester amide, or polyether
to form an isocyanate-terminated prepolymer can
be represented schematically as follows:

-7-
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"OCN-R-NCO + HO--OH -

diisocyanate polyester or polyether

0 0

OCN-R-NH- L-O-0NH-R-NC0

prepolymer

For S-113 the diisocyanate radical R was Tolilene, TDI. After the

b asic links are formed, they are used as building blocks to form

Iextended chains.

Chain Extension

Chain extension of the prepolymer with active hydrogen-
containing compounds, usually difunctional, such as water,
glycols, diamines, or aminoalcohols, proceeds to give a
higher molecular weight, soluble polymer. Chain extension
with glycols takes place with the formation of urethane
groups as shown below:

0 0

ZOCN-R-NH- --C0 C--NH-R--NCO + HO-R'--OH -
glycol

i urethane

OI -- R

OCN-R-NH- .w.......0- H-R NH-

For S-113 the extension agent R' is Polypropylene glycol, PPG.

Thus far chain extension has been shown wherein an
excess of isocyanate was used, giving an NCO-terminated
polymer. These polymers are actually high molecular
weight polyisocyanates, and as such are reactive with
many chemicals, hence are not indefinitely stable. Solu-
ble polymers of better stability may be prepared, if
desired, by using a slight excess of the active hydrogen N4

-~ - rw ~ 7 ->MP
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comp ýnent, rather than an excess of isocyanate. For
example, an excess of glycol would lead to a polyure-
thane terminating in hydroxyl groups, and would hence
be much more stable.

2 OCN-R-NHCOO--OCONH-R-NCO + 3 HO-R 1-OH -.

HO-fR '-OCONH-R-NHCOO--.•OCONH-R-NHCO RIR-OH

Other active hydrogen compounds could be used similarly,
but hydroxyl compounds usually serve as the best chain
terminators, free from other complicating side reactions.

Curing or Crosslinking

The curing or crosslinking of the elastomer may be
accomplished by reacting an added curing agent with
the intermediate molecular weight elastomer, or by
formulating the elastomer so that it contains free iso-
cyanate groups and curing by heating.

A convenient means of introducing crosslinking in
the urethane polymer chain is the use of triols, either
in forin of monomeric polyols such as trimetholylpro-
pane or by employing poly(oxypropylene) glycol deriva-
tives of triols such as trimethylolpropane, glycerol,
and others. In this case, crosslinking occurs through
the formation of urethane links as shown below:

0 0 OH

OCN-R-NTHI-OýO NH-R-NCO + HOLOH
triol

-- O NH--R-i-NH-0ýOI urethane crosslink

-R-NH-Li-oX"NH-R-

The catalytic triol used in S-113 was Thiokol catalyst C113-300 and

curing was prescribed at 1500C.

S-113 can be made with widely different mechanical proper-

ties by varying the relative amounts of the prepolymer and catalyst.

VIM= , -
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A study by Knauss (50) shows the degree of sensitivity, which is

graphically displayed in Figure 19. The ratio used in this program

was one to one by volume, which was found by testing other pro-

portions to be the most suitable for this investigation.

MATERIAL FABRICATION

A very detailed account of material fabrication along with

descriptive photographs and schematics of the equipment has been

given by Zak. (51) Briefly the process may be described by stating

that the two separate components, prepolymer and catalyst, were

preheated to 600 C while they were in an inert atmosphere of nitro-

gen. They were then carefully measured by volume and mixed

together, still under nitrogen, and raised to 1000C. The mix was

degassed for five minutes, which acted to reduce virtually to zero

the number of visible bubbles produced in the casting, and further-

more it tended to make the finished product more nearly colorless.

A mold of polished aluminum was preheated in the oven to 125°C,

and it should be emphasized that no mold release was ever used in

the fabrication process. It was found impossible to remove com-

pletely the residue left by the release regardless of the solvent

used, and the contamination of the surface prevented the formation

of a good bond. A polished mold face was found very acceptable

for releasing the specimen. Polished brass, steel and aluminum

as well as Pyrex glass, and Micarta were used, but polished alumi-

num was found to be the most desirable when all of the factors of

cost, weight, etc. were considered. The surface quality of the

S :: :a : - -- -
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cast sheet is directly related to the surface quality of the mold, buL

as will be discussed later when the material is bonded to the lucite

grips, the wetting properties of the bonding agent eradicate surface

imperfections in the cast sheet. Therefore the mold surface need

be polished only to the degree necessary to allow the rubber to be

removed from the mold.

With the mix up to temperature and degassed, the molds

were filled through tubular arrangements while they were in the

oven, so that the material was never exposed to the atmosphere.

The reason for the great care was tD prevent side reactions that can

be produced by water.

Chain extension with water leads to the formation of
substituted urea linkages and the evolution of carbon
dioxide as follows: (2)

0 0

2 OCN-R-NHJ -01NH-R-NCO + H 0-

0 0

OCN-R--NH-C. NH-R4NH

0 0 1C=O' + CO2

OCN-R--NH-%-O.-....--!-NH-R1NH subst. urea
chain-extended polymer

Since such a reaction would cause undesirable by-products like

variations in the basic structure and entrapped gases, it is avoided

if at all possible. However only small traces of H2 0 can produce

the reaction, making it very difficult to control. After filling, the

ovens were then raised to 150 0 C, and the material was cured for

two hours.

00 . . .. . . =- 
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Every effort was made to closely control each step of the

process; however due to the fact that several very complex chemical

reactions are taking place simultaneously, it is difficult to produce

polyurethane with low batch to batch variability. This problem has

been alleviated somewhat with a correlation between modulus and

percentage of prepolymer in the mix. (See Figure 19.) By cutting

a test strip from each casting, the material can be quickly evaluated

by means of its modulus. Thus a uniform set of specimens can be

gathered and variations due to slight modifications in the basic mix

can be quickly detected. Scatter ranges are discussed under Mater-

ial Characterization.

After curing was complete,the material was removed from

the mold and placed in a dry box for two weeks or until used. The

final product was a large round sheet 13 inches in diameter and

0. 10" thick. When ready the smaller poker-chips were then cut

into disks of approximately 2-1/z" in diameter. The resulting

material specimen was virtually clear, which is one of the primary

reasons for selection of S-113. It allows the possibility of either

viewing directly, or photographing, the internal fracture process

as it happens. This is a great advantage, for it is normally very

difficult to surmise accurately what has happened during fracture

solely from looking at the surface after the fact. Furthermore the

material is optically very sensitive, and ideally suited for bire-

fringence work. This property has been characterized and is alluded

to in the discussion of material characterization.
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MATERIAL CHARACTERIZATION

The characterization of S- 113 has received the attention of

several investigators including Williams, Ferguson, and Arenz (52)

as well as Knauss, (53) and Zak. (54) These include various me-

chanical property definitions under infinitesimal strains, including

a rather complete description of viscoelastic properties which even

encompasses the optical properties of birefringence. Figures 20

to 22 give information relating to the constitutive properties of

S-1 13 in the form of the Relaxation Modulus, the Master Stress-

Strain curve and the accompanying shift factor for them. The data

was obtained using standard techniques primarily based on the

constant strain rate test. The relationship between the constant

strain rate response and the relaxation modulus is straightforward

and can be derived as follows. For a linear viscoelastic material

the stress-strain law can be written in an integral form

t

Olt) = C E(t-T)) dT (3.1

0

where T is the stress, E(t) is the relaxation modulus, e the strain

and t the time. For constant strain rate conditions

= Rt (3.2)

where R is the strain rate. Making an independent variable substiX

tution under the integral sign of equation (3. 1)

x= t T (3.3)

we have
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t
alt) = -R Y E(x) dx (3.4)

0

From equation (3.4) it follows that

1 d t) E(t) (3.5)

Equation 3.5 shows that the relaxation modulus for a linear visco-

elastic material is equal to the time rate of change of stress divided

by the strain rate in a constant strain rate test. This relationship

is used to evaluate the relaxation modulus from the data of the con-

* stant strain rate tests. The tests were performed for a wide range

S"2 of rates and temperatures and then shifted (55) by the aT factor de-

.4 scribed in Figure 22 to give the composite master curves of Figures
V'

0 20 and 21. The mechanics of data representation, interconversion,

04 etc. is involved, but now reduced to standard practice as described

0* in detail by Arenz, Ferguson, Kunio, Williams. (56) The curves
14-

indicate something of the nature of the material; however, the par-
P4

o ticular quantity to be noted at this time is the rubbery modulus of

I approximately 500 psi, which will be used in data reduction for the

elastic analysis. Zak, (54) using an experimental technique sug-

gested by Smith, (57) demonstrated that constant-strain rate tests

i at 0.02 in/min. and T = 25 0 C, were in the rubbery regions for S-113.

This is the test condition used in the experiments to be described

subsequently; consequently E = 500 psi is the pertinent material
p

S parameter.
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Bulk Properties

A side benefit of the poker-chip test is the measurement of

the bulk mechanical properties that it provides through a knowledge

of the apparent modulus. It will be recalled from equation (2.21)

that if the normal stress in the axial direction a is integrated over

the face of the poker chip, the apparent modulus can be computed

from the approximate stress analysis. This turns out to be ex-

pressed in terms of not only Young's modulus, but also the bulk

modulus, which establishes a relationship between the three prop-

erties. This demonstrates that EA is an independent piece of in-

formation which can be used with the regular tensile modulus to

define the two independent mechanical properties of an isotropic

material_- Figure 10 taken from Reference 41 graphically demon-

strates this relationship and is a convenient tool for determining

the bulk properties of materials. Thus armed with E and EA, which

turns out to be 15,400 psi, Bulk Modulus and Poisson's ratio can

be determined for the material from Figure 10. For S-113, K =

47,000 and v = 0. 4978. This value of Bulk Modulus may be some-

what surprising since it is actually of the order of one thousand

times smaller than that of steel. It is only because the ratio of

shear modulus to bulk modulus is so low that the incompressible

assumption is justified. Of course, this ratio is also the reason

for Poisson's Ratio being very nearly one hall.

Finite Strain Characterization

Finite strain fields are commonplace in elastomers and

-'- . -, - ,
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require a special characterization for the material subjected to

them. (4) Both uniaxial and biaxial tests have been conducted by

Beckwith and Lindsey (58) to determine the form of the strain

energy function, W. It is customary to express W as a function

of the three strain invariants

II =2 2 (3.6a)

1 22+ 2 2 2 2 (3 6b)
12 = + YIX3 + X2X3

13 2 222 (3. 60

where k's are stretch ratios. When the material is incompressible

13 i, and

W = W(I , 12 )

For the case of uniaxial tension A X and X2 =)3 = -1/2

and the corresponding tensile stress is (4)

= 2(k_X- 2 ) (aw + I OW (3.7)

By dividing out the first factor and plotting it versus 1/X and using

experimental data from a uniaxial strip, we obtain Figure 23. (The

two sets of data points demonstrate maximum batch to batch varia-

bility.) From the trend of the data it can be inferred that the inter-

cept, OW/IiO, is constant and the slope, 8W/8I2 J is zero. The

strain energy function m•_ust then be of the form

W = Ci(1,-3) (3.8)

- -I
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state; i.e., X. = 1. This classifies the finite strain behavior of1

S-113 as Neo-Hookean, which is the simplest representation and

a naark in its favor. Simplicity in analysis is a big asset in large

deformation problems.

Now to see exactly how close S-1lI 3 folows Neo-Hookean

behavior in uniaxial tension, Figure 24 has been plotted. Only in

the larger values of stretch ratio near fracture is there any per-

ceptible deviation. Also the value of the material constants agree

well with the infinitesimal limit case, which defines C1 = E/6.

Corroboration of the Neo-Hookean result based on uniaxial

test was made from equal biaxial tests on the test rig pictured in

Figure 4. In this case A, = X2 = X and X3 = )-2 from the incom-

pressibility condition. The corresponding in-plane stress turns

out to be (4)

W R=2 -)-6 + X w(3.9)

where p = internal applied pressure

R = radius of curvatur6

t = sheet thickness

Proceeding upon the assumption that S-11 3 is Neo-Hookean, equa-

tion (3.9) becomes

'= C 1 1 -U 6) (3.10)

Assuming a circular arc deflection curve, the radius of curvature

for a sheet of original radius a and pole height h (see Figure 4) is
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R h (3.11)-2h

Giving

pa2 +h2 -6
Bht C1 (1-4-6 (3.12)

By measuring p, h and X it was possible to construct Figure 25 for

an initial sheet radius of five inches. The plot indicates a linear

relation except in the initial stages of deformation. It was definitely

established that the nonlinearity was due to slippage of the sheet

underneath the clamping ring making the measured value of h too

large. The ring is not fastened down too tightly since premature

fracture at the grip will ruin the test. After the initial slippage the

curve then becomes linear to establish Neo-Hookean behavior.

EXPERIMENTAL APPARATUS FOR THE POKER-CHIP TEST

As the equations and figures of Chapter H demonstrate, the

poker-chip test constitutes a vehicle by which a hydrostatic tensile

field can be applied to a local region of a body whose actual dimen-

sion is dictated by experimental practicality. The theoretical

analysis shows that an aspect ratio of fifteen to one is the lower

limit required to produce this stress field and twenty to one is

more desirable. A two-inch diameter with 0.10 inch thickness

was selected to be a reasonable compromise between what could

be effectively bonded and pulled and what was desired in the way

of observation. Although Gent and Lindley originally performed

the poker-chip test by pulling or squeezing rubber blocks between

A> - - -mpg
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steel plates, it was decided for the experimental work on S-I1 3

that the apparatus would be altered considerably to facilitate a

more thorough study of the actual mrrechanisms of the fracture pro-

cess. This was accomplished by using transparent lucite grips

in place of steel. Lucite has a .nodulus in the neighborhood of

500,000 psi (59) and this provides approximately a 1,000 to 1 ratio

between modulus of grip and specimen, which closely duplicates

the theoretical assumption of rigid boundaries made in the stress

analysis. Coupled with the clear grip and clear specimen a

transparent bonding agent was found in the form of Eastman 910,

which happily acted as a wetting agent for both the rubber speci-

men and the lucite grip. When the assembly was complete, a

window was produced through which the observer could view the

internal regions of the material and study the fracture process.

A schematic drawing of the entire assembly is shown in Figure

26 where the arrows indicate the attachment of a testing machine

through which the specimen was loaded.

Bonding Procedure

A very critical facet of the experimental technique of

the poker-chip test is the bonding procedure. Being somewhat

of an art, it is demanding upon the technician to produce a bond

with sufficient strength that the specimen will not tear away from

the grip before an internal fracture is produced. The specimen

is prepared by roughly cutting it to size and then cleaning it thor-

oughly with a clth slightly dampened in methyl alcohol. If used

sparingly this procedure will not produce noticeable swelling in
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I the rubber. The lucite grips must be lightly roughened an-d thor-

oughly cleaned; furthermore it was found advisable to avoid silicon

compound abrasives, and aluminum oxide paper was found to work

nicely. A bonding accelerator (number GA-IAI) supplied by Eastman

was then applied to the specimen and the Eastman 910 to the grip.

The two pieces are brought together under hand pressure and al-

lowed to set. The process is repeated for the other grip; however

a V-block is used to insure perfect alignment. Absolutely no mis-

alignment can be tolerated due to the bending imposed in the test.

The same is true of taw.er "; the specimen; once bending is present,

the local stress conditions become unknown and the test is of little

use.

Optics

With the specimen bonded to the lucite, the grips were

sc."ewed into special fixtures depicted in Figure 26. Front sur-

fac• mirrors were mounted at 450 to the horizontal in these

head3, providing a periscope arrangement for viewing the spec-

imen. Through one mirror the specimen was illuminated by

means of a Peck model 110 Mercury vapor point source and view-

ing or photographing took place through the other. With this

powerful light source, it is possible to take high speed rmotion

pictures of the fracture process to document a detailed history

of it.

This method has also been successfully used even on

quite opaque and translucent materials. These are not as desirable
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as the clear materials, nor are they as readily photographable, but

fracture initiation is easily detected along with rather gross details

of the propagation phase, depending upon the degree of opaqueness

of the mate;-1l. Furthermore, if the material being tested lends

itself at all to i•e transmission of light, the fracture point can be

detected, for there are in3tances recorded where it has been foaund

difficult to ascertain the point at which the specimen actually failed

because no direct manifestation of it was made on the load his-

tory. (60)

17 Strain Measurements

( One of the many interesting aspects of this test is the fact

that the overall specimen strain based upon the initial thickness is

small; i.e., S-113, which evinces 35 percent to 40 percent ultimate

strain in uniaxial tension, exhibits only two percent to three percent

ultimate strain in hydrostatic tension. This was another reason

for putting faith in the results of the approximate stress analysis

which employed tools of infinitesimal elasticity. It should be pointed

out that this configuration is one of the few wherein infinitesimal

theory can be applied to fracture analysis of rubbery materials with

confidence in the accuracy of the solution. Such a state of affairs

is certainly welcome since use of finite elastic techniques for

analysis is very limited and virtually never used in fracture studies;

however, Levinson and Blatz (61) have employed a variational scheme

to solve the poker-chip problem for large deformations, so that

materials demonstrating strain levels out of the range of the linear
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I: theory or on the border of linear theory can still be analyzed for the

poker-chip test.

Because the displacements were small, for instance in the

tests to be discussed total displacement at the grip was in the neigh-

borhood of 0. 002 inches, extensometers were used to measure the

Saxial separation of the lucite grips. (See Figure 26.) They incor- V

porated linear, variabl4 differential transformers, LVDT, in con-

junction with Schaevitz LVDT exciter, demodulator, type DMPS-3.

SThese operated into a Moseley Autograf, X-Y Recorder, Model

2FR-A(S), made in Pasadena, California, where the displacements

were magnified 2000 times. A photograph of the actual specimen

: with the LVDT's mounted in place is shown in Figure 27. The com-

plete assembly was placed in a Universal Testing Machine, Model

Number TTC, manufactured bV Instron Engineering Corporation of

Canton, Massachusetts. A photograph of the apparatus ready for

test is given in Figure 28.

EXPERIMENTAL RESULTS

With a knowledge of the two independent mechanical proper-

ti-s v and E, Figure 8 can be used tto find the relationship between

the internal field stress in the poker-chip and the externally applied

strain 61 . which of course can in turn be related through the apparent

modulus to the applied load. The load was correlated with the dis-

placement through an apparent stress-strain curve. This was

computed by considering the specimen to be a uniaxial tensile bar

where the stress is obtained by dividing the applied load by the
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Figure 28. General View of the Triaxial Test Showing the Specimens in
the Instron Testing Machine and the Recording Equipment.
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cross-sectional area of a large face, P/A, while the strain is corn-

puted like a tensile bar on the basis of specimen thickness. The

descriptive parameter for this pseudo stress-strain curve is the

apparent modulus, EA, computed in the obvious way by dividing the

equivalent uniaxial stress by the equivalent uniaxial strain. A plot

of several typical apparent stress-strain curves obtained at a strain

rate of 0.02 in/min, is given in Figure 29. showing the rubbery,

elastic response of S-113 in HT. This gives some indication of the

scatter in the apparent modulus due to the batch to batch variability

of the material. Both the mode and the average come out to be

approximately 15,400 psi with a maximum variation of 1±8 percent.

As can be seen, the apparent stress-strain relation is linear

well above one percent strain, and then it bends over as it proceeds

to fracture at strains of 2-1/2 percent to 3 percent. The actual

fracture stress levels involved are considerably higher than their

uniaxial counterparts; however as was discussed previously, the

ultimate strain is greatly reduced. From Figure 8,Oz /aE = 48,

which gives a local HT of 625 psi. S-113 possesses an ultimate

strength in uniaxial tension of approximately 160-200 psi, (62)

while local stress values in the hydrostatic configuration range

approximately three tirnes this value in the neighborhood of 500-650

psi. These values quoted represent the range of a large number of

tests conducted at room temperature.

Stress-Axis Theorem

It is interesting to abstract from this and other work (22)

A
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for engineering intuition. It can be stated roughly that as the number

of axes of stress increase the ultimate stress is increased and the

ultimate strain is decreased; furthermore, as the degree of axiality

of stress is altered toward the hydrostatic this same trend will be

emphasized. In other words, as an additional axis of stress is

added to a body in uniaxial tension, the ultimate stress and strain

increase and decrease respectively from the uniaxial value as the

new stress component grows from zero to become equal to the orig-

inal one producing a state of equal biaxial tension. Adding another

axis of stress to the biaxial case further alters the ultimate proper-

ties in the same direction as it grows from zero to become equal to

the original two and produce a state of three-dimensional hydrostatic

tension. Consequently the state of hydrostatic tension is a limit

case in that it provides the maximum in stress that a given material

can withscand, as well as a minimum in strain at which fracture can

be produced. In essence the material performs at its best in this

geometrical configuration if dilatation is the criterion; however if

strain is the criterion, pure distortion states are by far superior.

Description of Fracture

The actual physics of the fracture process are quite unusual

and produce a unique mode of rupture. As the load is applied, the

field remains seemingly undisturbed even while observing the speci-

men through crossed polaroids. S-113 is a very sensitive bire-

fringent material; in fact this is one of its most outstanding

I__ *
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properties, and yet no fringes are seen to appear in the field until

the fracture process begins. (This constitutes additional evidence

to the condition of HT alluded to previously. *) Then at an average

a•plied stress of approximately 300-350 psi or a local field stress

of 500-650 psi, what appears to be a bubble catastrophically bursts

into the field somewhere in the vicinity of the center of the speci-

men. It rapidly grows in a spherically radial fashion resembling

an ablating cavity until it fills the entire thickness of the specimen

and interacts with the boundary. Figure 30 is a composite photo-

graph depicting this growth which requires about 0. 016 seconds.

The data was obtained with a 16 mm, Beckman and Whitley, Magni-

fax High Speed Camera (63 mm, f/2 lens) at a framing rate of 2000

frames per second. Next, two of the extremities of the cavity tail

off into a sharp crack that appears to propagate perpendicular to

the plane of maximum principal stress. Subsequently one and

occasionally two such nuclei manifest themselves and the specimen

appears much like the sketch in Figure 31 below.

Fig. 3&. Axial view of poker-chip fracture field.

The number of fringes is proportional to the difference in principal
stress, n= a 1 -G-2 "
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Figure 31: InternaL Fracture Growth History
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x rac•ure Surface

If the specimen is further loaded beyond the initiation point

until it is actually pulled completely apart into two pieces, the re-

sulting mating surfaces are completely riddled with crevices and

fissures and appear badly mottled. Figure 32 is a photograph of

a typical poker-chip fracture where the points of initiation can be

readily discerned with some experience. One of the facets of frac-

ture in this geometry that makes it unique is the location of the

point of initiation of fracture. In all other test specimens the frac-

ture initiates at a manufactured boundary, and in some degree the

ultimate properties are actually a measure of how well that surface

is prepared. In this case, however, the fracture originates wholely

within the material. It is a true test of the material strength, which

is determined by the structure of the material and by the existence

of internal flaws. By focussing in closer on the origin of fracture,

a nucleus is discovered as photographed in Figure 33, where the

magnification is 10OX. The surface as seen here is inclined at an

angle of approximately 200 to 300 and is consequently distorted

slightly, but the floral pattern emanating from the nucleus shows

the rather regular manner in which the crack propagates radially

;away from the original nucleus or cavity. The surface in focus here

is virtually planar and consequently what had appeared to be a bubble

growing in the field while the fracture was being observed is be-

lieved t,. nave actually been a circular, planar, Saturn-ring crack

that was enlarging in a radial direction, but due to the hydrostatic

stress field, its mating surfaces were pulled apart and made to

......
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Figure 32: Fracture Surface of Poker Chip Specimen

Figure 33: Nucleus of Fracture 10OX

!~
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Figure 34: Nucleus of Fracture 2200X

Figure 35: Nucleus of Fracture 800X
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7 is further substantiated by unloading the specimen and watching the

collapse of the bubbles back into the flat planar cracks. The crack

surface is aot perfectly planar but does possess a slight curvature

which seems to become more pronounced as the nucleus moves

closer to one of the boundaries. The orientation of this pseudo-

plane seems to be reasonably random, but if there is any bias, it

is toward planes tending to the vertical.

A more highly magnified view of the origin of fracture shows

a very rough and cobbled area as seen in Figures 34 and 35 which

was, in these specimens, consistently found to be of the order of

S10.3 inches in diameter. The region outside of the dark center

circle is a glassy, mirror-like surface characteristic of the high

velocity phase of propagation. Since the pattern and dimension of

the striations radiating from the nucleus were so reproducible, they

must be evidence of some fundamental mechanism transpiring in

fracture. Knauss (63) has discussed the notable difference in ap-

pearance in fracture surfaces of an "H.C." rubber, (64) and has

been able to draw quantitative correlations between velocity of prop-

agation and roughness of surface. The two materials bear enough

similarity that it should be possible to make inferences about rate

of propagation in S-113. Based on Knauss' observations, the cobbled

A," surface around the nucleus would have been formned from a very

slowly moving crack- -almost of zero velocity. Fracture then would

Si resemble severing bonds almost individually like rubber bands.

-• The glassy surface on the other hand is a sign of very high velocity

9E4
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motion, which would correspond with the short times noted from the

high-speed films. The change in surface is quite abrupt, indicating

a very rapid change from the slow to the fast mode. These obser-

vations would then support the hypothesis that fracture begins from

a nucleus that is formed very slowly in the material. It might even

be considered as a flaw that is "grown" in the material under load,

which, upon reaching a certain critical size, triggers a catastrophic

rupture at high velocities.

Fracture Propagation

High speed motion pictures (1000 to 3000 frames per second)

of the fracture process taken through the periscopic mirrors have

documented portions of the propagation behavior. Unfortunately they

did not shed light on the initiation mechanisms, but the character of

propagation in the high velocity mode is documented. Figure 36

shows the short period of acceleration from the zero velocity region

to some critical velocity which remains essentially constant with

some evidence of a stick-slip behavior. The data for these curves

were obtained by photographing the growth of the fracture surface

that was mentioned previously as having the appearance of a bubble,

but which is actually a planar crack that has been pulled apart by

the HT. The test was conducted at room temperature at a strain

rate of 0.20 in/min. The films were subsequently projected and

measurements made of the diameter of the circular crack as a func-

tion of time obtained through a knowledge of the framing speed,

which was calculated through timing blips made on the film. Due

to the limitations set by the grain of the film and the magnification
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under which the actual filming was performed, the entire propagation

history could not be recorded; especially the short-time regime.

This is indicated in the figure by a dotted line as an extrapolation

back to the original flaw size.

It appears then in retrospect from evidence studied a posteri-

ori and coupled with other evidence acquired before and during frac-

ture that:

1) Fracture nucleates probably from a point of weakness in

the material.f: 2) The early phase of fracture is a static one that can be

approximated as crack propagation at virtually zero velocity, where

bonds are broken slowly.

3) After reaching a critical size the crack will rapidly accel-

erate and the remaining surface changes from a rough and coarse

one to a mirror-like or glassy one.

4) This critical stress is almost three t-im-es the uniaxial

strength.

5) The acceleration period is very short and is followed by

a steady state situation where the fracture surface propagates at a

constant velocity until it intersects the boundaries.

6) It then propagates as a very blunt crack along a trajectory

that takes it perpendicular to the plane of the maximum principal

stress of the distorted field.
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CHAPTER IV

FLAW ANALYSIS

FLAW DESCRIPTION

In the description of material fabrication covered in Chapter

III, it was mentioned that the mix was degassed under vacuum to pull

out entrapped gases dissolved in the components. Furthermore if

there were any trace of water present, a side reaction would result,

and carbon dioxide would be given off, continuing as long as any

water was available. Consequently the probability is quite high that

miniature flaws are produced in the material in the form of entrapped

gaseous =ubbles. Although a large volume of gas is removed by

vacuum, there seems to be a limit to the size of bubbles that can

be drawn out of such a viscous liquid. Visual inspection of a cast

sample will not detect any indication of bubble-type flaws; however

microscopic observation at 200X has proved their existence, as

shown in the photograph of Figure 37.

in fact such flaws have been found in quantity. Samplings

taken at random throughout the castings, which in our particular

specimens are in the form of circular sheets 13" in diameter and

0.10" thick, show uniformity from section to section both in size

and distribution of the voids. By and large the voids ranged from

-4
3 to 5 times 10 inches in diameter with the larger or smaller

voids occurring only in exceptional cases. Figure 38 shows a typ-

ical mapping of a section of a sheet with a typical ratio of void

volume to material volume. A representative figure for this ratio

M noA
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Io

Figure 37: Photograph of Residual Cavities Taken at 200X.
(Each small division corresponds to 0.01 wi.)
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is approximately 7. 6 x 10-. This is admittedly quite a small volume

fraction, but at the same time there is supplied a large number of

possible fracture nucleation points; viz. 30 x 104 voids per cubic

inch. Although this number sounds large the cavities are usually 50

to 100 diameters or more apart. This makes it reasonable to assume

that each flaw acts independently and that attention can be focused

on a single cavity in making the fracture analysis. In other words,

it will be hypothesized that fracture will initiate from one of these

cavities and attention will only need to be given it. Furthermore the

HT environment produced on the flaw in the poker chip will closely

resemble that of Figure 39. The local field stress p is determined

" ,'.- / ," . /, / / / /. .' -//
•/ ,. fi/ // /

X/

Figure 39. Schematic of Flaw in the Hydrostatic
Tensile Field in the Poker Chip.
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from the applied load P or boundary displacement 6 through Figure 8.

Then since the cavity is small compared to the specimen thickness,

an analysis can be made considering the flaw to be alone in an infinite

hydrostatic field, and the test will closely duplicate the theoretical

assumptions and boundary conditions.

The approach to be followed will be to consider the transfer

of energy for the cavity region during the fracture process. From

this a critical value of the hydrostatic pressure will be predicted in

terms of pertinent material and geometric parameters, indicating

the point of rupture of the spherical flaw. However this will require

some extensions of the classical concepts in order to deal with this

particular geometry, stress field, etc., and a genwral discussion of

the energetics of fracture is in order.

ENERGY CRITERIA FOR ELASTIC FRACTURE

To a novice in the field it appears that there is great need

for elucidation of the basic principles upon which fracture energetics

are built; so that extensions to other geometries, other stress

fields, and other materials will be clear. Since this will have to be

done in the instance of the spherical cavity, let us review a few fun-

damentals.

Conservation of Energy

Beginning with the First Law of Thermodynamics as applied

to a general fracture process (65) it is possible to arrive at Grif-

fith's classical results, (66) which were originally obtained in quite

a different manner. The recoverable strain energy U1 , representing
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the strain energy before fracture, plus the work done by the surface

tractions during fracture, 6W, must, from the Conservation Law,

equal the strain energy after fracture U2 , plus the energy dissipated

in forming new surface 6S.

U1 + 6W =U 2 + 6S (4.1)

or forming an incremental equation

AU - 6W + 6S = 0 (4.2)

Differential Form

It is convenient for computation and for later comparisons

to cast the energy equation into a differential form. This will be

accomplished by dividing the equation by an increment of crack

length and taking the limit as the change in crack length approaches

zero. Implicit within this operation is the assumption that each

term in the equation can be written as a continuous function of crack

length, which can only be done if the flaw hypothesis is made.

This results from the fact that the fracture point of a specimen

with a residual crack is actually the point of initiation of the prop-

agation phase, and the energy terms can be represented as contin-

uous functions of crack length. On the other hand, if there is no

microscopic flaw and fracture originates at a sub-continuum level,

then the energy terms are not continuous functions of crack length,

and the incremental equations must be used, The differential form

of the conservation law for a fixed force boundary condition be-

comes#

jrS
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dU _F 6 dA 0 (4.3)
dA FdA

where F =Applied force at the boundary

6 =Displacement of the boundary

y = Surface energy density

A =New surface created during fractures

E.,.ER GY FUNCTIONALS

Consider now certain energy functionals which have been used

in fracture analysis. The Potential Energy Functional can be con-

sidered as a starting point for Griffith's (66) discussion of fracture.

In attempting to translate his discussion into mathematical terms

we obtain,

V U - P+S (4.4)

where U = Strain energy

P = Potential of the boundary load computed
while the load is held constant

S = Surface energy

C"= 6U - 6P + 6S (4.5)

By a careful comparison of expression (4.2) and (4.5) and the physi-

cal processes which they describe, (30) it can be shown that 6P =

6W. This is the crux of an argument that can be used to establish

what Griffith assumed for the fracture criterion, i.e.,

V O- + dc= 0 (4.6)
[ YCU- 0-C dc]
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By a comparison with the energy equation (4.3), it is apparent that

they are identical. This is a significant result, for it establishes
*

that fracture predictions for fixed grip loading made on this basis

of the adjusted potential energy being a rn'uimum, are the same as

obtained from energy conservation. At this point it is difficult to

ascertain just why a minimization of y should predict fracture, but

a later examination of the stability aspects of the problem will

clarify this point.

Extended Complementary Energy. If a similar comparison

is made between the extended potential energy of equation (4.4) for

fixed grip loading and the energy balance made for the same condi-

tions, it can be demonstrated that the two do not coincide and that

the two conditions are not the same. It is therefore concluded that

the extended potential energy is not the correct functional for fixed

grip loading. However an analogy can be made between the types of

loading and the correct functional, for in the case of fixed force

loading, where the force is held constant and the displacements

are varied, it was found that the potential energy was the proper

functional; therefore it would appear appropriate that for the fixed

grip condition where the displacements are held constant and the

forces are varying that complementary energy (49) should be con-

sidered.

It turns out that this is true. A direct comparison can be

Griffith did not specify the boundary conditions with which he

worked, but it can be deduced that it had to be fixed force.

'W T -7
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madue and a minimization oi an altered form of the complementary

energy functional.

V =U-Q+S (4.7)

where Q = fZF_1 6i1 &

26 = Portion of the surface where displacements
are specified

dor = Differential surface element

coincides with the energy equation (4.3). At this point the physical

reason why 6V = 0 predicts fracture is obscure, but it will be ex-

plained by considering the stability of the crack.

STABILITY

By means of the conservation law 6f energy, it has been pos-

sible to establish a necessary condition for fracture, since it is

necessary that energy be conserved for the phenomenon to occur.

Now it is of interest to inquire into the stability of the crack; whether

it be in stable, neutral, or unstable equilibrium. Classically it is

the second variation that provides information on stability, but this

is not necessarily always the case. Sometimes the very nature of

the problem will cause the first or possibly the first and second

variations to vanish identically. (67) In fact, there is no limit to

the number of variations that can vanish and consequentl/ it is not

a set principle as to which variation controls stability. This turns

out to be the case in the general fracture problem that we are cur-

rently investigating. In order to see this, let us take a closer look

'4 *"own WE
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at the physics, which reveals that the only "resistance" to be over-

come is the surface energy, and until the other "driving" energy

terms build up to it, a crack is perfectly stable. At the point of

•txa>..cy anything can happen and the crack at this critical stress

is in neutral equilibrium. Anything above the equality point results

in an unstable state for the crack, and it starts to propagate. Con-

sequently in this case it is the first variation of the extended potential

energy being set equal to zero that gives the stability criterion for

the point of neutral equilibrium.

Buckling Analogy

The problem of elastic buckling theor i ior columns is a

good analogy to fracture initiation and is hel',ful in clarifying this

point of which variation is related to stal Lity. By thinking of the

potential energy of the column as a contntuoa function of the varia-

tion parameter, a qualitative plot can be made as shown in Figure

40, and the potential energy can be expanded in a Taylor's series

with the variation parameter acting as the independent variable. (67)

This method gives a better physical insight into the problem and

will make it easier to understand the analogous fracture ýroblem.

V

Fignre 40. Arbitrary Plot of Potential Energy
vs. the Variation Parameter.
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A Taylor's series expansion is readily written as

2
V = V(0) + V'(O)E + V"(0) C+ ... (4.8a)

However, by definition of the variation operator (68)

AV = 6V+ 62 V + 63+ ... (4.8b)

Thus if we are at an equilibrium point, the first variation vanishes

and the sign of AV ia determined by the second variation, or in other

words, the second variation gives information about stability. The

one additional facet that affects the column buckling i3 that AV is

computed around a loading position when buckling is imminent;

therefore AV becomes a second order incremental change on top

of the AV generated by loading from the natural state to th : point

of buckling. Consequently, if the potential energy is used, the first

variation about the loaded state corresponds to a second variation

about the initial state, so that the first variation for column buckling

actually becomes equivalent to a second variation and gives the

point of instability.

A similar set of circumstances prevails in the instance of

imminent fracture, where we are using the extended potential

energy. For, as in the case of buckling, the first variation about

the point where fracture is imminent corresponds to a second var-

iation a ,out the natural state, and it is therefore the first variation

that gives the information about crack stability. This can also be

seen from the fact that the critical point using the extended potential

energy was actually based upon the first law of thermodynamics,



which implies that a state of equilibrium prevails. Interpreted in

the light of a series expansion for V. this would mean that the first

variation, which is concerned with equilibrium, is automatically

satisfied. Thus in the expansion the first term that appears is

actually the second variation and is the one that is of interest when

seeking information about stability. From this it is seen that for

fracture prediction we are not dealing with equilibrium principles

as Griffith discussed but stability, and now it is clear why the

vanishing of the first derivative of the adjusted potential energy

is the appropriate fracture condition.

In summary it may be stated that the conservation of energy

provides a necessary condition for fracture as well as a basis upon

which the potential energy can be extended; furthermore, the value

at which the first variation of the new functional vanishes is the

point of neutral equilibrium, demonstrating that the crack will run

at this point, and this constitutes a type of sufficiency condition for

fracture. Therefore the critical values predicted by this analysis

are necessary and sufficient conditions for fracture within the limit

of the degree to which the physics are modeled by the mathematics.

ENERGY FRACTURE ANALYSIS - INFINITESIMAL THEORY

We return now to consider the growth and eventual rupture

of a spherical cavity in an infinite medium subjected to HT at infin-

ity. Based upon the findings described previously in relation to the

existence, location and distribution of spherical flaws, a boundary

value problem formulated for this geometry would be expected to

- ••~'-' =r-•• •
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yield a solution that will accurately describe the physics. A math-

ematical model is depicted in Figure 41. The stress analysis (49)

where the outer boundary is taken as spherical and of radius b yields

r 3pb 3 (r3-•a pb 3(2r 3+a3 (4.9)r r 3(b3_a3) 2r3(b3-a3)

Figure 41. Idealized Model of Spherical Flaw in a Hydrostatic Field.

The corresponding strains for an incompressible material become,

r1 rt t = t-r) (4.10)

Forriing a strain energy density function and integrating over the

body we have
-1

U b-dV 5 d3 (4.11)
V

Critical Pressure

In order to obtain the critical rupture pressure, the energy

criterion of equation (4.6) is invoked

ITI14 W-
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S(U-S) = 0 (4.12)

where for a linearly elastic material P = -2U. (69) S represents the

energy required to create unit surface, and a is a measure of the

flaw growth. In this instance when b >> a, equation (4.12) becomes

.a [- p 2 a 3 -4va2Y] = 0 (4.13)

which yields a critical pressure of

Pc = ( (4.14)

Flaw Size Dependency

This gives the typical inverse square root dependency of

critical rupture stress on initial flaw radius. In fact, the defining

equation of (4.13) varies only slightly for the entire spectrum of

flaw geometries. Sneddon (70) and Sack (71) obtained the inverse

square root dependency for I 'penny-shaped'" cracks in hydrostatic

fields, which is very similar to the Griffith (66,72) result for the

line crack in a two-dimensional sheet.

A summary table shows the quantitative similarity for rep-

resentative geometries (73)

Geometry Sheet with Cylindrical Penny-shaped Spherical
line crack cavity crack cavity
(Griffith) (Sneddon)

Critical ai_.5 4 ]ýFW JEj_
Stress Iza 2a 3a "3 a

WilliamfJ (73) has discussed this similarity and uses it to investigate

the more complicated phenomenon of viscoelastic fracture.

T 17- 0- 7_________________
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Mode of Propagation

It should be noted that the analysis inherently assumes a

radial mode of propagation for the fracture surface; i.e., that the

flaw grows spherically in a manner similar to ablation. This may

place a limitation on the information gained, but a similar situation

arises for the "penny-shaped" crack, which also is confined to

propagate radially in a planar mode. Only experimentation can

provide the means for evaluating these assumptions and determining

what portion or portions of the fracture process can be analyzed

by them.

ENERGY FRACTURE ANALYSIS - EFFECT OF FINITE DEFORMA-

TION

The spherical symmetry in this problem makes it possible

to extend the infinitesimal deformation fracture analysis to include

effects of finite deformations. This is seldom possible, although

Gent and Lindley (24) did use the model of a spherical cavity in an

infinite medium and investigated the strains at the cavity using a

maximum strain criterion. S&:hapery and Williams (74) used a non-

linear theory for the same problem and coupled it with an energy

criterion to predict fracture. This is a particularly interesting

approach for polymeric materials where large strains are the rule;

furthermore, it provides an opportunity to see how large strains

affect the inverse square root dependency of initial flaw size.

Finite Strain Effects

The presence of deformations exceeding the limits of infini-

* tesimal theory produces many ramifications in the mechanics of the
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energy analysis: First, the matter of loading requires a more care-

ful definition to fit the actual conditions both experimentally and

theoretically, for with finite strains the change in area of the bound-

ing surfaces is accounted for and there becomes a distinction between

fixed force and fixed stress conditions. This difference will manifest

itself in almost every quantity previously calculated and will affect

the outcome of the conclusions drawn on the basis of the infinitesimal

theory.

Second, this same matter of the differences between the de-

formed and the undeformed area produces questions about the manner

in which surface energy is handled in the governing expressions.

Normally in the-.e computations, a surface energy is computed as if

it were a variabie of state; i.e., as if the existing surface possessed

a given surface energy as opposed to only speaking of changes in the

surface, or energy required to create surface. The actual compu-

tation is then made by differentiating this quantity with respect to

the crack length. However add.tional consideration must be given

when the surface of interest is significantly altered by deformation

before fracture occurs, i.e., the original surface changes in area

but does not rupture. This deformation is accounted for in the stress

analysis of the body and in the energy expressions, but the correct

nm. nner in which it influences the surface energy may be debatable.

Third, the classical potential energy theorem has been

shown to apply regardless of the magnitude of strain. For example,

Green and Zerna (75) derived the theorem for large strains, and

the form of the expression is found to be identical with the linear
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theory if proper attention is given to the definition of stress and

strain. By examining Figure 42, which depicts a loading history

and subsequent fracture under fixed force conditions for a general

non-linear body, it is seen that 6P of the potential energy expres-

sion (4.6) is still equal to 6W of the conservation equation (4. 2).

As a result, the first variation of the extended potential energy,

Figure 42. Force-Deflection Curve.

with proper stress and strain definition, still remains as a valid

stability criterion for large strains also.

Fourth, the complementary energy functional for finite

strains has just been formulated by Levinson (76) in terms of the

Lagrange stress and strain tensor. The Lagrange stress tensor

is an unsymmetric tensor associated with base vectors in the

undeformed body, whose intensity is measured in terms of the

undeformed area. The Lagrange strain tensor is simply the dis-

placement gradient. Levinson was able to obtain a complementary

energy principle, which differs in form from the infinitesimal

fimctional only by a change in sign. With regard to this he states,

"This is because it is customary to give the infinitesimal theorem

MS- -- . ~
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as a minimum principle, (for stable equilibrium) whereas its deriva-

tion by the Legendre transformation would lead to a maximum

principle whose function would agree in sign." Thus the first var-

iation of V set equal to zero applies for finite strains also, since

it checks energy conservation laws if proper care is given to stress

and strain definition.

Fifth, the fracture stress for the different loading conditions

i,. no longer the same when non-linearities are considered, whether

they be finite or infinitesimal. This can be shown through a com-

parison of the energy equations for the limit cases cof fixed force

and fixed grip. (See Figure 43.) For purposes of illustration,

T,

S6S 2

Figure 43. Comparison of Failure under Fixed-
Force and Fixed Displacement Boundary Conditions

assume the force deflection equation to be

F = k(c) f(6) (4.15)

The strain energy is still equal to the work done on the body

U =Fd6 = k(c) Of(N) d6 k(c) g(M) (4.16)

or



(

U = F = Fh(6) (4.16b)

The energy expressions from equation (4. k) become

~F ý(ýd-) -F(ýdC)F +~ -y(ý)F I F= 0 (Fixed Force)17

1h(6) + 'Y =0 (Fixed Grip)
6 =61

Since

( ddA

Then

1F(6 ))( ); 4h(6)(~ (4.18)I] F 
(dc) 1.6. 6d1

But dh - Ig(6) df (4.19)
d-6 fZ2( 6) TIE

Substituting (4. 15) and (4. 19) into (4.18)

9(6)df () F=F h(6) f(6) =1 (4.20)

Returning to the equivalent constitutive law, equation (4. 15). a rela-

tionship between ý-- and 4 can be found
dc dc

0 =0=kj + fA

dc}F{ dc)F dc

which, when substituted in (4. 20) and simplified, gives

NWI% I
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h(F 61 F (4.21)

The conclusion which follows is that in general for non-linear

systems, the fractuare stress depends upon the form of the stress-

strain law as well as the boundary loads, and the specific cases must

be analyzed. For instance, if f(6) = .1/n the critical stresses coin-

cide, but the nature of the system must always be examined to make

certain. This could possibly explain some discrepancies in poly-

meric fracture data, for in the instance of typical material repre-

sentations such as Neo-Hookean or Mooney-Rivlin, the critical loads

will not coincide because of the form of the constitutive law. (77)

CRITICAL FRACTURE POINT

The critical fracture stress will now be computed for both a

Neo-Hookean (NH) and a Mooney-Rivlin (MR) material to provide

not only a comparison between the two non-linear stress-strain

laws, but also with the infinitesimal theory. The strain energy

funciun for both can b represented by

W - 1+(I-3) + (l-f) %I - 3  13 = 1 (4.22)

where f = 1 gives NH, and 0 - f < 1 is MR. Following Levinson (78)

the relation between the hydrostatic tensile pressure, p, applied at

infinity and the stretch ratios of the inner boundary a and outer

boundary b is

(4. 23)
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From incompressibility

b3- a03= b 3 -a 3  (4. 24)

where a 0 , b0 denote undeformed measures of the radii.

This can be rewritten as

a3 (X3 -)=b33 (.5
0a 0(X )b(Xjý*l 4.u

or1/

1 + .0 (;L _ 1(4.26)'Lb = I -bo/ Y a"14.)

However for an infinite medium a/b0 < <1; furthermore, a /b 0 =
Xa

a << 1. From the binomial expansion

b0

n +n () a *" (4.27)

Substituting (4.27) into (4.23) the pressure relation simplifies to

E•f 4 1-E 2Xa+ 1 (4.28)
T a

Strain Energy. As was previously discussed, the altered or

extended form of the potential energy functional can also be used for

finite deformations. Of course the boundary conditions remain as

constant pressure during fracture and the potential of the surface

forces is no longer twice the strain energy as in the linear theory.

AU three energy terms must now be individually computed and in-

serted into the governing energy equation (4. 6)

a [ u-p+ s =o (4. 29)
8a0
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where U = Strain Energy

P = Potential of Surface Forces

S = Surface Energy

The strain energy is computed through the defining integral

b 3

U =3 4spb db =3 41rpb0 X-ýdXb (4.30)

b1

Using (4.27) to express the integral in terms of the extension ratio

at the flaw cavity, (4.30) becomes

U 4wb (a ( dka (4.31)

1

where the fact that a 0 /b 0 < I has been used to simplify the expres-

sion. Substituting the expression for p, equation (4.28), and inte-

grating

4

= aEI-f)X+ (7+-21 X3 2- ( Of) + _ 4.32)
a

Potential of Surface Forces. This is a much simpier term

to compute due to the fact that p is now held constant.

P = 4zpb0 (b-b 0 ) = 4 rpb31Xb-l) (4.33)

Using (4.27) once again

P =.Ipa0 a( -1 (4.34)

Surface Energy. One of the new facets of the problem alluded

to previously is encountered at this point. Before rupturing, the
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cavity surface may undergo a large change in surface area, which

would be considered as a stretching of the molecular structure, with

all input energy remaining recoverable. At the critical point, energy

will be dia3sipated by the formation of new surface, and although the

cavity is deformed considerably, the surface energy density should

be referred to the cavity surface before deformation. The reason

being that y, the surface energy density, is an artifice that relates

molecular activity to continuum activity. Consequently it is the

number of molecules present on the surface that is of concern in

computing fracture energies. This remains constant during the

deformation and therefore

2
S = 40ray (4.35)

CRITICALITY EQUATION

Substituting equations (4.32), (4.34) and (4.35) iato the

energy equation of (4.29) and performing the differentiation, with

p held constant, we obtain

X--2 6 +kXý + 2). +-f 0 (4.36)
a 1-f a 1-f a a 1f

This expresses the critical condition for fracture in terms of the

stretch ratio at the cavity and a material parameter k =

The simplest case is for the NH material when f = 1, then the criti-

cal condition is (41)

A6 3 4 1
a-(j+k) (a + 14,37)

A check of this polynomial reveals that there is only one

P" -"P
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positive, real root greater than one, so no complicated interpreta-

tions arise. Of course once the critical extension ratio is known,

the critical pressure can be computed from equation (4.28), and for

completeness, the expression for the tangential hoop stress is

given.

It= f+ •X ] (I[x --f] (4.38)

a

Comparative Results. All of these quantities have been

plotted collectively for comparison in Figures 44 - 46. There is

a noticeable variation in almost every quantity, as for instance

the ultimate extension of the cavity surface for NH bodies is in-
6T

creased considerably over MR b.-dies for log r- greater than
0

0.50, while the reverse relation holds for the hydrostatic field

stress p. In this case, p for the NH body approaches an asymptote
5E

of 5, while MR exhibits behavior characteristic of the infinitesi-

mal theory and as a result these two curves diverge rapidly. How-

ever for both NH and MR the inverse square root dependency on

a0 is reduced by considering finite strains. In spite of this reduc-

tion, there still remains a strong influence of a 0 on pc.

The validity of these predicted fracture levels can only be

ascertained by experiment. In this connection, a method was

conceived for inserting artificial flaws of varying sizes into the

polker-chip specimen and subjecting them to HT. Details of these

results, to be described subsequently, shed light oI& the fracture

behavior of spherical cavities and provide further information for

evaluating the flaw analysis.
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CHAPTER V

ARTIFICIAL FLAWS

As a means of further assessing the theoretical treatment,

k as well as serving as a vehicle for the study of flaw behavior, a

number of poker-chip specimens were prepared with a dominant

J central flaw in the form of an air bubble. In order for experiments

for such a specimen to be meaningful, the cavities must be inserted

without disturbing the normal manufacturing operations of the

standard material. It will be recalled that the standard manufac-

turing operat.on consisted of mixing together the two components,

pre-polymer and catalyst, under an inex atmosphere of nitrogen.

The mix is then transferred to a preheated mold through piping that

enables the mold to be filled while in the oven. The specimen is

then cured at 150 0 C for two hours. The bubbles were inserted into

the material without interrupting this operation by constructing a

mold with a glass front as shown in Figure 47.

N'eedle hole loss Plsate

S• fill H ole

Figure 47. Mold Asser-Aly

iN.
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The spacer ring was fitted with a hole to admit a long hypo-

dermic needle, which was of sufficient length to reach from a syringe

outside of the oven to the inner parts of the mold. In the apparatus

used, the needle was two feet long. The two components were mixed

and preheated as before, and the preheated glass front mold was

filled while in the oven in the usual manner. The polyme,'•zation

and cross-linking process begin to take place immediately upon

mixing of the two components; however, there is a pot life during

which the material will flow even though it is becoming more viscous

with time. It is while the polymer is still in this liquid state that

the hypodermic needle is inserted into the mold and a bubble blown

from outside the oven. The needle is withdrawn before the liquid

has become solid enough to retain any memory of its presence.

The mold was mounted on a shaft capable of rotation by an electric

motor controlled from the outside of the oven. In this way, the

location of the bubble in the mold could be controlled, as it had a

tendency to rise during the early stages before the polymer became

solid. The complete arrangement is shown in Figure 48.

Mold

Figure 48. Schematic of Apparatuzz used for Inserting Artificial Flaws
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Following this oper , the specimen was cured in the standard

manner at 150°C for two hox:rs, and then removed from the mold

and stored in a dry box until used.

OBSERVATIONS

The specimen was mounted between lucite grips as before

with the dominant flaw located in the center. Direct visual obser-

vation of the growth of the flaw under load was made by means of

a portable microscope from which several interesting things were

learned: 1) Deformations at the surface of the cavity were defi-

nitely finite, with strains ranging up to 150 percent. This is quite

unusual since the maximum strain in uniaxial tension attains values

of only 35 to 40 percent, but it appears that the necessary energy

condition for fracture is not met in this configuration until a sig-

nificantly larger strain. It should be emphasized, in light of the

stress axis theorem discussed previously, that these are the local

strains around the cavity and not the global strains measured at

the boundaries, which were still small in this test. 2) Fracture

levels were not affected by the presence of the dominant flaw but

were unchanged from those of the regular specimens. 3) Fracture

did not occur at the artificial flaw but elsewhere in the specimen,

sometimes close and sometimes distant from the bubble. Even in

the few cases where multiple artificial flaws were inserted in the

same specimen, fracture still occurred in the field rather than on

the surface of one of these cavities. 4) None of the cracks after

nucleating elsewhere ever propagated into or through a bubble; all
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bubbles remained intact and could be seen unruptured after the spec-

imen was completely severed into two pieces. This led to the exam-

i ination of fracture of the material in other geometries to determine

if the cracks had propagated through any of the residual bubbles

regardless of the initial size, but no evidence could be found. A

behavior of this nature was noted by Schwarzl and Staverman (79)

in Plexiglas but in this instance it was concluded that the bubbles

are not a mechanism of propagation; in fact, almost the opposite is

S true. The propagating surface seems to either stop or go around

such a discontinuity in the material.

It should be noted in the interpretation of these results that

the dominant flaw was still surrounded by a matrix of the residual

flaws, since the material was produced in a standard way. The

i large cavity was not alone in the field, and it is felt that a signif-

icant difference in behavior would have been noted had it been alone.

Since there still remained the distribution of tiny bubbles, invisible

to the naked eye, the experiments are taken as evidence of the

validity of a so-called Saturn-ring theory of crack propagation.

SATURN-RING CRACK

Assuming as before that the flaws are dispersed widely
IS

enough not to interfere with each other or cause disturbances in

the hydrostatic stress field, we will focus our attention on a single

cavity in an infinite field that will eventually trigger the fracture.

Let us visualize a reasonable physical mechanism by which fracture

can occur by picturing the cavity as it grows under the action of

I the hydrostatic tension. As the pressure is increased, the cavity

7- - - =
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will grow symmetrically until virtually all points on the surface are

brought to imminent rupture. It has been well documented in almost

every experimental test inade on rubber that the plane of fracture

occurs perpendicular to the plane of the maximum principal stresses

which, for a cavity in a symmetric field, is the tangential hoop

stress at the surface. In order for the fracture to take place per-

pendicular to the maximum tensile stress, the fracture plane must

be oriented so as to pass through the center of the cavity, and thus

it will be located on a great circle of the sphere, presumably

starting at some locally weak point on this great circle. It can

then be imagined that the crack will travel around the sphere in

zi the form of a Saturn-ring, (see Figure 49), quickly opening the

"sphere and propagating in a planar, radial direction away from the

Figure 49. Saturn-Ring Crack

spherical surface. We will term this "the Saturn-ring mode of

propagation." This obviously is an approximation to the real pro-

cess for it would never occur in such a symmetric fashion but would

be much more complicated; however, it appears to be a reasonable

model upon which to build a mathematical formulation and from which

the salient features of the problem can be studied.
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Strain Energy Function

The boundary value problem of a spherical hole with a 3aturn-

ring, planar crack has not been solved even for infinitesimal defor-

mations. It will therefore be necessary to slightly extend, in an ad

hoc manner, the results of other similar elasticity problems that

"• have been solved in order to obltain an estimate of the stress field

for the geometry of Figure 46. This will be done by examining the

J interrelationship among three known solutions: (i) a body in plane

Sstrain possessing an internal crack similar to that used by Griffith,

(ii) a body in plane strain with a cylindrical hole and two cracks

extending radially from the hole as shown in Figure 50, and (iii) the

i three-dimensional penny-shaped crack.

i;i

, ~Figure 50. Two-Dimensional Saturn-Ring Crack-"

717I z7F
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In both instances the two-dimensional sheets are taken to be loaded

in equal biaxial tension or what may be roughly referred to as a two-

dimensional hydrostatic tension. Griffith, (66) using the Inglis (80)

solution for the line crack in a two-dimensional sheet, integrated

the stresses and strains for a fixed force loading condition and gave

as the strain energy of the body in plane strain the following:

2 22
"(1-v1 p c 0U = U 0 + E (

Let us compare the form of this expression with one obtained from

an approximate solution found by Bowie (81) for the two-dimensional

Saturn-ring

r( 1 -v 2)p 2 L 2 k(L)
U = U0 + E(5.2)

L is the half crack length as specified in Figure 54, and k(L) can

be given an analytic representation in three separate regions of the

variable crack length L, by fitting Bowie's tabular data as is shown

in Figure 51.

small L k(L) = 2

intermediate L k(L) = 1 1I +I)2

L 2 2 L1 ~t

"large L k(L) = 1

From this k(L) can be sketched over the entire range of L, and will

appear as in Figure 52.

-77-WU
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18 f,

16 -

14
f (L)=L 2

12-

f (L) BY NUMERICAL
10- CALCULATION

_J

8- TABULAR DATA

L f(L)

0.000 a 0.000
6 0.303 -0.152

0.497 -0.359
0.732 -0.689
1.414 -2.018

4 2. 732 -6. 008
4.027 -11.640
6.596 -27. 860

2 - -f (L)=2

00I 2 I I I0o
0 1 2 3 4 5 6 7

L

Figure 51. Plot of Bowie's18 0 ) Tabular Data Showing Regimes of
Representation for f(L).

~I
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L2

V

k(~L)2 --. "- -- ,--

i7.5L

"Figure 52. Crack Length Factor

The inflection point, d 2k/dL = 0, occurs at L 7.5. From this it

is readily seen that there is not a large variation even when the entire

range of L is considered. For the investigation of fracture initiation,

the range for small L is the one desired, and therefore k(L) = 2 will

be selected.

Having made the extension from the two-dimensional line

crack to the two-dimensional Saturn-ring crack, we are now in a

position to make a similar extension from a three-dimensional planar

crack to a three-dimensional Saturn-ring crack. The planar crack,

or so-called penny-shaped crack, shows almost no change from the

line crack except in the dimensionality

2222 3

ir(l-V2 ) p co + (1-v2 2 c3

U=U+ U0 - 0
0 E 03 E

line crack planar crack

Using the previous example as a guide, it is conjectured that the

strain energy of the three-dimensional Saturn-ring crack could be

approximated as

Men" -;



-129-

8 ( - v')p'L'k(L)
u =u0 + 8 ( 5.3)

where k(L) will be taken by analogy to be two for small cra.ck

lengths, and in order to limit check the pe-my-shaped crack solu-

tion for large L, where the spherical cavity should no longer have

any effect, k(L) must be equal to unity.

We have now closed a loop and have internal consistency

in the ad hoc representation of the strain energy function, A

schematic representation of this is given in Figure 53.

PC PC~KJI~

k(L) 2 kL) 2

O E 3 E PL

Figure 53

The extended potential energy for the three-dimensional Saturn-ring

crack can now be formulated

The dependency on (c-a) must be as given in Eq. (5.4) in order to
describe the planar mode of propagation, for a dependency of (c3-a 3 )
describes a volumetric change much the sanme as an ablating cavity
rather than a propagating crack.

Mr.- *
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16(- )up (c-a)3]
, 0 31 + Zy• (c 2 -a 2 ) (5.4)

where c represents the instantaneous location of the Saturn-ring

crack measured from the center of the spherical cavity, and a is

the radius of the cavity as shown in Figure 49.

Criticality Condition

Previously the point of instability, which located the critical

stress at which the crack would run, has been found by setting the

first variation of the extended potential energy equal to zero. There

was also an alternate method discussed in Chapter IV on energy

methods taken from Langhaar, (67) wherein the energy function was

expanded in a Taylor series in terms of the variation parameter.

In this case the extended potential energy V would be expanded in

terms of the crack length c around an arbitrary point, say 6*= a+ c*,

where c* is the radial length of some residual Satirn-ring crack.

(See Figure 49.) The advantage of this method is that it provides

better physical insight into the behavior during the variation process.

Making such an expansion we obtain,

&v- V(*)= [-16 (1 -) pZ(6*-a)Z + 4y7T6 (c-6

(5.5)

S-32 pZ(6*-a) + 4y 21 -32 P 3!

This equation can be qualitatively plotted to obtain a better picture of

the interaction between applied load p and critical flaw size 6 or c

- - -~or C,--
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A p increasinr

IC

Figure 54. Adjusted Potential Energy vs. Crack Length
i

It was previously shown that AV was actually related to the slope;

4 i.e., the first variation around this loaded ,;tate corresponded to a

} second variation around the unloaded state, and the point of interest

.! is where the slope changes signs, or where the function AV crosses

the horizontal axis. The actual point at which it crosses the axis

is a function of the parameter P, and the point of crossing is 6 *

If we investigate the function for values of crack length very near

6 the first term is dominant, and the point at which the derivative

changes sign can be closely approximated by setting the first term

of equation (5.5) equal to zero.

E -a yr6 (5.6)

or

4(1 -v) c + a "/
aEy(r * (5.7)

c
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Physical Interpretation

The physical interpretation of this variation or more specifi-

cally c is not absolutely fixed, but it can be adapted to the physical

processes involved in the fracture of S-1 13. It is clear from Figure

54 that as p increases, the residual Saturn-ring flaw c * must de-

crease; however, in the limit as c approaches zero, or in: other

words, in the limit of fracture of the spherical cavity alone without

a Saturn-ring crack, the critical stress approaches infinity, as seen

from (5.7) in the same manner as the original Griffith result. This

is not actually true, for if one examines the atomic level, there is

always a Saturn-ring flaw of the order of atomic dimensions, but

this goes beyond the applicability of the continuum theory, and so

it is appropriate to seek another interpretation of c

By visual inspection of virgin S-1 13 under microscopic

powers of 600X to 8OOX, the continuum around the flaw appeared

to be intact, and there was certainly no Saturn-ring flaw initially.

However, it is believed from observing the experiments, that the

actual fracture occurs in this Saturn-ring mode, from which it may

be concluded that the material, after a fashion, grows its own flaw.

To elaborate on this point, imagine that as an observer we are

allowed to go inside the spherical cavity and watch the fracture

as it initiates at that surface. As the load is applied at infinity,

we would notice bonds beginning to break at various points on the

surface where the stress is the highest; however after the first bond

has broken, the material would still remain intact and fiacture of

the specimen would not occur. This bond breakage would not be
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discerned by an outside observer, for he would have no way of de-

tecting it so we arrive at the tedious point of defining where fracture

actually starts. If it is not defined to occur at the rupture of the

first bond, is it at the point of the seventh bond, or at the one-

hundredth bond, or where is it?

Knauss (82) has devoted some attention to this problem as

he has studied the propagation of cracks in sheet geometries at

various velocities, and has arrived at this same conclusion - that

a body will grow its own flaw. He has shown that for an H-C rubber,

which is similar in many respects to S-113, the fracture surface

characteristics change dramatically as the velocity changes, and

that there are three distinct regions as-he classified them. The

first or slowest velocity regime is characterized by a very rough,

cobbled surface where the fracture appears as if strands resembling

rubber bands were pulled apart individually. This regime is for

very low velocity crack propagation. The second regime, which

he terms the transition region, is more smooth in appearance and

much less cobbled. In the high velocity region, the fracture surface

appears glassy and mirror-like. A plot of the crack propagation

speed versus the gross stress applied to a sheet geometry is ex-

cerpted from this work (82) and shown in Figure 55. In that figure

is contained the evidence of a very rapid change in velocity versus

applied stress for certain ranges; in fact, in the slowly propagating

regime, evidenced by a very rough surface, the velocity to a good

approximatiun could be taken to be zero. It is this mechanism that

is employed here to define c and to interpret the manner in which

F r-- -~-
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a body grows its own flaw.

Let us now return to the spherical cavity problem. As the

stress increases to some limit point, a few bonds are broken and

eventually as the stress is increased, enough broken bonds will occur

in a localized region to create a microscopic crack, and this micro-

scopic crack is propagating at almost zero velocity, as shown in

Figure 55. But given enough time, the specimen will eventually

rupture. Strictly speaking, the crack is unstable and the critical

stress has been reached, but it goes undetected and may continue

moving slowly for a long indefinite period. In this application the

interest is in elastic fracture, and the rate effects can be ignored

by assuming that the velocity of propagation is zero and that the

body, as a result of the applied load, has created a microscopic flaw,

which is perfectly stable and which will not run. As the load is in-

creased further, the flaw will be made larger, but it will remain

• stable. Referring back to Figure 54, it is seen that the allowable

flaw size is becoming smaller as the load is increased; thus the

two variable parameters are approaching each other. As the applied

4 hydrostatic pressure is increased, the critical flaw size that tht. body

i can withstand is decreased, but the actual flaw size is increasing at

• virtually zero velocity. Finally, the point will be reached where

the flaw grown by the material becomes critical for the applied

load and at that instant the flaw will become unstabie, producing

fracture of the entire specimen. Interpreted in light of the velocity

I results of Knauss, at that point the velocity will change from zero

4 to the high velocity propagation level. It is at this point that
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fracture is defined by the observer on the outside of the specimen,

for, by virtue of the energy releasbd, a manifestation appears at the

loading device of the testing machine, or by visual observation,

the crack has become large enough that it can be observed as it.

propagates. It is this interpretation that is given to c*. It is tke

size of a critical flaw grown during the loading process, emanating

[ from the surface of the residual spherical cavity, and acting as a

stress riser to produce fracture nucleation.

U Limit Cases. It is convenient to cast equation (5.7) in terms

of non-dimensional variables. Let us define • = c*/a, then equation

( (5.7) becomes

2 pZ + (5.8)
p a 2

In the limit of g becoming large, or where the parameter c* is large

compared to the bubble radius a,

p2 1
~ Z -. I(5.9)

c

which is a constant independent of the initial flaw size a. (It should

be noted that it is not independent of the existence of a cavity - only

its size.) Thus as the flaws become small compared to the fracture

parameter c*, they have no influence on the fracture and cause no

damage to the material. They act only as nucleation points.

On the other hand, the limit of t becoming small, where the

cavity is the dominant factor

p2 a (5.10)
c

-- ~ ~ ~ ~ 7 7"--- - --
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and the large cavity causes an increase in the fracture strength over

smaller cavities -- not over the perfect material. It behaves in

much the same way that a large fillet radius does, causing a reduc-

tion in the stress concentration in a body and a consequ-,nt increase

in strength. In the intermediate values, there is an interplay of the

various parameters that can be qualitatively plotted as shown in

Figure 56.

p2

a increosirl9

0
Figure 56. Critical Pressure vs. Flaw Size

This rather unusual result arising from the diameter term of equa-

tion (5.7) which indicates that the larger bubble will sustain more

load before fracture was in keeping with the observed behavior. The

theory predicts that for a fixed c*, fracture would initiate at the

smallest bubble in the matrix; however, in the poker-chip test there

would be a trade-off between the size of the flaw and the location

in the field due to the stress decreasing radially from the center.

Consequently the actual pinpoint location would involve an interplay

between the field stress and the size of the flaw. As a result, we

have employed the average flaw size to compute the theoretical
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strength of the material, since this size flaw would have the highest

probability of occurring at the point of maximum stress. However,

statistical variations in cavity size and location would be partially

responsible for strength variations. It would be predicted from

equation (5. 10) that if the larger artificially inserted bubble had

been alone in the field, an appropriately larger fracture stress

would have resulted; however the presence of the smaller cavities

caused the fracture to nucleate from them and the fracture levels

to remain unchanged, even with the presence of the large flaw.

Numerical Correlation. In order to demonstrate this theory

further, a theoretical computation of strength will be made based

on measurements of a flaw size a and 65, takcn from a typical

specimen. From Figure 34, 6* is measured as 3.7 x 10-4 in.

Assuming that the iracture resulted from a typical cavity of radius

a= Z x 10-4, c* is computed to be 1.7 x 10-4 in. With these

figures, all that is required to compute the critical stress is the

surface energy density. This was measured in a separate exper-

iment on a different configuration entirely. A two-dimensional

sheet containing a crack was extended in plane stress. The con-

figuration was adjusted to approximate a sheet of infinite extent

with a semi-infinite crack, as shown in Figure 57.

Figure/ 57./ Shet C/.g r

Figure 57. Sheet Configuration Used for Measuring Surface Energy

,• ~l ,•__.••, • .•.. .... .__.• __ • , ,..'-•.•=--•.-•.--= .. --w•-:. -- , . ........ .. ... ,
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By plotting the propagation velocity of the crack vs. the applied

strain at the boundary, an approximate measure of the strain at

which the crack propagates at virtually zero velocity can be ob-

tained. At this point it is assumed that kinetic energy and dis-

sipation are minimal; therefore the strain energy is directly

converted to surface energy as the crack moves ahead. Equat-

ing the two, y comes out to be 0.05 in lb/in 2. The actual value

for y is taken to be a material property independent of geometry

and thus applicable in this analysis for HT.

Putting these values into equation (5.7) and using E =
1

500 psi and v =

Pcr = 580 psi

This is very near the recorded fracture value of 625 psi for the

specimen from which these mneasurements were taken. Figure

29 is the apparent stress-strain curve for this specimen, which

exhibits an apparent fracture strain of . 026 in/in. From Figure

8, az/E = 48, where z cr and the measured value of the
z z c

local hydrostatic pressure in 625 psi. Such good agreement may

be a bit fortuitous, but it lends support to the validity of the

theory and calculations.

Thus the Saturn-ring concept, with the accompanying

calculations, is able to predict experimental results as well

as provide a plausible explanation for the observations made

with the large, artificial flaws. The results forthcoming from

the analysis are of considerable interest when discussing the

1 - 0- pop wa i4
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difference between cavities and cracks. The energy formulations

show that they enter the problem in a fundamentally different way,

as seen by comparing equation (5.7) to Sneddon's result, for in-

stance. It is true that for a crack the larger its size, the less its

endurable load; however cavities do not act this way. The compara-

tive results between the two continues to behave as intuitively ex-

pected; i.e., a body possessing a cavity, for a hole, of the same

dimension as a crack would be expected to withstand more stress,

or would bear more load than the cracked body and this is exactly

what the energy expressions predict. The exact manner in which

the cavity radius enters is extremely interesting. It shows that in

some regimes the cavity is not important at all except in acting as

a nucleation point and lends a new concept about the effect or resid-

ual cavities in rubbery materials, or other materials for that mat-

ter, and their effect upon the malfunctioning of that body. Heretofore

it has been the intuitive feeling that has motivated quality control

techniques, which accepts a structure that has flaws under a speci-

fied size and discards as inacceptable bodies containing flaws that

would exceed this randomly selected size. This result will have

significant meaning for people engaged in such work, for it demon-

strates that another piece of information, c*, must be known before

a decision can be made. It must be emphasized in conclusion that

this application is for hydrostatic tension only and may be much

different in another geometry; in fact, it will be demonstrated that

this actually is the case in the next section.

--.... *-, i -NI - m M- - .I-
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RELATED GEOMETRIES

Although the purpose of this study was to investigate hydro-

static fracture, the unusual nature of the cL/ity size dependency

makes it intriguing to know what other geometries wiln yield. A

brief look at the two-dimensional analogy, consisting of a cylin-

drical, hole in equal biaxial tension, provides additional under-

standing of the role of cavities as opposed to cracks. Returning

again to the Bowie (81) solution, the expression for the extended

potential energy becomes

2 2
V =U 0 - E (c-a) + 4y(c-a) (5.11)

where a = radius of the original cylindrical hole

c = length of the crack measured from the periphery of

the hole

The critical condition obtained by expanding V in a Taylors Series

about a given crack size c is

Pcr (512)

when c* ýs again taken as the crack dimension "grown" in the ma-

terial by the loading at zero velocity before the fracture process

becomes unstable.

This is an interesting turn of events, because the initial

hole size, a, does not appear explicitly. It does influence the ex-

pression for strain energy (5. 10), since this is dependent upon

geometry; however the influence is the same regardless of the

size of the hole. This statement should be tempered with the fact

,4
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that the hole must be small compared to specimen dimension. Fur-

thermore the theory assumes that fracture occurs simultaneously

over the entire thickness of the specimen. Although this assumption

is standard for the reason that the thickness effect is a separate

study in and of itself, (83) it is exceptionally crucial in this instance.

It directly affects the form of the surface energy expression, which

is the term that gives rise to the appearance of the initial cavity

size in the criticality condition. Within these limitations the frac-

ture stress should be independent of initial hole, or cavity, size.

Experimental Results

A few preliminary tests have been run to evaluate this pre-

diction. Only a small number of runs were made for equal, biaxial

tension, but a significant number of specimens were tested in uni-

axial tension. For the biaxial tests, specimens were prepared by

casting large, circular sheets 13 inches in diameter and 0. 10 inches

thick in the standard way. After curing, the central portion of the

sheet was frozen with liquid nitrogen, which made it possible to

drill holes with smooth surfaces free of stress concentrations. The

equal biaxial stress field was produced by inflating this membrane

.ith the central cylindrical hole by a pressure apparatus similar to

that of Figure 4. Loading the sheets to failure for a series of holes

of 1/16, 1/8 and 1/4 inches in diameter, fracture stresses of 109

psi, 123 psi, and 116 psi respectively were recorded. For all

intents and purposes this can be considered constant. These exper-

iments are by no means conclusive, but they do display the trend
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predicted by equation (5.12), and one statement that can be made is

that the dependency of hole size does not appear to be inverse square

root as is the case for cracks.

Of course, the same geometry loaded by a one-dimensional

stress field does not possess fundamentally different energy expres-

sions from the two-dimensional case; consequently, the critical

pressure possesses the same form except for the magnitude of

constants. A series of tests was run for uniaxial specimens con-

taining cylindrical holes, ranging in size from 0.03 to 0. 525 in.,

or over approximately a one decade spread. The specimens were

3"t x 4" x 0.10"1 giving a specimen width to cavity ratio of the

orders of 10 to 100. Results of the test are plotted in Figure 58,

where a remarkable demonstration of the predicted result of equa-

tion (5. 12) is manifested. The fracture level is constant except

for a small transition region where the cavity sees a change from

the plane stress environment to plane strain. In other words, when

the hole size is large compared to the thickness it sees a plane

stress field, but as the hole size is reduced, it finally becomes

approximately the same magnitude as the specimen thickness.

From this point on, the hole sees a plane strain field and the energy

enters the process, as well as the fracture equation (5.10). in a

slightly different way. The strain energy is altered by a factor

of 1/l-V and the critical stress is increased by the square root of

this quantity. For purposes of a nearly incompressible material

such as S-113, the factor becomes 1. 15. This is almost exactly

the increase that is observed experimentally in Figure 58 as the
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fracture level changes from 31.5 to 36.0 on the average.

This brief side excursion from hydrostatic fracture suggests

additional corroboration of the concept of a flaw "grown" by the

loading, which concept appears to predict rather accurately the

experimental results. Ii further quggests some alterations in one's

intuition with regards to the effects of the dimensionality of the

stress field and the influence of cavity size on fracture level. The

general trends noted here can be nicely fit into the stress-axis

theorem on fracture, alluded to previously, to provide guidelines

for engineering analysis -Ad design.

Character of c

One additional item of interest is the correlation of the con-

cept of an actual numerical value of c* in the various stress fields.

At this point it is not possible to deduce a dependency of c* on

geometry or material properties; i.e., whether it is predominantly

determined by the geometry of a stress field or whether there is a

fundamental mechanism tied up with the chain structure that dictates

2c the magnitude of the flaw that must be grown before it becomes un-

stable and propagates at high velocity. Additional experimental

work will have to be conceived and carried out to define the exact

properties of c*. Along this same line is the product of the mater-

ial properties Ey which always arise in any fracture analysis,

indicating that a wide range of materials possessing a diversity of

mechanical properties could still fracture at the same point if the

EY product remained the same. In other words a more glassy
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polymer possessing a high modulus may at the same time have a

low surface energy density and still fracture at the same point as

a rubbery polymer with a low modulus and a high surface energy

density, providing c* is the same. This reasoning attributes addi-

tional importance to the fundamestal nature of c* as describirng

the difference in chariacter of the fracture between two materials

of this type--if there is a difference.

SUMMARY

In summary it is felt that the results of the poker-chip ex-

periments on both the standard material and the material with the

artificial flaws have-amplydemonstrated that the mechanism of poly-

mer fracture through a Saturn-ring crack, whereby the material

generates its own flaw, is a reasonable one. Furthermore the pre-

liminary results of the one and two-dimensional tests seem to attest

the conclusion reached in the three-dimensional analysis that the

hole, or cavity, size affects fracture properties in a manner com-

pletely different than a crack. Having touched all of the bases, so

to speak, it appears that a consistent story has been generated

that has been verified experimentally, from which extensions can

now be made to the more general case where holes and cavities

are analyzed in the viscoelastic range.



CHAPTER VI

CONCLUSION

At this point it is appropriate to assemble in brief form the

main contributions of this study in an effort to integrate the several

parts into a whole, and to better delineate what progress has been

made. A lot of groundwork has been laid in the form of experimental

test development, specimen stress analysis, etc. that wil continue

to be useful in further triaxial fracture studies. Results of exper-

imental tests employing these tools have provided quantitative

definition of ultimate strengths in hydrostatic tension, which pro-

vides the limit point for the topological fracture surface in principal

stress space.

The discovery, measurement and distribution analysis of

spherical cavities in the material has given better insight to guide

the theoretical treatment of flaws. Furthermore it has identified

a type of material that can be used for extensive investigation of

cavity flaw behavior. It may also lead to the identification of other

materials of a similar classification, which possess inherent flaws

due to manufacturing and processing. These steps forward all have

applications beyond the scope of this particular study and may be

readily employed in extensions of this work.

The application of energy methods of fracture analysis to

spherical cavities has led to predictions of ultimate strengths,

both for finite and infinitesimal deformations, which compare

favorably with experiment in some regimes; however many of the

same problems that plagued Griffith in his initial work with energy

MMM
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analysis still plague u.s today. By this it is meant that from the

standpoint of fundamental physical processes involved, a great deal

still remains to be learned. For instance Griffith (66) performed

experiments on glass that he used as evidence of his theoretical

predictions. In many respects they did not duplicate the conditions

imposed in the mathematical treatment, and this continues to be,

and promises to remain, a challenge to the experimentor. To

accurately duplicate the ideal boundary conditions is a tedious and

difficult task. In addition, he required the surface energy of the

glass as a parameter in the expression for critical stress. Since

he could not measure this quantity in the solid state, he used the

liquid value as an approximation. In the intervening forty years

since Griffith published his work, the colloidal chemists have been

studying surfaces, or more accurately, in.erfaces, and have

learned a great deal about them. Most of this knowledge, however,

has pointed to the fact that it is a much more complicated phenome-

non than had been originally appreciated, and the concept of surface

energy in solids is still quite nebulous. So that just exactly what

surface energy is in solids and the mechanisms involved in creating

a surface duxing fracture still remain as missing pieces in the

puzzle. Suci- '.-y pieces are worthy of study and constitute a logical

avenue of further research.

Another finding of this study relates to the difference in

eLffect on the strength of a body c o n t a i n i n g cracks and cavities.

Once again the confidence level in the results is limited by the lack

of understanding of the basi.c processes. The energy approach used
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seems to be sound and well motivated mathematically; however

the separate terms in the analytical expressions strongly depend

upon the physical mechanisms and how accu.ate•y they can be

described mathematically. In cracks this is a little better defined

than in cavities, since propagation details can be formulated more

readily on an intuitive basis. The manner in which a spherical

cavity opens up into a crack is not at all obvious. As a result of

this study, which has concentrated on discovering some of the

fundamental mechanisms, additional insight into the behavior of

cavities as fracture nucleation points has been obtained. How-

ever most of this information has been gleaned from evidence left

on the fracture surface; consequently the hypothesis of the Saturn-

ring propagation mode is predominantly inference and, although

it seems to explain all of the phenomena, the evidence is still not

conclusive. In other words, from almost any standpoint there is

a need for extensive fundamental studies on elastic fracture pro-

cesses. These items will also constitute a valuable contribution

when dissipative effects of viscoelastic materials are included,

or when dealing with the more complicated filled material.

-
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general three-dimensional environments. The advantages created by the symnmetr
of the stress field are considerable and, on one of the cases studied, facilitates a
theoretical treatment that includes large deformations, which are characteristic
of this class of materials. The analysis is developed through the concept of frac-
ture originating from a flaw, which in this instance is taken to be a spherical
cavity. Through the application of energy principles, a theoretical prediction of
ultimate strength is made for hydrostatic tensile fields. Experiments were con-
ducted to demonstrate the existence of such flaws and to evaluate the theory. Re-
sults of the tests on specimens containing both residual flaws and artificially in-
serted ones indicate a fundamental difference in behavior as contrasted with
cracks. An explanation is given linking experimental results and theoretical pre-
dictions. It is based on the concept that a flaw :"grows" in the material under load
using the cavity as a nucleating point. Upon this hypothesis is built a theory of
rupture in which planar cracks grow radially from the center of the cavity in the
form of Saturn-ring cracks.
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