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SUMMARY 

An axisymmetric viscous-transonic equation is presented.   A nozzle 

type similarity solution of this equation has been found, which describes 

the initial stages in the development of shock-waves downstream of a con- 

verging-diverging nozzle throat.   This solution is an extension of a two 

dimensional solution found previously (Sichel 1966).   By an appropriate 

choice of an arbitrary scaling constant solutions were found such that there 

is essentially a veak normal shock near the axis with effects of wall and 

shock wave curvature occurring only at a sufficiently large radius.   The 

upstream and downstream asymptotic behavior of these viscous-transonic 

nozzle solutions has been investigated. 
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1.     INTRODUCTION 

A similarity solution of the inviscid transonic equation describing flow 

near the throat of a converging-diverging nozzle was found by Tomotika 

and Tamada (1950) in the two dimensional case and by Tomotika and 

Hasimoto (1950) in the axisymmetric case.   These solutions describe both 

the symmetrical Taylor flow with subsonic velocities upstream and down- 

stream of the throat and the asymmetrical subsonic-supersonic Meyer flow, 

but do not permit a smooth transition between the two types of flow.   Since 

this transition is accompanied by the formation of shock waves downstream 

of the nozzle throat this difficulty appears due to the neglect of viscous ef- 

fects.   If the longitudinal or compressive viscosity and the thermal conduc- 

tivity are taken into account the inviscid transonic equation should be replaced 

by a "viscous-transonic" equation (Cole 1949, Sichel 1963, Szaniawski 1963). 

Sichel (1966) found nozzle type similarity solutions of the two dimensional 

viscous-transonic equation, that do permit the smooth transition from the 

Taylor to the Meyer type of flow and display the initial stages in shock wave 

formation downstream of the nozzle throat.   An axisymmetric viscous tran- 

sonic nozzle solution has also been found and is the main subject of the 

present paper. 

2.     THE AXISYMMETRIC NOZZLE SOLUTION 

The viscous-transonic equation for the axisymmetric flow of a perfect 



gas can be shown to be 

UXXX ■ Ax + «VR) ^ URR     0        ' (1) 

and since the flow is irrotational to the order of approximation used in de- 

riving (1) 

UR    Vx        . (2) 

In these equation X and R are dimensionless axial and radial coordinates 

and U and V are the corresponding dimensionless velocities.   Equations (1) 

and (2) are derived from the full Navier-Stokes equations by a simultaneous 

coordinate stretching and series expansion, and since the derivation is almost 

identical to that of the two dimensional viscous-transonic equation (Sichel 1963) 

the details will not be reproduced here.   Without the third order viscous term 

equation (1) is the same as the inviscid axisymmetric transonic equation 

(Guderley 1962); without the term UD/R and with R replaced by Y equation (1) 
R 

becomes the two dimensional viscous-transonic equation. 

The stretched dimensionless coordinates X and R, and the correspond- 

ing velocities U and V are related to dimensional coordinates x, r, and 

velccities u, v by 

X    A (x/ >))    ;    R - v'(i/ 2)(> + T) e1 / 2 A (r/ /;) 

(ü/a*) - 1     eU    ;    (^/a*) - e3/2 vr(l/2)(y + 1) V 

(3) 



where 

A = (l/2)(y + 1)[1 + (y - D/Pr"]"1     . 

In equation (3) a* is the critical speed of sound while € is a small parameter 

proportional to the maximum deviation of (u/a*) from the sonic value.   The 

characteristic length 77 is equal to (/i*M/ep* a*), which is of the order of 

the thickness of a weak shock,   /i" is the compressive or longitudinal 

voscosity (Hayes 1958) while p is the density, and the asterisk refers to 

conditions at the sonic point.   The Prandtl number Pr" is based on the 

viscosity /iM and is assumed constant.   The relations between the deviations 

of the pressure, density, and temperature from their critical values and the 

velocity perturbation U are identical to those within an acrustic wave 

(Sichel 1963). 

The transformation 

U = Z(S) + 2CT
2
R

2 

(4) 

S = X + aR2 

which was also used by Tomotika and Hasimoto (1950) reduces the axisym- 

metric viscous transonic equation to the ordinary differential equation 

Z'" - 2ZZ" - 2(Z' - ULOHZ' + uua) = 0 (5) 

where 



a>=\/5+l     ,     uL = N/ö - 

The flow described by equation (4) can be considered to be a nozzle flow by 

choosing one of the streamtubesas the nozzle wall.    Z(S) will be the value 

of U on the nozzle axis R = 0.   The arbitrary constant a is related to the 

streamline curvature and will be discussed further below. 

Except for the value of the constants OL and au equation (5) is identical 

to the ordinary differential equation considered in the two dimensional case; 

therefore, the properties of equation (5) are similar to those of the two 

dimensional equation, which has been discussed in detail by Sichel (1966). 

As before the inviscid solutions 

Z = ULCJ (S - b) (6a) 

Z - - ^a (S - b) (6b) 

also satisfy the viscous equation, and (6a) represents the inviscid Meyer type 

subsonic-supersonic accelerating flow.   The arbitrary constant b locates the 

sonic point Z = 0.   Again the behavior of solutions of (5) in the Z", Z',  Z 

phase space can be established by studying the two dimensional trajectories 

obtained when Z is held constant, and there will be singularities where the 

inviscid solutions pierce the Z = constant planes.   The point Z' = OJ.O, 

Z" = 0 will be a saddle-point for all Z while the point Z' = - uuor, ZM = 0 

will be an unstable node, an unstable spiral point, a stable spiral point, and 

•» zs 



a stable node respectively for Z corresponding to the ranges 

Z  >   yJMwj + ovj];   v^öjwj t- u^)  >   Z   >   0;  0  >   Z  > - >/2ä((I + w0); 

v^a^j + au)   >   Z 

Thus any solution starting near the inviscid accelerating solution will diverge 

from it for ail Z; however, some of these solutions pass through a maximum 

and then asymptotically approach the inviscid decelerating solution. 

Numerical solutions of equation (5) representing stages in the transition 

from the Taylor to the Meyer type of flow are shown in figures l,a,b, and c 

for a - 1.0, 0. 5, and 0. 1, and were obtained by choosing initial values very 

close to the accelerating inviscid solution and lying on the directrix of the 

saddle-point in the corresponding Z = constant plane.   Integrating equation (5) 

once yields 

Z" - 2(ZZ') + c  (Wj - c^) Z + 2^ u)2 a2S = Cj     , (7) 

and initial conditions Z(SJ, Z^SJ and ZM(SJ were chosen so that the con- 

stant C. = 0 for then it follows from equation (7) that the transitional solutions 

will be asymptotic to Z = - OLOS as S ^ + X and to Z = ULGS as S - - oc. 

In figure 1, Z represents the nozzle centerline velocity distribution so 

that Z = 0 corresponds to the sonic point.   As in the two dimensional case, 

figure 1 shows the gradual development of what appears to be a shock wave 



as the maximum of Z increases beyond the sonic value.   With increasing Z ma x 

the velocity gradient steepens in the region of transition from supersonic to 

subsonic flow.   The expansion scheme which provides the basis for the 

derivation of the viscous-transonic equation will be valid only if U, and 

hence Z are O(l); therefore, the solutions w^th Z        greater thnn 2. 0 to max D 

3. 0, while of interest with regard to the overall behavior of equation (5), 

cannot accurately represent the transition from the Taylor to the Meyer flow. 

As the parameter a decreases the supersonic-subsonic transition shifts to 

larger values of S for a given vaiue of Z       .   With a - 0. 1 these transitions & max 

appear to closely approximate a normal shock wave with ilmost uniform 

upstream and downstream flow. 

Weak normal shock waves are to order f symmetrical with respect to 

the sonic point for if the stream velocity u./a* = 1 + clh the velocity u?/a* 

downstream of the shock will be 1 - elL.   Supposing Z   r    to be U, it can be 
i max i 

seen that, as in »wo dimensions, nozzle flow transiiions overshoot the cor- 

responding downstream Hugoniot value U9 = - Z       .    For subsonic Taylor 
Ci max 

♦ype flows with S      0, Z diverges from the inviscid solution Z = UJJS very 

slowly, but lor large positive values of S the solution Z(S) very rapidly de- 

viates from the invisc d solution.   On the other hand, even for S  »   1 the 

solutions upproach the decelerating inviscid solution Z ^ - a^oS very gradually. 

This behavior can be verified analytically by studying the asymptotic behavior 

of Z near the two inviscid solutions as discussed below. 



3.    ASYMPTOTIC BEHAVIOR 

Although equation (5) could only be solved numerically it is possible to 

analytically determine the asymptotic behavior of Z(S) where it lies near 

the inviscid solutions.   Thus from 

Z     uyiS + C j 

Z - - u^aS + Cg 

(8) 

it follows that the perturbations C ., C«   ^    1 respectively where Z asymp 

totically approaches the inviscid solutions Z = c^oS and Z = - a^oS. 

Substituting equations (8) into equation (7) for Z and dropping terms of 

2 2 
0(C1  ) and 0(Cp ) then yields the following linear differential equations 

for C and C«- 

Cj'   - 2^(78 Cj' -Zu^aCj = 0 

iY' + 2(^aS C2' r2u;1aC2 - 0 

(9) 

Equations (9) are readily reduced to Weber's equation and have the solutions 

- p 
-2 Vs2 r 

C3U 
UJU 

ri 
i,s + c.v 4   1 w. ■ s 

?2- 

1       c
2 

aV3 a». 
CCU 

J. 1 
^'2 , S + crv 

0 
'"i  1 ... 
V2'    ' 

(10) 



where U(a, S), V(a, S) are parabolic cylinder functions of S with parameter 

a as defined and tabulated by Miller (1964); and Cg, C^ C5, and Cg are 

arbitrary constants. 

The numerical results for Z(S) (Figure 1) indicate a difference in the 

behavior of ?. and C« for large S and this can be verified from equations (10). 

Thus, using the asymptotic expansion for U and V as S ^ + oo (Miller, 1964) 

and keeping only the largest term in each expansion it follows that 

UL 

W, 

C1(s)-c3s 1 +0(1/8*) 

^2 
cj- u)- a S 

C^S e  1 
■^ «-4 1 + o(i/s ) 

CÜ. 

a>9 - uJpaS 

C2(S)-C5S e 1 + 0(1/S ) 

w. 

tti. 

(11) 

c«s + ^6 1 f 0(1/S2) 

For a given SQ the choice of Cj (SQ), C2 (SQ), CJ' (SQ), and ^ (SQ) deter- 

mines the constants in equations (10).   Asymptotic expressions for the 

derivatives ^' (S) and C' (S) are <hus required and can be determined by 

differentiating equations (9) and determining the asymptotic behavior of 

the solution of the resultant Weber's equation for C' and C' with the result 

that as S - x 

8 



^ 

w« 
+ 1 

CjMS) 
a».    3 

1 + 0(1/S ) 

^2 
— 2 
CLL      U). (J S 

+ 2^00,8     e 
1      4 

1 +0(1/8 ) 

(12) 

] 
w. 

C2'  (8) 

1 

^2    "^ a8 
2cü0Cca8     C 1 +0(1/8 ) 

^1 
a)      b 

— + 1 

1 +0(1/8 ) 

The need to differentiate the asymptotic expansions (11) directly, a procedure 

generally not valid (De Bruijn,  1958), is thereby avoided.   The form of (12) 

is such that C0, C., Cc, and CL are the same as the constants in equation (11), 
o        4        ü O 

and equation (11) can be recovered by integrating the asymptotic expressions 

(12).   The constants in equation (10) can now be evaluated with the result that 

with 

co. 

w. 

Ui, 

ÜL 
-   1 

C1 (S) = D f- 
lb0j 

+ E 

/o2    o 2, 
c^o (8    - S0 ) 

\soi 
(13a) 

OL 

C4, 
-  1 

C2(S) = F 
u^a (8' 

0| *^h 
co. 

w. 

(13b) 

D=k 10 
10     ZU^QSQ 

2 
 2 2 
2^ aS0 

- 1 



E = 
i   /cio^   ?ion 

2u).a o 2      Sn \ßl s0       0 

- 1 
UL 

2       2 
2u,l (JS0 

F; -^ 1 
C20 ^1      ? 20 

CÜ, 
- 1 

'o M 
i - 

2ac4J
2S0

2 

G = 
C 

.- 1 
20 

w 

20    2aaJ2S0 
1 - 2    2 

where the subscript zero indicates values at S = S^. 

Equation (13a) shows that, except for the special case E = 0, ^(S) 

increases very rapidly for S > Sn as do the numerical solutions in 

Figure 1.   The term (S/SJ     "        dies out with increasing S and so will 

have little effect upon C-   Equation (13a) is consistent with the saddle-point 

behavior near Z = OLCTS discussed previously, for %.(S) will tend to zero 

with increasing S only in the special case 

C 10 (VVVio' 

for which E = 0, otherwise C increases with increasing S.   As S decreases, 

i.e. , S < Sft, the exponential part of (13a) decays rapidly but the 

- ^^l 
(S/SJ     "        term increases unless D = 0.   The special solutions D = 0 

and E = 0 thus correspond to solutions lying on the directrices of the saddle- 

point, and the solution which approaches Z = aiaS as S decreases is clearly 

10 



the one way ^ = 0.   The numerical integrations were started near Z = u.oS 

and at points lying on the directrix of the solution diverging from the point 

Z' = OLO, Z" = 0, in the appropriate Z = constant plane, a procedure 

equivalent to choosing D = 0.   Nevertheless, because of round-off errors 

the solutions always diverge from the inviscid solution when integrating 

backward from the starting point. 

Both terms of the expansion for C«(S), equation (13b), tend,to zero 

with increasing S in accord with the fact that the point Z' = a^a, Z" = 0 

j/2 
is a stable node in the Z = constant plane for Z <  -2a    " Vuu + 1.   The 

exponential term decays rapidly when S > S0 so that C«^) will be dominated 

by (S/S0)     "    " and so approaches the inviscid solution Z = - ouaS rela- 

tively slowly as do the numerical solutions in figure 1. 

The asymptotic expansions for U(a, S) and V(a, S) presented by Miller 

(1964) are not valid for S < 0; however, by using the expansion for U(a,  -S) 

(Whittaker and Watson, 1952) together with appropriate recursion formulas 

for U and V and redefining the standard solution for Weber's equation in 

the cases S < 0 equations (13a) and (13b) for ^ and ?„ can be shown to be 

2 2 
valid for S - - oc.   Now, however, for S > Sn, S    < S0   so that the ex- 

ponential term in equation (13a) decays rapidly while the power term 

(S/SJ increases.   Again in accord with the numerical curves,  Z 

deviates from the inviscid solution very slowly with increasing S as 

Sft - -oo. particularly since OJU/O). - 0. 382 in the axisymmetric case. 

11 



From the inviscid solution of Tomotika and husimoto (1950) for Z it 

can be shown that Cj ^ I Si andC2~lsl as S - ± x.   The 

exponential terms in equations (13a) and (13b), which account for the 

uifference in the behavior of the subsonic and supersonic solutions, thus 

reflect the effects of viscosity. 

The discussion of asymptotic behavior given above is fully applicable 

to the two dimensional case (Sichel, 1966) provided the two dimensional 

values UL , uk = 2. 0, 1.0 are used in place of the axisymmetric values 

u>v c^ = (v/r+ 1),  (V5"- 1). 

4.     NATURE OF THE FLOW 

To compute the streamlines corresponding to the solutions in figure 1 

the vertical velocity, V,  must be known, and can be determined from the 

irrotationality condition and equation (7) with the result 

2        ^1^2   3   3 Cl C2 
V-2aRZ + 4o RX+-^a IT-^R + -^ (14) 

The arbitral y constant C« is taken to be zero since only solutions with 

finite V on the axis R = 0 are of interest.   The constant C. merely trans- 

lates the origin of S and so, for convenience, will be taken as zero.   Unlike 

equation (5) and the foregoing asymptotic analysis, equation (14) cannot, be 

extended to the two dimensional case.   To the present order of approximation 

the streamlines satisfy the differential equation 

12 



^£3/2^Lil1/2
v (15) 

where r (x) is the variation of the radius r along any given streamline. 

In terms of Rc{x) equation (15) becomes 
o 

dRS       2ly + 1 
dX 

e (16) 
/ 

2 
The significance of e   in (16) and the relation between solutions in the X-R 

and physical x-r plane are the same as in the two dimensional case (Sichel, 

1966). 

Generally it is desirable to specify the ratio of throat radius r  to the 

radius of curvature of the nozzle wall streamline.   To the present order of 

approximation the streamline curvature, L    , at any point in the flow is 

given by 

i = ^S     £3/2 {r-tlf2™ -. 2c3/2 M1/2 * 0R (Z- + 2a) (H) 
L     dx

2 I    2   I        dx \    *   I       v 

where L is the streamline radius of curvature.   For most cases of interest 

the transition from supersonic to subsonic flow occurs well beyond the 

throat; hence, the flow in the immediate vicinity of the throat follows the 

inviscid solution, Z = Cü aS, so that (L/77) is given by 

13 



(LA) - r2€3/2 imW^T>Ra2 (^ + 2^ (18) 

I With the ratio r /L  of throat radius to wall radius of curvature fixed at 

ß, the throat radius r  will then be 

A ,1/2 
: = 'hi  
1     Aea   (y + 1)^ + 2) 1/2 

(19) 

The axial throat coordinate x  is derived using the condition V = 0 at the 

throat as in the two dimensional case (Sichel 1966). 

Isotachs, or lines of constant speed in the r-x plane correspond to 

curves along which U is constant to the present order of approximation, 

and so can be determined from equation (4) and the numerical solutions 

for Z.   In the region of inviscid flow the velocity perturbations cU and 

€3/2 v/(l/2)(y + 1) V are given by 

fU - 
u 
a* 

CJj/i 
1/2 

(y + 1)^ + 2) 

t     ß    2 
TT72^ +2 ^ (20) 

€3/2;(l/2)(> + l7v = ^^i^ +-- 
2U +l)ß3/2 f(l/2)(r+ 1) 1/2 

2^ + 2) 
3/2 V     (21) 

when r   is chosen as a reference length so that 

4  = (x/rt)    ;    r; = (F/rt) 

14 



Integration of equation (15) using (21) for v/a* then yields the following 

expression for the wall streamline in the portion of the flow where 

Z     u.vS: 

r 
~ = V 
rt 

(1/2)/^ 

L 

}t 2     ..        ^ )3/2rl/2     $        0 

^t      ^l^)^       r f     ßx\. 
2(a)1 + 2)] I t 

1/2 

(22) 

With ^  , the throat coordinate, given by 

4t = (xt/rt) 
2^2(.1 + i)r

1/2 

2(w1 + 2)1 ä/T (23) 

Equation (22) shows that ry - x for sufficiently large |, but for those solu- 

tions with Z, and U ~ O(l) transition to subsonic flow occurs long before 

?; diverges to infinity.   Once Z deviates from Z = cü.aS equation (15) can 

only be integrated numerically. 

The relation between the arbitrary constant a and the nozzle flow field 

can be seen from equations (18), and (19).   With e, r/, and y fixed the 

_ 2 
streamline radius of curvature L varies inversely with a   for a given fixed 

radius R, and the velocity gradient of the inviscid solutions ahead of and 

behind the viscous transition decreases as is evident from figure 1.   As 

15 



discussed previously with this decrease in velocity gradient the viscous 

transition, at least on the nozzle centerline, approaches the Taylor (1910) 

shock transition.   For fixed /i and e the nozzle throat radius r  varies in- 

versely with a, (equation (19)). 

Typical isotach contours and streamlines for (7=1.0 and 0. 1, cor- 

responding to curves A and B in figures 1(a) and 1(c), are shown in 

figures 2(a) and 2(b) in the ^-r; plane.   Figures 2(a) and 2(b) have been 

drawn using numerical solutions with the same peak value of Z, and with 

wall streamlines corresponding to /i = 0. 21 as in the paper by Tomotika 

and Hasimoto (1950).   Since the flow is axisymmetric the isotachs are really 

the intersections of constant speed surfaces with planes through the nozzle 

axis. 

The strange shape of the isotachs downstream of the region of rapid 

deceleration in figure 1(b) results from the slight increase in Z(S) im- 

mediately behind the shock like transition.   The a = 0. 1 wall streamline 

has a second minimum some distance downstream of the supersonic- 

subsonic transition; however, for streamlines with ß sufficiently small 

this second throat disappears.   An inherent /roperty of similarity solutions, 

such as presented here, is, of course, the inability to specify streamline 

shapes a-priori    The shock like nature of the supersonic-subsonic transi- 

tion is clearly indicated particularly in the case of a = 0.1. 

16 



5.    DISCUSSION 

The axisymmetric nozzle similarity solutions are quite similar to the 

two dimensional solutions found previously (Sichel 1966).   In the present 

case the asymptotic behavior of the solutions for the center line velocity 

Z has been investigated, and the difference in the behavior of the numerical 

solutions in regions of subsonic and supersonic flow has been verified ana- 

lytically.   The effect of the parameter a upon the nozzle solutions has been 

examined.    Figure 2(b) shows that when a « 1 solutions are obtained 

such that there is essentially a weak normal shock near the axis with 

effects of the wall and shock curvature occurring only for sufficiently large 

r as was anticipated previously, 

17 
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