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SUMMARY

This report describes research in information processing intended for
application to man-machine communication processes. In order to allow a
camputer user to represent some problems more easily, we would like to let
him name and define relations between information entities with which he deals,
and then manipulate a large number of such relations stored by the camputer.
A set of statements on the relative desirability of various conditions is an
example of a set of relations which the user might want to store and manipulate.

The problem is that available representations for such sets of relations
tend to be urwieldy and may require a great deal of processing for large numbers
of relations. In order to make such a capability available, campact ard easily-
manipulated internal computer representations for large numbers of the various
kinds of two-entity relations must be found. This report describes such a
development for one basic logical form of relation, the transitive, anticommutative
relation exemplified by "precedes", "includes", "is greater than", and similar
phrases.

The report describes a method for storing directed graphs (of transitive
anticommutative relations) in a list-structured computer memory. There are
three important features of this representation method: A method of dividing
a graph into a number of strata based on the lengths of paths in the graph, a
recursive decampositicn technique which pro” es successively less complex
versions of the graph, and a recursive sear  technique which utilizes the
stratification and decamposition to extract information from the graph with
a limited amount of processing effort. Some preliminary tests of the
representation technique cn graphs containing up to several hundrad randomly
choser relations are described; the results of the test indicate that this
representation may require less processing time and far less core storage than
previously-used techniques when applied %o large graphs.
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A DATA STRUCTURE FOR DIRECTED GRAPHS
IN MAN-MACHINE PROCESSING

1. INTRODUCTION.

There is a wide variety of methods of data storage for problems which can
be defined before they are programmed. For ill-defined problems in which the
form and scope of the problem may be defined as the result of a joint man-machine
process (long after most of the computer programming is complete) few methods
are available for construction and use cf an appropriate data structure ad hoc.
The most effective pmcedm'és for working with incompletely defined data
structure are those associated with list processing languages such as LISP
and IPL-V. While these are powerful tools, they tend to be rather clumsy
and/or inefficient in memory for representing some data relationships which
occur repeatedly in man-machine camunication and in the problems which are
represen*>d by such communication.

The process of man-machine communication is greatly aided when the machine
is able to deal directly with the symbols and relationghips which the man uses
to represent his problem. The most restrictive limitations of available methods
seem to be associated with the man-to-machine cammunication rather than the
machine-to-man link or interral processes. Murh of the man's representation
of problems is unacceptable to machines because of its vagueness, incompleteness,
ambiguity, nonfon:;ality and the like. We must find ways for the machine tc freely
accept and use incamplete, qualitative information, to mix that information with
intermally-derived information. and tc accept medifications as easily as the
original information is accepted.

Two areas of interest in which such a capability is needec are the modeliry
of natural language by machine and the acquisition or modeling of camplex human
decision processes by machine. In the case of natural language, people use
the language not only to express infocrmation relevant to problems but to define,
restrict and explain their use of language as well. Thus, ianguage models must
charge in response to speech; open-ended data structures are therefore required
to acoammodate such modeis.®

* Current linguistic theory does not acoomeodate such models, although the need
for them is recognized.
1-1
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For modeling of decision processes, such an open-ended capability will be
useful in cumulative construction of process models which could not be handled
by the usual process of description, programming, .* 7ging and operation because
of the difficulty (on the man's part) of conceiving of the process as an organized
whnle. By developing a process model keved to the man's conceptions (including
Yelaticns between them) in an experimental way, the machine may overcume the
man's conceptual limitations by its different way of using memory, and thereby
break through the limits which prevented programming the decision process in
the first place.

The effort described in this paper is an attempt to select a recurrent
relationship of data structure, to represent the relationship for efficient
open-ended storage in computer memory and to find ways to manipulate such a
representation easily for large amounts of data.

The relationship selected is the transitive, non-commutative relation
between two objects (symbols), represented in various applications by linear
inequalities, set inclusion, ti..e precedence, prioritiss, and in many other ways.
The transitive prcperty simply means that if

A (relation) B and
B (relation) C
are true, then
¢ (relation; C
must be true; the non-commutative property simply means that if
A (relation) B
is true, then
B (relation) A
is false. We will symbolize all such .ndividuai relations helow by <.

A oollection cf relation statements such as those above corcernirg a set
of symbols can be conveniently represented by a directed graj. (see Fig. 1-1)

in which each line represents one expliicit relation.

1-2
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Relations Equivalent Graoh
A<B

Bc«C —3C

C<E A/‘a- s

A<D \;»n/
-~

D«<EL F~
F<D

FIGURE 1-1 - REPRESENTATION OF RELATION STATEMENTS BY A DIRECTED GRAPH.

The case of large graphs is of more interest than the small graph case,
since the latter can often be handled mest effeciively by simple exhaustive
search or storage techniques. Graphs havirg hundna«ds or thousands of vertices
occur in models of process precedence (as in PFRT charts), organizational
relationships, varicus natural and artificial language models, assembly-sub-
assambly relations, state and subgoal dominance in games and the like.

The usefulness of such relations has been demonstrated by Bertram Raphael,
among others, in his work on Semantic Inrformation ‘!etrieval.l In providing
means for computer response to English statements and questions, Rarhael kept
eight sets of relations between cbjects or sets in the camputer merory. They
were designated as '"set-inclusion, set-membership, equivalence, ownership-
general, ownership-specific, part:whole general, part:whole-specific, left-to-
right position. Most of these relatiors can bte fully represented by graphs of

.

transitive, non-comwmitative relations with scme arnetaticn concernirg the oblacts

so represented. It is noteworthy that Raphael (onsidered his system "Cramped

for memnry space” although successful in Geronstreting the power and flexibility

of the approach.
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2.  FROBLEM STATEMENT.

The problem is to find a representation for large transitive non-commutative
graphs of unrestricted topology, and to find a set of algorithms which will, in
combination, use small amounts of memory to store this information, and to enter
and extract information rapidly. This problem differs significantly from problems
of rer.esenting and searching a graph which is implicit in certain information
already at hand as, for instance, the move tree in a chess game which is implicit
in the present position and the rules of chess.

The above statement is too vague to support evaluation, and so some
clarification is required. Performance of any actual programming system will
depend on the specific computer, and on:

1)  the amounts and types of usable memory,
2)  the relative firequencies of the graph manipulations used,
3) the "typical" form of the graphs used.

The memory considered here is essentially the computer's fast memory,
normally core. However, it will be seen that the techniques presented have
advantageous natural extensions to slower memory and to paged memory. More
specifically, we will examine what can be done with 24K words of data space,
tacitly assuming a 32K machine with 8K of executive and programs. This provides
a convenient base for scaling to other systems.

The potential number of relations which might be stored in a graph rises
rapidly with the number of vertices, N. It is(g), or approximately N2/2; a
graph of 1500 vertices with all relations explicit would surely exceed our
allotted core. However, nearly all these relations are redundant, being implied
by other relations and transitivity; only 1499 explicit relations are needed
to imply all of the others. More generally, the elimination of redundant
relations fran storage offers significant reductions in memory requirements
at the expense of same increase in the computation required for manipulation.

As a measure of the storage space required by a graph, we 3¢ a combination
factor depending on both the number of vertices and the number of arcs and,
of course, the amount of information stored concerning each.

2-1
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A rich variety of graph manipulation processes should be available to the
user. However, for reasons which will become obvious later, the process of
searching a graph for the presence or absence of a specific stored relation
can be used as a representative manipulation process. It i= required in both
entry and query processes and can be the major time consumer in manipulating

large graphs.

A measure of the processing requirements of specific conditions (of
graph form and representation) may be considered to be the product of two
factors:

1) the time required to traverse a single arc in the graph and decide
upon the outcome of that traverse, and

2) the number of arcs are traversed in the search.

It is the latter term which is subject to combiratorial explosion; and
so considerable increases in the time required to traverse an arc are acceptable
if they serve to limit the number of arcs traversed. These terms are both
dependent on the algorithm of search; for a given graph re resentation several
search algorithms are possible. For the evalua*tions in this report a recursive
search algorithm was used; it is described in Sect. 3.3.

The first term is dependent or the computer used, the general abilities
of the list processing scftware and the cleverness of the specific graph
manipulation programs. The second term is independent of these factors and
depends only on the information actually processed and the possible techniques
of search limitaticn inherent in a representation. The more general camparis~ns
therefore depend on the second term alone. For this reason we take the number
of arcs traversed as the measure of search effort in this report.

The form of the graphs encountered will depend strongly on what is being
modeled, the graphs being partial or complete representations of problem
entities. For the purposes of this development we may use randam grevhs in
place of problem model graphs to evaluate approaches, recognizing that a
svstem which works for a variety of random graphs ray not be effective in
same restricted and improbabie class of probler structures. On the other
hand, an approach which 1s ineffective with rardkm graphs may be expected
to have very limited utility as a general purpose tool.

2-2
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The random grephs used for evaluation he.e are made up of arcs which are
selected from all of the possible arcs consistent with an arbitrary total order
of the vertices of the graph, all such arcs being equally likely. It is
important to note that neither the existence of an underlying total order of
the vertices ror the equal likelihood of the arcs are essential to the
representation technique developed. Many other kinds of random graphs are
possible; the cases in which the underlying structure is not total order and
in which the arcs are unequally likely are of definite interest but have not
yet been considered in depth.

2-3
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3.  TECHNICAL APPROACH.

3.1 Memory Structure.

One of the first problems to be faced in choosing a computer
representation is the choice of a style cf memory representation. Since we
are particularly interested in maintaining an open-ended structure which is
easy to expand and yet efficient, some form ¢f dynamic memory allocation is
required. We have chosen a word-oriented list-structured memory of the sort
used in IPL-V and LAP.

In a list-structured memory, each cell of sturage may be linked to
another cell without regard to its address, thus forming lists o’ cells of
storage. These links may be altered by the programs using the memory. Names
of lists may be cited freely in other lists or in the list itself, thus
allowing extremely complex information organization. The ability to add
links to additional cells as those cells are needed allows programs to
operate without fixed or preplanned memory allocation, acquiring and returning
cells to a public "list of available space" in response to the progress of
the computation. For introductory information cn list processing, see
Reference 2.

An alternative to such a structure is a packed-word matrix
representation in which there is a row and a colunn for each vertex of the
graph and each intersection of a row and colunn is iepresented by one
camputer bit. For very ian,e graphs the requirement that all the possible
relations be represented tends to outweigh the advantages of single bit
stomge relations. The list-structured memory approacn requires storage
only for the relations actually present in the graph rather than all
possible relations. The matrix approach is relatively inflexible, but ~—ay
be advantageous for some kinds of problem structure. It is of particular
interest with re_pect to the recursive decomposition technique described
in this report as a method for representing subgraphs of the decamposition.

The list memory may be used -  epresent the vertices and arcs of
the graphs as follows. Farh vertex of the graph tc be stored is associated

3-1
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with a list structure in memory, with the list structure for a vertex having
sublists of the precedent and subsequent vertices in the graph. These sublists
represent the arcs. If each vertex list structure contains citation of the
precedent and subsequent arcs, then each arc is, in effect, represented twice,
allowing search in eijther the precedent or the subsequent direction.

Information associated directly with the vertex itself may be placed in
the main list for the vertex rather than its sublists. Such information might
include the external name of the vertex, and bookkeeping information always
associated with a vertex. For information which is associated with only some
of the vertices, it is more convenient and compact to use the "description list"
capability found in nearly all list processing systems.*

3.2 Storage Efficiency.

The efficient storage of information in directed graphs is one of
the principal objectives of this development.

What constitutes storage efficiency for directed graphs? How may it
be measured? It is conceivable that a measure of the information stored in
transitive, anticommutative acyclic directed graphs could be developed based on
an enuneration of them, and assigmment of their probabilities of occurrence.
This would yield a number of bits necessary to identify any particular graph
which might occur, and then a reference for evalua*ion of any other storage
scheme. However, the cambinational mathematics necessary for such an
evaluation, or for the enumeration of the class of graphs is apparently not
yet available. (Such mathematical developments would also be valuable in
statistical inference problems, where the mathematical form of a relation
is to be inferred from a graph of randamly selected examples of the relation.)
It is therefore necessary arbitrarily to choose scrie other reference for
measuring the storage requirements imposed by a particular implementation scheme.

* A gpecial list is associated with the list for the vertex in a way which
assures that it will normally be ignored in processing. This list contains
an arbitrary number of pairs of cells, each pair cortaining an "attribute"
in the first cell and a "value" of that attribute in the second. The
attribute may be used to identify the role of the information in the value
cell. These lists are created and maintained automatically by the list

process systan, and are often referenced by use of a separate set of
oonmancs .

3-2
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The reference chosen for this study ir a representation of the graph
in which every relationship implicit in the graph is explicitly stored. More
specifically, a list-structure representation of such a graph is postulated.
The form of the structure is identical with the structure developed in this
report except that the "overhead" of storage required for the information
included for aiding searci: processes would be eliminated. The remaining
structure consists of a list for each vertex naming a sublist of precedent
vertices anc a sublist of subsequent vertices, and the two sublists themselves,
citing explicitly all preceldent and subsequent arcs. This appears to be the
form which is most closely comparable to the structures developed in this study.
Its storage requirements are directly comparable, and the comparison may be
projected to other systems relatively straightforwardly.

For further reference such a graph will be called a "fully explicit"
graph and its list structure representation a "fully explicit representat+ion"

(see Fig. 3-1b). In contrast, the graph in which there are no arcs representing
relationships which are derivable fram the transitivity property applied to

arcs which are shown, will be calied the "basis graph" (see Fig. 3-1la), Arcs
which appear in the fully explicit graph but not in the equivalent basis graph
are called redundant arcs. It can be shown that the basis graph is unique.

There is a further reason for using the fully explicit graph as a
comparator. It is in many ways the simplest representation to understand and
to program for. It has been used in studies in which efficient representation
was not an object, and it works moderately well for small graphs ard for
graphs with low information content (see Reference 1). It is thus a feasible
altermative in many applications.

The approach of this development may be viewed as, first, gainirg of
storage efficiency by removing redundant arcs, and second, addition of information
to the resulting representation to make search and change of the resulting graph
efficient,

In the first part, the reduction in storage requirements is a direct
function of the number of redundant arcs which can be representec wi‘hout
explicit storage by the arcs of the basis graph. This s a tonolosicai. machine-

3-3
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A—"

FIGURE 3-~la - BASIC GRAPH.

FIGLRE 2-1b - "FULLY EXPLICIT GRAPH™ SHOWING ALL IMPLIED
ROATIONS (RIDUNDANT ARCS).
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independent property of the graph to be stored. Scme estimate of the potential
saving may be made from the limits of the number as a function of the number of
vertices and information content of the graph. For the enpty graph of N vertices
and no arcs, there is no difference in the number of arcs t» be stored. For

the case of a totally-ordered set of N vertices, the basis graph has N-1 arcs

and the fully explicit graph has L;ﬁ)_ arcs, requiring storage of only %as
many arcs in the basis graph. For graphs which partially order the vertices,

the proportion of arcs which are in the basis graph is often (perhaps always)

in the rarge 1 to 2/N. This ratio is one of the parameters whic' characterizes

a graph.

The number of arcs in graph G is denoted as A (G) with the number of
arcs in the corresponding fully explicit graph and basis graph as A (GE) ard
A (GB) respectively.

A second aspect of a graph's structure concerns the information .ontent
of the graph. For any graph the ratio of tie nunber of arcs represented by that
graph (i.e,, A (GE)) to the maximum possible number of arcs representable on the
same set of vertices, E_gi‘}_)_' is a measure of the graph's information content.

We define a "fullness natio"
2A (GE)

F (G) = IR
We should note that the fullness ratio is also the probability that
for a randomly selected pair of vertices (with all pairs of two different
vertices equiprobable) there is an arc between the two vertices represented
in the graph. This is the basis for' a samwpling procecdure for estimating F (G)
which is described below in connection with the results of Monte Carlo experiments.

3.3 Search as a Representative Graph Manipulation Procedure.

The purpose of this se~tion is tc define "search"” of a graph in a
particular way and to show in what way it is a representative process fc: a
larger range of processes for development and use of grephs.

In order to have a basis on which to judge the crrputatiQn requirements
of any pa~ticular greph representaticn and manipulation algorithems, we mace a
list of operations which might be made available in a larguage for man-to-machine
~orvmmnication in problems irvolving directed graphs. Tt is nct “efinec as a

3-5
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language, nor is it extensive enough to be useful alone. However, it is intended
to cover most of the basic or primitive manipulations on which a more adequate
man-to-machine cammunication language (for this logical form of relations) could
be based. It is presented here only to show the extensive involvement of a basic
"search" operation in other processes. Each entry in Table 3-1 is in the form of
an example of a desirable statement.

The processes marked '"X" have as a basic part the determination of the
relationship, if any, between two vertices. The “est for the existence of a
relation is a necessary preliminary process or included process for displaying
paths in the graph which imply the relation. It is necessary in the entry and
deletion processes in order to be able 1o reject camnands which with the graph,
deny the assumptions concerning the relationship being graphed.* Because the test
for the existence of a relation is so pervasive in this sample of possible
primitive processes, it appears to be a good representative for objective
judgements of the overall processing effort which might be required by a
particular graph representation. It should be pointed out that ro cne process
or cambination of processes can accurately reflect what will happen when a
system of aigorithms is applied to a particular problem structure. We expect
that the effectivwress of the algorithms will be strongly dependent on problem

structure in same cases.

The test for a relationship between two vertices, which we call search
here, may be performed by techniques which differ in several important ways.
The technique used for a comparator here may be described generally as follows:

1) An origin of search is chosen at one of the vertices.

2) One arc is traversed from the origin .ertex.

* The three deletion proresses are included because, although correction and
change of the graph ame necessary, same winds of change would require a
great deal of processing and sc should be avoided where possible. These
srocesses will be defined formally in a later report when a mcre orplete
larguage 1s presentec.
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TABLE 3-1
LIST CF OPERATIONS

Relation Declaration

"precedes" = Transitive Anticammutative Relation

Information Insertion

A orecedes B X
Information Deleticn
Deny A precedes B X
Expurge A precedes B X
Eliminate A precedes B
Queries
Does A precede B? X
Does A imnediatelg precede B?
Could A precede B:
What is the "precedes" relation for A, B? X

What are the immediate precedents of A?

wWhat does A immediately precede?

What is one set of relations which relate A and B?

What are all the relations between A and B?

What is the maximum number of relations separating A anc B?
What events related A and 8?

»x x K X

*.7
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3) Each applicable "termiration condition" is tested for. Same
termdnation conditions include:

a) Destination vertex found.
b) No more arcs to traverse fram that vertex.

¢) Vertex reached has been reached in this search before.

(There are other termination conditicne for graphs having path number stratification;
the technique is scmewhat elaborated for search after decomposition.)

4) If no termination condition is detected, the vertex reached is
used as an origin and the process is repeated recursively. If the destinaticn
vertex is found, no more arcs are traversed; the result is reported. If same
othar termination condition is found, another arc from the present origin vertex
is traver<ed. (If there are no more, this becomes a termination condition for
the previous recursion.)

In order to evaluate search effort in machine-independent terms, the
total number of arcs traversed is used as a measure.

3.4 Path Number Stratification.

3.4.1 Concegt.

The purpose of this section is to describe the concept of path
number stratificatior of a directed graph and to show how it can be used to
reduce search effort. In order to describe the process we introduce the
following notation:

A graph G (V, A) consists of a set of vertices V and a set of arcs A,
The vertices are identified Vs VoseeeaViaaavy, where N is the total number of
vertices. (We consider only finite N.) The arcs are identified as a5 where
a3 corresporkds to an ordered pair of vertices Viv Vs in which v; precedes v
and Vis vj ¢ Y; then vy is called the precedent vertex and v‘] is called the
subsequent vertex. If aij ¢ A and if there is no Pij other than ai‘j in G,
then vy is called an immediate precedent for v]., ard v]. is called an immediate
subsequent of v An integer associated with a vertex vi is denoted
S(i), F(i)...etc., according to its function. A path Pxit is an ordered set
of adjacent arcs a ¢ A, a;

ij?
the xth path according to some ad hoc definition. If Pij is in G, then vy is

eljk.....a&_,T where x is an arbitrary index denoting

cdllec a precedent of v. and vj is called a subsequent of Vi we write Vi< Vi
J J

3-8
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vj > V. Arcs aij and &, are adijacent in the order aij’ & if § = k. By
convention, there is never more than one aij for a given 1, j. The anticomutivity
property is the property that the graph contains no paths Fii' The transitivit:
property means that the pgraph G associated with relation R represents all relational
statements of the form vy R Vj for which Pij ¢ G (rather than just thmse for

which aij € A).

Every directed graph of a set cf transitive, anticommutative
relations has one or more vertices which have no precedent: and/or no subsequent ..
Considering for ‘“: moment only the set VP of vertices having no precedent:,
several properties of the graph can be demonstrated immediately:

1) There are no paths Pij such that v., v, ¢ Vp.
17 ]

2) For every vertex vj ¢ Vp there is at least one ?i‘- having

vi € VP.

3) All paths in the graph are finite.

We may associate an integer S(i), called the "path number" or

"ne

Stratum number" with each vertex v according to the followirg rules:

1) For vi € VP’ S(1) =0

P
these identify one containing the largest number cf arcs; let this number of

ares be B (F.1). Then S(i) = B (P, 1),

2) For vy ¢ VP’ identify all paths iji such that v, ¢ V. Of

3) let VS = (ali Vi having S(1) = s). ‘Js is called the sth

stratum of G.
Figure 3-2 shows a graph which has been marked with path numiers.
The following properties of a stratified trancitive anticorrutative
fraph can be demonstrated:

1) All vertices are assigned to strmata.

2) Path numbers used are consecutive.

3) The path numbers are not charged by addition or Jeletion !
redundant arcs.
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FIGURE 3-2 - SAMPLE GRArd WITH PATH NJMBER STRATIFICATICN.
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4) Any path Pxij consists entirely of arcs which relate vertices
Vi having S(i) < S(k) < S(j).

5) If S(i) > S(j) there is no path Pij'

3.4,2 Search in Stratified Graphs.

We are now in a position to compare search in stratified graphs with
search in unstratified graphs, using basis graphs in both instances. Consider
first the unstratified graphs, and the cases in which the relationship sought is
not found in the graph. In order to complete the search from the chosen origin
vertex, every arc which lies on any path which includes that vertex must be
traversed at least once, since the only path to the destination vertex might
include that arc. The search is performed in two parts, one in the precedent
direction and one in the subscquent direction. The final termination condition
is in the absence of any more arcs to traverse in the sequent (precedent or
subsequent) direction. For graphs in which most pairs of vertices are related,
this represents a search of nearly the entire graph, a tedious process for larye
graphs. Corsidering searches on relationship which are represented in the grap..,
such extensive searches will occur part of the time simply because the first arcs
traversed lead out of the neighborhcod of the destination vertex. An extreme
case is illustrated in Fig. 3-3, in which a search for the relationship between
vy and v, traverses the arcs in the order shown, searching from vy first in the
precedent direction and then in the subseque; ' direction. On the eleven~h arc

traversed (out of only 16 in the graph) the relation is discovered.

Consider search for a relation between vi and v]. in stratified sraphs,
At the beginning of the search, the path numbers S(i), S(3) are determined. Tf
(1) = S(3), no further examination is necessary, since there cannot be a path
P...
17
be confined to the subsequents of Vi since there can be rnc path P;i. Upon

If S(1) < S(3j) then, if vy is arbitrarily chosen as the crigin, search can

traversing an arc a o if k # 7 the condition S(k) > S(3) can be used as a
termination condition on the particular recursion of the search process currently
in progress. For example, performing the same search cited above in the
equivalent stratified graph shown in Fig. 3-2, the arc aj¢ would be traversed

.-J
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FIGURE 3-3 - SEARCH FOR A REIATION v

1* V2 IN AN UNSTRATIFTED GRAPH.
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first, resulting in a termination condition S(5) = S(2) = 4. Then arc a,,
would be traversed, campleting the search on the second arc.

In general, the path number limitation on search confines the region
in which search will be continued to tiie strata between the terminals of the
search.

For searches to confirm or deny a specific relationship, the path
nunbers can be used to deny same relationships without specific examiration of
the graph. If all possible searches for specific relations are equally likely,
then somewhat more than half cf the searches can be satisfied in this way; for
every pair of vertices Vir Vs in which S(i) # S(j’, either search for Pij or
search for Pji will be rejected and the other accepted, and if S(i) = S(3j)
Fath will be rejected.

The effects of this search limitation techniques are subjrzt to
measurement by Monte Carlo experiments, as discussed in the section on experimental
results.

Updating of the path rumbers associated with each vertex must be
performed each time information is added to the graph. A simple recursive
procedure can operate on the graph to perform this updating, beginning with
the precedent vertex of the newly-added arc. The procedure s similar to the
search procedure described above, except that 1) there is no *ermination
condition corresponding to finding the destination vertex, 7) a termination
cendition for "no change in path number required” is added, 3) changes in vertex
path nurbers are made as the updating proceeds. The update procedure thus deals
with only the portion of the graph requiring updating rather than the entire
yraph.

The effort of path number upiating for larpe graphs can be significant
or those occasions in which the longest path in the graphi is being extenced. There
are at least two techniques which will limit the upcate effort at some expense
in rerms of increase! search time (because same specific termination conditions
on certain searches are eliminated.) The first is to let the path numbers be
relative to certain fixed strata in the graph rather than relative only to the

tratum of vertices wit! ut r~recedents. If tern fixed strata are intrc 'iced

3-13
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into a graph with 1000 arcs on the longest path, then the worst case path number
update deals with only about 100 vertices instead of 1000, a 90% saving. Whether
there is an overall saving in any useful case in unknown.

A second approach consists in making the early entries to a praph
with strata numbered in multiples of sume constant Y, rather than consecutively.
The later accessions can be made with a reduced value Y2 (for example, Y2 = Y1) ,
thus tending to fill up the empty strata between the original strata and
reducing propagation of path number charge sharply. The value of this tactic
1s likewise un¥nown.

In usage situations in which the proportion of effort spent on entry
of information is very small, the increase in search effort would exceed the
saving in updating effort. Both of these variations destroy the property of
consecutivity of path numbers, a property which is useful in implementing same
of the functions in the graph language operations above.

3.4.3 Generalization of the Stratification Concept.

The ccricept of path number stratification may be generalized as
follows. Any set of vertices Va may be chosen as a basis for stratification,
previded that 1) there are no paths pij or Pji for any v, vs ¢ vV, ard 2) for
Wit Vi € Va' All membe:is cf V&l are
associated with a symbol Sa(i) chosen from an ordered set of symbols R hcving
the property that the order relation between any pair of symbols LRI S R

3
can be determined in same -~ense "by inspection', i.e., without refererce to the

all Vi ¢ Va there is a path pik ~r

graph. Then any other set of vertices Vb’ may be chosen provided that 1) there

b and 2) there are no paths of a

are no paths Pi]’ or Pj" for Vir Vs € v
particular crder (either Pij or Pﬁ) for v, ¢ Va’ v, ¢ V.. and 3) for each

v, ¢ V., the.e is a. least one path »f the admitted order (pii or .L“ﬁ) for same

b

v. ¢ Va' The vertices of Vb are associated with a symbol Sﬁ(i) from R having

)

an order relation to Sa(i) consistent with the order relation ~f the paths in

G between members of Va and members of Vb. Ancther set of vertices VC may

now be chosen under the same restrictions, with the restriction on consistency
of or-er relations applying to each of all sets previously chosen (Va and Vb)

and the choice of Sc(i) likewise limited tc consistency with the path directions
to previously chosen sets. Sets are choser until all the vertices are associated
with symbols S(i). The order of the symbols (i) then provides the same
termination conditions on search which were “escribed above for path nurber

stratificaticen.
3-14
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Two approaches to a more general stratification appear particularly
attractive. The first is to perform two stratifications instead of one, using
the set of vertices without subsequents as the bcsis for the second stratification;
otherwise applying the same algorithm, traversing arcs in the opposite direction.
This would provide an independent search termination condition which in some
ways would be maximally different from the precedent-based stratification. Path
nunbers (taken with the same direction of increase) would be maximized rather
than minimized subject to local irrepularities. Of »urse, for graphs which are
trees or which are constrained to having all paths between any pair cf vertices
be of equal length, a second set of path numbers would do absolutely no pood.

A hand Monte Carlo test of the number of arcs traversed in 20 searches, randumly
selected in a basis graph of 50 vertices and 35 arcs and e fullness ratio of
about .37, had the results tabulated in Table 3-2. These results indicate that,
at least for this neighborhood of fullness ratio and this method of information
selection (and thereby, degree of irregularity), the seccnd stratification might
materially reduce search effort, although the present result is certainly
inconclusive. It is interesting that the searches improved were mainly the
longer searches.

A second approach would involve maintaining (or periodically
identifying) the largest set of pairwise unrelated vertices, and using that
set as a base for a stretification. The qualitative result wou.d be tha*
many searches would terminate at that stratum, and that all searches on pairs
of vertices within that stratum would be rejected without reference to the

graph,

3.4.4 Maintenance of Stratified Graphs.

While the maintenance of the basis graph results in major savings
in storage, the processes Ly which redundancies are removed or prevented mav
be major users of computer tima. The probler is not in »reventing *he entrv of
a redundant arc, since this can be done by a simple search as part cf the entry
process. It is rather in detecting the instances in which entry of a new
ar~ makes a previously-enteres arc redundant.

There is no limit on the reroteness (counting aleong paths or
strata) of an arc Vaz which may be made redundant by ertrv of ar arc Vi

There is no simple inference fram the path mumis  updatirg tehavior of ar

SURY 4
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TABLE 3-2

A MONTE CARLO TEST IN TWENTY SEARCHES

Average Arcs Traversed Arcs Traversed
Difference in Using Precedent- Using Both
Rank on Underlying based Path Precedent -
Total Order of Numbers Only and Subsequent-
Count the SO0 Vertices based Path
Numbers
Searches Affected ) 17.8 6u 36
by Second
Stratificaticn
Searches Unaffected 15 12.6 53 83
by Second
Stratification
Sum 117 23
% reduction: us

3-1%
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entry concerning redundancies caused. There is no limit (other than total number

of vertices) to the number of vertices whose incident arcs might be made redundant
by entry of a given arc.

Because of the difficulty of devising algoritims for eliminating
redundancies from a graph without exhaustive search for them, the problem is
currently receiving a great deal of attention. Results to date indicate that
the decomposition process described in a section below can help significantly
in detecting redundancies, and that a few redundancies may be quite tolerable.
If a small residue of redurdancies can be tolerated, then there are fairly
efficient processes for sweeping them out of the graph from time to time, and
some simple additions to the search process could detect many redundancies
as a byproduct of other manipulations. Furthermore, for graphs whose arc
accession processes resemble random equiprobable arc generation, the region
in which redundancies are probable is a small easily checked neighborhood,

so that a rapid non-exhaustive checking process could eliminate most redundancies
caused by entry of arcs.

3.5 Decomposition.

A significant portion of the research described by this report was
concerned with the formulation and investigation of the decomposition principle.
Decomposition will take on a new sense in this report in that it describes
a technique for the representation of large graphs in the memory of a camputer.
It is essentially a technique for deriving successively less complex versions
of a partiuclar graph from that graph, doing so in a way which makes the less
complex versions useful as "shortcuts" in the search process. The expected
effect on search effort is to make the effort required for any given sesarch
proportional to the logarithm of the separation betwean them, so that in large
graphs, searches over long paths requ:.re relatively little efiort.

The primary gain to be derived from this representation is a
significant increase in search efficiency. It appears that it will be
particularly useful for a graph which is searched frequently in response
to queries concerning its content. The increase in search efficiency is
bought at a cost of increased storage for the representation and the computations
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required to establish and maintain a decomposed graph. The balance between
these advantageous and detrimental factors will ultimately determire the value
of the technique.

3.5.1 Description.
3.5.1.1 Notation.

We continue the notation of the section on path number stratification
with the following additions: The graph which represents the set of relations
is denoted G0 (V, A). It is assumed to be free of redundancies or, in other
words, to be a basis graph.

The GO graph may be drawn as in Fig. 3-4. Here the vertices
without ; cedents are at the left of the figure, vertices without subsequents
are at the right. Every vertex is placed such that all i:ts precedents are to
its left and all its subsequents are to its right. In this section all graphs
are drawn with this convention.

Usually the G0 gra~h will be considered as a yramic, growing
graph. At any particular time it represents the currer* knowledge about a
particular enviromment, all of the present statements invclving same specific
relation, as, for example, all known statements of the form "a is a suhassembly
of b". As time passes new information is learned about the envirorment and
this is added to the graph in the form of new arcs. The dynamic nature of the
sraph camplicates the problems of dealing with it and will be corsidered (n
this section as it affect= the decamposition principle.

To put the reader at ease with regard o tie very simple concent
oi decomposition an exwnple is presented before a more rigorous explaration is
provided. Consider the chain graph of Fig. 3-Sa,

1 2 3 4 5 € 7 8 9 0 1l 12 13
C 3L —30 —a0—-—30—390— -0-—30 -3 -0 —]——a—

FIGRE 3-5a - (HAIN GRAPH,
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This graph is divided into four parts for decomposition as in Fig. 3-5b by cuts.
The cuts are the dotted lines in Fig. 3-5b.

o .1 .2 .3 ‘*
0—30—30—3—30-—30—3p—30—30— —h—50 ——50—>0
i 2 3 4 s & % 8 ¢ 1 1 12 13

FIGURE 3-5b - CHAIN GRAPH DIVIDED BY CUTS.

Vertices Vis Vs Vos Yy anc V13 fall on these cuts and are called cut vertices.
The set of cut vertices is called Vl. These vertices are used to form ancther
graph, Gl' There is an arc in Gl between vertices Vei and vCj if there is a
path between oy and ch in G, which does not include any other cut vertices.

Thus, the Gl graph for Fig. 3-5b appears in Fig. 3-Sc.

0 —0 >0 »0 >0
7 10 13

FIGURE 3-5¢ - THE G1 GRAPH.
Gl is called the first decamposition layer of Gg. Its existence
can be very useful t> a procedure which determines if there is a path between

two arbitrary vertices, Say one asks whether Vo is precedent to v 0f course

12°
for this simple example the answer is obvious but a systematic procedure must

be provided to answer the question for a more camplicated graph.

One technique of discovering the relation might be to trace a path
forward from v, in Gy and trace a path backward from V1o in Gy until the two paths
meet. This technique would require ten arcs to be traversed in GD in order to
affect 4 meeting.

Using decamposition one can trace forward in GO fram v, to cut 1
and trace backward from Vi, to cut 3. The paths oould then be traced in Gl
forward from vy to v, and bhackward from V10 to Vq At v, a meeting has been
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found between the forward and backward paths. Thus, one can say that vy is
indeed precedent to Vip+ The important point here is that only 6 arcs were
traversed to discover the relationship. If search time were proportional to

the number of arcs searched, as it 1s assumed to be, the search time in the decamposed

gravh for this example is 0.6 that of the non-decomposed graph.

This is the savings of decomposition. Its costs are the extra
storage required for G1 and the calculations which are required to maintain the
decomposition - a graph growing with new information.

If the grap. were large enough one could decompose the graph Gl
to a second layer with graph G,. Decomposition might be applied a number of

times on a very lar"e graph.
3.5.1.2 Cus,

For the chain grarh of the last section a cut corsists of a single
vertex. When the vertex and the two arcs incident to it are removed from the
graph two camponents of the greph are formed, one consisting of the vertices
precedent to the cut vertex and the other consisting of the vertices subsequent
to it. For more carplicated graphs a similar phencmenon will occur but
generally a cut will consist of more than one vertex, and a more rigorous

definition is required.

Before this can be done two definitions are necessary. The
precelent cut is the set of vertices which hav: no preredents. Thus for
Fig. 3-4, Vis V3 Vi ard v. are said to be on the precedent cut. The
rrecedent cut is called Cp. Similarly, the subsequent cut is the set of
vertices which have nc cubsequents. For Fig, 3-u, Vas Vgs Vigr Vig and Vo

-

are cn the subsequent cut. The subsequent cut is called Cq

Now any cut carn be defined as a set C of vertices which fulfill

four conditions:

1) Yhen the vertices in the set C and all the arcs in~ident
to them are removed fram the graph two sets of vertices are delineated X and
“W which have no arcs between them., Thus 1€ vy € X and v, € L there 1s mo arc

(\-'x, vw) after the removal of the vertices in O ard theilr inci<ent arcs,

D
[
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2) All members of the precedent cut will be members of X and
the members of the subsequent cut will be members of W. Thus, if v, € Cp then

vx ¢ X ard if Yw € Cs then vw e W.

3) The members of C are not related. Thus, if v, € C and vy € C
then v, ¢ vy and vy 4 v,

4) All the vertices in X are precedent to one or more members of
C but are sulsequent to no members of C. All the vertices in W are subsequent
to one or !nore members of the cut but precedent to none.

Cuts using only the vertices of the graph will usually not
sufficient for decomposition. The properties which define a cut are rathe:
restrictive and most graphs will have fine sets of vertices which can fulfill
them. In fact for Fig. 3-4 there is no sct of vertices which can be a cut. To
broaden the range of possible cuts, a new type of vertex is introduced called
a virtual vertex. This name is to contrast with the vertices in the set V which
will henceforth be called the real vertices of the graph.

A virtual vertex is placed on an arc between two real vertices as
in Fig. 3-6. The addition of the vertex divides the arc into two arcs, one
which enters the virtual vertex;one which leaves it. Thus, i*. has one immediate
precedent and one immediate subsequent. The virtual vertex is identified by
naming these vertices in the subscript of the vertex notation. Thus, the
vertex inserted in the figure is called v

a-b’
va vb
Before 0 $$
f’eal

ol

‘Z_'“
<

Té—

After 0 - —

2

P1GURE 3-6 - VIPLUAL VERTEX.

Virtual ve-tices are only 'itroduced to form a cut: hence they
only appear in the set C, never in set~ X or W. A cut including both real and
virtual vertices appears in Fig. 3-7 indicated by a line through these vertices.
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There are a nunber of disadvantages to including virtual cut vertices
in a graph. From a search efficiency standpoint virtual cut vertices are
undesirable, and they add materially to the memory space required for the
G0 graph and the decamposition layers. They are, however, unavoidable for

our purpose.
3.5.1.3 The Use of Cuts.

Generally, G0 will be a very large graph with many vertices and
many arcs. Schematically such a graph might be represented by a rectangle as in
Fig. 3-8 with the vertices and arcs not shown.

——————5 Direction of all arcs

o ]

FITURE 3-8 - SCHEMATIC REPRESENTATION OF GO GRAPH.

G

The direction of all the arcs will be assumed to be to the right as
was suggested in Sect. 1. A cut will be used to divide this graph intc subgraphs
called G, subgraphs. The cuts will be indicated by vertical lines crossing the
Gy schematic as in Fig. 3-9. Cut vertices lie on these lines; since they are not

related there are no arcs between vertices on the same cut.

e -~ ———
e 1T

o ~

N ]
[ S T
. v//’

SING) SUbpTaphSe-

FIGURE 3-9 - CUTS IN G, GRAPH.

Two cuts border each subgraph. That which lies to the left of
the subgraph i« called the precedent cut of the subgraph ancd that which lies
to the right, the subsequent cut. Vertices on the precedent cut can be only
precedent to vertices in the subgraph and those on the subsequent cut can
only be subsequent to the vertices in the subgraph.

J-du
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Note for a large graph there are a number of cuts in GO and hence
a number of subgraphs. When there is more than one cut, the requirement is
made that all cuts must be disjoint, i.e., a vertex can be in not more than one
cut in any layer. Cut ver‘ices in GO’ both real and virtual, will form the set
- Paths which exist between vertices on different
cuts in Gy are shown as arcs in G,. This graph could alsc be represented in

1
schematic form as a rectangle as in Fig. 3-10.

of vertices Vl for a graph G

———— Direction of arcs

FIGURE 3-10 - THE SCHEMATIC REPRESENTATION OF Gl'

Generally, Gl will have far fewer vertices than CO because, except
for the virtual vertices,the cut vertices will only be a subset, usually a
rather gsmall subset, of the vertices in V. G1 will also have fewer arcs than
GO for every arc in G1 represents one or more paths in Gy consisting usually
of a number of arcs. Gl will also be assumed to be nonredundant. A consequence
of this is that each arc in Cl represents a path in Gq which is incident to

only two cut vertices and these form the initial anc terminal vertices of the

path.

Search will be considerably aided by the existence of the decarposed

sraph 5 As an illustration consider the problem of searching for a relation

ll
between v; and v in G,. Then vertices are shown in the schematic of G, in

Fip. 3-1la. The search operations are shown in Fig. 3-1ib . ~d 3-1llc.

V.

! 1

i ! i
L C Lyl
D U Ui Y S (R U SR U S U B
FIGURE 3-lla - VERTICES "N 4.

w

Search might procede forward fram v, to the subsequent cut of

the subgraph in which v, resides. Concurrently nne could search backwaris frer
A k A ]

4

v, to the precedent cut of 1ts subgraph.
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ATITECFIT

FIGURE 3-11b - SEARCH IN G,.

Search could then enter the G, graph and quickly find the desired
relation.

Y — T — T ‘

FIGURE 3-1lc - SEARCH IN Gl'
Search is quickened because each arc traversed in G1 would require
the traversing of a number of arcs in Gl'

If G1 forms a large graph, it too could be decomposed by the same
technique into a graph G,. It appears desirable that a cut in G consist of
the same vertices as a cut in Gy- Since the removal of any cut disconnects
the vertices precedent to the members of the cut from the vertices subsequent
to them, a cut in Gy also fulfills the requirements for a cut in Gy3 no new cut
vertices are necessary.

The schematic of the G, graph with its cuts, the G, graph with its
cuts and the G, graph appear in Fig. 3-12. The various graphs are called
decomposition layers, Gy is the first layer, G? the second, etc. A search in a
decomposed graph to two layers is indicated in Fif. 3-12, MNote that the search
takes place in at most two subgraphs. of any layer.

" v'| Search inG0
l 3
'»"~,I |7~ | Search ing,
[ |
[} ]
L 3 Search in G,

FIGURE 3-12 - SEARCH IN TWO DECOMPOSITION LAYERS.
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The decomposition process can be applied to any layer, forming a
G3, G, and so on. This is the basis for calling it recursive, since 6, is the
decomposition of the decomposition of Gg, etc.

3.5.2 Tradeoffs of Decomposition.

The concept of decomposition seems to promise considerable gain in
the efficiency of search in a large graph. The gains are not without cost,

‘however, and one must not neglect the tradeoffs which arise between search

efficiency, extra storage required, and the bookkeeping calculations needed
to maintain the decomposition for a growing graph.

3.5.2.1 Storage Required.

The computer storage required for a decamposed graph includes
that needed for: 1) the G, graph, 2) the virtual cut vertices which must be
introduced, 3) the graphs of the decamposed layers introduced, 4) the identification
of the membership of the cuts, and probably other less important factors which
will be encountered during the coding of algorithms dealing with decomposed
graphs. Because no computation experience is available for decomposed graphs,
a discussion of quantities of storage required must be qualitative and somewhat
speculative.

The G0 graph appears to require the greatest bulk of storage.
Of course, the greater part of this is required whether or not decomposition
is usea; hence, it is not a factor in judging the value of the scheme.

One aspect of the G0 graph is changed with the incorporation of
decomposition and that is the addition of virtual cut v <tices. The presence
of these vertices is undesirable from several points of +iew as will be later
pointed out, so their number will be minimized. Most cuts of the G0 graph will,
however, include virtual cut vertices and they will cause an increase in the
storage space required for GO‘ The magnitude of the increase is dependent on
the form of the G, graph and a good estimate will only be obtained with
experimental experience.

Qualitatively, for decomposition to be a valuable technique for
graph representation, the total number of cut vertices of GO’ both real and
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virtual, must be a small fraction of the total number of vertices in GO' Both
storage required and expected search time in the usual case are monotonically
increasing functions of the number of vertices in a graph (graphs being considered
comparable, for instance, if thevy have the same fullness ratio). The vertices

of G0 form the set of vertices for Gl‘ Thus, if the number of cut vertices in

G, approaches the total number of vertices in Gy before the cuts were made, the
size of G, approaches that of the original G,. A search in G, will now require
almost the same time as a search between the same two vertices in the original
G,, obviating the advantage of introducing the decomposition. Only the
disadvantages remain.

Thus, for decomposition to be of value, the total number of cut
vertices must be a small fraction of the number of vertices in the original
Gy graph. Hence, if this condition holds, the number of virtual cut vertices
must be an even smaller fraction and they will not add considerably to the
storage required for Gy

The preceding paragraphs touched on the storage problem for the
first decomposition layer G- Since the storage required for a graph is roughly
proportional to the number of its vertices and since in the practical case this
number of G, must be a small fraction of that of GO' the storage required for
Gl must be about the same fraction of the storage required for Go. Say the
lv1| = ly_c_l . When the G, graph is large enough it too will be decomposed into the
second degcmposition layer G,. This is a similar process to the first decomposition;
hence, one might expect |V2| = |V_1| = l_Y_C_J_ '. If G, were very large; hence,
decomposed a large number of n n times the total number of vertices
required for all decomposition layers would approach an upper limit IVt| as

the number of decomposition layers approach infinity.

|th = |V0|+|V1|+W2|+ ¢ o e
- 1.1
- IVD(1+H+-2+. . -)
n
= Ivol
n-1
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There will always be a finite number of decomposition layer<s so,
IAREAP
n-1
If n = 11, which seems a reasonable goal for which tc strive, the
total storage required for all decomposed layers would be less than 1.1 times the
storage required for the G[J graph. Thus, in all practical cases the extra
storage space required for decomposition will be small.

3.5.2.2 The Maintenance of Decomposition.

If a graph were fixed and no changes were to take place, the cuts
could be placed and the graph decomposed in an optimum manner, and there would be
nothing further to do. But this study is dealing with the growing graph, constantly
receiving new information about the enviromment which it is representing. This
new information is given in terms of new arcs between vertices already in the
graph and perhaps new vertices. Here the view is taken,. for simplicity, that
the vertices in the graph are fixed and only new arcs are added. (In fact, the
introduction of new vertices into an existing list-structured graph representation
poses no difficult new problems.) "The new arcs create a variety of problems to
a decamposed graph requiring constant maintenance so that the graph continues to
fulfill the requirements of decomposition.

A new arc a, added to a decomposed graph will fall into one or
more of these five classifications:

1) The arc is redundant.

2) Both terminal vertices of the arc lie within the same G0
subgraph and are not cut vertices.

3) One or both of the terminal vertices are cut vertices.

4) The terminal vertices fall into different G, subgraphs with
vy < Ve before the arc was added.

5) The terminal vertices fall into different G, subgraphs with

Ve < vy before the arc was added.

Class. 1 - Here it is assumed that if a; is redundant it is not
included in the graph; hence, no maintenance is required for this class.

Class. 2 - This class also requires no maintenance as no cuts
are met or crossed by the new arc.
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Class. 3 - This class may require some adjustments. To illustrate
the situation consider the graph in Fig. 3-13.

N N S
> > >

p — Y - -~ -~
Cdl

> o,
ut vertices

L N LY
” L Ll
al
b 1/
> ———>

v

> 1 > >
a
> > > Virtual
I cut vertex
> —) ———> y > > >
a L
d / = i
> —3¢ — > » > e

'
Y
v

v

' 4

N

®
—Al
A
e
h ' 1/
qL_.JL
Y
v

L . Y
> —>—
I .. S, 4 \ L V.
Cad e —— r Pl
a
f N =5
> e >—>

FIGURE 3-13 - THE VARIOUS WAYS AN ARC CAN BE ADDED SUCH THAT O.NE
OR BOTH OF ITS TERMINAL VERTICES ARE CUT VERTICES.

Figures 3-13b to 3-13f show four ways which an arc a; might be
added to this graph. For Fig. 3-13b and 3-13c, none of the restrictions concerning
cuts are violated by the addition of the arc. The arcs added in Fig. 3-13d and
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3-13e do cause one of the rules concerning real cut vertices to be violated
requiring the modification noted to the right. Specifically, rule & of Sect.
3.5.1.2, above, is violated. The example of Fig. 3-13f violates rule 3 of
Sect. 3.5.1.2.

If vy and v, are both real cut vertices but of different but
adjacent cuts and v, < v; before the addition of a;, two virtual cut vertices
would be added to correct the violation.

Class. 4 - This class and the necessary maintenance are illustrated
in Fig. 3-14, 1In general, this type of addition will require the addition of a
single virtual cut vertex for each cut crossed by the new arc.

N LN N AN N 5

r\r‘ 7 7 7 '"ka
S

4

3 =
S

A 4
2

New virtual cut vertices

FIGURE 3-1% - THE MAINTENANCE REQUIRED WHEN A NEW ARC
CROSSES A CUT.

Class. 5 - The addition of an arc falling into class 5 requires
perhaps the most extensive maintenance. An arc in this class causes one or
more vertices to violate rule 4 of Sect. 3.5.1.2. The modification indicated
is to place Ve and all vertices subsequent to Ve and precedent to the subsequent
cut of the G, subgraph of vi into this subgraph. Fig. 3-15 illustrates this

complicated maintenance rule.

It appears extemely difficult to implement this rule especially
if the new arc passes over more than one cut in G;. Evidence in the initial
experiments has indicated that the occurrence of arcs traversing several cuts
in the manner of Fig. 3-15 will be infrequent.

In a growing graph, when one uses decomposition, he must be
prepared to expend computing time to maintain the graph, time which would not
have been necessary had decomposition not been used. This then could be a
significant factor in judging the value of the technique.
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MNew virtual cut vertex

FIGURE 3-15 - ¥ TENANCE REQUTRED WHEN A NEW ARC CBROSSES CUTS
L] THE REVERSY DIRECTION.
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3.5.2.3 Adding New Cuts.

In a growing graph the application of the decomposition technique
is a dynamic process. Because arcs are constantly being added, if one started
with an optimum placement of cuts, the optimality is soon lost without moving
the old cuts and adding new cuts.

Constant upkeep to maintain optimality does not appear practical,
as the optimization schemes presently envisioned are not trivial. One would

not like to apply them after the addition of each arc.

An alternate, perhaps more practical approach, is to maintain all
cuts once they are placed and only add new ones as the graph grows to a sufficient
size. This implies a compromising of an optimal search decamposition for the
sake of computational simplicity.

Section 3.5.3 will review further techniques and problems of
forming cuts, but for the purposes of this section, it suffices to point out
that the addition of new cuts is a computation introduced by the incorpcration

of decompositi>~ and, hence, is a determinant of its value.

This section has considered several factors which are generally
detriments to the value of the decomposition technique. They must be weighed
against the advantages to search efficiency promised Ly this technique. A
number of factors will affect the balance particular to the application to
which the technique is to be applied. The investigatcrs, however, feel that
for many applications the advantages of decamposition will far outweigh its
detrimental effects. Subsequent experimentation will test this opinion.

3.5.3 The Cptimun Placement and Timing of Cuts.

3.5.3.1 The Optimum Placement of Cuts ir. a Fixed Graph.

In this section it is assumed that the ocomplete graph G exists
and one would like to locate the cuts in Gy to form the first layer with graph
Gl‘ In like manner cuts are placed in G1 to form the second layer with
sraph 82, and recursively through higher layers of decrmposition to form
graphs G3, Gy .- ‘Gj' ... The criterion to be optimized by the cut placement
is the expected search time in tne decomposed graph.
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To investigate the nature of this problem it is interesting to
consider a simplified graph in the form of a chain. The vertices in the Gy
graph are specified by their longest path numbers S(i) which for a chain is
simply a sequential numbering of the vertices.

0 1 2 3 Yy 5
0—ru0—-0 0 0 0 ~—memem

FIGURE 3-16 - CHAIN GRAPH.

The distance between two vertices v, and vy is defined as
|S(a) - S(b)|. This is not the same as the search path length, for the search
will take place in several layers. The search path length will be the total
nunber of arcs traversed in the search. Some of these arcs will be in G
some 1in Gl’ and so forth.

0’

Decomposition of each of the layers will be accomplished according
to the same rule. Thus, if there are five arcs between cuts in Gn there will be
five arcs between cuts in Gy - This is reasonable, for all the graphs of the
decomposition are of the same nature and an optimal criterion for placing a
cut in Gq will alsoc be optimal in the other graphs. Call X the number of arcs

betwee * adjacent cuts on any level.

The search algorithm tetween two vertices VA and VB (VA <V
is affected in the same way as described in Sectiori 3.5.1.3. Search will

B)

proceed forward from VA and in reverse fram VB' Every time a cut is reached
the search is raised ‘0 a higher level, until the extremes of the search in
the forward and reverse d.rection are on the same level and between the sane
two adjacent cuts, or at a point where there is cnly cne cut between them.
Here a meeting between the searches will be affected if possibie.

Of course the searchpath length between V A and VB wiil depend
or. the lccation of the two vertices in the Gy greph. Considering the forward
search path from V, the nmber »f arcs itraversed from V, tha cut in Gy will
be assumed randamly distributed with all possible search path lengths fram
0 to X-1 equally likely. The mean number of arcs traversed in the forward

search in GO will be )-(-.',i A similar mean will be true for the search from
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VB in the reverse direction, thus, the mean number of arcs traversed in GO during
the search will be X-1. In like manner the number of arcs traversed in each of
the higher layers less than layer J will be X-1. In layer J the forward and
reverse searches meet. The number of arcs traversed in layer J may range from

1 to 2X. To ease the algebra the mean number of arcs searched in level J will
also be assumed to be X-1.

For each change of layers we must pass from one graph to another.
We assume that this requires a like effort to that of traversing an arc. Adding
this factor, the effective mean number of arcs traversed in every layer is

X + 1, again adjusting layer 5 by a constant for simplicity.

The distance of the shortest search which uses layer J is called
YO(H).

X (1)

YO(H)

H (2)

long0
Except in the improbable case in which a search of distance Yo(H) actually uses
layer H, all searches of this distance will use layers up through layer H-1.
Thus, for searches over distance YO, ((logX YO) - 1) is a good estimation for

the number of the highest layer used (including layer 0) and so lor,, YO is a
good estimation for the number of layers used.

We may assume on this suggestive basis that for searches of
distance Y,
T = logx Y (3)

is the average number of lavers used over all possible searches of length Y,

From previous consideration, the total average search pc:h lengths
for searches of length Y is therefore

F=(X+1T (4)

Which may be rewritten

o

(5)
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We see from this formulation that, for any cut spacing at all, the
search effort turns out to be proportional to the logarithm of the separation
between the vertices being examined rather than to the separation itself, an

extremely significant saving for large graphs. Minimizing F analytically (in
continuous variables) as a function of X only, we find that

1) The minimizing X is not a function of Y. In other words, a
chain graph optimized for searches of any particular lergth is optimized for
all search lengths.

2) The optimum X is the solution of loge X = )-(—5%—1- or about
X = 3.6 arcs between cuts. (In actuality, X must be an integer.)

A curve of F vs. X for an arbitary Y is shown in Fig. 3-17.
We see that for the decomposed chain graph the optimum cut spacing Jdoes not
depena strongly on cut spacing, so that, for example, a five-fold ircrease in
spacing (from % to 20) only approximately doubles search effort. This suggests
that a significant tradeoff between maintenance effort and search effort is
possible and so is probably available in the more realistic cases as well.
For the chain graph of Fig. 3-17, a search over a path having a length of
3,000 arcs in GO requires traversal of an average of about 29 arcs in cn
optiiized graph and about 56 arcs in a graph with X = 20 ares between cuts;

these searches utilize 5.75 layers and 2.6€ layers on the average respectively.

The results further suggest that below same limit the decamposition

technique is not particularly helpful and should not be applied at all.

These results indicate that cuts should be surprisingly close
together from the point of few path number differences. Most graphs,
however, suffer from the fact that they are not chairs and although the above
result <vield irsights into the cut placement problem iney cannot be practically
applied. One factor which loums large in the effectiveress of cuts which
cannot be accounted for in a chain graph is that searci. efficiency increases
as the number of arcs in G1 Jdecreases fc * a given number of cuts in GO‘ There
1s usually a large variation in the numier of arcs introduced in Gy bv a cut
of GO depending on the set of vertices included in the cut. The same corment

holds for cuts made in higher layers of the graph.
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FIGURE 3-17 - SEARCH EXFORT IN A DECOMIOSED CHAIN GRAPH.
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The problem of placing cuts in an optimal manner in a realistic
graph is a difficult one. Research is currently almost completed for an
algorithm which places a cut in (30 between two existing cuts to minimize
expected search time. The set of feasible cuts obeying the restrictions of
Section 3.5.1.2 is too large for hand calculations for all but the simplest
graphs but well within the power of a camputer. The algorithm generates each
of these feasible solutions and compares their effects on the expected search
time. The feasible solution which yields the lowest expected search time is
judged the optimum and used for the cut. A detailed description of this
algorithm will appear in a future report.

3.5.3.2 The Dynamic Nature of the Problem.

In many cases the graph will not be fixed as suggested in the
last section, but growing with arcs being added from time to time. This adds
several new dimensions to the problem of placing cuts. The essence of the
problem is that a particular armangement of cuts which is optimum at one time
will probably, after the addition of a few arcs, no longer be optimum. New
arcs can affect the decomposed graph'in the ways already described in
Section 3.5.2.2. Sometimes these effects are marked. How to maintain the
ontimality of cut placement in the face of a growing graph is a problem which
has not been solved.

The procedure currently envisioned is to keep all cuts once
they are placed and to add new cuts as they are required between existing ones.
This criterion for detemining when new cuts are to be added is also at this

- time not presently available.

3.5.4 PExperimentation by Simulation.

3.5.4.1 The Problem of Algorithm Fvaluation.

To measure the value of the decamposition technique one must
be able tc measure search time, storage required, and the camputational time
required to establish and maintain the decamposed graph. Two main factors
hinder these measurements. First, the time and storage required to implement
these various aspects are very dependent on the algoritims used for the
implementation. Section 3.3 indicated that there are several techniques for

searching the decamposed graph. In like manner, there will be a nurber of
ways to create end maintain cuts.
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With some effort machine-independent factors, such as the
nunber of arcs in a decomposed graph, can be separated from factors which
depend on the particular experimental conditions. It is these machine-
independent factors which are of greatest interest because they are meaningful
in projections to other systems of programs and hardware.

A second factor in the value judpement is the dependency of the
time and storage parameters on the particular graph which is the subject of the
measurements. It appears that slight changes in the form of a graph can great.y
change the efficiency of a particular algorithm applied to it. One can get
around this problem by considering a universe of graphs and finding the expected
values of the important parameters. The problem here is to define the universe
of graphs of interest.

Applying classical mathematical techniques to the determination
of the important expected values is generally fraught with difficulties. The
problem here is the vast number of variables that one must specify to
characterize a large graph. Perhaps one can sufficiently restrict the type
of graph to be considered to provide mathematically tractable problems to so!
Rut the results thus obtained leave one with doubts concerming their generality.

3.5.4.2 Simulation.

For this reason the primary means used for the evaluation of the
decamposition principle and algorithms for dealing with it will be computer
simulation. Programs have been developed which can generate graphs for study.
Given a set of vertices, arcs are drawn sequentially &and randanly from a set of
feasible arcs. The size of graphs thus generated is presently limited by the
size of the core memory of the computer. Our present experimental programs
can generate graphs of about 400 wer.ices and 800 retained arcs.

The algorithms under study will be applied to the graphs thus
penerated. Facilities will be provided to count such important parameters
such as path number occupancy, time for search and storage used. Of course, as
other parameters becomz of interest these too will be calculated.
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A number of graphs will be thus probabilistically generated ard
the algorithms applied to each. In this manner, frequency curves of the parameters
will be plotted. Frum these one can meacsure the effectiveness of the various
algorithme and ultimately the value of the decomposition principle.

3.5.5 Secrch Algorithms.

There are several interesting algorithms for searching a decomposed
graph. The one which we plan to use for evaluation is described first below,
and then others are considered in camparison.

3.5.5.1 Dual Recursive Altamating Search Algorithm,

Consider two separate search programs operating on a decomposed
stratified graph in a list structured memory. For convenience, we will call one
of them Jekyll and the otiser Hyde. FEach of tlese s identified to the search
routine described for stratified undecamposed grapis in an earljer section with
certain exceptions:

1) Jekyll searches in the subsequent direction and Hyde searches
in the precedent direction.

2) Each is able to detect vertices which have been reached by the
other. This is a condition of the meerirg of two puts of paths searched out
separately, and 8o it is a detection of a relatinn between the terminal vertices
of the search. It is a "termination condition™ in addition to the others
available, having the same qualitative effert as reaching the destination vertex
in a search from an origin vertex.

3) Each is able to detect cut vertices. %When a cut vertex is
reached, if it is not a vertex reached by the other program, the program ncves
to the next higner iayer at that cut vertex and marks a list associated with tne
entire set of vertices of that cut with a syebol indicating that it hac reached
that cut. If the other routine nas reached that cut then the cut is marked as
a "cut of meeting™ and neither routine sszarches reynnd that cut. Detection cf
"cut of meeting™ becames another terminating condition on both rcutines. Jerx,!)
then calis Hyde; Hyde would call Jekyll.
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The result in operation is tlat Jekyll searches recursively forward
in Gy until it reaches a cut; then liyde searches recursively backward in G,. If
they do not meet or exhaust possibilities, Jekyll searches forward in G, and then
fyde searches backward in G,, etc. The process is repeated until a relation is
found or until possibilities of reaching the cut of meetirs are exhausted.

As the rcader may have guessed, Jekyll and Hyde ar quite similar,
and it is possible tc implement them both by a single recursive routine with two
entrances, a few parareters controlling the differences and a few separate lists
for iriernil storage of the respective programs. It is an unusual recursive
routine in that It effectively must compute its own name in order to enter the
proper version of itself at each recursion or termination.

3.5.5.2 Other Possibilities,

Any other routine for search must allow for the fact that when a
scarch proceeds into a higher layer, there is no a priori way of deciding when
it shculd leave that layer for a lower one. For this reason all of the other
alternatives here also scarch from both ends toward the middle. One way is to
fird all of the immediate subsequents of the origin vertex and put them on a
list, and simiiarly fco the destination vertex. The lists can then he comparec
and if no meeting is detected the process can be repeated for all of those
vertices, again comparing 1ists and continuing (changing layers ac appropriate)
until a comparison of the strata reached indicates that ali the paths from oririn
and ¢~stination have missed each other. Another termination condition is
provided in that x search need not be continued beyond the stratum vwhich
ou.tains the nost remote active vertex for continuation fram the other
direction. By some controls in the algorithm, the difference between the
active stratrum mumbers can be minimized and the temination 1ixelihood thus
enhanced.,

Alternatively, all paths in Gy could be searched out to find all
of the points of continuation on cach side in Gl' and then the process applied
to c1 to the 62 continuation, and so forth unti} .neetim or until & common
cut is reached from both search directions.
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Either of these processes traverses all of the arcs in the
required layers up to the cut of meeting which could possibly be on paths
melating the two vertices. This seems to be a major drawback over the dual
recursive approach since, in the latter, fruan each direction only one path is
found at first, and others are found only i¢ the first paths do not meet.
Even then, other meetings are attempted in the highest layers before recourse
is made to lower layers. The result would anpear to be that in cases in which
a relation was actually found the dual algorithm would tend to traverse far
fewer arcs than the alternative routines, whereas for searches which did not
detect a relation all of them would traverse about the sare number of arcs.
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4, EXPERIMENTAL RESULTS.

The purpose of thie section is to report the results of Monte Carlo
experiments which have been performed usinp, same of the techniques described
in previous sections, and to present the experimental method in enzugh detail
sc that the results can be interpreted, The experiments completed to date are

. rot conclusive (in the sense that they allow relial’e estimates of any of the
rtatistics which characterize random graphs or particular ways to represent
~ and manipulate them) but they are suggestive enouph so that it was felt the
report would be incomplete without some mention of them. The experiments deal
only with graphs which have not been decamposed.

4.1 Graph Generation.

The mode of graph gennration has an important bearing on the storape
and search properties of the resulting praph and on the effects of any strateres
forr improwving the properties. The mode chosen for experiment was intended to
reflect the expectation that the graphs would be used for Information storare,
that there was an underlying finite, static "ultimate" graph wh<se structure
was being revealed by stages, and that the accession of information was
uncontrolled, or rather, controlled by circumstances other than the internal
conditions of the graph. Thus, it was intended to reflact a class of problem-
modeling, situations and to be relevant to the storage and search necds involved
in the use of computers in dealin” with poorly structured problems.

The underlying structure selected was a total order of the vertices;
an equivalent assumption states that Information may be received for storagre
ir. the graph relating any two verticer whatever. T™e discipline of accession
of arcs was such that all arcs consistent with the underlying structure were
equally likely for accession at all times, independcnt of the graph content.
The generation and search processes were programmed in LAP (List Asserbly
Program) language for the GC 225 or 235 computers. Fach graph was first
represented os an empty graph of N vertices and no arcs, each vertex havirng
a iist structure as exerplified in Table L-1. For bookkeepirg purposes, two
auxiliary vertices were added to each empty graph, one prececent to all vertices
and the other rubsequent to all vertices, so that the resulting empty praph
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TABLE 4-1
VERTEX LIST STRUCTURE

Address Link Symbol
Internal vertex name a Nawve of list of precedents
a b Name of list of subsequents
b c Stratun number
c (As approprfiate for a terminator of a list)

Name of list of precedents d Name of nrecedent.
d e Name of precedent
f (as many as required, zero or more)
f (As appmp*'iate for a terminator of a list)
Nare of list of subsequents g Name of subsequent
g h {as many as required, zerc or rore)

(As appmcfiate for a terminator of a list)

Note: An empty list consists of one cell which is a tem.. :tor.
Fach line above represents one cell.
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included 2N auxiliary arcs. This proved to be a significant simplification for
programming, since contingencies of no precedent and no subsequent of a given
(natural) vertex did not need to be provided for; as we shall see, the storage
requirement is nregligible. As information is added to such a graph, many of

these arcs become redundant and so may be eliminated without altering the conditior
that every natural vertex of the graph has a precedent and a subsequent.

A residve-class pseudo-randam number penerator was written for the
225 and was used to select arcs for entry into the graph., Equal intervals
of the renge of randcm numbers were assigred to each vertex. Pairs of random
numbers were selected, and a corresponding arc was selected for entry provided
that the two nurbers were not in the interval for cne vertex. The directicn of
inequality of the numbers was used to select the precedence relation of the arc,
so that all arcs were consistent with an underlying total order of the vertices.®
We define a parameter J, the number of arcs selected for entry up to any particul.
pcint in the graph growth,

Path number stratification was maintained continuously by a recursive
routine which has already been described.

4,2 Storage Characteristics.

The characteristics of interest in describing the stonage requirements
of graphs include the following, all as functions of the number of vertices and
the number of arcs selected for entry.

1) The probability distribution of the number of arcs in the basis
rraph.
2) The protability distribution of the fullness ratio of the graph.

% Some hand-generated random graphs were constructed using the order of
appearance of the two veriices to control the precedence relation of each
arc; an arc was rejected if it was inconsistent with the current state of
the praph. transitivity and anticommutativity. Such praphs tend to assure
¢ structure very close to a total order of wne vertices very quickly in
camparison to the praphs havirg a predetermired total order. This type of
graph was not used in computer experiments because it seemed to be less
representative of a problem-modeling discipline for accession of information,
and because it was felt that techniques which would be effective for the t,pe
of graph which was used wculd be effective for this type as well.
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3) The probability distrilution of the maximum number of arcs in the
basis 7raph.

4) The probability distribution of the number of entries which
maximizes the number of arcs in the basis graph.

The data available tu date are not adequate to support any meaningful
Statements about the forms, means or variances of these distributions. However,
same specific cases can Le presented.

Consider first the charac wristic pattern of growth of a basis graph
due to accession of randomly selected arcs. There are two limits which affec.
the relationship between the number of basis graph arcs A (GB) and the selecticr.
count J. First, the basis graph can grow only as fast as the selection count;
it tends to do so up to atout J = N. Second, the final basis graph, representing
a tctal order, has N-1 arcs, so the size of the basic graph rust tend toward
N1 arcs. Figure 4-1 shows same cases of graph growth for various N. It
indicates several tendencies whi.: we expect tc see supported by more extensive
experiments. First, a tendency for the basis graph to reach maximum size around
J/N = 3; second, a size limit of about 2N arcs; third, a tandercy for the size
limit to increase slowly with increasing N. At the point at which the underlying
probability distribution of F(Gg vs. J has a maximum, the qualitative effect
is that on the average each selected arc which adds new information to the graph
also makes one arc redundant, so that the basis graph size does not increase,
and thereby average storage does not increase.

Reducing these indications to an estimdte on possible use of 2uK
of core, each vertex has associated with it 17 cells allocated as follows:
one cell for stratun nunber, two cells for reference to lists of precedents
and subsequents, four cells (average) for reference to actual precedents and
subsequents and three cells for the necessary list terminators. An estimated
three cells pe.- vertex of working storage for marking for fluctuation in total
arc storage and for temporary lists during graph manipulation secems realistic.
Thus, a graph of up to about 1,850 vertices (without decamposition) could be
stored and used.
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— limits~ N-1

FIGURE 4-1 - GROWTH OF BASIS GRAMH.

4-5




Report No. 77-106-1 6/20/66

Allowing one additional cell per vertex for naming the dominating
cut, and about 10% of the space for all of the decompositions of G,, a
decamposed graph might have up to 1,550 vertices in 2uK words of core. All
of the above assumes one list cell per word of memory, which is certainly
feasible on the longer wordlength machines.

As described above, it is a decided progremning convenience to let
every vertex of the graph being represented have at least one precedent and
one subsequent. For this purpose, two auxiliary vertices are created and
set precedent and subsequent tc all N vertices during the creation of the
empty graph, at J = 0. Arcs from thece vertices rapidly become redurdant
(considering the structure of ¢he N + 2 vertex graph) as the graph grows,
and so may be eliminated. Figures 4-2 and u-3 show a specific example of
Frowth of an experimental graph in which both the basis graph and total
storage were tabulated. Figure 4-2 shows specifically how the basis arcs
tended *o replace auxiliary arcs so that the overall storage requirement
was nearly cons*ant and was decreasing toward the total-order limit at the
end of the experiment. Figure 4-3 shows the growth of the corresmonding
fully 2xplicit graph and the significant saving in required storage. Since
the number of arcs in the basis graph approaches N-1 while the corresporxiing
number ir th2 fully explicit praph approaches N (N-1), the storage advantage
of representing only the basic graph (taken as !the limit of A (GE)/A (GB)
increases linearly with N. The figure is based on estimates of the fullness
ratio using the nunber of basis grarh arcs retained, as described in the
section or estimating fullness ratios. The list structures compared were
similar, but storage for path number stratification was not included in the
fully explicit graph. This accounts for the difference in sizes of the

two empty praphs at J = C,

The experiments to date have not produced any reliable predictor
for fullness ratio as « function of J. Several probabalistic models of

rsraph growth have been constructed by the usual procedure of making uniustified
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(and hopefully, unimportant) assumptionc -f independence; none has proved to
be realistic. The use of better estimatcrs ¢f F(G) in current experiments
may lead to a useful predictor.

4.3 Search Characteristics.

The algorithm for search in a fully explicit graph is comparable
to the recursive algorithm with the added termination condition: “Always
terminate instead of any recursive continuation." This is effective because
any vertex which is related to a given vertex is connected to it by same
single arc in the fully explicit graph. The effort of a2 search to confim
or deny a given randomly selected relation in the graph may be estimated
as follows. For' a rardanly selected ver.ex, the number of sequents in a
chosen direction is

F(G) (N-1) (.5) (Y)

: S -
1lness ratio® ‘number of other for the choice of one of®  /Success
vertices the two sequent directions factor

where Y = 1 for searches which fail to .ind a relation and Y = .5 for searches
which find a relation. We may use this formula to estimate the search ef ort
for any graph with known fullness ratio.

None of the experiments to date has included collection »f canparable
statistics on a fixed graph for the recursive searc: process used. However,
some statistics are available for intervals of graph buiiding. Two are
tabulated as examples in Table 4-2; fullness ratios used for each interval
wcre the mean of the estimated ratios at the interval limits. The case
chosen is an unfavorable cne for the stratified basis praphs, since it does
not take advantage of the fact that cover half of all the possibtle randomly
selected searches will be answered on the basis of stratun numbers alore,
ror that, for searches for any relation, the fully explicit graph must le
searched ir two directions. In spite of these unfavorable factors the
experimental searches took carmpareble or ':ss effort than the estimated
searches in the fully explict graph.

The indication that the search effort has not been materially

increased is encoureging. It remains to verify the results over a

significant range of graph sizes and fullness ratios,
L-f
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TABLE 4-2

-

6/70/56

Fully Fxplizit Sraph

Stratified Basis Graph

Mean Estimated | Number of Muniber of |Average
Fullness Ratio| N |Effort in CE Experimental Arcs Actual
Searches Traversed | Effort
Successful
Searches 436 20 2.97 5 11 2.2
479 20 2.27 3 7 2.33
.52 S0 6.37 121 300 2.5
Unsuccessf
Searches 436 20 4N 19 58 2.6
479 20 4,55 16 61 3.84
.52 50 12.7 277 1619 )
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One of the factors which affects the search process significantly
is the length of the paths of search. The longest path inwclved in a given
search determines the maximum depth of recursion, although it does rot determine
the number of times the routine wiil recurse. A measurc of path lergth is
afforded by the maximun path length in the graph, which, of course, is easily
determined from the stratun nunbers. Figures 4-4 and 4-5 show some examples
of the changes in path length and path nunber occupancy respectively.
Similarly, the occupancy levels of the various strata affect the numbers of
paths which take on various lengths.

4.4 De'- nination of the Fullness Ratic of a Grap..

The purpose of this secticn is to preserit seviral techniques for
determining the fullness ratio of a graph. To review, the fullness ratio of
a graph G having N vertices is defined to be

F(G) = 2 T °
the ratio between the number of arcs in the fully explicit graph €,. which
corresponds to that graph and the nu~her of possible arcs N (N-l)/g. It is
the proportion cf all of the relationc represented by a total orderiry of
N vertices which is represented in the given graph. It may te cetermined
in several ways, including:

1) direct determination,

2) indepencert estimate,

3) various '"byproduct” estimates.

Direct determination of the fullress ratio would be an exhaustive
process woereby every pair of vertices in the graph would be tested for
relation and the calculaiion male. It inwslves some process equivalent
o constructing the fully explicit zrapn and counting its arws. For larve
FraMN.e the process invelves a preat C2al of carmputation,; for praphs usire
most of a list-oryganized core memory, memory may be exceeded.

A possible estimating procedure is the following:
1) A rumber of paiis W of two different vertices are selected

randomnly.

4-1C
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2) Graph G is examined to determine the number of pairs X which
are related in it.

3) Compute FM(G) = %

The estimating procedure is justified as a direct sampling in the
set of all possible arcs. For every pair Wi there is one relation which,
although it may be unknown, is either represented in G or not, and its
representation is determined from G. The quantity is binominally distributed
with

mean FR{GY = F(G), and with

variance F(C) (1-F(G))
W

The process ¢. 7enerating a random graph produces several

opportunities for estimatirg the fullness ratio at various stages of completion.
Two of these types of estimates are described below. In the first, scme small
fraction of the total number of arcs which were generated for entry, as for
example the last 10%, may be taken in place of set W in the previous procedure,
The propartion rejected as being redundant is taken to be the estimator of the
fullness ratio. An assumption behind this procedure is that the fullness

ratio did mot change significantly during the entry interval selected, whereas,
in fact, there is no assurance that this is the case.

A second possibility is tc consider the set of all arcs selected
for entry, and tc use the proportion of that set which is not included in the
resulting basis graph as an estimator of the fullness ratio, on the ground
that it represents the redundant fraction of a randomly selected set of arcs.
This estimator is surely subject to strong dependence on he graph produced.
It is likely to have a very high variance as well; it can be shown that thc
estimatcer will consistently be above the mean fullness ratio (for a given
rumber of selections) whenever the actual ratio for the particular graph ic

’ below the mean and vice versa. The preliminary results given beliow for F*(G)
are based on these two byproduct estimation methods, since neither exhaustive
determination nor an independent estimating procedure were included in the

tests used.
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A third "byproduct" estimating procedure is rapid and appears to
be relatively accurate for F(G) > 0.25: If the longest path contains M arcs,
and if we assume that every vertex is on scme one longest pa*i, then each
vertex is related to M others and there are M}_I_{ arcs represented in the graph.
Then

PO = 7 ROEDY * T

Since this estimator apparently tends to give a slight over estimate, the
estimator

PG =

is preferable because it is simpler and apparently somewhat mcre accurate.

For statistically meaningful tests the independent estimate appears
to be the most attractive in terms of effort ana validity.

In addition, a lower bound on the ful'ness ratio can be determined
from a graph's stratification, since the M arcs on the longest path form a
subgraph whose fully explicit graph consists of

_ MM+ 1)
FB(G) = ————

arcs. Since these arcs are surely represented, PB(G) is a lower bound on
TG,

k.5 A Heauristic in Discovering Prcblem Structure.

During the experiments we noticed that there were apparently nc
instances in which a random graph developed two independent components
(subsets of veiticec 1ot cc.inecieu by any are) which were both of significant
size (more than about 3 vertices) and which together included most of the graph.
The overwhelming terdency is for one major component to be formed, and for that
caiponent to take up unconnected vertices and cunponents consisting of one
cr two ares without any major second ermponent ever beiiig formed. The formation
of this one component which covere rearly all of the graph .ccurs after only
a small amownt of information has been entered, well under N arcs in all the
cases studied.
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The probability distribution of the number of components of graphs
constructed by the selection technique used in our experiments has been
previously published.* This reference contains an approximating formula
for the expected number of components which have j vertices for a graph with
N vertices after N selections of random equiprobahle arcs have been made.

It is:

."1 -."3 _2.
E (S,) = 237% 3977 Ne™4d,
] "("'I}T—J_ J

In the course of deriving the approximating function it is shown that for the
smallest graphs, only the one large component and the isolated vertices
contribute significantly to the mean number of components, that for somewhat
large» graphs only these and the isolated pairs are significant, that for
yet somewhat larger graphs the isolated triples become significant, etec.

The muliple-large-camponent case never contributes significantly.

On the basis of the above, we may pose the following heuristic:
Whenever a growing set of relations develops into a graph with two major

components, the arriving relations are not equiprobable and there is scme
underlying structural difference between the two sets of vertices and some kind
of restriction on the arrival of relations between the two sets. Certainly

under some conditions this is generalizable to more than two sets.

This is & particularly interesting heuristic because it imparts
information about underlying structure on the basis of & very small amount of
information compared to the information necessary to define the underlying
structure,

* See reference 3. The paper contains expressions for the exact distribution
and other approximating functions as well. It would be interesting and
relevant to extend these results to develop statistical decision procedures
on hypotheses concerning underlying structures and arc entry probabilities
based on the component configurations of the resulving graphs.

4-15
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5. CONCLUSIONS AND PROSPECIS.

The stuc, reported here has developed an approach to representation of
directed graphs which appears to provide significant econamies of computer
processing effort and storage space over previously documented techniques
for large graphs. In the directed graphs studied, each arc represents a
relationship between the two information entities at its terminals; the
relationship can be any transitive, anticommutative relationship such as
"is greater than" or "must precede". The key features of the representation
scheme are stratification of a graph based on the lengths of paths in the
graph, a recursive. decomposition technique which produces successively less
complex representations of a graph, and a recursive search technique which
utilizes the stratificaticn and decomposition. Preparations and preliminary
results of tests of the statistical properties of the representation based
on such graphs with randomly chosen arcs are encouraging but not yet
definitive.

The representation approach is intended to be useful in a computer-use
context in which there is an on-line conversational process deali.ng with
problem definition as well as problem sulution. The user is given the
capability to define relatiors between information entities and to accumulate
instances of these vrelations in individual data bases available to him and
to the processes he uses. These data bases provide amcng other things, a
repository of qualitative information which can be used as a tasis for
decisions in a jointly-developed problem model.* The relational data bases
are, in a sense, a complement to the attribute-value descriptive capabilities

of list processing languages.

—

* The representatinn may also have same value independent of man-computer
processes. For example, large job-shop precedence requirements, time
precedence graphs for partly-parallel computations, dependence relations
between subroutines under an executive system, partly defined priority
structures and relations between natural-language semantic c:tegories
might be usefully represented using these methods without manual
intervention,

5-1
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In such a context the user could declare relations just as variables
are presently declared to be real, Boolean, string, etc., in algoritimic
languages, and sv:+:-15 assigned for use in communication concerning information
entities which may be so related. His processing facilities would allow him
to call for and insert information in his data base in terms of the relations
he declares. He could also write logical expressions whose values depend on
stored relationships just as he can now write logical expressions in algorithmic
languages whose values depend on stcred numbers and their equalities and
inequalities.

What set of relations should be provided? A simple, easy-to-learn set
which is complete enough 30 that one may use it for anything. We have
attempted to enumerate the logically different relations which could be defined
using orly three symbols (the minimum required for defining such important
properties &s transitivity). The enumeration was not completed but it was
carried far enough to show that the number of relations which could be so
defined is probably at least several hundred, taking into account both
acceptability of combinations of relations and inferences from combinations
concerning other relations on the same symbols. It is unreasonable to provide
several hundred mathematical forms for man-machine communication because
massive confusion on the part of the men would result.

One guide to the forms of the most useful relations is the set of

relations which are represented Ly simple relational phrases or sentences
in natural langusg;es. We may examine English, for example, and find
relational phrases such as "exceeds", "is a parent of", "equals", "is near",
each of which has a different underlyins logical form of allowable crubinations
and valid inferences. Tt seems particularly important to provide forms which
correspond to the frequently used relational phrases. Among these would be
the transitive, anti-omiwtative relations (the subject of this report) such
as "precedes", "is more important than", "is a subset of", etc., the
transitive comrutative relations such as ™ecuals", "is with", the non-transitive,
non-commuiative relations suca as "differs from" and other relations used to
describe a linear field (such as positicns of a set of objects in three-

imensional space.) An examination of the logical torms of rel-tions which
have been discovered by natumal larsuage analysis mey disclose other
frequently used forms.
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Such a basis is unsatisfying in that it do:~ nct provide any assurance
of campleteness for problem modeling purposes. A satisfactory compromise
would be to discover a basic set from natural language analysis and then to
augment these with a minimum set of additional relations such that every
enunerable relation on three symbols could be defined as some use of at
most two of the basic relations. The size of such a minimun set is unknovm;
hopefully it is small. At any rate, the forms of some of the relations which
must be providea are obvious.

As a long range prospect, those relations which prove particularly useful
can be implemented in hardware as particular kinds of associative memory,
with the asscciational property and internal inference taking the logical
form of the corresponding relation in each case.

The specific effects of representing directed graphs as discussed in
this report should be documented in a convenient form for prediction and
comparison in future experimentation by others. For this purpose the computer
porgrams used for the present preliminary results will be extended to provide
more extensive statistical information on stratified graphs and to allow
decomposition, including experiments on when and where to cut during the
decomposition process. The programs -“re also to be modified to produce
specific information on the effort required by the decompositicn process
and subsequent maintenance durirg graph growth.

It would be possible to extend the experiments to graphs having an
underlying form other than tctal order, or having unequally probable accession
of different arcs. The variety of such possible extensions is endless and
their utility is questionable at best. Furthermore, many of the possibilities
can be estimated as compositions of the kind of graph already studied.
Therefore, we have no plans to consider other underlying stiuctures or
gereration probability disciplines for' transitive, anticommutative relations.

In sumary, the results to date appear to be a useful step toward a
goal of making available methods of easy man-computer communication concerning
relations between information entities. After completing study of the effects
of stratification and decamposition, another relation will be selected for
representation.
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