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SUMMARY

This report describes research in information processing intended for
* application to man-machine cammunication processes. In order to allow a

computer user to represent same problems more easily, we would like to let
him rone and define relations between information entities with which he deals,

and then manipulate a large number of such relations stored by the computer.
A set of statements on the relative desirability of various conditions is an

example of a set of relations which the user might want to store and manipulate.

The problem is that available representations for such sets of relations
tend to be unwieldy and may require a great deal of processing for large numbers
of relations. in order to make such a capability available, compact arid easily-

manipulated internal computer representations for large numbers of the various
kinds of two-entity relations must be found. This report describes such a

development for one basic logical form of relation, the transitive, anticcmmutative

relation exemplified by "precedes", "includes", "is greater than", and similar
phrases.

The report describes a method for storLig directed graphs (of trwisitive

anticcmmutative relations) in a list-structured computer memory. There are
three important featurn's of this representation method: A method of dividing
a graph into a number of strata based on the lengths of paths in the graph, a

* recursive decmpositicn technique which prx>? es successively less complex
versions of the graph, and a recursive sea) technique which utilizes the

stratification dnd decomposition to extract information from the graph with
• " a limi~ed amount of processing effort. Same preliminary tests of the

representation technique on graphs containing up to several hun&-ad randomly

choser relations aue described; the results of the test indicate that this
representation may requirz less processirg time and far less core storage than
previously-used ternmiques when applied to large graphs.

--iii-
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A DATA STRUC'IRE FOR DIRTI GRAPTS

IN MAN-MACHINE PROCESSING

1. INTRODUC7TION.

There is a wide variety of methods of data storage for problems which can

be defined before they are programed. For ill-defined problems in whioh the

form and scope of the problem may be defined as the result of a joint man-machine

process (long after most of the computer prograiing is complete) few methods

are available for construction ard use of an appropriate data structure ad hoc.
The most effective procedures for working with incompletely defined data

structure are those associated with list processing languages such as LISP

and IPL-V. While these are powerful tools, they tend to be rather clumsy

and/or ineffici.ent in memory for representing some data relationships which
occur repeatedly in man-machine cammunication and in the problems which are

represen--d by such mxnmunication.

The process of man-machine communication is greatly aided when the machine

is able to deal directly with the -;ymbols and relationships which the man uses
to represent his problem. The most restrictive limitations of available methods

seem to be associated with the man-to-machine c=uication rather than the

machine-to-man link or interral processes. 4xih of the man's representation
of problems is unacceptable to machines because of its vagueness, incompleteness,

ambiguity, nonfon,-Ality and the like. We nimst find ways for the machine to freely
accept and use incomplete, qualitative infornation, to mix that Ldforriation with

internally-derived information, and to accept modifications as easily as the
original infonration is accepted.

Two areas of interest in which such a capability is needed ame the modelir;,

of natural arrgufe by machine and the acquisition or modelirg of complex hunan

decision proeme by machine. In the case of natural larnuage, people use

the larguage not only to xpress information relevant to problm but to define,

restrict and explain their use of langue as well. Thus, .langue models mu;t
change in response to speech; open-cve data structures arm threfore required

to accameuate sc-- "

* Curent lirguistic theory does not acoamccite such models, although the need
for them is recognized. 1-1
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For modeling of decision processes, such an open-ended capability will be

useful in cumulative construction of process models which could not be handled

by the usual process of description, prograinirg, 'e ing and operation because

of the difficulty (on the man's part) of conceiving of the process as an organized

whMle. By developing a process model ke,*d to the man's conceptions (includinR

relatiens betwem them) in an experimental way, the machixe may overcvme the

man's conceptual limitations by its different way of usirn muiory, and thereby

break thromh the limits which prevented progrenming the decision process in
the first place.

The effort described in this paper is an attempt to select a recurrent

relationship of data structure, to represent the relationship for efficient

open-ened storage in computer memory and to find ways to manipulate such a

representation easily for large amounts of data.

The relationship selected is the transitive, non-cannutative relation
between two objects (symbols), represented in various applications by linear

inequalities, set inclusion, tL.e precedence, priorities, and in many other ways.

The trwnsitive prcperty simply means that if

A (relation) B and

B (relation) C

are true, then

t (rellation, C

must be true; the non-ocamutative property simply means that if

A (relation) B

is true, then

B (relation) A

is false. We will symboliza aI1 such .',ndividual relations helow by .

A collection cf relation statements such as toe above coertrnirg a set

of Synbols can be oorweently represente, by a dire@cted grae.i (see rig. 1-1)
in w*ich. each 1line rrits or viiit ?'iatioA'.

1-2
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Relatiom svalent 9M;ý
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FIGURE 1-1 - FOREP NMTION OF RELATION STATEKE2TM BY A DIRCTII) GRAPH.

The case of lare graplis is of n,•t interest than the small graph case,

since the latter ca-n often be handled most effecdAvely by simple exhaustive

search or storege techniques. Graphs having hxx-nr.1s or thousands of vertices

occur in models of process precedence (as in MR77 charts), organizational

relatiunships, vaxicus natuml and artific-ial language models, assewbly-sub-

assenbly relations, state and subgoal dominance in games and the like.

The usefulness of such relations has been demonstrated by Bertram Raphael,

among others, ir. his work on Serantic Irformtion 'etrieval. I In providing

means for computer response to English statamits and questions, Raphael kept

eight sets of relations between cbjects or sets in the computer meriy. They

were designated as "set-inclusion, set-membership, equivalence, ownership-

general, ownership-specific, part:whole general, part:whole-specific, left-to-

right position. Most of these rvlations can be fully represented by graphs of

transitive, non-omintative relations with 3 arrnetaticr oncer.ing. the obA,•cts

so represented. It is notwworthy that Raphael uosidervd his systam "c ý.ped

for mwvry space" although successful in c wxstratirg the power and flexibility

of the approach.

1-3
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2. PROBLEM STATI1ENT.

The oroblen is to find a representation for large transitive non-ccmmutative

graphs of unrestricted topology, and to find a set of algorithns which will, in

combination, use swall amounts of memory to store this information, and to enter
and extract information rapidly. This problem differs significantly from problems
of representing and starching a graph which is implicit in certain information
already at hand as, for instance, the move tree in a chess game which is implicit

in the present position and the rules of chess.

The above statement is too vague to support evaluation, and so sane
clarification is required. Performance of any actual prograirming system will

depend on the specific computer, and on:

1) the amounts and types of usable memory,
2) the relative frequencies of the graph manipulations used,

3) the "typical" form of the graphs used.

The memory considered here is essentially the computer's fast memory,
normally core. However, it will be seen that the techniques presented have
advantageous natural extensions to slower memory and to paged memory. More
specifically, we will examine what can be done with 24K words of data space,
tacitly assuming a 32K machine with 8K of executive and programs. This provides

a convenient base for scaling to other systems.

The potential number of relations which might be stored in a graph rises

rapidly with the number of vertices, N. It is( ), or approximately Nl 2 ; a

graph of 1500 vertices with all relations explicit would surely exceed our

allotted core. However, nearly all these relations are redurnant, being implied
by other rtelations and transitivity; only 1499 explicit relations are needed

to imply all of the others. More generally, the elimination of redundant

relations fran storage offers significant reductions in nw-,ry requirwfents
at the expense of some incrvas in the computation required for manipulation.

As a mveasure, of the storage space required by a graph, we .!se a combination

factor depending on both the number of vertices and the number of arcs and,

of course, the wrrut of information stor*d concernirg each.

2-I
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A rich variety of graph manipulation processes should be available to the

user. However, for reasons which will become obvious later, the process of
searching a graph for the presence or absence of a specific stored relation
can be used as a representative manipulation process. It i- -equired in both
entry and query processes and can be the major time consumer in manipulating

large graphs.

A measure of the processing requirements of specific conditions (of
graph form and representation) may be considered to be the product of two

factors:

1) the time required to traverse a single arc in the graph and decide

upon the outcome of that traverse, and

2) the numzber of arcs are traversed in the search.

It is the latter term which is subject to ccnbiratorial explosion; and
so considerable increases in the time required to traverse an arc are acceptable
if they serve to limit the number of arcs traversed. These terms are both

dependent on the algorithm of search; for a given graph representation several
search algorithms are possible. For the evalu2'ions in this report a recursive

search algorithm was used; it is described in Sect. 3.3.

The first term is dependent or. the computer used, the general abilities
of the list processing software and the cleverness of the specific graph

manipulation prVgwnsm The second term is independent of these factors and
depends only on the information actually processed and the possible techniques
of search limitation inherent in a representation. The more general camparis'-ns
therefore depend on the second term alone. For this reason we take the number

of ar-cs traversed as the measure of search effort in this report.

The form of the graphs encountered will depend strongly on what is being,
modeled, the graphs beLng partial or complete representations of problem
entities. For the purposes of this develorrent we ray use random grmphs in

place of problem model graphs to evaluate approaches, recognizinr, that a
srgtesn which works for a variety of ranckx, vranhs rav not be effective in

same restricted and improbable class c-f probleir structures. On The other

hand, an approach which is ineffective with rarukyr g1raphs may be expected

to have very limited utility as a general puroose tool.

i-2
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The randow grephs used for evaluation heLe are made up of arcs which are
selected fran all of the possible arcs consistent with an arbitrary total order
of the vertices of the graph, all such arcs being equally likely. It is
important to note that neither the existence of an underlying total order of
the vertices nor the equal likelihood of th. arcs are essential to the

• representation technique developed. Many other kinds of randcm graphs are
possible; the cases in which the underlying structure is not total order and
in which the arcs are unequally likely are of definite interest but have not
yet been considered in depth.

2-3



Report No. 77-106-1 6/20/66

3. TECHNICAL APPROACH.

3.1 Menor- Structure.

One of the first problems to be faced in choosing a computer

representation is the choice of a style of memory representation. Since we

are particularly interested in maintaining an open-ended structure which is

easy to expand and yet efficient, sone form cF dynamic memory allocation is

required. We have chosen a wrd-oriented I ist-structured memory of the sort

used in IPL-V and LAP.

In a list-structured memory, each cell of storage may be linked to

another cell without regard to its address, thus forming lists of cells of

storage. These links may be altered by the programs using the memory. Names

of lists may be cited freely in other lists or in the list itself, thus

allowing extremely complex informaton organization. The ability to add

links to additional cells as those cells are needed allows programs to

operate without fixed or preplanned memory allocation, acquiring and rvturning

cells to a public "list of available space" in response to the progress of

the computation. For introductory information on list processing, see

Reference 2.

An alternative to such a structure is a packed-word matrix

representation in which there is a rotd and a colunn for each vertex of the

graph and each intersection of a row and column iz epresented by one

computer bit. For very iaje graphs the requirwemnt that all the possible

relations be represented tends to outweigh the advantages of single bit

Rtorae relations. The list-structured menory approac.h requires stora"e

only for, the relations actually present in the graph rather than all

possible relations. The matrix approach is relatively inflexible, but '-y

be advantageous for some kinds of probler structure. It is of pa•-icular

interest with re-ect to the recursive deccxiosition technique described

in this report as a method for representimg subgraphs of the dec-,posit ion.

The list rmnory may be used - eprrsent the vertices and ares of

the graphs as follcos. Earh vertex of the g£raph to be stored is as,,;ociate&.

3-1
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with a list structure in memory, with the list structure for a vertex having

sublists of the precedent and subsequent vertices in the graph. These sub)ists

represent the arcs. If each vertex list structure contains citation of the

precedent and subsequent arcs, then each arc is, in effect, represented twice,

allowing search in either the precedent or the subsequent direction.

Information associated directly with the vertex itself may be placed in

the main list for the vertex rather than its sublists. Such information might

include the external name of the vertex, and bookkeeping information always
associated with a vertex. For information which is associated with only some

of the vertices, it is more convenient and compact to use the "description list"

capability found in nearly all list processing systems.*

3.2 Storage Efficiency.

The efficient storage of information in directed graphs is one of

the principal objectives of this development.

What constitutes storage efficiency for directed graphs? How may it
be measured? It is conceivable that a measure of the information stored in
transitive, anticommutative acyclic directed graphs could be developed based on
an enumeration of them, and assignment of their probabilities of occurrence.

This would yield a number of bits necessary to identify any particular', graph
which might occur, and then a reference for evaluation of any other storage
scheme. However, the combinational mathematics necessary for such an

evaluation, or for the enumeration of the class of graphs is apparently not

yet available. (Such mathematical developments would also be valuable in
statistical inference probleans, where the mathematical form of a relation
is to be infer from a graph of randomly selected exaples of the relation.)

It is therefore necessary arbitrarily to choose scre other reference for
measurirg the btorage requironents imposed by a particular implementation scheme.

* A special list is associated with the list for the vertex in a way which
assures that it will normally be ignored in processing. This list contains
an arbitrm-y number of pairs of cells, each pair cortaining an "at-tribute"
in the first cell and a "value" of tht attribute in the second. Th
attribute may be used to identify the role of the information in the value
cell. These lists ar created and maintained mritmarically by the list
pVrcessirg system, and are often referenced by use of a separate set of
coma-nds

3-2
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The reference chosen for this study iF' a representation of the graph

in which every relati.onship implicit in the graph is explicitly stored. More

specifically, a list-structure representation of such a graph is postulated.

The form of the structure is identical with the structure developed in this

report except that the "overhead" of storage required for the information

included for aiding searuh processes would be eliminated. The remaining

structure consists of a list for each vertex naming a sublist of precedent

vertices and a sublist of subsequent vertices, and the two sublists themselves,

citing explicitly all preceient and subsequent arcs. This appears to be the

form which is most closely comparable to the structures developed in this study.

Its storage requirements are directly canparable, and the comparison may be

projected to other systems relatively straightforwardly.

For further reference such a graph will be. called a "fully explicit"

graph and its list structure representation a "fully explicit representa'ion"

(see Fig. 3-1b). In contrast, the graph in which there are no arcs representing

relationships which are derivable fram the transitivity property applied to

arcs which are shown, will be called the "basis gah" (see Fig. 3-1a), Arcs

which appear in the fully explicit graph but not in the equivalent basis graph

are called redundant arcs. It can be shown that the basis graph is unique.

There is a further reason for using the fully explicit graph as a

cczmparator. It is in many ways the simplest representation to understand and

to program for. It has been used in studies in which efficient representation

was not an object, and it works moderately well for mall graphs and for

graphs with low inforrnation content (see Reference 1). It is thus a feasible

alternative in many applications.

The approach of this development may be viewed as, first, gaininp, of

storage efficiency by rwnavirg redundant arcs, and second, addition of information

to the resulting ropresentation to make search and charge of the resultirq graph

efficient.

In the first part, the reduction in storage re-quir•vnents is a direct

function of the nunber of redundant arcs whirch can be represented witout

Pxplicit storage by the arcs of the basis graph. This -;s a tonrovical, -a.¢-ine-

3-3
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independent property of the graph to be stored. Some estimate of the potential

saving may be made from the limits of the number as a function of the number of

vertices and infornation content of the graph. For the empty graph of N vertices

and no arcs, theme is no difference in the number of arcs tv, be stored. For
the case of a totally-ordered set of N vertices, the basis graph has N-i arcs
and the fully explicit gaph ha N (N-) 2

i 2 arcs, requiring storage of only q as
ffmany arcs in the basis graph. For graphs which partially order the vertices,
the proportion of arcs which are in the basis graph is often (perhaps always)

in the range 1 to 2/N. This ratio is one of the parameters whic' characterizes
a graph.

The nzmber of arcs in grph G is denoted as A (G) with the number of

arcs in the corresponding fully explicit graph and basis graph as A (GE) ard

A (GB) respectively.

A second aspect of a graph's str-cture concerns the information .ontent

of the graph. For any graph the ratio of tie number of arcs represented by that
graph (i.e., A (GE)) to the maximum possible number of ares representable on the

same set of vertices, N (N-i) is a measure of the graph's information content.

We define a "fullness ratio" 2A (G•
F (G) =

We should note that the fullness ratio is also the probability that

for a randmly selected pair of vertices (with all pairs of two differvent

vertices equiprobable) there is an arc between the two vertices represented

in the graph. This is the basis fo' a sanpling procedure for estimating F (3)

which is described below in connection with the results of Monte Carlo experiments.

3.3 Search as a presentative Grqph Manipulation Procedure.

The purpoe of this sertion is to define "search" of a graph in a
particular way and to sm.w in what way it is a representative process fc' A

larger rMnge of processes for develc~m t and use of greph•,.

In order to have a basis on which to ite the criputat-ni rvquirwnts
of arry paticular graph rvpresetation and manipulatim.r a!oritl-ra, we !-•w- a

list of operations which might oe -mbe available in a ix-ua.e for -arto--a<chine

-x. rnzication in problw• irvoolvirg directed grephs. it is -ct 4!ineC as a

3 -S
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languge, nor is it extensive enough to be useful alone. However, it is intended

to cover most of the basic or primitive manipulations on which a more adequate

man-to-madhid comunication lanuage (for this logical form of relations) could

be based. It is presented here only to show the extensive involvement of a basic

"search" operation in other processes. Each entry in Table 3-1 is in the form of

an example of a desfxable statement.

The processes marked "X" have as a basic part the determination of the

relationship, if any, between two vertices. The test for the existence of a

relation is a necessary preliminary process or included process for displaying

paths in the graph which imply the relation, It is necessary in the entry and
deletion processes in order to be able to reject cormmas which with the graph,

deny the assumptions cor -erning the relationship being gmphed.* Because the test

for the existence of a relation is so pervasive in this sample of possible

primitive prresses, it appears to be a good representative for objective

judgements of the overall processing effort which might be required by a
particular graph representation. It should be pointed out that no one process

or combination of processes can accurately reflect what vill happen when a

system of algorithms is applied to a particular problem structure. We expect

that the effectiwr-ess of the alporithns will be stronrly dependent on probler

structure in some cases.

The test for a relationship between two vertices, which we call search

here-, may be perforred by. tec•niques which differ in several i portant ways.

The technique itsed for a cacparator here may be descrited generally as follows:

1) An origin of search is cŽisen at one of the vertices.

2) Ore arc is tvitr-sed fr•,. the origin .,ertex.

* The tfu'e deletior. pro*esses are included because, althc.h correction and
change of the graph a-v necessary, swr kinds of chare wuld reire a
great deal of proess irn and w should be avoided wherv possible. 7hese
m-ocess§s will be defined formrlly in a later rvpcrt -*wn a ncxv cicrlete
.arw•U. i presented.
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TABLE 3-1

LIST OF OPERATIONS

Relation Declarstion

"precedes" = Trnsitiv. Anticamnutative Relation

Information Insertion

A precedes B X

Information Deletion

Deny A precedes B X
EKpipge A precedes B X
Eliminate A precedes B

Queries

Does A precede B? x
Does A imnediately precede B?
Could A precede B? X
What is the "precedes" relation for A, B? X

What are the immpdiate precedents of A?

What does A immrediately precede?

What is one set of relations which relate A and B? X
What are all the relations between A and B? X

What is the maximup number of relations separatir* A am- B? X
What events related A and B? X

-- 7
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3) Each applicable "termination condition" is tested for. Sane
teirt.nation conditions include:

a) Destination vertex found.
b) N% more arcs to traverse frcm that vertex.
c) Vertex reached has been reached in this search before.

(There are other termination conditions for graphs having path number stratification;
the technique is somewhat elaborated for search after decomposition.)

4) If no termination condition is detencted, the vertex reached is
used as an origin and the process is repeated recursively. If the destination
vertex is found, no mome arcs are traversed; the result is reported. If some
other termination condition is found, another arc frum the present origin vertex
is travercad. (If there are no more, this becomes a termination condition for
the previous recursion.)

In order to evaluate search effort in machine-independent terms, the
total number of arcs traversed is used as a measure.

3.4 Path Numnber Stratification.

3.4.1 Concept.

The purpose of this section is to describe the concept of path
nunber stratification of a directed graph and to show how it can be used to
reduce search effort. In order to describe the process we introduce the
following notation:

A graph G (V, A) consists of a set of vertices V and a set of arcs A.
The vertices are identiiied v, v2, .... %IVi..VN) where N is the total number of
vertices. (We consider only finite N.) The arcs are identified as aii, where

ai jcorresponds to an ordered pair of vertices vi, v.] in which v, pre,'edes v.
and vi, v. c V; then v. is called the precedent vertex and v. is called the1 1
subsequent vertex. If a.. r A and if there is no P.. other than a.. in 0,
then vi is called an inmediate precedent for v,, and v. is called an imnediate

subsequent of v.. An i:nteger associated with a vertex v. is denotedi 1
S(i), F(i)...etc., according, to its function. A path Pxit is an ordered set
of adjacent arcs a E A, ai.. a k. .ast where x is an arbitrary index denoting
the xth path accordirw to same ad hoc definition. If P.. is in G, then v. is
called a preci,dent of v., and v is called, a subsequent of vi; we write v. < vi

3-8J
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V. > v.. Arcs a.,l and aki are adjacent in the order aij, alin if 5 = k. ny
convention, there is never more than one aij for a given i, 5. The anticomutivitv

property is the property that the graph contains no paths rFi. The transitivit-,

property means that the graph G associated with relation R represents all rela• Hn,

statements of the form v. R v. for which P.. c G (rather than just those for

which a.. C A).1)

Every directed graph of a set of transitive, articcm-utative

relations has one or more vertices which have no precedent!., and/or no susequen ,

Considering for I'- moment only the set VP of vertices having rn precedentz,

several properties of the graph can be demonstrated imnediately:

1) There are no paths P.i such that v,, v, C V p.

2) For every vertex v. i Vp there is at least one P. having
v.i Vp.

3) All paths in the graph aie finite.

We may associate an integer S(i), called the "path number" or

"Stratum number" with each vertex v. according to the following rules:1

1) For vi E Vp, S(i) : 0

2) For vi V p, identify all paths Pý.. such that V. C V rf
11 P.

these identify one containing the largest nunber of arcs; let this number of
arcs be B (pX..). Then Si : B (px.)

3) Let V = (all v. having SQ) = s). V is called the sth
5 1 s

stratum of G.

Figure 3-2 shhows a ,raph which has been rarked with path ruriýers.

The followirW properties of a stratified tranAitive anticcrrutative

ilrarh can be demonstrated:

1) All verticts are assigned to strata.

2) Path numbers used arv consecutive.

3) The path runberm arm not charped by addition or •e~etior- ,

redun-•ant arcs.

3-9
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4) Any path P' .. consists entirely of arcs which relate vertices1]
Vk having S(i) < S(k) < S(j).

5) If SMi) > S(j) there is no path Pij"

3.4.2 Searvh in Stratified Graphs.

*e are now in a position to compare search in stratified graphs with
search in unstratified graphs, using basis graphs in both instances. Consider

first the unstratified graphs, and the cases in which the relationship sought is

not found in the graph. In order to complete the search from the chosen origin
vertex, every arc which lies on any path which includes that vertex must be

traversed at least once, since the only path to the destination vertex might

include that arc. The search is performed in two parts, one in the precedent
direction and one in the subsequent direction. The final termination condition

is in the absence of any more arcs to traverse in the sequent (precedent or
subsequent) direction. For graphs in which most pairs of vertices are related,

this represents a search of nearly the entire graph, a tedious process for large
graphs. Cor.sidering searches on relationship which are represented in the graý-i.,
such extensive searches will occur part of the time simply because the first arcs

traversed lead out of the neighborhood of the destination vertex. An extreme
case is illustrated in Fig. 3-3, in which a search for the relationship between

v1 and v2 traverses the arcs in the order shown, searching frrm v1 first in the

precedent direction and then in the subseque '- direction. On the eleven-h arc
traversed (out of only 16 in the graph) the relation is discovered.

Consider search for a relation between v. and v. in stratified )raphs.
At the beginning of the search, the path nurbers SQi), S(i) are determirned. Tf

7M -- S(9), no further examination is necessary, since there cannot be a path

Pi;" If S(i) < S(j) then, if v. is arbitrarily chosen as the origin, search can
be confined to the subsequents of vi, since there can be mo path P... Upon

traversing an arc amk, if k 0 j the condition S(k) _> () can be ised as a

termination condition on the particular .*cursion of the search process currently

in p•grrrss. For exanple, perforrinp the smne search cited above in the

equivalent stratified graph shown in Fig. 3-2, the are a1 5 would be traversed

3-Il
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first, resulting in a termination condition S(5) = S(2) = 4. Then arc a1 2

would be traversed, completing the search on the second arc.

In general, the path iinmber limitation on search confines the region

in which search will be continued to the strata between the terminals of the

search.

For searches to confirm or deny a specific relationship, the path

numbers can be used to deny some relationships without specific examiration of

the graph. If all possible searches for specific relations are equally likely,

then somewhat more than half of the searches can be satisfied in this way; for

every pair of vertices vi, v . in which S(i) 9 S(jl, either search for P.i or

search for P.. will be rejected and the other accepted, and if S(i) = S(j)

hoth will be rejected.

The effects of this search limitation techniques are subj, -t to

measurerent by Monte Carlo experiments, as discussed in the section on experimental

results.

Updating of the path numbers associated with each vertex must be

performed each time information is added to the graph. A simple recursive

procedure can operate on the graph to perforrn this updating, beginning with

the precedent vertex of the newly-added arc. The procedure i.s similar to the

search procedure described above, except that 1) there is no terrination

condition corresponding to finding the destination vertex, ?) a termination

condition for "no change in path number required" is added, 3) charges in vertex

path nutrbers are made as the updating proceeds. The update procedure thus deals

with only the portion of the graph requirirW, updating rather than the entire

graph.

The effort of path number urDatinr for large graphs can be sis7nificant

or. those occasions in which the longest path in the graph is being extended. There

are at least two techniques which will iLmit the updtite effort at scre expense

in terms of i.-creased search time (because scre specific te-minaticn conditions

on certain searches are eliminated.) The first is to let the ;.Ith nurbers Ne

ielative to certain fixed strata in the graph rather than relative onlv to the

tratur, of vertices wit -)out ',recedents. If ten fixed strata are intr- 'iced
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into a graph with 1000 arcs on the longest path, then the worst case path number

update deals with only about 100 vertices instead of 1000, a 90% saving. Whether

there is an overall saving in any useful case in unknown.

A second approach consists in making the early entries to a graph

with strata numbered in multiples of sume constant Y, rather than consecutively.

The later accessions can be made with a reduced value Y2 (for example, Y2 = Y1),

thus tending to fill up the empty strata between the origiral strata and

reducing propagation of path niznber change sharply. The value of this tactic

is likewise u .

In usage situations in which the proportion of effort spent on entry

of infornation is very small, the increase in search effort would exceed the

saving in updating effort. Both of these variations destroy the property of

consecutivity of path numbers, a property which is useful in impleaenting some

of the functions in the graph language operations above.

3.4.3 Generalization of the Stratification Concept.

The ccr~ept of path number stratification may be generalized as

follows. Any set of vertices Va may be chosen as a basis for stratification,

provided that 1) there are no paths P.. or P..i for any vi, v, c Va and 2) for

all vk V there is a pathPik i' All membes of V are
k a - PkiP vi. (V.a' leie~s ar

associated with a symbol Sa i) chosen frcm an ordered set of symbols R h ving

the property that the order relation between any pair of symbols r., r, C R

can be deternined in same •Pnse "by irnspection", i.e., without refererce to the

graph. Then any other set of vertices Vb, may be chosen provided that 1) there

are no paths P.i. or P.. for vi, v c Vb and 2) there are no paths of a

particular order (either P.. or P..) for v. c Va, v c V,.. and 3) for each
1] 11 E

v. Vb the,,e is a, least one path of the admitted order (P.. or P..) for s(ci-e

v. c V . The vertices of V are associated with a symbol 'C (i frtv R hAvinw
S a b

an order relation to S Mi) consistent with the order relation -f the pAths in

G between menbers of V and membemr of Vb. Another set of vertices V maya c
now be chosen under the same restrictions, with the restriction on consistency

of order relations applying to each of all sets previously chosen (Va and Vb )

and the choice of S ci) likewise limited to consistency with the path directions

to previously chosen sets. Sets are chosen until all the vertices are associated.

with syrils S(i). "ve order of the symbols '(i) then provides the s-e
terminjation conditions or, search which were 2escribed above for Dath nutr±er

strat ificat i3n.
3-11.
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Two approaches to a more general stratification appear particularly

attractive. The first is to perform two stratifications instead of one, using

the set of vertices without subsequents as the besis for the second stratification;

otherwise applying the same algorithm, traversing arcs in the opposite direction.

This would provide an independent search temination condition which in some

ways would be maximally different fror. the precedent-based stratification. Path

numbers (taken with the same direction of increase) would be maximized rather
thn minimized subject to local irregularities. Of nurse, for vraphs which are

trees or which are constrained to having all paths between any pair of vertices

be of equal length, a second set of path nurbers would do absolutely no ood.

A hand Monte Carlo test of the nunber of arcs traversed in 20 searches, randomrly,

selected in a basis graph of 50 vertices and 95 arcs and a fullness ratio of

about .37, had the results tabulated in Table 3-2. These results indicate that,

at least for this neighborhood of fullness ratio and this method of information

selection (and thereby, degree of iregularity), tne secL.id stratification might

materially reduce search effort, altthugh the present result is certainly

inconclusive. It is interesting that the searches improved were mainly the

longer searches.

A second approach would involve maintaining (or periodically

identifying) the largest set of pairwise unrelated vertices, and using týtvt

set as a base for a stratification. The qualitative result wouid be tha*

many searches would terminate at that stratur, and that all searches on pairs

of vertices within that stratur, would be r-eAected without reference to the

graph.

3.4.4 Mdintenance of Stratified Craphs.

While the maintenance of the basis graph results in r-aior "avings

in storage, the processes bv which redundarcies are rmmved or prevented may

be maior users of computer time. ",he probler. is not in -reventin, +he entr-,, of

a redundant arc-, since this carn be done bv a simple search as part of the ent-ry-

process. It is rather in detecting, the instdnces in which entry of a new

- makes a previously-enteri-4- arm redundant.

There is no limit on the rfoteness (counting alon, pAths or

strata) of an arc v which may be made redlundant bv ertrv of an arc v...

-here is no simple inference fr.r the path n~r.' upxiatir•, behavior of ar

S... ... • : _ 3- 1;A. = . .
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TABLE 3-2

A MONTE CARLO TEST IN IEIy SEARCHES

Average Arcs 'Traversed Arcs Traversed
Difference in Using Precedent- Using Both
Rank on Underlying based Path Precedent-
Total Order of Ninbers Only and Subsequent-

Count the 50 Vertices based Path
Numbers

Searches Affected 5 17.8 64 36
by Second
Stratification

Searches Unaffected 15 12.6 53 53
by Secondi
Stratification

Sum 117 T3

I reducti.on: 24%

3-16
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entry concerning redundancies caused. There is no limit (other than total number

of vertices) to the number of vertices whose incident arcs might be made redundant

by entry of a given arc.

Because of the difficulty of devising algorithms for eliminating

redundancies from a graph without exhaustive search for them, the problem ir

currently receiving a great deal of attention. Results to date indicate that
the decanposition process described in a section below can help significantly

in detecting redundancies, and that a few redundancies may be quite tolerable.

If a small residue of redundancies can be tolerated, then there are fairly

efficient processes for sweeping them out of the graph frcm time to time, and

same simple additions to the search process could detect many redundancies

as a byproduct of other manipulations. Furthernore, for graphs whose arc

accession processes resemble randam equiprobable arc generation, the region

in which redundancies are probable is a small easily checked neighborhood,

so that a rapid non-exhaustive checking process could eliminate most redundancies
caused by entry of arcs.

3.5 Decanposition.

A significant portion of the research described by this report was

concerned with the formulation and investigation of the decanposition principle.

Deconposition will take on a new sense ;n this report in that it describes

a technique for the representation of large graphs in the memory of a computer.
It is essentially a technique for deriving successively less ccmplex versions
of a partiuclar graph from that graph, doing so in a way which makes the less
ccnplex versions useful as "shortcuts" in the search process. The expected

effect on search effort is to make the effort required for any given search

proportional to the logarithm of the separation bettean them, so that in large
graphs, searches over long paths requirie relatively little effort.

The primary gain to be derived from this representation is a
significant increase in search efficiency. It appears that it will be

particularly useful for a graph which'is searched frequently in response
to queries concerning its content. The increase in search efficiency is
bought at a cost of increased storage for the representation and the computations
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required to establish and maintain a decoposed graph. The balance between

these advantageous and detrimental factors will ul,-imately determire the value
of the technique.

3.5.1 Description.

3.5.1.1 Notation.

We continue the notation of the section on path number stratification
with the follwing additions: The graph which represents the set of relations

is denoted G0 (V, A). It is assured to be free of redundancies or, in other

words, to be a basis graph.

ITh Go graph may be drawn as in Fig. 3-4. Here the vertikts
without z edents arm at the left of the figure, vertices without subsequents

are at the right. Every vertex is placed such thAt all ics precedents are to

its left and all its subsequents are to its right. In this section all graphs

are drawn with this convention.

Usually the Go gra-h will be considered as a yr.amic, growing

graph. At any particular time it represents the current krowledge about a

particular enviroment, all of the present statements invclving sare specific

rvlation, as, for example, all known statements of the form "a is a suNAssem-hly
of b". As time passes new info!,uation is learned a-out the envirornent and

this is added to the graph in the forr of new arms. The dynamic natu•e o5 the"

g-aph complicates the problems of dealinj with it and will be co.-sidere. i'

this section as it affects the decamposition principle.

To put the reader at ease with regurd zo t".e very sir~le crncet
oil deccmposition an ex.•inple is presented before a 're rigo-ous explArAtion is

prvided. Consider the chAin "raph of Fig. 3-sa.

1 2 3 4 5 6 7 9 9ii 13

rKGt-• 3 - 5a - C -ATN .
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This graph is divided into four parts for decomposition as in Fig. 3-5b by cuts.

The cuts are the dotted lines in Fig. 3-5b.

91 2 3

1 2 3 4 5 6 8 8 9 16 11 12 1

FIGURE 3-5b - CHAIN GRAPH DIVIDED BY CUMS.

Vertices vi, v4. v7' v10 anm v13 fall on these cuts and are called cut vertices.

The set of cut vertices is called V1 . These vertices are used to forn another

graph, GI. There is an arc in G1 between vertices Vci and Vcj if there is a

path between Vci and v c in G. which does not include any other cut vertices.

Thus, the G1 graph for Fig. 3-Sb appears in Fig. 3-5c.

0- >40 >- >0-- ->0

1 4 7 10 13

FIGURE 3-Sc - IM G

G is called the first decomposition layer of GO. Its existence

can be very useful to a procedu;7e which determines if there is a path between

two arbitrary vertices, Say one asks whether v2 is precedent to v12. Of course

for this simple example the answer is obvious but a systematic procedure must

be provided to answer' the question for a more caoplicated graph.

One technique of discovering the rw.lation might be to trace a path

forward from v2 in G0 and trace a path backward fr'c v12 in G until the two paths
meet. 1his technique WOul require ten arcs to be traversed in GO in order to

affect a meeting.

Using decomposition ,)ne can trace forvard in Go fryn V2 to cut I
and trace backward frun Vl2 to cut 3. The paths could then be traced in C1
forward from v4 to v7 and backward friim vl0 to v7 . At v7 a meetirj has been
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found between the forward and backward paths. Thus, one can say that v2 is

indeed precedent to v1 2 . The important point here is that only 6 arcs were

traversed to discover the relationship. If search time were proportional to

the number of arcs searched, as it is assuzned to be, the search time in the deccrp,';-ei

gmath for this example is 0.6 that of the non-decamposed graph.

This is the savings of decomposition. Its costs are the extra

storage required for G1 and the calculations which are required to maintain the

decomposition a graph grtowing with new information.

If the grapa were large enough one could deccmpose the graph G1

to a second layer with graph G2 . Decamposition might be applied a number of

times on a very lar', e graph.

3.5.1.2 O'ts.

For the chain graph of the last section a cut consists of a single

vertex. Wien the vertex and the tw arcs incident to it ar re•oved from the

graph two components of the graph are fomed one consisting of the vertices

precedent to the cut Per-tex and the other consisting of the vertices subsequent

to it. For more corplicated graphs a similar phenomenon will occur but

generally a cut will consist of more than one vertex, and a more rigorous

definition is required.

Before this can be done two definitions are necessary. The
precedIent cut is the set of vertices which have no pre-edents. Thus for

Fig. 3-4, v,, v3' v,, and v. are sai(, to be on the precedent cut. The
precedent cut is called C . Similarly, the subsequent cut is the set ofp
vertices which have nc. ,absequents. For Fig. 3-4, v1,1 v8 , vi 8 , v1 9 and v2O
are, on the subsequent cýt. The subsequent cut is called C

s

Now any cut car, be defined as a set C of vertices which fulfill

four conditions:

I) hhen the vertices in the set C and all the arcs ir'ident

to the. are rff-oved frcr the graph tNo sets of vertices are_ delineatted X and

which hive no arc' eLtween they.. Thus if v c X and v c W there is rc arrX w
(V , v ) after the re-,oval of the vertices i.n $and theii incident arcs.

X. W



Report ?b. 77-106-1 6/20/66

2) All members of the precedent cut will be members of X and
the members of the 3ubsequent cut will be members of W. Thus, if v x c Cp then

vx L X and if vw c CS then vw c W.

3) The members of C are not related. Thus, if va c C and vb C C

then va 4 vb and vb 4 va.

4) All the vertices in X are precedent to one or more members of
C but are subsequent to no members of C. All the vertices in W are subsequent
to one or more members of the cut but precedent to none.

Cuts using only the vertices of the graph will usually not
sufficient for deconposition. The properties which define a cut are rathei

restrictive and most graphs will have fine sets of vertices which can fulfill
them. In fact for Fig. 3-4 there is no sct of vertices which can be a cut. To

broaden the range of possible cuts, a new type of vertex is intwoduced called
a virtual vertex. This name is to contrast with the vertices in the set V which

will henceforth be called the real vertices of the graph.

A virtual vertex is placed on an arc between twto real vertices as

in Fig. 3-6. The addition of the vertex divides the arc into two arcs, one

which enters the virtual vertex; one which leaves it. Thus, it has one immediate

precedent and one immediate subsequent. The virtual vertex is identified by

naming these v'-rtices in the subscript of the vertex notation. Thus, the

vertex inserted in the figure is called Va-b.

va vb
Before 0--

I I
real virtual real

After 0

UIURL 3-6 - V !'.UAI., VERThX.

Virtual vw tices 3me only "_troduced to form. a cut. hence they

only appear in the sez C, never in set-, X or W. A cut including both real and
virtual vertices appears in Fig. 3-7 indicated by a line through these vertices.
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There are a nunber of disadvantages to including virtual cut vertices

in a graph. Frcm a search efficiency standpoint virtual cut vertices are

undesirable, and they add materially to the menory space required for the
Go graph and the decomposition layers. They are, however, unavoidable for

our purpose.

3.5.1.3 The Use of Cuts.

Generally, G0 will be a very large graph with many vertices and

many arcs. Schematically such a graph might be represented by a rectangle as in

Fig. 3-8 with the vertices aM arcs not shown.

- Direction of all arcs

S0

FI'IME 3-8 - SCHDIATIC REPRESENATION OF G GRAPH.

The direction of all the arcs will be assuned to be to the right as

was suggested in Sect. 1. A cut will be used to divide this graph into subgranhs

called G0 subgraphs. The cuts will be indicated by vertical lines crossing, the

G schematic as in Fig. 3-9. Cut vertices lie on these lines; since they are not

related there are no arcs between vertices on the same cut.

0 subgraph%.. - /

FIGURE 3-9 - Cý7T- :'N C CPAM.

No cuts border each subgreph. That which lies to the left of

the subgraph ir called the precedent cut of the subriph and, t,•it which lies

to the right, the subsequent cut. Vertices on the precedent cut can b.e only

pr'ecedent to vertices in the subVrapb and those on the subsequent cuit car,

only be subsequent to the vertices in the subgreph.

3 -;
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Note for a large graph there are a number of cuts in Go and hence
a number of subgraphs. When there is more than one cut, the requirement is
made that all cuts must be disjoint, i.e., a vertex can be in not more than one
cut in any layer. Cut ver' ices in GO, both real and virtual, will form the set
of vertices V1 for a graph G1, Paths which exist between vertices on different
cuts in G0 are shown as arcs in G1 . This graph could also be represented in
schematic form as a rectangle as in Fig. 3-10.

- Direction of arcs

FIGURE 3-10 - THE SCHIMATIC REPRESFNTATION OF G

Generally, G1 will have far fewer vertices than Ca because, except
for the virtual vertices, the cut vertices will only be a subset, usually a
rather wnall subset, of the vertices in V. G1 will also have fewer arcs than
C0 for every arc in G1 represents one or more paths in G0 consisting usually
of a ntrber of arcs. G1 will also be assmned to be nonredandant. A consequence

of this is that each arc in C1 represents a path in CO which is incident to
only two cut vertices and these form the initial and terminal vertices of Lhe

path.

Search will be considerably aided by the existence of the decorrposed
graph (l" As an illustration consider the prcbler. of searching for a rrlation

between v. and vt in 71. Then vertices are show-, in the scheratic of 9 in
Fiv. 3-11a. The search operations are shown in Fig. 3-1b'L-d 3-1ic.

-' --- 7b i L

FIr't0RL 3-11a - VM717CC E ' .

Search ri~ght p.rcced! •.orward. frrr v. to the leubnert cut of
the sur-aph in w•hich v, resides. Concur-ontlv )ne ould searr7. bickar',s frr
vt to the precedent cut of its sub'graph.
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/Z ~ IG 0 PVG
FIGURE 3-11b - SEARCH IN Go.

Search could then enter the G1 graph and quickly find the desired
relation. _

FIGURE 3-1ic - SEARCH IN GI.

Search is quickened because each arc traversed in G1 would require

the traversing of a nunber of arcs in GI.

If G1 forms a large graph, it too could be decomposed by the same

technique into a graph G2 . It appears desirable that a cut in G1 consist of

the same vertices as a cut in G . Since the removal of any cut disconnects

the vertices precedent to the members of the cut fram the vertices subsequent

to them, a cut in G0 also fulfills the requirenents for a cut in G1 ; no new cut

vertices are necessary.

The schematic of the Go graph with its cuts, the G1 graph with its
cuts and the G2 graph appear in Fig. 3-12. The various graphs are called

decomposition layers, G1 is the first layer, G2 the second, etc. A search in a

decomposed graph to two layers is indicated in Fig. 3-12. Note that the search

takes place in at most two subgraphs of any layer.

j•LjSearch inG

Search in

_ _ _ _ _ _ _Search in G2

FIGURE 3-12 - SEARCH IN 7W DECOMPOSITION LAYERS.
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The deoanposition process can be applied to any layer, forming a

G3 , G4 and so on. This is the basis for calling it recursive, since G2 is the

deconposition of the decomposition of G0 , etc.

3.5.2 Tradeoffs of Decomposition.

The concept of decomposition seems to prcnise considerable gain in

the efficiency of search in a large graph. The gains are not without cost,

however, and one must not neglect the tradeoffs which arise between search

efficiency, extra storage required, and the bookkeeping calculations needed

to maintain the decomposition for a growing graph.

3.5.2.1 Storage Required.

The canputer storage required for a decomposed graph includes

that needed for: 1) the Go graph, 2) the virtual cut vertices which must be

introduced, 3) the graphs of the decanposed layers introduced, 4) the identification

of the membership of the cuts, and probobly other less important factors which

will be encountered during, the coding of algorithms dealing with decomposed

graphs. Because no computation experience is available for decomposed graphs,

a discussion of quantities of storage required must be qualitative and somewhat

speculative.

The G0 graph appears to require the greatest bulk of storage.

Of course, the greater part of this is required whether or not deccmposition

is usec; hence, it is not a factor in judging the value of the scheme.

One aspect of the Go graph is changed with the incorporation of

decomposition and that is the addition of virtual cut v- tices. The presence

of these vertices is undesirable from several points of view as will be later

pointed out, so their number will be minimized. Most cuts of the Go graph will,

however, include virtual cut vertices and they will cause an increase in the

storage space required for GO. The magnitude of the increase is dependent on

the form of the Go graph and a good estimate will only be obtained with

experimental experience.

Qualitatively, for decomposition to be a valuable technique for

graph representation, the total nunber of cut vertices of Go, both real and
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virtual, must be a small fraction of the total number of vertices in Go* Both

storage required and expected search time in the usual case are monotonically

increasing functions of the number of vertices in a graph (graphs being considered

comparable, for instance, if they have the same fullness ratio). The vertices

of G0 form the set of vertices for GI. Thus, if the number of cut vertices in
GO approaches the total nunber of vertices in G before the cuts were made, the

size of G1 approaches that of the original GO. A search in G1 will now require

almost the same time as a search between the same two vertices in the original

G,, obviating the advantage of introducing the decomposition. Only the

disadvantages remain.

Thus, for decomposition to be of value, the total number of cut
vertices must be a small fraction of the number of vertices in the original

Go graph. Hence, if this condition holds, the number of virtual cut vertices

must be an even smaller fraction and they will not add considerably to the

storage required for GO.

The preceding paragraphs touched on the storage problem for the

first decaoposition layer GI. Since the storage required for a graph is roughly

proportional to the number of its vertices and since in the practical case this

number of G1 must be a swall fraction of that of GO, the storage required for
G1 must be about the same fraction of the storage required for Go. Say the

IVIl = IVOI. When the G1 graph is large enough it too will be decomposed into the

second de~cmposition layer G2 . This is a similar process to the first decomposition;

hence, one might expect IV2 1 = IVII = IV0 I. If G0 were very large; hence,
decomposed a large number of n -2 times the total number of vertices

n
required for all decomposition layers would approach an upper limit IVt1 as

the number of deccmposition layers approach infinity.

IVVti = IVol+lvl+lv21+1

" IVo(. + _ + 1_ +n 2

n
" IVol
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There will always be a finite number of decomposition layers so,

IvtI IvOl.

If n = 11, which seems a reasonable goal for which tc strive, the

total storage required for all decomposed layers would be less than 1.1 times the

storage required for the G0 graph. Thus, in all practical cases the extra

storage space required for decomposition will be small.

3.5.2.2 The Maintenance of Decomposition.

If a graph were fixed and no changes were to take place, the cuts

could be placed and the graph decomposed in an optimum manner, and there would be

nothing further to do. But this study is dealing with the growing graph, constantly

receiving new information about the environment which it is representing. This

new information is given in terms of new arcs between vertices already in the

graph and perhaps new vertices. Here the view is taken,. for simplicity, that

the vertices in the graph are fixed and only new arcs are added. (In fact, the

introduction of new vertices into an existing list-structured graph representation

poses no difficult new problems.) The new arcs create a variety of problems to

a decomposed graph requiring constant maintenance so that the graph continues to

fulfill the requirements of decomposition.

A new arc air added to a decomposed graph will fall into one or

more of these five classifications:

1) The ar is redundant.

2) Both terminal vertices of the arc lie within the same Go
subgraph and are not cut vertices.

3) One or both of the terminal vertices are cut vertIces.

4) The terminal vertices fall into different G0 subgraphs with

Svi. < vt before the arc was added.

5) The terminal vertices fall into different Go subgraphs with
vt < vi before the arc was added.

Class. 1 - Here it is asstmed that if ai is redundant it is not

included in the graph; hence, no maintenance is required for this class.

Class. 2 - This class also requires no maintenance as no cuts

are met or crossed by the new arc.
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Class. 3 - This class may require some adjustments. To illustrate

the situation consider the graph in Fig. 3-13.

a

"ut vertices

b

-___ _ •Virtual
cut vertex

d

e --------;--r

f •a.

FIGURE 3-13 - THE VARIOUS WAYS AN ARC CAN BE ADDED SUCH THAT ONE
OR BOTH OF ITS TERMINAL VERTICES ARE CUT VERTICES.

Figures 3-13b to 3-13f show four ways which an arc. ai might be

added to this graph. For Fig. 3-13b and 3-13c, none of the restrictions concerning
cuts are violated by the addition of the arc. The arcs added in Fig. 3-13d and
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3-13e do cause one of the rules concerning real cut vertices to be violated

r\equiring the modification noted to the right. Specifically, rule 4 of Sect.

* 3.5.1.2, above, is violated. The example of Fig. 3-13f violates rule 3 of

Sect. 3.5.1.2.

If v. and vt are both real cut vertices but of different but

adjacent cuts and v < v. before the addition of ai, two virtual cut vertices

would be added to correct the violation.

Class. 4 - This class and the necessary maintenance are illustrated

in Fig. 3-14. In general, this type of addition will require the addition of a

single virtual cut vertex for each cut crossed by the new arc.

New virtual cut vertices

FIGURE 3-14 - THE MAINTEWANCE REOUIRED WHEN A NEW ARC
CROSSES A CUT.

Class. 5 - The addition of an arc falling into class 5 requires

perhaps the most extensive maintenance. An arc in this class causes one or

more vertices to violate rule 4 of Sect. 3.5.1.2. The modification indicated

is to place vt and all vertices subsequent to vt and pr-ecedent to the subsequent

cut of the G0 subgraph of vi into this subgraph. Fig. 3-15 illustrates this
01

complicated maintenance rule.

It appears extemely difficult to implement this rule especially

Sif the new arc passes over more than one cut in G0 . Evidence in the initial

experiments has indicated that the occurrence of arcs traversing several. cuts

in the manner of Fig. 3-15 will be infrequent.

In a growing graph, when one uses decomposition, he must be

prepared to expend computing time to maintain the graph, time which would not

have been necessary had decomposition not been used. This then could be a

significant factor in judging the value of the technique.
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3.5.2.3 Adding New Cuts.

In a growing graph the application of the decamposition technique

is a dynamic process. Because arcs are constantly being added, if one started

with an optimum placement of cuts, the optimality is soon lost without moving

the old cuts and adding new cuts.

Constant upkeep to maintain optimality does not appear przactical,

as the optimization schemes presently envisioned are not trivial. One would

not like to appiy them after the addition of each arc.

An alternate, perhaps more practical approach, is to maintain all

cuts once they are placed and only add new ones as the graph grows to a sufficient

size. This imDlies a campromisinf, of an optimal search decamposition for the

sake of computational simplicity.

Section 3.5.3 will review further techniques and problems of

forming cuts, but for the purposes of this section, it suffices to point out

that the addition of new cuts is a computation introduced by the incorporation

of decampositiY' and, hence, is a determinant of its value.

This section has considered several factors which are generally

detriments to the value of the decomposition technique. They must be weighed

against the advantages to search efficiency prmnised by this techiiique. A

number of factors will affect the balance particular to the application to

which the technique is to be applied. The investigators, however, feel that

for many applications the advantages of decomposition will far outweigh its

detrimental effects. Subsequent experimentation will test this opinion.

3.5.3 The Optimum Placement and Timing of Cuts.

3.5.3.1 The Optimum Placement of Cuts ir, a Fixed Graph.

In this section it is assumed that the oamplete graph G0 exists

and one would like to locate the cuts in C0 to forni the first layer with graph
GI. In like manner cuts are placed in GI to form tht second layer with

graph G2 , and recursively through higher layers of decrmposition to form

graphs G3, G4 ...#G .... The criterion to be optimized by the cut placement

is the expected search time in the decomposed graph.
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To investigate the nature of this problem it is interesting to

consider a simplified graph in the form of a chain. The vertices in the GO

graph are specified by their longest path numbers S(i) which for a chain is

simply a sequential numbering of the vertices.

0 1 2 3 4 5
0_0_-0---D - ---- O -----0

FIGURE 3-16 - CHAIN GRAPH.

The distance between two vertices va and vb is defined as

IS(a) - S(b)I. This is not the same as the search path length, for the search

will take place in several layers. The search path length will be the total

number of arcs traversed in the search. Some of these arcs will be in GO)

some in Gl, and so forth.

Deaomposition of each of the layers will be acccuplished according

to the same rule. Thus, if there are five arcs between cuts in G. there will be

five arcs between cuts in G1 . This is reasonable, for all the graphs of the

decomposition are of the same nature and an optimal criterion for placing a

cut in G0 will also be optimal in the other graphs. Call X the number of arcs

betwe,- adjacent cuts on any level.

The search algorithm between two vertices VA and VB (VA <VB)

is affected in the same way as described in Section 3.5.1.3. Search wiill

proceed forward frcm VA and in reverse fram V . Every time a cut is reached

the search is raised to a higher level, until the extremes of the search in

the forward and reverse direction are on the same level and between the same

two adjacent cuts, or at a point where there is cnly sne cut between them.

Here a meeting between the se.rches will be affected if possible.
Of course the searchpath length between VA and VB will depend

on the lccation of the two vertices In the Go graph. Considering the forward

search path fram VA the n'mnber of arcs traversed from VA to a cut in G0 will

be assumed randcmly distributed with all possible search path lengths fran

0 to X-1 equally likely. The mean numiber of arcs traversed in the forward
X-1

search in G0 will be -- A similar mean will be true for the search fram
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VB in the reverse direction, thus, the mean number of arcs traversed in G0 during

the search will be X-1. In like manner the number of arcs traversed in each of

the higher layers less than layer J will be X-1. In layer J the forward anid

reverse searches meet. The nunber of arcs traversed in layer J may range frorm

1 to 2X. To ease the algebra the mean nunber of arcs searched in, level J will

also be assumed to be X--l.

For each change of layers we must pass from one graph to another.

We assume that this requires a like effort to that of traversing an arc. Adding

this factor, the effective mean number of arcs traversed in every layer is

X + 1, again adjusting layer 5 by a constant for simplicity.

The distance of the shortest search which uses layer J is called

Y0 (H).

Y0 (H) :"• (1)

logXY0  H (2)

Except in the improbable case in which a search of distance Y0(H) actually uses

layer H, all searches of this distance will use layers up through layer H-i.

Thus, for searches over distance Y01 ((logX Y10) - 1) is a good estimation for

the number of the highest layer used (including layer 0) and so log, Y0 is a

good estimation for the number of layers used.

We may assume on this suggestive basis that for searches of

distance Y,

T = log, Y (3)

is the average number of layers used over all possible searches of length Y.

From previous consideration, the total average search pi-.h lengths

for searches of length Y is therefore

F = (X + 1) T ( 4

Which may be rewritten

log Y eX (5)
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We see frnm this formulation that, for any cut spacing at all, the

search effort turns out to be proportional to the logarithm of the separation

between the vertices being examined rather than to the separation itself, an

extrenely significant saving for large graphs. Minimizing F analytically (in

continuous variables) as a function of X only, we find that

1) The minimizing X is not a function of Y. In other words, a

chain graph optimized for searches of any particular lergth is optimized for

all search lengths.
X~l

2) The optimun X is the solution of log X = +-- or about
eFX = 3.6 arcs between cuts. (In actuality, X must be an integer.)

A curve of F vs. X for an arbitary Y is shown in Fig. 3-17.

We see that for the deccmposed chain graph the optimum cut spacing does not

depenc strongly on cut spacing, so that, for example, a five-fold "i:rzcrease in

spacing (frm 4 to 20) only appiroximately doubles search effort. This suggests

that a significant tradeoff between maintenance effort and search effort is

possible and so is probably available in the more realistic cases as well.

For the chain graph of Fig. 3-17, a search over a path having a length of

3,000 arcs in Go requires traversal of an average of about 29 arcs in :n

optiized graph and about 56 arcs in a graph with X = 20 ares between cuts;

these searches utilize 5.75 layers and 2.66 layers on the avera.e respectively.

The results further suggest t-t btelow saune limit the decomposition

technique is not particularly helpful and should not be applied at all.

These results indicate that cuts should be surprisingly close

together fran the point of few path nLzber differences. Most graphs,

however, suffer frrn the fact that t;hey are not chains and although the above

result "ield irsights into the cut ,lacement problen Lney cannot be practically

applied. One factor which looms large in the effectiveness of cuts which

cannot be accounted for in a chain g'raph is that searcil efficiency increases

as the number of arcs in C1 decrease: fc. a given numnber of cuts it, C,. There

is usually a large variatiln in the nrtr'er of arcs introduced in C1 by a cut

of G0 depending on the set of vertices included in the cut. The same comment

holds for cuts made in higher layers of the graph.
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The problem of placing cuts in an optimal manner in a realistic

.graph is a difficult one. Research is currently almost completed for an

algorithm which places a cut in G0 between two existing cuts to minimize

expected search time. The set of feasible cuts obeying the restrictions of

Section 3.5.1.2 is too large for hand calculations for all but the simplest

graphs but well within the power of a caoputer. The algorithm generates each

of these feasible solutions and compares their effects on the expected search

time. The feasible solution which yields the lowest expected search time is

judged the optimum and used for the cut. A detailed description of this
algorithm will appear in a future report.

3.5.3.2 The Dynamic Nature of the Problem.

In many cases the graph will not be fixed as suggested in the

last section, but growing with arcs being added from time to time. This adds

several new dimensions to the problem of placing cuts. The essence of the

problem is that a particular arranement of cuts which is optimum at one time

will probably, after the addition of a few arcs, no longer be optimum. New

arcs can affect the decomposed graph'in the ways already described in

Section 3.5.2.2. Sometimes these effects are marked. How to maintain the

ontimality of cut placement in the face of a growing graph is a problem which

has not been solved.

The procedure currently envisioned is to keep all cuts once

they are placed and to add new cuts as they are required between existing ones.

This criterion for determining when new cuts are to be added is also at this

.time not presently available.

3.5.4 Experimentation by Simulation.

3.5.4.1 The Problem of Algorithm Evaluation.

To measure the value of the decompositior, technique one must

be able to measure search time, storage required, and the canputational time
required to establish and maintain the decomposed graph. Two main factors
hinder these measurements. First, the time and storage required to implenent

these various aspects are very dependent on the algorithns used for the

implementation. Section 3.3 indicated that there are several techniques for

searching the deconposed graph. In like manner, there will be a nurbor of

ways to create and maintain cuts.
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With sane effort machine-independent factors, such as the

number of arcs in a decomposed graph, can be separated from factors which

depend on the particular experimental conditions. It is these machine-

independent factors which are of greatest interest because they are meaningful

in projections to other systems of programs and hardware.

A second factor in the value judgement is the dependency of the

time and storage parameters on the particular graph which is the subject of the

measurements. It appears that slight changes in the form of a graph can grcat.Ly

change the efficiency of a particular algorithm applied to it. One can get

around this problem by considering a universe of graphs and finding the expected

values of the important parameters. The problem here is to define the universe

of graphs of interest.

Applyi;-g classical mathematical techniques to the determination

of the important expected values is generally fraught with difficulties. The

p.roblem here is the vast number of variables that one must specify to

characterize a large graph. Perhaps one can sufficiently restrict the type

of graph to be considered to provide mathematically tractable problems to no!

But the results thus obtained leave one with doubts concerning their generality.

3.5.4.2 Simulation.

For this reason the primary means used for the evaluation of the

decomposition principle and algorithms for dealing with it will be computer

simulation. Programs have been developed which can generate graphs for study.

Given a set of vertices, arcs arm drawn sequentially and randomly from a set of

feasible arcs. The size of graphs thus geeneited is presently limited by the

.- size of the core memory of the computer. Our present experimental programs

can generate graphs of about 400 vertices and 800 retained arcs.

The algorithms under study will be applied to the graphs thus

generated. Facilities will be provided to count such important parameters

such as path number occupancy, time for search and storage used. Of course, as

other parameters become of interest these too will be calculated.
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A nunber of pxaphs will be thus probabilistically generated ard

the algorithms applied to each. In this man"ner, frequency curves of the parameters

will be plotted. Frum these one can measure the effectiveness of the various
algorithm and ultimately the value of the decmnposition principle.

3.5.5 Se.-,rch Algoritms.

There are several interesting algorithm for searching a decomposed

grmph. The one which we plan to use for evaluation is described first below,
and then others are considered in comparison.

3.5.5.1 Dual Recursive Alternating Search Algorithmn.

Consider two separate search progras ..pratin, on a decomposed
stratified graph in a list structured msory. For onvenience, we will call one

of th Jekyll and the otier Hyde. Each of tese !.s identified to the search

routine described for stratified undec--psed grapis in an earlier section with

certain exceptions:

1) Jekyll searches in the subsequent direction and Hyde searches
in the precedent direction.

2) Each is able to detect verties which have been reached by tO

other. This is a condition of the raerinr of two p;wts of paths searched out
separately, and so it is a detection o! a relatinn between the terminal vertices

of the search. It is a "tmination oond1tion" in addition to the others

available, having the same qualitative effort as .- adhing the destination vertex

in a search fran an origin vertex,.

3) Each is able to detect cut vertices. WheAn a cut vertex is

reached, if it is not a vertex reached by tfse other pmgram, the progar rmzes

to the next higrw- iayer at that cut vertex and marks a list associated -with trR

entire set of vertices of that cut with a symbol indicatlin that it has reache-
that cut. If th.e other rourtine nas reAchd that mut then the cut is marked as

a 'cut of reetin-" and neither routine se&res teynnd that cut. Detection c
"cut of zeetirg" beome anotter termina•tig condition on both rcutines. Je3-;.

then calls Hyde; Hyde would call Jekyll.
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The result in operation is t~at Jekyll searches recursively forward

ir, G0 until it reaches a cut; then Iyde searches recursively backward in C0 . If

they do not meet or exhaust possibilities, Jekyll searches forward ;n G, and then

Pyde searches backward in Cl, etc. The process is repeated until a relation i-

found or until possibilities of reaching the cut of meetirn'g are exhausted.

As the reader may have guessed, Jekyll and Hyde a.m' quite nir.ilar,

and it is possible to plawent thm both by a single rt=curive routine with two

entrances, a few patteters controlling the differences and a few separate lists

for irternil storage of the respective progra=. It Is an unusual recursive

routine in that !t effectively must campute its own name in order to enter the

proper version of itself at each recursion or termi:-ation.

3.5.5.2 Other 1bssibLlities.

Any other routine for search must allow for the fact that when a

search proceeds into a higher layer, there is no a priori way of decidirv when

It should l*ave that layer for a lower one. ror this reason all of the other

alternatives here also search fr both ends toward the middle. One way is to

find all of the lmnediate subsequents of the origin mrtex 3Dd put them on a

list, and simiLarly fcr the destination vertex. The lists car then be coffeared

and if no meeting in detected the promss car, be repeated for all of those

vertices, apAin comparIg lists and contivuzM (chaing layers at appropriate)

until a coqmrison of the striata reached indicates that all the paths from oririn

and d-stination have missed each other. Another temiintlon condition is

provided in that - search need not be continued beyond the strmtum which

c.atains the rost remote active vertex for continuation frumu the other

direction. By some controls in the algorithm,, the difference between the

active stratrun runbers can be minimized and the terination likelihood thub

enhanced.

Alternatively, all paths in G0 could be searched out to find 411

of the points of continuation on each side in G1, and then the prtcess applied

to C1 to the GC continuation, and so forth until meeting or until e- comm

cut is reached from both search directions.
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Either of these processes traverses all of the arcs in tvhe

required layers up to the cut of meeting which could possibly be on paths

".-elating the two vertices. This seems to be a major clewback over the dual

recursive approach since, in the latter, frum each direction only one path is
found at first, and others are found only il the first paths do not meet.

Even then, other meetings are attempted in the highest layers before recourse

is made to lower layers, The result would anpear to be that in cases in which

a relation was actually found the dual algorithm would tend to traverse far

fewer arcs than the alternative routines, whereas for searches which did .not

detect a relation 4ll of them. would traverse about the sare number of arcs.
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l. DCPRIMENAL REJUS.

The purpose of thie section is to report the results of Monte Carlo

experiments which have been performed using, sane of the techniques describesd

in previous sections, and to present the experimental method in ernoch detail

zo that the results can be inter-. 1 ted. The experiments completed to date are

not conclusive (in the sense that they allow reliaL'e estimates of any of the

statistics which characterize random grapth or particular ways to represent

and manipulate then) but they are suggestive enough so that it was felt the
report would be incomplete withmt som. mention of them. The experiment!- deal

only with graphs which have not been deccxosed.

4.1 Graph Generation.

The mode of graph genmration has an important bearinR on the storape

and search properties of the resulting graph and on the effects of any stratere,-.

for, fprwing the properties. The mode chosen for experiment was intended to

reflect the expectation that the graphs would be used for information storave,

that there was an underlying finite, static "ultimate" graph vt.,se structure

was being revealed by stages, and that the accession of information was

uncontrolled, or rather, controlled by circumstances other than the internal

conditions of the graph. Thus, it was intended to reflect a class of problem-
modeling situations and to be relevant to the storage and search neods involvei

in the use of computers in dealih'l, with poorly structured problems.

The underlying structure selected was a total order of the vertices;

an equivalent assumption states that Information ray be received for storage

ir. the graph relatib any two verticee whatever. 'he discipline of accession

of arics was such that all arcs consitent with the underlying structure were

equally likely for accession at all times, irxkopendnt of the graph content.

The generation and search processes were prvgrazied in LAP (List Asserbly

Program) language for the GE 225 or 235 omnputers. Each graph was first

represented os an anpty graph of N vertices and no arcs, each vertex havir-
a list structure as exemplified in Table 4-1. For bookkeepirn purposes, two

auxiliary vertices were added to each empty graph, one precedent to all ve.t ices

and the other itbsequent to all vertices, so that the resulting empty prarph

14-1



Report No. 77-106-1 6/20/66

TABLE 4-1

VERTEX LIST STRUCIRE

SAddress Link Symbol

Inter•al vertex name a Nipe of list of precedents

a b Name of li3t of subsequents

b c Stratum numiber

c (As approp iate for a terminator of a list)

Name of list of precedents d Name of rirecedent
d e Name of precedent

e f (as many as required, ze-ro or more)

f (As appro iate for a terminator of a list)

Nare of list of subsequents g Name of subsequent

g h (as many as required, zero or r, re)

(As appro iate for a teminator of a list)

Note: An .npty list consists of one cell which is a tenm' itor.
Each line above represents one cell.
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included 2N auxiliary arcs. This proved to be a significant simplification for

programming, since contingencies of no precedent and no subsequent of a given

(natural) vertex did not need to be provided for; as we shall see, the storage

requirement is negligible. As information is added to such a graph, many of

these arcs become redundant and so may be eliminated without altering the conditior

that every natural vertex of the graph has a precedent and a subsequent.

A residue-class pseudo--rand-n number generator was written for the

225 and was used to select arcs for entry into the graph. Equal intervals

of the rene of randcmn numrbers were assigned to each vertex. Pairs of randeim

numbers were selected, and a corresponding arc was selected for entry provided

that the two numrbers were not in thc inter'al for one vertex. The direction of

inequality of the numibers was used to select the precedence relationi of the arc,

so that all arcs were consistent with an underlying total order of the vertices.*

We define a parameter J, tN! number of Acs selected for entry up to any partic-,...

point in the graph growth.

Path number stratification was maintained continuously by a recursive

routine which has already been described.

4.2 Storage Characteristics.

The characteristics of interest in describing the storage requirenents

of graphs include the following, all as functions of the number of vertices and

the number of arcs selected for entry.

1) The probability distribution of the number of arcs in the basis

;rraph.

2) The probability distribution of the fullness ratio of the graph.

S.Same hand-generated randr graphs were constructed using tVI, order of
appearance of the two -verices to control the precedence Valation of each
arc; an arc was rejected if it was inconsistent with the curry-nt state of
the graph, transitivity and anticcmmitativity. Such graphs tend to dsstLr~e

r s•tructure very close to a total order of urm vertices very quickly in
comparison to the graphs having a predetermined total order. This tvpe of
graph was not used in computer experiments because it seened to be less
representative of a prmblem-modeliing discipline for ;ccession of information,
and because it was felt that techniques which would be effective for the t,pe
of graph which was used woiuld be effective for this type as well.
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3) The probability distribution of the maximun number of arcs in the
basis -,raph.

4) The probability distribution of the number of entries which
maximizes the numnber of arcs in the basis graph.

The data available to date are not adequate to support awy meaningful
stateamnts about the forms, means or variances of these distributions. However,
some specific cases can be presented.

Consider first the charac' ristic pattern of growth of a basis graph
due to accession of ranconly selected ,,rcs. There are two limits which affec,
the relationship between the number of basis graph arcs A (G8) and the selectier

count J. First, the basis graph can grow only as fast as the selection count;
it tends to do so up to about J = N. Second, the final basis graph, representing
a total order, has N-1 arcs, so the size of the basis graph must tend toward

N-1 arcs, Figure 4-1 shows sane cases of graph growth for various N. It
indicates several tendencies wiP.:- we expect to see supported by .ror* extensive
experiments. First, a tendency for the basis graph to reach maximum size around
J/N = 3; seLond, a size lilrdt of about 2N arcs; third, a taendency for the size

limit to increase slowly with increasing N. At the point at which the underlying
probability distribution of ATWT vs. J has a maximum, the qualitative effect
is that on the average each selected arc w1ich adds new information to the graph

also rmkes one arc redundant, so that the basis graph size does not increase,

and thereby average storage does not increase.

Reducing these indications to an estirnite on possible use of 24K

of core, each vertex has associated with it 1P cells allocated as follows:

ote cell for stratum number, two cells for reference to lists of precedents

and subsequents, four cells (average) for reference to actual precedents and

subsequents and three cells for the necessary list terminators. An estirmted

three cells pe,. vertex of workirn storage for mark.in, for fluctuation in total

arc storage and for twmpormay lists durirng graph manipulation seems realistic-.
Thus, a graph of ,ip to about 1,850 vertices (without decnposition) could be

stored and used.
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Allowing one additional cell per vertex for naming the dominating

cut., and about 10% of the space for all of the decompositions of G0 , a
deconposed graph might have up to 1,550 vertices in 24K words of cam. All

of the above assumes one list cell per word of memory, which is certainly

feasible on the longer wordiength m&chines.

As described above, it is a decided prvgrmnirn convenience to let

every vertex of the graph being represented have at least one precedcnt and

one subsequent. For this purpose, two auxiliary vertices are created and

set precedent and subsequent to all N vertices durirn the creation of the

empty graph, at J 0 0, Arcs from these vertices rapidly become redundant

(considering the structure of the N + 2 vertex graph) as the graph grows,
and so may be eliminated. Figures 4-2 and u-3 show a specific example of

gri uth of an experimental graph in which both the basis graph and total

storage were tabulated. Figure 4-2 shows spec.fically how the basis arcs

tended to replace auxiliary arcs so that the overall storage requirement

was nearly constant and was decreasing toward the total-orTier limit at the

end of the Experiment. Figure 4-3 shc'ws the growth of the corres-onding

fully 2xplicit graph and the significant saving in required storage. 'ince

the number of arcs in the basis graph approaches N-1 while the corresponding

number in th2 fully explicit graph approacheýs N (M-I), the storage advantage

of representing only the basis graph (taken as the limit of A (Mj)/A M)

increases linearly witL N. The figure is based on estimates of the fullness

ratio using the number of basis graph arcs retained, as described in the

section or estimating fullness ratios. The list structures canparl we r

similar, but storage for path number stratification was not included in the

fully explicit graph. This accounts for the difference in sizes of the

two erpty graphs at J = 0.

The experiments to date have not produced any reliable predictor

for fullness ratio as e function of J. .several probabailistic models of

graph grm-th have been constructed by the usual procedure of makinr uniustified
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(and hopefully, unimportant) assumption- -f independece; none has proved to

be realistic. The use of better estivatcrs cf T(G) in current experiments
may lead to a useful predictor.

4.3 Search Characteristics.

The algorithm for search in a fully explicit graph is comparable

to the recursive algorithm with t'e added termination condition: "Always

terminate instead of any recursive continuation." This is effective because

any vertex which is related to a given vertex is connected to it by some

sirgle arc in the fully explicit graph. The effort of a search to cordfirm

or deny a given randomly selected relation ii the graph may be estimated

as follows. For a rarsiomly selected ver.ex, the number of sequents in a

chosen direction is

F(C) (N-1) (.5) (Y)

funberof oth7? Ifor the choice of one of"
vertices the two sequent directions factor

where Y = 1 for searches which fail to -ind a rlation and Y = .5 for searches

which find a relation. We may use this formula to estimate the search ef ort
for any graph with known fullness ratio.

Nbne of the experimeits to date has included collection -)f corparable

statistics on a fixed graph for the recursive se'rci• process used. Hcjver,

some statistics are available for inte-vals of graph building. Two are
tabulated a exasples in Table 4-2; fullness ratios used for each interval

wire the meaw of the estimated ratios at the interval limits. The case

chosen is an unfavorable one for the stratified basis grephs, sinc,2I it does

not 'take advantage of the fact that over half of all the possible randcnly

selecteod seiarcs will be answered on the basis of stratun nurbers alo?1@,

nor that, for searches for any relation, the fully axplicit graph must te

searched in two directions. In spite of these unfavorable factors the

experimental searches took comparable or I "-ss effort than the estimated

searchts in the fuly explict •,reph.

The indication that the search effort has not been materi t lly

ireased is emaxxagig. It wrtn.ins to verify the results over a

significant reane of graph sizes and fullness retios.
4-F
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TABLE 4-2

DU~qqM;

Fuly___ci Gr Stratified Basis Gp

Mean Estimated ?Nuber of Nuaier of Averas.e
Fullress Ratio N Effort in C E Experimental Arcs Actual

Searches •'raversed Effort

Successful
Searches .436 20 2.07 S 11 2

.479 20 2.27 3 7 2.3:1

.52 50 6.j7 121 300 2.5

Unsuccessful
Starr'hes .436 20 4.14 19 55 2.9

.479 20 4.55 16 61 -1.84

.52 50 12.7 277 1619 6
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One of the factors which effects the search process si nificantly
is the lernth of the paths of search. The lcarest path invclved in a given
search determines the raximum depth of recursion, although it does not determine

the number of times the routine wxA recurse. A measure of path length is

afforded by the maximum path lergth in the graph, which, of otazse, is easily
determined frmv the stratum runbers. Nigures 4-4 and 4-5 show scme exaples
of the changes in path length and path nuiber occupancy re.specthiely.

Similarly, the occupancy levels of the various strata affect the nurters of

paths which take on various lengths.

4.4 De _ :ination of the Fullness Ratio of a Gr,.

The purpose of this section is to present sevw:ral techniques for
determniir the fullness ratio of a graph. To review, the fullness ratio of
a graph G having N vertices is defined to be

A (Gt)F(G) = 2 ,T•-MT) I

the ratio between the number of arcs in the fully explicit graph r!, which

corresponds to that graph ard the nL-),*r of possible ercs N (11-1)/2. It is

the proportion of all of the relations represented by a total orderin;, of

N vertices which is represented in the given graph. It may be oeterrined

in several ways, including:

I) direct determination,

2) inrepenert estimat e,

3) various '"Iyprvduct" eitiiates.

Direct determination of the fullness ratio would tb an exhaustive

p•rcess .•c•v,-by every pair of vertices in the graph wul!! be tested for

relation and the calcula'ior. -.&e. 't inolves som proess eqivalent

to co()nTcting the fully explicit v9rapi &-y countirv, its a-.s. For larr•

jrmep the process invclve, a Frvat c.Al of cczsputazion- for ?r.phi .

most of a list-or.anized core romory, rwem-ry ray be excer-_d.

A possible c•tirating prrm huz is the foilwi rw:

1) A runber of paizr W of t'N different vertices are selected

rwanaty.

4-.IC
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2) Graph G is examined to determine the number of pairs X which

are related in it.

3) Compute F*(G)= X

The estimating procedure is -ustified as a direct sampling in the

set of all possible arcs. For every pair Wi there is one relation which,

although it may be unknown, is either represented in G or not, and its

representation is Oetermined frcm G. The quantity is binmiinally distributed

with

mean F = F(G), and with

variance F(G) (I-F(G))

The process o: ;enerating a random graph produces several

opportunities fat- estimatinrg the fullness ratio at various stages of completion.

Two of these types of estirates are described belbw. In the first, some small
fraction of the total nurnber of arcs which were generated for entry, as for
example the last 10%, may be taken in place of set W in the previous procedure.

The propcrtion rejected as being redutndant is taken to be the estimator of the
fullness ratio. An assumption behind this procedure is that the fullness
ratio did not change significantly during the entry interval selected, whereas,

ir, fact, there, is no assurance that this is the case.

A second possibility is to consider the set of all arcs selected
for entry, and tc use the proportion of that set which is not included in the
resulting basis graph as an estimator of the fullness ratio, on the ground
that it represents the redundant fraction of a randomly selected set of arcs.
This estimator is surely subject to strong dependence on the graph produced.

It is likely to have a very high variance as well; it can be sho n that t.

estimator will consistently be above the mean fullness ratio (for' a given
number of selections) whenever the actual ratio for the particular graph 1i
below the mean and vice versa. The preliminary results given below for M*(G)
are based on these two byproduct estimation methods, since neither exhaustive

determination nor an independent estirnting, procedure were included in the

tests used.

,-13
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A third 'byproduct" estimating procedure is rapid and appears to
be relatively accurate for F(G) > 0.25: If the longest path contains M arcs,

and if we assume that every vertex. is on some one longest pat.', then each
vertex is related to M others and there are MN arcs represented in the graph.

Then

MN 2F*(G) -" i =r ' (-)"ER

Since this estimator apparently tends to give a slight over estimate, the
estimator

is preferable because it is simpler and apparently samewhat more accurate.

For statistically meaningful tests the independent estimate appears
to be the most attractive in terrs of effort and validity.

In addition, a lower bound on the fullness ratio can be determined
from a graph's strutification, siiice the M arcs on the longest path form a
subgraph whose fully explicit graph consists of

FB(O) =MTM 1 1)

arcs. Since these acs are surely represented, A(G) is a lower bound on
V'iG),

4.5 A Heuristic in DiscoveriN Problen Structure.

During the exper3ments we- noticed that there were apparently nc
instances in which a random graph developed two independent ccmponents
(subsets of ve~ticee- iiot cc.ineeýed by ary 4m.) which were both of significant
size (more than about 3 vertices) and which together included most of the graph.
The overwhelming tenrdency is for. one major component to be formed, and for that
cczponmnt to take up unconnected vertices and c•nponents consisting of one
or two ero.s without any major, second rynponent ever bei.g formed. The formation
of this one component which cove" r-eaxiy all of the graph ccurs after only
a small emotuit of information has been ,ntered, well under N arcs in all the
cases studied.

4-14
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The probability distribution of the number of camponents of graphs
constructed by the selection technique used in our experiments has been

previously published.* This reference contains an approximating formula

for the expected number of components which have j vertices for a graph with
N vertices after N selections of random equiprobable arcs have been made.

It is:

E (S : 2 j-1 .j-3 e-2j.

In the course of deriving the approximating function it is shown that for the
smallest graphs, only the one large component and the isolated vertices

contribute significantly to the mean number of components, that for somewhat
larger graphs only these and the isolated pairs are significant, that for
yet somewhat larger graphs the isolated triples become significant, etc.

The muliple-large-canponent case never contributes significantly.

On the basis of the above, we may pose the following heuristic:
Whenever a growing set of relations develops into a graph with two rrajor
components, the arriving relations are not equiprobable and there is sane
underlying structural difference between the two sets of vertices and some kind
of restriction on the arrival of relations between the two sets. Certainly
under sane conditions this is generalizable to more than two sets.

This is a particularly interesting heuristic because it imparts
information about underlying structure on the basis of a very small amount of
information canpared to the inforriation necessary to define the underlying
structure.

* See reference 3. The paper contains expressions for the exact distribution
and other approximating functions as well. It would be interesting and
relevant to extend these results to develop statistical decision procedures
on hypotheses concerning underlying structures and arc entry probabilities
based on the ccmponent configurations of the result'ing graphs.

4-15
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5. CONCWSIONS AND PROSPECM.

The stud/ reported here ha- developed an approach to representation of
directed graphs which appears to provide significant economies of computer

processing effort and storage space over previously documented techniques

for large graphs. In the directed graphs studied, each arc represents a
relationship between the two information entities at its terminals; the
relationship can be any transitive, anticaiumutative relationship such as
"is g)r.eater than" or 'bust precede". The key features of the representation
scheme are stratification of a graph based on the lengths of paths in the
graDh, a recursiviF, decomposition technique which produces successively less
canplex representations of a graph, and a recursive search technique which
utilizes the stratification and decanposition. Preparations and preliminary
results of tests of the statistical properties of the representation based
on such graphs with randcmly chosen arcs are encouraging but not yet
definitive.

The representation pproach is intended to be useful in a computer-use
context in which there is an on-line conversational process dealig with
problem definition as well as problem solution. The user is gien the
capability to define relations between information entities and to accumulate
instances of these relations in, individual data bases available to him and
to the processes he uses. These data bases provide among other things, a
repository of qualitative information which can be used as a basis for
decisions in a jointly-developed problem model.* The relational data bases
are, in a sense, a complement to the attribute-value descriptive capabilities
of list processing languages.

SThe representation may also have sane value independent of man-computer
ptocesses. For example, large job-shop precedence requirements, time
precedence graphs for partly-parallel ccmputations, dependence relations
between subroutines under an executive system, partly defined priority
structures and relations between natural-language semantic cetegories
might be usefully represented using these methods without manual
intervention.

5-1
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In such a context the user could declare relations just as variables

are presently declared to be real, Boolean, string, etc., in algorithmic
languages, and su' < -s issigned for use in communication concerning information
entities which may be so related. His processing facilities would allow him
to call for and insert information in his data base in terms of the relations
he declares. He could also write logical expressions whose values depend on

stored relationships just as he can now write logical expressions in algoiithiiic
languages whose values depend on stored numbers and their equalities and
inequalities.

What set of relations should be provided? A simple, easy-to-learn set
which is complete enough so that one may use it for anything. We have

attempted to enumerate the logically different relations which could be defined
using only three symbols (the minimum required for defining such important
properties es transitivity). The enumeration was not completed but it was
carried far enough to show that the nunber of relations which could be so
defined is probably at least several hundred, taking into account both
acceptability of combinations of relations and inferences from combinations
concerning other ielations on the same symbols. It is unreasonable to provide
se,4eral hundred mathematical forms foi man-machine cormnunication because
massive confusion on the part of the men would result.

One guide to the forms of the most useful relations is the set of

relations which are represented Ly simple relational phrases or sentences

in natural langu~jes. We may examine English, for example, and find

relational plhrases such as "exceeds", "is a parent of", "equals", "is near",
each of which has a different underlying logical form of allowable crndtinations

and valid inferences. Tt sews particularly important to provide forms which

correspond to the frequently used relational phrases. Among these would be

the transitive, antif-tmiutative relations (the subject of this report) such

as "precedes", "is more important than", "is a subset of", etc., the

transitive comutative relations such as '"ecuals", "is with", the non-transitive,
non-commuiatiVe relations suca as "differs from" and other relations used to
describe a l~near field (such as positions of a set of objects in three-
dimensional space.) An examination of the logical fom's of re_-,tions which
have been discovered by natural lanruage analysis rw.y disclose other

frequently used forms.

i iC.r -
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Such a basis is unsatisfying in that it do, nct provide any assurance
of ccmpleteness for problem modeling purposes. A satisfactory compromise

would be to discover a basic set from natural language analysis and then to

augment these with a minimun set of additional relations such that every

enumerable relation on three symbols could be defined as saoe use of at

most two of the basic relations. The size of such a minimumn set is unknorwm
hopefully it is small. At any rate, the forms of some of the relations which

must be providea are obvious.

As a long range prospect, those relations which prove particularly useful
can be implemented in hardware as particular kinds of associative memory,
with the associational property and internal inference taking the logical

form of the corresponding relation in each case.

The specific effects of representing directed graphs as discussed in

this report should be documented in a convenient form for prediction and
ccmparison in future experimentation by others. For this purpose the computer

porgrams used for the present preliminary results will be extended to provide

more extensive statistical information on stratified graphs and to allow
decomposition, including experiments on when and where to cut during the
deccmposition process,, The programs -re also to be modified to produce

specific information on the effort required by the decomposition process

and subsequent maintenance during graph growth.

It would be possible to extend the experiments to graphs having an

underlying form other than total order, or having unequally probable accession
of different arcs. The variety of such possible extensions is endless and

their utility is questionable at best. Furthermore, many of the possibilities

can be estimated as compositions of the kind of graph already studied.

Therefore, we have no plans to consider other underlying, structures or

generation probability disciplines foi. transitive, anticcmnutative relations.

in summary, the results to date appear to be a useful step toward a
goal of making available methods of easy man-computer communication concernirn
relations between information entities. After completinp, study of the effects
of stratification and decanposition, another relation will be selected for

5-3
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