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ABSTRACT 

In practical applications of linear pro^raronin?, not only the optimal 

solution but also solutions ivhich have a somewhat lower value of the objec¬ 

tive function are of interest. It is therefore desirable to generate all 

extreme-point solutions satisfying the constraints and giving a value of 

the objective function which differs by at most a given amount from the 

value for the optimal solution. Two methods are considered for generating 

these extreme points. The first method is called t’^e reverse Simplex 

method, since it reverses the Simplex method for linear programming, the 

second is basic on the Tarry method for traversing a network such that all 

nodes are visited. The two methods are explained in detail, applied to 

an example and compared with each ether. 

(1) 



1. INTRODUCTION 

Linear programming can be used for the solution of a great variety of 

problems. The solution found by linear programming is a unique one, or, 

if not, there are only a fev; extreme-point solutions. However, the opti¬ 

mal solution or solutions are not the only ones of interest, since the 

decision maker will usually also be interested in near-optimal solutions. 

This is so, because in many cases it will be impossible to specify exactly 

the constraints of the problem; furthermore, the objective function does 

not always reflect precisely the preferences of the decision maker. 

The linear programming formulation of a production planning problem 

can be said to give the most important objectives and constraints of the 

problem; other factors may and frequently do remain outside the formula¬ 

tion, either because it is too difficult to incorporate them or because 

the decision maker is only vaguely aware of them. The only way to deal 

with these factors is to face the decision maker with alternative deci¬ 

sions and to leave it to him to select the alternative he prefers. The 

difficulty then is that the number of all conceivable alternatives is so 

large that the decision maker cannot evaluate them. 

This suggests the following approach. First the optimal solution for 

tiie linear nrogranming formulation is determined. Any additional binding 

constraints imposed on the solution will always lower the objective func¬ 

tion and so will any other objectives which the decision maker has in mind 

besides the main objective of maximizing profits. However, these factors 

will only be able to decrease the objective function of the linear pro¬ 

gramming problem by a limited amount. The optimal solution for the 

(2) 
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decision makor is therefore one which satis ''Les the constraints of the 

linear programming problem and which has a value of the objective function 

differing only by a limited amount from the optimal solution of the pro- 

granning problem. The decision maker may therefore find his optimal 

solution by considering all solutions which satisfy these renuirements. 

There vá 11 of course be an infinity of these solutions, but it suffices to 

give only the extreme-point solutions. 

The extreme-point solution can be determined by linear programming 

using a method in which the amount by which the value of the objective 

may differ from that of the ontimal value in the programming formulation 

is varied from 0 to an amount the decision maker does not want to lose in 

any case. This method can be said to use the Simnlex method in the 

reverse direction and is therefore called the reverse Simplex method. 

In the next section this approach will be presented and applied to 

a simple example. 

A different approach, based on the theory of graphs which follows 

from a proposal of Chames anc Cooper for a problem of a similar kind, 

is given in Section 3. Both methods are explained in detail, applied to 

a small example and compared with each other. 
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2. GENERATION OF NEAR-OPTI IAL SOLUTIONS BY THE SIMPLEX 'ETHOP 

2.1. Formulation of the Probien 

The linear programming problem can be formulated as follows. Maxi¬ 

mize 

(2.1) f(x) ■ p'x 

subject to 

(2.2) Ax * b , 

(2.3) X ■ 0. 

A is an m X n matrix, p and x are n-element column vectors and b is column 

vector of m elements. Let the value of the objective function for the 

optimal solution^ x^ be f°. It is assumed that the optimal solution is 

unique. The difference of f^ and the value of the objective function for 

some solution is called the loss of that solution; any feasible solution 

which is not optimal has a positive loss. 

Suppose that the maximum loss allowed is k. This means that only 

solutions are considered which satisfy, in addition to (2.2) and (2.3), 

the inequality 

(2.4) f(x) - p'xi f° - k. 

The problem is now to generate all extreme-point solutions satisfying (2.2^ 

(2.3) and (2.4). For k * 0, we find, of course, the optimal solution x°. 

For increasing values of k an increasing number of extreme-point solutions 

must be found; for some finite value of k the extreme-point solutions of 

(2.2), (2.3) and (2.4) are in any case the same as those of (2.2) and (2.3) 

if these are finite. In practical problems the value of k will be relative 

ly small, so that the number of extreme-point solutions of (2.2) - (2.4) 

will not be too large. 

2 
Throughout this paper, any superindex is to be interpreted as such 

and not as an exponent. 
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To find all these extrene-point solutions, two methods may be used. 

The first of these methods is what is called here the reverse Simplex 

method and will be treated in the following subsections; the second method 

which is based on graph theory is presented in the next section. 

2.2. The Reverse Simplex Method 

The idea on which the reverse Simplex method is based is quite simple. 

In the ordinary Simplex method variables are introduced into the basis 

which increase the value of the objective function until the optimal solu¬ 

tion is found. In the reverse Simplex method the ontimal solution is 

taken as a starting point for the generation of the extreme-point solution 

of (2.2) - (2.4). In this and in subsequent solutions variables are intro¬ 

duced into the basis which decrease the value of the objective function; 

the maximal loss k sets a lower bound to this decrease. 

The main difference between the ordinary Simplex method and the 

reverse Simplex method is that in the ordinary Simplex method only one 

variable is introduced into the basis; in the reverse Simplex method all 

variables which decrease the objective function are sooner or later intro¬ 

duced into the basis. Corresponding with the normal Simplex method is the 

effect of iterations on the objective function: in the normal Simplex 

method the objective function increases in each iteration, while in the 

reverse Simplex method it decreases with each iteration, provided there is 

no degeneracy. 

Let us consider an iteration in the ordinary Simplex method. Tableau 

I of Table 1 gives a representation of the relevant parts of a Simplex 

t il le .u. Xj is the variable entering the basis since Pj<0. xr leaves 

the basis since it is connected with 

(2.5) 
b. 

•'p I V o- rr- 
i ij ’ J rj 

i* 

.t 
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Tableau I is then transformed into Tableau II with a . as the pivot ele- 
rj 

ment of the transformation. In Tableau II we find that the value of the 

objective function has increased by -n^b^a^; furthermore, we find that 

the element in the column of xr and in the last row, -pj/a^, is positive. 

TOLE 1. SUCCESSIVE TABLEAUX FOB A SIMPLEX ITERATION 

-1---- 

Tableau Value Basic Variable x. x„ 
: • j r 
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i 

Let us now consider introducing xr again into the basis in Tableau 

II. Since "Pj/arj is positive, the objective function decreases while 

doing so. The variable to leave the basis is found by comparing the 

ratios 

(2.6) 

aljbr 
a. ïi 

for positive denominators; these ratios reduce to 

(2.7) b . Vri 
* • • 

b a « 
b , . . , b ♦ —?-JÍ 
r r "amj 

for negative aij > • * » miniTTTum ratio is obviously br, so that 

xr is the leaving basic variable. The resulting tableau which is obtained 

by using 1/a^ as a pivot, is then again Tableau I. Hence we have proved 

that for each iteration of the Simplex method there is an iteration 

reversing the Simplex iteration by introducing a nonbasic variable with 

a positive element in the last row into the basis and determining the 

leaving basic variable in the usual manner. 

V'e now consider the case in which tv is positive and x. is introduced 

into the basis: this means that the value of the objective function will 

decrease. The variable to leave the basis is determined as usual and 

turns out to be x * Tableau I is therefore transformed into Tableau II r 

with arj «as the pivot. The objective function lias decreased by 

and for the element of Tableau II in the last re and in the column, of 

x we find -p^/a-i> which is negative. 

The ordinary Simplex method may now be annlied to Tableau II by intro 

ing xr into the basis because -p-/ar. is negative. Comparing the ratios 

as in (2.6) and (2.7). we find that x^ leaves the basis and Tableau I is 
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obtained .Train. Vie have therefore Moved that to each iteration of what 

may be called the reverse Simplex methoo there corresponds an iteration 

of the ordinary Simplex method. 

The reverse Simplex method will now be described in more detail. 

This method uses Simplex Tableaux which are ouite the same as those of the 

ordinary Simplex method. Table 1 gives a representation of the Simplex 

tableau at iteration s, in which the tableau is rearranged in such a way 

that the columns of basic variables are arranged in a unit matrix. 

TABLE 2. REPPESENTATION OF SriPLFJC TABLEAU AT THE s-t>- ITERATION 

OF THE PEVT/'SE SIMPLEX '1ETII0D 

solution of the original problem in which the last element of the first 

column, the value of the objective function for the optimal solution f\ 

has been replaced by zero so that b1 • 0. This means that in this and th 

following tableaux the value of the objective function is measured as a 

deviation from f°, so that bs is equal to minus the loss of solution xs. 



For the solution of the starting tableau ve have bj > 0 for each i and 

Pj > 0 for each j . if we had not assured that the optimal solution is 

unique, the wea!; inequality sign would apply. Introduction of a nonbasic 

variable x. into the basis at a level 0 leads to a loss of pj0 which is 
•J J 

positive. The variable to leave the basis is determined, just as in the 

Simplex method as the one corresponding with 

(2.8) Min 
i 

ft,} ' i «’ —3- 
a . 

■ 1J 

aij > 0 > 
a 
rj 

where r is the index of tîie leaving basic variable. The loss corresponding 

with the new extreme-point solution, which is denoted as , is 

(2.9) 
hl 

1 r 
ij * ¡r • 

rj 

k,. 

kjj is determined for each j. Because the extreme-noints are ranked in 

order of increasing losses, the smallest is selected. Since the losses 

may not exceed the maximum loss allowed k, the loss of the second solution 

in determined as 

(2.10) kj • (ky, fc) ; 

we assume that this minimum is unique. 

The next tableau is then generated by introducing the corresponding 

nonbasic variable Xj into the basis, the leaving basic variable being deter 

mined by (2.8). The case k^ ■ k will be dealt with below. If in (2.8) fo. 

some j, aîj ■ 0 for all i, no corresponding extreme-point solution can be 

found in the usual manner, because in this case x^ can be increased indefi¬ 

nitely; the loss then also increases indefinitely. However, the maximal 

loss k provides a bound for the solution, so that this case is similar to 

the case k^ s k, and can be dealt within the same manner. 



(in) 

i/c have now found an extreme-noint solution with a loss of kj. All 

other extreme-point solutions we shall generate have higher losses. There 

are no other extreme-point feasible solutions with a loss between 0 and kp 

since if there was sudi a solution, the ontimal solution, which is our 

starting solution, could be generated from this solution in one or more 

steps of the ordinary Simplex method. If it could be generated in one 

step, then it should be possible to perform the corresponding iteration 

in the reverse direction, as shown before. If it could be generated in 

more steps, the last solution before the optimal one has an even smaller 

loss, from this solution the optimal solution could be generated in one 

step and it should then be possible to make the corresponding iteration 

in the reverse direction. 

Having found a second extreme-point solution, we are now looking for 

another one ranking next in order of loss. First, there are the other 

extreme-point solutions which can be reached from the first tableau. 

Secondly, there are the extreme-point solutions which can be reached from 

the second tableau. The latter solutions are determined by introducing int 

the basis the nonbasic variables x^ having >0; a solution obtained by 
? 

introducing x. with pT < 0 will have a smaller loss than k^ and must in 

this case be the optimal solution. It is not possible that an extreme- 

point solution with a loss between 0 and kj is reached, since x. v.’ith 

pT > 0 is introduced into the basis, the value of the objective function i; 

decreased, so that the loss must be greater than k^. V.’e therefc- : deter¬ 

mine in the second tableau for each j with Pj > 0, 

(2.11) 
0? „ Min ' bi 
3 1-2 ; a 

13 

aij>0i 
T 

7" 

arj 

3Again, only the strict inequalities are considered. 
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The increase in loss by introducing Xj into the basis is therefore 

K2 
2 

(2.12) 0. -y- s 

arj 

which means that the total loss of this solution, defined as k2j, is 

(2.13) 
b2 

k2j * ki+ "j rr* ■ 
rj 

The extreme-point solution ranking next in order of loss is then the one 

corresponding with 

(2.14) k2 * j (k^j, k2j I kjj > k^, p2j > 0); 

again the minimum is assumed to be unique. 

If the minimum corresponds with one of the k^j's, the next solution is 

generated from Tableau 1, if it corresponds with one of the k2j, it is 

generated from Tableau 2; for the case k¿ * k, see below. 

A general iteration, say iteration s, may now be described as follows. 

First, determine for each j with n® > 0. 

(2.15) 

and 

(2.16) 

Min 
1 

fbî 
a: 
il 

aij> 0 
r 

bs 
k . - k , ♦ r? 4 sj s-1 as 

rJ 

ivfter this, determine 

(2.17) kg = ¿'¡in (kjj, k2j, . . » kSj, k J kjj, . . , ks , j> ks_^. 

In case the minimum is not detemined by the maximum loss k, the next table. 

is generated from the one corresponding with the minimum. 

In the case kg * k, all other extreme-points which can be reached from 

the tableaux which have been generated so far have a loss exceeding the 
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maximum loss 1c. These extreme noints may be found by introducing nonbasic 

variables with positive n|, which have not yet been introduced in the tab¬ 

leaux generated so far; these variables take such values that the corres¬ 

ponding solutions have a loss of exactly k. This means that a nonbasic 

variable x. in Tableau n with pi? > 0 and k. > k is given a value 
3 3 J 

k - k - 
(2.13) x. *-^ ; 

J P • 
3 

the corresponding values of the basic variables in the tableau are then 

(2.19) Xj^ « bj - ajj Xj . 

In the tableaux these solutions can be obtained by adding to bjj * kn_^ 

the maximal loss k and pivoting on the pj's. 

The initial subtraction of f° and the present addition of k make it 

possible to interpret the last row, which was originally a transformation 

of the equation 

(2.20) 0 « - p'x ♦ f(x) 

as a transformation of 

(2.21) -f° + k - - p'x ♦ y. 

which is equivalent to (2.4) with y as slack variable. Pivoting on any 

Pj can now be interpreted as y leaving the basis. 

Because no further iterations take place it is not necessary to 

generate all elements of the Simplex tableaux of these solutions ; only 

the values of variables and possibly the elements of the last row are 

needed. 

Hence we may state more formally; If for some iterations s, ks * k, 

add in Tableau n for n - 1, . . , s, to fn the maximum loss k and generate 

for each Tableau n and each nonbasic variable j with pj > 0 and knj > k 

a new solution by pivoting on pj¡. 
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That all extreme-point solutions satisfying (2.2) - (2.4) are generated 

by this procedure can be proved as follows. From any extreme-point solution 

of (2.2) - (2.4) it is possible to reach the optimal solution in a finite 

number of steps by the Simplex method. The reverse Simplex method proceeds 

from the optimal solution in the reverse direction, investigating every 

extreme-point solution downwards; if there is a path going upwards, we are 

sure of tracing this when investigating every path going downwards. 

2.3. Example 

To illustrate the reverse Simplex method, a small example will he used. 

It involves a production planning problem with 4 products and 2 constraints. 

The objective function which is to be maximized is 

(2.22) f(x) » 3Xj + 4x2 ♦ 5Xj + 6x4 

and the constraints are 

(2.23) 

and 

(2.24) 

f x^ + x2 + x3 + x4 * 18, 

; 2Xj ♦ 3x4 = 6, 

xl> x2’ x3’ x4 * 0* 

4 
See C. van de Panne [3]. 
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TABLE 3. SrPLFX TOLEAUX FOR AM APPLICATION OF TUE REVERSE ’lETliOD TO AN 

EXA'IPLE 

S 
Tableau Basic 

j Var. 
1 

Val. 

Bas. Var. 

1 

Xj x2 x3 X4 x5 x6 f 

Init. Tabl. 
Orig. Prob. x5 

x6 

f 

18 

6 

0 

1 1 1 1 1 n 0 

0 0 2 3 0 1 0 

-3 -4 -5 -6 0 0 1 

1 

x2 

x4 

f 

16 

2 

7610 

1 11/30 1 -1/3 0 

0 0 2/3 1 0 1/3 0 

1 0 1/3 0 4 2/3 1 

Mj 16 - 1 - 64 4 20 

2 

x2 

x3 

f 

15 

m 
ù 

-1 

1 1 0 -1/2 1 -1/2 0 

0 0 1 1 1/2 0 1/2 0 

1 0 0 -1/2 4 1/2 1 

k2j 16 - - - 61 4 20 

3 

X2 

x6 

f 

18 

6 

-4 

1 ! ! 1 1 0 0 

O 0 2 3 o 1 0 ! 

1 0 -1 -2 4 0 1 

k3j 22 - - - 76 - 20 

4 

1 
1 

X1 

x4 

f 

16 

2 

-16 

1 11/3 0 1 -1/3 o 

0 0 ?/3 1 0 1/1 0 

0 -1 0 0 3 1 1 

i 

; k4i 
16 - 64 22 20 

i 
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TABLE 3. (Continu«!) 

T'ie ta',leau for an application of the normal Simplex method is 

tien the first tableau of Table 3. Tie tableau of the ontimal solution is 

reached after a few iterations and is «riven in Tableau 1; the corrcsnondin" 

value of the objective function is 76 and the maximum loss is assumed to be 

20. 

Starting the procedure we replace 76 in Tableau 1 by 0. Considering the 

introduction of x^ into the basis, we find 

ej = 16 

and 

lcu = 1 ' 16 * 16. 

n.e eventual pivot element aj. - 1 is underlined and the corresponding 

loss ku = 16 is entered in an additional row. For xy x5 and Xj v/e find in 

a similar manner 

*13 = !. k14 = 64, k16 = 4. 

Below f the value of k, 20 is given. The extreme"loint with the lowest loss 

is found by taking the smallest element of the row kj.; this 1, the element 

in the Xj-column, so that Xj enters the basis. Tableau 2 is then found by 
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pivoting on the element 2/3. For the value of the objective function f we 

find -1, which corresponds with h,,. 

In Tableau 2, the are to be determined* this is only done for the 

nonbasic variables with a nonnegative entry in the f-row so that is not 

considered. For Xp for instance, we find 

« 15 

and 

k21 * kl + ^1 01 * 1 + 1 ’ 15 * 16’ 

it is a coincidence that kp ■ k2p k2g and k2g are formed in the same way. 

Determining the minimum of the relevant k^ and k2j, we find 

k2 - k16 • 4. 

This minimum is not unique since also k2g * 4, but this causes no difficultie 

Tableau 3 is generated by introducing xfi in the basis of Tableau 1 and 

pivoting in the element 1/3. 

The Tableaux 4 and 5 are generated in the same way. In Tableau 5 the 

minimum of the relevant losses turns out to be the naxFun loss k ■ 20. The 

nonbasic variables with k^'s higher than 20 are then introduced in the basis 

The relevant solutions are found by adding in each tableau to the value of f 

the value of k which is 20. The solutions are then found by pivoting on the 

Pj. For instance, introducing x5 into the basis in Tableau 1 in such a way 

that the loss is 20, we have to pivot on the element 4. The relevant parts 

of the two successive tableaux are then ás follows: 

V.b.V. x5 

*2 16 1 

x4 2 0 

f 20 4 
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V.b.V. x5 

x2 11 0 

x4 2 0 

x5 5 1 

All extreme-point solutions which can be found in this manner are given in 

Table 4, No. 6-13. 

TABLE 4. LIST OF EXTRAIE-POINT NEAR-OPTIMAL SOLITIONI 

Solution No. Value 
Obj. F. 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

76 

75 

72 

60 

60 

56 

56 

56 

56 

56 

56 

56 

56 

16 

15 

16 

14 2/3 

17 1/3 

13 2/3 

17 

16 - 2 

15 3 

1C 

: 2 

3 

11 - 2 
10 1/4 3 

2 

14 

2 

2/3 

3 

1 

6 

5 

4 3/4 

4 

1 1/3 

1 1/3 

6 

6 

4 

4 

Note that the total number of extreme-point solutions, 13, is fairly high 

for a problem of such a small size. The maximum loss, 20, is relatively high, 

but even if it had been chosen much lower, say between 4 and 16, there would 

have been 9 extreme-point solutions. The decisionmaker's task of selecting 

the preferred solutions is therefore not likely to be a trivial one. 
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3. GENERATION OF NEAT’-OFTI’ W \ SOLUTIONS BY THE TARRY ’’lETHOD 

3.1. The Tarry Method 

An important difference between the ordinary Sirmlex method and the re¬ 

verse Simplex method ic that in the first method only the current tableau, or 

seme parts of it, are necessary to perform an iteration, while in the reverse 

method as it was presented here, any of the previous tableaux may have to be 

used. l.hen using computers for larger problems, the memory space required to 

store all previous tableaux or the corresponding inverses may soon exhaust the 

available space. 

An alternative for the reverse Simplex method is to store only the , 

^2j » • • » ^3j an'- t0 generate each tableau from that of the optimal solution 

when necessary. Any tableau problem can be generated from the optimal tableau 

in at most m steps, but usually less. 

In view of this, it is useful to consider an alternative method in which 

iterations use. apart from some other information, only the preceding tableau, 

so that the product form of the inverse can be used as in the ordinary Simplex 

method. This means that we want to consider a method in \tfhich the successive 

solutions are adjacent extreme points as in the Simplex method. 

We may proceed as follows. The starting point is the tableau of the 

optimal solution. In this tableau, fft is replaced by k, so that f(x) is mea¬ 

sured from its lower bound f^- k. IVe now want to generate all extreme-point 

feasible solutions in which f(x), measured as indicated, is nonnegative. This 

can be done by generating all basic feasible solutions of the equation system 

given by the tableau in which f(x) is now considered as an ordinary basic 

variable. Any of the non-basic variables may now be introduced into the 

basis the leaving basic variable is determined by comparing positive ratios 

for all rows. including the f-row. In the resulting tableau we have found a 

new extreme-point feasible solution. In this tableau we may introduce any of 

the nonbasic variables into the basis, determining the leaving basic variable 
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as before. The resulting tableau may be treated in the same manner, und so 

on. 

The difficulty is that we may find the same solution again and again 

without being sure that all extreme-point feasible solutions are generated. 

Since the only element of dioico in each iteration is that of the choice of 

the nonbasic variable which is to enter the basis, the problem is to find a 

rule for the new basic variable at each iteration which results in gene¬ 

rating in a sequence of iterations all extreme-point feasible solutions. 

Chames and Cooper [1] have proposed to use in problems like these a 

method devised by Tarry^ for finding a path through a network such that 

each node is visited at least once. This method and its application to our 

present problem will now be explained. 

As an example let us consider an even smaller problem than that used in 

Section 2. The original problem is to maximize 

(3*1) f * SXj ♦ 6X2 

subject to 

(^•2) 2Xj + 3X2 * 6, 

C3*3) Xp x2 * 0. 

The maximum loss allowed is 5. 

^See König [2], p. 41 seq. 

¡ » 



TABLF 5. îTiîmTION OF FEASIBLE EXTREÎE POINTS FOR A StALL EJCA'IPLE 

Tableau Basic Variable Val. Basic Variable 
X1 x2 x3 f 

0 
X3 

f 

6 

0 

£ 3 1 0 

-5-6 01 

1 
X1 

f 

3 

15 5 

1 1 1/2 1/2 0 

0 11/2 2 1/2 1 

2 
X2 

f 

2 

2 

2/3 1 1/3 0 

-i 0 2 1 

3 
x2 

x3 

1 2/3 

1 

5/6 1 0-1/6 

-1/2 0 1 1/2 

• i 

! 
x: 1 
Xr 3 ! 
-- 

2 

2 

1 1.1/5 0 -1/5 

n 3/5 1 2/5 

The set-up tableau is then as given in Tableau 0 of Table 5; Tableau 1 

gives the optimal solution, in which the value of the objective function, 15, 

is replaced by 5. Introducing X2, the first nonbasic variable into the basis, 

we find that leaves the basis. If in Tableau 2 the first nonbasic variable 

Xp is introduced into the basis, we find Solution 1 again. If x, is select- 

ed as a nonbasic variable, f leaves the basis; the resulting tableau is Tab¬ 

leau 3. Introducing now Xp into the basis we find Tableau 4. Introducing 

then f into the basis, Tableau 1 is found again. There exists no other extrer 

point feasible solutions apart from those of Tableaux 1-4, as can he ascer¬ 

tained by introducing other nonbasic variables in each of the tableaux. 
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In larger problems it would not have been so easy to find a sequence of 

adjacent basic feasible solutions containing every basic feasible solution. 

To lind such a sequence, it must be realized that the various solutions can 

be arranged in a network representation. From the tableaux of Table 5 we 

find that from Solution 1 we may reach Solutions 2 and 4, from Solution 2 

we may reach Solutions 1 and 3, from Solution 3 we may reach Solutions 2 and 

4, and from Solution 4 we may reach Solutions 1 and 3. These relations are 

given in the network Figure 1, in which the nodes correspond with the solu¬ 

tions . 

Figure 1. 

Even in such a small network it is easily possible to have a path which 

misses a node * for example the path 1 - 2 - 1 - 4 - 1 does not include node 

3. For larger programming problems, the network is much more complicated; 

for instance, in the problem used in Section 2 each node has 4 edges leading 

fron it, since there are in each tableau 4 nonbasic variables. For such pro¬ 

blems it is much less easy to find a path visiting all nodes. 

The problem of finding a path through a network such that all nodes are 

visited is a well-known problem in graph theory and can be solved in various 

ways. Following Chames and Cooper, we shall consider the method devised by 

Tarry. 

This method requires that at each node it is knov/n through which edge it 

was first reached; further it must be knev/n whether an edge has already been 

traversed in a certain direction. The rule of Tarry's method is then as 

follows : 
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At any node, ho to another node along an edge which has not yet been tra¬ 

versed in that direction, but do not go along the edge that was used to 

reach the first-mentioned node for the first time unless there is no other 

choice. 

If this rule is followed, every edge will be traversed twice, once in 

one direction and once in the opposite direction. Each node vá 11 be visitée 

at least once. Applying this rule to the network of Figure 1, we find the 

following. Solution 1 is used as a starting point; we can go to Solutions 

1 and 4, but choose to go to Solution 2. In Solution 2 we can in principle 

go to Solutions 1 and 3, but we have to go to Solution 3, since Solution 1 

was used to reach Solution 2 for the first time. For similar reasons we go 

to Solution 3, 4, and 1. In Solution 1, we cannot go to Solution 2, since 

we went already once in that direction. Though Solution 1 was reached 

first coming from Solution 4, there is no other choice, so that we return t( 

Solution 4. In Solution 4, we go back to Solution 3, then to Solution 2, 

then to Solution 1, all for the same reasons. Every edge has then been 

traversed twice and every solution has been visited. 

3.2. Application to an Example 

The Tarry method will now be applied to the example used in Section 2. 

The initial solution is the optimal solution of the linear programming pro¬ 

blem; it is given in Tableau 0 of Table 6. When the Tarry method allows 

this, we shall always introduce into the basis the nonbasic variable with 

the smaller number; for this purpose f is considered to be Xj. The informa 

tion required for an application of the Tarry method is given in Table 7. 

All solutions generated by the method are numbered according to the itera¬ 

tions in which they appear. Since solutions reappear many times, they are 

indicated in Table 7 by the number of the iteration in which they first occ 

Each solution is indicated by strokes in the columns of basic variables; t* 
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spaces in the columns of nonbasic variables are used for the number of the 

iteration in which, the nonbasic variable concerned is introduced into the 

basis. 

In Tableau 0 of Table 6, is introduced into the basis; we therefore 

enter 1 as the number of the iteration in the column of in the row of 

Solution 0 in Table 7. From Tableau 0 we find that X2 leaves the basis; 

the resulting solution which is indicated as Solution 1 is given in Tableau 

1. This solution is then also entered in Table 7 with strokes in the column; 

of Xp Xp and X,.. 

TABLE 6. SIMPLEX TABLEAUX FOR AN APPLICATION OF TIE TARRY ’ÎETHOD 

Tabl. Basic 
Variable 

1 

Value 
Bas. Var. 

1 

» 

! 

X1 x2 x3 x4 X5 x6 f 

0 

x2 

x4 

f 

16 

2 

20 

111/301 -1/3 0 

0 02/31 0 1/3 0 

1 0 1/3 0 4 2/3 1 

1 

X1 

x4 

f 

16 

2 

4 

1 11/30 1-1/30 

0 0 2/3 1 0 1/3 0 

0 -1 0 0 3 1 1 

2 

X1 

x3 

£ 

15 

3 

4 

1 1 0 -1/2 1 -1/2 0 

0 0 1 1 1/2 0 1/2 0 

0-1 0 0 3 11. 

3 

X2 

x3 

f 
_ 

15 

3 

19 
_ 

1 1 0 -1/2 1 -1/2 0 

0 0 111/201/20 

1 0 0 -1/2 4 1/Z 1 
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TABLE 6. (Continued) 

-?-- 

Tabl. j Basic j 
j Variable 

1 

Value j 
Bas. Var.i 

J 

« 
j 

X1 x2 x3 x4 x5 x6 f 

1 

j 
6 

X2 

x3 

XS 

10 1/4 

3 

4 3/4 

3/4 1 0 -3/8 0 -5/8 -1/4 

0 0 1 1 1/2 0 1/2 0 

1/4 0 0 -1/8 1 1/8 1/4 

7 

X1 

x3 

x5 

13 2/3 

3 

1 1/3 

1 11/3 0 -1/2 0 -5/6 -1/3 

0 0 1 1 1/2 0 1/2 0 

0 -1/3 0 0 1 1/3 1/3 

8 

X1 

x4 

x5 

1*1 2/3 

2 

1 1/3 

1 1 1/3 1/3 0 0 -2/3 -1/3 

0 0 2/3 1 0 1/3 0 

0 -1/3 0 0 1 1/3 1/3 

9 

x2 

x4 

x5 

11 

2 

5 

3/4 1 1/4 0 0 -1/2 -1/4 

0 0 2/3 1 0 1/3 0 

1/4 0 1/12 0 1 1/6 1/4 

12 

x2 

x5 

x6 

14 

4 

6 

3/4 1 11/41 1/2 0 0 -1/4 

1/4 0 -1/4 -1/2 1 0 1/4 

0 0 2 3 0 1 0 

13 
t 
i 
! 

X1 

x2 

x6 

16 

2 

6 

1 0 -1 -2 4 0 1 

0 1 2 3 -3 0 -1 

0 0 2 3 0 1 0 
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TABLE 6. (Continued) 

■ - - T ¡ 
Tabl. 

i 

Basic 
Variable 

1 

Value 
Bas. Var. X1 x2 x3 x4 x5 x6 f 

14 

xi 

x3 

x6 

17 

1 

4 

1 1/2 0 -1/2 2 1/2 0 1/2 

0 1/2 1 1 1/2 -1 1/2 0 -1/2 

0 -1 0 0 3 1 1 

15 

X1 

x4 

x6 

17 1/3 

2/3 

4 

1 2/3 1/3 0 2 0 1/3 

0 1/3 2/3 1 -1 0 -1/3 

0 -! 0 0 3 1 1 i 

32 

x2 

X6 

£ 

18 

6 

16 

111110 0 

0 0 2 3 0 1 0 

1 0 -1 -2 4 0 1 ! 

TABLE 7. INFORMATION FOR AN APPLICATION OF THE TARRY METHOD 

mgr 
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To indicnte the solution from which Solution 1 was reached for the first 

time, a star is placed in the column of X2, since by introducing this vari¬ 

able into the basis Solution 0 is generated. In Solution 1, we cannot 

introduce X2 into the basis unless there is no other possibility, so that 

X2 is introduced into the basis. Since this is the second iteration, a 2 

is put in the column of x^ in the row of Solution 1 in Table 7. From 

Tableau 1 it is found that x^ leaves the basis. After the transformation, 

Tableau 2 containing Solution 2 is obtained, which is entered in Table 7 

with strokes in the columns of Xp x^, and f and a star in the column of 

Xp Solution 3 is generated in the same manner. 

In Solution 3, x^ is introduced into the basis, yielding Solution 0 

again. Hence Solution 4 is equivalent with Solution 0. In order to save 

space, we do not reproduce the tableau of this solution again, but if a 

computer was used, this tableau would be generated from Tableau 3. In 

Table 7 the nonbasic variable with the next blank space in the row of 

Solution 0 is selected as the new basic variable; this happens to be x^, 

so that the number of the next iteration. 5, is entered in the space. The 

resulting solution happens to be the same as Solution 3. In this solution 

X4 is introduced into the basis. Solution 6 turns out to be a solution 

which has not been generated before, so that it is entered in Tableau 7. 

All 0tiier iterations are performed in the same manner. If in some 

row of Table 7 no blank space is left except the starred one, then the 

corresponding variable of this starred space enters the basis; the solu¬ 

tion concerned will then not be generated again. 

After 52 iterations we return to Solution 0: every solution has then 

been generated four times which is the number of nonbasic variables in each 

solution. Note that the last new solution was generated in the 32nd itera¬ 

tion, so that the last 20 iterations only served to prove that there is no 

other solution. In fact, the first 15 iterations, which is 30 percent of 
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all iterations gave all solutions except one. In other problems, however, 

things may turn out differently. 

3.3. Comparison and Concluding Remarks 

The number of iterations in the Tarry method is equal to the number of 

extreme-point feasible solutions times the number of nonbasic variables in 

a tableau. In linear programming with inequalities only, the number of 

nonbasic variables is equal to the number of variables (including slack 

variables.) Thus, if there are n variables in a problem with inequalities 

only every extreme-point feasible solution has to be generated n times in 

order to be able to use an adjacent extreme-point method in which the pro¬ 

duct form of the inverse can be anplied. Since the number of variables in 

most cases exceeds the number of constraints, the reverse Simplex method 

in the version in which each previous tableau is regenerated from the opti¬ 

mal tableau will usually require fewer computations. 

Another advantage which the reverse Simplex method has over the Tarry 

method is that it is easier in the first method to vary the value of k, sin< 

all solutions are ranked according to increasing loss. An increase in k wil 

leave all solutions having a smaller loss then k the same, while those havi: 

a loss of exactly k can be easily adapted. In the Tarry method the entire 

procedure would have to be started all over again. 

Finally it must be observed that if the post-optimility analysis re¬ 

sults in a large number of extreme-point feasible solutions, it will have 

missed its main purpose anyway, which was to enable the decision maker to 

select his decisions from a limited number of alternatives, since it will 

usually not be possible for him to go through a large number of alternative, 

and their linear combinations. 



(28) 

SEFERENCES 

f21] 

New York: Grariien. 

HL« JwijS ol T^rial"^?^^8 



Undassilicil 
Senirity Classification 

DOCUMENT CONTROL DATA - R&D 
\Securiiv clas.tihcation «>/ title body of abstract and indexing annotation must be entered when the overall report is r/ris s 

1 ORIGINA TIN G A C T1VI T Y (Corporate author) 

University of Virginia 

2a REPORT SECUT'TY Cl. ASSlFlCATlON 

Unclassified 
26 GROUP 

3 HE POR T TITLE 

Post-Optimality Analysis via the Reverse* Simplex Method and the Tarry Method 

* DESCRIPTIVE NOTES (Tvpe of report and inclusive dale*) 

Research Report 
S AU THORfSJ (/.«.n name firs! name, initial) 

van de Panne, C. 

6 REPO RT DATE 

July 1966 
Ba CONTRACT OR GRANT NO 

NO NR 4811(00) 
L PHOJEC r NU 

NR 047 -056 

7a total no of pages 

28 
76 NO OF REFS 

3 
1 9a ORIGINATOR'S FLPORT NUMBERfS) 

ONR No. 6 

96 OTHER REPORT NOfS) (Any other numbers that may be assigned 
this report) 

None 
1C availability limitation notices 

Available upon request through the Department of Economics, University of Virginia 

II supplementary notes 

None 

12 SPONSORING MILITARY ACTIVITY 

Logistics and Mathematical Statistics Branch 
Office of Naval Research 
Washington, D.C. 20360 

13 ABSTRACT 

In practical applications of linear programming, not only the optimal solution but 
also solutions which have a somewhat lower value of the objective function are of inter¬ 
est. It is therefore desirable to generate all extreme-point solutions satisfying the 
constraints and giving a value of the objective function which differs by at most a given 
amount from the value for the optimal solution. Two methods are considered for gener¬ 
al ing these extreme points. The first method is called the reverse Simplex method, 
since it reverses the Simplex method for linear programming, the second is basic on 
the Tarry method for traversing a network such that all nodes are visited. 3lie two 
methods are explained in detail, applied to an example and compared with each other. 

DD 1473 023500 
l Inc la ssi t ied 

Security Classification 



Unclassil k\l 
Security Classification 

14 
KEY WORDS 

LINK A LINK 0 LINK C 

ROLE ] WT ROLE A T ROL E WT 

Linear Programming 

Simplex Method 

INSTRUCTIONS 

1. ORIGINATING ACTIVITY: Enter the name and address 
of the contractor, subcontractor, grantee, Department of De¬ 
tense activity or other organization (corporate author) issuing 
the report. 

2a. REPORT SECUHTY CLASSIFICATION: Enter the over¬ 
all security classification of the report. Indicate whether 
"Restricted Data" is included. Marking is to be in accord¬ 
ance with appropriate security regulations. 

2b. GROUP: Automatic downgrading is specified in DoD Di¬ 
rective 5200.10 and Armed Forces Industrial Manual. Enter 
the group number. Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author¬ 
ized. 

3. REPORT TITLE: Enter the complete report title in all 
capital letters. Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica¬ 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 

4. DESCRIPTIVE NOTES: If appropriate, enter the type of 
report, e. g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 

5. AUTHOR(S): Enter the na.ne(s) authorts) as shown on 
or in the report. Entei lust name, first name, middle initial. 
If milituiy, show rank and branch of service. The name of 
the principal author is an absolute minimum requirement. 

6. REPORT DATL: Enter the date of the report as day, 
month, year; or month, year. If more than one date appears 
on the report, use date of publication. 

7a. TOTAL NUMBER OK PAGES: The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 

7b. NUMBER OK REFERENCES: Enter the total number of 
references cited in the report. 

8a. CONTRAC F OR GRANT NUMBER: If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 

86, 8c, (k 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project nuniber, 
subproject number, system numbers, task number, etc. 

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi¬ 
cial report number by which the document will be identified 
and controlled by the originating activity. This number must 
be unique to this report. 

9b. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 

10. AVAll.ABILITY/ LIMITATION NOTICES: Enter any lim¬ 
itations on further dissemination of the report, other than those 

DD .'r. 1473 (BACK) 

imposed by security classification, using standard statements 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DDC" 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized. " 

(3) "U. S. Government agencies may obtain copies of 
this report directly from DDC. Other qualified DDC 
users shall request through 

(4) "U. S. military agencies may obtain copies ol this 
report directly from DDC Other qualified users 
shall request through 

(5) "All distribution of this report is controlled. Qual¬ 
ified DDC users shall request through 

If the report has been furnished to the Office of fechiucal 
Services, Department of Commerce, for sale to the public, indi 
cate this fact and enter the price, if known. 

11. SUPPLEMENTARY NOTES: Use lor adoitiunal expl.ua 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay¬ 
ing (or) the research and development. Include address. 

13 ABSTRACT: Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re¬ 
port. If additional space is required, a continuation sheet sne'l 
be attached. 

It is highly desirable that the abstract of classified lepcit* 
be unclassified. Each paragraph of the abstiact shall end with 
an indication of the military security classification of the in 
formation in the paragraph, represented as (TS). iSj (C), „r j 

There is no limitation on the lengt of the abstract How 
ever, the suggested length is from 150 tv 225 woids. 

14. KEY WORDS: Key words ate technically meanu.gtul terms 
or short phrases that characterize a report and may be used us 
index entries for cataloging the report Key words must he 
selected so that no security classification is required Identi 
fiers, such as equipment model designation tiode name nnlitviy 
project code name, geugiaphi.. locution may be used as Key 
words but will be followed by an indication of technical eon 
text. The assignment of links, roles, and weights is optional 

_l ne [assifi rtl 
Security Classification 


