" AD6 386222

0. N. R, RESEARCH MEMORANDUM NO. 5

MAXIMAL TWO-WAY FLOWS
by

B. Rothschild and aA. Whinston

June, 1966

DEPARTMENT OF ECONOMICS

UNIVERSITY OF VIRGINIA

Paper to be presented at the Warsaw meeting
of T.1.M.S.

This research has been supported in part
by the Office of Naval Research under
Contract Nonr - 4811 (00)

CLEARINGHOUSE
FOR FEDERAL SCIENVIFIC AND
TECHNICAL INFOIMATION |

Hardcopy , Microriche ?
/
| s/00 050 ,




Maximal Two-Way Flows

by

B. Rothschild and A, Whinston

The most familiar network flcw problem is that of
finding the maximal integer flow from a source s to
a sink t in a network G. In this paper we discuss
the problem of simultaneous flows from s to t and
from t to 8, The main result of this paper is a
max-flow min-cut theorem for this type of problem. The
method of proof used indicaies a procedure for find-
ing the maximal flows, Finally, the problem of feasi-
bility is discussed.

Introduction,

The most familiar network flow problem is that of finding the maxi-
mal integer flow from a source 8 to a sink t 1in a network G with in-
teger capacities (see [l]). 1In this paper we discuss the problem of si-
multaneous flows from 8 to t and from t to s, For example, one
might wish to know how much traffic a specific system of roads could car-
ry betw en two points going in either direction. If the network is un-
directed (e.g., there arc no one-way streets), then this problem is iden-
tical with the problem of finding a maximal flow from s to t. The
answer to this is the well known Max-flow Min-cut theorem (see [1]). When
one has some directed arcs, however, the problems are no longer equiva-
lent, Here we obtain a Max-~flow Min-cut theorem for two-way flows in
certain special networks, called Eule: networks, which have some arcs di-
rected and some undirected. They are defined below. The method of proof
used here indicates a procedure for actually constructing a maximal flow.
It is the analogue to the cross path method used in [2] for the one-way

flow,

We consider here mixed networks, that is networks with both



directed and undirected arcs. For convenience in what follows, we con-
sider all arcs to have capacity one, but we permit multiple arcs between
any two nodes, For two nodes a,b in the network G, ana —=b path is

a path consisting possibly of both directed and undirected arcs such

that the directed arcs occur in the direction from a to b along the
path, We permit nodes to be used more than once in a path, but arcs may
only be used once. A flow is a collection of paths no two having any arc

in common, An a -«b flow is a flow consisting of a —b paths; a b~ a

flow 18 a flow consisting of b —a paths. A two-way flow or ag»b flow
is a flow consisting of a —b paths and b —a paths, An a =b (respec-

tively b- a).cut-set is a collection of arcs (again these may be directed

and undirected together) such that their removal from G eliminates all

a ~»b paths (respectively b —a paths), An a <> b cut-get is a collec-

tion of arcs whose removal eliminates both a -b and b- a paths,

A network 1s said to be Euler if at each node there is an even num-
ber of undirected arcs and there is the same number of incoming directed
arcs as outgoing directed arcs. A circuit (i.e., closed path) or a col-
lection of paths or a flow is called Euler if the subretwork consisting
the arcs and nodes of the circuit or collection of paths or flow respec-
tively is Euler. A network G 1s called an Euler directed network if it
is Euler and all arcs are directed., Similarly, it is called an Euler un-
directed network if it is Euler and all its arcs are undirected. Clearly
the subnetwork of G consisting of all directed arcs and the nodes to
which they are attached is an Euler directed subnetwork D. Similarly,
all the undirected arcs of G determine an Euler undirected subnetwork U,
G=1U+ D, We note that neither D nor U need be connected, even if G
ls connected., By a connected network we mean one such that if all directed

arcs are replaced by undirected arcs, the resulting network is connected as
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an undirected network. A connected comnonent of a network is a maximal

connected subnetwork,

Main Result,

lemma 1 Let G be a connected Euler network. Then if u and
v are any two ncdes of G, there is an Euler circuit containing them

both,

Proof. Let G =D+ U as above, Since both D and U are Euler, each
of their connected components must be Euler also. Then by [2) 3,1.1 and
3.1.3, each of these components can be considered to be a single circuit,
Thus since G 1s connected, each of the components shares some node with
some other component, Hence all of G can be considered to be a single
circuit, In particular, it is clearly an Euler circuit containing u

and v. We note that there may cert-inly be Euler circuits containing

u and v which do not exhaust G also.

Definition., Let Pl’ .,Pk be an a&>b flow in G. Let Cl""’cn be

a family of Euler circuits of G - (P1+...+Pk), where subtraction means
Just that the arcs of P1+...+Pk are deleted from G, Assume that no

two of the C, have any arcs in common. We do not exclude the degenerate

3

case of any of the C, being simply a single node. Then Cl""’cn is

i
called a system of alternating circuits with respect to the flow Pl""'Pk
1f:

(1) C, contains a and some node vq in one of the Pi’ call it

1

Rl.



(2) FPor §>1, C, contains a node u on the path R

J J-1 J-1
which 18 at least as close to a on RJ_1 as vj_1 is.
(3) CJ contains a node vJ on one of the Pi’ say RJ. Rj

need not be distinct from previous R's:

See FPigure 1. (In Figure 1 we do not indicate which are the directed

arcs, nor which direction each path has.)




Lemma 2 Let P ,...,P,  be an a€>b flow containing “a - b paths and

k- b - a paths, Let Cl""’cn be a system of alternating circuits
associated with Pl""’Pk’ and assume V. b. Then P1+...+Pk + Cl+...+cn
forms an a<€>b flow of k + 2 consisting of '+l a~b and k-+*+l1 b - a

Pathso

Proof We use induction on n, If n = 1, then we are done because C1
contains a and b and has no arcs in common with any of the Pi‘ So
assume that the Lemma is true for n<r, and let n=1r > 1,

We mav -.sume that among those Ui having R1 = Rl’ none lie closer
to a on this path R1 than \2 does. Otherwise, Cl. Ct+l' Ct+2""’cn

is a system of alternating circuits, and we are done by induction. Thus

we have the situation of Figure 2, where for any 1 with R1 - Rl’ uy

must lie in E, b
s
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Let A be the part of c1 going from a to Vi iIfEG+F+E(= Rl)
is an a - b path, If G+ F+ E is a b - a path, then choose A to be

the part of C. which goes from v, to a. Then in either case, A + E

1
is a path going the same direction as Rl’ while B+ F+ D+ C+ G is a
circuit. Then replacing R1 by A+ E, and C1 and 02 by B+ F+ D+ C+ G,
we have a new flow with the same number of paths in each direction as we

started with, but with a system of circuits with n-1 members. This system

we claim is alternating with respect to the new flow, For (1) is satisfied

by B+ F+ D+ C+ G (with R2 replacing Rl)’ and (2) and (3) are satisfied

since all the u, and vy 1> 1 are left unchanged. Also, Vi still is

i
b, so the hypotheses of the lemma are satisfied. Hence we can apply induc-
tion and conclude that this new flow and system of circuits form a flow of
4+l a=b paths and k- i¥+1 b - a paths. But since the new paths and cir-
cuits use exactly the same arcs as the original ones, this k + 2 a<>b
flow is precisely the desired one. Q.E.D.

Now there may be many different systems of alternating circuits as-
sociated with a given set of paths. ronsider those systems consisting on-
ly of Euler circuits. Let v be any node on, say, Pi' If for some
alternﬁting system of Euler circuits Cl""’cn we have one of the vj on
P, and at least as far from a on P, as v 1s, then we call the node v

i i
accessible (with respect to the given paths Pl""’Pk)° (See Figure 3.)
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FIGURE 3

Lemma 3 Let G be an Euler network, and Pl""’Pk an Euler ae>b flow.
Suppose x 1is an accessible node of Pl’ and y 1s a node of Pi(IS;Sk)

such that in G - (Pf+"’+Pk) there is an Euler circuit containing x and

y. Then y 1is accessible.

Proof Since x 1s accessible, we can let Cl”"'cn be an alternating

1
a than Vo Let C be an Euler circuit containing x and y. (See Fig-

family of Euler circuits with v, on P, and x on Pl no farther from

ure 4,.)



FIGURE 4
Then if C 1is in a different component of G - (P1+...+Pk) from all of the
ci. we have Cl.....Cn,c forming a system of alternating Euler circuits,
and y 1is accessible. If C 1is in the same component K of G - (P1+...+Pk)
as any of the Ci' let io be the minimal 1 such that Ci is in the com-
ponent, As G 1is Euler, and P1+...+Pk is Euler, G - (P1+...+Pk) is Euler,
and hence K 1s Euler, By Lemma 1, there is an Euler circuit containing

and y, say Co. Then Cl.....C is a system of alternating

Ui -1 i -l,co
(o] o

circuits, and y 1is accessible. Q.E.D.

Lemma 4 Let m be the minimum size of an a €<> b cut-set in an Euler net-

work G. Let Pl""’P be an Euler collection of paths forming an a €«> b

k
flow, Then b 18 accessible 1f k < m,

Proof Assume b 1is not accessible. By beginning at a and moving along

a path P, to b, (this may be in the same direction or the opposite

1

direction from the direction of Pi)’ we must reach a last node on P1

which 1is accessible, and all nodes beyond this must not be accessible.

Let e, be the arc of P1 connecting the last accessible node of Pi with

the first inaccessible one, 1 = 1,2,...,k. Then since k < m, el,....ek
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does not form an a8 €» b cut-set, Hence in G - (°1+"‘+.k) there is an
8a~«bpathora b= apath P, Traveling from a to b along this

path, there is a “irst inaccessible node u. Then there is & last ac-
cessible node before u, say v, Let R be the part of the path P be-
tween v and u, Then R 1lies in G - (P1+...+Pk). For suppose it
didn't, Then some arc e of R would lie on one of the Pi’ and thus
connect either two accessible nodes, two inaccessible nodes, or one of
each, But it can't be one of each, since then it would have to be ei,
and R<G - (er+...+ek). It can't be two accessible nodes, by definition
of R. Similarly, it can't be two inaccessible nodes by definition of R.
This is a contradiction. So R<G - (P1+...+P )o But since G 1is Euler,

k

anl P.+...+P, 1s Euler, G - (P1+"‘+Pk) is Euler, and so is the component

1 k
of G - (P1+...+Pk)containing R. Thus by Lemma 1, u and v 1lie on an
Evler circuit of G - (P1+...+Pk). Now Lemma 3 implies that u is acces-

sible. This is a contradiction, so b 1is accessible. Q.E.D.

Theorem 1. If G 1is an Euler connected network, and i{f m 1is the mini-
mal size of an 8 <> b cuvt-set, then m 1is even, and there is an a <> b

flow of m in G such that its constituent paths are an Eule: collection

of paths.

Proof. Lemma 1 implies that there are at least two paths, one from a

to b, and one from b to a which form an Euler collection, Starting
with these two, we mey apply Lemma 4 if 2 < m, and then Lemma 2 to ob-
tain 4 paths forming an Euler collection, Continuing in this way, we may
keep adding 2 paths at a time until we nave an Euler collection of k

paths, and k " m, m must be even since we began with 2,



Feasibility

We say that a flow of (s,t) is feasible if there is a flow with
s a~b paths and t b - a paths, Certainly if (s,t) is feasible, then
(x,y) is feasible for xKs, y<t. So the interesting question is: What
(s,t) are feasible for s + t = m? We can answer this for the case
where the m paths are an Euler flow,

The proof of Theorem 1 quarantees that a flow of (m/2,m/2) 1is
feasible, since we can start with (1,1) and add two at a time, obtaining
successively (2,2), (3,3), etc, But, of course, if somehow we obtained
a flow of (x,y) where the x + y paths were an Euler collection, then
just as in the proof of Theorem 1, repeated applications of Lemmas 2
and 4 imply that (x + 1, y+ 1), (x+ 2, y + 2), etc. are feasible. Thus
we would ultimately reach a flow of (s,t) with s+t =m and s -t =x -y,
A8 m 1is even, s - t must also be even.

Now suppose we could obtain a flow of 2k consisting entirely of
undirected paths., Then this cnuld be considered either as a (2k, 0) or
a (0, 2k) flow or anything in between., 1t is clearly an Euler collection
of paths. Hence we could obtain a flow of (s,t) with s + t = m, k - tl- 2k,

What we show now is that the converse of this is also true,

Theorem 2 Suppose there is an Euler collection of paths forming an (x,y)
flow, Then we have seen that |x - y | must be even, so let it be 2k, Let
P be the subnetwork consisting of these paths. Then there is a flow of

2k in P between a and b consisting entirely of undirected paths.

Proof, We define a critical a - b cut-set in P, or just critical cut-

set, to be a set of arcs such that their removal leaves a and b 1in
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different components, and such that no subset of these arcs has this
property. Clearly, every critical cut-set scparates the nstwork into
exactly two components, and each arc in it has one end in each component,
Let E be a critical cut-set in P, and let the two components of P - E
be C and D, where a ¥C and becD, Now consider C + E. Each node
of C here has as many incoming directed arcs as outgoing directed arcs,
by the Euler condition on P, Summing over all nodes in C, the total
number of incoming arcs ic equal to the total number of outgoing arcs,
Each directed arc in C contributes one to each of these sums. Each
directed arc in E, however, contributes to only one of the sums. Thus,
since the sums are equal, there must be exactly as many arcs in E di-
rected from C to D as there are from D to C. (Of course, there
may also be other arcs which are undirected.)

Let Pl""’Px be the a - b paths, and Pm_l.....l"x_'_y the
b - a paths constituting P. Traveling along Pi (in the a = b direction
for i<x, and in the b ~ a direction for i>x) we use some of the arcs of
E to get from C to D, and some to get from D to C, Let fi be
the number of directed arcs of E used by Pi to get from C to D,
and let u, be the number of undirected arcs of E wused by Pi to get

i

from C to D, Similarly, let bi be the number of directed of arcs of

E used by P, to get from D to C, and vy the number of undirected

1
arcs of E wused by Pi to get from D to C. Then we have:

(1) fo+u =b +v, +1 1 <i<x

(2) f., +u, +1=b, +v

{ 1 . { x+1<i<x+y

This is because the & - b paths cross from C to D exactly one more
time than from D to C, and similarly for b - a paths.

Summing (1) from i =1 to x and (2) from { = x+1 to x+y,

11
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and adding these results, we get:

xty xty xty xty
(3) 2 £, + u +y = , b .+, v +x
ot N @t et

Now since all the arcs of E are used by the x + y paths by assumption,

x+y x+l

we know that = f = > b, by what we observed above, Thus
‘= 1 1
i=] i=]

%) |y - x| -|§: u, - Zvi| SZ.“,_ + v,
The expression ;E,ui + vi is just the total number of undirected arcs
in E, Thus we have shown that for any critical a - b cut-set E,
there are at least |x - y| = 2k undirected arcs in it.

Now we claim that there is a flow of 2k undirected paths between
a and b in P, For let Ps=D + U, the directed and undirected parts.
Then 1if there is no flow of 2k in U alone between a and b, by the
Max-flow Min-cut Theorem [1], there is a minimal a - b cut-set E, in
U with fewer than 2k arcs. Now adjoin one at a time (in any order)
the arcs of D wuntil adjoining any more would result ina and b no
longer being in different components, Let ED be the remaining arcs of
D. Then clearly E = E_+ F, 18 a critical cut-set for P, But E has

U D

only as many undirected arcs as E_, and this is fewer than 2k, centra-

U
dicting (4). Thus there must be a flow of 2k undirected paths between

a and b 1in P, Hence the Theorem is proved.

We note that any collection of 2k undirected paths between a
and b 1s an Euler collection, Thus we have a procedure or algorithm
for finding all feasible Euler maximal flows, Namely, for G = D + U
as usual, find a maximal flow in U between a and b, Then if this
is a 2k flow, assign the 2k paths either a —~b or b = a directions.

Then apply the method of Theorem 1 (i.,e., repeated application of Lemma 2)

12
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to obtain the maximal two-way flow,

Now none of the original undirected paths may be intact when the
procedure terminates, but the initial difference between the numbers of
a - b paths and b - a paths among them is preserved, Figure 5 is an
example of an Euler network where the maximal undirected flow is 2, the
maximal two-way flow is 6, and no maximal two-way flow contains any un-

directed path.
a

VAN

FIGURE 5

Remarks

Now although we know how to find all Euler flows in an Euler net-
work, we know nothing about non-Euler flows in an Euler network. Figure
6 is an excuple of an Euler network with no undirected paths between a
and b, and a maximal double flow of 6. Thus the only Euler two-way flow

is (3,3). But also a (4,2) flow is feasible (not an Euler one, of course).

FIGURE 6
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The Max-flow Min-cut Theorem (1] holds for any undirected network.
It does not need to be Euler., By Theorem 1 above, for Euler directed net-
works, the maximum two-way flow equals the minimum two-way cut-set, We
might guess that if G = D + U, as usual, and D 1s an Euler directed
subnetwork, while U is not necessarily Euler, then the maximum two-way
flow equals the minimum two-way cut-set. Figure 7 gives a counter-ex-
ample for this, where the maximum flow is one, but the minimum cut-set is

two.

FIGURE 7

Finally, we observe that we can generalize the above results slight-
ly as follows. Consider a network G with A and B two disjoint sets
of nodes of G, Call G almost Euler if for all nodes except those of
A and B we have the number of undirected arcs there even, and the num-
ber of incoming directed arcs equal to the number of outgoing directed
arcs there. Similarly, a flow is almost Euler if the arcs used by it
determine an almost Euler subnetwork. By using the standard method of

introducing two super-nodes a and b, as indicated in Figure 8,

14
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FIGURE 8

we can obtain from Theorems 1 and 2 their anslogues, replacing a €> b

flows and cut-sets by A <> B flows and cut-sets, and the Euler conditions

by almost Euler conditions, (The conditions of evenness are not true for

these analogues.)
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