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Maximal Two-Way Flows 

by 

B. Rothschild and A. Whlnston 

The most familiar network flow problem is that of 
finding the maximal integer flow from a source s to 
a sink t in a network G. In this paper we discuss 
the problem of simultaneous flows from s to t and 
from t to s. The main result of this paper is a 
max-flow min-cut theorem for this type of problem. The 
method of proof used indicates a procedure for find- 
ing the maximal flows. Finally, the problem of feasi- 
bility is discussed. 

Introduction. 

The most familiar network flow problem is that of finding the maxi* 

mal integer flow from a source s to a sink t in a network 6 with in- 

teger capacities (see 111). In this paper we discuss the problem of si- 

multaneous flows from s to t and from t to s.  For example» one 

might wish to know how much traffic a specific system of roads could car- 

ry between two points going in either direction. If the network is un- 

directed (e.g., there ate no one-way streets), then this problem is iden- 

tical with the problem of finding a maximal flow from s to t. The 

answer to this is the well known Max-flow Min-cut theorem (see llJ). When 

one has some directed arcs, however, the problems are no longer equiva- 

lent. Here we obtain a Max-flow Min-cut theorem for two"way flows in 

certain special networks, called Eule* networks, which have some arcs di- 

rected and some undirected. They are defined below. The method of proof 

used here indicates a procedure for actually constructing a maximal flow. 

It is the analogue to the cross path method used in ill  for the one-way 

flow. 

We consider here mixed networks, that is networks with both 
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dlrecttd and undirected «ret« For convenience In whet follows, we con- 

sider «11 area to have capacity one, but we permit multiple arcs between 

any two nodes. For two nodes a,b In the network G» an a -» b path Is 

a path consisting possibly of both directed and undirected arcs such 

that the directed arcs occur In the direction from a to b along the 

path* We permit nodes to be used more than once In a path, but arcs may 

only be used once. A  flow Is a collection of paths no two having any arc 

In common. An a -* b flow Is a flow consisting of a -♦ b paths; a b-* a 

flow la a flow consisting of b -• a paths. A  two-way flow or agfejgb flow 

Is a flow consisting of a -*b paths and b -»a paths. An a -* b (respec- 

tively b-* a) cut-set Is a collection of arcs (again these may be directed 

and undirected together) such that their removal from G eliminates all 

a -»b paths (respectively b -a paths). An a ■*-> b cut-set is a collec- 

tion of arcs whose removal eliminates both a -»b and b- a paths. 

A network is said to be Euler if at each node there is an even num- 

ber of undirected arcs and there is the same number of incoming directed 

area as outgoing directed arcs. A circuit (i.e., closed path) or a col- 

lection of paths or a flow is called Euler if the subnetwork consisting 

the arcs and nodes of the circuit or collection of paths or flow respec- 

tively is Euler. A network G is called an Euler directed network if it 

is Euler and all arcs are directed. Similarly, it is called an Euler un- 

directed network if it is Euler and all its arcs are undirected.  Clearly 

the subnetwork of G consisting of all directed arcs and the nodes to 

which they are attached is an Euler directed subnetwork D. Similarly, 

all the undirected arcs of G determine an Euler undirected subnetwork U. 

G * U + D. We note that neither D nor U need be connected, even if G 

is connected. By a connected network we mean one such that if all directed 

arcs are replaced by undirected arcs, the resulting network is connected as 



&n undirected network.    A connected comnonent of a network Is a maximal 

connected subnetwork. 

Main Result. 

Lemma 1  Let G be a connected Euler network. Then If u and 

v are any two nodes of G, there is an Euler circuit containing them 

both. 

Proof.  Let G " D -f U as above. Since both D and U are Euler, each 

of their connected components must be Euler also. Then by [2j 3.1.1 and 

3.1.3, each of these components can be considered to be a single circuit. 

Thus since G is connected, each of the components shares some node with 

some other component. Hence all of G can be considered to be a single 

circuit. In particular, it is clearly an Euler circuit containing u 

and v. We note that there may certrlnly be Euler circuits containing 

u and v which do not exhaust G also. 

Definition. Let P.,  .»P. be an a< >b flow in G. Let C. C be 

a family of Euler circuits of G - (P.+...+F. ), where subtraction means 

Just that the arcs of P.+...-fP.  are deleted from G. Assume that no 

two of the C. have any arcs in common. We do not exclude the degenerate 

case of any of the 0 being simply a single node. Then C.f,.»,C is 

called a system of alternating circuits with respect to the flow P.,...^ 

if: 

(1) C. contains a and some node v, in one of the P., call it 

Ri- 
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(2) For J > 1, C. contains a node u. . on the path R. . 

which Is at least as close to a on R. . as v. . Is. J-l     J-l 

(3) C. contains a node v. on one of the P., say R.. R. 

need not be distinct from previous R's* 

See Figure 1.  (In Figure 1 we do not Indicate which are the directed 

arcs, nor which direction each path has.) 
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Lemna 2  Let P. P. be an a<->b flow containing   a -» b paths and 

k-  b -• a paths. Let C. C  be a system of alternating circuits 

associated with P.,...,P., and assume v " b. Then ?.+..•+?, + C.+,..-fC 
Ik n 1    k   1    n 

forms an a<->b flow of k + 2 consisting of / +1 a -• b and k- " +1 b -• a 

paths. 

Proof  We use Induction on n.  If n » 1, then we are done because C. 

contains a and b and has no arcs In common with any of the P..  So 

assume that the Lemma Is true for n < r, and let n ■ r > 1. 

We may r.sume that among those U. having R ■ R., none lie closer 

to a on this path R.  than v.  does. Otherwise, C., C. ., C..2,.».»C 

Is a system of alternating circuits, and we are done by Induction. Thus 

we have the situation of Figure 2, where for any 1 with R. - R., u. 

must lie In E. b 
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FIGURE 2 



Let A be the part of C, going from a to v.  if G + F + E( ■ R.) 

is an a - b path.  If G + F + E is a b -* a path, then choose A to be 

the part of C. which goes from v.  to a. Then in either case, A + E 

is a path going the same direction as K., while B + F + D+C + Gisa 

circuit. Then replacing R. by A + E, and C. and C« by B + F + D + C + G, 

we have a new flow with the same number of paths in each direction as we 

started with, but with a system of circuits with n-1 members. This system 

we claim is alternating with respect to the new flow. For (1) is satisfied 

byB+F+D+C+G (with R2 replacing R,), and (2) and (3) are satisfied 

since all the u. and v. , i > 1 are left unchanged. Also, v still is 
i      1 n 

b, so the hypotheses of the lemma are satisfied. Hence we can apply induc- 

tion and conclude that this new flow and system of circuits form a flow of 

: +1 a -» b paths and k- i/+l b -• a paths. But since the new paths and cir- 

cuits use exactly the same arcs as the original ones, this k + 2 a<->b 

flow is precisely the desired one. Q.E.D. 

Now there may be many different systems of alternating circuits as- 

sociated with a given set of paths.  Consider those systems consisting on- 

ly of Euler circuits.  Let v be any node on, say,  P .  If for some 

alternating system of Euler circuits C.,...,C we have one of the v on 

P. and at least as far from a on P as v is, then we call the node v 

accessible (with respect to the given paths P.,...,?. ).  (See Figure 3.) 
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FIGURE 3 

Lemma 3  Let G be an Euler network, and P. P.  an Euler a^ >b flow. 

Suppose x Is an accessible node of P., and y Is a node of P.(l<i<k) 

such that in G - (P.+,.,+P. ) there Is an Euler circuit containing x and 

y. Then y is accessible. 

Proof  Since x is accessible, we can let C.,..*,C  be an alternating ——— in 

family of Euler circuits with v  on P. and x on P.  no farther from 

a than v . Let C be an Euler circuit containing x and y, (See Fig- 

ure 4.) 
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FIGURE 4 

Then if C Is In a different component of G - (P.+...+?.) from all of the 

C., we have C|«a«t»C ,C    forming a system of alternating Euler circuits, 

and y Is accessible. If C Is In the same component K of G - (P.+...+P. ) 

as any of the C,, let 1  be the minimal 1 such that C. Is In the com- 

ponent. As G Is Euler, and ?.+...+?.  is Euler, G - (P.+...+P.) Is Euler, 

and hence K Is Euler. By Lemma 1, there Is an Euler circuit containing 

U. ,    and y, say C . Then C.,...^. ,,C  Is a system of alternating 
o" *     o' 

circuits, and y is accessible. Q.E.D. 

Lemma 4 Let m be the minimum size of an a <-> b cut-set in an Euler net- 

work G. Let P.,...,P. be an Euler collection of paths forming an a <r> b 

flow. Then b is accessible if k < m. 

Proof  Assume b is not accessible. By beginning at a and moving along 

a path P. to b, (this may be in the same direction or the opposite 

direction from the direction of P.), we must reach a last node on P 

which is accessible, and all nodes beyond this must not be accessible. 

Let e. be the arc of P  connecting the last accessible node of P with 

the first inaccessible one, 1 ■» l,2,...,k. Then since k < m, e.,.«*,e. 

8 



docs not form «n a <r> b cut-set. Hence In G - (€-+.,.+e. ) there is sn 

« -. b path or a b - a path P. Traveling from a to b along this 

path, there Is a Clrst inaccessible node u. Then there is a last ac- 

cessible node before u, say v. Let R be the part of the path P be- 

tween v and u. Then R lies in G - (P.+...+P. )• For suppose it 

didn't. Then sons arc e of R would lie on one of the P.» and thus 

connect either two accessible nodes, two inaccessible nodes, or one of 

each. But it can't be one of each, since then it would have to be e., 

and R^G - (e.+.^+e.). It can't be two accessible nodes, by definition 

of R. Similarly, it can't be two inaccessible nodes by definition of R. 

This is a contradiction. So R^G - (P.+...+P.). But since G is Euler, 

ani P,+...+P.  Is Euler, G - (P.+...+P. ) is Euler, and so is the component 

of G - (P-+...+P,)containing R. Thus by Lemma 1, u and v lie on an 

Euler circuit of G - (P.+...+P.). Now Lemma 3 implies that u is acces- 

sible. This is a contradiction, so b is accessible. Q.E.D. 

Theorem 1. If G is an Euler connected network, and if m is the mini- 

mal size of an a «*-^ b cut-set, then m is even, and there is an a <-> b 

flow of m in G such that its constituent paths are an Eule" collection 

of paths. 

Proof. Lemma 1 implies than there are at least two paths, one from a 

to b, and one from b to a which form an Euler collection. Starting 

with these two, we mey apply Lemma 4 if 2 < m, and then Lemma 2 to ob- 

tain 4 paths forming an Euler collection. Continuing in this way, we may 

keep adding 2 paths at a time until we nave an Euler collection of k 

paths, and k ■ m. m must be even since we began with 2. 



Feasibility 

We say that a flow of (s,t) la feasible If there Is a flow with 

a a - b paths and t b -» a paths. Certainly if (s,t) Is feasible, then 

(x,y) Is feasible for x<s, y<t. So the Interesting question Is: What 

(s.t) are feasible for s + t ■ m? We can answer this for the case 

where the m paths are an Euler flow. 

The proof of Theorem 1 quarantees that a flow of (m/2(m/2) Is 

feasible, since we can start with (1,1) and add two at a time, obtaining 

successively (2,2), (3,3), etc. But, of course, If somehow we obtained 

a flow of (x,y) where the x + y paths were an Euler collection, then 

Just as In the proof of Theorem 1, repeated applications of Lemmas 2 

and 4 Imply that (x + 1, y + 1), (x + 2, y + 2), etc. are feasible. Thus 

we would ultimately reach a flow of (s,t) with s + t ■ m and s - t " x - y. 

AB   m Is even, s - t must also be even. 

Now suppose we could obtain a flow of 2k consisting entirely of 

undirected paths. Then this could be considered either as a (2k, 0) or 

a (0, 2k) flow or anything In between. It Is clearly an Euler collection 

of paths. Hence we could obtain a flow of (s,t) with s + t=m, |s-t|" 2k. 

What we show now Is that the converse of this Is also true. 

Theorem 2  Suppose there is an Euler collection of paths forming an (x,y) 

flow. Then we have seen that | x - y | must be even, so let It be 2k. Let 

P be the subnetwork consisting of these paths. Then there Is a flow of 

2k In P between a and b consisting entirely of undirected paths. 

Proof.  We define a critical a - b cut-set In P, or Just critical cut- 

set, to be a set of arcs such that their removal leaves a and b In 

10 
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different components, and such that no subset of these arcs has this 

property. Clearly, every critical cut-set separates the network Into 

exactly two components, and each arc In It has one end In each component« 

Let E be a critical cut-set In P, and let the two components of P - E 

be C and D, where a *C and b e D. Now consider C + E. Each node 

of C here has as many Incoming directed arcs as outgoing directed arcs, 

by the Euler condition on P. Summing over all nodes In C, the total 

number of Incoming arcs ir equal to the total number of outgoing arcs. 

Each directed arc In C contributes one to each of these sums. Each 

directed arc m E, however, contributes to only one of the sums. Thus, 

since the sums are equal, there must be exactly as many arcs In E di- 

rected from C to D as there are from D to C.  (Of course, there 

may also be other arcs which are undirected.) 

Let P. ,...,P  be the a-* b paths, and P_., ,...,P .  the 
1     X Xrl     xty 

b -» a paths constituting P. Traveling along P. (in the a -• b direction 

for l<x, and In the b - a direction fur i>x) we use some of the arcs of 

E to get from C to D, and some to get from D to C.  Let f, be 

the number of directed arcs of E used by P. to get from C to D, 

and let u. be the number of undirected arcs of E used by P. to get 

from C to D, Similarly, let b. be the number of directed of arcs of 

E used by P. to get from D to C, and v. the number of undirected 

arcs of E used by P. to get from D to C. Then we have: 

(1) £i + ui " bi + vi + 1        ! ^ <x 

(2) ^ + u1 l- 1 - b1 + vi        x + 1 < 1 < x + y 

This Is because the a -. b paths cross from C to D exactly one more 

time than from D to C, and similarly for b -, a paths. 

Summing (1) from 1 ■ 1 to x and (2) from 1 • x + 1 to x + y, 

11 



and adding these results, we get: 

l-l  l    1-1  l 1-1   x    1-1 

Now since all the arcs of E are used by the x + y  paths by assumption, 
aefy    »fl 

we know that  ^T f., ■ ^~ b. by what we observed above. Thus 
1-1 1  1=1 l 

(4)   |y - x| -| Z ^ - ZvJ Kj^ + v1 

The expression ^.u + v  Is Just the total number of undirected arcs 

In E. Thus we have shown that for any critical a - b cut-set E, 

there are at least |x - y| - 2k undirected arcs In It. 

Now we claim that there Is a flow of 2k undirected paths between 

a and b In P. For let P - D + Ü, the directed and undirected parts. 

Then If there Is no flow of 2k In U alone between a and b, by the 

Max-flow Mln-cut Theorem llj, there Is a minimal a - b cut-set E In u 

U with fewer than 2k arcs. Now adjoin one at a time (In any order) 

the arcs of D until adjoining any more would result In a and b no 

longer being In different components. Let ED be the remaining arcs of 

D. Then clearly E - E + E  is a critical cut-set for P.  But E has 

only as many undirected arcs as £„, and this Is fewer than 2k, contra- 

dicting (4). Thus there must be a flow of 2k undirected paths between 

a and b In P.  Hence the Theorem is proved. 

We note that any collection of 2k undirected paths between a 

and b is an Euler collection« Thus we have a procedure or algorithm 

for finding all feasible Euler maximal flows. Namely, for G - D -I- U 

as usual, find a maximal flow in U between a and b. Then if this 

Is a 2k flow, assign the 2k paths either a -.b or b - a directions. 

Then apply the method of Theorem 1 (i.e., repeated application of Lemma 2) 

12 



to obtain the maximal two-way flow* 

Now none of the original undirected paths may be Intact when the 

procedure terminates, but the initial difference between the numbers of 

a -* b paths and b -* a paths among them is preserved. Figure 5 is an 

example of an Euler network where the maximal undirected flow is 2, the 

maximal two-wsy flow is 6, and no maximal two-way flow contains any un- 

directed path. 

FIGURE 5 

Remarks 

Now although we know how to find all Euler flows in an Euler net- 

work, we know nothing about non-Euler flows in an Euler network. Figure 

6 is an exrmple of an Euler network with no undirected paths between a 

and b, and a maximal double flow of 6. Thus the only Euler two-way flow 

is (3,3). But also a (4,2) flow is feasible (not an Euler one, of course). 

FIGURE 6 
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The Max-flow Mln-cut Theorem [ij holds for «ny undirected network« 

It does not need to be Euler. By Theorem 1 above, for Euler directed net- 

works, the maximum two-way flow equals the minimum two-way cut-set. We 

might guess that if G ■ D + U, as usual, and D is an Euler directed 

subnetwork, while U is not necessarily Euler, then the maximum two-way 

flow equals the minimum two-way cut-set. Figure 7 gives a counter-ex- 

ample for this, where the maximum flow is one, but the minimum cut-set is 

two. 

FIGURE 7 

Finally, we observe that we can generalize the above results slight- 

ly as follows. Consider a network G with A and B two disjoint sets 

of nodes of G. Call G almost Euler if for all nodes except those of 

A and B we have the number of undirected arcs there even, and the num- 

ber of incoming directed arcs equal to the number of outgoing directed 

arcs there. Similarly, a flow is almost Euler if the arcs used by it 

determine an almost Euler subnetwork. By using the standard method of 

introducing two super-nodes a and b, as indicated in Figure 8, 

14 
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we can obtain from Theorems 1 and 2 their analogues, replacing    a <-> b 

flows and cut-sets by A <-> B flows anH ^ut-sets, and the Euler conditions 

by almost Euler conditions.     (The conditions of evenness are not true for 

these analogues.) 
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