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A short proof is offered for verifying 

that a finite state, completely specified auto¬ 

mation is synchronixed with probability 1 only 

if there exists a universal synchronirer for 

the automation. 
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A SIMPLE PROOF OF A THEOREM ON 
SELF-SYNCHRONIZING AUTOMATA 

[3] 
WINOGRAD has shown that a finite state, completely specified 

automaton will resynchronize itself with probability 1 if and only if 

there exists a finite sequence of input letters called a universal 

r 121 
synchronizer of the automaton . The result is fundamental ’ and, 

as WINOGRAD's proof is unnecessarily long and circuitous, we offer a 

constructive argument that is more direct. 

[3] Following , let I* represent the free semigroup with identity 

generated by a finite input alphabet I, i.e., I* - 1° U I1 U ... U Ik U .... 

k 0 
where I Is the set of all input sequences of length k and I *0, the 

identity element. A finite state, completely specified automaton A is 

a mapping from I* onto some finite output alphabet; the set of states 

of A, S ■ {s^, s2,..., 8^}, is finite with state transitions defined on 

all pairs of the cartesian product SXI* by f(s ,w) * s , where f is the 
m n 

state transition function, s and s are in S, ancl w is in I*. Successive 
m n 

input letters to A are assumed to occur randomly and Independently ac¬ 

cording to some discrete probability law Pr(I) - {p^ , with pi the proba¬ 

bility of occurrence of the ith input letter (pj^ >0). A subset 

E ■ {(w.,w!)} of I*XI* is called an error set and subsets Ck f of 
V^i’V 

I* are defined by 

Cs ,(«,,«!) ■ iv*lk|£(W> ■ £<Vwiw)1* m 11 

Jç 
i.e., C ( is the set of all Input sequences w with length k that 

V^W 
will synchronize A after an error w. -* w' occurs while A is in state s . 

il m 

'TV - 
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An automaton A with Input distribution Pr(I) is synchronized with 

probability 1 with respect to an error set E if and only if for all 

s in S and all (w.,w!) in E 
m i’ 1' 

where 

It will be convenient to extend E to a larger set £■ El*, i.e., 

(Vi,Ví) ÍS in ^ and on^y there exists a (Wj^.w*) in E and w in I* 

such that (vi,vp ■ (w^.wpw ■ (w^w, w^w). 

A sequence u in I* is a universal synchronizer of A with respect 

to E if and only if for all s in S and all (v.tv!) in £, f(s .v.u) - 
m 11 m i 

f(s ,v,'u). m 1 

THEOREM. A finite state, completely specified automaton A with input 

distribution Pr(I) is synchronized with probability 1 with respect to 

an error set E only if and only if there exists a universal synchronizer 

of A with respect to E. 

The first portion of the proof is straightforward and is included 

here as it appears in Ref. 3 for the sake of completeness. 

Proof. If u is a universal synchronizer of A with respect to E and 

if u has length ra and Pr(u) ■ p, then the probability that u is not a 

factor of a sequence w with length km is lees than or equal to (1-p) . 

Hence for all s € S and all 6 E, 
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Lim Pr 
k-oo 

( (M 
j s,(wi,wp 

¿ Ltm 

k-*» 

1 - d-p)k ] - 1. 

Nov, assuming A Is synchroniied with probability 1, partition SX^f 

into N«l+M(M-l)/2 equivalence classes, 

Wt‘í(VVl>VÍ)SSX¿'|f(VVi) “ sn' ■ sv> “ ^ vl* 

one for each unordered, asynmetric pair of states, and one for the 

remaining triples 

wn - {(s ,v ,v')€SX^ |f(s ,v.) - f(s >v!)}, (t-0,1.N). 
U mil mi mi 

Distinct elements (s ,v.,vî) and (s ,v.,v!) of the same set w are in- 
mil “ J J L 

distinguishable with respect to the synchronising process in that any 

sequence x in I* that synchronizes A after the error (vt»vp occurs in 

state s also synchronizes A after (v.,v!) occurs in state s . Since A 
m J J n 

is synchronized with probability 1, there is at least one synchronizing 

sequence for every non-empty Wt, call it ut. 

In the remainder of the proof (st»vt»v¿) be used to denote 

a representative element of W^. Construct sequences z^, z^»*«** as 

follows: 

and 

- $ 

*t " *t“lXt* ^"^ *^ * * * *’^^ * 

where 
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or 

and 

-Í if 

\ 1£ f^t-Vt-i’ * 

(8fVt,t-l’v;it-l)eWn1 (1SniiN> 

Then, f(Sj,v^zt) ■ f(Sj,VjZt) for j ^ t, and it follows that u " 

is a universal synchronizer of A. 
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