
A
D
6
3
6
0
4
9
 

BOLT BERA NE K- AND NEWMAN in 

CONSUITING • DEVÍlO P|M E\T * EESEAEC 

AFCRL-66-426 

STORAGE MANAGEMENT IN LISP 

Daniel G. Bobrow 

Boit Beranek and Newman Inc 

50 Moulton Street 
Cambridge, Massachusetts 02138 

I 

Contract No. AF19(628)-5065 
Project No. 8668 

Scientific Report No. 4 

(The work reported was supported by the Advanced 
Research Projects Agency, ARPA Order No. 627, 

dated 9 March I965) 

Prepared 

for 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UNITED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS 



AFCRL-S6-42S 

STORAGE MANAGEMENT IN LISP 

Daniel G. Bobrov; 

Bolt Beranek and Newman Inc 

Bolt Beranek and Newman Inc 
50 Moulton Street 

Cambridge, Massachusetts 0213(° 

Contract No. AF19(628)-50S5 

Project No. 8668 

Scientific Report No. 4 

(The work reported was supported by the Advanced Research Pro¬ 
jects Agency, ARPA Order No. 627, dated 9 March 1965)* 

June, 1966 

Distribution of this document 
is unlimited. 

Prepared for 

for 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UNITED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS 



ABSTRACT 

Storage allocation, maintenance, and reclamation are handled 

automatically in LISP systems. Storage is allocated as needed, 

and a garbage collection process periodically reclaims storage 

no longer in use. A number of different garbage collection 

algorithms are described. A common property of most of these 

algorithms is that during garbage collection all other compu¬ 

tation ceases. This is an untenable situation for programs 

which must respond to real time interrupts. The paper con¬ 

cludes with a proposal for an incremental garbage collection 

scheme which allows simultaneous computation and storage 

reclamation. 



SECTION I 

INTRODUCTION 

Storage allocation, maintenance, and reclamation are handled 

automatically in LIS? systems. Storage is allocated as 

needed, and a garbage collection process periodically re¬ 

claims storage no longer in use. This paper describes the 

storage allocation process and a number of different garbage 

collection algorithms. A common property of most garbage 

collection algorithms is that during collection all other 

computation must cease. This is an untenable situation for 

programs which must respond to real time interrupts. The 

paper concludes with a proposal for an incremental garbage 

collection scheme which allows simultaneous computation. 
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SECTION II 

STORAGE ALLOCATION 

In any LISP system there are a number of different types of 

storage that are used. These storage types may be classified 

in two different ways. The first is by content: pointers, 

absolute quantities, and numbers relative to some origin. List 

pointers, floating point numbers and computer instructions in 

relocatable code are examples of these three types respectively. 

The second classification is by function, the use of storage in 

the system as: pushdown list, list structure (2 pointer quan¬ 

tities); single word blocks for numbers; and binary programs 

and arrays. Figure 1 shows a typical LISP storage map by 

function of the space used. Both of these categorizations, by 

content and function, will be useful in considering the prob¬ 

lems of storage management in LISP. 

The philosophy in the LISP system is that the user never need 

concern himself with storage allocation; it should be handled 

automatically. Each function as it is called has access to the 

pushdown list (PDL) for temporary storage. Management of this 

PDL is in the hands of the interpreter, for interpreted func¬ 

tions, and in system subroutines invisible to the user for 

compiled programs. Similarly, the compiler knows how to grab 

space for code for any function it compiles. However, unlike 

the PDL, once storage has been allocated for compiled code, 

this space assignment is permanent.* The area labelled free 

* This is not strictly true but is close enough for purposes 
of this discussion. 
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Fig. 1: Typical Storage Areas in LISP 
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storage on Figure 1 initially contains a single list of all 

list pointer storage available. As list cells are required, 

they are removed from the free storage list. There are only 

two functions in. LISP which can acquire an element from free 

storage, cons and ratom.* The function cons adds a* element 

to the beginning of a list, and ratom reads in an atom, and 

creates a special list structure for each new atom. If x = 

(A B) and y = (D C E) then the form z = cons [x ; y] has the 

value ((A B)D C E), where a pointer to (A B) has been placed 

In the car pointer of the new list element z, and a pointer 

to (D C E) has been placed in the cdr pointer of z. Thus the 

cdr pointer is a link to the rest of the list past the first 

element, and the car pointer points to the first element of 

the list. 

The function ratom is used in the read program of LISP to 

create a special type of list called an atom. A list which 

is associated with an atom is distinguished within some LISP 

systems by having a special mark as the first element of this 

list. In others the list associated within any atom is dis¬ 

tinguished because it begins in a reserved block in the free 

storage area. We will talk about atoms as marked in the first 

way, although the two are equivalent. 

There are two types of atoms, literal and numerical. Numerical 

atoms are distinguishable from literals. Externally a literal 

atom is any string of letters or digits starting with a letter, 

and delimited on either side by a left parenthesis, right 

parenthesis, period, space, or comma. All other delimited 

strings of letters or digits are converted to numbers internally 

* This is not strictly true but is close enough for purposes 
of this discussion. 
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(if possible) and stored in a word in full word -space. Then a 

word for such an atom head is taken from the free storage list, 

an atom mark is put in the car pointer, and a pointer to this 

full word cell is placed in the cdr pointer of this atom head. 

A literal atom (but not a numerical atom) is uniquely determined 

by the string of letters and digits in its external representa¬ 

tion. Before a new cell is created for this atom, a search is 

made through all atoms currently in the system. If an atom is 

found which has the same p-name (print name) as the atom just 

read in, then a pointer to the previous atom head is used. If 

no Identical atom is found, then a cell is taken from free 

storage, and marked as an atom head. Then the p-name of the 

atom is stored associated with the atom. In some LIS? systems 

a pointer to this p-name is stored in a bilden cell for this 

atom (a cell only accessible to the print program). In other 

systems, the p-name is placed on the property list of the atom 

following a flag, the atom PNAMI. (The property list of an 

atom is the list pointed to by tne cdr pointer of the atom head.) 

Since literal atoms are unique, they can be used to identify 

uniquely a function and/or a variable of a function. In some 

systems, special cells associated with the atom are used to 

store a variable value and a pointer to a function definition 

when these are identified with this atom. In others these two 

properties are found on the property list of the atom. In com¬ 

piled functions, values of variables are usually placed on the 

pushdown list. Since the property list of an atom is available 

to the programmer, he too may place on this property list any 

properties which he wants uniquely and immediately associated 

with a given literal string (atom). We will not discuss further 

here the use of these property lists in programming, but many 

uses should be obvious. 
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Let us note in passing that the search for atoms is made rela¬ 

tively efficient by a hash-coding technique. One commonly 

used technique is to hash the literal string into a 7 bit 

quantity (7 is used only for illustrative purposes, and could 

be any number - 7 is used in LISP 1.5 on the 709*0. This 7 

bit quantity selects one of 128 lists of atoms, and only this 

selected list is searched for the atom in question. Thus only 

1/128 of the total number of atoms in the system need be 

searched. This technique is often referred to as a bucket sort. 

In systems which have arrays and compiled functions, blocks of 

storage have leaders which contain, explicitly or implicitly, 

the following information: 

1) Type of block 

2) Length of block 

3) Position of quantities which are relative to 

beginning of block 

4) Position of pointer quantities 

5) Starting address of block. 

Not all of the systems provide all of the information, but the 

implications of providing each will become clear in the dis¬ 

cussion below on garbage collection. 
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SECTION III 

RECLAMATICN 

When storage of any kind is exhausted, the system initiates a 

process known as garbage collection, to reclaim all storage 

that is no longer In use. Other work in the system stops while 

garbage collection is in progress. Note that the user never 

requests anything be returned to free storage, and thus garbage 

will accumulate. Before going on to discuss the garbage col¬ 

lection process itself let us briefly mention the arguments 

for garbage collection as opposed to explicit restoration by 

the programmer, aside from the fact that It is obviously easier 

for the programmer. 

In LISP, many lists can have a single common sublist. Thus 

when a programmer erases a list and returns it to free storage 

he must be sure that it is not still being referenced in any 

other list. This problem can be ameliorated, as in SLIP, by 

the use of reference counters. In this scheme, a reference 

count is incremented every time a list is referenced in any 

structure. Then the erase command merely decrements the count 

of every substructure in a structure. Cnly when its reference 

count reaches zero is a list actually returned to free storage. 

However, this scheme runs into another more serious problem. 

In LISP we can construct circular lists, lists which reference 

themselves, perhaps many times. In one large project at Bolt 

Beranek and Newman, this is a critical property of the 
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structures used. In this case, the reference count will never 

reach zero, but may remain at an arbitrarily large number indi¬ 

cating the number of self references, and the list will never 

be really erased. There are solutions to this problem too. 

They involve searching a list for self references or keeping 

separate self referenced counters. This becomes awkward, and 

in addition, reference counters take space and space is often 

at a premium. Thus, because of the obvious convenience to the 

programmer, and the awkwardness of alternatives, LISP uses 

garbage collection. 

The basic garbage collection process consists of two phases, 

marking and collection. The basis of the marking phase is 

a set of the beginnings of all lists used. In most LISP 

systems this set consists of: 

1) All atom heads 

2) Pointers on the currently active pushdown list 

3) Pointer quantities in arrays and programs. 

From each pointer, every list is traced, and every cell acces¬ 

sible from any list is marked as in use. If a marked cell is 

seen in tracing through a list, tracing in that direction 

terminates since obviously that sublist and all of its sub¬ 

structures have already been marked. 

When this marking process is complete, collection of garbage 

begins. A linear sweep is made through memory, and all 

unmarked cells are placed on a new free storage list. Un¬ 

marked full works are placed on a separate free storage list 

of their own, or otherwise marked as available. Unused array 

space and compiled code space is also marked as available 

(in some systems). All marked cells are unmarked and the user 

ccntinues his process where he left off, with new space 

-8- 



available if he indeed had any garbage around. Cf course, if 

all the space is being used the system chokes to death. 

This is the garbage collection algorithm used in LIS? 1.5 on 

the IBM 7094 at MIT. What are the problems with this algorithm? 

First note that the garbage collector must be able to recognize 

which items on the pushdown list are pointers, and which are 

not. Thus recognition of cells by content is imperative. For 

example, there will be returns from subroutines which appear on 

the PDL. Cne way recognition is facilitated is by making non¬ 

pointers unique quantities which cannot be pointers. Another 

is to put unique flags on the PDL which will identify non¬ 

pointers. In LISP II, a more sophisticated scheme is used. 

Associated with each cell is a map (constructed at compile time) 

which indicates the nature of each cell on the PDL in the 

neighborhood of a call, at the time of the call. 

In tracing down each list, the tracing program can either 

follow the car pointer or cdr pointer first and so on down 

the line. In either case the other pointer must be saved on 

a pushdown list. This pushdown list must be long enough to 

hold all the alternate pointers in the longest car-cdr chain 

in any list structure. This is usually no problem, but if 

there are unusually long lists this PDL may be exhausted. 

There is an algorithm due to Peter Deutsch which allows mark¬ 

ing to proceed without using a pushdown list. We won't 

describe it in detail here but it modifies the list structure 

itself to point to structures which should be marked but 

aren't yet. In addition to the marking bit, it utilizes 

another bit to indicate if the car pointer has been marked 

yet. Cne might describe the process as turning the list 

structure inside out and marking it from the bottom up. 
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An alternative to this scheme is to use a bit table, with one 

bit for each word to indicate which cells are still to be 

marked. This has some advantages in a LIS? in a paging en¬ 

vironment. Note that a bit table or a bit in each work must 

be utilized to indicate which words are marked. Again the 

bit table may be advantageous in a paging environment, if the 

table is always around during garbage collection, since the 

garbage collector can determine whether a cell is marked 

without having to get the word, and perhaps reference a page 

not in core. 

Another problem with the garbage collection scheme presented 

above is that no atom heads are ever collected. This can be 

circumvented by marking only those atoms with properties 

(other than a PNAME, which all atoms have) or which are 

referenced in some list. Still another problem is the fact 

that if array or program space is made available, the blocks 

that are available may not be contiguous and none may be large 

enough for the next needed allocation. This is closely related 

to the problem of reassigning the boundaries of each area of 

storage, as shown in Figure 1. 
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SECTION IV 

COMPACTING GARBAGE COLLECTION 

With a garbage collector v/hich compacts each area of storage, 

we remove the problems of moving boundaries between regions 

of storage and obtaining large enough array or program blocks. 

In a compacting garbage collector, there are four phases: 

1) Marking 

2) List structure compacting and array relocation 

computation 

3) Address adjustment 

4) Relocation of arrays, collection of unused list 

cells, and unmarking of used cells. 
• 

The marking phase is essentially the same as described above. 

List structure compacting is accomplished by a folding operation 

(an idea first suggested by D. Edwards). A pointer T is set to 

the top of the free storage area, and a pointer B is set to the 

bottom of free storage. We will talk of compacting toward the 

bottom of free storage. T is moved down until the first marked 

cell is encountered. Then B is moved up until the first un¬ 

marked cell is encountered and the contents of the T-cell are 

> inserted into this B-cell. In the T-cell we insert the address 

of the B-cell, i.e., the new address of this structure. This 

process is iterated until the T pointer and B pointer are 

identical. At this point all list cells are below this 

location T, and any pointers to cells above T need to be 

adjusted in the next phase. Full word compacting is done 

similarly. 
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Array relocation computation (this includes compiled functions 

as a special case), is done as follows. Array space is swept 

and as each marked array is encountered, its computed new 

position is entered into its header in the cell for start 

location of this block. This new start address can be com¬ 

puted from the starting address of array space and the lengths 

of other marked arrays which will be below the current array 

in array space. The arrays are not moved at this time because 

this might cause an array cell to overlap a relocation address. 

In phase 3 all address adjustments are made. Any list pointer 

above T is changed to the new pointer found in the cell pointed 

at. Similarly any pointer to an array is changed to a pointer 

to the new location of the array. 

In phase 4, all the cells above T are free storage. They need 

not even be linked into a list since this area is compact, and 

can be accessed by indexing. Arrays are relocated to their new 

position, starting at the bottom, with any necessary relocation 

of internal items. There is no problem of overlapping. The 

contiguous block above the last array is now available for 

allocation for new arrays. All marked structures are now 

unmarked. Since all items in storage can be relocated, bound¬ 

aries between storage areas can be changed in this process. 

Minsky has suggested an alternative approach for compacting 

garbage collection. It requires the use of a serial secondary 

storage medium. It essentially puts out a symbolic transcrip¬ 

tion of internal storage, with the additional property that 

common substructures are retained. It also has the property 

that cdr chains usually become linear sequences. This is most 

advantageous in paged computer memories. 
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SECTION V 

INCREMENTAL (REAL TIME) GARBAGE COLLECTION 

If a LISP system is used for computations which are keyed to 

real time, then the garbage collection schemes presented above 

are inadequate. By keyed to real time we mean that a LISP 

computation must be made within milliseconds of an event in 

the outside world. However, all computation stops when a 

garbage collection is in progress and even on a 709^ with only 
10,000 words of free storage, garbage collection takes about 

half a second. Therefore, a LISP system could not react fast 

enough to outside interrupts while garbage collecting. As a 

graphic example, consider a LIS? pattern recognition program 

looking at a ping pong ball and directing an arm to hit the 

ball with a paddle. It would lose a point on every garbage 

collection. The following modifications to the compacting 

garbage collection scheme above will, I believe, allow simul¬ 

taneous incremental garbage collection and real time computa¬ 

tion. It is assumed that the real time process (or any other 

operating process) is not consuming storage so fast that the 

garbage collector will not have time to finish. 

Garbage collection is initiated when only a certain small 

fraction (say 10$) of storage is left. It is a separate 

process and shares central processor time with other oper¬ 

ating LISP processes as is standard in time sharing (multi¬ 

programming) systems. 
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The marking process proceeds as usual, with marking done on 

the pushdown list from older items to new. When the garbage 

collector reaches the current bottom of the pushdown list, 

marking is complete. However, during the marking phase any 

process going on simultaneously must take special precautions. 

Cn any writing done in the process, specifically on rplaca^, 

rplacd^, and sec's with prog's, the system must check to see 

if the changed cell has already been marked. If so, the item 

entered into this marked cell must be placed on the pushdown 

list of the garbage collector, unless, of course, this new 

item has also been marked. 

During the list structure relocation phase and the list cell 

adjustment phase, any references through pointers (car's and 

cdr's) must be checked to see if they refer to a point above 

the current T pointer. If so, then an indirect address must 

be computed, the right relocated cell obtained. Address adjust 

ment for arrays and relocation of arrays must go on simulta¬ 

neously. A special cell for the array currently being moved 

must be provided, and a special computation must be made to 

find an element of the array being moved. 

The incremental garbage collector described here is currently 

being implemented for a LISP 1.5 system on an SDS 9^0 computer. 

It is hoped that this system will allow simultaneous use by a 

number of users, including some real time processes, with only 

a tolerable loss of speed, not a cessation of computation, 

during garbage collection. 
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