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ENERGY-MOMENTUM TENSOR OF RADIATION IN A MOVING
MEDIUM UNDER CONDITIONS CLOSE TO EQUILIBRIUM

V. S. Imshennik and Yu. I. Morozov
(Moscow)

In e system of equations of hydrodynsmics at high tempera-
tures there must be included terms taking into account the
role of radiation, and also an-equation describing. the trans-
fer of radiation.

Thus, it is possible to arrive at equations of radiation
hydrodynamics. Basic question, which is solved here consists
in formulation of relativistics of the covariant kinetlc
equation of the transfer of radiation with a taking into
account of the motion in the medium. The most important
contribution to this question was made by Thomas [1] and
Synge [2]. The system of equations of radiation hydro-
dynamics for a general relativistic case was written out by
Prokoft'yev [3] (in the same place there 1s given a list of
the literature). Inherently, the equations describing the
motion in medium include radiation in the form of a
divergence of the energy-momentum tensor of radiation, In
general, the form of this tensor is very complex and it is
necessary to analyze jointly equations of the medium and
the equation of transfer of radiation.

However, under conditions close to equilibrium it 1is
possible to calculate this tensor by successive approximations
and subsequently to analyze general equations being obtained
from sum of tensors of the medium and of the radiation. Such
a procedure very greatly simplifies problem of radiation
hydrodynamics. If we were limited to the second approxima-
tion in calculating the energy=-momentum tensor (to consider
the linear terms according to gradients of the hydrodynamic
magnitudes) then we shall have obtained a generalization
of the well-known astrophysical approximation of the radiant
thermoconductivity with the introduction of the Rosseland
mean [4, 5). In present work there is calculated the energy-
momentum tensor of radiation in this approximation.
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Previously, this tensor was calculated by Thomas [1], but
the procedure of his calculation is nonstandard and results
in very cumbersome integrals, The basis of our method of
calculation will be the calculation of the energy-momentum
tensor of radiation at first in the inherent system of
reference and then its transformation to a fixed system of
reference by formulas in the Calculus of Tensors, Prelimi-
narily we shall present necessary formulas of relativistic
transformations and the basic relativistically covariant
equation of radiation transfer with brief conclusion,

§ 1. Relativistically Covariant Equation of Radiation
Transfer Which Tekes Into Account the
== TWotlon In the Medlum

otlion e Medlium

Let us assume that in a given system of coordinates S (it has the
sense of being interpreted as fixed) the speed of motion of matter 1s
arbitrary both in direction and also in magnitude at each point of
space r and at each moment of time t. We shall write out the Lorentz

transformation in vector form, Let us assume that as usual,

' =0 ('.“ -+ qi), e =~ v 0(‘ - jc:‘) . (1'1)
Here
=’.—' r == -— .'f--—" - :.'.
r ',q. p=r~—e¢, 0 Vit 3 .

System of reference g 1s moved relative to system of reference S
with a speed — q. If we substitute r and r, in (1.1) then we shall

obtain the sought form:

r=r-@-0%q-0q. ¢ ol (1.2)

From the invariance of the phase 2ri(k.r — vt) 1t follows that
K={lit]={+hi
will be & k-vector which is transformed by the formulas K| = (0x}/ox;)K;,

wherc elements of matrix of the transformation bxi/axl are from (1.2)

with replacement of t for v = ict, Thus, wc shall obtain



tredfito-n%erle] iF it ¥ (2.3)

We introduce the designation

L=o[1+%] (1.4)

Then equality (1.3) will acquire the form,
vi=vh, Y=p[t+e-n%er 3] (1.5)

By means of these formulas we find that in system of reference S!

1
L= sr=vm (1.6)

The relationship between elements of solid angles and frequencies
in both systems of reference 1s established by differentiation (1.6)
with q = const and (1.5) with L = const respectively:

do' = frde, &' =Liv (1.7)

We shall express the intensity of radiation I'v' in system of
reference S' in terms of intensity of radiation Iv in system of
reference S, proceeding from corpuscular interpretation of radiation
transfer theory. Let us assume that in S' the quiescent area dS!
is lccated perpendicular to q. The number of quanta of radiation with
frequency from v! to v' + dv', passing through this area during the

time dt' at an angle @' to the normal within the solid angle dw', 1is

proportional to

',v‘ B’ oo’ ;"" 1.8
- dS'dvdrde -~ (2.8)

This must coincide with number of quanta calculated in the system

'v " . 'v q \
-'—dewIldu-'-, —'—-‘—de\dldu (1.9)

.. 3
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Here the element o the area dS 1s perpendicular to q and rests
in system of reference S', where dS' = dS; the second term is the
number of quanta of given type included in the volume dS q dt. Equating
(1.9) and (1.8) by means of (1.4)-(1.7) and the equation of the inherent
time dt!' = o~1at in s° (the latter may be obtalned from (1.2) with

dr' = 0), we find:
ry =101, (1.20)

Using (1.5), it 1s possible to present (1.20) in the form of the

invariant

ry

1,
.a..a-;,=lnv. (1.11)

Hence it 1s evident that Iv/v3 with an accuracy up to a constant
factor 1s the lorentz— invariant function of the distribution of photons
(2, 31. )
The equation of radiation transfer may be immediately written in

system of reference S. On the basis of balance of energy

(17e) 1, + V.V, = — pkJ, — poJ, = pe, —

+§”‘|‘W'l S ". ('o lp ') Q(V..\'; ||. l.e n dun, (1.12)

W)

In this equatlon there are considered processes of absorption,
scattering and emisslon of radiation (mass coefficlents of absorption,
scattering and radiation respectively are equal to kv’ a, and €y
Q is the nucleus of integral term of scattering into a given beam
reverting to unity with the coherence and isotroplism of the scattering).

We shall establish the relation between the phenomenoclogical
coefticients kv’ o, €y and © with atomic constants of interaction ot

radiation with matter, For this purpose first of all we shall analyze

the transformation properties of the operator

. 4
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There is readily calculated from (1.2):
t 9 t o ' . . !
T or -..-9[;‘- o qc.'l ]' |-V-=|-l‘ O U l).;ll ‘I'? - .': oy m"] (1'13)

If then in the right hand side of these formulas we substitute
1 in terms of 1' using for this purpose the inversion of formula (1.5)
(the simultaneous substitution of 1 for 1' and q for — q, including

also in L), and then add both operatcr ratios, then we shall find

{1 d 1 1' . oae

Lo ll- |-\] (1.14)
or, according to (1.5), in invariant form:

¥ "__'f- .:.|.V] Y LI 1 V] = iy (1.15)

c o’

By means of the invarients (1,11)-(1.15) we shall transform
the equation of transfer (1,12) into the system of reference S'.
For this purpose we shall multiply it by 1/v2 and form the already

obtained invariants:

11, ' - 1, ! I, |
[ +| “J = = ({‘A:\) ¥ (f‘“"‘) [
. -]
' ‘g?)4‘z%§ ‘(mmvﬂé%(lﬁyybt)hth")VﬂVNNn

(1.16)

o e
® (4

Under integral here there also 1s separated the invariant
v dv,dw,, ensuing from (1.5) and (1.7). Equation (1.16) has a relativ-
istically covariant form, In parentheses there are included the new
invariant expressions which are evident from the invariance of the
left-hand side of (1.16) and the co-factors of these expressions,

Thus, in system of reference S' we have,



' r, ) r.
‘.'[7_‘-'.:'_ v,] T—-(o ‘vV) " '—(r‘nv\,“

_:_‘P'l'.- B ' ‘\'” RS 1 IR N N ]
Vv TR)
H

S (#'a'sv, ) -‘-I — vi * A gy dwy (1 A7 )

We note that it no longer 1s possible to take 1/v'3 out from
the sign of the differentiation if by S' we infer the inherent system

of reference at each point of space and at any moment of time, We

shall write out the four new invariant expressions

. ., v,
phyy = p'k" " = inv, a T e ey
s o't s . sQuv, il ben WSV WL F
PO = 0’0’V = inv, Vi ' v nv (1.18)

Then, if S' is the inherent system of reference, we shall assume
q = -V, where v 1is the local macroscopic speed of matter, and we shall
replace the primes by the subsscript zero. Then by means of (1.18)
we shall express phenomenological coefficlents of equation (1.122) in
terms of atomic constants of the interaction of radiation with

matter

ok, = lM-.'. pey = '5".'\.' POy = w.,‘
Qvvily b ) = % By (Viee Vo3 Lior Jos Tor 00) (1.19)
Expressions L in (1,19) may be written out according to (2.4)

and (1.6) (for L, the expressions are analogous):

L-m-'(]__ (1.20)

Thus, in the most general case the process of radiation transfer
in a moving medium may be described in fixed system of reference by

the equation of transfer (1.12) together with relationships (1.19).



In the inherent system cf reference S!', designated as SO, there
occurs the equation (1.17). Here it must be specified that ¥' (= vo)

depends on r' (= ry) and t' (= t;).

§ 2. Energy-Momentum Tensor of Radiation in the Inherent
System of Reference

We shall write out the system of equations of an ideal medium

taking into account the interaction with radiation [1, 6, T]

My . & (pey) -

Fo=Fu Tam@+Ouun+pbs —H==0 (2.1)

Here p 1s the scalar pressure in medium, € is the internal cnergy
taking into account energy of rest relative to unit of volume in the
inherent system of reference, Po is the density of medium 1n the
inherent system of reference,

The first of equations (2.1), which constitutes the law of conscr-
vation of the energy-momentum of a medium which takes radiation into
account, contains on the right-hand side the J.vector Fi’ describing
the exchange with radiation bty the energy-momentum, The energy-

momentum tensor of medium Tik is expressed in terms of the 4-speed

"'-clf-—l:i'—?ﬁ‘ (a=1,23), u.-;,—ﬁ/ﬁ (2.2)

The latter equation (2.1) constitutes the law of conservation
o1 number of particles in a medium, It is readily understood that
the 4-vectcr Fi may be in following manner expressed in terms of °

characteristics of the radiation:
F 1 1 -
o= (S ohr—peitdvde,  Fom— 2 {(ipht — pe) dude (2.3)

Here intensity of radlation Iv satisfies the equation of transter
(1.12) in fixed system of reference; 1, 1ls the direction coslne of

beam, Henceforth, ~c shall be ;1mited 1, the case, when scattering of

4



rediation in the medium can be ignored, Coefficlents of absorption
and emission of radiation are determined from relationships (1.19)
with a consideration of (1.20). On the other hand, F; by means of
equation of transfer (1.12) may be presented as the dlvergence of

energy-momentum tensor of radiation

he—gt (2.4)
Was = 4§ Llldvdo, Weu = it dvde, W = — 4 ([ 1ivie (2.5)

The proof of tensor character of magnitude wik is made very
simply and directly, if there are used the matrix of the transforma-
tion 6x£/6xk and relationships (1.5), (1.7) and (1.10). However,
even without this by determining Iv the magnitudes

Ko -%ss:,:,uu., So= SS!.I.M-. U= %SSl.dvdu_»

are components of momstum flow of radiation, components of the flux
of energy of radiation and the density of energy of radiation
respectively.

According to general properties of an energy momentum tensor
valid for an arbitrary physical system [6)

Va=Ko, Ve=(@S. Wu=—U;

The magnitudes of wik from (2.5) satisfy these relationships.

Law of conservation of energy-momentum of medium with the redlation

7.,1) can be presented in the form
& (Ta+ Wa) =0 (2.6)

Now let us turn to calculation of tensor of w1k under almost
cquilibrium conditions, 1i.e., when characteristic length of range

i radiation in a medium 1is less than the scale of variation of



thermodynamic magnitudes p, €, o and speed of medium v, At first

we shall calculate wik in the inherent system of reference SO, which
is significantly simpler. From equation (1.12) as a second approxima-
tion, ignoring the scattering and taking into consideration (1.19)

we shall obtain
19 s _ 1 110 4912
L LR R et LSl C2 i LR
In the inherent system of reference Kirchhoff's law €, O/kv ° =
0 0

= Bvo is assumed valid [4, 5]. In order to find Iv in the inherent
system of reference it is necessary to identify the fixed system of
reference with the inherent system of reference at a given point of
space r and at given moment of time t, For this purpose (2.7) we
shall assume v = 0, with the exception of expressions, subject tc
differentiation (here we take into consideratlon that v, depends on

v). Then from (2.7) substituting from (1.20) and remembering that

v
B'o~ p Tk —
we shall find

'\-B'.“n‘:r N K '5;+|o V.]T— —[lo(-a--i-lo V.)Vo]} (2.8)

Here there is used the circumstance that under the sign of
differentiation the given constant is v = v,/L (see (1.5)). This

formula for intensity of radiatlon Iv can be obtained otherwise
0

proceeding from equation of transfer (1.17) pertaining to the inherent
system of reference (scattering will be ignored). As a second

approximation from (1.17) we have

I&-B\-;%'.—[%&H.-v-]%‘.' (2.9)

- 9



This again results in (2.8), if we assume v, = vL and in expression
for L we assume v = O outside the sign of differentiation, Thus,
ISO = Iv which is natural, inasmuch as both systems of reference are
1denticag to each other, It must be noted that magnitude v, in (2.8)
pertains to the inherent system of reference., Then the expression
Ivo we shall substitute in (2.5) and shall calculate by means of
integration over the frequency and directions the tensor of wiﬁ in
the inherent system of reference, We shall introduce the designation

of Rosselands! mean

%-(‘#)"S..‘:.b..%uv.. Bo-s'ﬂ-ﬂv. (2.10)

By means of this formula in all elements of wiko there 1s made

an integration of I, from (2.8) with respect to frequency
0
.t d 10 T, /1 @
The remaining integration over the solid angle glves

We® -0..-,-.—8.— is 48 [-50-53,74-1;(3;-1—3;:4-9-0'0 'o)]

ruh]

Wa' -—l—a -‘-r = i (2.12)

W' -——BO'*‘_"_# :%-l"gvo Vo]

Thus, in (2.12) there are obtalned expressions of the energy-
momentum tensor of radiation in the inherent system of reference S0
for an arbitrary point in space and moment of time,

To avoid a misunderstanding, here it must be noted that in the
calculation of the tensor of wiko it is impossible to substitute in
integrals (2.5) Ivoo from the solution of equation (1.17) with v # O,
A formal construction of such magnitudes on the basis of the formulas,

10



| of course, can be made, But their aggregate in this case no*longer
will be a tensor., The difference from a tensor arises only in terms
of the second approximation, where the dependence of Vv on Ty, tys is
essential, In the notgd circumstance there is reflected the nontrivial
character of direct proof of the tensor character of magnitudes of
) ?wik from (2.5), when I, satisfies the equation of transfer (1.12) 1in
the fixed system of reference S. In calculating Iv0 by (2.8) there
was used the intensity I,, determined in (2.7) by means of (1.12).

§ 3. Energy-Momentum Tensor of Radiation in a
*Eea System of Reference

The equations (2.6) include the tensor of W,, calculated in a

fixed system of reference S, The obtained tensor of wgk in preceding
section may be used now by means of well known formulas of the trans-

formation of tensors [v] to find W,.:

W o gt Win (3.1)

System of reference S is moved relative to system of reference

So at a speed — v. Therefore, from the formulas of transformation
(1.2) we shall obtain expressions for r and t, replacing q by v and

replacing the primed magnitudes with nonprimed (except, instead of
primes in the inherent system of reference we shall substitute zero

subscripts)
rmnt 0= D5Ry— Lo vetfw 5D (3.2)
i From formulas (3.2) we shall £ind matrix of the transformation
-{ -y /0%
|¢.|-|Et| n‘” o =0 '| (3.3)

We shall emphasize in particular that the problem under consldera-

tion of the Lorentz transformations are used in a vector form (3.3),

1n
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*
‘.
;

since field of epeedl v in the fixed lyetem ot reference S 1s assumed

to erbitrary. P L |
As a first approximtion. in which tensor wik - W (1) pag
dhconal rorl, atter’ the trmforution (3.1) we obte.in the Well

known expreeeion (13

%o;v-.&e--. gae,
| sheE, Uh ikl (3.4)

Subsequently, there-uul be calculated the e.dditional part in

l"u"l

tensor of Wu, which e.ppetrl as the second epproximtion. We shall
introduce the delimmon o

Wa = Wald + Wat ’ (3.5)
According to (3.1) ‘
W = a2 = hestrnlin, A= -1 B0 (3.6)

Pumighogo+[R2+EE+nn]
) s " r,0 T
’“-‘[":"‘"’%]o "u-—[ln-l--' 'o"le]. 1.-!.3 (3.7)
Using (3.3), from formulas (3.7) we shall obtain expressions

for elements of tensor of W (2) in terms of F,_, presented in a
ik im

somewhat different form in work [3]

y L -r.-+"'l.o.r.+u.)+&,f.'_" B8 . —
-ow..-n[u..+v..+z"‘m.r] (3.8)

AW = (1550007 + B +
+r.+-up—-' MBS u— a.or..] (3.9)
7”0..-.'("' m¢+3°n’u+’..) (3.10)



Substitutlons of F, from (3.7) in equations of wik(g) (3.8)-(3.10)
are still insufficient for obtaining the sought expression., In (3.7)
it 1s necessary to change to coordinates of the time and speed of
medium in system of reference S. Here there must be used the following

operator relationships from (3.2):

im= i +0v]  vemviml 0Dy, (3.11)

and also relativistic law of addition of speeds in‘vector form

.  r Eeg N
Y= Fa=Fv ['H'—p—” ’."-1—”] (3.12)
At any given universal point vy = B and after carrying out the
differentiation also it is assumed y = B, From (3.12) it 1is evident
that in such case the effect of any differential operator D on Yo

reduces to the following:

ve = 8[Dy + 2500 . Dy] m o[y + 23500 p.09] (3.13)

Substituting F,, from (3.7) in (3.8)-(3.10) with the use of
relationships (3.11), (3.13) and introducing the l4-speed (2.2),
we shall obtain

.k
iW,,N--i-(O,.-}-UI,U.)[I.%-{-l‘é‘lfi- ';'["J:-,"'"J;;]T'*‘ (3.1%)
0[5+ B+ mla+ B+ 57 [ e + - e |
e
+‘{--.E+;;[:—'+:—:]+-:-T[-:;(-.-.'H;-:;(--m)] .
LW = (200 + ) T + (0 4+ 30+
AV ol e () (3.16)

+;[;—‘+ ;-:;'3 + -:r r [:,-(-.') + é:(-.l.')]

13



It is readily verified that expression Wik(Q) coincides with
formula (8) in [1], if we take into consideration the small
difference in factors of components of the tensors.

.In conclusion we shall present wik(g) in the simplest Galllean

one-dimensional , two-dimensional case

(e=1), - o |0z (3=1) A
By = «=2.9) =i, 0 (=23 (3.17)

We shall ignore all the terms ~p2 and shall obtain from (3.14)-
(3.16)
-4 -1 LT
P LRSS R TR (5.28)
1 i 1y )
y LOGEE N LA L LIt 3Ry S (3.19)
In comparison to the non-relativistic analysis [4, 5] here a
new result will be appearance of terms of viscosity of radiation in
(3.18).
Thus, the solution of very broad class of problems of radiation
hydrodynamics may be obtained on the basis of equations (2.6) with
substitution of W,, from (3.4) and (3.14)-(3.16), and in the simplest

Galilean one-dimensional case trom (3.18)-(3.19).
Submitted
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THE SPEED OF WEAK WAVES IN A RADIATING GAS

V. A. Prokoftyev
(Moscow)

In the article proceeding from relativistic equations of
radiation hydrodynamics [1-4] of an inviscid and ncnheat
conducting fluid, in ignoring the effects of the interaction
of particles of high energles (formation of vapors meson
fields et cetera), there is studied the propagation of
small flat harmonic perturbations in a quiescent equilibrium
medium; this study takes into account 1ts own radiation
field created by thermal emission and absorption of electro-
magnetic waves by particles of medium, Here a priori there
are not imposed the conditions of smallness of the ratios Of
speed of sound and velocity of light and radiation pressure
to pressure of the gas under which there are valid the
conclusions of previously conducted investigations of this
problem [5, 6] on the basis of Jeans and Vogt's equatlions
(7, 8]. Relativistic effects may be noted at small macr -
scopic speeds of the medium when microscopic speeds of
individual particles are close to the velocity of light
(very high temperatures), Differences in the values of the
parameters describing radiation field in a fixed and in
local systems of reference will be not only in the terms
having as a factor 1/c2 (c — 1s the velocity of light), tut
also in terms containing 1/c, owing to the Doppler cffect
and aberration,

§ 1. Linearized Equations

As a result of the berturbation parameters of medium we shall

obtain small relative increments (denoted by primes)

P=mPy(l + P), Ho=20BH,, H=2rBH', u=cou’ =cM (1.1)
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where P is any of following parameters: p, p, T, § are pressure,
density, temperature, internal thermal energy of gas; Bv’ Iv’ €y Ty =
Plenck's function, the intensity of radiation, volume density of
radiation energy, radiation pressure of the optical frequency v; R, I,
€, my are the corresponding integral parameters obtained from preceding
spectral parameters by integrating over all frequencies; Hv’ H are the
spectral and integral fluxes of radiation (subsequently along the axis
0x); u is the macroscopic velocity of the perturbed motion, o is the
nonrelativistic speed of sound (without radiation). The little

zerces pertain to parameters of an equilibrium medium at rest, so

that Por 99 are the residual density and residual internal thermal
cnergy of the gas.

Then there is investigated the motion with plane waves (along
Ox-ax1s); the squares of small perturbations, and of their derlvatives
will be ignored, The motion developed will be related to the fixed
system of reference, however, some of the parameters will be determined
also in the inherent system (which is marked by asterisks), where 1in
an undisturbed medium both systems coincide and the corresponding
paramcters in both systems will be identical as a consequence of
which asterisks next to magnitudes with a zero subscript are omitted.
Since the motion is one-dirmensional, then the inherent radiation field

will be axially symmetric and from determinations of the parameters

it is evident
1 3 3 '
¢ = $E(),H =E@.~ = 3E () sm-}n.gv g'l.'pw/ga,.w (1.2)
A linearized equation of radiation transfer has the form

PSRN UL s B S

17



if we assume the radiation as quasi-equilibrium and use Kirchhoff's
law, Here v, = pa, i1s the volumetric coefficient of absorption,

$ is the angle between Ox-axis and direction of the beam along

which there propagates radiation c® = co/c. Variations of the radia-
tion flux along the Ox-axis in the fixed and in local systems of

reference are connected thus [4]:
H = H* +3Me (1.4)
Relativistic equations of a one-dimensional motion of gas taking
into account radiation field [4] afier their linearization near the

state of rest will be written out in a fixed system of reference in

the following form:

h(i+5-+$)%'7+h9£+a.. Ly B =0
& &» [
- p O+ 3BT 0 Y =0, F4g =0 (1.5)

We shall supplement system (1.3), (1.5) with equations of state

of gas

= LD o=f(T) P=hp’ + AT, o =hp + AT’
Mo=2 () hy=2r(p) Ay=10) hy=Ar(0).lnly) =(@lny/dlnz)s (4 g

In the linearization of equations essentially there occurs a
transition from the relativistic case to the classical which satisfies
principle of Gallleo's relativity taking into account the Dopr 'r
effeet and aberration; however, the equations of state have remained

at the same time relativistilc,

§ 2. The Frequency Equation

The system (1.3), (1.5), (1.6) has a solution of the typc

P (2,8 = P (0,0)oxp i (kx +-wt)]  (k @=const) (=.1)
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which deserites, in particular, in an intinite medium the propasati n

oI £orced harmonic oseillstions of infinitesimally small amplitudc

wlth a frequency w, The real parts (2,1) have a physical mranin-,
Substituting cxpression of the type (2,1) in (1.3) and thcn, in

(1.2), we shall obtain

' T' 4 Me* cos & ike, o
l' '=1.T(B')‘+“o"+m."mo (m=-79) (1?14)

¢ =g + -;-MC?.. H = g1 + -.2-Mc'g,. n' = g + Mg, (7. 5)

n-_s{, f+v.. ,=_s{|--_ :j:-}
oe-25(s (ﬂ—w-n“ﬁ'-)} (= )
. t= 25+ (- i)} (2.1)

Siy) = ;( )w.ydv/S(‘%v_).dy (wf,:;i:_g_:r_._)

After substitutine (2.1) in the system f equatlons (1.5). (1. )
there is obtained together with (2,3) a system of lincar homogon
cquations, the condltion of existence of whose nontrivial soluti

with rcspect t¢ variations of parameters ic the frequency ¢«quati 1

("a"‘ +img+ % i‘-'?h)(‘l"' + eshimgy + 3 ':if'ﬁla) +
+ ("4 + 3ete, — ';"'oz"'ll) (es + hym* — icEmg, - % gy) = 0 (2o)

vhere all relative variations of the parameters are expressed 1n
terms of one of them, for example, in terms of Tt in the foll wines

manners
M=iLT', ¢ =—mll', p =(hy—AmL)T', o =((hy—mL)T’

¢ =+ LT, B =6+ FiClg) T = (g + ictg) T (1)

L= Mt bmn i Yictn 71t _ ot
= o4 Mm® —ic® zm“+¢ﬂa‘. = h“.x N Y= Mipe
g:;—. ey = Th; + €™, ..—.1.*.:. ,.,:’__a_ ()
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tlere y 1s the ratic of the sp. ific heats of the gas., ©n the

basis of well-known thermodynamic relationships
T=l4 R, ama—h (2.9)

The general investigation of the attenuation and dispersion or

waves of infinitesimally small amplitude reduces to an investdration
t the roots of the frequency equation. In subseguent sectlons ther
ar. made certain derivations from an analysis of this equation,

From characteristic equation (2.6) 1t follows that there may
¢xist two types of attenuatlng waves: compression waves and thermal
radiation waves, Compression waves are a modification of nonattenuatin:
sonic waves in a nondissipative medium, and thermal radiation waves
a1+ a modification of radiation waves generating under the « fteet 0
a pulsating source of radiation at the origin 1 couordinates,

System of equations for determining the radiation trancter ot tie
r'requencies does not have the solution q, = 1, since this car
¢ rresponds to the propagation of radiation In a nonradiating mcaiur
v m a flat source at the origin of coordinates with veloclty & 11
in 2 vacuum altenuating under effect of absorption of medium ace i
. the Bousuer law which does not correspond to conditions 1" th
problem belng consldered here,

In nonrelativistic case at ¢ =0 and £ = 0 equation (Purr) will

acquire the form

t4+mt 1, et m
Tirm —lZS{l—%ln.—— (2.1)

For an 1llustration of obtained derivations below thore wili b
uscd in addition t, general equations (1.6), equatlons of state of =
tudcal relativicstic nondegenerated gas of particles and vhe wo 0

particlis with constant heat capacitics.
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§ 3, Relativistic Iucal Gas

The internal energy of the relativistic gas of particles in a

calculation for a unit of inherent volume is the expression E = ‘c? +

+ pa, where p = nm, is the residual

A

-H-m' ] -
il

density of mass of gas, mp is the

average rest mass of an individual

particle, n 1s the number of particlec

per unit of inherent volume, § 3 1s

£ = 5 ji.i' the thermal internal energy of ¢as

Fig, 1 per unit of inherent volume, Fqua'i ns
~f state of a nondegenerated 1dcal
ras will be written out in the form [9, 10]:

& 2 =
P=a el s=Le(d 9 =3-z+1, 6-2- 2= (3.1)

where k 1s the Boltzmann's constant, Kn(x) are the modified Bessel
functions.

In accordance with this we shall obtain (Figs. 1 and 2)

h‘-h.=‘. h.=c'.1..I£.=ll" 1=’+‘/’. ¢|=¢.=‘I'
Ay=0, *=1lz=0U+N/U2), f(2) =3+ 2% — 26 3 + 26)

(3.2)
In an ideal gas with constant heat capacities
hymhy=hg=1, h=0, Z=22(r—-1t/c
¢I-‘lg"'_’o et =1/z2 ¢|=T+'rc.'/(‘r—” (5.3)

A relativistic gas in a general case does not obey these
relationships, bLut within the limit of very high and low temperaturcs
they approximately are reallzed where the ratio of the specific heats

* will be equal t /3 and 5/3 respectively,



In an ideal relativistic gas
z = 1,082.10"%, T
¢® = 3.040-10-? (yT) sy~
By = my, [ my) (3.4)
8 ndcdm 8¢
t= '5—:.!..%;: -
3f=‘:f81;==
- et (3.5)

Here my is the atomic mass of hydrogen, h is Planck's constant,
n, is the number of particles in 1 cmj. Hence there are evident the
limiting values co, €, Z, consistent with concept about medium as
about a materlal continuum,

If energy in unit of volume is equal to the pressurc [11], then
'.-'. h‘-h.-h.-e‘-e.-‘. h.--o' ¢.-2(1+C"). f=2 (B.b)

In case of an ultrarelativistic gas of particles we have

”-3p. hl-h.-h.-‘. h.-o. C.-C.-‘/'
=4 (yte™), =Y, (3.7)

§ 4, Waves of Large Optical Length

At small numbers of v, for determining the radiation transter
of ecnergy of optical frequencies the conditional wave length lg =
= ano/m expressed in lengths of free path of photons, is larye
(laryc opticel length of conditional adiabatic wave). The lifetime
ot a photon t, - 1/(cw ) is small in comparison to period of ovscilla-
ti'ns in wave, This will take place, if the frequenciles of thc
cscillations are small, or if coefficients of absorption of radiati n
arc laryre for determining optical frequencies, The radiation ticld

within the wave under these conditions may be assumed as cquilibrium,
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Within the limit while v, = 0 the waves will be nonattenuating
and will be propagated at a constant speed independent of the frequency.

The square of this speed 1s equal to
8 o8 TAA 4 48 (00 + Adks + 3hues — Ag) + 18088
""'%THW(EMH‘ . (4.1)

and may be determined by equality (the derivative 1is taken with a

constant entropy)

n (222), o

from equations (1.5), (1.6), if in them we substitute the equilibrium
values of the radiation parameters, The speed of waves (4,1) 1is the
low=-frequency adiabatic speed of sound; it, in particular, takes place
during very low frequencies where the influx of heat to a unit ~f
inherent volume in this case is lacking, At c® << 1 formula (4.1)

will determine the speed of sound in a gas, beilng in cquilibrium with
the black radiation [12]. For an ideal relativistic gas there follows
the formula obtained by Guess [13] from a consideration of the Rankine-
Hugonlot relations in a weak shock wave in a thermally ideal relativis-
tic gas; if we assume still € = O, then we shall obtaln the spced of
sound calculated by Synge [2] in relativistic ideal gas of particles
without radiation, In the case of an ideal gas with constant heat

capacities

3 T+0(—-DE+16(T - (4.3)
RS a-DI+ 2(—1) .

which at ¢® = O reverts to Sach's formula [14]; At large € from (4,1)

there 1is obtalned speed of sound in a phcton gas [15]

Co=c/VYY (4.4)
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At large values of c® (4.1) is replaced by formule

rJ o + : (4.5)

which for € >> 1 again gives (4.4). If the gas 1s an 1deal relativis-
tic gas or a gas with constant heat capacities, tr-n from (4.5) 1t

is evident
@ _ 1474308 4100 =N+ Wa—Hi+18a -0
2 - eEw - etz (4.0
Formula (4.5) for one only real gas (€ << 1) in a general case

and in case of an 1ldeal relativistic gas will be transformed

respectively, to the form

. D NTY,
- TR (4.7

and for gas with constant heat capacities there 1s obtalned Taub's
formula [16]. At large c® with higher accuracy f = ® = 3, as a
consequence of which formulas (4.6) and (4.7) are transformed into
(4.4), To this same formula there will be transformed equality (4.5)
4/3.

The ratios cao/cO s 1, if as 1s evident from (4.1) and (2.8)

P A= (4.8)

In the case of a nonrelativistic real gas being in equilibrium

for an ideal gas at vy

with a photon gas in accordance with (4.,1) and as was pointed out in

. article [12], the ratio Ca_)/CO

| oy
ankd » qu with an increase of £ monotonically
bl Y

increases from unity to int'inity.
(1]

\P In the case of a relativistic ges
4 ir

(Figs. 3 and 4, on the curves ther

ar s ol
iE' - are indicated the valucs £€) this

(] i I s ratio does not exceed the mapnltude
([} ll' 'L igx

i,
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. 0
| #ﬁ' | fe C /Y3, as is evident from (4.1), where

| ! it may be depending on relationship

between basic thermodynamic parameters

of the gas, be either greater than or

also less than unity, even if the ratio

of the specific heats cf the gas are

constant,

At small values of v,

H =%Mc, H¥ =0 (4.9)

Owing to the transfer of the radiation energy within the element
of the 1nherent volume an accumulation of energy does not occur.

Equation (2.6) at small values of v,, in addition to the root
mac t lcy/ce (4.10)

also has the root
tm= ﬁ%{-}[‘ﬁ ;%(en+h.h.+3(c.¢,+4¢.§)]}"', op=S(S)  (4.11)

At small and large values of £ (in the latter case we consider as
previously, that the order of any term is determined by order of

magnitude Vv) we shall obtain respectively

maz(+0(gh)t  i<h me20+0(gg) i (H12)

Thus, simultaneously there exist two categories of waves: pressure
waves described by root of (4.10), and thermal radiatlon waves descrived
by root of (4,11). The thermal radiation waves are nropagated in
the considered case of small values of v, Qith a speed by far lower
than both the ordinary speed of sound Cy without taking 1lnto account
the radiation and also velocity of the propagation of the pressure

waves, These are the slow waves attenuating by far more intensely



than the pressure waves, Therefore, the prevalling waves will be the
pressure waves, Waves of second category possess strong dispersion,
their speed 1s proporticnal to the square root of the frequency
of oscillations in the wave,

Coefficient of absorption over the length of thermal radiation

waves
-,
) e —=2n )4.1_3
& ln'y ( )

is a constant. The shape of the wave 1is not maintained since aég)
1s not a small magnitude, Coefficient of absorption in unit of
length is proportional to the square root of the frequency. The
length of thermal radiation waves 1s a large magnitude, inversely
proportional to the square root of the frequency. These waves are
by far much longer than sound waves and pressure waves,

The existence in an emitting and absorbing gas in addltion to
pressure waves in an ldeal gas also of pressure waves and of viscosity
waves in a viscous and heat-conducting fluld and of even thermal
radiation waves was ascertained previously [17-19].

In conclusion we shall compute the speed of waves In a Zel'dovich

ias (3.6). If v, =0, then

‘d _ 1428(544D)
oF T @AFIHO T+ (4.14)

At large £ we shall obtain the ultrarelativistic speed of sound

Oc)'1/2, which in case of small ¢’

(4.4), and at small c 4 = co(1 + ¢

a
-ives the adiabatic speed of sound in a nonrelativistic gas. In the
case of large or small c® (leaving aside here the applicability of

the equation of state (3.6)), we shall obtain

‘u’ 1+2;(5+4{) <" C°>" "ﬂ.__ t 4+ 28 (5 + 4%) C°<i

R P IT{E 1) I Bl v t el (4.19)

26



§ 5. Waves of Small Optical Length

Suppose now the numbers v, >> 1, This means that either the
infrequencles responsible for the heat transfer the coefficlients of
radiation absorption are small, or frequencies of the forced mechanical
oscillations are large, the life-duration of the photon greatly
exceeds period of oscillations in the wave and during the perilod of
one oscillation the radiation field can not change: the propagation
of waves occurs during a "frozen" radiation fileld. Within the 1limit
at v, = the only one of the dissipative processes being taken into
account here disappears; the waves become nonattenuating and are
propagated with the high-frequency speed of sound which can be calcu-
lated by formula (4.2) from equations (1.5), (1.6), 1if in them we
substitute *he frozen values H, ¢, Ty i.e.,, H' = ¢t = n'l = 0,
absolutely ot involving the equation of radiation transfer, As a
result there is obtained following value of the square of speed of

the waves:

o=t T U F e (5.1)

This formula coincides with the expression of the speed of waves
of low frequencies, if in expression (4.1) we assume £ = O, In a
nonrelativistic gas, in an ultrarelativistic, 1n an ideal ultrarelativ-

istic gas and in gas with constant heat capacities

oo = €, Coo? = Thiesc®¥/(] + €5), ComlC VS. Conm® = (7 ~ 1)c*

The speed of prupagatlon of hlgh-trequency we 5 ¢ always 15
less than the adiabatic speed of sound Coe The 8] ~d o1 low=frequency
waves in a given medium is higher or is equal to spred f hishefreaneney

waves, 1if



YAy [(1 4+ A ¢ — 3y — 1) heey — A} +
(1 + 0 ({1 + A es — Al — 3 1(r — 1) (1 + e + TAN Ayes) +
+ ded [hsy + (1 + ¢y = drhie) 1 >0 (5.2)

Condition (5.2) for an ideal relativistic gas always 1s realized,
i.e,, at any value of c® and £ in a relativistic ideal gas the low-
frequency speed of sound 1s greater than the high-frequency. In a
gas with constant heat capacities from a comparison of the speeds of
sound of very high and very low frequencles it 1s evident that: 1)

these speeds are equal, if € = 0; 2) €0 ” Caw’ ity s 4/3, 3) Coo

> Cgy 8t 5/2 z vy &z 4/3, if

> m(t:i)'(ir—"-)_l"-i-‘) (5.3)

The relation between adiabatic low-frequency and high-frequency
speeds of sound in an ideal relativistic gas at different values of
x and £ 1is shown in Fig. 4. It tends towards unity at ¢ = 0 at any
value x and at x — O with any £, at x = ® and finite € its square
tends to 0.4 (5/3 + 20& + 166%)/(1 + 8€), and at € = w, but at finite
X —to1/3f(1 + x + 9)/(1 + £).

From an analysis of the frequency equation, it is evident that
formula (5.1) i1s true 8slso in the more general case when simultaneously

there are realized the inequalitiles

cn> 1, FARITE B (5.4)

At large values of v, the radiation flux through the fixed area 1s
a constant magnitude: in any stationary volume in a fixed system of
roterence the heat flux owing to radiation is equal to zero, In the
inherent system of reference the radiation flux H*' = -8/3c“M is
dirferent from zero, however, the heat influx owing to radiation

in each riven element ot gas (in element of the given particles of
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the gas) 1s absent,

In case of a gas (3.6) from (2.6) it follows that at v, =«
and any finite €, co, and also at ¢c® = ® then at any limited v, 3
the speed of the waves is equal to veloclty of light, If € = a, then
at any limited Vo c® the speed of waves 1s equal to the ultrarela-

tivistic speed of sound.

§ 6., Isothermal Waves

Low-frequency speed of sound is equal to isothermal Cp = co//7

under the condition that

T )
1f ¢°2 15 less or larger than the right-hand side of (6.1), then
the low-frequency speed of sound is higher or lower than the 1sothermal,
The right-hand side of (6.1) for an ideal relativistic gas and a gas
with constant heat capacities is less than unity. The high-frequency

speed of sound is equal to the isothermal, if
A m(r=1)rhes(l +e) (6.2)

In case of an ideal relativistic gas this occurs at x = 5.6 and
in the case of a gas with constant heat capacities at e = vy - 1.

A simultaneous equality of the low-frequency, high-frequency and
isothermal speeds of sound is impossible, Returning to the investi-
gation of the general case of not very large and not very small values
01 the numbers 5 in the spectral interval determining the motion it
is possible to point out a broad class of conditions when the waves
(as a first approximation) will move with the Newtonlan speed of

sound. Such cconditlons are

Zla® >, &t =Sl —warcclgw),  1<O) (6.3)
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which must be realized simultaneously, From an eveluatlon of modulus

a(g) it follows that here there must be Z >> 1, and consequently,
0

0" < 1, since € must not be a larger magnitude, Therefore, the gas
here is close to the nonrelativistic,

From equations of hydromechanics of an inviscid and nonheat-
conducting gas radlating and absorbing radiation energy within the
framework of a special theory of relativity there is obtained the dis-
persion eruation of the propagation of weak perturbations in a quiescent
gas. The formation of vapors, meson fields and other effects pertaining
to the interaction of particles of high energies 1in all cases has been
ignored. It was assumed that state of radiation is determined by
Kirchhoff's law. Some of these limitations can be removed; it 1s too
laborious to generaliz: the discussed theory into more general equations
of the state of radiatién. There 1s established the exlstence of two
terminal velocities of propagation of waves: the adlabatic speed of
sound of low frequencies and adiabatic speed of sound of high
frequencies. These results were obtained earlier [6] from Jeans-
Vogt's nonrelativistic equations of the hydrodynamics of a radiating
gas where there was not considered the difference between thelr graphic
representation in fixed and 1in inherent systems of reference, The
consideration of the latter circumstance made it possible to estat lich
the correct formula (5.1) for an adlabatic speed of high-frequency
waves (instead of formula (3.8) in article (6]). There has been pointed
out the possibility of propagation of pressure waves with 1sothermal
spced of sound, There 1s demonstrated the possibility of the existence

of thermal radiation waves in addition to the pressure waves.,
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ON THE HIGH TEMPERATURE INTERNAL FRICTION
DURING LONGITUDINAL VIBRATIONS

S. I. Meshkov and T. D, Shermergor

(Voronezh)

There is solved the boundary value problem of longitudinal
vibrations of a uniform isotropic rod whose one end is secured
and on other there acts a pulse force, The volumetric part
of tensor of stresses 1s described by A. Yu, Ishlinskiy's
medium with the time of relaxation T, (standard linear body ),

and the shear part by Maxwell's medium with the time of
relaxation Ty It is shown that temperature function of

the internal friction of such medium gives during longitudinal
vibrations a relaxation peak and background where the latter
increases up to infinity, after which the vibrations alternate
with an aperiodic process, The solution of boundary value
problem is compared with the calculation of corresponding
rheological model, For the reglon not adjoining the point

of transition to aperlodicity the results of both methods
coincide, except the region of relaxation peak where
rehological model gives a result somewhat too low,

In the regicn adjoining the aperiodicity when the frequency
begins to decrease sharply the rheological model 1s not
suitable for the calculation, since it does not take into
consideration the change in frequency of the vibrations, It
is shown that at AK/K, = 0,1 (K is the modulus of hydrostatic
stress, AK = K (» = a) -K(» = 0); » is the frequency) peak,
caused by volumetric relaxation, 1is manifested only at

~ 10° o~ )
74/7p 107, For 1,/7, ~ 1 volumetric relaxation does not

appear and the temperature curves of the internal friction
during longitudinal vibrations must te the same as for torsic-

nal vibrations.



Application of thermodynamics of irreversible processes to solid
body which is in a nonequilibrium state leads to the conclusion that
in a linear approximation and in the presence of one relaxation
mechanism the tensor of stresses of uniform isotropic body 1s character-
ized by two relaxation times, one of which = 14 characterizes relaxation
of the shear stresses, and the other — T the volumetric. The
expression of tensor of stresses Oy, of such a medium in ignoring the

relaxation of the heat flow can be written as 1, 2]

’ ¢ . .
on = Kb+ 20 S exp'—"—,"—' e (t)dt +
-8 .

[ .
+ (Ka—Ko)8a _S.exp’-‘;'.l W) dr (1)

Here ek is the deviator of tensor of deformations €qp? the dot
designates the time derivative; KO and Km are respectively the relaxcd
and nonrelaxed adiabatic modull of the m hydrostatic stress. Since
at high temperatures the shear stresses thermodynamically are unstable,
in (1) the equilibrium velue of shear modulus is assumed equal to
zero [3] and therefore, u 1s the nonrelaxed shear modulus u .

onc of the methods of determining times of relaxations Ty and s
is the meth.d of internal frictlon. For determining the relaxation
time of the shear stresses Ty there are used forced or free attenuating
vibrations of a torsion pendulum [4]. From equation (1) 1t is evident
that for torsional vibrations when there exist only shear deformations
the internal frictlon with a rise in temperature must monotonically
increase [5], since for majority of relaxatlon mechanisms T = T, €xp
(11/RT), where H is the sctivation energy, R is a gas constant, Such
a temperature funaction of internal friction is observed experimentally

for single crystals of pure metals [6], where the mechanism of internal
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triction 1s the diffusicn of voids [7].

On the other hand, the same relaxation mechanism must result in a
peak of the internal friction for purely volumetric deformations,
Since there have been no experiments in a direct study of purely
volumetric relaxation, then it is of interest to examine the possibility
of determining the relaxation time of the volumetric stresses T by the
attenuating of longitudinal vibratlons, when there must take place
relaxation of both the shear and also the volumetric stresses,

Wwe shall consider attenuating longitudinal vibrations of a rod,
whose one end is secured and on free end there acts pulse force.
For solution of the posed problem we shall express tensor of deforma-
tions in terms of the tensor of stresses by means of equality (1),

analogous to what was done for the calculation of elastic vibratilons

(8]

)
t =‘;:Guau+;'-'(£;—k':)6n S Emexpf%'dt' '
-0

+2':—=°(&in -_ % Gusu) +: ‘“ (ai. — %Ons") ( =6 K.R‘.P) (2)

We shall assume that the deformation of rod located along the z-
axis is uniform, i.e.,, the tensor of deformations €4k is constant
along the z-axis, Then also tensor of the stresses everywhere 1s
constant, and it can be found from the condition that on the free
lateral surface forces are lacking (ciknk = 0), Since the component
n, of the unit vector on lateral surface is equal to zero, then all
the components 94k with the exception of 9,y must be equal to zero,

Remembering this from formula (2) we shall obtaln the relationship

et tin= (g ws) et | ¥ (o *3,,'—’)+f;,—]° e O
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Since

(i + &) - i' - (E i3 Young's modulus) (24 )

then expressions in parentheses are respectively the nonrelaxed and
intermediate (nonrelaxed shear and relaxed volumetric stresses) values
of the magnitude inverse to Young's modulus, i.e., of compliance,
Function (3) 1is equivalent to the expression
[]

¢ .
Onu=A S u oxp-"T-‘;idt' + 8 S . eXp “';‘ dar (5)
-

-

where

wet = E (14 28 ) 0+ pxan] £ ([ (1+ 52) w0+ Ekan) -

0% (3K + b)) ¥ W (n'—v) uliv—
-+} ' "'E"tm‘-u‘) . - E’mu‘—n‘) (6)

Substituting expression (5) in general equation of the motion
. 83y
'.l"'—s.— (7)
we shall obtain equation of longitudinal vibrations of rod being

considered

'.,-AS oxpi=t ,.‘a'u\ ,,,up”;',‘.a (8)

-—gp
which in accordance with the posed problem we solve with the following

threshold and inicial conditions:

Silieee = 0 cllll-l.. = F3 (1) (9)

where F is the constant stress impulse; 5(t) is the Dirac b-function
describing instantaneous actlon of the applied force, For the

solution of equation (8) under conditions (9) we shall use integral
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Laplace transform; in space of the transforms we shall obtain the
$
following expressions:

o — »p
1;'-.- AV, A= Zﬂl’("l'+')"+m.(""+ TR (10)

v, ns
Uldiea =0, '1-: L PP (11)
where Uz is the Laplace transform of the z-th component of vector of
displacement u,
The solution of equation (10) under conditions (11) has the form

”'“%:%ﬁ (12)

In order to change in expression (12) to the original we shall
use Cauchy theorem on the expansion of the meromorphic function

UZ into a series, as a result of which we shall obtain

-2 Q_l LA _Qup
/A ;,;E(_l) sin[x(n+ ) L] @), @=FE (13)
Qe =(n®+1)(y +1) (14)
Q) =p*pr,* + 1) (prs® + 1) + 1
+ap [Ag® (5® + 1) + Br® (pr® + 1) (an=n(n+ )¢ 'y;) (15)

where L is the length, p 1is the density of the rod.

Passing to expressions (13) from the transform to the original,

we shall obtain

nz’ 3 - ) :'— Ll
. u; (s,0) n—z( 1) sin[u(n+ ..‘\I-]x
® 4 s 4+ 1)1 -1"
x Bin® +1) (w* + a),‘,;[.l:l‘o. pI]" exp () (16)

where p,, py are roots of equation Qg(p) = 0, The form of these



roots depends on the sign of the discriminant

D = ma® + '.' (17)
where
n.--;-l,‘c.‘+ %M’—[-}(‘:‘ + 's‘)I (18)
g =[F00 + 0] = garnt et 4 +
+ 3ot[0* (B4 4) + 50 (4--B)] (19)
! '
and in terms of sy ; = 1/11 ; there are designated the frequencies

of the relaxation [9].
If D, > O, then from formula (16) we obtain the following expression:

Fsode® |, 2F S (—1)Psin(a(n '
wuis, )= gt gw + 5L E( ):”:h'.a'::'.')".:”“
(= [5,°s° ] Pn (5,° + 2,°) + Bu’lexp (— But) +
AR .
+ ({,‘ .,.h.'.':) S 10,° oxp (— Tasia (0t + $4) (20)

where

fo= —2[m =3 +50] Ta=m+ 3@ +a0)
fa = G287 (12 + 0 B+t — br,2) + 3rua — 0’
M = o B0 + 7, 11— 2 (6% (0a* + 1,90

v--lrctz;": ’ (21)

Condition Dn > 0 is realized in two cases,
1) At m, > 0. Then the magnitudes n, and w, are determined by

the formulas

..-VS'.C‘ION. Ny = — ’n'hOn
rom £VTMal, Q= farcsh (gura?) (22)
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Here the sign of rn must be identical with the sign of Qe
2) At m, < 0, but qn2 > |mn|3. In this case the magnitudes n

and w, are equal to

ﬂu"‘q’ulhom %y = — rach@n
ro= £Vl 0= arcch (g, (23)

If Dn < 0, then all roots of P, are real, and expression (16)
describes the aperiocdic motion,

Thus, from expression (20) it is evident that dependence of vector
of displacement on time is given by three components, The first
component describes the new position of equilibrium near which the
attenuating vibrations . ccur, second characterizes elastic after-eficct
and, finally, third conrtltutes infinite sum of the attenuating harmonic
vibrations in time and the logarithmic attenuating decrement for the
n-th harmonic, which is taken as measure of the internal friction,

is equal to
Ba =[x+ F(0* + 5] 5 (24)

where w 1s the angular frequency, calculated by formulas (22) or
(23), depending upon siin of mp.

For a numerical evaluation of the obtained results we shall be
1imited to a consideration of the zero harmonlc (n = 0). Then,
using mechanical characteristics of aluminum: sheap modulus u =
= 2.4-1011 d/cm2, Poisson's ratio v = 0,34, the den;ity p = 2.7
g/cm3 — and adopting for the relative relaxation of the bﬁlk
modulus AK/Ku = 0.1, we shall obtain the relationship shown in Fig. 1
between 1n Ty of the intérnal friction tan b = Ao/v and square of

frequency accordlng to which usually there is experimentally evaluated
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Fig. 1., Relatlonship be-
tween internal friction
tan © and logarithm of
relaxation time 1ln T3

curves 1, 2 and 3 corre-
spond to the values 1,/7, =

= 102, 303 and :I.O!‘l curve 4
is calculated on basis of
rheological model for

Ty =Ty = 107; curve 5 1is

the dependence of square of
frequency the rods vibra-

tions wg for 1,/1, = 10%,

the dynamic Young' modulus [6, 10], in
the function 1ln 14.

Since 1n 1, = ln 14 + H/RT, then
the magnitude plotted along the axis of
abscissas is proportional to 1/T, i.e.,
in Fig, 1 actually there is represented
temperature relationship between the
internal friction and the square of
frequency. In the construction of the
graphs as parameters there were selected
the following relaxation time ratios

2 4
1,/1, = 10, 102, 10%,

As is evident in
Fig, 1, reak caused by relaxation of
volumetric stresses at AK/K = 0.1,

appears only beginning from 11/12 ~ 107,

However, the volumetric relaxation may be ascertained also at smaller

ratios of 11/12, if there are used double logarithmic coordinates

]
AN
- N
-y -
lgtqd \
8 |
! g, \
-8 -y [ Y
Fig, 2. Relationship

between internal friction
and relaxation time in
double logarithmic coor-
dinates., Designations

nf curves are the 3ame as
in Fig. 1.

lntg & —~1n 7y. The corresponding curves
for the same values of parameters T,/T,
are given in Fig. 2, where region of relaxa-

2 manifests itself as

tion for 1,/1, = 10
a sector of the bend in the region of the
linear dependence,

By means of the double logarithmic
scale it is convenient also to trace
temperature dependence of internal fric-
tion in the entire region of vibrations

up to the point of transition. As might

have been expected immediately before the point of transition to
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aperiodicity, the internal friction sharply increases, where it is -
identical for all Tr/TQ values under consideration,

At the selected value AK/KOL = 0,1 relaxation of square of frequency
caused by relaxation of volume stresses, will be insignificant ~0,95%.
Basic role in relaxation of square of frequency up to zero is played
by the relaxation of the shear stresses,

From the evaluation made it follows that the relaxation time of
volume stresses 1, may be found from experlments on the study of
longitudinal attenuating vibrations under the condition that T K 1.
In case, 1if Ty~ Ty OF T, > Ty the relaxation of volume stresses with
a minor defect of bulk modulus does not manifest itself and internal
friction of such medium will give a clear background caused by the
relaxation of shear stresses, analogous to that, which such a medium
gives for torsional vibrations,

We shall compare the obtained rcsults with the calculation of
corresponding rheological model., Since relaxation processes during
longitudinal vibrations are described by complex Young's modulus E¥,
for the derivation of formula of internal frictlon we shall express E*
in terms of complex shear modulli and the hydrostatic stresses p* and
K*, using, according to formula (1), for u* Maxwell's model and for
K* — the model of standard linear body. Then for the tangent of the

shear angle of phases between the stress and deformation we shall

obtain the formula

Imy/Ee 1 1 AKer, 11 Kt Kt (8
“"-W'(».n.+fxe+x.¢w)(.:+?m‘v«—+ o ) (26)

The curve constructed by formula (26) for 7,/7, = 10“, is
shown in Figs. 1 and 2 from which it 1s evident that rheologiral model

gives a value of internal friction somewhat too low in the region

of the relaxation peak.
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For a discussion of this deviation we shall evaluate the contribu-
tion of zero harmonic to the total motion. This can be done after
taking vhe ratio of squares of amplitudes at t = O which are found
in formula (20) before sin (w t + wn). In the region of peak at
11/12 = 10“ for the first and zero harmonics this ratio is equal to
0,11 which in accuracy coincides with the determined evaluation of
first harmonic during free torsional vibrations of a rod whose shear
stroesses are described by Maxwell's rheological equation, where for
the evaluation of contribution of harmonics there is obtalned the
formula v = 8/n2(2n + 1)2 [5]. Thus, contribution of higher harmonics
during vibrations of free rod 1s not very small, However, higher
harmonics can be practically removed by attaching an inertial suspension
t. the rpd {11, 12}, Nevertheless, also after suppression of higher
harmonics for torsional vibrations the indicated deviation will take
place [12], therefore, 1t may be asswned that it is not the r~sult
of ignoring the higher harmonics. But taking into consideration that
the difference between results of calculating the internal friction
in region of peak by rheological model and the solution of boundary
valuc problem is comparatively small, and calculations in latter casc
arce vesy cumbersome for an approximate description of peak of internal
friction it is possible to use the rheological model.

However, in region, adjolning the point of transition to aperiodic-
ity, the rheological model glves an incorrect result, This is assocla-
ted with the fact that during the calculation by rheolougical model the
frequency and the temperature are considered as independent variables
whereas in reality thc heating up of a specimen changes the frequency

.1 vibrations where the change is very great near the point of transi-

tion to aperiodicity.
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INVARIANT GROUP SOLUTIONS OF EQUATIONS OF A SPATIAL
STATIONARY BEAM OF CHARGED PARTICLES

V. A. Syrovoy

(Moscow)

In works [1, 2] there was introduced the concept of an
invariant group solution (H-solution) and there is worked
out a general methcd of obtalning such solutions. In a
number of works [2-6] this method was applied to systems of
partial differential equations in partial derivatives describ-
ing different physical phenomena, Below there have been
investigated the group properties of equations of stationary
normal beam of analogously charged particles in an arbitrarily
oriented external magnetic field both during nonrelativistic
speeds and also in a relativistic case when the radiation of
moving ~harges can be lgnored,

§{ 1. Fundamental Equetions

A normal [7] nonrelativistic charged-particle beam in statlionary
case in an arbitrarily orilented external magnetic field H 1s described

by system of differential equations, which in tensor form has the form

9'(5 + rn'v’)'-g“(g +ﬁe..uw"'l-l")

[ x 1 9 - )
aw VEge =0 = (Vg %) = (1.1)



Equations (1.1) are written out in dimensionless form [6]; all
indices pass through the values 1, 2, 3; here there are adopted the
following designations: vk, H? — contravariant component of speed
and magnetic fleld strength; ¢ 1s the scalar potentlal; p is the

b

density of the space charge; rpk is the Christoffel symbol of second

kind; e i1s the covariant isotropic pseudotensor of weight 1 and,

mnl

ik

{inally g is the contravariant meteric tensor (g = |g1k|).

As will be evident from further discussion the H-solutions are
obtained in four orthogonal systems of coordinates: cartesian x, y,
z; cylindrical R, ¥, z; splral cylindrical Qys dps Z5 spherical r, 0O,
¢¥. Eouations of the beam can be written out in each of these c or-

dinate systems, Equations of motion have the integral
29 — gav‘v® = const (1.2)
External magnetic field H satisfies the equation
o VagH) =0 (1.3)

For magnetic fields, which can exist without speclal supporting

devices in the beam there is still another equation

e (1.4)

§ 2. Group Properties of Equations of a Beam

The solution of the determining equations for the coordinates of
infinitesimal operators of basic group G of equations of the beam
(1.1) shows that Lie algebra of basic group is generated by following

linearly independent operators:



X, = rv+.(\'v. + 2’-‘!'-)-}-(: — 1)(20 55 + N9)
Xy =V — zp-s-nv. (3=0)

(¢) xl-—ﬂﬂ'i'-f;;—l‘;;'i‘";——”v—ﬂ-'*‘”xo
X.-—:—-L:-E—r-‘;-+ur—ll,-ﬂ—~- ,-"—

X.=—z +'T l‘r-'-l’a-—llg—"—-*- ”u—;”—
[
xo*‘,—,'- Xy= ‘. XO-T (2.1)

Here v, Yo Wy are Hamiltonian operators in space of the coordinates,

speeds and components of magnetic field strength, respectlvely, To

the enumerated infinitesimal operators there correspond the following
finite transformations maintaining the system (1.1): operator X, 1s

an extension with the arbitrary parameter a; operator X2 is an

extension with a = O; operators XB, Xu, X5 — the simultaneous turn by

an identical angle in one of planes of coordinate space x, y, z and
cogfesponding planes of space of speeds u, v, w corresponding to 1t,

finally

and of the space of components of magnetic field Hx’ Hy’ Hz;

the operators XE’ X7, X8 are transfers along axes X, ¥y, z. Optimum
system of two-parametric subgroups assuring the ascertaining of all

essentially different H-solutions of rank 1, has the form

1. Xa, Xy 0 XS Xet X0, Ko T Xo—Xot Xo, Xs
2. Xo. Xo s, Xn—X|+X1. Xo 8 Xy—Xs--Xo, Xo— X+ Xs
¥ Xy aXeXs 6. X Xa | 9. Xy—Xu+ Xs., Xu, 10°. Xs, Xe

(2 s an arbitrary oconstant)
(2.2)

§ 3. Invariant Group Solutions of Rank 1

If the magnetic field is directed along the z-axis, then the H-
solutions obtained in subgroups 1°-5° of system (2.2), correspond to
two-dimensional Tlows considered in [6]., In case of an arbitrary

orientation of magnetic field the form of solution does not change,
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however, the flow becomes spacial, It must be noted that the analytlc
solutions presented below for flows with two components ~f speed are
Jbtained under assumptions, reducing to the system (sM) tor corrcspond-
ing H-solution to equation of form (3.1), from which there werec btained

analytic solutions for two-simensional flows [6]
yi+ey=y° (P4} (3.1)

1°, For the subgroup H <X7, X8> the solution has the form

V=g (2). o=/, (), p =J,(2), H=J" (2) (5. 2)

Here

V = (0, 00, )y H = (Hoy Hoo Hedy 3 =00 ahs IV = Ty J0, J)

A uniform magnetic field sa isfied equations (1.3), (1.4).

29, TFor the subgroup H <X3, Ag> we obtain

Ve JOR), e=JJR), ep=n@® H=1"R® (3.3)

The common solution (1.3), (1.4) determines the following magnectic

field:

”R=".|IR| ”¢.= ””,R- ’l.=”., (Bou)
30.1. For the subgroup H <X1 + aXB, X8> the investigation
naturally is made in the spiral cylindrical system cf coordinates

dq» Qz,, z; here

V= % )V (q), ¢ =ent (q) (v = 3by)
1 __ atv-derin J, (q)), i !

.‘l + ..l

gammmny i L L L] J“’ (q1)

= Ve (3.5)

p=

Let us consider the case, when J2 = 0. Assuming in addition

Jy=ne?JS 0 (3.6)
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we shall obtain the following solutlon:

Jo= [;;ré-;)-,r]'-:7 {sin [y (1 + 0) (. — q.)n'%'. Iy = fet
o= -ﬂﬁ*_—'.’,]')-' (@ - c.)'%' =0, o=@ =IO
Jom—vty Ji=d¢, Si=(+b)J, (3.7)
The pos~ible values of n in (3,6) are determined by the inequalilty
X< VI e<u<h g=0 h<0 ¢=b 5H>0) (3.8)

In approaching the emitter the tangential component of the magnetic
field increases without limit; J6’ J8-* 0 at Q; = qp- Particles,
abandoning spiral cylindrical emitter qq = Qs Move along the surface

of spiral cylinder qQ = const; at o = 1/2 the trajectories will be
WEW pufony it — o — 2 In (e "
s Lr ol o0y TP =% ﬁln(a-+V3-T‘—u'7.‘+c] (3.9)
In this case, as everywhere later there are satisfied the conditions

of emission limited by the space charge,
The following magnetic field satisfies equatlons (1.3), (1.4)
”. P — ”“g(".ﬂ!r.l'n sin (qu + 6)' ”.‘ =H “dv-bn)h-h!u co8 (-rql + 6)'

H, = H,, (Hg, Ha, 8ere arbitrary constants) (3.10)

Here HO} may be different from zero only at a = 1.

3°,2, For the subgroup H <X1, X8> we have

V=RIV ), ¢=R"J0), p=R"J4) H=R"I"w (3.11)

Assuming Jy 20, 3y = nJg (0 <06 <1,0<n = Y2 ), we obtain
L LR ) 1 s
e +0 +@ 1 +6 oo
Jo=[srlsa] vin e d + o', Ji= O]y @=0

Iods = Jo J.E(u‘—.-',")"" Jo==Jy, Ji=aly+a
_ Ji=—@+ 1) +a (5.12)
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At 0 =1/2 and n = /2 ‘the given solution described a two-dimensional
flow with circular trajectories [6]. At w < V2 trajectories are located
,n surface of the cylinder R = const, The emitter is the half-plane

¢y = 0, At o = 1/2 the trajectoreis are determined by the equations

R = coost, 3=L——!:'R¢+e(mu (3.13)

The following magnetic field satisfies equations (1.3), (1.4):

Ha= HyR*'sin (wp +8), H,= HyR'‘cos(ay+8), M1, =0
He=Hysin (0 +8), H,=Hycos(p+9), H, = Hy (3:21) (3.14)

At & = 1 we obtain the uniform magnetic field H = HO. It is
readily seen that & = n/2 - B, where B is the angle between projection
of vector H onto the plane z = const and the emitter ¢ = O,

o}
4~, For the subgroup H Ay - Xy X3, X8> we have
V=etJV@E), @=e%/, ), p=e/ (), H=e"J"@) (3.15)

Assuming J, = O and J; = ue'i/RJg(O < 0 < 1), we shall obtain

N . _—
Jom[galaa] i e @ F 00T, Ll feerp(—5)
J;=(U¢—Jl')"-. l=—alyta, I,=1y, ’0=~d‘+‘% (3’16)

Here

t=WA I"=RI" [I,=RY, a=cost

The glven solution describes a flow, in which the particles arc

cmitted from surface of cylinder R = 1, Particles move in planes,

passing through the axis of emltter along the curves (0 = 1/2)

¥ = const, t=8(%exp%— 1)*dr (3.17)

The magnetic fiecld of the following form satisfles =quations (1.3).
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At 0 = 1/2 and n = Y2 the given solution described a two-dimensional
flow with circular trajectoriles [6]. At n < V2 trajectories are located
on surface of the cylinder R = const, The emitter 1s the half=-plane

¥ =0, At 0 = 1/2 the trajectoreis are determined by the equatiohs

R = cost, ,-[_i"—_a.n'q-mu (3.13)

The following magnetic field satisfies equations (1.3), (1.4):

Hi= HoR s @9 +8),  Hy= HyR cos(@p+8), Hi=0
Ha=Hysin(p+8), Hy=Hycos(p+8), Hi=1MHe (3:20 (3.14)
At @ = 1 we obtain the uniform magnetic field H = H,. It 1s
readily seen that & = n/2 - B, where B 1s the angle between projection
of vector H onto the plane z = const and the emitter ¥ =0,

4°, For the subgroup H <X1 - X2 + Xj, X8> we have

Vae Q) g=ean/ Q) p=ew@) H=ed®@  (3.15)
Assuming J, = O and Jy = ue'i/RJg(O < 0 <1), we shall obtain

1 o
I ={galaw] " i e (030", 1y = leerp(— )
Jim @ =l L=—dly+a, L=/, L=el,+a3  (3.16)

Here

t=hR 1P=RI® I,=0, o=const

The given solution describes a flow, in which the particles are

emitted from surfa-. of cylinder R = 1, Particles move in planes,

passing through the axis of emitter along the curves (o = 1/2)
v=coost, s={(Zexpf—1)"ar (3.17)

The magnetic ficld of the following form satisfies 2quatlons (1.3).
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(1.4)
Hym —Hegmoin(ol +8), HomGpetem@+8) Hmo (3.18)

5°, For the subgroup H <X, - Xy + x7, x8> we obtain
Ve V), e=evi () p = V], (2), n"""“-’(‘)' (3.19)

Assuming J, = O, Jy = nJg(O <0<1,0<n s YZ), we shall obtain

s
l. - [E“-_L.w'ﬁ“ﬁl (a (i 40) 3')‘“' "IJO = fy

Jom @ —T N, Jym—al+a, Sy=1Ty, lob-ut"'.% (3.20)

Solution (3.20) is a generalization of earlier consldered solution
[6]. At o = 1/2 the particles move along stralght lines, inclined
to emitter x = O at an angle #(tan 8 = nAfo = »2).

The magnetic field of following form satisfles equations (1.3),
(12.%) '

Hym—Hyvsla (az +8), H,=Heveo(az+8), H,=0 (3.21)

Thus, there are considered those subgroups in which in the case,
when magnetic field is directed along the z-axis there is possible
the construction of the H-solutions describing two-dimensional flows
[6]. Only a uniform magnetic field which 1s admitted by -first four
of the considered subgroups satisfies equations (1.3), (1.4). For
the last two of them the magnetic field may be uniform at o =1,
Magnetic fields of form ean(R) and eavJ(x),where J £ 0, are not

realized without certain additional measures,

Let us assume that we have a two-dimensiocnal flow in a uniform
magnetic field., We shall change the direction of the vector H, Here
the flow becomes spatial., As 1s evident from the above discussion the

fom of the solvtion will not be changed exzept only foi the subgroupe
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H<X7, X8> and H <X, X8>.
6°. For the subgroup H <X1, x3> we have
Vari®@), g=ml@) p=r= 0 H=ri®® (3.22)
Let us consider the case, when
Simbly . JymueVI, o=l %0 (3.23)

The solution of the system (S/H) reduces here to the solution

of the equation

I+ oagW' +2(2 + 1) J = J"eaco (3.24)
At a(2a + 1) = 1 equation (3.24) coincides with equation, obtained
in [8] for azimuthal electrostatic flow from a conicael emitter (s;pgle-
component flow in @-direction). The function J for this case has Seew
tabulated [8]. Thus, we obtain prepared numerical solutions for the

two following flows:

Valjo®m, =i/, p=3N0), =000  @=-n
VaVrt @), o =0, p=3i® B=-=1"0 =12

The corresponding magnetic field and the y-component of the speed

are determined by expressions

JommJy — cig8ly + ake o, Jom (a4 1) /5 + 0o cach
Jym My — (@4 1) ], + e L, Ty = g% e
Jy= (23— (1 4+ &) sl VT, (3.25)

It 1s evident that the y-component of speed vanishes at a n value
equal to ﬁ@/(l + k2)» and if a (or k) is equal to zero. Particles
abandoning conical emitter 6 = 90, move along the surface lnr- k@ =

= const, being obtained from rotation of spiral around the z-axis,
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At n equal to the indicated value, and @ = O the trajectories are
flat spirels, since here ¥ = const for a particle, It is of interest
that equipotential surfaces in this case will be the cones 6 = const,
At k = O a particle abandoning the emitter at point with coordinates
ros 60, wo, moves along a sphere of radius Tos where 1ts coordinates
0, ¥ are associated by the relationship

'-@-L’?—?(Inu;——lntg'ﬂ (3.26)

At Xk = 0 and n = Y2 we obtain single-component flows in the 6-
direction, The solution given in [8] is a particular case of this
series of solutions when o = -1 and magnetic field 1s lackilng.

Assuming
3a/, + ctgo/, = 0, Jo = xV7,sin0 (3.27)

we shall obtain the equation (3.24) for the potential. Furthermore,

we have

= -%WCm.o ) J.i[z—n'(-h’o +£%l'!)]myjo

J.-_l.'_“'olil-é_“%?.;‘-o._ JJ.-’. (z-%-—' ¢
he@+ VWyt—20, Jy=li=@+0)+ 3
' iaw R "Tee T 5

The trajectories are located on surface of the filgures of rotation
™ oin@ = const (3.29)

At n = V2 and a? = 1/9 the speed in y-direction vy becomes zero,
At a = 1/3 the particles from conical emltter 6 = 90 move in straight
lines parallel to the z-axis. At & = -1,1/2 agein we have at our
disposal prepared numerical solutions, At H = 0 the flows from conical

emitter were investigated in work [9], in which there are given
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numerical results for a number of a and 6, values, The flow 1in this
case 1s potential: vy = bw/Bxi, where W ig the action pertaining to
the mass of the particle.
We examined what magnetic fields satisfy the equations (1.3), (1.4).

For the radlal component J6 of the magnetic fileld we obtain Legendre's
equation whose solution 1s the Legendre functions of first and second
kind P,(€) and Q,(§). Inasmuch as Jé = aJ,, then the g-component H

may be expressed in terms of the associated Legendre functions Pai(e)

and Qai(ﬁ) of the first and second kind of degree a and of order 1,

Here & = cos 6,

For J8 we have the following alternative:
JymHumed (=0, Je=0 (s40) (3.30)

At @ = 0 and @ = -1 the solution of equations (1.3), (1.4) is

determined by the formulas

]{,--’!’l!--”-’ﬂP.(;). ”.B‘:'(”net‘o +_"éa.‘)l ”6='"a".=.- (a=0
HePngd=—5% ), H=alty. H=0 a=-v 5.31)
3.31

At @ =1 and Jg = HoP, (€) we have
H,-H.mﬂ. H.ﬂ-”..heg ”020 (3.32)

Formulas (3.32) determine a uniform magnetic field directed along
the z-axis, i.e., along the axis of conical emitter 6 = 90.

Thus, a flow of the form (3.22) in a uniform magnetic field 1is
possible when this field is directed along the z-axis. In the devia-
tion of H from this direction the flow parameters do not satisfy

tormulas (3.22).



7°. For the subgroup H<X, - x2 + Xg, x3> we obtain

Ve JOR), gudul R), p=o/yR), H=e® @)  (3.33)

At H = O flows of the form (3.33} from cylindrical emitter in
case of emission limited by a space charge, were lnvestigated in [9].
The flow in this case is potential,the actlion is determined by

expression

W-‘njw (3-3’4)

The common solution of equations (1.3), (1.4) has the form

". -ﬂzl(.n)' H.-o' ”l - '.z. (zc m (z.-¢|1. +.lY" (3' 35)
Here Jg and Ya are cylindrical functions of first and second kind;
cy, C, are arbitrary constants,
8°, For the subgroup H <X1 - X2 + X3, Xi - X2 + x8> we obtain

Vb O R), = et (R)
pumgetdng (R), H=eob )R (3.36)

At H = O the solution of the form (3.36) was considered in [10].

Form of solution was esteblished by method of separation of the

variables,

Equations (1.3), (1.4) result in the following equation:
S+ )0 .51

Cyliudrical functions of first and second kind are the solution
of (3.37). In the considered case £ = oR and v = ia/B,
9°. For the subgroup H <X; - X, + X5, X;> we have

V = gt J10(g), @ =rnaM, (9) (3.38)
pumppeng@y (9), H=r-tev)®(g)
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The solution of the system (S/H) for a given H-solution can be
replaced by integrating an equation of the form (3.1) for a = 0 and
a = -1/2, Assuming & = 0, J, = O and J, = kJ} sin 6(0 < 0 < 1,0 s
s k s YZ), we shall obtain

. ' - .
'0'[wb_15r]r!"(slu BA+o)@ -t (i=inyy) (3.39)

At 0 = 1/2 and k = /2 we obtailn the simplest expressions for the

components V and H

Jym 4+ VI o, Jy =V sine, Jo= (I yesc0+JJ3)/ T,
Jy = —lue'o[.l,slno +Scuo (cscd —1)11“]' fe=Ji =y (3,00)

" The trajectories as 1is evident from (3.40) will be the plane
curves
Poin@s= const (Jym ¥YTicoud), resc@mconst (J; = — VI, cos0) (3.41)

If there occurs the first formula (3,41), then particles from
emitter 6 = 90 move in straight lines parallel to z-axis,
Equations (1.3), (1.4) results in the equation

oAt efero- Bl oo

whose solutions are associated Legendre function of the first and
second kind. In the considered case

Peintl™ t=csl p=23
ItWegmOuam—1 wria (§ =Intg?,)

Iy=tsin0 oot +8), I~ — Hysin (8 +8), /o= Hyoos (g +8) (3.43)

10°, For the subgroup H 0(3, Xu> we obtain

»=J, () e=J(n), p=J,(n), H, = Jg(r) (3','“4)
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The radial magnetic field in no way affects the flow described
by formulas (3.44), The series solution of the system (8/H) determining
a given H-solution is given in work (11] for case of emission limited
by space charge, In works [12-14] solution of system (S/H) 1s expressed
in terms of Airy functions for different conditions of emission,

Thus, there are considered all the essentially different invarlant
group solutions of rank 1 equations of stationary charged-particle
beam. In work [4) there were given examples of H-solutions of rank 2,
which are constructed of one-parameter subgroups, but are determined
in the final analysis from a system of ordinary differential equations,
At the same time such solutions are not invariant with respect to any
two-parametric subgroups of the basic group G of the system of partial
differential equations (S) being investigated. In our case, etc,
such examples can not be constructed. This is explained by the

difference between the space coordinate and time,

§ 4. Certain Remarks

In this work there have been investigated group propertles of
equations of a normal nonrelativistic charged-particle beam 1n station-
ary case in arbitfarily oriented external magnetic field., There was
found a common solution of system of determining equations for
coordinates of infinitesimal operators, determining basic group of
G equations ~f the beam (S). The construction of optimum system of
two-parametric subgroups has assured the finding of all essentlally
different H-soiutions of rank 1. The invariant-group solutlions were
obtained in four orthogonal systems of coordinates: Cartesian x, y,

z; cylindrical R, ¥, 2; spiral cylindrical s 9ps 25 spherical r,
¢, ¥. The Carteslan and cylindfical system of coordinates are limiting

cases of spiral cylindrical system of coordinates [61.
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Clarification of question about those coordinate systems, in
which there are possible single-c >mponent flows [15], 1.e., & flow
in direction of one of coordinate axes, at H = O was the thesis of a
number of works [16-22]., In works [16-18, 20, 21] there was made an
attempt to formulate the conditions necessary and sufficient for
possibility of single-component flow 1n the xi-direction in the glven
system of coordinates xt (L =1, 2, 3).

The sufficient conditions are formulated both as conditions under
which equation (4.1) 1s transformed into an ordinary differential

equation with respect to w

RYSER VSR WV Eem P 2
Ao o= p o =na().  wen=(T) (4.1)

Here ha = Vgaa are the Lame coefficients; W is the actlon; F(;z,
x3) is 8 certain function. In work [20] the question about reduction
of equation (4.1) to an ordinary equation in fact reduces to the same

question for a linear homogeneous equation

G(n », l’l);;'fl-l'”(&- z, 80)%:—‘+K(n- x, 25):: 0 (4-2)

Finaily sufficient conditions were written out only in case of
the two variables &, 1, [22]. Question about number of coordinate
systems in which there are possible single-component flows has
remained open,

The investigation of group properties of equations of a beam
conducted in present work makes 1t possible to corroborate that single-
component flows are possible only in the four indicated systems of
coordinates. In connection with this, the results of work [20]

become understandable; in this work there was investigated a large




number of coordinate systems and it was shown that single~component
flows in these systems are impossible. The separation of varlables
in the equations of beam are possible, apparently, only in these four
systems of coordinates.

Thus, the particles can be emitted from followlng surfaces:

1) planes x = const; 2) circular cylinders R = const;
3) half-planes y = const; 4) spiral cylinders q =

= corst (q, = const); 5) spheres r = const; 6) cones
6 = const,

In work [22] there were written general expresslons for potential
in case of the two variables £, 1, at H = 0 in the finite form or in
quadratures where the potential completely was determined by assign-
ment of metrics in system being considered to the ordinates., In the -

case, when f1 may be presented as

AGW=X®Y M (4.3)
final expression for potential was determined by the formule
=i ®I" (b))
Function L(£) followed from the expression

,‘;NT!-Lmum (4.5)

We note that for the four above-indicated systems of coordinates
there occurs precilsely this case, Unfortunately, formula (4,4) cannot
be used, Owing to the fact that f2 = 0 in all these systems, L(€)
remains indeteminate. All relationships obtained in [22] including
the expression for proportionality factor in the 3/2 law for an
arbitrary single-component flow have sense only for solutlons of the
type (4.6) leaving a degenerated character and the valldly contrasted
(16, 17] to solutions describing single-component flows from a surface

on which there are reallzed conditions of a thermo-emission,

¢ e
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It must be mentioned that all the solutions known to author describ-
ing flows having their beginning from a thermo-emissional cathode
are invariant-group solutions, Only certain solutions not satisfying
condltions of a thermc-emission represent an exceptilon,

1°, A two-dimensional electrostatic flow along hyperbolic
trajectories with vector of speed V = lax, by} and with constant
density of space charge [23]. At a = -b the flow becomes irrotational

and the action has the form
[
We =1 (4.6)

The solution (4.6) is a unique solution obtained on the assumption
on constant density of space charge [24]. Under this assumption the
number of equations does not decrease and therefore, (4.6) 1is
solution of an overdetermined system, Actually, for the function
w in this case there 1s obtained two second order differential
equations [20] instead of one equation. Just by this 1s there explained
the fact that solution (4.6) is not invariant,

°, The generalization of solution in Paragraph 1° tnh a spatial

2
case [25)., Here, the vector of the speed and the trajectorles are

determined by the expressions
Ve (er,by,—(s4+0)s), sys=ocomet, s’y *mconst (4.7)

The density o1 space charge 1is constant,

3%, The soluticn [26, 27] for a two-dimensional flow in uniform
magnetic field perpendicular to the plane of flow on hyperbolic or
elliptic trajectories 1is

(@4 a)s® 4 (0 —a) y® = consl (o = ol [me) (‘4.8)



The density of the space charge is constant., The potential is

determined by expression

M+ @+ (@ —afyf=0 - (4.9)

4°, Two-dimensional electrostatic periodic flow [26, 19]. The

trajectories of particles and potential are determined by formulas

cub-}-d.a.-nut. %-g—g—}:—g (4.10)

An investigation of group properties of equations of a nonrelativ-
istic beam makes it possible to make certain conclusions also for
case of relativistic speeds when radiation of moving charges can be
ignored.

Owing to the manifestation in the equations of motion of additional

nonlinearity 1 - V (in the reduction to a dimensionless form as
characteristic speed the velocity of light c is selected) the basic
group of equations of relatlivistic beam will be less extensive than

in a nonrelativistic case, It is readily seen that this nonlinearity
does not make it possible to make an extension of the spced., Thereforc,
the H-solutions of equations of relativistic beam have the same form

as H-solution in the nonrelativistic case corresponding to zero value
of the arbitrary parameter a, In a strict calculation of the inherent
magnetlc field and for the case when through each point of spacc there
passes only one line of flow, single component flows beginning from a
thermo-emission cathode are impossible, In the class cf flows with

v, = O, where v, is the component of speed normal to the equiopotentlal
surfaces there are possible the following single-component flows:

flow in the z-direction when the equipotential surfaces are splral

and clrcular cylinders parallel and pesssing through the :-axls of

the plane; f'low in y-direction when equlpotential surfaces are



circular cylinders [28]; flows in the r- and y-directions when the
equipotential surfaces are coaxlal ccnes, For a flow in r-direction
there can be obtained an analytic solution. For the potential we

obtain

14+00g'h0" (%.11)
Bugiha*

Here a, b are arbitrary constants, At a =Db = 1 the solution has

Tym

the form

B T

N =E=o, 'o‘*;z’r; (4.12)

Relativistic flow having its source from a surface, on which there
are realized conditions of a thermo-emission is possible only in a
diode with spiral electrodes qQ = const and in dilode with electrodes
in which there are the inclined half-planes ¥ = const, These flows
may be either two-dimensional or three-dimensional.

Wwe note in conclusion that from all enumerated solutions of
cquations of a relativistic beam only the solution for single-
component flow in z-direction 1s not invariant with all the functions

t

mth/(sy) @=0 (4.13)

It will be the H-solution at f = a f = Q) and their limiting
expressions (b, by, = 0; by + 0, by -» 1).
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INTEORAL~MOMENT METHOD OF SOLVING THE BOLTZMANN KINETIC EQUATION

by
M, N, Kogan (Moscow)

A method is proposed which onl.blu‘ one to compute the flow of a gas, in
principle, with an arbitrary Knuisen number, This method is convenient prac-
tically for solving problems where the knudsen numbers are not too small
(a < K €00, where 0 <a << 1),

Sec, 1, The motion o.f a rarefied gas with random Knudsen numbers is de-
scribed by Boltzmann's equation which for a single-atom gas in the absence of

mass forces has the form - & a
W"'?."'*‘&;%"’(‘u‘hgl) (1.1)

Here f(t, X, ‘i) is the function of the distribution standardized in
such a way that the integral

(1t s = {rat

is equal to the number of molecules in a unit of volume, t is the time, x; is
the Descartes coordinates, €; is the components of the velocity vector of
e L 7@ nn k) =1 @) 1 () — 1 @) 1 () godbag
(dn = dndnedna, g =|n— ) (0.

is the integral of collisions, Here‘ = {‘11, L PP "3’ is the vector of velocity
of the molecules, b is the sighting distance of the molecules in the colli:.on
process, € is the angle reckoned from the random direction in the plane perpen-
dicular to the veotor g and §' ani W' are the vectors of velocity after col-
lision of te mo.lecules which have up to the collision respectively the ve-
losicies [ and )l.

The function f(’) does not depeni on the variable c¢f the integration of

./1_&'_-&1
"; therefore th of the collisions can be represented in the form

- | 1.3
J (‘l z‘!‘l) - L (‘n Iuﬁl) - ’ (‘o "‘hel) G (ll &.h) ( )

o
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The integrals 1 and 0 are finite only for molecules with & finite radiue
of intersction,

Boltsmann's equation is often written in the integral. Apparently for
any differential equation 1t is possidle to juxtapose an endless numder of
integral equations equivalemt te it. Considering, for example, J to be an
unknown, Boltsmann's equation oan be considered as an ordinary differentisl
equation, the gencral solution of which Pll the form [1, 2]

10580 = f (e 2 =R 6 — 10 80 + Sl(c. n—t 0 — Do (1.4)

By considering L and G as given we will get another integral form of the
equstion (ses, for example (3=4])

1 zl) = [ ltg 2= 8 (¢ — l.).loloxp{—la o5 —8(t -g),g,utl ¥ (1.5)

'S
‘l. (g5 =86 — 98 oxp{—s Gle,z—§ (¢t — 9, &) 4,}4,
Ordtnlrily, where tho Knudsen nuzbers are sm.ll one rnts by one or another
expansion the functions of the distribution along the length of the run )
near the Maxwell distribution (2],

Where KPP the function of distribution is expanied in iccoriance with
the magnitude K", or one makes use of the method of successive approximations
whish is equivalent to this expansion, In the report [2] 1t is shown with def-
inite limitations, that this process converges for the times less than the
time of relaxation or areas less than the length of the run, {, e,, for
numbars X1, Ordinarly (see, for example, (2, 5=1]) for f. one unes the
solution for free molecular flow anl the integration is carried out from the
boundaries of the ares,

Sec, 2, Stationary ani nonstationary problems for Boltsmunn's equation
ara solved in ghite distinct ways, Therefore one can oconsider [, as some

initial state, and instoad of the successive approximations one can solve
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the oornlpondlng nonluuomry problems ‘e
, fih, 3!-‘!)-/(‘04- ﬂ*‘luo‘l) + S Joes lla-so 21 = §4 (ta — ')nhl‘tu (2.1)

where J a1 is osloulated in noordamo with tho value of the runotion f at the
moment of time t,_q and ty = t, + nbt, Let ¢ be the full interval of tice
over the course of which one considers the process, If one selects inter~
vals of time At so small that during this time J churue_l on.y by an amount
of the order of & then after ¥ nuwder of steps (At = T/ N), The solution
obtained will differ from the precise one by & value of the order of & (just .
so as in the case of the numerical solution of an ordinary differential
equation), In the equality (2,1) the integration is carried ot along the
trajectory of the molecules, Therefore the integrals J are obtained at the
expense of change in f in accordsnce with the time and the ocoordinates,

Two processes leai to change of the funotisn of distribution, From one
side to & given point of space there come molecules from different arocas
of flow. If 1. is characteristic of the dimensions of the flow, Iﬂd; c::nrac-
teristic of the velooity of the molecules, then a charaoteristic time of this
process will be T = L/§. On the otter hand the funotion. of the distribu-
tion changes as a result of the collision of the molecules, The character-
jstic time of this process proves to be the time of the relsxation or gg:rac-,
tize between the collisions of the molecules T, = l/‘, where A is the
teristic length of the run!,

For flows with Knudsen numbers of the order of unity the twd character-
{stioc times have ‘dentica} orders T;mas Tomas T, so that by selectirg cufficient-

large I we can resrite (2.1) ir. a different fora
F ey 21, ) = f (tamyy o — i, Be) + Jucy (a0 %2 £) A2 (u-r/m {2.2)

1 Epea:-;inp; generally the flcw can encompass several cbaracteristio lenztha

of run ari several characteristic velocities of the molecules (see, for ex=

ample, [8]) .
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With emall Knudsen nusber T2q{Ty. In this case if one takes AgT;
very many steps are necessary, Thorefore ioro it is essentisl to oconsider
that at each point during s time of the order of T equilidbrised distribution
is aoccomplished, or olese to it, which is also done in the methods used for
low Knudsen numbers,

For high Xnudsen numbers, on the other hand, the transfer of molescules
from some areas into others is a more rapid process than the change of the
function of distribution as a result of collisions, Bere & should be less
than T4,

If the state is known close to the one souskt, then the number of steps
naturally is reduced, Thus if one {s researching the stationary flow close
to the free-molecular one, and for the initial state one takes ons takes the
solution for the [ree-molecular flow, then the procedure (2.1) practiocally
coincides with the successive approximations (1.4) or (1 5.

In this case it is possible to take large sections of time Atwl./‘ « Ty,
since the function of distridution at any point can change at the most to o
magnitude of the order of fol("' and the integral J~t°/'l'2. Conrequently, :le
error with At#w?T will be of the order of o2,

Practically in the finding of the first correction to the free molecular
flow the integration is done between the boundaries, and the corrgotion ‘o
the free-molecular function of the distribution occurs only on tha hourdaries
of the area (for example, on the surface of the body (5=11).

For computing the following approximation it is necessary lo i} and
keep in mind the function of the distridution of the first approximation in
tho inner points of the flow, which makes the problem too complicated for
modern computing machines,

Therefors the flow which requires the computation of tke secord and fol-
lowing approximations wil® be ccmputed hest in 1ine with the pcint zourht

FTD-TT-€3-1033/1 ¢+ 2 N Y4
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by the intoii‘l;umnt method proposed below,

Sec. 3. In accomplishing the numeriocal process (2.2) two difficulties
erop up, .In the first place the integral the integral J, possesses a oompli~
cated structure, which requires not only squaring but also the computation of
the velocities of the molecules after collisienm, i, e., acoompanying repeated
solution of the problem of collision, In the second place at each step one
is required to keep in mind too many values (at each point of space at a given
moment of time the funotion of distribution depends on the ihree components
of velocity)., Therefore the operating memory of modern computing machines
with diffioulty oan suffice for solving the most simple (single=dimension)
problems that come up, These difficulties are overcome in the following way
with the aid of the introduction of moments from the function of distribution.
As is known moments from the function of distribution is the term uced for

the expression in the form

atay =it s tad  wttar=2furC s 0d
Pat )= (et x 00 e md=Fletbnd )
. Mp -S.cpp.!di -'.l... =t—u) |
Heve vy stands for the Jsomponents of the vector of the macroscc,:c vr
locity, PiJ for the component: of the iensor of stresces, qi for the compc-
rantn of the flow of energy, eto.
Let us approximate the function of ke distribution of some analytical
dependence

1@ ’hgl)"’(t}' Ay .. d) (3.2)

whero Ag (a « 1, ..o, ¥) are some functions of t and x;. The form of tle
function F and the number of parameters Ay are _etermined by the character ..
the ccrcrete problem and the requirel precinion of the approximation, which
should correspond to the precision of the whole computation (1, n,, %o the

precision of the orizinal data and hourlary cordiitionn, tha selectad step, ate,),
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The funoction !' can be chosen different in the aifferent parts of the flow and
should take into accoun$ the discontinuous oharsoter in accordance with §
of the bebavior of the funotion of distribution at the houndaries,

By substituting (3.2) in (3.1) one can express «f noments through ¥
coefficients of Ag and vice verss,

Consi.doring that molecules with ; velocities greater than ’m are very
few and can be disregarded, we will select A in such a way tha the integral
7 will obange 1ittle during tbs time &% snd over the aistanced pax Mte In
Boltsmann's equation the velooity ! comes in as & parameter, If we fix
some number of vslues‘; (1- 1, soey m) and for oach;'wrlto Bolissann's
equation then we will get & system from m joint ordinary differentiial equa~
tions for m functions of f (¢, "1’:')' The left sidesof these equations
contain only the derivatives along the dirsction gr from the funotions
r(t, x4, k) and the right sides depend on all m functions,

oonside
The selected m directions can be as characteristioc am the so~

.

lution oan be worked out in the same way as this is done for, aif-
ferential -equations, In th.o solution of hyperboliec equations thn oharacter—
i{stio directions aro determined by tha original equations, In the case unnier
consideration the seleotion ,:”, and consequently also the seleciion of the
characteristic directions, is at our disposal, Therafore they may be chosen
so that in the computationef the moments in some node of the mash xi
all m points x; — i &t slso will be podes of the meshl, With suak &
selection of 'r thers are not required {nterpolations of the data obtained
on the (n — 1)-th step .

On the (n — 1)-th step in each of the nodes of the mesh 1ot all«

moments from the funotion fp-1 D& known. By multiplying (2.2) reapectively

T™he choice of & deper.is on the rumber of selected gquationn =,
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1,3, cesp Ot0, We get N moments from f, at the point x; st the moment
of time t,, '

For caloulating the integral from the funotion £(theys =Bk, §1),
the respeotive values of this funotion .lro computed by (3.2) with the aid
of vaflues known in the nodes, The integrals

.SJM“ !Stal--nd! ettt + NI =0 “(@udtidta
since they express, respectively,tihe conservation of mass, 1n;pu1u, and 'omrgy
in the collision of molecules, Thers is also no need for computing at what
point there are the higher moments from J 4. With the given approximation
‘and law of interaction of molecules the squaring in accordance with ; nnd“
can be done once, so that these integrals will be known functions from the
moments, 'I‘horofo;'o the computation of the integsrals
Scaq-’-nd! E:;' Sc‘cp.l-.d!

converges to some number of algebraic operations, Speaking generally, the
computation of the moments from the integral of collisions is simpler th‘n
the computation of the integral itself, since in iriceration in accordlance
with } the integral becomes symmetrical relative to the velociti :s ’q and g

In the report (9] it is shown, for example, that for Maxwell mclceculzs
with a random furction of distribution represented by an infinite sariea in
accordance with Hermite's polynomials, tho moments from J have & ‘specially
sizple for Sc.c,ld! = A, PP, Sc;c’ldl = ;1,40 (= Py — 8,2
where Ay and A, are the magnitulies depending on the kinl of molsculesn, n
this same work there are presented expressions which give a gool approximatiun
also with other lawas of interaction of molecules, Tn any caae for each
law of interaction and selected approximation (3.2) it is recessary orly onae
to carry out the respective squaring, so tnat in the computation of tha flow

ot/

the moments from the integral of the collisions erter as algeb:aic t‘unn'.tons/

-63- /
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the .-ounu from the funotion of diatridbution and not the function itself,
S8¢0, 4. The above-desoribed non-statiorary approach has the advantage
that it enables one to make the caloulation by the dirsct method, i, e,, to
compute directly the values of the unknown funoctions for the n=th step in
accordance with the values for these functions at the (n==1)=th step, Put
this approach has the shortcoming that the step At should be less than the
two characteristic times Ty and T,. Therefore with the diminishing of the
time of relaxation there is necessary a constantly greater nuncber of stepa,
In a number of on;os it may prove tc be to the point to change the prooede
ure somewhat passing to the solution of the stationary prodbleam, d
Let us replace (2.2) by the equation
flx.3) =1 - 2An0+7 s, W) &7 (4.1)
where At 1s selected in such & way ;h;t the ln{;crsl J changsa 1ittle over
the diatame‘m‘At. By selecting as abave m values of ‘r so that in the
computation of f in the node of the mesh x4 all m points of »y — ‘hul& ;llo
prove to be nodes of the mesh, and multiplying (4.1) by the respective oom=
binations of velocities, besides integrating in accordance wuhg s We get 'la
the systen Nyv of joint algebralec equatiors for determining v momen’' : In .aue
of the Ny nodes of the mesh, The problem is reduced to the solution of the
syctem of nonlinear equations for maoroscopic values, The problem becomen
more complicated at T = O since the integral J bas singularity at Ty « O,
In the usual method the function cf distribution alao is charged by
aome approximation funotion depernding on some nurber of moments, B8y multi-~
plying Boltzmann's equation by the correapording combinstionn of velooltlen
one gets the noceasary number of 1ifferential equations for the momentn,
vearwhile the the Sype and the nu~bder of equation depend on the nelecte!
approximations anl momenta, mherefore for each concretea case it was neganary

to develop one's zathols of solutior. of *h.s c-ourring cotplex systams of Aif-

FTD-TT-€3-1033/1 4 2

71

".



ferential equations, [Here, just the same ae above, thore is posnibli &
stationary and a nonstationary approach to the solution of ira puot ..«
Rowever, the nusber of the charscteristios, and consequently also the char-
acter of the boundary prodlems for this system, i{s determincd by the choice
of approximations, From the complexity of the equations it is difficult to
follow the physics of the phencasna,

With the integral-moment approach the method of solution of any problems
{s identical, At each step of the computation by the integral-moment method
there is traced a physical picture of phenomena,

The suthor is grateful to A, A, Dorodnitayn and L. I, Sedov for useful
disoussion,

Entered Dec, 20, 1963,
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NONEQUILIBRIUM DISTRIBUTION OF ENERGY BY OSCILLATORY DEGREES
OF FREEDOM OF MOLECULES DURING DISTURBANCE
OF MAXWELLIAN DISTRIBUTION

A. I. Osipov and Ye. V. Stupochenko

(Moscow)

There is examined the distribution of osclillatory energy
in gas, perturbed by sources of "fast" particles., For a
model of the harmonic osclllators constituting a smell
admixture in a light monatomic gas perturbed by sources of
the same particles, wnoss initial kinetic energy is less
than hv, this distribution is characterized by a temperature
@, For 6 differing from temperature of a light gas there
is obtained an explicit expression in terms of parameters
of the sources,

A disturbance of Maxwellian distribution is accompanled,
generally speaking, by the disturbance of c¢quilibriuwm dis-
fribution of energy in all degrees of freedom, For a num-
ber of processes perturbations of distribution functions
concentrated in region of far energles are of interest, In
reference to Maxwellian distribution this means that
perturbations are c-ncentrated in the tail of Maxwelllan
function, far off from region of thermal energies. The
nonequilibrium distributions of such a type will be reflected
in the different degrees of freedom of molecules. The ex-
change of energy between translational and rotational degrees
of freedom occurs with participation of molecules in region
of average thermal speeds. Inasmuch as in this region
Maxwellian distribution markedly is not disturbead, then the
distribution of energy in the rotational degrees of freedom
will be close to equilibrium, Another assumption posed will
be witn vibrational and electron degrees cf freedom, The
transition of energy from translational to vibrational and
electrun degrecs of freedom at not too high temperatures
occurs with participstion of molecules lylng in tall of
Maxwellian distribution, A marked disturbance ot Maxwellian
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distribution in this region will result in the disturbance
of equilibrium distribution of energy in the vibrational
and electron degrees of freedom,

The purpose of this work is determination of distribution
function of energy on the basis of the vibrational degree
of freedom in the presence of a quasi-stationary, but not
equilibrium distribution on bas.s of translational degree
of freedom. Problems of such a type are of interest in the
chemistry of "hot" atoms, and also in the study of reactions
in which fast particles appear,

Let us consider for simplicity the following case. In monatomic
gas with small admixture of Aiatomic molecules there acts a source,

creating the same monatomic particles with a kinetic energy EO’
satisfying the inequality (-E/kT) <<'1. We shall assume that

mass m of a monatomic particle is small in comparison to mass M of the
molecule and, consequently, exchange in kinetic energy during
collisions of these particles is hampered. Then, independently of

the relative concentration, the distribution of kinetic energy of
molecules will be practically Maxwellian, Distribution function of

a light component (with a not-too-low concentration) practically will
coincide with distribution for a single-component system perturbed

by the source of particles, This distribution is determined in

(1, 2] and has the form:

L) =lp+I@E—="NL @+ Nz —2) =<
L@ =p+7(@) =L@+ Vb - > (1)

In these equalities

2k
A 2 — %) dae
10=7V g R § o

(5 = mo¥2UT, 5* = EJAT) \

Here £°(x) 1s the Maxwellian distribution normalized for a unlt;

15 is the time of free path of particle with an energy EO in monatomic

gas; N 1s the number of particles with an energy EO, developing in



system per unit of time in unit of volume; d is the diameter of par-
ticles (model of solid spheres). The value p is determined from con-

dition of normalization f;(x); practically it is possible to assume
sf,'(s)a-p (o =rt Ny

The constant 1 is determined in such a manner that denomlnator
in integrand at t = 1 1s of the order of unity. With such a selection
of 1, the function fg(x) is found to be insensitive to n and
coefficient at £(x) on the right hand side of (1) is determined
with an accuracy up to magnitudes of order p exp (-xo) << p. In
expression (1) the number of generating particles N is assumed small
in comparison to the total number of collisions per unit of volume
in a unit of time. However, method does not postulate the smallness
of perturbation in region of far energles but (1) describes also
the finite perturbations in the tail of distribution, The distribution
of energy by vibrational degrees of freedom of diatomic molecules
will be found as follows. The system of equations describing the

distribution of molecules by oscillatory levels has the form [4]

ds : .
702 = Z (Paus, aZney— P, niizn + Pay aZn-y — Pa, a-1%n) (n=0,1,2,...) (

V]
~—

where Z is the number of collisions of the molecule per second;
xn(t) 1s the concentration of molecules in n-th oscillatory level;
Pmn is the probability of transition of molecule from level m to level
n, relative to one collision,
Stationary solution of the system (2) (considering constancy of

concentration of molecules) satisfies equation

el ’. (22}
Dyl (
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Under equilibrium conditlions,(3) 1s satisfled by Boltzmann

distribution and P and P are associated by the relationship

n+l,n n,n+l

P”ul.u 0XP (— 8a)) = Pu,aes 0IP (— ) (ty = B,*/AT) (“ )

veing the expression of principle of detalled equilibrium,

Under conditions of a quasi-stationary but not equilibrium
iistribution (1), relationship (4) is not realized., For a determination
ot the distribution function x under these conditions it 1s neces-
sary to calculate Pmn'

We proceed from the general expression (4]
zp_-§up..(-)u/(v)dv (o= 2 (5)

Here d12 is the diameter of collision of rionatomic particle with
molecule; Pmn is the probability of transition m =+ n during the
collision with a relative specd v; f(v) dv is the dlstribution by
speeds, of the relative motion of molecules and monatomic particles.
In view of smallness of the ratio m/M instead of f(v) there may be
substituted the distribution (1), In calculating the probability
of deactivation in the integrand the region of average thermal speeds
plays a basic role, In this region distribution (1) practically
does not differ from the Maxwellian,

Therefore, for P it is possible to use an expression which

n+l,r.
is obtalned under equilibrium conditions

P.n.--Poo.l.l (6)

The probability P i{s obtained from formula (5) with sub-

o
n+l,n
stitution of the Maxwellian distribution instead of f(v).

In calculating Pn,n+1 we shall assume that



E,<AEmE’—E’

Inasmuch as the chief contribution to P ., 18 introduced by
1

the fairly narrow energy band mv2/2 of an order AE (in accordance

with theory of adiabatic collisions [3]
Paan ~o3p (— AEt/R)

where 1 ~ 1/v 1s the duration of the collision) then in (5) instead
of f(v) dv it is possible to substitute f, (x) dx, not changing
the 1imits of integration and dropping the d-form component, In

such a case

O o ™ ’_t"_(_wz(ﬁ':f)'s PP nn (W oxp(-—.ﬁ'-.) dv=

=(+a) P-.;m Cﬂﬂ'l(%.:-ﬂ (1)
o
Here Pn,n+1 is the value of probability Pn,n+1 under conditions

of equilibrium; x* is the x value, at which integrand in (7) attalns
a maximum. Integral included in (7) usually is calculated by method
of steepest descents [3]. In such case x* is the point of steepest
descent. Taking into account (6) and (7) equation (3) acquires the

form

Poerep

)
The equilibrium values Pmn are associated by relationship (4),
therefore,

Zast o (4 + @) 6XP (85 — San) ()

Distribution (8) implicitly depends on time through p and T
and is valid for any (not too smull) values of time. Actually, It

stcisfles the condition (4) wlth an accuracy up to termms cb en orier
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of N/ZpPlO, which are consldered small,

The smallness of this parameter means that the characteristlc
time associated with change of density in number of particles and
temperature of monatomic gas as a result of action of source, is
much greater than the time of an oscillatory relaxation determined
by exchange of energy between the translational and vibrational
degrees of freedom,

‘nder these conditlons it is possible to speak of the exictence
at each given moment of time of a quasi-stationary distribution
which is determined by value p and T at the same moment of time,

For an evaluation of distribution (8) we shall use the modrl

of a harmonic oscillator. In this case

-(i+l)oxp:5;.-' ()

Distribution (9) can be presented as a Boltzmann distribution

corresponding tc a temperature determined by relationship
+=r[t-Tna+a) (10)
At a << 1, which corresponds to sources of small intensity,
T=r(t-o%)

For fairly intense sources (in the reallzing of the obligatory
conditlon N/ZpP;, << 1) it may be found that a >> 1.

In such a case
+-+D—%hq
and temperature of the vibrational degrees of freedom® may greatly

oxceed the temperature T,
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It is important to note that this result — the finite deviation
of distribution of oscillatory energy from the eq&I&ibrium - 1is
assoclated with the relatively insignificant perturbation of the
Maxwellian distribution (insignificant in the sense that the finite
perturbation occupies only a small portion of all particles of
monatomic gas belonging to the region of far energies),

Submitted
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ON THE MEASUREMENT OF PRESSURE IN A SPIN
TRANSVERSE WAVE

V. V., Mitrofanov, V. A, Subbotin and M. Ye. Topchiyan

(Novosibirsk)

As is known [1] the detonation of gas mlxtures in tubes
near the ends occurs in a spin mechanism. The structurc of
spin wave has been ascertained in works [2-0]. In the
front there will be formed transverse wave, rotating in a
circle along walls of the tube, Calculations show (€] that
in a transverse wave the maximum pressure is 170 to 130
times greater than the initial pressure of the mixture,
i.e.,, 10 times higher than at the Chapman-Jouguet point for
the detonational wave as a whole,

In work [7]} there were presented the results of measure-
ments of the pressure field in a spin wave by small-size
piezotransducers, which gave a good agreement between the
measured and the calculated magnitudes, However, owing
to the lack of calibration of transducers for the abcolute
values of pressures and of the excessive shrinkage of
oscillogrsms along the time axis these measurements could
not be considered adequately reliable. Later the experi-
ments were repeated more thoroughly, and the obtained
results are discussed in this repcrt.

Spin detonation was carried out in smooth walled brass tube with
a diameter of 27 mm and length 140 cm with a plastic end section
(20 cm) screwed on, A mixture ot 2C0 + 0, + 3% H, with an initial
pressure of 0,1 atm was initiatel by 2 batch of azide of lead of
about u,l ¢, The directlon of rotation ol' spin wa.o oot by the coll

of wire spiral placed Inslde tube close to the pla - of inltiation,
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Fig. 1.
Location !
of trans- \
ducers in
detona-
tional tube:
1 ~ Plexi-
glas tube;

2 — slot in
opaque flap;
3 — marker;
4 — direc-
tion of
motion of
transverse
wave; 5 =
transducers.

Mezsurements were made in the end section simul-

taneously by four pressure plezotransducers. Thelr
location in the tube is shown in Fig. 1.
The transducers had the following deslgn. In cylin-

drical brass tube with an outer diameter of 6 and an in-
ternal of 4 mm there was placed along the axis a zinc rod
with a diameter of 1 or 2 mm with a Wood's alloy solder.d
polarized plate of barium titanate of the same diameter
and thickness 0.8 mm on the end, The space between them
was filled with beeswax. The rod was connected with cen-
tral core of a coaxial cable and the body of transducer
(brass tube) — with bralding of cable and by means of
copper wire with a diameter of 0,07 mm immersed in wax
with an external silvered surface, receiving plezoplate

(the solder also was made of Wood's alloy). In the de-

scribed experiments here, two transducers had a diametaer of the sensi-

tive element 1 mm, two others — 2 mm,

These transducers were used pre-

viously in work [8] and are of nearly same design as in work [7].

Electrical signals from transducers were feld through cathode

followers into two-gun uscillograph OK-17M.

time constant amounted to about 7+10”

The input of
I

sec, The time of scanning

was about 60 microseconds,

In order to improve the quality of oscillograms it was necessary

Lo attain as completely as possible the removal of parasitic oc illa-

tions generating both inside the transducer itself, and also those

being trancmitted from wall of the detonational tube.

Natural oscil-

1ations of transduccrs of the described design in a caretul preparatl o

c¢can be male small,

The transmission of oscillations from walls of

tube is greatly diminished when onto the body of transducer there was
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slipped on a rubber tube with thickness of wall 1 mm and only after
that transducer was inserted into the apparatus., Surface of sensing
clement of transducer coincided with internal surface of detonational
tube, all deviations of internal surface from cylindrical at the place
of output of transducer were puttied from within by wax, so that
transducer did not introduce extraneous perturbations in the flow of
the gas behind the front of detonation. In order to remove the
elastic wave on walls from explosion of azlde of lead at a distance

of 20 cm from place of initiation the brass tube had a rubber connec-
tion,

The transducers were calibrated in the on-position of a shock
ﬂwave in air obtained by an explosion of azide of lead, where therc was
a fixed voth a normal wave and also the
) reflected wave from a solid barrier, set
at a distance of about 5 mm from trans-

ducer, A typical calibrated oscillogram

‘:'?55'1%. 2. Pressure oscil- is shown in Fig. 2. The speed of the

logram in a normal and i
reflected shock wave in incident wave was measured at a dlis-

the air (calibration),
tance of 70 mm directly ahead of trans-

ducer being calibrated., The pressure differential in incident and
reflected waves was calculated by known formulas at y = 1.4. Speed
of incident wave did not exceed 815 m/sec which corresponded to an
excess pressure of 5.4 atm in incident wave and 25 atm in the reflecter

For establishment of trajectories of motion of transducers
roclative to the spin wave in the experiments there was made also a
photoregistration, through longitudinal slot, of picture of self-glow
onto the moving film, Speed of film coincided in magnitude and
direction with speed of image of the transverse wave at moment of

interception of slot (method of full compensation used in works [2-83])
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The relative louatioh of slot and transducers is shown in Fig. 1ls

Intersections of slot by imaginary spiral lines passing along internal
surface of detonational tube through sensing elements of trans-

ducers and along parallel lines of the motion of the "head" of spin,
were indlcated by opaque marks. Since, 1n the system of coordlnates
moving along :ny such spiral with the speed of the "head," the structure

of flow is stationary, then on phototracings the dark lines indlicated

by the marks are trajectorles of transducers relative to the

detonatlional wave.

One of phototracings is shown in Fig. 3. There is evident the

alternating of distinct and indistinct half-periods where the distinct

PR

— correspond to the passage of a trans-

E‘ verse wave wide of the slot along near
? wall of tube; the blurred - along the

; opposite. Each period coincides with

g the development intc a plane of the

el

-~
-

#417, 3, Phototracing of cylindrical surface of tube, on which
spin wave, Dark lines
are trajectoles of trans- there is plotted the instantaneous
jucers in the system of
roordinates assoclated position of luminescent fronts [2-5].
with the transverse wave,

The scheme of the fronts near the
wall forming the spin wave is sketched in Fig. 4a. Transverse wave
in separated rectangle 1is
illustrated to the right on a
larger scale, There are plotted

the trajectories of the trans-

. i R ducers which pasced through
1. 4a. Diagram of shocks near -
W: ith trajectories o ec- - . .
Will wl P r ) f pr‘ the most interesting regions ot
sure transducers (they corres-

) SC* oYres g i 1% e A‘ )
pong $5 UEGILA0nTRE LN Fig. 4b). the flow., Corresponding
lhe solld heavy lines are shock
and detonation shocks, the dotted sscillograms ere presented in

are contact breaks,



Fig. 4b., Here there have been sel scillograms obtained by one

transducer which gave bes juality of recording and was most thoroughly
calibrated (diameter of sensing element is 1 mm). The calibration
curve of this transducer was presented in work [8]. After the termi-
nation of all experiments the calibration wa. repeated, where the
points lay on the same curve with a dispersion in pressure of not

more than T7%.

Fig. 4b, Pressur: f oscillograms., One divi-

sion along the vertical corresponds to 25 Drs
along the horizontal t microseconds.,
Oscillograms 6, 7 and 5 correspond to passage of transducer

through transverse front, jear point B there 1is reglistered a

pressure of 160 p. in the transverse front, In a motion in the

lirection from point to ¢ the pressure after the transverse front

cradually drops to approximately to 110 p..

For a corroboration of the scheme of shocks proposed in work

(6], especilally Important 1Is oscillogram 9. Here trans-

jucer passed through region after the shock AP (Fig. 4a) with

pressure of 62 p, and it flxed snock BD with pressure of about 165 pge.
The existence of front BD 1is nt trom = theoreticszl construction
f the diagram of flow, but by other means (Toepler, photographs of



celr-luminosity) it could not be ascertained. Continuous rise of

prossure from 45 up to 62 p, on thls osclllogram 1s caused by ‘the

fa:t that transducer passed directly through the triple point A and
on part of 1its area for a certain time the pressure ahead of
Between front AA2

shock AL (about 19 py) exerted 1its influence.
transducers

and the contact break AD the flow is subsonic, therefore,
pussing higher than point D record a smooth variation of the pressurc,

We present for comparison a contrast of the measured magnltudes

of prescure p/po after the shocks with those calculated in the vielnlty

ol the triple points A and B:

shock AlA AA2 AB BD BC
P {19.2 54.5 54.5 170 170 calculation
P, - 19 + 1 G2 * 5 60 %5 160 + 10 155 % 10 experiment

The calculation was made for a mixture of 2C0 + O2 at Py = 0.1 atm

Influence of hydrogen in view of Its small concentra-

and i‘O = 2930}{.
The

tion in the working mirture was not taken into consideration.
~mpesition of the gas after BC and AA2 was assumed to be in chemicel
.quilibrium (there were considered the reactlons 2C0 + 0, :2002 and
.. 2 20), after remaining shocks — nonreacting.

Initial data for the calculation of triple configurations werc

the speed of undisturbed flow in the system of coordinates assoclated

1700 m/scc) and the

with th: transverce wave, U, = 2370 m/scc (D
3&.50, determined

<17l botween ivs direction and front A1A 9

Cxperimoontally [,

Atfter the indicated shocks and also everwhere along the leading
ce AL LW AR the calceulated pressures within an accuracy of 107
Lopae witn e measured pressures,

'hat atter the transverse front HC the transducers did

We noete



not reveal the layer of the shocl-nompressed gas preceding the zone
of reaction in whlch the proosure must be by calculation 195 pg. The
highest measured pressure 15 oven somewhat lower than calculated on
the assumption of an instantancous reaction,

All of une presented oscllloprams in experiments described here
were repeated many times, thereture, diagram of flow in spin wave
proposed in works [2-0] may be considered finslly corroborated.

The authors are grateful to B. V. Voytsekhovskiy for his attention
glven to the work., |
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LAMINAR FLAME IN A TURBULENT FLOW

A. M, Klimov
(Novosibirsk)
There are obtained equations describing a laminar flame

in nonuniform hydrodynamic field in the case, if the
curvature of front of flame can be lgnored (effect of large-
scale turbulence), There are explained basic properties
of such flame. A possible mechanism of attenuating of
flame is obtained and the mechanism of turbulent combustion
is discussed.

1, The non-uniformity of hydrodynamic field is of paramount
importance for mechanism of turbulent combustion; we shall consider
turbulence as a random field of gradients of speeds. We shall
designate by U the dimension of reglon in which gradients of the
speeds during certain time (time of exlstence of this region) slightly
depend on position of point within region, although they may in an
arbitrary way depend on time. This dimension is identical to the
sunle of turbulence. We shall introduce also characteristic dimension
& of the "temperature' region, determining it as the dlstance In diy c-
{ion ot temperature gredient (or concentration), in which the tempere-
ture (concentration) cssentially changes, 1In our case this will be
lhickness of laminar ('lame in a homogrneous mixture, The charactr

o' phenomenon, obviouslys greatly depends on the relationship betwecn

- m



v i aliiiding.

1 and 6, If 1 > b (large-scale turbulence)the front of flame is slight-
ly distorted (r >> 6, wherc r is radius of curvature of front ot
flame), but the area of 1ts surface continuously varles: flam> is
elongated or, conversely, 1s contracted, Below there is investigated
namely this case (1 >> 8).

We shall conslder fileld of speeds of region 1 without comtustion,
which we shall call the external hydrodynamic 1ield. The simplest

cxample 1is ficld of pure shear (Fig. la) when a correlaticn between

components of the speed 1s lacking. Another
a example is "flow at the critical point" (Fig. 1b),
generating 1if, for example, in regions A and B
there developed a rarefaction, A correlation

_,/b] lu\\. between the components of speed here manif: sts

4 g itself in a pure form, Field of speeds of the

. ::\\
b \\,ll'{/’. arbitrary region 1 1s the superposition of these

la, b. two extreme cases., For example, in a two-

Fig.

dimensional case, taking into accour:it the con-

tinuity equation, the fleld of speeds has the form
=mk(t)z+ k() v=—k(t)y+kit)z

It i1s evident that ontc the "flow at critical point" u - kx,

v = =Ky there are superimposed the arbitrary shifts u = Kly, v o= kgx.
The three-dimensional case in principle does not differ from the two-
dimensional,

Assumptions essential for obtaining the equations will be the
ordinary assumptions of theory of slow combustion: 1) constancy of
pressure (the equation of motion is not considered), 2) In equation
ot eneryy there is considered only the thermal encrgy of the gas,

Furthermore, we shall conslder only primary processes of



transfer and shall assume that rate of heat release 1s determined by
the concentration of a cingle component of the gas mixture and the
temperature, and the Lewis number equal to 1. Then, as is known, the
equation of diffusion can be eliminated.

In conventional designations in a two-dimensional case we shall

have

oo(F + o5+ o) SO HH(5F)+FO
FHE =0 () -

Furthermore, there 1is given external fleld uo, vo. Suppose the
external field is a pure shear. Without loss of generality it is
possible to assume uw’ = a(t)y, v = 0; orientation
of initlal distribution of temperature (being one-

dimensional) relative to external field 1is given

by angle ¥, where 99 is the front of the flame

(Fig. 2).

I'ig., 2, The true hydrodynamic field will differ from

external, because during the combustion owing to
the thermal exparcion of gases, there appears a motion, normal to
tront of flame, On the whole the phenomenon is such: the front of
rlame is turned by the external field in plane xy with a change in
the area of 1its surface; simultaneously it moves relative to the gas,
creating a supplemental field of speeds as the result of the thermal
expansion,

The solution of equations (1.1) we shall seek in the form
t-f(t.t)- e % [1+(u¢-§.a)']"‘

'-V(!.O[tcv—sdt] i+(t"—§

where

s+ o(iee —;-*)][i +(W-§“‘)Th
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For the determination of T(t, §) and v(t,g) we shall obtain the

cquations
!f.[%+v(t) v EI= (RO
oot +i=0 (1.¢)
e 0 = ofuae —Sdc][t +(tee —Sdc)’]" .

coordinate £ always is normal to the surface of the flame.

The specd V is assoclated with the expansion of gas. If products
of combustion and fuel mixture occupy 2 half-space, it 1s natural to
assume V = O for a fresh mixture. The initial and boundary conditions
for equations (1.2) in this case will be

T=7() ati=0 Vo0 8t f=—0s,

If at the initial moment of time the products of combustion
occupy band of finite width with a symmetric distribution of tempera-=

ture, the simplest initial and boundary conditicns will be

Tewf () att=0 ’,’t'.-v-o at {=0

Let us assume that now uw’ = -k(t)x, v® = k(t)y. The solution
of equations {Ll.1) we shall seek in the form

T=r¢.0
e=—kz+V(Dcgy oxp(zikdt) [1 + cig'e “P(‘S*“)Th

.v -hky+Vit, t)[l + cig'y oxp(‘Skdc)]ﬂ'

where t= l' 4+ z Ctg P oxp (25&&)][1 + ag'y 01;(4.§f¢‘)T'/.

For determining T(t, ) and V(t, L) we obtain (1.2) where

n



v @) = k[t — g’y np(ASm)][a + gy oxp(lska)]ﬂ

In the general case we also obtaln equations (1.2). The charac-
teristics of each case are included in function ¢(t).

It is readily verified that ¢@(t) is t.e relative ratc of change
of surface area of flame taken with opposite sign,

Equations (1.2) can be obtalned also by assuming that flame remalinc
two-dimensional and the function ¢(t) is given. Let us assume that
£, 1, £ is a system of coordlnates orlented so that the {-axls always
is normal to surface of the flame, and let us assume that vg, vq, vc
are the respective speeds,

Since surface of flame 1s flat,

FoaT( x=x(

c tly,
s, e e s

Lro(Rp+F)+ng=0 (1.3)

Let us consider small element of surface df dn in the arbitrary

planc ¢ = const, The relative rate in change of its area
g 4 o &
— 00 -2l 8- G 01.4)

Presenting VC in the form VC(t' t) = ¢(t)e + v(t, ) and taking
into consideration (1.4) we shall obtain from (1.3) the equations (i.2).

We shall introduce the dimensionless magnitudes

sming/d, B=C0/8 w=Vis, O0=(T—-TY)/(T,—-T)
P mplpp MNe=Aidy [=mFIF, s=gdy/uy (he=lepul,)
Pe=p (T AN=A(T),  Fo=paly (T, — T/

Hor Ly is speed o propagation of & normal tlame; 00 is dlctance,

at which In o normal flame § varics approximately by e times (exactly



by e times in Michelson's solution); TO’ Tl are the initial and final
(adiabatic) temperatures of the gas; FO is av:rage rate of heat
release in normal flame,

The parameter € 1s the ratio of characteristic time of normal
combustion t., = b,/u, to the characteristic time of action t, =1/%
for a flame of external hydrodynamic fileld; t1 is the time during
which at @ = const the surface area of flame varies by e times or, what
amounts to the same time, the time during which the~d1stance between
surfaces of a constant temperature would vary be e times in the absence
of a chemical reaction and thermal conduction,

In the adopted designations the system (1.2) has the fcrm
p[R+emp+eR]=F05)+/®  E+empgE+ipto  (1.0)

Here and henceforth the primes at p and A are omitted,

The new terms, in comparison to equations of the one-dimensional
flame, in (1.5) are of an order e(t), We shall make numerical
cvaluations, Suppose, for example, the speed of turbulent pulsations
v! ~ 10 m/sec with the scale of turbulence I ~ 1 cm; then ty o~ 1077 sec,
For m>st fuel-air mixturcs close to the stoichiometrical, to ~ 10'3 sec
also rapidly increases to :LO'2 sec with the impoverishment or enrich-
ment of mixture approximately by 1.5 times. Correspondingly, we shall
obtain € ~ 1 to 10, depending on the composition of mixture.

The parameter € 1is in close conformity with parameter y = v'bo/uol,
proposed [1] for an evaluation of the relative role of "surface" and
"volume" combustion. Difference between them is in the fact that in
Y the magnitude v'/l is an averaged gradient of the speed, and the
maynitude @ in € is instantancous and local. Therefore, € may be a
rspnltude Loth positive, and also negative., From (1.4) 1t is evident

that gradients of different components of spred may introduce a
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different contribution to the change of surface area of flame —
the flame may be elongated or be contracted in all directions, but
may also be contracted in one direction and be elongated in the
other,

We shall write out equation (1.5) in system of coordinates
assoclated with front of flame, i.e., In system of coordinates whose
origin 1s associated with a certain temperature 30. The coordinate

BO of point with temperature 30 is determined by equatlon
e s+l — (M) + el =) —m )
Consequently,

Bo(®) = oxpic (9 de [p.. —§m - oxp(—il (v) dv)] Bo = ()
[ ¢ ‘ [

In the variables a =P -B,, T the system (1.5) will acquire the
form
o[+ mtomtan]=a(r R)+10
‘Bt (1.0)

Function m(1) is determined in the solution of concrete problem,
initial value m(t) must be glven,

Equations (1.6) may also be obtalned from equations (1.5), assum-
ing that the latter are obtained from (1.3), where &, 1, ¢ is the
system of coordinates associated with front of flame., It ls necessary

oniy to present « in the form

o B 1) = mi) +oB 1), M) =e(—c, ¥)
». Previous to constructing the solution ot the protlem, we sholl
irive a qualitative description ¢t considered picture of phenomenon.
In a uniform hydrodynamic rield (e - U) the solutlon or system

(L.) under certaln assumptions relative to function of heat releas
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(%) and with corresponding initlel and boundary conditlons tends

to & solution not depending on the time, and describing distribution
of temperature in normal flame, Here m(T) - 1, The statlonary form
of normal flame 1s result of the equillbrium of opposite "forces":
the smoothing action of thermal conduction is balanced by opposit
~ffect of the chemical reaction,

At € # O there appears a new factor: the convection heat transfer
ca 3%/da, which elther smooths (e > 0) or increases (g < 0) the
curvature of the temperature distribution.

If € = const < O, the solutiun of the system (1.€) must tend to
a certain, steeper statlonary distribution of temperature than -

normal flame,

The situation is different at € > 0, In the aaopted model of gas
mcdiam, thermal perturbations are propogated with an infinite
speed. Practically this speed also 1ls very great (speed
of sound)., Therefore, the thermal influence of hot reglon inctantsan-
cously penetrates a great distance into the cold region. At
the seme time, at a fairly large distance from the origin of cooril-
nates in the direction of cold gas (1.e., with a fairly large negatlive
a) the conv:ction heat fiux acquires the same direction as heat flux
+aused by the thermal conduction, In a slow combustion such a hrat
transfer to the cold reglon is in no way compensated; conditions at a
freat distance from the front of flame all the time vary and the
entire process becomes nonstationary.

lor the quantity q of heat Leing liberated per unit of surface
.1 flame per unit of time (proportional to the amount of burning

metter) we have, assumling that 33/ Ju = ¢ at a = tp, the relationship

g-Tﬁu-Tp2+.§.p(m+u+~)gk
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In a normal flame q = p(m + w) = const, In the remaining cases
(¢ # 0 or € = 0, but phenomenon 1is nonstationary) q 1s not sssocliated
explicitly with p(m + w) end, in general, is variable.

In intervals of time when external field disappears, the flame
{s one-dimensional, but nonstatlonary.

The structure of such flame,has much in common with structure of
rlame at € # O; therefore, we shall consider 1t in greater detall.

In a one-dimensional nonstationary flame m + , being speed of
temperature 30 relative to the gas (m — relative to a fresh mixture,
m + w — relative to particles of gas with other temperatures), may
acquire any values, 1n particular negative values, If m + < 0,
the gas flows towards a given plane a-const not from the direction
of t'resh mixture, but from direction of the combustion products. The
rlux of molecules (the same as flux of heat) is composed of fluxes
of convection and diffusion, In 2 normal flame the convectlon and
dirtusion fluxes of the fuel are added. 1In a nonstationary flame
they may be subtracted. Tsolating conditionally the zone of reaction,
it is possible to encounter a situation when the gzas flows tc this
sone from the direction of the products of combustion, and the
furl 1s transmitted toward convection flux by difrusion, Let us
assume that, for example, inltial function for equation (1.5) will
be

0(0.0)=0  at B, 0G0 =1 at p>0 (v.1)

Before there is established a normal flane, in which any
temperature moves toward the fresh mixture, during a certaln time
points with a temperature close to $ =1 wlll move toward the
¢ oanbust ion products, consequently, at least In part of 7oue ot

reaction the convection flux of fuel (ln the system of coordinates o)



will be directed against the diffusion. Establishment of normal
r1ame in this case occurs by means of jeovelling effect of thermal
conduction and di fusion.

If function ’ O),conversely,slopes very gently in comparisoun
1o case of a normal flame, the chief factor of establishment of
normal flame will be the local increase in temperature owing to
~hemical reactlion. Here the speed, relative to gas, of points with
temperatures close to & =1 during the first moments of time will
Le significantly greater than this speed 1n normal flame having the
same directlon,

From equations (1.¢) 1t 1s evident that 1n nonuniform hydrodynamic
ricld the concept of speed of propagation of front of flame, strictly
speaking, has no sense, At any € # O the speed of the gas rel=stive
Lo a fixed temperature 30 varies 1n the range (-, +®), depending
on temperature of particles of gas. Certainly, at small |e| this
concept may have an approximate meaning. Hydrodynamic field in
system of coordlnates of flame 1s similar to the above-mentioned
"yrlow at critical point" with plane of symmetry parallel to frent
of fl me. At small |e] this plane is located far from region with
large temperature gradients (region of the main portion of changre
of temperature 1rom zero to unity); the field of mass speer in the
iatter is close to the uniform and flame differs 1ittle from the
one-dimensional, At fairly large |e| the plane of symmetry shitts
to reglon with large gradients of temperature and the concept ot
gpeed of propagation of front of flame does not have cven an

approximate meaniny.,

5, Integration of the rirst cquation (1.6) over T fives

09 -0(0.0). —S(m + u+o)'£—dt+ S-:‘-(L%)‘g.q, SN,

S (4



If at the initial moment flame was normal, for small T at

e = const we shall obtain
0 N =0(e0)— st 25 40w

In normel flame d%/da # O; consequently, the distribution of
temperature begins to be smoothed at values € > 0 and to become
steeper at € < O,

Wwe shall investigate behavior of flame at larger |e|. In thls
case the distribution of temperature everywhere, with the exception
of narrow layer of thickness h ~'1//TET in the vicinity of point

a = 0, 1s described by the equation
18 eR=-0 (3.1)

which is obtained from (1.6) by means of discarding the small terms,

This equation possesses a system of characteristics u = a exp(ex).
along which $ = const.

Let us assume that ¢ < O, Then from (3.1) it is evident that
during the time T ~ 1/|e| almost all the change in temperature is
concentrated in the layer h, At |e| — o we have h = 0, and the
prot'ile of temperature tends to be discontinuous.*

At € > 0 (3.1) glves "a spreading"” of the flame with the same
characteristic timz v ~ 1/e; the distance between points with any
two temp.ratures increases propertionally to exp(et); correspondingly,

everywhere the temperature gradient decreases,

*If we take into consideration the thermal conduction, for
distribution of temperature we shall obtain

vobober(Y/ ) cmsesia

caanglng at € = -0 to (2.1), if in (2.1) by B there ls implled a,



In order to obtaln solution at Jinite |e|, we shall use function

(%), corresponding to the infinltely narrow zone of reaction:
1@>0 (=0 [(0)=0 at 01, Sl(’)”-ih“ (3.2)

where fo 1s true function of the heat release. Let us assume that

10)>0at 0<0<O0CE, /() =0t 80, 1(0)=/(1)=0
Then, if $, =1 and £(%) tends to function (3.2), there is

valid, as also in case of a normal flame [2], the relationship

(4] 2 h
m[2]_ - [chs}reo] (3.
We shall prove it, From equations (1.6) we have

—ZRn=slrR)+1®

- [W%LS%:“' E%(g_)'do+51§d(%)+ i;(o)ao =
- (3)..[’-(%):_. —* (.19-’):..]““0";'(’1:'):_ + S‘I do (3.4)

where 30 s 31, 32, 33, 34 < 1, In obtaining (3.4) there was used
an integration by parts and condition 3%/da = O at ¢ = 1 was used.
The function o (speed of gas assocliated with the heat expansion)
must have the limited derivative Jduw/da,
Having attalned in (3.4) the limiting transition at 30'* 1, we

shall obtain (3.3). We note that in this case
(il
oonst = A (1
g =oon =20 [R]
Thus, using function (3.2), we shall have § = 1 at a 2 o,
3$/da = const at a =-0. In reglon [-p, 0] function § 1is des.ribed

ty the equations (1.0) with = O,

We shall seek statlonary solution of these equatlions at



€ = -c = const ¢ O, For obtaining a qualitative plcture we shall 1limit
ourselves to the approximation p = X = 1, Assuming that 3%/da = 1 at

a = 0, we find

o= ‘r"‘"’"‘h (—wgeg)
-~
The magnitude m is determined from condition
; e dg = |
-

In particular

.‘-“ at a-?, mu=0 at e=n/2

n~—V&hh at s= =

Solutions for different c are given in Fig, 3.

At ¢ > 7/2 we have m < 0, i.e., gas flows to the zone of reaction
(peint a@ = 0) from the directlion of combustlon prcducts. The curve
$(a) at the point @ = -0 has a positive slope at m > O and negative
at m < 0, In sector of convexity of this curve the speed of gas
m — ca 1s negative and diffusion flux of fuel is directed opposite to
the convection flux,

The sequence of the $(a) curves with a change of ¢ from ® tc O
qualitatively 1is identical to the sequence of curves in the establish-
ment of normal flame from a discontlnuous profile of temperature (2.1).

At € > O the stationary solution of the equations (1.0),
satlstying the conditions $(-w) = O, $(+®) = 1, does not exist. The
physical reasons for this were clarified in Section 2.

However, at € << 1 there can be obtalned an approximate statlunary
solution introducing a fictitlous heat sink at § = 0, TIf the strenstu
or' the heat sink is small in comparison to the strength of heat source
it may be assumed that distributlion of temperature will cvolve

slowly and during certain time will differ little from the solutlon
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with a sink,

Using (3.2), at p = X = 1 in a stationary case we shall obtain
%_,ﬂuu‘ll (3.5)

The heat sink qg, will be minimum, if it is found at point
a, = -m/e (g = exp(-m2/2e)). The boundary conditions for (3.5)
O=1 ,¢ em0, O=0 ¢ Sm-—mfs

Consequently,

= g menst/l dg (—m/seg0)

-m/e

The condition for determining m will be

& enre/rde s | (3.6)
e \

In the sclution of (3.6) with respect tom there appears an
ambiguity, readily, however, removeable by condition m = 1 at € = 0.

We present results of calculations m and ao for certaln valucs

of €
sm O 0.007 0.18 0.28 0.40 0.51¢ 0.57 0.58
m= 1.0 1.40 1.2 128 1.8 1.22 1.07 1.0
—Gw o (1.3 6687 485 316 2.08 1.8 1.2

Curves $(a) are presented in Fig. 3, Close to reality therc
will be solutions obviuusly only up to € = 0,2 when the magnitude of

the sink still is small (qy = exp (-2) at € = 0,18). At € > 0.5
influence of the sink 1s so great that

i
I.u' .hlﬂi" ¢ m begins to decrease. The solution
” 1
= does not exist at € > 0.58 (at € = 0.59

[ ]
L we have q, = 1/e). Thus, at & ~ 1 the
geuw

3 ] s  phenomenon becomes essentlally

Flte 2 nonstatiunary.
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4, The use of function (3.2) does not make it possible to tind
a change in q, For the solution of this problem it 1s necessary to
use a zone of reaction of finite width, Nevertheless, the ascertalned
general properties of the phenomenon make it possible to make
qualitative conclusions without en accurate solution of the problem,

Actually
q-Tﬁs-S/;«

At € < O in region of the main portion of temperature change
(and consequently also in the main part of zone of reaction) d2/94
decreases in comparison to a normal flame; at € > 0 — 1t increases,
In other words the zone of reaction contracts or expands; correspond-
‘ngly, q decreases or increases,

It is obvious that influence of € on q will be greater, the
wider is the zone of reaction in the normal flame,

If we consider the quantity of heat Q being released per unit
of initial surface of flame, then it 1s possible to point out that
with time, Q begins to increase at € < O and to decrease at € > 0, if
at initial moment the flame was normal, At € < O in a stationary
case Q@ ~ q exp (CT). In a turbulent flow the elongation of the
flame (e < 0) statistically predominates over the contraction (e > 0O),
This directly follows from form of the functions ®(t), but can be
considered alsu as an experimental fact. The result ls an increasc
ot burning velocity in the presence of turbulence,

in flamc with a chain mechanism of the chemical reaction a
chuinge in the thickness of the flame will exert an int'luence on the
Jirfuslon o actlve centers and, apparently, g will change more

sradually than in a thermal mechanism of a chemical recactlion,
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There Is possible nlcu chang: of mechanism of reaction: a
dnerease in thickness of flame will shif't mechanism towards a chaln
reaction; an increase — to a thermal.

5. If f($) =0at $ =3,>0, £($) # 0at $, 5 8 = 1, then at
fairly large ¢ there does not exlst a stationary solution of equatiouns

(1.5), satisfylng boundary conditions different from zero
”»
020 gtf-etm, @ =*=0 atp=o0

That is, with a fairly intense and prolonged extenslon, finlte
volumes of the combustions products, surrounded by a fresh mixture,
may disappear. Process of such attenuation of flame 1is very slmpl.,
Let us assume that at initisl moment of time the combustion produ o
occupy in the plane § a band of finite width 4 >> 60. At fairly large
¢ the narrowing of band under the action of external hydrodynamic-
rield can not be compensated by the combustion process and the tand
width starts to decrease. If here there is attained d ~ bo, the
influence of cold regions is closed and there occurs a lowering of
the temperature accompanied by the cessation of burning.

(., The investigation conducted above makes it possible to draw
certaln conclusions about mechanism of turbulent combustion (in the
¢nse of large-scale turbulence),

The paramcter ¥y = v'bo/uol playc an important role, The order
of magnitude of <y, obviously, coincides with the most probable
value of absolute magnitude of the parameter e = Qbo/uo.

At ¥ << 1 the combustlon occurs in laminar fronts. Perceptille
doviations of flame from normal and phenomena associated with damping
o1 flame (resorption of finite v.lumes of combustion products, flame
tursts, ejection of combustion products Into the fuel mixture) are

ol low probability.
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At y ~ 1 the structure of laminar flames, as a rule, deviates
from normal: the concept of speed of propagation of front of flame
1oscs sence, profile of temperature and amount (specific) of burning
substances are variable. Probability of attenuation of flame increaseccs;
but, assuming that for the posslbility of the attenuation of the flame
|¢| must be fairly large (¢ > 7/2 in the idealized scheme of Section 3)
and a certain time which increases as |e| decreases 1s necessary, it
mucst be recognized that thls probability is still small. Thus, at
v ~ 1 combustion occurs chiefly under "rrontal” conditions; contrlbu-
tion of "pbulk" burning associated with attenuation of flame is small.

At ¥ >> 1 the structure of laminar flames strongly deviates trom
normal and the probability of attenuation of flame becomes significant.
Combustion occurs both in laminar fronts, which constantly burst out
and die down, leaving a "warm" region, and also by means of volumetric
reactions, proceeding in "warm" regions and constantly accompanied by
self-ignition with formation of laminar flame.

The author is grateful to S. A, Knristianovich and K. I. Shchelkin

for their discussions of the work, remarks and opinions.

Submitted
12 January 1963

Literature

1. L. Kovasznay. A comment on turbulent combustion., Jet
Fropulsion, 195, V. 2%, No. 6, p. 485,

2. Ya. B. Zeltdovich. On the theory of propagatlion of flame.
Journal of Physical Chemistry, 1948, V. 22, No. 1.

104



PROPAGATION OF ZONE OF CHEMICAL REACTION IN PURE ACETYLENE
AND MIXTURES WITH OTHER GASES

B, A, Ivanov and S. M., Kogarko

(Moscow)

Results are presented for an experimental research un
limiting diameters of flame propagation in pure acetylecne
in the intgrval of pressures 0.65-4,00 a.,a* at 2 tempera-
ture of 18°C. There are discussed the possible causes of
discrepancy between the obtained dependency and available
source dsta, Results of analogouc experiments in cloced
tubes of large volume are dilscussed.

A theoretical calculation of the decomposition flame
temperature of acetylene at a pressure of 1 a.a, which

by taking into account the dissoc%ationoof hydrogen and

carbon was found to be equal 293G~ % 50 K, We examine the
possible conditions of the d:composition magnitude of
energy and types of initiation of acetylene. There is
discussed concept "cascade explosion," which, in the
uvpinion of authors, is unsultable,

The possibility of spontaneous propagation of a decomposition
flame in pure acetylene is associated wilth the fact that during
decomposition of a molecule of acetylene into elements there is
rcleased a large quantity of heat 54,29 kcal/mole. This magnitude 1is

obtained from consideration of following scheme of the decomposition:

CGeH;— 2H 4 2C ;.. 4 388140 cal
3 Hy—s H - 51632 cal
Cso1td —>C ust 169585 cal

*a,a - atmospheres (gbsolut..) [Tr. Ed, Not:]
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Finally we obtain:
QH.-’ “. + xlo].id — 54.29 koal.

The experimentally determined heat of dissociation of acetylene
is equal to 54,2-58,0 kcal/mole,

Depending upon initial parameters of acetylene, and also on the
dimensions and shape of vessel in which it is found, there are
possible different types of decomposition: flash, slow combustion
(deflagration), detonation and ignition during reflection of shock

wave from a barrier,

Wwhile the first three types of decomposition nave been studied (1,
2] sufficiently i:. detail, the latter conditions of decomposition, at
which there are developed pressures hundreds of times exceeding the
initial, have been studied very little, We shall dwell in greater de-

tail on this question.

Ignition during reflection of shock wave at the end. In certain

cases in the propagation of a flame of pure acetylene, Just as for
two-component mixtures of fuel with oxygen or air, there are recorded
on the ends of pipelines pressures significantly exceeding values

for civen mixtures in case of their stationary detonation. In works
[3, 4] there is shown experimentally and theoretically that this 1s
connccted with so-called conditions of rapid no-stationary burning
whoce mechanism consists in the following. Before a contlinuously
accelerating flame there will be formed a shock wave of such amplitude
which is insufficlent for ignition of the gas during the period of
its compression in the passing wave, During reflection of this

shock wave from obstacle in the nonreacting gas with a supplemental
shock the temperature epproximately doubles and significantly the
density increases. The gas in which reaction could not penetrate to

a sufficient depth during its compression in the passing shock wave
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lgnites under conditions of reflectlon of the same wave from the
obstacle, At the same time there is not excluded possibility of
appearance of detonation in the still nonreacting shock-compressed
pas at the end of pilpe.

In work [?] it is shown that in acetylene the mode of non-
stationary fast burning develops under conditions where there becomes
already impossible a stationary detonation. Thus, for exsmple, in
pipe with diameter 100 mm and length of 20 m the limiting initial
pressure at which there still is realized a transition of burning

into detonation 1is 2.45 a.a, At a lower initial pressure always

-l there 1is realized the conditions of
. - slow burning with small increase of
IR g(-.]’ pressure for face of pipe, In experi-
: [_:. . ments with an initial pressure close
¢ ' ". to 2.4 a.a sometimes there are reallzed

Fig. 1. Photoregistration i purni
of conditions of non- conditions of rapid nonstationary burning

stationary rapid burning t 3 h

of acetylene: 1) trace of with extraordinarily high pressures at
flame, 2) trace of shock end of pipe, From obtained photo-
wave, spreading bifore

front of flame, 3) trace istrat ig. 1

of Shock wave appearing as registrations (Fig. 1) it 1is clear
?h;e:gat of ignition at that the flame in last section of pipe

continuously is accelerated and attains

a speed of 800 m/sec (detonation 1920 m/sec). In Fig. 1 in products
of reaction distinctly one may see two traces of shcck waves: the
wave propagating ahead of zone of reaction and the wave developing
rrom explosion of nonreacting mixture at end of pipe. 1In experiments
wlth such a mode of burning there was regist.red an increase of
pressure at the end exceeding the initial by 656 times,

In literature [2] for explanation of similar extraordinarily

high pressures there is advanced hypothesis of "cascade explosion.”
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It 1s assumed that part of initial gas is turned into products in »a
mode of deflagration and there occurs smooth rise in pressure in the
entlire system; then suddenly in remaining compressed gas a detonation
develops. Losses of heat to the walls of pipe will be ignored. Under
the assumptions made by calculation it is shown that the larger the
portion of gas converted into products of reactlon 1s, the greater

will be the pressure at the end of the pipe, 1.e., simply there 1s taken
{'1tu account the pressure of reflectlon of detonational wave for all
increasing initial densitles of the nonreacting gas. With such an
explanation it is impossitle to agree for the following reason.
Mechanism of transition of burning into detonations is connected

with continuous acceleration of motion of front of flame and formation
ahoad of a shock wave in the still nonreacting zas. Ahead of shock wave
being formed, the pressure, density and temperature of gas maintain

an initial value. Furthermore, by hypothesis (2] for one and the

same initial pressure of acetylene there may be observed different
pressure of the detonation depending upon place of transition of burn-
ing into a detonation., However, experiments show [3] that independrntly
ot the fact where burning passes into a detonation — at beginning or
end of pipe - the pressure during reflection of detonational wave from
end remains practically constant, A sudden transition from a slowly
spreading flame to a detonation without formation of shock wave is
impossible, Therefore, the assumption that under these conditions

the mode of a deflagrational burning passes intoc a detonation 1is in
sontradiction with all known experimental and theoretical assumptions
in the theory of burning.

Decompusition temperature., The temperature of decomposition

flame of acctylene was not detcrmined experimentally, However, ther

oxlst cortsin approximate evaluatlons of this magnitude on basis of
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pressurn of explosion. In connection with the fact that experimental
data on measurement of pressure of explosion differ by 20% and in

the calculation of temperature of burning there are not taken into
consideration the reactions cf dissociation of hydrogen and carton,
authors made theoretical calculation of decomposition temperature of
acetylene., With the use of data on dependence nf heat capaclty of
amorphous carbon on temperature [5] with extrapolations of them in
region of high temperatuies by numerical integration there was
obtained enthalpy of carbon at different temperatures, Taking value
of vapor pressure of carbon and heat of sublimation from work [(]

on the assumption that the vapor consists only of molecules C2 and
vapor pressure is equal total vapor pressure of molecules Cl’ CE, Cj,
and using coefficlents of dissociation and enthalpy values for
hydrogen from [T}, by the usual method [8] there was calculated
decomposition temperature of acetylene at a constant pressure of

1 a.a, There was assumed the following equilibrium reaction:

CGHy—+8Cpsc11d + bCyps+ cHy +-dH
where a, b, ¢ and d were calculated. The decomposition temperature
determined in such a way was found to be equal to 2980 = SOOK. In
view of great uncertainty of magnitude of vapor pressure of carbon
there was made .nc morre evaluation, Maxima of vapor pressure from
work [5] werec used. In this case temperature is equal to 2920 % 509K,

Limiting pressure of propagation of flame in pure acetylene,

Limiting pressure of propagation of flame determined in works [1, 2,
9] is equal to 1.35 to 1.4 a.a. It was assumed that at pressures
lower than this value, in acetylene it is a spontaneous propagation
of' flame is impossible, i.,c¢., under these conditions acetylene was
considered nonexplosive., Authors of indicated works note the very

rreat sensitivity of acetylene to magnitude of source of ignition
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and pusslibillty of lowering of limiting pressure with an increase ot
enerpy of inltiation, This fact 1s viewed, however, as the dis-
turbance of initial conditions and 1s presented without an appropriatc
analysls.

From source material it 1s known that energy necescary for
lynition of pure acevylene at limiting pressure of 1, a.,a ls very
great (8 Joule) and significantly exceeds the magnltude of energy of
iinition of even limiting fuel-air mixtures whose heat of ¢xplosion
is essentielly lower than the heat of dissociation of acetylenec,
iurthcrmore, limiting diameters of pipes, in which there 1s possible
the propagation of decomposition flame of acetylene at different
prossures, also are very large. Thus, at a pressure of 1.4 a.a the
limiting diameter is equal to 60-70 mm, at 2.2 a.a - 25 mm. Limitling
diameters of pipes for limiting fuel-air mixtures with such pressures
do not exceed 1 mm. From these data it may be conclud-d that width
o1 zune of the chemical reaction in acetylene is significantly
preater than all known magnitudes of zones of reaction for explosive
5 mixtures, Consequently, for initiation of decomposition of
purc acetylene 1t 1s necessary to apply sources of ignition signifi-
cantly more powerful than are applied usually for ignition of gas
mixtures,

Proceeding from the discussion above there were sct up experi-
ments in determining the limiting pressure of propagation of flame
[10]. The experiments were made in a steel pipe with an Internal
dlamoter 160 mm, length 1500 mm, i.,e., volume of 30 liter. In the [inz
there were four windows, each 250 mm long. The registratlion of
propagation of decompnsition flame of acetylene was produced on
photogrephic film secured on a revolving drum of the photoregister.

Initiation was carried out at one end of pipe cither by the heating
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and fucing of Nichrome and molybdenum wire, or by means of dischorge
of condenser through spark gap, or by burning in the acetylenc a
certain quantity of explosive mixture In thin
rubber shell, The experimentally determined
1imiting pressure of propagation of flame dld
not depend on type of initiation, In ¥ly. 2

there is presented the obtained depcndence

of energy of ignltion (capacitance discharge)

Fig. 2. Dependence on the initial pressure of acetylenc in the
of cnergy necessary -

f'or lgnition of 5 experiment. As can be seen from graph, with
spark E = 1/2 cu

(joule) on initial an Initial pressure of 1.6 a.a the eneryy of
pressure of acet-

ylene pg (a.a). ignition is small and amounts to 1 Jjoule.

In the limit — 0.65 a.a - the value of spark
energy 1s equal to 1200 joules, With the use of comparatively ctrong
sources of igintion (5-8 joules) the pressure is found to be equel
to 1.35-1.4 a.a, Thus, the previously determined value, repeatedly
zited in the literature, of the limiting pressure of propagation of
flame corresponds to sources of initiation at 5-8 Jjoules which had
been applied but does not correspond to the absolute limit on basis
of pressure. On basis of these experimental data of dependencr of
energy of ignition on the initial pressure it is possible approximately
to estimate width of zone of reaction in acetylene. At a pressure
580 mm Hg it wes found to be equal to approximately 16 mm, i.e.,
significantly greater than in usual explosive gas mixturcs, We note
here also the following. The ignition of acetylene by means of
heating of metallic wires is a more complex process in comparison
with 1gnition by condensed spark. Inltiation by heating is essentially
@ temporary process, Special experiments of ignition by slow and

rapld heating of wires showed that besides it 1is necessary to take
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into consideration both the time of thelr own heating, and also
volume which they can simultaneously heat.

The application for ignition of sources of such great energy, as
is required in case of acetylene naturally requires knowledge and 2
eilculation of their influence on initial parameters of the gas. If
it 1s considered that, during ignition by condensed spark, of the
LUermal efticiency of the spark at place of discharge 1is cqual to
14/, then application of source of ignition with a power of 1200
Joules in a bomb with capacity of 30 liter at 0.7 a.a ylelds a total
increase ln pressure by 10 mm Hg or 2% of the initial. There were
made control experiments Iin the ignition of pure acetylene, when
int'luence of source can be completely lgnored,

1., With an initial pressure of 1,05 a.a in 380-mm pipe 20 m
long (volume 2.5 m3) there was conducted thc initiation of acetylenn
witha capacitance discharge(E = 500 joule). The flame passed through
th» entire pipe with average speed of 30 m/sec.

2., With aninitial pressure of 0.65 a.a in 150-mm steel pipe
v m long there was obtained the decomposition of acetylene, Energy
or' ignition was 1200 joules, Average speed of propagation of flame
was 10 m/sec.

%, With initial pressures of 0.4, 0.5, 0,55 a.a in a 400 mn —
pomb i0U0 mm long  (volume of 125 liters) there could not be obtained
tlames of the decomposition of acetylene during application of an
i;nition source with energy of 1800 joules,

Thus, the limiting pressure of propagation of flame in pure
acetylene is equal to 0.6 £ 0,05 a,a. This value of the prescure
must be taken into consideration for creating safe conditions of
work wiU1acety1ene,its storage, and transportation.

critical diameters of propagation of flame. We demonstrated
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that in pipe of critical diameter during lgnition at the open end

the flame spreads for distances 2 to 3

between 0.65 and 4,00 a.a,

Fig. 3. Diagram of
installation: 1)
receiver, 2) ignition
electrodes, 3) experi-
mental container, 4)
separating film, 5)
differential manometer,
6) manometer, 7) vacuum
gage, 8) photoregister,
9) ionization trans-
ducers, 10) to oscillo-
graph, 11) to pump.

only then dies out.

increased.

is shown in Fig. 3.

liters.

diameters of pipe, while during lgnition

at closed end — 30 to 50 diameters and

In both cases in

process of experiment pressure was not

For pure acetylene there were

determined critical diameters at pressures

Experiments

were made in an installation vthose diagram

The recelver with

nitrogen had a capacity >120 liters, the

experimental contalners — not more than 7

Under these conditions, maxlmun

increase of pressure in system at the end

of burning was not more than 0.10 a.a.

Receiver with nitrogen and container with acetylene were seperated by

a thin polymer film which was melted out before experiment, creating

p /

J.

2

10bgest-—1—1— 10 s ]
’ 7] [T 120 B

Fig, 4. Critical diameters

D, (mm) of the propagation

of flame depending on ini-
tial pressure (a.a)of acet-
ylene: 1) data of work [1],
2) data of work {2], results
of present work, 3; ignition
at open end, 4) in closed
pipes.

an open end., Pressure in vessels
was levelled by means of a differen-
tial manometer, Igniting was produced
for "open" end of pipe by discharge

of capacitor or incandescence of wire.
In Fig. 4 there are presented the
obtained experimental data, and also
data from works [1,2]. In Fig. 4
there are plotted 2lso the results
of our experiments during ignition

at the closed end in the experimental
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pipe end closed from both sides (there were used pipes 6 m in length
and 60, 80, 100, 130, 140 mm in diameter). It is evident that value
of critical diameters fairly well agree with data ln work [2], but

are not correct because during experiment the pressure was increased,
and initial state of propagation was assured, as already has been
discussed, by the ignition at the closed end. The deviation of values
of magnitude of critlcal diameter during increased pressures (higher
than 2,2 a.a), obviously, is explained by purely experimental diffi-
culties in view of very strong dependence of the limiting pressure

on the diameter of pipe.

Upper concentration limits of the flame propagation in mixtures

of acetylene and oxygen, air, and nitrogen at a pressure of one

atmosphere., In comnection with the fact that in pure acetylene there
{s possible the propagation of flame up to pressure of 0,65 a.a, of
great scientific and practical interest is the question on the
reality of existence of an upper concentration limit of propagation
of flame in a mixture of acetylene with oxygen and alr. On the basis
of source material [11], concentration of acetylene in oxygen at
upper limit at a pressure of 1 &.a corresponds to 87-93%, and in

air — 56-75%.

Oour experiments showed [12] that upper concentration limits of
propagation of flame for mixture of acetylene with oxygen and air at
the atmospheric pressure do not exist. In Fig. 5 there is presented
the dependence of energy of ignition of spark on the addition of
oxygen, air, and nitrogen to acetylene at P = 1 a.a, From the
graphs it 1s evident that addition of oxygen continuously lowers
energy necessary for ignition., With 8% oxygen the mixture readily
is ignited by an induction discharge from a Ruhmkorff coil (E =

~ 1 joule). In the mixture of acetylene with air with the air content
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up to 23,5% the cnergy necessary for ignition of spark is greater

than for pure acetylene, with 33% air the mixture is ignited from

a Ruhmkorff coil, The dilution of acetylene with nitrogen results

in a continuous increase of ignitlion energy and with 20% nitrogen the
mixture can not be ignited with a spark energy at 1200 Joules., The
unique change in energy of the igniting spark from contents of air

in the mixture is explained by the fact that on initial sector of
reaction curve of nitrogen in air as diluent it prevails over oxygen,
facilitating the ignition, With contents in mixture of air up to 10%,
cxperimental variation of curve agrees well with the calculated

obtained from two other graphs,

.I.

L]

|

|

I

'm—u
. : %
Fig. 5. Depen- Fig. 6. Depen-
dence of energy E dence of average
necessary for ig- speed U{m/sec
nition on composi- of propagatlon
tion of mixture: of flame on the
1) CH, + N, composition, in %:

1) CHy + Ny
2) CH, + ailr
3) 02H2+ O2

2) C_H, + air
22
3) CoHy + 0,

In experiments in determining the magnitude of ignition energy
simultaneously there was made & photoregistration of propagation of
flame, In Fig. 6 there are given, in the form, of graphs the dependences

of mean values of apparent velocity of propagation of flame in the
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sector ©00 mm from source of ignition on the percentage of addition
arent., From graphs shown in Figures 5 and 6 there can be made the
important practical conclusion about the fact that small additlons

of oxygen to acetylene make this mixture more dangerous than pure
acotylenc, whereas addition of air (up to 23.5%) makes this mixture
less dangerous in comparison to pure acetylene. From graph in Flg. 5
th re readily is discerned the following. The previously determined
values of upper c .centration 1imits of acetylene with oxygen and

air correspond to the energy of initiation usually applled for ignition
of acetylene and its mixtures (fusing and calclnation of wires).

Concentration limits of propagation of flame in a mixture of

acctylene with air depending on initial pressure, The authors con-

ducted experiments in determining the concentration limits of prop-
agation of flame in rixture of acetylene with air depending on initial
pressure [13]. To work with one fixed source of ignition which assures
the ignition of the most difficult ignitable mixture at the limiting
pressure in entire interval of pressures and concentrations in case

ot mixture acetylene-air 1s found to be impossible., This 1s

connected with the fact that energy of mixture, beginning from
cortain values of the composition and pressure in those contalners,
which might be used under laboratory conditions is found to be com-
parable with magnitude of the ignition energy. Therefore, the
determination of concentration limlts was made on basis of following
scheme., For a fixed composition of the mixture there was determined
dependence of ignitlon energy on the initial pressure in the experi-
ment. Such dependence has a plateau, on basis of which there readily
is determined the limiting pressure of ignition for mixture of a
riven composition, and by the point of transitlion of curve on plateau

there 1s determined 1imiting maximum ignition energy which usually is
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called saturating ignition energy. By the obtained limiting values
of the pressure in such experiments 1t is possible to construct

concentration limits of propagation of flame dependent on the pressure.

F ]
i

\, , v

30 20
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; P 10 4 thy

¢ J0 @e0 00 s . & ¢ 20 J

Fig. 7. Dependence of Fig. 8. Dependence

spark energy necessary for
ignition on initial pres-
sure of mixture (mm Hg):

of ignition energy
on composition of
mixture acetylene —
air for different

1) 85% C,H, + 15% air;
90% CoH, + 10% air;

2) initial pressures,
E; pure acetylene;
5)

(in abs.atm)s
1) 1,0 a.a, 2) 0.9
a.a. 3) 0.8 a.a, )

T5% CH, + 25% air;
© 0.7 a.a, 5) 0.65 a.a,

70% CoH, + 30% alir; 6) 0.58”aa,
6) 65% C,H, + 35% air;
7) 60% C,H, + 4% air;
8) 50% C,H, + 50% air;
9) 45% C H, + 55% alr;
10) 30% H,H, + 70% air

to 5% C Hy + 95% air,

In Fig. 7 are given the indicated dependences. In Fig. 8 there
is shown dependence of ignition energy on composition of mixture at
different initial pressures. The curves are analogous tc the already

described curve 2 in Fig, 2. The maximum ignition energy is observed
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when amount of air in mixture is abouti17.5% for all the investigated
pressures. A mixture with contents of air up to 5% and with contents
of alir about 23% has an 1gn1tion.energy equal to ignition energy of
pure aceylene at the same pressure, From the graphs it is evident
that both the limiting pressure of propagation of flame and also
ignition energy necessary at this pressure, beginning from 23% air,
decrease with an increase in content of air in the mixture.

From data in Figures 7 and 8 there readily is constructed the
dependence of limiting initial pressure of the flame of propagsaiion
on composition of the mixture (Fig. 9).

»

‘ Region 1lying above the curve is called
{: . region of ignition or reglon in which
E: the propagation of flame is possible,

0 e

The region, lying below the curve is

Fig. 9. Limiting pres-
sure (mm Hg): prop-
agation of flame depend-
ing on composition of

called region of incombustible composi-

tions of the mixture,.

mixture acetylene-alr;
a is the region of ’ From the graph given in Fig, 9 1t
ignition. follows that with strong dilution of

acetylene with air,character of dependence of limiting pressure on
composition of mixture 1s very similar to analogous dependences for
other fuel mixtures., Here also exists a lower concentration limit

of propagation of flame quantitatively coinciding with values given
in the literature [11]. However, for mixture of acetylene with

air there is absent an upper concentration 1limit which is connected
with possibility of a flame propagation in pure acetylene, Therefore,
left branch of the shown curve, not having an asymptote, is not
inherent to the usual mixtures of hydrocarbons with air or oxygen.
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EXPERIMENTAL DETERMINATION OF COEFFICIENT OF THERMAL CONDUCTION
OF HEAT-INSULATING MATERIALS BY METHOD OF
SELF-SIMULATING CONDITIONS

G. I. Vasil'yev, Yu, A. Dem'yanov, V., I, Kurnakov,
A. V. Malakhov, Kh. A, Rakhmatulin and
A. N. Runynskiy

(Moscow)

Existing methods of experimental determination of thermal
coeffirients of materials in most cases are based on results
ensuing from an analysis of particular solutlons of the
linear heat-conduction equation (methods of regular condi-
tions, unlimited standard, instantaneous source and others)
(1-3]. These methods have a number of defects: complexity
of the equipment and experiment, especially for the case of
high temperatures whera its realization ls very formidable,
the possibility of obtaining from & single experiment only
one value of coefficient of thermal conduction (at the
temperature of heated model) and, what 1s most mportant,
they proceed from the condition of independence of thermo-
physical coefficients on the temperature. Of the methods
assuming the variability of thermo-physical coefficients,
well known is O. A, Krayev's method for determining the
thermometric conductivity, which is based on approximate
solution of a nonlinear heat-conductivity equation for
unlimited cylinder [4-5]. In present article there is
considered method of determining the coefficlent of thermal
conductivity based on use of an accurate nonlinear heat-
conductivity equation [6], which makes it possible to use
comparatively simple means of experimenting. There are
presented experimental data on the thermal conductivity
of foam grog with an initial specific gravity of Yo =

= 820 kg/m3 in the temperature range of 50 to 750°C.
With the use of liquids having a high coefficient of heat

transfer during condensation (for example, water), by water
proposed method it is possible to determine coefficlents of
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thermal conduction of not only heat-insulator but also of
materials having a relatively high thermal conduction
(close to thermal conduction of metals).

1, Essence of method being considered consists in the following.
The tested model is selected in such form that during the time of mea-
surements in its central part the process of propagation of heat occurs
Just as in a semi-infinite rod (one-dimensional case), i,e,, transverse
dimensions and height must be much greater than thickness of heating.
up of model during the period or experiment., For example, for a model
there can be taken a fairly thick rectangular plate., During experiment
temperature of heated surface of model is maintained constant,

From theory of thermal conduction (see, for example, [7]) on the
basis of an analysis of dimensionality it follows that in considered
case the process of propagation of temperature in model being tested
will occur according to the law (self-simulating solution)

T=T@® =77

Here x is the distance of point of body from the surface being
heated, t is the time,

By virtue of mentioned fact,the equation of propagation of heat
which 1s, in a general case, a nonlinear partial differential equation

of the secund order, for given experiment reduces to the ordinary

equation

= - 7ala) (1.1)
Here A is the coefficient of thermal conductivity subject to
determination and is function of the temperature; cp and Y are the heat
capacity and specific gravity which are considered as known* functions

of T.

*This circumstance imposes certain limitations on applicability
of the method.
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Thus, it 1s sufficient to determine character of change of
temperature at one point of model in order to know the entire field
of the temperatures T = T(§).

Integrating equation (1.,1) from § to ® end assuming that
dT/d¢ = 0 et § — , we obtain

O raap) o b (1.2)

From foimula (1.2) on the basis of the experimentally determined
field there is determined A(€) and, consequently, A = A(T).

The use of self-simulating heating-up makes 1t possible to
find A(T) by a single differentiation of experimentally found
dependence T(t)x=const' In the opposite case of an arbitrary
dependence of surface temperature on time, the determination of A(T)
would be associated with experimental finding of the dependence
T(X)tmconst 204 With its differentiation with respect to x, which re-
sults in large errors, inasmuch as this dependence may be found only
be discrete values of x.

The determination of the T(€) profile on the basis of interpreting
the readings of several additional thermocouples mounted in different
sections makes 1t posslble to Jjudge about errors introduced by
errors of measuring apparatus and deviations of temperature of the
surface being heated from the constant, It is necessary to note that
maintenance of constancy of surface temperature of model being tested

is associated with certain technical difficulties, especially at high

temperatures,

2. Experimental realization of method
was carried out by means of an installation
whose diagram is presented in Fig. 1.

’

The main parts of installation are the
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flat grephite heater 1, by the regulation of whose power the constancy
of the temperature of buffer metalllc plate 2 controlled by thermo-
couple 3 is maintained (by means of radiation). The buffer plate is

insulated from elements of the installation under a voltage potential.

The adjustment of power being consumed by the heater was carried

out by means of a step-down transformer to whose primary winding
there is connected an autotransformer. The model 4 being tested

consisted of two parallelepipeds ground against each other with a
total base of 100 x 100 mm each, between which there was placed

a measuring thermocouple 5 with junction at center of base.

In order to decrease the influence of inconstancy of temperature
of surface of model during initial period of experimert (~5 to 10 sec),
and also for lowering the relative error of determining the coordinate
of thermocouple (thickness of “hermocouple was 0.5 mm) the latter
was placed at a relatively great distance from heated surface (~10 mm).
The total height of model amounted to ~120 mm; this assured the
condition of semilimitedness required for application of the method.

The experiment begins with the establishment of a steady-state
mode of buffer plate (1000 % 20°C) together with auxiliary model
secured on its surface. Then the auxiliary model was replaced by
model being tested and simultaneously there were connected the
measuring instruments. The recording of the thermocouple readings
(Chromel-Alumel thermoucouples) were made in the electronic potenti-
meters EPP-09.

As follows from formula (1.2), the determination of A('r) in region
of low temperatures (50 to 200°C) at high values of temperature
of heater may be insufficlently accurate owing to relatively
large error in determining dT/dé in the 1nd1cat€§ interval of

temperatures, For the purpose of increasing the accuracy in determining
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A(T) in range of temperatures of 50 to 200°¢C
by the method of self-simulating conditions
there was used installation (Fig. 2),

assuring a high accuracy of maintaining

a constant surface temperature owing to the

Fig., 2.

condensation of vapors of spindle oil,
Preliminarily from the oils there were eveporated low-bolling fractions,

The oil was flushed into the heat-insulated boiler 2, 3, on
bottom of which there was mounted a electrical heater 1.

During the investigation of the thermal conductivity of porous
materials the condensation 1is realized on the thin metallic flange 4
(analog of buffer plate) having a low thermal resistance with the
thermocouple 5 caulked on the surface. During the investigation of
the thermal conductivity of nonpourous materials the condensation is
made directly on the surface of the model. The condensation of
excess oll vapors is realized in the condenser 6,

3, In Figures 3 and 4 there are presented the functions T = T(€),
obtained in experiments with temperatures of heated surface of model
~1000 and ~200°C. Dependences of true heat capacity cp and specific
gravity y on temperatures are obtained by means of calculation on
basis of known chemical composition and coefficient of linear expansion

of material,

Fig. 3.



We present results of chemical analysis of investigated

foam grog:

Component SiO2 A1203 Fe203 Mn0 FeO
Contents % 62,60 32,00 4,00 0,06 100

Dependences Cp = cp(T) for components of investigated material
are derived from work [8], the dependence of coefficient of linear
expansion a = a(T) was obtained by the authors experimentally, Graph

of change of cpy with temperature is presented in Fig. 5.
The dependence A = A(T), obtained as a result of the prccessing of

the experimental data, 1s presented in Fig, 6, where 1, 2 and 3 corres-
pond to different experiments; the light points refer to method

of self-simulating conditions, the black — to Krayev's method.

e
8
% =" ad—
* 7H" w 5
" “!L‘]“II_—IL"FEFI ’ ] i;o. r[.?aa
Fig. 5. Fig. 6.

curves a and b in Fig. 6 are constructed on the basis of equations
A = 0.24 + 0,0002T, » = 0,09 + 0,000125T [kcal/m-hrOC] (3.1)

for specific gravity of foam grog v = 950 kg/m3 and ¥ = 600 kg/mB,

respectively [8].
The dependence b obtained by method of self-simulating conditions

for foam grog with v = 820 kg,/m3 may be approximated by the equation

X = 0.14 + 0.000175T [kcal/m.hr°C] (3.2)
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The dispersion of the experimental points relative to averaging

curve does not exceed %7%.

The A values at room temperature obtained from equations (3.1)
and (3.2) agree well with dependence X = A(y) for analogous
meterials (8],

The experimental data presented in Fig. 6 for foam grog
with a specific gravity v = 820 kg/ma, obtained by the authors
according to method of O, A. Krayev (vlack points), agree well with
results of experiments conducted according to method of self-simulating

conditions,
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THEORY OF THE DEPOSITION OF A VISCOUS LIQUID ONTO A FIBER
OR WIRE BEING WITHDRAWN FROM THE LIQUID
B, V. Deryagin

(Moscow)

In the depositing of liquid onto a cylinder of radius r being
drawn from it at a constant speed U there sets in a steady state
characterized by the fact that velocities of the liquid particles

at any point of space become constant and independent of time.
We designate Qs as flow rate of liquid

; through any normal to its axis and stationary
! plane AA;, BBy, CC, 1in space (Fig. 1).
]

: i Obviously,

8/

4 20.-&s(r+v)-iv (v =u(y) (1)

Fig. 1.
where y is the distance from subfilm, and u

is the speed in direction of axis of cylinder in a stationary system

of coordinates, h is the thickness of film, From conditions of

stationarity there is evident the relationship

(2)

Qs = const



From (1) and (2) it is readily concluded that, if there is
known the amount of liquid "being occupied" by a unit of perimeter
of cylinder during a unit of time and equal to Q, then it is possible
to calculate definitive thickness of liquid deposit h,, by the formula

=  A<n \5)

so that qm does not depend either on temperature and viscosity of
liquid or on other conditions at a height different from level of
1iquid, as long as these conditions will not be found incompatlible
with the given value Q.

The definitive thickness hy 18 understood to be the thickness
obtained after loss of fluidity by film as the result of consolidation,
In any sector of film prior to its consolidating the particles
of liquid farther away from surface of cylinder will leg behind its
motion under action of gravity. Thus, u is a diminishing function

of y. This function satifies Navier-Stokes equations which for

case of axial symmetry, and lgnoring the inertia terms, give

™~ 1 N_ (%)
Bptirms=s
where 1 1s the viscosity, p 1is the density of liquid, g is the
acceleration of gravity.
In integrating equation (4) there must be taken into account
the following roundary conditions:
sml & 5)
at yw=0, 5-0 st y=h (

of which the first expresses absence of slipping between liquid and
filament, and the second 1s evident from the fact that on free
surface of film of liquld there is applied only the air pressure

normal to it, and normal stresses are absent,
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It 1s readily seen that for cases when h/r << 1 the second
term in formula (4) cannot exert a marked influence on the result
of the integration; being limited to the case of films, thils term

will be ignored.
Here the integration (4) under boundary conditions (5) gives

s=far—pr-Er+v (6)
and, according to (1),
Q=Ur—4 4w (7)

If gravity did not act (g = 0), then in entire thickness of liquid

£ilm there would be

s = U = const, Q=Ur (8)

The parabolic profile 88182 of the speeds in cross section of
liquid film, according to (6), is shown in Fig. 2.
It is readily seen from equation (7) that
f ‘ with an increase of h from zero, Q at first
also increases from zero and attains a maximum

equal to

'
Fig. 2.

s P AR YT T

and then diminishes becoming negative (Fig. 2)

at values h > /3hm.
Comparing (9) with formula (3), we find that the maximum possible

thickness of deposit hm is equal to

= ra=iYE (10)

As was pointed out theoretically (1, 2, 3] and verified
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experimentally (4], in those cases when it is possible to ignore the
effect of capillary pressure of menlscus near the "water line" (this
pressure according to the first Laplacian law depends on surface
tension and curvature of the meniscus), actually there is rcalized
namely this, the maximum possible thickness of the deposit. However,
during the deppsiting of liquid films 1t is impossible to ignore

the capillary forces.

We shall endeavor to examine concurrently those capillary and
hydrodynamic phenomena taking place in zone of meniscus and near
the water line which determine "capture" of liquid and thereby
thickness of the deposit qn‘

In order to be freed frcm circumstances incapable of rendering
an essential influence on result, but capable of complicating
treatment of the posed problem, we shall formulate it in following
manner. Suppose that from a liquid as a whole at rest there 1is
extracted at constant speed U an infinite cylinder (Fig. 3) of a
circular section SS with the vertical axls
00. Maintaining the same interpretation
of the designations n, p and g as previously,
we shall designate o as the surface tension

of the liquid,

In a stationary position of cylinder

Fig. 3.

being moistened by liquid the meniscus of
the liquid has the shape AA1A2 shown in Fig. 3 by the dashed line.
Motion of surface belng withdrawn from the liquid must cause, in
addition to formation of 1its moistening and the film being dragged
upwards, a change in the shape of the meniscus; here it is obvious
that deformation of meniscus, with increasing distance from surface

of cylinder, must decrease as it tends to zero. The magnitude of this
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distortion in the shape of the meniscus must depend on speed of with-
drawal of cylinder from liquid, decreasing simultaneously with it.
Therefore, at fairly small U, the zone in which the meniscus 1is
minutely deformed must reach up to a distance b from the wall, small
in comparison to radius of curvature of meniscus near the "water line"

Ri'

It can be assumed fairly obvious that, inasmuch as deformation
of meniscus owing to drag of liquid films by the surface of cylinder
decreases with distance from the latter, the slope of tangent at
individual points of deformed meniscus (the solld curve BB, B, in
Fig. 3) to surface will be less than at points of a nondeformed
meniscus located at the same distance from wall (points a and b in
Fig. 3).

On the other hand, these slope angles, as is evident from simple

geometric considerstions are small for points of a nondeformed
meniscus which are located at distances from wall less than B.

It is evident from this that these slopes are also small for
analogous points of deformed meniscus (located in Fig. 3 above point
C). Thus, at small U the deformed surface of 1liquid may be obtained by
cross-linking (connecting) the surface limiting the film with a thick-
ness slightly varying along the wall, and the nondeformed surface which,
consequently, satisfies equations of capillary statics of liquids.

Under this assumption there 1is deduced, &s we now shall see, the
genuine key to mathematical solution of the problem, which no longer
will present other difficulties except the purely calculating
difficulties.

We shall place the axes of the rectangular system of coordinates
so that the x axis will be located along axis of cylinder in direction

downwards, and the y axis will be directed towards the liquid film, If
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h is the thickness of the liquid film in the sector of wall with

abscissa x, then the relationship

h = h(x)

will determine the shape of surface of liquid and, simultaneously, the
profile of the enclosed film, Condition of slope of this profile

above the point of cross-linking C can be written in the form

$c1atncs (11)

We shall consider hydrodynamic equations for a gentle sector of
the liquid film with thickness from h = ho,for X = -qyup to h = 6.
For such a sector, as previously, it may be assumed that in first
approximation, velocities of the liquid particles are parallel to
the surface of the wall, Condiiions (5) will remain in force as
previously. However, equation (4) myst be modified, since now we

must consider the inconstancy of hydrodynamic pressure in the film.

Actually, inasmuch as surface of the film is no longer cylindrical,

pressure p under surface, according to first Laplacian law of
capillarity is assocliated with external pressure p, by the relation-

ship

where R1 is the radius of curvature of meridional section of surface

of liquid film at point near which there 1s sought p; R2 is the

radius of curvature of normal section of surface perpendicular to

meridional section., Under the conditions

%<1. ‘£<1. Ry==r = const (13)

the curvature of normal section of this surface perpendicular to the

13<
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vertical section is almost constant.

n By virtue of condition (11) it is possible
to assume approximately
1 A
o« ' r tad =)
[ ay and then, instead of (12), taking into con-
1 sideration (13) we obtain
| .p-,.q.g_% (14)
Filz. 4.

Thus, now dp/dx # O. Ignoring the forces
of inertia and projecting the remaining forces onto the x- and ;-axes

we obtain
O Su T8 ) C 9
B-m=2Rtrian - By (1%)
Due to slope of film of 1llquid

|;<= 4:;;

Therefore, from (15) it is evident that

rt< (16)
and in the approximation being considered the pressure p may be con-
sidered constant across the film., From (16) it follows that in (15)
it is possible for any y to take Bp/Bx values corresponding to p
values which are directly under the actual surface of flim. Therefore,

differentiating (14), it 1s possible instead of (15) to write

Stemh-- V18 e

The expression obtained for Beu/By2 differs from that, which

ls in equation (%) (besides the opposite slgn, owing to change

in direction of x-axis to the reverse) by the presence of second
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term on the right-hand side. Integrating equation (4) (ignoring,

in addition, second term on left-hand side) and satisfying conditlons
(5), we obtalned equations (6) and (7). Since the integration was
based only on independence of right-hand side (4) on y, and (17)
possesses the same property, then integrating (17) we shall obtain
(after the signs are changed and the second term on left-hand

side of (17) has been discarded):
---[{.—,3+§](ﬁ—v)'+[{;3+%]h'—v (18)
. . .
0=={uy=va- [+ B+ 5]® (19)
Transforming (19), we obtain the equation

s B +m=0m(f—3) (20)

The thickness of emulsion layer in its upper part tends

asymptcticaily (at x = -m) to a constant value, which we shall

designate as ho; here, obviously, simultaneously all the deriatives
h in x tend to zero, Substituting the corresponding magnitudes in

(21), we shall find
Q= U~ N (21)

Introducing instead of h the dimensionless magnitude

H = h/h, (22)

and taking into consideration (21), we transform (20) to the form

o+~ B[ Loyn) @)

Introducing the dimensionless variable X, and also dimenslonless
parameter B by the formulas

=)L, p=ghe (24)

.
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equation (23) can be reduced to
ol 1 (8-
m+"[nr-‘-nr”-] (25)

Equation (25) 1s valid according to gssumption made (11),

in the region

B (o--:;>t) (26)
i.e., within 1limit at any arbitrary large values of H. In integrating

(25) there must be sought the solution satisfying conditions

Het ot Xo—oo, Heooo st X=+te (27)

ensuing from the setting-up of the problem,

At first glance it seems that inasmuch as (25) is of third order
and, consequently, 1ts integral should contain thiree arbitrary
constants, condition (27) still is not determined explicitly by the
sought profile of liquid film, However, it is readily seen that
one of three arq;trary constants must be included in integral of
equation (25) 1n_;uch a way that 1ts variation only displaces, as
integer, the surface of film, expressed on certain scale by equation
H=H(X) parallel to X-axis; not changing its shape, and, consequently,
results in an identical shape of liquid film in the zone of thickness
being considered.

This circumstance is evident from the fact that in equation (25)
there does not enter the independent variable X itself; therefore,
if H = H(X) is one solution of this equation, then H = H(X + C),
where C is an arbitrary constant, expresses a number of other solutions.

The integration of equation (25) is not reduced to quadratics;
however, there 1s readily found the behavior of its solution for that
region where H already is close to unity. Actuelly, designating

i{ = 1 in terms of Y and ignoring the higest powers of Y, we shall

.
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obtain for its determination the linear differential equation
h=(-WY
Its general solution has the form
Y & CgnX 4 C™* + Cgtet
where Cl’ 02’ C3 are arbitrary constants and Qy a2, 03 are three
values of cube root of (1 - 38)., Of these three roots, two will be

complex values with a negative real part, Therefore, for observance

of condition (27) it is necessary that C2 = C3 = 0 and, concsequently,
H =1+ Coxpll —39)"X] =1+ exp l(t — 3)"* (X —C))

where (1 - }B)i/3 1s the usual (real) value of cube root of (1 - 3B).

The limiting formula for H also ascertains that the varlation of the

remaining arbitrary constant C influences only the location of

surface of the liquid film rel.tlve to the origin of coordinates,

but not on its shape.

As was shown earlier, for the solution of posed problem of
determining ho it is necessary to cross-link, at point where H = €
and h = 6, the solution of equation (23) or its equivalent (25)
with the solution of equations of capillary statics., For this
purpose we shall multiply term by term both sides of equation (25) by
(d2H/dX2)dx and shall integrate from X = -0 to zone of cross-linking,

corresponding to the value X = XO. As a result, we shall obtain
{ [ an 1 (=B
'r[a']'.ﬂa"i[m—‘-nr&]w“ (28)

But from (25) it follows that as X = @, when H >> 1 and
right-hand side (25) can be ignored, the asymptotic expression for

H has the form

e -‘-P. gz{—X‘ z(%)*%- = ‘-':-'(Bll)"'.
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It follows from this that

: . -«
1 (= .C 8% sd _ghph
S[r-"r"]m“‘ <} Fowm <
Therefore, the integral in (28) as X,— « converges and at

H=¢€ >> 1 the left-hand side of (28) is close to 1ts limiting value,

which 1s

A (PN, o dN
s [+(Zn) + 072, - 2O (29)
Here B(B) is & certain magnitude depending only on B, Conse-
quently, instead of (28) we have the right to write approximately

v

[+ @) +03x]=20 (30)

We now consider surface of 1iquid extending to the right of
point of cross-linking C, corresponding to the values H >> e, which
surface by assumption satisfies equations of capillary statics,
i.e., first law of Laplacian capillarity. This law for the case
under consideration is expressed by equation (12). But according

to fundamental law of hydrostatics

P=n—re (51)

Here z 1s the height above the level where hydrostatic pressure
is equal to the atmospheric, In the case when on surface of 1liquid
there is flat horizontal section, from its level, obviously, one

should read off z, Combining (12) and (31) we shall obtain

= (32)
But it is known that
1‘;-%,%‘;%—-“10%-—%’.—-’- (33)

where a is the angle of inclination to horizon of tangent to meridian
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section of our surface and ds 1s the element of arc of this curve,
corresponding to the increment da of angle a, It is obvious that
near point of cross-linking C, where a = %W. it is possible to
assume that d(1/R2) ~ 0, Assuming this and expressing dz in terms
of d(1/R1) with the aid of (32) and substituting in (33), we shall
obtain at a close to %W

~deme = LR % = R
Hence, integrating, we have

Comamih (34)
We shall designate R, at @ = Zr in terms of R. Then the constant
of integration
c.- éi’

consequently, instead of (34) we shall obtain

wnam el ) 9

At point C, where h = 6 (Fig. 3), a = %n - &, where Aa is, by
hypothesis, a small slope angle of surface of emulsion to the

base.

Expanding cos a in a series in powers of Aa, discarding term
with powers of Aa higher than the first, and, finally, replacing
sa by dn/dx, and 1/R by d2h/dx® we shall obtain

¢ (&% dh ¢ 1
Changing, with aid of (22) end (24), from veriables h, x to

variables H, X, we transform (36) to the equation

FER) +o 5 = wew? ()" (57)

Comparing (37) with (30), we determlne the condition of the
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cross-linking

» wisg) P=20 (38)

,sy_g‘,_(g.g)%-. (39)

Having a graph of the function B(B), it is possible from (38),

or

by knowing the wetting conditions U, n and o, to find £ and, con-
sequently, according to (24), also the thickness being sought.

In order to find from (29) magnitudes B for different (but small)
values of parameter B it is necessa;y by means of integrating equatlon
(25) to determine dH/dX and d°H/dXZ for large values of H. Since
equation (25) is not reduced to quadratics, then there was undertaken
the numerical integration of it by means of electrical integrator
of Gutenmacher system. This part of work was carried out by
Yu. G. Tolstov at our request, In such a way there are found values
of function B(B) for different values of (B). In particular, there

was found principal value

B = By=0.204... (40)

This value for B(O) makes it possiblé to find limiting expression
for small ho, corresponding, obviously, to limitedly small U and,

consequently, for extremely small values of the dimensionless parameter

=¥ (41)
From (41) it 1s evident that to small values y there correspond

small values of the parameter B, Therefore, from (24), (38) and (%0)

we shall obtain

hemR(E),  mem2ePnB=132... (42)

For the determination of thickness of deposit Wn there should be
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used formulas (42), (3) and (21). The calculations give

L-h(ﬂ—ﬁ)-t.az...n(!.ﬂ)(l_g) (43)

Tt should be noted that under the condition of smallness of Y
the second term in bracket is small in comparison to firsy as a
consequence of which hn ~ ho.

The calculated determination of radius of meridlonal section
in the water line of cylinder or, what 1is equivalent, of the height
of the latter above level of liquid into which it was lowered, 1n
general is an unsolved problem of the theory of capillarity. The
solution is entirely elementary in the case when r >> 76/pg, but
tnis corresponds to the two-dimensional problems for the deposition
of a liquid onto a flat surface analyzed previously [1-5]. For
the opposite limiting case r << J37;E the value R was found (also by
method of cross-linking) by us previously [6]. As a first approxima-

tion

R=r

Substituting this value R in (42) or (43), we shall obtain the
calculation formula for the thickness of liquid fi1lm being derived
during the withdrawal of & thin thread from the liquid; this 1s
of great practical importance (for exemple, in glass fiber, textile,
electrical, synthetic fiber industries and others).

From the derivationof formulas (42), (43) it follows that
condition of their validity may be presented in one of two equivalent

forms

i<t « ¥t (44)

The question, however, remains open as to what limit it is
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possible to use equations (42), (43) with the specific requirements
for an admissible error. The experimental instructions of this are

given in [4].

Institute of Physical Chemistry of Submitted
Academy of Sciences of USSR 15 May 1962
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TURBULENT PULSATIONS IN A LIQUID JET,
AND ITS ATOMIZATION

G. P. Skrebkov
(Novosibirsk)

An attempt at approximate analysis of process of atomiza-
tion during subsonic outflow through ordinary nozzles into
a quiescent gaseous medium proceeding from simplified
scheme according to which the jet 1is assumed to be consisting
of totality of separate liquid moles subject to pulsation
is undertaken. It is assumed that atomization sets 1in
when the speed of a mole in transverse direction (taking into
account the effect of aerodynamic forces) is fouand to
be sufficient for overcoming the forces of viscosity and
surface tension, Calculation of viscous and eserodynamic
forces is made with much schematization of real picture
with use of experimental coefficients.

The results necessary for present work were the investiga-
tions of G. Melig [1] and Halbronn [2]. Melig explained
atomization by presence of transverse speeds in the Jet.
Halbronn showed that owing to transverse speeds in the Jet.
speeds in an open rapid flow there may occur an ejection of
the water particles and, as a result of this, an aeration
of the flow,

At the A. A. Skochinskiy Institute of Mining the author
set up experiments for the study of influence of transverse
pulsational speeds on atomization. In these experiments
with cylindrical nozzles with a length of 100 to 200 diameters
there were measured the cone angle of the atomization,
exhaust velocity, and loss of pressure head along length
of nozzle with different degrees of roughness of 1ts walls.

on the basis of the losses of the pressure head there was
calculated the coefficient of hydraullc friction A.

For determining the transverse pulsational speed there
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Figa 10 Irl-
fluence of
transverse
pulsational
speed on cone
angle of at-
omization of
a water Jet:
D=7mm, v =
= 45 m/sec.

turbulent mixing.

were used results of Ye. M. Minskiy [3], according
to which the averaged transverse pulsational
speed u can be expressed in the form

s=pYhls

Here v is the escape velocity of Jet, B = 1.2
near wall, according to Ye. M. Minskiy.

Results of one series of experiments presented
in Fig. 1 show that angle @ of the cone of
atomization strongly depends on transverse pulsa-
tional speed u,

We shall assume now a flow in nozzle consist-

ing of individual liquid particles of various

magnitude (moles), which are in state of

We shall take for characteristic dimension of a liquid mole 1

the diameter of a sphere* equivalent in volume; let us assume that 1

= aD, where D 1s the diameter of the nozzle, a is a certain coefficient

Pulsational speed of stream

s=Ty

Here v is the average speed of Jet; T 1is a coefficlent, the sSO-

called degree of turbulence. Let us assume that p° is the density

of the liquid; initial kinetic energy of 1iquid mole is equal to

#According to the opinion

By = /13p°l'n® = 1/, aTa%" Dy

graph for the purpose of evaluating the geometric dimensions of
traveling masses, the dimension of the liquid mole is approximately
identical lengthwise and transverse to the flow.

of Ye. M. Minskiy [3] who made a photo-



During the escape beyond the limits of free surface of the jet
this kinetic energy will be partially expended in surmounting the
forces of surface tension and viscosity. Work of forces of surface
tension, as 1s well known, is equal to product of coefficient of the

surface tension g and the increment of area of free surface
A, = oxl® = gxatD?
[ 4

For an evaluation of work of forces of viscosity it 1s necessary
to know magnitude of the tangential stress on surface of liquid mole

during its escape from the Jet (Fig. 2).

y | L /¢
" '4’1;;' As is known, viscous stresses are equal to
bl . j ‘-—a"./‘n

Fig. 2. Successlve po-
sitions of liquid mole Let us assume that at the surface the
gugéga its escape from speed of the mole is equal to u, and at

moment of separation from the jet — u,.
Then the average speed of mole on the path 1 1s equal to 1/2(u + u,).
Assuming that free distance between neighboring moles 1is
proportional to the diameter of the mole, we shall obtain an approxi-

mate evaluation

ds  Yy(m4u) wdsm, To4ul
Force of viscosity for an arbitrary state of a liquid mole will

be

PamBEay  (omnbea(f) o e(f)

where s 1s the area of that part of surface of mole which 1is located
in the jet, expressed in terms of the area of entire surface of mole;
a and k are coefficients which take into coneideration the distribu-
tion of speeds around a liquid mole and which depend on positlon of
mole with respect to free surface of stream. Then work of forces of

viscosity will be expressed in the {orm
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A= SM, -yl Ty + .,)sk (4)o(4) dy = mat? (7o + s K

where K 1s the mean value of integrand.

As soon as part of liquid mole will escape beyond the limits
of free surface of jet it will be subject to the action of aero-
dynamic forces. These forces will deform the mole and "extend" it
from the Jet.

The force "extending" the mole from the jet may be determined

by the known formula
P =cup'y? (O_-W-""('H_' "‘("'))

where ¢ 1s an aerodynamic coefficient, pt — density of gas, w — area
of cross section of that part of mole which goes out beyond the
contour of free surface (expressed in terms of area of cross section
in the final position of mole, b is a coefficient).

Then work of the aerodynamic forces will be equal to
Ay m,vSa(-})b({-)dy = %a%D%'r*C
where C is the mean value of integrand. The work of viscosity forces
of the gas, and also work of gravity, are not considered since they
are assumed to be negligibly small. Kinetic energy of drop (mole) at
moment of its separation from the jet will be equal to
BymEy— A — A+ Ay
By this energy there readily is determined transverse speed of
drop u, which makes it possible to calculate cone angle of jet of
atomization in terms of the ratio of transverse speed to the axial:
tan (1/2)9 = u,/v.
Using the determined expressions, we shall obtain
Ky 12 12KTY, 6K
= [+ 1200 + () - 5 - CF] "5
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Here W is the Weber number, R is the Reynolds number, p is a

number characterizing relative density of the gaseous medium

On.,2 v
W= leZL-, R = 2%, p = 23 (v° — viscosity of 1liquid)
1%

3]

It is obvious that with a small initial kinetic energy of the
mole and the weak action of aerodynamic forces the mole cannot escape
from the jet. From the condition ¢ = 0 (or E, = 0) we shall obtain
then the critical Weber number at which atomization begins:

We ™ NI Telr—TIT TR
In this way there can be obtained also formula for speed of jet

\' at which the atomization begins:i

*

vom 0E +[(2G50) + Apyr]”  AmaTHizeCh

Magnitudes of coefficients C and K were determined by us on the
basis of experiments of A, S. Lyshevskiy [4]. For determining C
there was used a number of experiments in which the influence of
density of stream on the cone angle of atomization was investigated.

The magnitude C was calculated from the equation

W - § = 1200—r)

Averaged value of coefficlent C at p = 0.0012-0,022 was found
to be equal to C = 0.10-0.11,

For the determination of K there were used two series of
experiments made by A, S. Lyshevskly, in which there was studied
dependence of cone angle of atomizatlion on the exhaust velocity; one
series of experiments has been published [4], the other was used
through the courtesy of the author. Mean value was found to be

equal to K = 4,
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The coefficient a, characterlzing relative dimension of the
calculated mole,* is assumed, in first approximation, equal to a = 0.07.
Such value of a was obtained by Ye.M. Minskiy [3] for uniform flow
without pressure head on the basis of calculations of transverse
scale of turbulence (transverse scale of turbulence according to
Ye .M. Minskiy amounts to about 0.14 of the depth of flow) and is
transposed by us to a pressure flow owing to absence of similar
measurements in a pressure flow, A similar transposition is, in our
opinion, fully admissible in the stage of qualitative analysis of
phenomenon of atomization. Furthermore, error in selecting a is
compensated partially by the fact that K is determined from experi-
ment with an already selected a.

Magnitude of degree of turbulence T depends on many conditions:
the shape and design of the nozzle, roughness of walls, escape
velocity, etc. In a gener«l case, the magnitude T can be determined
experimentally.

According to available data [5] the degree of turbulence in
relatively short pipes can attain T = 0.10. This means that with
an escape velocity of 100-200 m/sec the transverse pulsational speed
will attain 10-20 m/sec., It is fully obvious that with such high
transverse velocities the liquid will be intensely atomized laterally.

In Figures 3-6 there are presented the results of the calculation
on bases of the obtained formulas at the above-indicated values of
coefficients C, K and a, The magnitude T was selccted from the con-

dition of best approximation of calculation for the experiment,.

+In short nozzles where turbulent boundary layer can not be
developed over entire thickness of the flow, probably, a more correct
dimension of the mole is associated not with diameter of the nozzle

but with thickness of boundary layer at the end of the nozzle.
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Results of the calculation presented in Figures 3-6

show that

obtained formulas truly reflect influence of individual factors on

process of atomization;

this indicates thelr correct structure.

M >
oy, h "r :7}«?;
L] "-' w
& o / T4
¥ e
) | .,f i ;
(] ——Tia N
Fig. 3. Speeds at Fig. 4. Change of cone

beginning of atom-

ization v, for’

diesel fuel depend-

ing upon relative
density p of a
gaseous medium at

values D = 0,5 mm,

v° = 0.05 cm?/sec

and 0 = 0,03 g/cm;

continuous curve
— on the basis of
the empirical

Lyshevskiy's forau-

la [9]); dashed —

on

basis of obtained

formula at T = O,

Experimental data have been taken from [4-8].

072,

angle of atomization
depending upon relative
density of gas medium:
1) Kukharev's experi-
ments [7) at values

v = 100 m/sec, D =

- 0.7 mm, ¥° = 0.052

cm2/sec and o = 0,028
cm; 2) experiments
by Zass [8] at values

v = 165 m/sec, D =

= 0.57 mm, ¥° = 0.06

cm2/sec and o = 0.035

g/cm; curve — accord-
ing to formula obtained
at T = 0,072,

In view of the

lack of experimental data in the USSR on the speed of the beginning
of atomization for comparison with results of the calculations there
is used Lyshevskiy's [9] empirical formula.

The calculations made, have shown that magnitude of the cone angle
of atomization in the general case is determined by many factors.
However, under certain conditions the cone angle 1is determined at
most by only one or two factors. Thus, in an atomization into the

atmosphere the cone angle depends primarily on the degree of turbulence

and speed of Jet; during an atomization intc a gas medium whose density
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is 10 to 20 times greater than air density, the cone angle of

atomization 1s determined mainly by the aerodynamic forces.

'YARY]

, 7‘2 u/ucf

|7 °.'/ /s00 i
Ju ™ "nl:_ﬂ_‘ﬂ e

Fig. 5. Variation of cone Fig. 6. Dependenc~ of
angle of atomization depend- cone angle of atomiza-
ing upon speed of Jet: 1% tion on the diameter
Pobyarzhin's experiments [6] of nozzle D at values

at D = 0,38 mm, v° = 0,014 v = 160 m/sec, v° =

cm2/sec, o = 0,021 g/cm, p = 0.05 cm® sec, 0 =

= 0,0014 and T = 0,107; § 0.035 cm and p =

Lyshevskiy's experiments [4] 0.0156; Lyshevskiy's
_ W° = experimental points

at D = 0.54 mm, = 0.05 are [4] for nozzles

2/sec, p=0,0014, T = with a length of about
= 0,095 and 5 = O, 035 g/cm; 4 D; the curve — accord-
curve — on basis of the ing to the obtained
obtained formula. formula at T = 0.0%5,

The equality of kinetic energy of a mole to the work of its
escape from the jet makes it possible also to analyze influence of
individual factors, and in particular parameters of turbulence o1
flow in nozzle, on dimensions of the drops obtained as a result of
atomization of jet on escaping from the nozzle,

The evaluations of diameter of the mole obtalned by Ye.M, Minskiy,
mentioned above, pertain to those moles which are subject to maximum
pulsations, Together with the huge moles in turbulence flow there
are moles of smaller dimensions, Condition E, = O determines dimension
of that limiting small mole which still is in a state to be separated
from the Jet under action of transverse pulcations at a glven escape

velocity of the jet, exceeding v,, whille

149



ot 13 13KT
Sui = wav Ty + X IR
It 1s natural that fineness of the atomization will bc the greater,

the smaller is a From formula it is evident that the fineness

min®
of the atomization must increase with an increase of degree of

turbulence of the flow, decrease of viscosity, 1lncrease of escape
velocity, etc; this completely corresponds to results of numerous
experiments (6, 9, 10]. The fineness of atomization will depend

also on what dimension of the moles predominates.

Submitted
23 April 1962
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SCALAR EFFECT A'.D INFLUENCE OF DURABILITY IN
A DIRECTED EXPLOSION

V. M. Kuznetsov and Ye. N, Sher
(Novosibirsk)

The theoretical bases of directed explosion are presented
in work [1]. Results of experiments conducted in soft
ground [2] showed the fundamental correctness of the pro-
posed scheme and made it possible to modify law of location
of the explosive substance (BB) on surface of the ejected
ground mass., Below there are dlscussed results of further
investigations and experiments in this direction.*

Experiments showed that question on the similarity in a
directed explosion most closely is associated with question
about magnitude of tamping. In a general case the index
of simulation depending upon degree of tamping may vary
from 3.5 to 7.

Furthermore, in a directed explosion in rocky ground it
is necessary to take into account the durability properties
of the medium, whose calculation introduces essential
corrections in the scheme of an ideal incompressible fluid,
Direction of ejection depends on sequence of initiating the
charges of the BB, A delayed detonating in a number of
cases may result in an essential decrease of consumption of
the BB,

1, Scalar effect. Suppose that ejected ground mass 1s limited

by an arbitrary surface with characteristic linear dimension 1, Let

*The investigations were made in the summer of 1962 at the
Institute of Hydrodynamics of the Siberian Division, Academy of
Sciences of USSR jointly with the "Soyuzvzryvprom" Trust in
rocky ground.
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us assume that, further, this linear dimension increases by k times
with conservation of the geometric similarity of the regions. Then
with an increase of total momentum I, being communicated by the BF by
k3 times, the speed of ejected ground mass will not vary. Inasmuch

as distance of flight of ground is proportional to v2, then for obtain-
ing a geometrically similar ejection the speed v must be increased by
k1/2 times. Thus, for obtaining geometrically simllar craters and
plles of broken ground with an increase of scale of experiment by k
times momentum being communicated by BB to ground, during directed
explosion must be increased by k3'5 times. This conclusion follows,
of course,also from general considerations of dimensionality, inasmuch
as the determining parameters in this case are: momentum J, linear
dimension 1, density of medium p and acceleration due to gravity g.
From these parameters there is constituted only one dimensionless

combination, which is the formula of modeling in a directed explosion
d
m-u (2.1)

As 1s evident from work (2] the dependence of specific momentum
on the weight of the BB per unit of area under different conditions
of work of charge may vary. If the blasted volume of ground is in the
air or is surrounded by a very compressible medium, then momentum
pulse is proportional to energy (weight) of the BB, In this case the
simulation formula of the directed explosion coincides with known
‘ormula for major explosions for an ejection [3]. If, however, ground
is ejected from nondisturbed ground, then, assuming that mass of
ground, set into motion during the time of action of load, exceeds

many times the mass of products of detonation, we obtailn

J = Y2mE (1.2)
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where ™ 1s the energy of the BB, m is the mass of ground set in motion,
If in this expression m 1s the total ejected mass of ground, then
m~ 12 and from (1.1) and (1.2) we obtain another well known formula

for powerful explosions for an ejection [4]

-’%'--G“ (1.3)

which also is evident from general considerations of dimensionality
theory in the case, when the determining parameter instead of the
pulse is the energy.

However, practically the magnitude m in expression (1.2) is
not equal to total ejected mass of ground, but is determined by the
time of action of load, i.e., it depends on the tamping of the bores,
The case m -13 is in this sense limiting and takes place then, when
the outflow of gases i.e., products of detonation through outlet of
the bores is absent,

However, in practice it always takes place and may play an
essential role, especially during explosions in rocky ground, If,
for example the tamping remains constant with an increase of the scale,
as was observed in experiments described below, then it is natural to
assume that the mass m, set in motion 1is proportional to the thickness
of layer of BB, or, approximately, m~ 1. In this case from (1.1) and
(1.2) 1t follows that degree of simulation is equal to 6. We can also
imagine the case when the value of m in general does not change with a
change in scale of the explosion. ‘This, obviously, will take place
during explosions in very hard rocks with a tamping constant in magni-
tude., Thus, in general we may write the formula of simulation for a

directed explosion in the form

CR
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where u 1s a magnitude depending on properties of ground and on
magnitude of tamping, the index of simulation n varlies within the
limits

3I<ng?

Experimental explosions were produced in limestone of 6th
category of durability on basis of scheme ir. Fig., 1 at a depth along
a normal equal to 2,1, 4.2 and 5.7 m, Specific consumption of BB in
first experiment amount to 3 kg/mB. The change in total amount of
BB during transition to larger scales is shown in Fig. 2, where two
straight lines 1imit region of change of simulation index., The
results of these explosions are shown in Flg, 3 in the form of

schematic profiles of craters and piles of broken up ground.

Fig, 1. Fig, 2. Plg. 3.

Comparing results of experiments, we see that despite large
values of simulation index, adopted in the calculation, the craters
and piles of broken ground happened to be dissimilar: with an
increase in scale of explosion the relative quantity of ground,
eJected from the crater, decreases, Since in the transition from a
depth of 2.1 m to a depth 5.7 m the magnitude n was assumed equal to
4,8, from this it is evident that in this case index of simulation is
included within the limits
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Such large values of index of gimulation result in a sharp over-
consumption of BB in a directed explosion in comparison to the usual
:xplosions for an ejection. It is necessary, however, to remember
that in soft ground the role of tamping is less essential so that n
varies within a narrower interval between 3.5 and , During
explosions in rocky ground the role of tamping is very important,
this must be remembered in practice in general, especially in a
directed explosion. With the realization of a fairly reliable tamping
the consumption of BB may be greatly lowered.

2. Influence of durability properties of the medium in a

directed explosion. Theoretical scheme of directed explosion (1] is

based on simulation of an ideal incompressible fluid., Considering
ground as an ideal incompressible fluid, we take into account only
the inertial forces developing during explosion and disregarding its
durability properties. Such approach makes it possible to grasp
basic features of the phenomenon, assuming that the influence of
other factors, in particular durability, can be considered as the
correction for the basic model.

Experimental explosions in clay ground [2] corroborated the
correctness of this approach, At the same time there was ascertained
a number of details which were not contained in the framework of a
model of an ideal imcompressible fluid and were lacking in 1its
explanation of the involvement of durability characteristics of the
ground, Thus, in experiments 25 and 26 of work [2] with an identical
scale and law of the spacing the consumption of the BB is second case
was two times greater,

According to general theory discussed in the first section it
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would have been possible to expect that distance of thrust in second
case will be double that of the first. Actually it was found that
distance of ejection increased more than three times, Qualitatively
this result can be explained as follows, According to the theory

for realization of a directed ejection it is necessary that the

entire mass of ground is covered with a solid layer of BB. In practice
the BB is placed in bore holes, located over the relief of ground

mass to be ejected at a certain distance from each other, so that
between the bore holes the ground remains undisturbed.

For the detachment of the blasted mass of ground Irom the non-
disturbed ground there must be accomplished a certain amount of work
proportional to surface of ejected volume of ground., It is obvious
that in the above-mentioned example magnitude of this work remains
constant inasmuch as scale of explosions does not change. Thus, in
second case in communicating the kinetic energy to the ground a
relatively large part of all the energy of the BB was expended.

We shall present one more example. In the same grouvnd there was
drilled a number of holes at an angle of 450 at whose bottom there
were located concentrated charges of BB, As a result of undermining
a large part of ground was ejected in the direction of slope of the
holes — the minor disturbance of continuity of nondisturbed ground
from the direction of the holes essentially influenced the direction
of the ejection,

Still more significantly there is shown the influence of durabil-
ity properties of medium during explosions in rocky grounds. In the
course of experiments there was revealed one interesting circumstance.
It was found that direction of ejection depends on place of initiation
of charges. The fact is that in practice charges of BB placed in the

holes are conveniently connected to each other by a detonating cord
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and the undermining is made from one place, The scheme of the initia-
tion which 1s used in experiments in rocky

ground is shown in Fig. 4, where 1 and 2 — are

bore holes of charges 1 and 2, the figure 3

indicates groove of charge 3, and 4 — the point
of ignition; the point of 1éhition was placed
both on the side of charge 1, and also on the side of charge 2. In
both cases ejection of ground occurs towards that direction, whence
the ignition begins the initiation, The speed of detonation is &
magnitude of an order of several thousand meters per second, and speed
of ground in the cited experiments amounted to only several tens of
meters per second.

Thus, during the time, during which detonation spreads to all
charges of the BB, the volume of ground being ejected will not change
essentially its shape. Consequently, cause of observed effect must
be sought in another.

We shall note here that an analogous phenomenon during an
explosion in soft ground was ascertained by S. A. Davydov [5]. 1In
our experiments linear dimensions of ejected mass of ground were such
that the ratio of length of trench to its width was equal to four.

If we assume the speed of detonation in detonating cord is equal to
7 to 8 km/sec and speed of shock wave in ground 3 to 4 km/sec, then
during the period of delay, during which detonation will spread from
first charge to the latter one, shock wave can traverse the entire
ejected volume of ground.

On the other hand, it is known that in the initial stage gases
i.e., products of detonation expand according to the law pV} = const,
It is evident from this that a major part of work is performed by the

products of detonation just in initial stage of the expansion, Thus,
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with an increase in radius of hole by 20% potential energy of gases
amounts to only 47% of the initial, and the remaining is transmitted
to the ground. Since at initial moment the rate of the expansion is
great, then during the time of delay the charges, initiated at the
beginning, may be almost completely "depleted," i.,e., they can
transmit their own energy to the ground. This energy is expended in
the destruction of the ground and in creation of a field of speeds in
it., Thus, the influence of nonsimultaneity of the undermining
develops in two relationships — energy and kinematic. From the point
of view of energy, the charge, being undermined at the beginning,
produces large part of the destruction of ejected mass of ground

and its detachment from the nondisturbed ground, but owing to this
the speeds acquired by the ground, happen to be smaller in magnitude
than in the scheme of an ideal incompressible liquid. Charge, which
is undermined later on transmits its cwn energy to the ground already
destroyed and detached from the nondisturbed ground and, consequently,
determines the direction of ejection. Kinematic
influence of the nonsimulteneity of the under-

mining appears in creation of new threshold

surfaces and change of boundary conditions on
Fig. 5. the surface of ejected volume of ground. This
question can be examined within the framework

of an ideal imcompressible fluid. In the experiments of the authors
ejected volume of ground had in cross section the shape of a triangle,
but ejection was made at an angle of 63.50. The distribution of
potential at boundary of region for the given case is shown in Fig. 5,
where the arrow indicates the direction of explosion,

We shall consider two cases, In the first there are undermined

charges 1 and 3 (this corresponds to undermining from direction of
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charge 1), and then charge 2, where as a result of explosion of
charges 1 and 3 there wlll be formed a free surface at the place of
charge 3 and a line of flow at the place of charge 1. In the second
case at first there are undermined charges 2 and 3, and then — charge
1, where at the place of charges 2 and 3 there will be formed,
respectively, a line of flow and a free surface. The subsequently
generating fields of speeds and total fields of speeds are shown in
Figures 6 and 7. Direction of ejection during a simultaneous under-
mining of charges 1s shown in these figures by arrows, the solid lines
are equipotentials, and the dashed lines are lines of flow, Pictures
of the flows are obtained in integrator EGDA-9-60, The nonsimultaneity
of undermining from kinematic point of view results in an increase of
angle of ejection so that main mass of ground acquires speeds directed
almost vertically upwards. Owing to thoroughly discussed energy
consideration above the charge, being undermined later, communicates
to the ground relatively higher speeds than during a simultaneous
undermining., Thus, in first case ground may be ejected in a direction
opposite to that which takes place during a simultaneous undermining.
In second case (during an undermining from the direction of charge 2)
ejection should occur in
the required direction,.
These conclusions were
corroborated by experiments.

3. Application of

delayed detonating in a

directed ejection., In

practice in certain cases

it is more profitable to

Fig. 6. Fig. 7. apply delayed detonating
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in a directed ejection since this results in a decrease in consumption
of BB per unit of volume of ground.

Leaving open question about the delay times, it, is possible
theoretically to consider two extreme cases: a) from charges,
located in the ground, initially undermined charge excavates volum
of nondisturbed ground and creates in its place a free surface
(this case will obviously, take place during longer delay timec):
b) initially undermined charge does not excavate the ground from th
nondisturbed ground and does not create a new surface. Taking Intc
consideration the durability of ground outside ejected volume cwin
to pressure head on the part of nondisturbed mass, we may assum
second case that in place of initially detonated charge there will
be formed a line of flow. This case has been considered above,

Let us assume that region as previously is a triangle (Fig,
We shall introduce following designations: ?3 is the potential,
corresponding to forward motion of ejected mass of ground in a ~iven
direction; 01 is the pulse, created by the i-th charge of EBB; &
the pulse obtained at place of i-th charge during explosion of the
single k-th charge. The magnituges i and k pass the values 1, ©,
In order that as a result of undermining of all charges the ground

obtalns a forward motion, it is necessary to fulfill the followin

relationships:
- \
Oy + O,y + By = 9, (
d, + @

3+ %5 + 955 = 9
Charge 3 is found on free surface, therefore,
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and, consequently, ®3 = ¢3, i.e., the magnitude of charge 3 remains
the same as during a simultaneous undermining. In the case a),
furthermore, charges 1 or 2 create free surfaces depending upon which

of them explodes first., If sequence of detonating is 2-1-3, then

., =&,, =0, 0

21 23 - 9

2

Thus, in this order of the detonatiiig charge 2 also does not
change its own magnitude in comparison to case of simultaneous
detonating, and charge 1 should have the magnitude ¢1 =9 -(@12 +
+ ®13), i.e., welght of charge 1 should be less than during simulta-
neous undermining. By this method it is possible to make a calcula-
tion for any sequence of undermining charges. In particular, the
most profitable from the point of view of expense of the BB is the
tfollcwing order of undermining: 3-2-1. 1In case b) both charges
being located in the ground, alter the magnitude in comparison to the
case of simultaneous undermining. The method of calculation remains
the same. The problem, however, is complicated by the fact that on
the newly forming surfaces the boundary conditions a priori are
unknown., Nevertheless, also in this case a nonsimultaneous cdetonating

may result in a decrease of consumption of BB,

[
A Below as an illustration there is presented the
problem, analyzed by Ye, N. Sher.
Fig. 8. Let us assume that from a half-space filled

with an ideal incompressible fluid there must be
tossed upwards* an infinite cylinder, whose sectlion is one-half of a

unit circle (Fig. 8)
smo® (—8<e<O (3.3)

*Incomplete phrase in original Russian not indicated in errata
sheet has been deleted [Tr. Ed. note]
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The complex potential of such a flow 1s z/1, This flcw we assume
to obtain as sum of two flows with the potentials LY and Woe

First flow is result of application of impulse load on arc BC.
The second is on arc AB, The region of the flow in first case is ‘he
lower half-plane with cut-out arc BC, in second — lower half-plane
with cut-out arc AB, In both cases on actual axis @ = O, There is
required to determine function ?y and 9, on the arcs BC and AB, in

such a way that in semicircle (3.3) there was fulfilled the condition
®(s) + Wy (8) = (Z.4)

Owing to symmetry of problem we have
" () = (—3) (%.5)

where w(z) 1s the function conjugate with w(z). Contition (3.4) will

acquire the form

i) +m(—0 =T (3.6)

We note that with any impulsive load distributed along the arc
circumference with center of the real axis, the remaining part of
circumference 1s a line of flow, if potential at boundary of half-
plane is equal to O, This corroboration becomes evident, i1f we make
a linear-fractional transformation translating one point of inter-
section of circumference and actual axis O, and other infinity. It
1s readily verified that circumference at the same time develops into
the axis of symmetry of a new half-plane. Using this property, it
1s possible to assume that Wl = 0 on the arc AB. We shall write'out'

10

condition (3.6) for point § = e, lying on the arc BC; we have

a+nt+tu-H-m(-H=y- (3.7)
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Hence
al)+u(-0D=y. WA -N(-OH=-= (3.8)

But ¥,(-§) = O, since the point — £ lies on the arc AB, We shall

show that function w(z), satisfying the boundary conditions
9=0 at yoo, $=0o0n4s $=—3o0n8C (3.9)
is unique. We shall introduce into the analysis the Ifunction
Y@=w()+tw(-0~T ¥ O=0
For this function we have

ReY=0 atygmwo, ImY=0o0nys, ImY=(ona

Such mixed problem has, [6], the unique solution Y = O,
The solution of problem with boundary conditions (3.9) 1s found

with the aid of Poisson integral for circle [6] and has following form:

-5+ BhelE -10)

In case of simultaneous detonation the potential assuring a

forward motion of unit semicircle vertically upwards has the form
@ =siald (3.11)

In Fig. 9 the solid line shows the distribution of potential

during a nonsimultaneous detonating, end dotted line during a

! C= simultaneous.

- P Areas limited by corresponding curves
¢ -l . characterize in themselves the total momentum
. [ being ccmmunicated by ejected volume of ground
Fig. 9. to one of charges of the BB, If we designate

J' as the momentum communicated during
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simultaneous undermining, and J" — during a nonsimultaneous, then
from Fig, 9 we have I'/I" = 1,3, If we assume then that momentum 1s
associated with weight of the BB by the relationship (1.2), then
E'/E" = 1,69 and, economy in consumption of the BB will amount in
case of delayed detonating to almost 70%.
In the experimental works, Ye. Gorbachev and Ye. Klyukvin of
the PEU Soyuzvzryvprom (All-Union Explosive Industry) participated.
Submitted
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SIMILARITY OF COMPRESSION WAVES DURING
EXPLOSIONS IN GROUNDS
B. G. Rulev

(Moscow)

1. Questions of similarity of the motion of ground during
explosions underlie all practical calculations, both of the ejection
of ground, and also of seismic oscillations., They are expressed in
formulas of the calculation of welght of charges, intended for
ejection of grounds and calculation of seismoexplosion-free zones
[{1-3). The latter requires a knowledge of relationships between
welght of charge, the depth of its laying, distances from source
and parameters of oscillatilons being excited in ground during the
explosions.

This will entail the necessity of studying such questions, as
nature and property of seismic waves during explosions and their
forming near the source, Numerous experiments (measurement of
ejection of ground, determination of field of speeds and others) hav:
established that here there is observed the so-called, "geometric
similarity" of elements in the motion of the medium, The term 1s

not quite appropriate, because here there are modelled the kinematic

and dynamic parameters.
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Such a modeling satisfies Cauchy's dimensionless number pue/E =
= const, obtained during a reaction in a system of elastic forces,
when the deformation occurs within limits of initial linear sector
of the pressure-compressibility curve. Moreover, in similar systems
parameters of motion of the media are associated by relationships
[4, 5]: rp = a1y = the linear dimensions, t, = at, 1is the time,
uy = Uy is the speed, 0, = 04 is the stress (pressure), Po = Pq is
the density, 82 = a381 i{s the energy etc. Here a is the linear scale.

Investigations confirming the geometric similarity of the
ground's of motion during explosions, in an overwhelming majority
were made in deformations going out beyond the 1imits of elasti:ity,
when in medium there occur irreversible processes. Such a similarity
of compression waves may occur in media whose model contains only
parameters having the dimensionality of pressure and density. In
such a model the stresses are independent of the speed of deformation
(6]. In this case the scalar relationships between parameters of
compression wave remain the same, as during the similarity of elastic
systems, This is the consequence of the fact that the dependence
"pressure-density" (characteristic of state of medium) is independent
of the scale of the explosion,

It may be assumed that unader certain conditions, on the processes
occuring in grounds during an explosion, there can te exerted
essential influence by another force — the force of gravity. Here
the parameters of the waves must satisfy the Froude number of similar-
ity ua/gl « const and must be found 1in the following relationshipus:

r, = ar; — the linear dimensions, t, = al/at1 — the time, u, = a1/2u1
— speed, 32 = a“al — the energy etc.
The method applied here for the proof of similarity of the

course of processes assumes that medium is subject to the action of
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only one force, Owing to the impossibility of simulating properties
of the medium the similarity will be determined by condition of
identity of only one dimensionless number and consequently there
wlll be determined the conditions and limits of primary influence

of any one type of the forces.

In a comparison of parameters of the medium's motion as the
basis there is taken not the linear dimension, but the weight of the
charge C. Assuming that energy of the ground's motion is proportional
to the energy of the explosion, and consequently also to welght of
charge, and comparing parameters of all explosions with parameters
of an explosion of specific magnitude of charge (C = 1kg), we find:

with a geometric modeling

FoBae or e=ch

with a modeling on basis of Froude

2-$ or s=m(C%

2. The measurements of parameters of seismic waves of being
excited by explosion were made at & number of sites different in
geological structure, In present work there are considered explosions
in fairly monotypic grounds,

Sites K2, K3, K4 (schematic structure of which is shown in
Fig. 1) are located in Southern Kazakhstan (vicinity of station Arys)

are a thick layer of blue clays with speeds

K2 K4 MV
- of propagation of longlitudinal waves of an
" : order of 2000 m/sec and a density p =
T .T rﬂf :’l =2 g/cmj. On top the blue clays are
Fig. 1. ‘ covered with a thin layer of brownish green

clays (Vp = 170C m/sec) and loess-like

Loam (Vp = 500 m/sec). The loess-like loam as the result of the great
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difference in its own properties (large porosity and small speed of
longitudinal waves) at site K4t where its depth is fairly great,
1ntrodﬁced certain distortions in parameters of seismic waves.
Characteristic peculiarity of the MV site located in Stavropolskiy
Kray, is presence of water-bearing layer with a depth up to 10 m,
This layer also was cause of certain deviations from general principles.
Measurements of seismic waves were made in longitudinal profiles
with variable (increasing with distance) spacing between the instru-
ments. The length of the profiles during different-scalar explosions
varied corresponding approximately to the geometric similarity.
Instruments were placed at a depth of 0,5 m in pits opened on- basis
of dimensions of sensing devices and then compactly tamped. At great
distances where accelerations were insignificant, seismographs were
placed (at half-meter depth) into the tamped ground.
Measurement of seismic oscillations was made with selsmographs
VBP [7) with parameters: sensitivity sb =1 mv-sec-cm'i; internal
resistance Rs = 50 ohm; period of pendulum T1 = 1.6 sec, given length
of pendulum lo = 65 cm, damping of pendulum equal to 0.7 of critical
and VEGIK seismographs [8] with parameters: S, = 200 mv-sec-cm'l,
Rs = 50 ohnm, T1 = 1.1 sec, lo = 9.5 cm, damping of pendulum equal to
0.7 of the critical. The reglstration was made on POB-12 oscillographs
with galvanometers GB-III, whose parameters are: natural frequency
of 5 cycles per second, internal resistance of 130 ohm, critical
resistance of 5000 ohm, sensitivity 25000 mm/ma, The channel on
the whole gives a recording of displacements with constant increase
in range of frequencies from 2 to 100 cycles per second. This equip-
ment assures registration of oscillations with amplitudes from 3 u
to 300 mm,

3, Characteristic recording of oscillations of ground during

169



one of explosions is shown in Fig. 2. (Explosion in clay, C = 103 kg,
h=5m) In the recording it is possible to distingulish three basic
waves, propogating from place of explosion. The normal longitudinal
wave (phase P) is observed at first entry to vertical component, Near
focus of explosion, where in this wave the subsequent phase of
rarefaction is small in comparison with the initial phase of compres-
sion, it is called a compression wave. At these distances compression
wave carries a maximum of energy. At greater distances the surface
waves become maximum in intensity. One of them — wave R (in Fig. 2
there are marked its phases Ri’ R2, RB"" in the vertical component)
i{s a surface wave of Rayleigh type. The motion of the particle
during passage of this wave is elliptic, counterclockwise with
approximately equal ratios between vertical and horizontal components.
Second wave N 1is observed at first entries (phase No» Ny N2,... in
the horizontal component), The motion of particle during its passage
1s elliptic (clockwisSe) and more intense in the horizontal component,
In vicinity of station Arys, in addition to the above-mentioned
there was made series of one-ton explosions in the twenty-five meter
layer of loess-like loam, The recording of oscillations during one
of these explosions 1s shown in Fig. 3 (C = 103 kg, h = 5 m), From
a comparison of seismograms during explosions in clay and loess it
is evident that in loess-like loams there are observed only long-
period surface waves R and N, and compression wave owing to great
porosity and compressibility of loess is almost wholly absorbed near
the focus, A Qualitative analysis of seismograms and comparison of
recordings in the compact porous grounds shows that body waves are
not the ~ause of formation of surface waves, Surface waves are formed
directly in the epicenter (their first phases are traced to crater of

explosion) owing to the relatively gradual expansion of medium under
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reaction of gaseous products of explosion whereas compression wave will

be formed from the suddenly applied pressure on surface of chamber,.
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It 1s possible to indicate analogous processes occurring during
explosions in water, when there will be formed shock wave and motlion
of water owing to expansion of gas bubble [3].

This, obviously, is associated with such properties of exploslives,
as high-explosive action and brisance. The brisance is assoclated
with head portion of pulse proportional to maximum pressure and
furthermore depends on properties of medium, on which the exploslion
acts i.e., it is associated with the energy being transferred at
the front of wave. On these parameters also compression wave chelfly
depends. The high-explosive effect of explosion 1is associated with
the complete pulse, moreover in motion there are involed masses of
ground, located at a comparatively significant distance from the
charge,

With closely located outer surface there occurs ejection of the
rocks or uplift of ground (dome) with deeper laying of the charge.

This process also is a source of the formation of surface waves,

Such a distinction in formation of these waves will make It
possible separately to approach its study, by considering reaction
of the same medium to a different character of excitation. Further
quantitative analysis of experimental data pertains only to compression
wave (phase P, Fig. 3).

4, On seismograms it is evident that compression wave (normal
longitudinal wave) emerges almost normally to surface, since first
entry in horizontal component pertains to the longer period wave N,

It is possible to assume that one of causes of normal emergence of

beam is presence of a velocity gradient by depth in layer of tlue
clays, since it is difficult to assume that several meters of upper
layer of lowered speed could exert such a strong influence on directlon

of propagation of front of a wave 100 to 400 m in length. For
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parameters of compression waves these have been adopted: maximum
amplitude of displacements a (mm); time of increment of displacement
to maximum T, (msec); maximum velocity of particles u (cm/sec),
determined by maximum slope angle of tangent on the recorded curve
of displacements, Dependence of maximum velocities of particles

u on the given distance r° = rC.l/3 tuf-l/B is presented in Fig. 4;
in Fig. 5 — the dependence of maximum displacements a on the distance
r; in Fig., 6 — the time of increment of displacements to a maximum
- T, where a is with the modeling on basis of Froude number, b —
with geometric modeling. For a and u the relationships between the
indicated parameters are approximated by the exponential functions

of form

rig. 5.
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Coefficients K and n and their mean square errors €. and €,

were determined by method of least squares

mEigr,lge, —(Zlgr)(Zlge) 0y
- ::-!Tl;nj(fll‘ r® ~. KK -a%,(:-li‘t'- nZlgr)
:(l' 12 ™~ Yo L TR Y
= ( ',,,T;) (mtl?r, — (g, ) R ige, = (n(n‘—i) )

(e,=1gK +nlgr'—Iga)

Here m is the number of observations, the integration is made
fromi =1 to 1 =m,

For a comparison of coefficients K and the elimination of the
error €, of an inaccuracy determined by the error €2 magnitudes of
K and €, were determined with an averaged index n on basis of all
explosions.

The maximum mass speeds satisfying geometric law of modeling
(Fig. 4), over entire measured range of distances are described by

the relationship of the form
. .
«=x(3)

Values of coefficients n and K (the latter is determined with

an averaged n = 1.9) are given in Table 1.
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Coefficient K constitutes relative characteristic of energy
of explosion being transmitted by Lody seismic waves, For a con-
centrated charge of one and the same explosive with a constant
density of charge this energy depends on the depth of laying of
charge and on physico-mechanical propertles of medium, in which there

is made an explosion, The experiments made in clay grounds were

inadequate for determing the degree of Influence of these factors

on intensity of the compression wave., However,

1090
° a comparison with analogous data, obtained
“_: . /,.,-l during explosions in rock, makes it possible
s o h! * ..l. to make in this respect certain conclusions.
“__I“t" In Flg, 7 there 1s given the dependency of
0 . coefficient K on a given depth of laying of
Fig. 7. charge h® = th'l/B. Maximum velocities of

particles during a number of experiments in

clays coincide with values of velocities during explosions in a rock.
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These were found to be explosions made in "dry" clays with the content
of water by volume equal approximately to 40%, All experiments, made
in clays with high humidity, gave excessively high values of the
particle volocities. During explosions in loess-like locam containing
approximately 15% wat.r by volume and about 30% air, a compression
wave practically is not recorded. Consequently, an lncrease 1n contents
of water increases intensity o? Compression wave and an increase 1n con-
tents of air acts in the opposite direction, Such limited informatlion
about ground and in sufficient number of experiments make it possible to
make only qualitative conclusions about influence of ground conditions.
Processes determining the amount of energy being transmitted to
a wave of compression, occur in the zone directly adjacent to charge,
since outside the zone in measured interval of distances between 20
to 600 radii of the charge the dispersion of energy (at the stage
of load of medium) is identical for all explosions in clay and rock
(for velocities of particles n = 1,9 % 0,1),
If curve of veloclty of particles — distance
with deerer sinking of the charge, i.e., with a
maximum :lease of energy is extended to wall of
chamber of charge, then velocitlies of the particles
at boundary of cavity u, will correspond to the
initial pressure of the gases, according to the
j_l'ﬁ relationship ¢ = pvu (curve 1, Fig. 8).
In shallow explosions this curve 1in the sector
Fie. 5. from 20 to 600 radii of the charge lies parallel
but at a lower level (Fig. 7). But in approaching the charges the
velocities must coincide on wall of cavity with value Ug (curve 2,
Fig. 8). Consequently, at closer distances during shallow explosions

the velocities of particles (and pressure) must decrease more Iutensely.
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This 1is associated obviously, with a degree of counteraction of
surrounding medium of the expanding products of the explosion. During
shallow explosions the gases encounter less resistance in the
direction of outer surface, the cavity expanded more significantly and
by the moment of the detachment of compression wave the pressures
will be smaller than during underground explosions,

Apparently, analogously also the resistivity of various types
of grounds exerts an influence. Thus, an insignificant increase in
the porosity, little reflecting on the magnitude of density, and
consequently also on Ugs owing to high compressibility greatly
decreases the velocitles of particles at great distances. An increase
in humlidity, i.e., a filling in of the pores, decreases the compressi-
bility and level of velocity distance curves rises, In this case at
near distances the damping of velocity of particles with distance
must be less than at remote distances (curve 3, Fig. 8).

This may explain the coincidence of values of velocities of
particles during explosions in rock and clay at remote distances,
With one and the same pressure on walls of the cavity the value U
in rock will be smaller, but near the charge owing to smaller com-~
pressibility veloclities of particles attenuate more slowly and at
measured distances of 20 to 600 radii of the charge they may coincide
(dashed curve of Fig. 8).

5. A further analysis of parameters of a compression wave
pertains to main mass of experiments made under faily uniform ground
conditions with insignificant variations of depth of laying of
charge (h = 0,4 - 0.75 01/3). For them the dependence of maximum
velocities of particles on charge and distance (Fig. 4) it 1s possible

to represent by expression

178



-

Maximum displacements in the same experiments depending on
distance for different magnitudes of charge are shown in Fig. 5.
In the graph fairly distinctly there can be seen the change in deygree
of damping of displacements with distance, Amplitudes of disrlace-
ments very sharply drop near epicenter of explosion, following the
same law for all cbarges, and at a certain distance (r = Rn) begin
to attenuate to a smaller degree varying on magnitude of the charge.
The initial sector during the conducted observations, having
obtained the conditional designation "near zone", 1is interesting in
the fact that at its beginning near the crater there were noted
(visually) dislocations of the ground. This made 1t possible t:
assume that witiin 1limits of entire section there must be :r-versitle
permanent dislocations, At the same time there must be reeded the
ultimate strength and the cohesion between ground particles must
be destroyed. A comparison between the recordings of the particle
velocities and displacements in this sector (Fig. 9) shows that
velocity of the particles (and consequently, also

the pressure) increases up to maximum value during

c the time Ty equal to several milliseconds.
]

Fig. 9 During this period there occurs a loading of

medium and there is expended energy being trans-
mitted by compression wave. During the same time the displacements
attain very insignificant magnitudes in comparison to the maximum
at moment of time Tos whose absolute value is more than 50 msec
(Fig. 6). Consequently, over entire stage of the increment of dis-

placements, when there occurs an unloading of the strain state of

the medium, the particles of ground move freely one with the other

179



owing to the kinetlc energy obtained at moment of time T, and which
will be equal to the potential energy of 1lifting the ground to a
height a at moment of time Toe Thus, there must be observed the
relationship

.-; o l-“'%“

The latter result is obtained by substitution of values of
acceleration due to gravity g and velocity of particles u.

The straight lines in Fig. 5 in the near 2zone, have been drawn
according to the obtained formula, and results of the analysils given
in Table 2, show that this dependence fairly accurately reflects
obtained results on the basis of the measurement of the displace-
ments. In this talbe: K* = 10301'27 are values from the formuls,

K1 are magnitudes obtained from observations at n, = 3.8,

Table 2

elml o o . ‘, © X R C-th
ul-sal s0m!| s.0.10 | 402290 30000 | 28

o 0.8 Sl By

10| s|au| som| 010 | H.B.90] 610 3.2
ol-a.n2] 200] t.95.10 |F040l100 | 1000 [ 28

" et Abrtrxd

Consequently, in the second stage of the process, beginning
from the moment of time Tys med*um 1s subject to the effect of

gravity and parameters of motion ..ust satisfy the Froude number i.e.,
- . * w
&-l(—'-' or .f‘%;
We shall note that dependence on magnitude of charge in a

geometric modeling must be

an-‘—(”)" '-'9'—'"
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The observed results show that displacements and equally also
the times 1, (Fig, 6) are close to the Froude number, but do not
satisfy it completely. This 1is caused by the fact that in the given
process the initial conditions (speed u) are modelled according to
another law, The fact that parameters of the motion in second stage
are close to the Froude number is explained by small difference in

the structure of formula of the particle velocities:

in a geometric modeling

. .-x(-'-“')" or "'."“W.

in modeling according to Froude number
. Cl\Le co™
?7--‘(7) or * l-‘w

In the second sector ("remote" zone), beginning from distance
Rn’ equal to approximately 60 radii of charge, the displacements are
n
approximated by dependence of the type a = K2r 2. Coefficlents K2

and n, are presented in Table 3.

Table 3
c - - [ ~n . &, “w %
10| 0| —2.5| 40.04] —2.00] 1.44.10 +0
0| | ~2.47] 4008| ~2.30| 1.98.108 +_.:=
100 ] 81 | —1.07] 048] —1.88] 4.31.00 1’:3
w17 | —1.97] $0.00| —1.38] v.e1.100 +sI=
5.3

For the remote zone there is observed change of degree >f damp-
ing of displacements with distance of depending on the charge (Fig.
10), This 1s characteristic for viscoelastic media where absorption
of energy depends on frequency of oscillations, becoming larger with
its increase, Consequently, durlng explosions in cley with the

passage of compressional wave (normal longitudinal wave) in remote
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° zone the medium is subject to action of two

forces — elastic and viscous friction which are

commensurable in magnitude. Under such condi-

tions the wave parameters must satlsfy two

criteria, and a similarity determinated by

e
‘ simple scalar factors will not exist,
Fig. 10,

In conclusion author thanks D. A. Kharin

for his advice and criticisms,
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WAVES IN THE SURFACE REGION OF A GROUND HALF-SPACE
DURING A CONTACT EXPLOSION

V. D. Alekseyenko

(Moscow)

In measuring the field ¢f stresses excited by contact explcsicn
on surface of soft ground it is ascertained that the wave in the
ground near the free surface has two maxima,

In Fig. 1 there is presented an experimental oscillogram with

the recording of four normal stresses at a point remote from center
o

Radial linese - of explosion at a distance R = 40 r-, in
Radial lines
mm’ﬁ'ug % E direction of beam, emanating from center of
Redial T

explosion at an angle of 12° to the free

Fig. 1. o
surface (r  — radius of charge). Beams

1, 2, 3, 4 correspond to recording of stresses in time Ogs Ops 0,5 Oy

Scale of time was fixed by marker to

L 3 (Fig. 2).
time with frequency of oscillations 500 cps. In
5

order to establish nature of these two maxima

of the stress, we shall consider phenomena occur-

ring during contact explosion.

After detonation of charge of an explosive

o substance BB part of energy is radiated into

Flg. 2. 183



the air, generating in it an alr shock wave propogating along free
surface. The other part of energy of explosion is radiated directly
in ground half-space exciting a wave in it, The air shock wave also
generates waves propogating from free surface into the depth of the
half-space,

In accordance with this a contact explosion schematically we
shall present as action of concentrated pulse at center of explosion
and air shock wave propogating along free surface with a speed Df
variable in time,

We shall consider at first picture of developing waves here
in the half-space for the case when it is filled with a uniform
elastic medium. The wave picture developing in this case, is shown

in Fig. 3., Alr shock wave generates in
B

elastic half-space two fronts inclined to
the free surface — the longitudinal DG
and the transverse DE. The concentrated
pulse excites in this same half-space
three waves: the one longitudinal AGO2

and the two transverse CBO1 and "3,

Fig. 2-

Waves generated by air shock wave owing
to damping of speed of propagation of its front D and constancy of
speed of propagation of waves in elastic half-space are distorted,
as is shown in Fig. 3. However, if speed of propagation in half-
space 1s inconstant and attenuates with distance from center of
explosion, then the distortion of the fronts DG and DE may be opposite
to that shown in Fig. 3 which is characteristic as the experiments
showed for soft grounds. The concentrated pulse generates longitudinal
(AGO,) and transverse (CBO, ) wave of spherical form, and also trans-

verse head wave (AB), whose slope depends on relationship of spceds
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of longitudinal and transverse waves (in process of propagation there
are formed surface waves whuch here are not considered).,

Considering wave picture shown in Fig., 3, we note that near
the free surface there are propagated five wave fronts of which two
are longitudinal and three are transverse. Soft ground as 1s known,
is the solid medium, Consequently, in conducting the experiments in
ground all these waves, in general must be fixed. However, as the
conducted experiments showed in the surface region there are observed
only two fronts (Fig. 1).

There arises the question just what fronts are fixed in the
experiments, For obtaining the answer to this question we set up
special experiments. As a result it was established that fixed fronts
are fronts of the longitudinal waves. The first front is excited by
air shock wave, inasmuch as Dy > Dgr (this front corresponds to DG
in Fig. 3), second front propagates from center of explosion (front
AG02, Fig. 3). The fact that front, corresponding second maximum of
the stress, i1s not transverse, 1is confirmed by the following.

First, as is evident from the oscillogram (Fig. 1), all four
components of tensor of stresses including %9 tolerate a discontinuilty.
In the case, if the front belng considered were transverse, the stress
Gg On this must not tolerate a discontinuity, inasmuch as on the front
of a transverse wave only the tangentlal stress, tangent to its
surface, tolerates a discontinuity.

All remaining components of the stresses (on, L or) must
have tolerated a discontinuity, inasmuch as the indicated tangential
stress 1s a linear combination of Ons Oypo O

Secondly, if second front were transverse, then difference
between the times of arrival at the same point of two maxima of

stresses in approaching to the free surface would decrease and on the
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free surface would vanish, However, experimental data contradict
this, in approaching the free surface this difference increases.
In Fig. 4 there are presented experimental

oscillograms with recordings of stresses

in a sandy ground unsaturated with water

ground (of natural composition) at points

remote from center of explosion at a dis-

tance R = 40 r° and located on radial lines

emerging from center of explosion at angles

to free surface of (downward) 18, 12 and 6°

respectively. Scale of time on all oscillo-
Fig. 4. grams 1s the same. Essentially these data

are adequate in order to clarify nature of
the two maxima of the stress on the experimental oscillograms.

For a direct check of the corroboration expressed above on nature
of two maxims in the wave of stresses, in addition to the described
experiments, there were conducted special
experiments in sandy loam ground of natural

composition unsaturated with water with the

cutting off of waves, proceeding through the
Fig. 5. ground either from center of explosion,
or away from free surface from air shock

wave, In Fig, 5 there is presented a dlagram of experiment with
cutting off of wave, proceeding through ground from the center of the
explosion. At the points of measurement 1 and 2, symmetrically located
with respect to center of explosion O there were placed single-
component strain-gauge sensing devices so that thelr sensing surfaces
were oriented in tne meridional plane zOr. In front of point 1

there was excavated the trench A, 2 meters long and 1,10 m deep,
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which from above was covered by wooden shield mn and was covered by
ground flush with free surface in order to exclude an inflow of the
air shock wave,

In Fig., 6 there 1s given the oscillogram corresponding to this
experiment., The radial 1 pertains to point of measurement 1, radial

.y line 2 — to point 2, Trom oscillogram it
fadtal Lines? NV

is evident that at point 1 there is fixed

fadial lines &
FREYTTAARATTAATIT! 11y one maximum of stress (first) generated

Fig. 6. by the air shock wave, at point 2 there are

recorded two maxima of the stresses. In
both radial lines the first maxima of stressec coincide in time,

In Fig. 7 there 1s presented a dlagram of experiment with
interception of the alr shock wave, Thus, as also in the preceding
experiment, there were two symmetric points
of measurement 1 and 2. On free surface
above point 1 there was placed a tox B

(dimension 0,8 x 0.8 x 0.4 m), which was

heaped around by ground, Furthermore, in
Fig. 7. this box there was placed a large wooden
box MN of dimension 2.5 x 2.5 x 0,25 r,,
which also was heaped with ground from above and from sides, in order
to exclude the inflow of an alr shock wave.
In Fig. 8 there is presented the oscillogram belonging to this
experiment from which it is evident that on the radial 1, corresponding

. to point 1, there is only one maximum of

'— .
Radtsl Mnee? ¥ NS . stress coinciding in time with the second

Radial lines ¢,
TAAALA T maximum of stress on radial line 2,

Fig. 8. pertaining to roint 2. Consequ2ntly, second
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maximum of the stress is generated by the wave, propagating through
the ground from center of explosion, The entire discussion makes it
possible to make the conclusion that recorded maxima on oscillograms
of the stresses are generated by the two fronts of longitudinal waves.

The experiments showed that in case, when half-space consists
of soft ground unsaturated with water the difference in speeds of
propagation of front of air shock wave and front of waves in ground
is fairly large, especially at small distances from center of
explosion (R s 40r°). As a result of this the slope angle of the
fronts of the longitudinal and moreover of the transverse waves
generated by air shock wave with respect to free surf-ce is small.

Therefore, intensity of transverse wave DE is small and it is
not recorded by the sensing devices. As to the fronts AB and CBOi,
then their intensity, obviously is small by virtue of the fact that
in considered range of distances the motion of ground is accompanied
by significant plastic deformations, so tﬁat speed of transverse
wave CBO1 js found to be small in comparison to speed of longitudinal
wave AG02. Owing to this the slope of front AB to free surface 1is
found to be small which makes the intensity of this wave insignificant
and therefore, it is not recorded by the sensing devices.

The considerations expressed relative to fronts of transverse
waves 1in pléstically deformed media are preliminary in nature and re-
quire special study.

In conclusion author considers his duty to express gratitude to
S. &, Grigoryan and Z, V, Narozhnaya for their assistance in

completing this work,
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ON THE CONDITION OF TOTAL PLASTICITY FOR AN
AXIALLY SYMMETRIC STATE
D. D, Ivlev and T. N, Martynova

(Voronezh)

In examining problems of plastic flow of ideally-plastic bodies
a major simplification in the solution is attained owing to the use
of piecewise-linear approximations of conditions of fluidity (the
Tresca condition of maximum given stress and others). Hencky (1]
showed that if state of straln corresponds to a rib of prism
interpreting in space of the principal stresses the Tresce condition
of plasticity (condition of total plasticity), then problem of deter-
mination of the stresses is statically determinate. The sclutlons
of a number of problems under the condition of total plasticity are
given in works of A. Yu. Ishlinskiy [2], R. Shield [3] and others.

Below there are considered relationships of the axially symmetric
problem of rigid plastic imcompressible bodies, when the stress and
strain states correspond to rib of arbitrary plecewise-linear surface
of fluidity interpreting the condition of plasticity in space of the
principal stresses, It is shown that also in this case problem of
determination of stresses is statically determinate,

1, Let us e~ =mine the space of the principal stresses G1s Op
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and 03. Equations of rib of surface of fluidity in this space have

the form
.*"'M"'“.-.h Oﬂﬂ'fﬂﬂ-ﬁt-h (.l .l.' .-G“)‘ (1.1)

Let us assume that condition of plasticity does not depend
on first invariant of tensor of stresses, then for coefficients of

equations (1.1) we have the condltions

athta=o, awth+a=0 (1.2)

From equations (1.1) under condition (1.2) we shall obtain
—aml,  a-aclk, w-a=2 (1.3)

Here
D hgmgmhe—ha), b=z (b — )
hmgathm—bn), me=ag—em, bt h+h =0
We note that magnitude m is not equal to zero, otherwise the
planes (1.1) will be parallel to each other,
Condition of plasticity (1.1) finally may be written out in the

form
Q—gm, G=pth b, r-%(a+u) (1.4)

Let us consider axially symmetric state of the body under the
condition of plasticity (1.4) 1n the cylindrical coordinates p, 6, z.

By virtue of assumed symmetry of the state of strain the stress
%9 will be the principal subsequently we shall assume Og = 03. Between
the components of the stress °p' O, sz and the principal stresses

Oy o, there take place the relationships

o, = acol g+ ssia'e, o, = & sia’Q 4 gy cos’e
Ty = —(h —a)singcosy, ' Sy=a (1.5)
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where ¢ is the angle between first cardinal direction and axis p.
Using expressions (1.4) and (1.,5), we shall have

= p+ A0, 6= p—h o002y
m—boad, Gqempth—k (1.6)
From (1.6) the condition of plasticity (1.4) may be written out

in the form

O —oPtbg=il,  q=l0+e)+h—4k (1.7)

Substituting relationship (1.6) into equations of equilibrium,
we shall obtain system of two differential equations of hyperbolic

type relative to functions p and ¥

- L JEPTRR | B S e Lk
%.l %, oin 39-,5 — 3%, hz’!- ..‘“,’. - (1.8)

c JAIE. FRNR L. Tk

Equations of characteristics of system (1.8) have the form
ds
& =—u(v¥7) (1.9)

where upper sign here and below corresponds to the first family of
characteristics, lower — to the second. From equations (1.9) it 1is
evident that characteristics are mutually orthogonal to each other,

Along characteristics (1.9) there take place the relationships

';,;g.‘,.._“'_”:_*'_@. (1.10)

Taking the condition of plasticity for the plastic potential,
we shall write out the relationships of assoclated law of flow in the

form

Mo temo, B (1.11)



Substituting in equations (1,11) values of rates of deformation

in terms of rates of the displacement and using (1.6), we shall have

BrRtEee (B-Raws (5 +F)mmnao (1.12)
where u, w are the rates of displacement along the p.and z axes
respectively.

Equations (1.12) relative to the two unknown functions u and w
belong to the hyperbolic type and have characteristics coinciding
with characteristics of field of stresses (1.9). Along the charac-
teristics there take place the relationships

wzdrgler T)a g =0 (1.13)

We now consider condition of Tresca's plasticity (the hexagon

ABCDEF in Fig., 1). Rib A 1s intersection of the edges

%
. In this case ka = 2k, kb = =2k, kc = 0 and
[ relationships (1.10) may be integrated ([3]
. ptlklap=comet
For ribs B, C, E, F from (1.10) there
¥ ensue well known relationships under the condi-
Fig. 1.

tion of total plasticity [1-3]
‘,;“_'P_L‘%_‘ﬂ.
In case of a condition of maximum given stress (hexagon
A,B,C D, E E, in Fig. 1) rib A; 1s formed by intersection of the edges
a-ja-la=d —atiatie=n
In this case k, = k, = b/3k, Ky = -8/7k and relationships (1.10)

take the form
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Analogous expressions take place for ribs Ci’ D1 and Fi'
Rib By is formed by the intersection of the edges

a-ja-ja=n, —atjatie=n

In this case ka -k = -4/3k, k, = 8/3k and relationships (1.10)

take the form
OF Fry=F it

Analogous exprcssions take place for rib Ei' The solutions found

depend essentially on selection of rib.

These results can be extended to ideally plastic media whose
fluidity conditions depend on the first invariant of tensor of
stresses,

Conditions of Tresca plasticity and maximum given stress 1imit
all possible conditions of fluidity [4, 5].

Thus, the solution of axially symmetric problems under the
condition of total plasticity (condition of conformity of stress and
strain states to ribs of plecewise-linear conditions of fluidity)
can make it possible to find the upper and lower limits of the

solutions.
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CONDITION OF DEFORMATION OF A RIGID PLASTIC BODY IN ONE
PLANE DURING SEPARATION OF CHIP

V. I. Sadchikov
(Tomsk)

Let us assume that a semi-solid plastic body moves uniformly
with a speed Vo and interacts with absolutely hard statlonary wedge
(figure). In certain protion of the stationary space filled with
moving particles of this body stressed up to the yleld point there
will oceur a continuous plastic flow as a result of which from body
there will be separated a chip and will be
displaced along fore of wedge with a constant
speed vy The condition under which the defor-

mation will be localized in one plane must be

found.

Figure

Such problem is one of technological

problems on an established plastic flow; it is of practical value for
studying the deformation of metal during cutting. During the last

10 to 15 years problem of cutting has been solved, for example,

D. Drucker [1], Lee and Shaffer [2], Hi111l [3] and others. Survey of
the most popular investigations and new variants of solution of

these problems are given in works [4, 5]. In a larger portions of
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these works it was assumed that body being deformed in one plane is
ideally hard-plastic, in other works 1t was endowed with properties

of viscosity and hardening. In all works the solutions were made

on the basis of equations of equilibrium, i.e., in components of
acceleration of the element of medium, passing through the zone of
deformation not only the local part, but also the translational part

is assumed equal to zero, Such an approach to this problem did not
provide the possibility of finding the condition at which deformatidn
there may be localized in one plane, since this condition is determined
by state of hardening and inertial stress,

In order to locate this condition, we shall substitute in system
of equations of quasi-static two-dimensional flow of a hard-plastic
body [6] the equations of equilibrium with equations of motion and
the yield point on the condition of plasticity of.Von Mises we shall
assume a variable magnitude. Then system of equations will take the

form

%4-%-'(‘#0.-[*.."".)
?+o_:.=_'(o‘.'..+%") (equation of motion)

%-%_ﬁ._% (1aw of flow) (1)
;'..‘.;!-o (condition of incompressibility)

6, —P+4d, =4P (condition of plasticity)

Here Oy oy and ‘txy are components of the stress, o 1is the mean

nnomal stress, I 1s the yleld point, v, and vy are components of
the speed and p is the density of medium.

Assuming that deformation during separation of shaving is
realized in one plane, we shall find conditions for speeds and

stresses on the lower and upper sides of this plane,



As fnllows from figure, in system of Cartesian coordinates X,
¥, indicated in this figure, tangents and normal components of speeds
are determined by the relationships: on the lower gide of plane of

deformation

vy = —tpenh, o= niep (2)

on its upper side

N . )

where B is the angle between plane of deformation and horizontal,

v 1s the angle between front edges of cutter- and the vertical, Plane
of deformation in field of speeds is plane of discontinuity along
which normel component of speed must be continuous, therefore,

’
vy = vy and
atlaf=neys(i—1) (4)

The tangential component of speed across the plane of deforma-

tion tolerates a discontinuity, equal to

o s = ndaB—1)+ b= nmy i (5)

Thus, component of the speed vy maintains a constant value,
equal, for example, Vo sin B everywhere in field of speeds, and
component of speed Vy varies only during transition through plane of

deformation. For zone of deformation

o P P B (6)
and dv,/dy does not exist,

By virtue of (6) the condition of incompressibility of the
system (1) is 1dentically satisfied; law of flow, second equation of



motion and condition of plasticity establish that
‘-‘-C-’m‘ (7)
and what
Y=t (8)

and does not depend on coordinate x.

Thus, mean normal stress varies only along plane of deformation
and the tangential stress across this plane.

Plane of discontinuity in field of speeds may be assumed as the
threshold case of a thin layer enclosed between parallel planes and
giving continuous transition from field of speeds of body being
deformed to field of chip speeds. For such layer of conditions from
(2) to (6) conserves the force and the derivative of v, in y exists.

In addition the first equation of the motion in system (1) takes form
o, o
ToThe-g (9)

This equality 1is possiple only in the case if also its left-hand

and right-hand sides represent the same constant k

Torgnh g (20)

We shall designate width of thin layer by the letter h and
shall integrate first equation of (10) fron initial deformed state on
the lower boundary of this layer, where y = Yo Txy =T, and Vy =

= -V, CO8 B, up .o final deformed state on upper boundary, where

Y=Yy +h Ty = T4 and v, = v, sin (B - v). Then we shall have

s = ] (11)

At h = O each of variables entering into this equality, will

tend toward a corresponding magnitude during a deformation in one
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plane, and condition (11), written out in the same designations, will

acquire the form

[ ]

where Ty and To are the tangential stresses acting respectively on
the upper and lower sldes of plane of deformation., Right-hand side
of obtained equality represents the inertial stress,

Since |7,] > |7o| and for the possible P and y the right-hand
side of equality (12) is a positive value, then Ty > 0 and To > 0.
Then by virtue of (8) tangential stresses To and T, are equal
respectively to the yield points of initial and final deformed states,
i.e., To = Io and T, = 11’ Furthermore, the relationship

9 =9, o
L e =

is the component of shear and determines degree of deformatioun of

material. Here to condition (12) there may be imparted the form

helodpode, sin’p (13)

Relationships (12) and (13) are different forms of the necessary
deformation condition of chip-formation of a hard-plastic body in one
Flane, They show that with such form of deformation the hardening of
the medium is equal to the inertial stress and express the relation-
ship between geometric characteristics of problem, the speed v,
measure of deformation and the hardening of the medium,

From relationship (11) it follows that in hard-plastic medium
with arbitrary degree of hardening the deformation of the chip-
formation in one plane is impossible because in this case h # 0,

Relationship (13) shows that such deformation 1is impossible also in
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an ideally hard-plastic medium because at 11 = I0 the magnitude
pvoeexy sin® B = 0, Consequently, all the solutions [1-5] of the
cutting problem on the deformation in one plane both of an ideally
hard-plastic body and also of a hard-plastic body with an arbitrary
degree of hardening was found to be based on inconsistent premises,
In the solution of problems on an established plastic flow with
a discontinuity of field of speeds usually there are used equations
of equilibrium, An example of the solution of a cutting problem
showed that such a use of these equations is not Justified because a
consideration of the inertial force radically changed the concept of

this problem.
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ADAPTABILITY OF THICK-WALLED PIPES DURING
NONUNIFORM HEATING
D. A, Gokhfel'd and P, I, Yermakov
(Chelyabinsk)

Problem on the strength of thick-walled pipe with the repeated
effects of the internal pressure and the temperature field is impor-
tant for power-machinery engineering and certain other fields of
technology [1]. Below there 1s considered the solution of this
problem on the basis of theory of adaptability. As 1s known, this
theory makes it possible by proceeding from assumption about ideal
plasticity to determine the conditions at which repeated loads will
not result in a sign-alternating or increasing plastic flow, With
a limited number of cycles, characteristic for thermocyclic load,
absence of repeated plastic flow can with a certain approximation be
agsumed as condition of strength. Creep and relaxation in present
work are not taken into consideration. It is assumed that the length
of period of a pipe under conditions of high temperature is relatively

small.,

1, Fundamental equations., We shall analyz~ the stresses in a

long hollow cylinder with bottors., Henceforth it will be convenient

to use dimensionless magnitudes; in particular, in the mentioned



st

below expressions of stresses pertain to the value of yleld point
at a certain initial temperature.

Stresses from the internal pressure in pipe are equal [2]

werli-t) amp(i+) amr (=Zpipe-ga-g) D)

Here p is the load parameter; p, is the internal pressure; a, b,
r are the internal, external and current radii respectively.

We shall assume that the pipe is under the effect on an axlally
symmetric thermal field, invariasble over its length. Admitting a
quasi-stationary mode of heating and cooling, we shall assume that

the temperature is distributed according to the logarithmic law
ETETY | ST N (1.2)

The subscripts denote values of the temperature on corresponding
radii, tl is the temperature differentlal.

The generating thermal stresses are determined by expressions
[2], which can be reduced to the following form (q is the parameter

of the thermal field):

o=—t(i-tivm)  w=—tftegtoatmn] (1.3)
o, = —2¢ [t +8(t+inp)] (q-a.or:_‘,c.--i'u.#_'-,—-,-:o-"l';_:’.)

The state of spontaneous stress in a solid body is function of
an infinite number of parameters., In the solution of problem being
posed we shall consider as 1s usually assumed only one of the param-
eters differing from zero and its corresponding state of spontaneous
stress similar to the distribution of thermal stresses (1.3). Such
an assumption proceeds to the "reserve of strength'since here there

is obtained a lower evaluation of adapting values of load and

temperature [3].
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Thus, total stresses in the tube are determined by the expressions

'v".(‘-%)'f' ("-9)(!—%-{-.5’)
'0"(.""%)4'(!—0)[1 +%+_m+|m] (1.4)
Gop+2m—g)lt +8(1 + lag)]

We shall assume that yleld point remains constant at t s tb, and

at higher temperature decreases according to the linear law
wmali—nt—Nl=o(—thy, 120 P (1.5)

Tnen the Huber-Mises plasticity condition (for dimensionless

stresses) will have the form
=l + (6 — 6P+ (5, — P =21 —Apd lnpp (1.6)

2. Region of possible states. If expression for the stresses

(1.4) are substituted in condition of plasticity (1.6), we shall
obtain equation of the family of boundary surfaces limiting regions
of the varlation of the parameters p, q, m, within which deformation

on corresponding radii of the tube will be elastic
Suf® + tum' + anp® + 2aregm + 2o + Jowgp + Joreg + a4 =0 (2.1)
Coefficients of equation (2.1) are functions of current radius
u=n—ad l-:-—&-—%(%-fl).‘ su=Mhp
\J
ol +i+ar+3(F ). e=d et

Equation (2.1) determines family of elliptic cones having the
bisector of quadrant in the plane p = O as a common axis. Coordinates
of summits of cones are equal to

1 1 2.2)
Sl il Rl 1 ) T3 (
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For points of tube located on external radius (p=1), as 1s
evident from (2.2), the top recedes to infinity, and from (2.1) we

obtain the equation of the cylinder <

SO +W (o =0+ Ol —Mp+ W —1=0 (2.3)

Reglon of possible (elastic) states [4] for a tube 1s shown
in Fig. 1. It 1s limited by surfaces of cone constructed for the
value p = k, and cylinder (2.3).
1 Surfaces of the family (2.1), corres-
ponding to other values of current
radius are located outside the indi-

cated region.

Form of boundary surfaces is

determined by condition of plasticity,

and also by adopted tolerances

relative to the state of spontaneous

Fig. 1. Region of possible

(elastic) states stress and the law of change of yleld

point according to the temperature [51.
An analogous solution is fairly simple and m;& be obtained on the
basls of Saint Venant's condition of plasticity. In this case
instead of elliptic cones we shall have hexahedral pyramids, and
instead of a cylinder — a prism,

Considering section of region of possible states by the planes

p = const, we shall obtain following expressions determing the maxima
of parameter of thermal fleld at which adaptability 1is possible:

during relatively small pressures

S MY TI=Ip - — b
o = (2.4)

during higher pressures

204



Hence there can be obtained dependence between temperature of
adaptability (the maximum value of temperature potential ti’ at which
the adaptability will take place) and internal pressure in tube
invariable during the cycle, Corresponding curves are given in Fig. 2,
where temperature of adaptability 1s defined as a function »f the
ratio of the internal pressure to its limiting value (construction
is made for the ratio a/b = 0,8 and A = 0,17). Curve 1 determines
maxima of temperature differential in tube, at which repeated heatings

1d cooling will not result in a sign-alternating plastic flow;
curve 2 — the potential at which these in-

fluences will not cause an increment of plastic

flow with each cycle,

In the literature [6] there was marked

analogy of diagram of adaptability (Fig. 2)

3 with "finite ratio" between loads in theory

zégﬁtiﬁilgtgﬁram of of the limiting state (according to A. A,

Il'yushin). It is not difficult to note also
that curves 1 and 2 are analogous to the well known Haigh diagram,
determining the dependence between constant and variable components
of the limiting cycles of the stresses.

Sections of the region of possible states with planes q = const
provide the possibility of determining limiting pressure for the
tube and its dependence on temperature differential (curve 3 in Fig.
2). A comparison of curves 1 and 2 with curve 3 illustrates influence
of the variability of thermal field on the strength of tube,

As one should have expected the limiting pressure, determined
with the aid of diagram of possible states 1s found to be somewhat

smaller than 1ts exact value {2]
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a.--;,o.h. (2.6)

This difference is the result of assumption taken on distribution
of initial stresses and corresponds to the well-known extreme

principle [3]. It happened to be small and, naturally, decrcasing

with an increase in ratio between internal

Ur

f and external radii of tube (Fig. 3). It is

' possible the obtained lower evaluation for

’ temperature of adaptability which also is
small (and smaller as the ratlo a/b becomes

b w F. larger) differs from its actual value,

Fig. 3. Curves of The region of elastic states makes 1t

limiting pressures:

1) approximately, possible also to investigate cycles, in

with respect to

region of possible which not only temperature, but also the

states; 2) precisely
accg;ding to formula pressure is a variable. If we take the
(2. L]

proportional dependence between parameters

of load and thermal field, for their adapting values we shall obtain

R T TR TR

the formulas

(2.7)

- [
i S (2.8)

In the diagram of adaptability (Fig. 2) these expressions
correspond to curves 4 and 5. We note that during relatively large
pressures under given conditions the adapting load colncides with the
threshold.

Finally, for the cycle, corresponding to general formulation of
problem of theory of adaptability, when pressure and temperature may

be changed according to an arbitrary program, taking into consideration



section of region of possible states with the planes m = const and

eliminating this parameter from the equations, we shall obtain

ﬁ‘-” 'H.+ (2.9)

This expression corresponds to curve 6 in Fig, 2. Formula for
q3 coincides with (2.5).

In the same figure with dashed lines there 1is shown positicn
of curves for the cycle with arbitrary program without calculating
the influence of temperature on the yield point (» = 0). A comparison
shows that influence of temperature on yleld point in given problem
reduces to a certain decrease of the adaptability region. Here only
the position of line 6 changes, determining condition of sign-
alternating deformation on the internal configuration of tube section.
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ON THE STABILITY OF AXIALLY COMPRESSED CYLINDRICAL
SHELL IN PLASTIC FLOWS
G. V., Ivanov

(Novosibirsk)

There is eramined the axially symmetric form of loss of stebility
of axially compressed cylindrical shell. The critical stresses are
determined by criterion [1] with the limitation that in the transition
from the fundamental state to the adjoining there are not tolerated
perturbations causing an unloading. The material is assumed incom-
pressible and its hardening - linear. The critical stresses, deter-
mined according to the theory of plastic flow is somewhat less but
very close to critical also according to criterion [1], and by
Shanley's dimensionless number [2] stresses determined according
to the theory )f small elasto-plastic flows, i.e., in this problem,
as previously there are considered problems on stability of plates
(1, 3], with the use by criterion (1] there does not appear known
paradox, encountered with the use of Shaniey's dimensionless number,

There is pointed out the error of the solution in lLee's work
(4] according to the theory of plastic flow of problem on nonaxially
symmetric form of the buckling of axially compressed cylindrical
shell taking into account initial "irregularity" of shape of shell

<08



and in connection with this on nonsubstantiation of the conclusion
in work [4] that in this problem calculation of initial "irregular-
ities" does not make it possible to avoid the paradox.

1. It is assumed that during deformation of shell in the basic

state there takes place an uniaxial compression
4
Gm—a Q=EED0 Gui=t, =, =t =0 (1.1)

Here P — the axial force.comﬁressing the shell, R — radius,

h — thickness of shell, axis of coordinates x is directed along
generatrix axis of coordinates y, z — respectively along tangent to
middle surface and along inner normal to it so that they form an
orthogonal system of coordinates,

Stresses corresponding to force P, deformations, dicplacements,
during deviations from basic state are characterized by differences
between these stresses, deformations, displacements and stresses
corresponding to the same magnitude of force P, deformations,
displacements in the basic state., These differences are called
secondary stresses, secondary deformations and secondary displacements.

They are analyzed only as conveniently small axially symmetric
deviations from the basic state., In this case

Gm—Rtet  Get G Ty =, UTy=0 (1.2)

I e -1 (1.3)

In (1.2), (1.3) the slanting cross as indicated secondary
stresses, secondary deformations, w — secondary displacements along
the axis z, ey, €5 — secondary deformations of middle surface., All
these magnitudes with as small as desired deviations from the basic
state are as small ac desired. This 1is taken for determining devia-

tions as small as desired,

If during deviations from basic state the shell is in equilirrium



‘r"l%"hq - ~ B .

only under action of axial force P then from determining the secondary

stresses and equations of equilibrium it follows that
Nrw§ o mcmmnae (1.4)

(integration is made from -h/2 to +h/2), the stress Nyx and bending
moment M*

""S""" l"-Sq."nﬁ (1.5)

are associated by the equation
AP - 2 ¥ 2P (2.9)

The neighboring equilibrium state is called the equilibrium
different from the basic state of shell during action of only the
force P. In Shanley's statement of the problem [{2] (in any case
there is possible such an interpretation) and in the statement in
[1] there 1is admitted the possibility of a transition from basic state
to neighboring equilibrium state under action of perturbations of
type of surface forces during change of external compressing force
from vaelue P - a, a & 0, to the value P. In Shanley's statement of the
problem ¢ 1s zero, or a magnitude as small as desired; in statement
[1] a magnitude a any of the interval {0, P}. Below in the
solution in statement {1) there are considered only such transitions
from basic state to the neighboring equilibrium state, in which
nowhere in the shell does unloading occur. Under this condition - .
the association between secondary stresses and secondary deformations
ig described by equations of theory of plasticity, corresponding only
to process of active loading which essentlally simplifies the investi-
gation.

2, From (1.1) end equations of the theory of plastic flow with

210



hardening [2] it follows that in the basic state
.."--;“ .v.-‘hf-“.(_‘.',;)“ ‘-‘—.—-" (2.1)

Here E' is the tangent modulus of diagram of uniaxial compression
corresponding to the stresses Ogr V is Poisson's ratio, E is Young's
modulus,

Substituting (1.2) in equations of theory of plastic flow with
hardening 2], by maintaining in them magnitudes as small as desired
of only first order and subtracting equation (2.1), we find equation
of association between secondary stresses and secondary deformations

oo e — m')+}c[mar. (.;--,}.,-)]
et Loameiad § COCLE RS TH) RS Lty (2.2)
where
raamgilf-2) TPy F

Equations (2.2) are differential, Therefore, the association
between the secondary stresses and secondary deformations in
neighboring equilibrium state at a magnitude P of the axial force
(to which there corresponds a certain value T,, namely, Ty = p/ar
Rh JE) essentially depends on magnitude of interval (P - @, P]
(correspondingly, the intervals [Ty - @;, Tgl, Tg - @y = (P - a)/em
Rh JS) and the path of transition in this interval from the basic
state to the neighboring equilibrium state. In connection with this
the critical stresses in Shanley's statement and in statement (1)
are different, Below the magnitude of axial force P 1s characterized
by magnitude To — corresponding to this force P with an intensity of
tangential stresses in the basic state,

In Shanley's statement of the problem there is admitted the
possibility of a transition from basic state to neighboring equilibrium

state under action of perturbations of type of surface forces only
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with infinitesimally small change (including zero) of the axial force,
i.e,, in the interval [To = Gy, TO], where ay is zero, or magnitude

as small as desired. In this case the integral 1is

;}:{aﬂqﬂm.
a magni‘’ude of the second order as small as desired, Taking this into
consideration and the condition that secondary stresses and secondary
deformations are equal to zero (shell is found in the basic state)
with an intensity T, - a,, from equations (2.2) we find that secondary
stresses and secondary deformations in neighboring equilibrium state

corresponding to an intensity To. are associated by the equations

EY CIEPE PR 77 LGRS T

TS GRU RS YT A(CRS 2%
i.e., by equations, usually used in the solution in Shanley's state-
ment of the problem.

In statement [1] there is admltted the possibility of transition
from basic state to neighboring equilibrium state under action of
perturbations of type of surface forces with any change of the axial
force, i.e., in the interval [T, - @, Tol, where a, — any of the
interval (O, TO]. If we were limited to the case of incompressible
material (v = 1/2), then the equations (2.2) take the form

o[-t
..m.+....,-._.'+,.,(,,,,,.. (o= * ,) (2.3)
and are easily integrated also in final interval [To -, TO]. By
means of (1.3)-(1.5) we change (2.3) to the magnitudes Mx, Nyx, Ny»
Integrating the obtained equations in the interval [rs, To],

e
2.
Tg is the yield point during shear, we find that in case of llnear
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hardening (E'(4) = const, & € [t _, T.])

e n e gfbemga + ara]
. .

A= FerpiTeT [‘;(')4-;:!(')‘7}«] (24

sev-safufresn)- (@) (o-f. oo
roy-safalp+ 3 {rmsen]-(2)

It is not difficult to prove by the same method by which there
is proved analogous corroboration in work [1] that functionals D%,
B* in a class of plecewise continuous functions with plecewise

continuous derivatives

a®) a®) tels, 7
satisfying at € € [‘rs, Tol, any of the inequalities

%(Td>0 wTI>ni) nlI<o, wFd<ud) (2.5)
o3>0, «Td>a) afd<0, a(fi<ait

attain a minimum at
w@)=cwat, af)=ceast, (E&(r, T

i.e., there takes place the 1lnequalities
[ 48
Fowmag =M. F>rgae =T (2.6)
Multiplying equation (1.6) by w, and integrating by parts, we find
g &
‘--ls(‘r') *I'S("aw.'-})a (2.7)
where L is the length of shell, We substitute (2.4) in (2.7)
[ 1 0 0
L 0 g { ) T

For the critical stress, we shall designate it in terms of Ops

we agsume
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do\d : 1 ']
wesel] (£ o] [l -4 ) 8"+ - (1)
minimum is sought for in class of functions w, satisfying corresponding
boundary conditions and inequalities (2.5).

By virtue of inequalities (2.6) the problem reduces to seeking
the minimum of the functional

[y o] o+ e+ (e

in the class of functions w, satisfying corresponding boundary condi-
tions, or which is equivalent to seeking the least value 0o at which

equation
1 &
(o= + g oW+ AT+ g Bvm0
has nonzero solution under corresponding boundary conditions.

Assuming that w = A sin (7x/1), where 1 1is the length of a

semiwave in direction of generatrix, we find

whensfiom s b s ho ] (2.9

Here min designates the minimum of expression in bracket as a

function of U under the condition that 1 £ L and O z 05y Og is the

yleld point during compression, From (2.8) it is evident:
1) 1£ § /ETE § # o, then

.._‘a_m;( lll+:u(1'.)l )'h (r,-% (2.9)

Here 1 is determined by the formula

"'(m%”;ﬁ(1+3l)(i+al'(fn))l(?'n)ﬂ' )% (2-10)

2) if, however, % fEE % < ggs then
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Here 1 is determined by equation

o,u-[p-(c',)ﬂ‘,rv]ﬁ-'q.iw-- (*9 R

i,2., by equation
| -
o= 0 +30 MF T T (2.11)

In the case, when 1 of (2.10) or (2.11) is larger than L — the

length of shell, Ok is found from equation
q 0
0-[0"(7.)4;;,:»]2”51:--(1',) ;,}n (2.12)

In the absence of hardening (in area of fluidity) condition of
stsbility of shell in the sense of maintaining its cylindrical shape
can be obtained from (2.11), (2.12) by the threshold limit during
E' = 0, Namely, the shell naintains a cylindrical shape, if

w<gs(p) (2.13)

If inequality (2.13) is not fulfilled, the cylindrical shape is
unstable and bulges ére formed while ! 1s determined by equality
oy = %SE(vh/l)e.

Let us note that condition (2.13) is the same, as in case of
cylindrical shape of buckling of plate in area of fluldity.

3, According to the theory of small elasto-plastic flows the
associlation between secondary stresses and secondary deformations
are the same independently of the interval [P - a, P] and the path of
transition in this interval from the basic state to neighboring
equilibrium state under the condition that unloading 1n process of
transition doee not develope. Therefore, also and in Shanley's

statement of the problem and in statement [1] the critical stresses
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according to the theory of small elasto-plastic flows are the same.
These critical stresses in case of an axially compressed falrly
thick cylindrical shell satisfactorily will agree with experimental
data [4, 5].

During a linear hardening and condition of incompressibility
of material the critical stress according to the theory of small
elasto-plastic flows o,, the critical stress in Shanley's statement
of the problem according to the theory of a plastic flow ¢* and also
the lengths of half-waves corresponding to it — the 1 values are

determined by equations ([6-8]

=3V, e=3VFR} (3.1)

a-.”( 1+ 3878, (o) m)%- l-u(-};—;‘n‘:m)% (3.2)

13 VE/E,(3)

where Ec(o*) is the secant modulus of diagram of uniaxial compression
the
corresponding to/ siress o,. As before, 1if % E'E % < Og» then

*

g, =06 =0, and 1 1s found from equation (2.,11). If 1 of (3.2)

*

or (2.11) is larger than L, then o, and o* are determined by eguations

1 ! 4 = o8 )
«=w(1+ 37 LIV D+ e T
1 st & 1 .
¢ =RUB T+ TR T
In the absence of hardening (in area of fluidity) condition of

maintaining the cylindrical shape of shell according to the theory

of small elasto-plastic flows will be

) nh\?
“<pns (‘t)
and according to the theory of plastic flow — condition (2.13). In
comparing the critical stresses Oy Tys o', it is convenlent to

present equations (2.9), (3.1) in the form
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3-{EE-r)] TS o

Here o, is the critical stress during elastic deformations,
o, = %EQ/R. Comparison of conditions (3.3) for case g = 1/4 is
presented 1n the figure. Curves 1, 2
% correspond to the first two of these
conditions (3.3) straight line 3, to

i the last condition. From the figure

L8
it is evident that critical stress

Fig. 1.
in the sense of criterion [1] according

to the theory of plastic flow is somewhat less, but very close to
critical stresses according to the theory of smali elasto-plastic
flows (in the figure curves 1 and 2 respectively), i.e., during use
of criterion [1] there does not arise the paradox which is encountered
with use of Shanley's dimensionless number [2].

4, sStatement [1] 1s nothing more than a scheme of the actual
phenomenon, having the purpose of reflecting, more completely
than in the scheme adopted in Shanley's statement of the problem,
the influence of initial "irregularity" of the shape of plates
and shells on their deformation, Therefore, absence of paradox
in the solution in statement [1] makes it possible to trust that
in a solution taking into account directly initial "{rregularity"
of shape of plates and shells the paradox does not arise not only
in problem on torsion buckling of plate which Ye, Onat and D. Draker
(9], demonstrated, but also in other problems on the stability of

plates and shells.
The solutions of problems according to the theory of plastic flow
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taking into account initial "{rregularities" of the shape are very
difficult, The difficulty consists in necesslty of using complete
(nonlinearized) equations of the theory of plastic flow (see equations
(2), (3) in work [9]), generally speaking, we integrate them in the
interval corresponding to interval of change of load from value when
there develop plastic flows up to the critical value, Linearization
of equations of the theory of plastic flow (use of equations of the
type of equations (2.2)), obviously, is inadmissible, since, for
example, in the problem on torsion buckling of plate it results in a
certain "straightening" of the curve load — angle of torsion owing to
which there is lost the maximum of this curve which determines the
critical load,

In work [4] there was undertaken an attempt to solve by taking
into account initial "irregularities" of shape of shell the problem
on nonaxially symmetric form of the buckling of an axially compressed
cylindrical shell, During the solution according to the theory of
plastic flow the dependence between moments, curvatures and torsion,
and also between stresses and strains of middle surface was determined
not by integrating equations of theory of plastic flow in the interval
corresponding to interval of change of load from value when plastic
flows developed up to a critical value, but was set up the same as
during the solution in Shanley's statement of problem which, of course
is inadmissible. Namely, therefore, the obtained solution in (4]
according to the theory of plastic flow was found to be close to the
solution according to the theory of plastic flow of this provlem in
Shanley's statement of the problem, Thus, conclusion in work (4]
that a consideration of initial "irregularity" does not make 1t
possible to avoid paradox in problem about nonaxially symmetric form

of buckling of an axially compressed cylindrical shell is based on
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an erroneous solution,
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ON DETERMINING THE DIAGRAM OF COMPRESSION OF LOW-CARBON
STEEL IN THE REGION OF ELASTO-PLASTIC DEFORMATIONS
Yu, S. Stepanov

(Moscow)

There is considered a simplified scheme for the design of the
diagrem of compression of solid bodies above their dynamlc elastic
1imit as examplified by low-carbon steels. The design was checked
directly by measurement of the kinematic parameters in a passing

compressional wave,

Designations
v — speed of impact, u — shear modulus,
w — speed of free surface, p — density of medium,
o — stress, T — temperature,
€ — deformation, p — pressure,
x — axis of impact, V - volume,
u -— mass speed, cy — heat capacity at
a — wave speed, constant volume,
Lo — initial length of hammer, E - kinetlic energy,
1, — initial length of plate, v- ;:zgfn energy,
d — initial diameter of a,B,y — coefficients in
hammer and plate, the equation (1.7)
S — initial area of cross (v = 1.4 in equa-
section of hammer and tion (2.1) and B =
plate, = 8.4 in equation
K — modulus of manifold com- (3.1)).
pression, A — coefficient in

equation (3.1).
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§ 1., Let us consider flat coaxlal collision of cylindrical
hammer and plate of one and the same diameter d from ldentical materieal,
where the plate prior to impact is at rest, and L0 >d >> lo, where
LO and ZO are the initial lengths of the hammer and plate.

We shall assume that bulld-up of stresses ind deformations
after collision can be replaced by a single wave with constant
parameters behind the front, and common zone of load in the hammer
and plate can by presented consisting of a zone of elastic and a
zone of elasto-plastic flows separated from unloaded part of medium
and from each other by intense fracture surfaces. We shall disregard
lateral unloading and transverse deformations, assuming the load as
uniaxial (the x-axis is the axis of impact).

We now consider system hammer — platc at moment of time, when

fore front of elastic compressional wave in plate emerged on 1its

'L rear surface, Taking into consilderation the
) & assumptions made, we shall obtain the dis-
... L__ ol tribution of stresses ¢ and mass speeds u in
=1 ne
’ —1, [= py 4 the direction of impact x 1n the hammer and
'sh[:::qF plate illustrated in Fig. 1. The subscript
PN 0 subsequently we shall relate to parameters
#L ..... .J--J--.. in unloaded zone, 1 — to parameters in zone
‘0"
of elastic compression, 2 — of plastic com-
Fig. 1. pression.

We shall designate limit of dyramic
elasticity as Oy modulus of manifold compression K, shear modulus
i and initial density of the medium Po. Then we shall obtain speed
of fore front of elastic wave a5, the density Pys deformation €4 and

mass speed u, behind the front from the relationships
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q-(l’-.-%p)q, p.-.—'g;. Hmam, 4= ‘JE&)% (1.1)

In elastic zone all these parameters do not change their values,
On surface of fracture between elastic and plastic zones there are

fulfilled conditions of conservation of mass and momentum

1 (00— ) = py (0 —89) (1.2)
O+ P (00— 8,0 = @y + Py (00 — 80)° (1.3)

2

Equation (1.2), ignoring terms of the order e“, may be written

out as

(=) (1.4)
From (1.2) and (1.3) there is evident the relationship

S (0 — ) (4= ) (1.5)
Equation of energy balance for the moment ofvtime in Fig. 1

will be written out as
BB+ + U+ U (1.6)

were E is the kinetic energy of hammer prior to impact, E' is the
kinetic energy of a part of hammer, not encompassed by the perturba-
tion, E" is the kinetic energy of remaining part of hammer ard plate,
encompassed by perturbation, U' is the energy of elastic deformations
in entire zone of load of hammer and plate, U" 1s the energy of
irreversible deformations in plastic zone of load of hammer and plate.
According to the assumptions made the volume of the hammer
and plate encompassed by lateral unloading is negligible in comparison
to the volume of zones being considered of uniaxiel state of stress.
Since materiai of medium is identical, the zones of elastic and plastic

load in the hammer and plate have an identical length, If area of

their cross section is S, then the voluine encompassed by the elastic



load, is equal to Si, (1 - az/hi), by the plastic load - Sloaz/ai.
Assuming the masses of the hammer and plate equal to m, and Moy

the speed of hammer equal to v, we shall write value E, E', E", U'

and U"
l-’i’-‘. r-&‘,ﬂ.’i
rowing s
(1= 2)[% +£522]
U’ = 35l

V= (- a) i —n)

Substituting the described terms in equation (1.6), expressing

o, from (1.5), p, from (1.2), €, from (1.%) and solving the obtained

2
expression with respect to a,, we shall obtain the quadratic equation

of4Putr=0
where (1.7)

s=Sfn—nlot +(0—nf]+in(n—wf

B o [0 4 (0 — ou) (Prag + Prie) — SudPums + E0vaeny — 4o (39 — wi)f (00 + o) — pr'ey
. g iy (vg = 0] myms 4 Artagns — P [0r? - (0 — 5] oy — Samenmy

We shall set up an experiment in which there are measured speed
of impact v of hammer over plate and mass speed corresponding to it
in plastic zone Us. Then, assuming as Kknown from the relationships
(1.1) written above the parameters in elastic zone, there can be
found from equation (1.7) the corresponding speeds of front of plastic
flows 8y and according to them, Ops Eg and the temperature T.
§2. As means of loading a specimen of iow-carbon steels there

gserved cylindrical hammer with the

same diameter and of the same material

accelerated by compressed air in the

barrel of pneumatic gun of 23.4 mm

gauge. In Fig. 2 there is given a dia-

gram experimental installation and




recording equipment,

Compressor 1 pumped the air into the high-pressure cylinder 3
up to pressures ~40b atm and above., The pressure indicator was
a manometer 4 for 160 atm, Prior to experiment the hammer was
placed in the barrel and was pressed in lock 6 by speclial clamp
pellets, setting in recesses, made for this purpose in the hammer.
when according to manometer 4 in the cylinder 3 there was found to
be sufficient pressure for imparting to hammer the required speed,
the compressor was turned off and there was closed the high-pressure
valve 2. In conducting the experiment there was opened valve 5 and
air was passed through to the active volume of barrel of gun behind
the hammer, According to standard manometer 7 for 50 atm calibrated
on basis of speed of hammer of constant weight which were used in
the experiments, there was determined air pressure in the active
volume with a high degree of accuracy. When it attained the required
magnitude, lock 6 was opened and the hammer emerged from channel of
barrel 8, before which there was placed measuring unit 9 and a
bullet receiver 10, During each experiment its speed was measured
on scalar 11, giving a reading of the time with an accuracy of 10
microseconds. The measuring unit was connected with recording equib-
ment (generator of standard signals 12, oscillograph 13, block of
power supply 14). The speed of the hammer according to pressure in
channel of “arrel Py can also be calculated by formulating the

equation of energy balance. Then
o e (2.1)

where m, is the mass of hammer (in performed experiments it is equal

to 350 g), m is the mass of air behind the hammer, py is the pressure
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determined by standard manometer 7, V0 is the active volume behind
the hammer, V is the volume behind hammer directly in channel of *‘he
barrel, ¥ = 1.4 for air, P, is the atmospheric pressure,
In Fig. 3 there is shown the reinforcement of load d specimen 6
placed in ebonite ring 7. To the barrel of pneumatic gun 1 by means
= T ' of clamp screws 2 there was joined
the muzzle cap 3, having the recesses

4, removing formation of alr compres-

B sion ahead of the moving hammer,

& v 01 Before the specimen there were placed
Fig. 3. electrocontacts 5 for starting the

oscillograph, and behind the specimen

electrocontacts 9 connected through electrical circuit (Fig. 5) with
recording equipment. They were clamped in ebonite bushing 11 and
cap 10, which by clamp screws 8 was rigidily bound with the muzzle
cap 3.

In Fig. 4 there is given the dependence calculated by formula
(2.1) (thin line) and experimental (thick line) dependence of speed
of hammer on the pressure p,. Experimental
curve lies somewhat below the calculated

owing to the fact that during calculation

there were not considered the lossess in

kinetic energy of the hammer to friction in

the channel of barrel.

' L)
Fla. . Mass speed behind the front of plastic

wave u, was determined on basis of measured
speed of free surface of plate, which moved after the emergence
of plastic wave onto the free surface, Here measured speed was

assumed to be double the mass speed. As it was shown in work [1],



this is true for pressures incommensurably exceeding that attained
in the conducted experiments., It is necessary nevertheless to note
that linear character of unloading results in an approximate ful-
fillment of law of doubling the mass speeds with an accuracy up to
ratio aa/al. Actually, during propagation of wave of unloading with
constant speed a, ~ &8, within loaded plate on the basis of law of
conservation of mass in a system of coordinates moving with constant
speed Uy, we have

ah= (0t o)t

where p,, u, are the density and mass speed after reflected wave of
unloading,

Since
then

-.--:(-&—l)- c.({-:%—u)-..'ﬁx_..(q-..)(for small 82)

o

From linear character of unloading it 1is evident

P& O SeThY

Using o, in the form of (1.5), py &and u, in the form of (1.1)

and taking into account that 0y = poalgel, we shall obtain
..-..".’.%(..%-m—.‘li-l“.l)‘
Since previously there was ignored the quadratic terms in e, then
n_
Ml C T AR L]
and speed of the free surface
B (e o () (2.2)

If 8, does not strongly differ from al then
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w o 2u2

It must be mentioned that, substituting u, from (2.2) in (1.7),
there may be obtalned a stricter solution for a, in terms of w, v and
the known magniltudes,

However, owing to insufficient accuracy in experimental
determination of w, this was found to be inexpedient.

The error introduced in calculating Uy from equality w = 2u2 in
the computed values of 85, determinate from equation (1.7), was

corrected during a direct experimental measurement of a corre-

09
sponding to the glven speeds of the free surface.

Speeds of free surface were measured by means of electrocontacts
[1, 2). As electrocontacts there were used thin wires, not rendering
resistances to motion of plate and fastened tightly parallel to each
other with constant base of measurement between upper and lower
contacts determinate with an accuracy up to 0,01 mm., For their
assembly there was used a specially created instrument — template
for this purpose,

In experiments conducted the distance between upper electro-
contacts and free surface of plate was equal to approximately one
millimeter and therefore, the measured speed corresponded to moment
of time after emergence of plastic wavt onto the free surface [3].

While carrying out of experiments there was assured s flat colli-
sion of the hammer and plate which was the condition necessary for
simultaneous emergence of all parts of front of plastic wave onto
free surface of the plate. In order that the wave of unloading
reflected from rear end of hammer after impact could not reach the

free surface and distort its speed, the hammer was made fairly long

(Lo 2 10 14) and the base of measurement was selected sufficiently



small (1-1.5 mm), In the experiments performed loaded specimen had
a length much smaller than its dlameter and the diameter of the
hammer, Owing to this during the period of emergence of wave of
load onto rear surface of plate the lateral unloading could be
propagated for an insignificantly small distance within specimen and
transverse deformations therefore, it could not be taken into considera-
tion. This is a valildly made assumption at the beginning on an
uniaxial load. During the period of measurement the distortions from
lateral unloading could not reach the central zone of plate of small
area (radius 1-2 mm), whose motion was recorded by a measuring unit
pleced in front of 1it,

The electrical circuit used in the measuring unit is shown in
Fig. 5. Signals from electrocontacts 1, 2 were delivered to

oscillograph with a driven sweep 5. Signal

for "starting" of oscillograph was delivered

a little before moment of collision of

hammer and plate. The generator of standard

signals 6 modulated the scanning by time

Fig. 5.

marks of constant frequency variable depending
on period of time measured on the oscillograph. In experiments there
were used the oscillograph OK-17M, generator of standard signals
GSS-6, 3 resistors (4J kilohm) and battery 4 (BAS-G-60-U-1.3).
In order to eliminate external interferences, for the lead of the
signal contacts at entries of oscillograph and starting contacts for
"starting" of oscillograph there were used shielded wires. The.
entire pneumatic gun for this purpose was grounded.

As 1is evident rrom the description of the experiment, moment of
measurement of the free-surface speed did not correspond to moment of

time shown in Fig. 1 for which there was formulated equation (1.6).



At moment of measurement the plastic wave already had emerged onto
free surface of plate, and the reflected elastic wave began to

interact with the plastic., However, considering that length ly is
small the width of elastic zone can be ignored (furthermore, also

u, 1s significantly larger than ui), and as a result of the small

2
base of measurement and small distance from the fore contacts up to
free surface of plate it may be assumed that plastic wave up to
moment of measurement did not succeed in changing 1lts parameters
owing to digsipation of energy in the middle of the plate.

Velocities of the plastic wave a, corresponding to the measured

2
velocities v and w were also measured in analogous experiments by
WWWW electric-contact method [1-3]. Results of
. - experiments showed satisfactory agreement of

oumm ©

MWW experimental values with the calculated, A typical
MWW

oscillogram obtained during measurement of w and

Fig. 6.

a,, 1s shown in Fig. 6.

§3. Results of experiments are presented in Figures 4 and 7. In
a comparison of experimentally measured speeds of hammer (solid line)
and free surface of loaded plate (dotted line) it
is evident that during low pressures speed of free

surface 1s somewhat higher (see Fig., 7). This

difference 1s explained by insignificant decelera-

tion of hammer on thin wires, from which signal

1s delivered to scaler owing to their flexures

!ﬁ during low impact velocitles v, At the the same
(]

iy 7 time speed of free surface never exceeds calculated
Flg. T,

speed of the hammer,
Using experimental data for each pair of values for v and Uy

by equation (1.7) there were found speeds of plastic flows a5, and



by equations (i.4), (1.2), (1.5) there were determined corresponding

deformations €5 dencities P and stresses

[}
8y, km/seo Ope In Fig. 8 there is given the depend-
s ' ence of averaged values of the experimental
o7 1

and calculated magnitudes a, on the mass

v __’—7—-] speed u,. It is compared with Broberg's

[a,kvuc dependence [5] — 1 and Al'tshuler's [1] —
- )

J

0 s w €15 2., The dashed line designates the

Fig. 8. interpolation. According to relationships
(1.1), at uy, =143 m/sec speed a, 1s

constant and is equal to 5.99 km/sec. Then wave speed sharply drops.

In region, where there may be formed shock waves (i.e., where speed

of each subsequent plastic wave 1s higher than in the preceding),

a,. linearly increases with the increment of Uy [1; 2). This corres-

2
ponds, as is evident from Fig, 9, to the values €, > 10'2. The

obtained results are presented in Fig, 9 <nd in the table. In Fig. 9

Table there are
No. v v w ] L] L] L]
e iﬁo wseo | w/ses |ioyaes kg/om? | gon?d ar adopted the
i & :.2 e | &t 33 | 1ieo | o.00ee Tme| 12 following @
31 3| m7| % | ma| 50| 13m0 |oooss| 1ise| 301 ollowing des-
4 9.0 92).0 .2 8.6 4.3 | 17400 | 0.00080 | 7.927 | 4.6 .
s | usy | se0 | sosis | 534 | 438 | 20150 jo.o1x| 7.041] 63 ignations: 1 —
¢'| 180 | 180 1.0 | 510 448 | 21750 |0.01183 | 7.048 7.4
the obtalned
Note 1: Parameters in elastic zone of loads calcu- data, 2 -

lated from relationships (1.1): py =
= 7.87 G/Cma: a, = 5.99 km/sec, ¢, = 2,38 x Droverg's (5]
x 1073, u, = 14.3 m/sec (py = 7.85 g/cm,

0 = 6.7-103 bar).

calculated data,
dashed line —

the possible
Note 2: In calculating a, from formula (1.7) there

were taken the experimental values v. In extrapolation
the table there are placed averaged values of obtained

of experimental and calculated magnitudes

of 8o data, dash-dot
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line — the linear approximation of obtained data.
The experimentally measured density of the applied low-carbon

steels was found to be equal to 7.85 g/cmz. According to experimental

data of Minshall and Campbell for dynamic load

¢ q"hvu1
» — of low-carbon steels there was adopted the
: ’ value of dynamic elastic limit o, = 6.7.107 var
[3, 4]. The same closely agrees with experi-
i mental data of Nadeyeva (o, = 6.44+107 bar)
’ - » ‘1; obtained at the Moscow State University, Values
Fig. 9. K and p were adopted from Broberg equal to

17.1.10% and 8.36+10% g/cn® respectively [5].

In Fig. 9 there is given a comparison of obtalned data with stress
— strain diagram for steel constructed by Broberg on the basis of

equation of state by Pack, Evans and James (5]

p= A(—%)%{un[l—(%)-}]—l} (3.1)

where A = 6.11-108 g/cma, B = 8.4 for steel.
From Fig. 9 it is evident that the plotted points (each of which
1s a result of several experiments) with sufficlent accuracy up to

€, > 10"2 can be approximated by the straight line
& =0.35-10° + 140-10%, (3.2)

where o, is expressed in kg/cm2.
The ¢t mperatures calculated by equation (1.6) where it is posci-
ble to distinguish the thermal and elastlic terms in the energy [11,

are small and therefore, they can be ignored. Increase of temperature

was calculated by the formula

"'£5% (3.3)
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where value Cv was assumed equal to 0,11 caL/kg-deg. From Fig. 9
it 1s evident that during deformations €5 > 14.9-10'3 there operates
the dependence which Broberg calculated and which also obeys the
equation of state (3.1)., It is evident also that at &, > 10°°
dependence o5 (52) becomes nonlinear which ouviously corresponds to
the beginning of formation of shock waves ir the steel.

Thus, in summarizing what has been discussed, there can be made
the conclusion that in region of elasto-plastic flows within limits

2.38-10"3 s g, =8 11.93’10'3 low-carbon steel satisfactorily obeys

2
dependence (3,2), which is valld, however, only under assumptions

made at the beginning and therefore, must be considered approximate,
Author expresses his sincere gratitude to E. I. Andriankin for

his helpful remarks,
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ON THE METHOD OF INVESTIGATING THE SCALAR EFFECT
OF CAVITATION EROSION
I. I. Varga, B, A. Chernyavskiy and K. K. Shal'nev

(Budapest, Moscow)

In selecting materials for hydraulic machines and hydraulic
designs operating under conditions of cavitation, usually there are
not considered those conditions of operation of these materials, which
are imposed by various forms, types and stages of cavitation, As a
result the materials, used in practice, do not correspond in thelir
own mechanical and physical properties to those destructive forces
which ar.: peculiar to the above mentioned different forms of
cavitation, Attempts have been made to anticipate possible zones of
erosion and intensity of destructive action by means of test of
turbine models. However, here there were not considered the factors
of scaling the erosion and cavitation. Below there is described an
experiment of conducting experiments with erosion during cavitation
of a circular cylinder taking into account basic parameters of a
hydromechanical modeling: scale numbers for dimensions of models,

cavitation, and speeds of the flow,

1, On setting up the investlgations. a. Characteristic of the

intensity of erosion. For test of materials for resistivity to
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cavitational erosion there are used the following metheds [1].

Methods of transient cavitation, in which tested material 1is
subjected influence of cavitation forming in flow in wake of steep-
streamlined bodies or on walls of aperatures and niprles,

Methods of wave cavitation including magnetostrictive vibration
and irradiation of sonic and ultrasonic wave,

Method of rotation in which specimen of tested material revolves
together with disk, on which it is braced flush with 1its surface, and
is subjected to influence of cavitation, forming in the wake of
flanges or cavities specially made on surface of disk.

The jet shock method in which revolving specimen is subject to
collision with a free jet; in this case it is assumed that mechanism
of destruction under influence of collision of Jet and specimen 1s
jdentical to mechanism of destruction under influence of caviation.
This assumption appears now controversial, therefore, it was expedient
to use for our work a method with direct influence of cavitation.

In the selection of a "eavitational" method it must be remembered
that cases of cavitational erosion encountered in practice are ex-
plained by the effect chiefly (1f we mention only one type of
cavitationj — burbling forming in zone of vortices of steeply
streamlined surfaces [2]. It is evident from this that the closest
to the natural condition is method of transient cavitation, The
destruction of material by erosion requires an expenditure of certain
amount of energy. vherefore, of the methods of transient cavitation
one must be selected, which would make it possible most simply to
associate intensity of erosion with cavitational resistance of
body — with the energy of flow expended in surmounting of the
resistance of body during a cavitational flow-around. As a first

approximation to natural conditions there was a selected case of
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cavitation of model of round profile — a round cylinder being flowed
around by two-dimensional
flow in the working chamber
of water tunnel (Fig. 1).
This model in distinction
from all other models with
a different profile in
maximim detail was investi-
gated depending upon param-
eters of flow and cavitation
[3].

However, existing
parameters for evaluating
the intensicy of erosion are
not associated with hydro-

mechanical parameters of the

flow [4]. Intensity of

erosion was evaluated by the

Fig. 1. Photographs of zone of cav=-

Ltation in veke of xows cylinier | following magnitues:

University: o) stecboscopic photos a) depth and area of

gigﬁgydggi?iggfugtig“i;r;'":%'ggf' location of the erosion

R = ?é6 X 105; b) dgrinv flash in [5, 6] pits;

e Pk ey g b) loss as in weight of

X 109, c) the same n = 1.47, R =

6.6 x 105. specimen after any period of
test [7, 8];

c) loss of volume per unit of area of unit of time [1];

e) number of erosion pits, rforming per unit of area per unit of

time [lO];
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f) loss of volume of specimen, as related to characterilstic
dimension of body [11];

g) loss of intensity of radiation of isotopes applied together
with paint on surface of body [12], destroyed by cavitation;

h) duration of test of specimen to certain stage or degree of
destruction visually determined [13].

Of the enumerated parameters a large part of them is determined
by weighing of specimens before and after the experiment, The method
of isotopes was applied in field tests of turbines of radial-axial
type. Rata [14] used change of ohmic resistance of specimen during
erosion, but in final result associated it with a loss of volume.
Gowinda Rac [15] offered dimensionless parameter of cavitational
erosion in the form of a ratio of mechanical energy of destruction
of certain volume of a solid body lost to erosion, to the energy of
cavitational bubbles being destroyed during decrease of cavitation,

In the given case in calculating the energy of destroyed bubbles
with use of Rayleigh's theory there 1is allowed considerable conven-
tionality. According to theory of Rayleigh the bubble must be
surrounded by a continuous fluid, whereas, in experiments of Gowinda
Rao which served as basis for deriving the parameter, the zone of
cavitation consisted of totality of bubbles, Furthermore, there 1is
not taken into account the influence of surface tension of fluid
on destruction of bubbles. In mechanical relationship Gowinda Rao's
erosion parameter presents its own type of coefficient of the harmful
effect of cavitation and depends on duration of the effect of cavita-
tion on the specimen and also on stage of development of cavitation.

b, Energy parameter, Such parameter of erosion [4] is called

volume of erosion related to unit of certain portion of cavitational

resistance of model., Reciprocal of energy parameter gives a measure
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of the strength of the material during destruction of its cavitational
erosion in units of work required for destruction of unit of volume

of material, In distinction from all previously proposed parameters
the new parameter does not depend for given stage of cavitation and
material either on speed of flow or on dimensions of model or on

the Reynolds R and Weber W dimensionless numbers,

Reciprocal of parameter gives the true resistance of material
of cavitational erosion in distinction from other parameters, by means
of which there is determined only the relative resistance of erosion,
i.e,, in the comparison of one material with another,

In accordance with results of lnvestigations of work of destruc-
tion of metals made by Gillemot and Sinay [16], according to whom the
work of destruction does not depend on type of destructive mechanical
forces of compression or extension energy parameter makes 1t possible
to establish interrelationship between works of destruction from
forces of cavitation and from mechanical forces., For metals not
subject to chemical corrosion during cavitation, work of destruction
of metal from cavitation, in all probability should be 1dentical to
work of destruction by mechanical forces., If, however, in destruction
of metal during cavitation there act also corrosion forces, then, the
work of destruction determined by means of energy parameter must add
to previous new characteristic of physico-mechanical properties of
metals — the resistance to cavitation.

According to the determination given previously (4], energy
parameter is expressed by formula

R

AVi08 R AGC .
".?m'.—..—,‘-u'm' (Al’nﬁ-'”-l, '.-_-%- (1.1)
A, =Cp—C, + l‘c.'l

Here AV 1s the volume of eroslon, AG is the loss of welight of
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specimen to erosion during the time of 7 hours, 7, is the specific
gravity of material of specimen, d is the diameter of cylinder, h 1is
the height of cylinder, Vo is the speed of flow taking into account
influence of boundaries, y is the weight of unit volume of fluid,

cx is the resistance of cylinder in absence of cavitation, Cxc is the
resistance of cylinder during cavitation, ACL is a certain portion

of cavitational resistance obtained by the extrapolation of dependence

f(W'l) up to value of Weber number Wl = 0. The Wever

Cxe — Cx

number W q/(pwnzd), where o 1s the surface tension, p is the density
of liquid.

C. Scale effect. By means of energy parameter there is presented
the possibility of determining the scale effect — to determine loss
of volume of material in the field by experiments with a model. If
stages of cavitation geometrically are similar and the flulds in
model and in field are identical, then, after formulating for model
and the field of the expressions on basis of (1.1) and equating them,

we shall obtain

AV = Ay LV (1.2)

where L is the scale number for linear dimensions of model and
cavitation and V is the scale number for speeds of the flow. Formula
(1.2) gives those conditions whose observance is necessary 1in conduct-
ing experiments with erosion in models. At the same time, according
to (1.1) the exponents are @ = 3 and B = 5, this is confirmed in
certain experiments also of other authors, According to investiga-
tions by Knapp [10], with models of axially syrmmetric todies and
with a turbine in the field {17], in which intensity of erosion was
evaluated by number of pits the exponent B = 4 to ¢, Kerr and

Rosenberg [12] on basis of experiments in the field with application
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of methods 1sotopes assume that the most probable value is B = 5.
In experiments by Rata [14] within a narrow range of speeds the
exponent B = 4 to 8, In experiments by Gowinda Rao [15] with
cylinders B = 5.3 to 8 with rectangular blocks B = 4 to 8.

Influence of dimensions of model is characterized by the table, )
compiled on basis of our experiments, In it there are given magnitudes
of volume of erosion for three varilants of dimensions of round-
cylinder model and relationships of volumes during four variants of
speeds of flow. Hence one can determine experimental value of a,
Average magnitudes of relationships of volumes are close to the

theoretical a = 3,

Table
» \{ r'\/ av, AV, '\ AV,
nsec”! | mm u:'l _3h:'1 mm3h:'l 1" » o
1" 048 | 1.4 - - - 8.1
17 (X, ] 4.5 4.2 | ©0.8 ] 10.7 6.0
2 ;.' 15.83 101 1] [ X ] 8.5
-] ..“ 10.3 - —-_ - 7.4
Averaget 0.3 8.8 1.9
9% Hormtath.o)d @ s s

Other investigations of influence of dimensions are not known.
Knapp [16] negates the influence of dimensions on intensity of erosion.

The diversity of results attests first of all to how thoroughly
there must be thought out the devices in the experiments, and also
determination of magnitudes characterizing the intensity of the
erosion,

2. Experimental devices., a. Water tunnels. Experiments with

cavitational erosion were conducted in cavitational water tunnels
GT-2 and GT-3 at Institute of Mechanics of Academy of Sclences of
USSR Jointly with Budapest University and Hungarian Academy of Sclences

[19]. All enumerated tunnels have closed circulation of the water,
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agitated by a centrifugal pump, AdJjustment of speed is produced by
electric motor drive and the pressure is regulated independently of
speed, In the tunnel at Budapest University the maximum speed of

flow in an active chamber of 200 x 200 mmZ may be attained equal to
1 m/sou_l. In the tunnels at the Institut f Mechanics, the speed
in diverse models of active chambers mey vary from O to 25 m/sec 1.
Here there have been described certain positions of the GTZ tunnel

(Fig. 2), having a maximum value during experiments with erosion.

S S N L S ) 3 ]
| |
! [ l
- JH

Fig. 2. Experimental device GTZ IMEKh: a) nozzle,

l% active chamber, c¢) diffuser, 1) metallic header,
assembly insert with specimen, 3) model of round

profile — cylinder, 4) plexiglas window, 5) tube.

1

b, Nozzle of tunnel, The nozzle 1s located between pressurized

reservolr and active chamber, On the tunnel nozzle there are

imposed major requirements, since 1t determines structure of the flow
in the active chamber. The nozzle must generate a flow at exit,
uniform over entire section, and reduce to a minimum longitudlinal

and transverse pulsations in flow proceeding to active chamber, This

is attained by proper adjustment of the flow. The adjustment ot

flow or the ratio of areas of entry and outflow is made equal to 7.

O
N

N

for n les according to [20]. Longitudinal profile cf nozzles



consists of two curves, On the first entry sector the curve serves
as a smooth interlinking of it with curve of outlet sector of nozzle,
The profile of outlet sector of nozzle was outlined on the basis of
Witoszinski's curve [21]1

For preventing the formation of vortex zones in the interlinking
between the first and second sectors of nozzle the length of nozzle
is increased to 1l = 3d0 owing to the length of the first sector.
Simultaneously the nozzle, being calibrated is used as indicator of
the discharge or rate of flow in the active chamber,

c. Active chamber., In three installations of water tunnels

in experiments with erosion there were used the active chambers with
four cross-section variants:

a) in tunnels of Institute of Mechanics with a section 6 x 12,
12 x 50 and 24 x 100 mm2, b) in tunnel at Budapest University 48 x
x 200 mm?,

We shall give a constructive description of one variant of
active chamber 24 x 100 mmz. Body of chamber 1s cut out of a circular
Duralumin rung 300 mm in diameter. It consists of four ribs connected
one to another by flanges. Ribs form quadrilateral frame with slots,
into which the headers with flanges are inserted. The frame and
headers are sealed by rubber cords. Headers depending upon purpose
of experiment can be made either of metal, or of transparent plexiglas.
For the purpose of economy of time in the assembling of the specimen
and economy of material going into manufacture of plexiglas headers,
in both headers there are made assembly inserts. One of inserts the
metallic rerves for reinforcing the specimens and the circular profile
model, the other, the plexiglas, is used for observations., In the

drawing (Fig. 2) cne of headers entirely transparent is shown.

The specimen is made of the composite: of the sublayer and the
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specimen itself, Sublayer has a recess under the bolts by which it
1s clamped to assembly insert. The specimen made of rolled lead is
soldered to sublayer by Wood's alloy, after which it is worked out
thoroughly. The model — a cylinder, made of rolled bronze, 1s braced
to assembly insert together with specimen, The other free end of
cylinder is set into socket in opposite plexiglas insert,

d. Diffuser., The shape of the diffuser determines cavitational
quality of the water tunnel, since to a greater degree than other
items of tunnel is subject to cavitation, Cavitation of diffuser will
entail sharp increase in resistance of tunnel and drop of productivity
of pump, Proceeding from the above mentioned conslderations the
expansion angle of diffuser was made 7° which 1s somewhat smaller than
that recommended for wind tunnels, For the sake of simplicity of
manufacture the diffuser is made a composite: of external body —
straight duct of round section — and inserts, of the diffuser proper
with rectangular section, variable 1n its length.

3, Determination of basic magnitudes. a. Determining the

speed in the measuring alignment, Usually there 1s determined average

speed of flow ahead of model by the flow rate determi.ed by any mea-
suring attachment: spray nozzle, measuring flange or Venturi-type
fuel gauge. For rapld preliminary calculations 1t 1s possible to
use speed on axis of flow determinate by means of preliminary
calibration by cylindrical cap with the plezo-aperture on cylindrical
surface.

We shall designate as Py - the pressure at entry to nozzle,
P, — the pressure at outlet of nozzle, p3 — the pressure at entry
to active chamber, Py - the pressure on wall of chamber at place of
passage of axis of cylinder in its absence, P, — the pressure at the

fore singular point of cylinder located at the middle of its height
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(height of chamber), The experiments determine
either m=a=/(r=ph Or p—p=/n—pn
A== R=pl=g=/—n (t=w)

and then, using graphic constructions [22]

a=/n-p n= Vi

Influence of boundaries of tunnel is considered by means of
equation of the flow rate, Then the speed of flow-around will be
equal to v, = vb/(b - d), where b is the width of active chamber,
In the analysis of results of experiments we shall use following
magnitudes of speeds: Vv 1s the average speed ahead of model, v, is
the average speed taking into account influence of constraint of
flow by model, Vo is the speed along axis of flow, Voo is speed along
axis of flow taking into account the constraint, The termination
of speed 1s a very responsible problem, because volume of erosion
depends on the speed to the power B~ 5,

b. Determination of pressure in measuring alignment. The

pressure in the measuring alignment p, is not determined directly.
During experiments there 1s determined the pressure p3 at point 3,
located in front of model, Then, using dependence p3 -py =

= f(p1 - p3), determined preliminarily in absence of cylinder, we
determine p, = P - [p3 - pu], taking into consideration therby
drop in pressure head for resistance of sector of active chamber

from point 3 to point 4.

c. Determination of coefficient of cavitation n, The determina-

tion of coefficient of cavitation n 1is required in determining
ACx. Its value may be determined either by taking into account
influence of boundaries or without taking it into account,

Therefore, in the general form
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L)

where py is equated to Py» Qp is the pressure head of speed determined

according to method under adoption (see 3a). The magnitude Py is

the pressure of the water vapors and Y is the weight of a unit volumc

of water,

d. Length of zone of cavitation. The length of zone of

cavitation is determined assuming from axis of cylinder to tip of

the visually evaluated stable part of zone of cavitation 1 , and is

given in the conventional units A= Lc/d, where d 1s the diameter of

the cylinder,

e. Determination of Acx. For the determination of ACx we use

the well known dependences

L ERF™ . mEwE LN

a8 7

Fig. 3., Averaged curves
of experimental magnitudes

Cx’ Cxc and X depending
upon n and the Reynolds
number Rt 1) at R =

- 4.10" to 8.10%, d =

= 5-10 mm, 2) 11.10% to
16+10%, 20 mm; 3) 18+10

to 23+10%, 30 mm; 4)
25.10% to 30.10', 40 mm;

5) 30+10" to 43+10%, 50 mm.

C, (R, n) and A{n), presented in work [3, 4
(Fig. 3). The data cited in it
should be supplemented both for
larger Reynolds numbers, and also
smaller ones, in order to obtaln
reliable data on magnitudes of Cx’
satisfying requirements of practice.
The simplest and at the same time
most accurate method of determing
Cx is the method according to dis-
tribution of pressure, on an average,
along the height of the model's

cross section. In other methods of

determination Cx’ for example, by weights, there must be considered

the influence of slots — structural clearances between model and

walls of the chamber., The presence of clearances results in the

distortion of flow-around model in comparison to these which exist
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in experiments with erosion.
By means of dependences C,(R, n) and A(n) there is found

dependence of C,, C, . and AC, on the Weber number W (Fig. 4). Accord-

xc
ing to (1.1), the magnitude AC,

ﬂ'rl
E
wmh® 111 be somewhat larger than excess
M
of cavitational resistance over
N resistance in the absence of
; ~ i [} cavitation, and, furthermore,
Fig. 4. Averaged experimen- ACyq - AC, = f£(W) 1s determined by
tal magnitudes Cx, cxc’ Acxc . lat . o
and AV — depending on the extrapolation up to value W = O,
Weber number W, Therefore, for each experimental

setup it is desirable to determine

the indicated dependence independently.

f. Determination of AV, The volume of erosion i1s determlned

by loss of welght of specimen AG and by duration of experiment T

NVN= —'.“;-.mahr'l

where Vg 18 the specific gravity of material of specimen. For
avoidance of large errors it is desirable preliminarily to construct
dependence AV = f{W), averaged on basis of some experimental data
AV in the combined graph AC, = f£(W) (Fig. 4).

g. Determination of AG. The loss of weilght of specimen to

erosion is determined by weighing it before and after experiment
with proper accuracy, depending on magnitude of AG., The admissible
accuracy of weighing commensurate with accuracy of determining other
magnitudes may be adequate within the limits 1%,

h. Determination of 7. In accordance with analysis of factors

of influence on accuracy of obtaining of results of experiments (see

4) duration of each experiment on eroslon has been designated depending
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on purposes of experiment, If experiments were performed depending
only on speed of flow with a constant experimental device d = const,
A = const, then the duration of each experiment was set up with such
calculation, that the AG values were equal, If experiments were
made depepding on dimensions of model, then duration of experiments
was set up with such calculation, that AGn/AGm = L3.

i, Temperature of water, Temperature of water 1s determined

by a thermometer placed in socket of large flange of nozzle, Socket

was filled with machine oil,

j. Other magnitudes., Barometric pressure was determined by a

mercurial barometer, All remaining magnitudes, which were required
for calculating formulas (1.1) and (1.2), once: a) welght of unit of
volume of water <y; b) specific gravity of material of specimenr vg;
c) pressure of water vapors p.; d) surface tension of water o; e)
kinematic viscosity of water v — were determined from the tables of
physical constants.

4, Factors of influence on accuracy of results, To such, one

should include conditions of experiments which are ignored,

a, Influence of composition of air. According to data of

experiments by Nowotny [23], with cavitational erosion obtainable by
method of vibration on magnetostrictive instrument in water of

varying origin, composition of air can render a significant influence
on intensity of erosion, Thus, the loss to erosion in distilled

water is 80% greater than in a water line, The loss decreases by

30% in tap water during its transmission through alr. From what has
been said it is evident that the experiments with erosion must be

made with constant content of air in the water, For this purpose in
the design of tunnels there 1s provided the insulation of free horizon

of water in pressure tank from direct contact with air, there was
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maintained a constancy of added fresh quantity of water during

disassembling of specimens,

b. Influence of temperature. iwestigations of influence of

temperature of water on intensity of erosion were conducted usually

i

Figo 50 AVe!‘-
aged experimen-
tal dependence
of volume of
erosion AV and
area of erosion
f on tempera-
ture of water

7 c°,

at a constant pressure as a result of which to
influence of temperature there was combined in
addition the influence of the stage of cavitation
or 1ts structure. Our investigations [2] under
conditions of transient cavitation with lead
specimen's during observance of constancy of
stage or dimensions of zone of cavitation and
speed of flow showed that within limits of varia-
tion of temperature between 10 and 26°C the
decrease in intensity of erosion may vary

from O to 7% (Fig. 5). Inasmuch as increase of

temperature of water in our experiments varied within limits of

s
oo ] ‘
oy \\
i WA
\ 1IN

Fig. 6. Averaged ex-

1 to 8°C, then its influence on intensity
of erosion was not taken into consideration.

¢, Influence of stage of development

of cavitation., According to our investiga-

tions [2], there is a stage of development
of cavitation of round cylinder A, . = 3,

at which intensity of erosion 1s at a

g;rtgiszglogegiggigge maximum (Fig., 6). During a deviation of

AV on length of zone
of cavitation A:
with a speed of v, =

xmax to A = 2 intensity of erosion

diminishes by 25% and with a deviation to

-1
= 14 m/sec” ™, 2) with A =4 - 2 16%, It was assumed that the

vy = 17 m/sec'i, 3)
with vy = 20 m/sec”

possible maximum error in determining AG

* is equel to &, = 5%,
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d. Influence of relative dimensions of the model.

of our experiments influence of relative dimensions of model 1/d

.J I
WIEf_

[} [+

Fig. 7. Averaged
experimental de-
pendence of volume
of erosion AV on
the relative dimen-
sions of model 1/d
or a/d,

where 1 1s the length of cylinder is identical
to influence of height of section of active
chamber a/d, According to our investigations
(1], there is an optimum length of model 1/d =
= 1, at which intensity of erosion is maximal
(Fig. 7). The intensity of erosion sharply
decreases with an increase of 1/d; with
increase 1/d by 10% intensity of erosion de-
creases also by 10%, and with increase l/d

by 30% decreases 3 to 4 times, Inasmuch as

in our experiments the varlations of 1/d due

to inaccurate observance of gilven dimensions did not exceed t1%, then

wa
mg/rin "? /

Fig. 8. Experimen-
tal dependence of
volume of erosion AV
on duration of test
of specimen T for two
specimens, tested in
active chambers 25 X

x 100 mme, 6 x 25 mme.

this inaccuracy in assembling the model
might result in an error of determining
AV within limits of #1%.

e. Influence of duration of experi-

ment. Dependence AV(t) for metals 1is
determined, on the one hand, by the plastic
properties of materlal under test and on
the other — character of the forces,
causing the erosion. During the 1nitial
period of destruction there is noted for
plastic metals the so-called incubatlon

period during which there occurs deformation

of surface layers (cold hardening) without the loss of weight (Fig. 8).

For a lead specimen with the setting in of brittel fracture the loss

to erosion AQ/T increases with passage of time linearly to certain
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magnitude characterized by the formation of expllcitly expressed focl
of erosion — pits of round form, In all probability, with formation
of these pits mechanical reaction of the cavitation is intensified by
cumulative effect of streams with the decrease of cavitation. In
order to obtain comparable results of experiments there should be
selected such a duration of experiments at which the fracture would
be determined chiefly by forces of cavitation,

f, Effect of treating surface of specimen. Such an effect was

revealed in comparing AVO of the specimens whose surface was cleaned
with linens with different coarseness of abrasive [4], For
comparability of obtained results it 1s necessary exactly to hold
technological rules of preparing the specimens must be precisely
adhered to,

g. Influence of number of experiments. As was noted above, the

exponent of scale number of speeds is evaluated by various authors
within the 1limits B = 4 to 8, Using detailed data of Gowinda Rao's
experiments, presented in tables of his article [18], there was

made a graphic treatment of materials on cylinders and on blocks.

It was ascertained that both for a cylinder, and also for blocks the
exponent B in formula (1.2) may be taken B =5, 1f we ignore the
extreme magnitudes of AV at low speeds. Certain experiments were set
up with three variants of speed which evidently 1s inadequate because
the dependence AV(v) 1s determined graphically. In experiments by
Rata wide variations B = 4 to 8 may also be explained by random
errors, since the speeds were close, Vv =~ 30 to 40 m/sec-i.

h. Possible maximum error in determiniqg,AVo and AVn. According

to rules of an approximate calculation of the errors [24], there may

be compiled following expressions for the possible maximum error in

determining AVj:
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b=l +d g, +h+HU+3, 15, +4
and for AVn ‘
0y b+ 30+ Sy = Uy 4 320, 4 520,

In given formulas 6 designates the maximum cossible errors of
magnitudes being determined and indicated by subscripts., When deter-
miring 56 one should proceed not so much from the accuracy of welghing
the samples, as from the basic fact of the constancy of A, 1/d, and
the other factors mentioned above were observed as constants, On the
basis of considerations it is possible to calculate

5:-0.“-0-0.0! + 0.08 4 0.008 + 0.006 + 3-0.03 4-0 4+ 0 = 0.18 = 1 18%

& - 0.08 + 3:2:0.008 4 5-2-0.08 = 0.20 = £ 30%

Such comparatively large magnitudes of possible errors explains
the scattering of experimental magnitudes of AVO in the graph AVO(W)
(4]. The error may be especially large in determining "he intenslty
of erosion in the field in experiments with models,

5. Conclusions. In investigations of the scale effect of
cavitational erosion special attention must be given to: a) to the
accuracy of determining speed of flow of cavitational resistance,
loss to erosion — erosion spaces; b) to observance of identity of
stages of cavitation and relative dimensions of the models; c) to
the proper designation of duration of experiments., In order to
avold a large magnitude of error it 1s necessary to setup the experl-
ments within a wide range of speeds and for a large number of their

variants.
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GENERALIZATION OF CERTAIN EXPERIMENTS ON CRISIS OF BOILING OF
LIQUID DURING FORCED MOTION ON BASIS OF
THERMODYNAMIC SIMILARITY

L. Ye, Mikhaylov

(Moscow)

There are presented results of processing experimental data on
crisis of boiling under conditions of forced motion of three alcohols
and water by means of an approximate thermodynamic similarity. There
is proposed a calculation formula.

Empirical functions for crisis of boiling during a forced motion
of liquid have the form

te=/p,» A0
where q, is the critical density of the heat flux, p is the pressure,
w 1is the speed of liquid, At = T - Ts i1s the underheating up to
the saturation temperature.

On the basis of data in the work of I. I, Novikov [1] there may
be proposed the function universal for similar substances

Bt 2 %) (-VED
where P' is the critical pressure, cvo is the molar heat capacity of

substance during an infinite expansion, R 1s a gas constant, c, is

*a,a = atm (Abs) [Tr. Ed. Note}
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the speed of sound in substance as found in an ideal gas state, at the
critical temperature T,.
In practice there is used a simpler function in which the latter

two parameters are combined in the form of a product

& &t
-3
where r is the latent heat of vaporization,

Magnitude Cy /b in this expression may be replaced by heat
0

capacity cp = cp(t) [2], and be written out

A, Aw A
r e r

Thus, the generalized function between the given magnitudes
essential for the crisis of boiling during forced motion acquires

the form
-l % 7

A number of works has been devoted to an investigation of the
crisis of boiling during forced motion of water (for example, [3-10]).
For other liquids few experimental data have been published (see, for
example, [11]). Data for a generalization on the basis of thermo-
dynamic similarity have to be obtained in an experiment with different,
chiefly organic liquids,

The experimental ifistallation for investigating the boiling of
organic liquids (Fig. 1) is a closed circulation contour through
which 1liquid 1is pumped by a glandless rotary pump with shielded
drive 1., The flow rate of liquid in contour 1s measured by means
of an assembly double digphragms 2 by the instrument EPID-02,

Pressure in the contour 1s created by means of boiler 3 with an auto-

matic control. The contour includes an active sector 4, auxillary
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heaters 5, refrigerator 6 and gas
separator 7. The flow rate of liquid
through active sector and regrigerator
is regulated by means of valves 8. The
contour is filled with liquid from

reservolr 9 The active sector 1s

supplied with direct current of low

Fig. 1. Diagram of voltage from generator 10 type AND
experimental instal-
lation. 1500/750. The registration of the

advent of crisis is realized automatically by an electronic instru-
ment 11, which disconnects the power supply of
the active sector,

Automatically, by a potentlometer 12 type

EPP-09 there are registered also basic magnitudes
being measured — current and voltage drop in fuel
element, and also temperature of liquid at entry
and outlet of active sector.

The active sector (Fig. 2) makes 1t possible
to conduct experiment with an external circumflow
by liquid of fuel element 1. This element is
made of a thin-walled rust-resistan® or nickel

tube, It is heated by direct current which is

delivered to it through copper bus lines 2. The
upper bus is tightened by means of a bellows 3,
which compensates thermal.expansions of fuel
element, and the electrical contact 1s realized
by means of the flexible copper conductors L, The

upper bus is found under a zero potential and is

Fig, 2. Active

Seotor. combined with chassis of installatlon. The lower
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bus is led through a teflcn insulating stuffing box 5,

The ring slot through which the liquid flows 1s made up of fuel
element and glass tube 8. The displacement of fuel element from
central position 1s prevented by the registers 9. The glass tube
is fastened to chassls of active sector 10 by means of stuffing
boxes 11 of speclal rubber. The chassis has window with 100 x 10 mm
flat glass 12 which makes it possible to conduct the observation of
process,

Fuel element is unloaded within the gas, The glass tube 1s
unloaded outside the liquid.

Wwithin the fuel element there are welded potential leads 6 from
Nichrome 0.2 mm in diameter, insulated by glass stocking. They are
led out by a drilling in upper bus and are soldered to the insulated
contact rings 7. Potential leads serve for registering the advent
of crisis, The recorder of crisils reacts to change in drag of tube
at place of formation of crisis and does not sense change in drag
during a uniform heating of fuel element.
This is attained by connecting two sectors
of fuel element as two arms of the bridge

(Fig. 3). An initial moment the bridge

is balanced by means of potentiometer

Fig. 3. [Boiling] Crisis R1 and signal, taken from its diagonal,

Recorder, will be equal to zero, During a change

of resistance of one of sectors of fuel
element the balancing of bridge 1s disturbed and in its diagonal
there appears signal which is amplified by amplifier UE-1Cy (used in
instrument EPP-09) and it governs the electronic relay standing
at outlet of automatic machine, Relay disconnects the excitation of

direct-current machines supplying the active sector, The duration of
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disconnecting process was measured by means of & loop oscillograph and
was found to be equal to 0,02 to 0,03 sec. The experiment of the
operation in the installation showed that the use of an automatic
recorder of the crisis is very useful, 1In a single fuel element is
makes it possible to obtain up to fifty points,

Experiments always were begun with the adjustment of sensitivity
of recorders of the crisis, The sensitivity was considered fixed
correctly, if at moment of advent of crisis in upper part o. fuel
element there was observed dim brief flash, or in the bollling
layer of liquid on surface of element there was formed distinctly
visible zone of film boiling. Especially well the film bolling was
observed on aickel fuel elements in a frontal illumination. Further-
more, during a large underheating the boililng 1s accompanied by sound
phenomena, With increase in the load the tube will issue sharp sound,
which rapidly abates only in direct proximity of the crisis.

In the installation a total of three series of experiments was
made, in water, ethyl alcohol and butyl alcohol.

Experiments in water were conducted for callbrating the
installation. There was obtained a total of about one hundred experi-
mental points, in which a portion are prior to work on alcohol, and
a portion - after work on alcohol,

The agreemcnt of the obtained results with results obtained by
L. D. Dodonov [4] and P, I, Povarnin [8] is satisfactory.

In experiments on ethyl alcohol there was encompassed a speed
range of 1,5 to 12 m/sec at pressures of 5, 10, 20, 30, 40 and 50 a.a.
The experiments were made in fuel elements of stainless steel with
the width of radial clearance & = 2,6 mm and length of heated section
10/26 = 15, The total length of channel 1/2b6 = 44, The entire

series contains about 700 experimental points (Fig., 4).

257



gEe S

FREA®

0 & v eF 0 W g iF B & B0 M
" b g
Fig. 4. Graphs of second series of experiments: 1; w = 12 m/sec,

2) w= 6 m/sec, 3) w=3 m/sec, 4) w = 1,5 m/sec, 5) points, taken
on a clean nonworked-in sector,

In experiments there was ascertained influence of working in
of surface of fuel elements, By virtue of fact that the alcohol in
the installation was very pure (distillate in contact with stainless
steel, copper and teflon), an incrustation of deposits on fuel element
was not observed up to a pressure of 20 a,a.

At higher pressures on fuel element there was deposlted an
jncrustation of reddish brown color which in time darkened, It was
found at the same time that points obtained in the pure brilliant
sector lie 20 to 30% lower than points obtained in active sector
covered by an incrustation. In the graphs of Fig. 4 points obtained
on pure fuel elements are not colored.

There was made a cowparison of the obtained results with
experimental data of P. I. Povarnin [17] on ethyl alcohol.

At pressures of 5, 10 and 20 a.a I. P, Povarnin's points lie
within the limits of the range of our experiments, There deviate
downwards only the points at p =20 ag,a, W =10 m/sec, At 40 a.a

p, I. Povarnin and S. T. Semenov's points lie much lower than ours
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and they have a wide range. As P, I. Povarnin suggests, this occurs
from the effect of incrustation of products of decomposition of
alcohol on walls of fuel element, The crisis in experimeﬂts of work
[17] was registered on basis of bend in the course of recording the
wall temperature of fuel element. But such bend will take place not
only at the advent of the crisis, but also with an abrupt beginning

of incrustation of deposits, i.e., prior to advent of crisis. Further-
more, in experiments of work [17] there was observed e spalling of '
incrustations from wall with the formation of crisis at place of
chipping. This results in an "underswing" of points downwards.

Experiments in butyl alcohol were conducted in the same speed
range and pressures as experiments of preceding series, The qualitative
plcture obtained as a result of these experiments, is analogous to
picture, obtained in ethyl alcohol, Therefore, eiperimental points
and graphs are not presentec in the article,

It must be mentioned that influence of working in of surface of
fuel element on results being obtained could not be recorded,
Obviously, this is connected with small thermal stability of butyl
alcohol.

It 1s obvious that for a generalization there must be selected
a group of similar liquids, The dimensionless number may serve as

critical coefficient [12]

4
‘.o-%
A more graphic idea as to degree of similarity of liquids can

be given by a comparison of their physical parameters in relatlve

coordinates [13, 14].
It is obvious also that absolute propertles of liquids must

differ possibly more. As a criterion of distinction of liquids there
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mey be considered complexes which are combined from critical parameters
and universal constants and have a dimensionality of magnitudes essential
for the process under study [1, 2].

For generalization there were selected results of experiments,
made in water and methyl, ethyl and butyl alcohols, Critical
coefficients and dimensional complexes for them are given in the

table ((cp/r)O-Ol signifies that c, and r were selected at p/p, = 0.01).

e b | K] o [t ol
Water % |6.15] 548 | 10.4 |
Methyl alcehol 8 t.u n 3.8 3.3
Dthyl aloohol @ 01| 308 1.67 .37
Butyl aleohol 7% 136 | %0 1.088 3.9

From & review of the table there can be made the following
conclusions.

1. Selected substances have close values of the critical
coefficients. (Deviations from mean value 12%,)

2. Measured complexes continuously depend on the molecular
welght u.

3, The difference between measured complexes for selected
substances is significant. 1In particular, values of magnitude cyD,,
which is scale of q,, differ for water and butyl alcohol by almost
ten times.

Such large scale difference is a favorable fact since it will
make it possible to establish with complete proof the presence or
absence of similarity of phenomena in the crigis of boiling in differ-
ent liquids,

Furthermore, as a result of a comparison of physical parameters

of selected 1liquids in the given coordinates it happens that maximum



difference is observed for latent heat of vaporization r (up to 15%),
end difference of remaining parameters — density, surface tension,
temperature of saturation — does not exceed 5 to 10%,

For the generalization there were used following experimental data.

In water — the data of A, P, Ornatskiy [15, 16), P, I. Povarnin
and S, T, Semenov [8].

In methyl alcohol — data of P, I, Povarnin and S, T. Semenov.

In ethyl alcohol — data of P, I. Povarnin, S. T. Semenov and
the author's data,

In butyl alcohol — the author's data.

The processing of experimental data was conducted in two stages.
First, experimental data were recalculated in system of given magni-

tudes

2y (P LA

ePe Pe ' v

and were plotted on graphs, analogous to Fig. 5.

For obtained curves there was

|

selected the formula

o 4q0me (1 - ;: )(l 46 )x

oy .’-
u 0w
A L
ll u.u(lu- .

(1)

This formula approximates

curves with accuracy up to 5% for
Fig. 5. 1) water, 2) ethyl values 0.1 < p/p, < 0.6,
alcohol, 3) butyl alcohol,

0.1 < Ai/r < 1) 0.5 < W/co < 50

The character of dependence for values p/p, < 0.1 and p/p, > 0.6 wili
differ from formula being given, where chiefly there will vary value

of coefficient at (N/Co)o'e. This coefficient will increase by
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few times and will depend greatly on p/p,.

0 ! 4 d 4 H

Fig. 6., 1) water, data of
[8], 2) methyl alcohol, 3)
ethyl alcohol, 4) butyl
alcohol,

In Fig. 6 there is shown, how
they are fitted on curve constructed
on basis of formula (1), and experi-
mental points are used for the

generalization,

Here, along the axis of ordinates

there is marked off the magnitude
Qmg, [:i'l()"c.'.! (1 - _,'B:) (' o ~_:{:).,_.

In Fig. 6 there are plotted the
following points: in water —

P, I, Povarnin and S, T: Semenov [8],

in methyl alcohol — data of P, I, Povarnin and S. T. Semenov, in

ethyl alcohol — the author's date, obtained on clean fuel elements,

in butyl alcohol — the author's data, The scattering of experimental

points in Fig. 6 does not exceed in most cases 130%,

In Fig. 6 there are not plotted A, P, Ornatskiy's [15, 16] experi-

mental points in water and in ethyl alcohol — the author's data obtalned

on the contaminated fuel elements, The dispersion of points here 1is

the same, but all the points are higher than the formula by 20 to 25%.

This deviation can be explained obviously by the difference of

surface properties in the experiments, in particular the difference

in magnitude of the surface tension,

We note that an analysis of phenomenon of crisis of boiling from

thermodynamic assumptions mekes it possible to associate peculiarities

of process with such characteristics of substances, as critical param-

eters and the molecular welght and to exclude from consideration many

other physical paramters, such as viscosity, surface tension et cetera,
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INVESTIGATION OF MECHANISM OF BOILING DURING LARGE HEAT FLOWS
BY MEANS OF PHOTOGRAPHY
N. N. Mamontova

(Novosibirsk)

The first investigations of mechanism of boiling by means of
photography were made 25 to 30 years ago [1, 2] for heat a flux
with small densities (from the contemporary point of view).

In one of the recent works by Westwater [3] by means of high-
speed photography at atmospheric pressure there was investigated
bubbling of methanol in case of a heat flux with the intensity
q[kcaL/mzhr], approximately up to the critical value q = q,, at
which there occurs a replacement of a nucleate regime of boiling by
a film regime, It was revealed that in this case magnitude of the
break-away diameter of vapor bubble D, {mm}, the frequency of
break-away of vapor bubbles u[sec'l] and rate of increase of vapor
bubbles Dou[mm/sec] depend on density of the heat flux.

A detailed investigation of mechanism of the bolling process in
a moving underheated fluid was made by G. G. Treshchev {4}. There werw
obtained distribution curves of magnitudes of maximum diameters D,

periods of bubble formation t and number of centers of vaporization

with a change of regime of boiling. However, to apply these, data
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for boiling of completely saturated liquid it appears to be impossible, '

Below there are discussed the results of first stage of investi-
gation of mechanism of boiling of saturated liquid with free convection,

The experiments werc made in experimental installation, whose
fundemental diagram and description are given in [5].

The working sector was made of foll of stainless steel with a
thickness of 0.1 mm; width of working sector 2 mm, length about 40 mm,

Lower side of working sector was heat-insulated by textollite which

excluded possibility of formation of bubbles on it, For the packling

between textolite and lower side of working sector there was used a |
thermoresistant rubber, Rubber and textolite were clamped to lower
side of foll by means of special screws, Upper exothermal surface of
sector was polished with a paste from the State Optical Instltute.

The heating was reaslized by means of transmission of an electrical
current through the foil, Filming of bolling process was made in a
transmitting light on a scale M 1:2. Inspection windows were made of
quartz, Speeds of photographings were between 1000 and 4000 frames/cec.
Therce were used high-speed cameras: 16 mm — TsL-16 and 35 mm —
Pentatset-35,

For determining the value of break away diametcr DO the
appropriste frames of filming were examined in a measuring microscope
and there was made a measurement of the bubble diameter. The
trequency of the breaking away u was determined by directly establish-
ing the interval of time between breaking away of one bubble and
breaking away of the next at the same place.

There was studied the boiling procecs in water and ethyl alcohol.
With the aucleate boiling of water at atmospheric pressure with an
increase of density of heat flux approximately to q = 100,000 kcal/mzhr

(~.1 q,) a gradual increase in number of centers of vaporization
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yecurs as long as the entire surface will not

With furcher increase of heat flux there bes

xpanding in individual centers

neighboring bubbles,

A similar influence of heat flows on picture of nuclea

water is observed during all investigated

In the region close to critical heat flux there
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intense and random motion of vapor and liquid nea

The characteristic photography of the transient regime
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boiling, In Fig. 2 there is presented a photograph of the film
boiling of ethyl alcohol: there is evident the wave character of the
motion of the vaopr film, In each wave length there are formed two
geries of vapor bubbles, which break away with a specific frequency.
The quantitative study was made for the purpose of determining
the statistical magnitudes of the break-away diameters of vapor
bubbles D, their frequency of breaking away from surface u and rate
of increment of Dou during nucleate boiling of water and film boiling
of ethyl alcohol., For determining the avarage statistical magnitudes
of D, and u there were constructed distribution curves for eacn
regime, Experimental distribution curves of diameter DO are close
to a symmetric curve, and the frequency distribution curves of u
differ from normal distribution curve — mean value of the frequency
of u differs from the most probable value by approximately 20%,
In Fig., 3 there is given influence

' I =

- LI
ur ‘_5"',- ] = of heat flux and pressure on the
&

=

l L] ¥ ]

average-statistical magnitudes of

DO and u during nucleate boiling of

Flg. 3. Curves 1, 2, 3, 4, water; an increment in the heat

5 correspond to pressures

p =1, 11, 20, 52, 52 flux results in an increase of

kg/cng curve at p = 1-20 break away diameters D, during all
o .

kg/cm . investigated pressures: frequency

of breaking away u does not vary
either from the heat flux or from pressure and is approximately equal
to 35 sec'1 up to 20 kg/cmz. At p = 52 kg/cm2 frequency increased

to 45 sec'l.

In Fig., 4 there are presented results of processing of photos with
the film boiling of ethyl alcohol with a change in pressure from 1 to

54 kg/em® (~0.75 P,) with densities of the heat flux q ~ 1.2q,.
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| As can be seen from the graph,
l;:Ei‘HH " diameter D, decreases with a rise
' “H ; h:h'!"--. " in pressure, the frequency of u
= =1 does not change and remains approxi-
! bk&zﬂ mately equal to 20 sec”? up to a

Fig. 4, Dependence of aver-
age-statistical values of
DO’ u and Dou on pressure

during a film boiling of
ethyl alcohol, correspondingly decreases,

pressure of p = 42 kg/cmg, then it

increases somewhat; magnitude DOu

From obtained data it becomes
evident that character of motion of vapor phase during nucleate
boiling of water heated up to saturation temperature, with large
heat fluxes greatly differes trom that which was observed during heat
fluxes smaller than ~0.1q,. There occurs a coalescence and formation
of huge bubbles, "vapor clubs,"

During regimes close to the critical conditions of boiling of
liquids there is revealed the complex and unstable hydrodynamics
in two-phase boundary layer. Much more orderly is the hydrodynamics
in region of stable film boiling,

With a rise in pressure there decreases the rate in increment of

vapor bubbles of Dou, i.e., qualitatively there takes place the same
dependence as during a low heat flux, However, 1n this case the
frequency of formation of bubbles at q < q, either does not depend on
the pressure or it depends so slightly and the break-away diameter of
the bubbles varies greatly.

The frequency of formation and break-away dlameters of vapor
bubbles from surface of the vapor film (q > q,) also depend on the

pressure and density of the heat flux,
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METHOD OF BOUNDARY CONDITIONS IN PROBLEMS OF STATIONARY
THERMAL CONDUCTIVITY
V. I. Van'ko
(Novosibirsk)

In work [1] there is considered stationary temperature field in
rotor of multistage turbine (cylindrical drum with series of bladcs
located on lateral surface)., For the solution of this problem
thermal interaction between rotor and the blades is replaced by
certain fictitious coefficient of the heat exchange from the working
gas to rotor, Below a certain generalization of this concept is
presented.

ILet us assume that in thermal contact there are several one-
dimensional bodies, for example, rods (Fig. 1). At points Xgs Xpseens
there are observed conditions of an

*n-1

s, 3, z,, &
' = ideal thermal contact (for the sake of

Fig. 1.
simplicity), i.e.,

Tyodm Ty (), NIV (00 = hiyy Ty (0)

Conditions at initial and final points of the systems are

determined

ATV () =M (TV =Ty (s))whene =5, AT (5) -h'(T‘”—T. (=) when 3 = 5 (1)
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where hi and T(l), T(2) are coefficients of the heat emission and
temperature of media, ki are coefficients of thermal conductivity.
Conditions of the heat exchange of each rod with the environment
are arbitrary, but there are known the common solutions of each

heat-conductivity equation adopted in the form
T = o' o' (3) + a'ud (3)

If from system of rods certain ones are rejected then their
influence on remaining can be replaced by condition of heat exchange
with any one medium for which coefficient of heat exchange and
temperature are determined explicitly, i.e., at plact of contact

with rejected rod (i + 1-m)

T @) =vIfe)+ 1) (2)

We shall analyze in detail the case of two rods

N =a'u'(s)+o'ed(s) (<<
TiG)=a'ul(n) +a'ed(® OCsCo) °

Using condition (1) and at point of contact, we shall set up

four equations

i+ o= b
a4 Suths + Sutn + Sats =0 (3)
. S+t + tatn + Gt = 0

v + S = by
Here

umu? (BT () o= ()T (M), By TV
m=ut(n), moni(sn), am=—sln) =) (4)
ammsf(®n) m=n¥@®) m=—u@m) m=-—u’®n)
W)= duma ()t b= n T
=/l N=kille n=a', n=d...
It is readily seen that if the temperature in rods are not
identical zeroes, then determinant A of system (3) is different from

zero and, as usually, the solution will be
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n=Ay/4, h=A/A (5)

We shall show that values of the constants of integrations
determined by the solution of system (3) and the proposed method are
1dentical, Let us assume that the second rod is excluded from the
analysis; then we shall define boundary condition for the remaining
rod at point of contact. For this purpose we shall determine
temperature 1leld in the excluded rod, i.e., we shall find T2(x)
from the contitions

TM= (TP =To(m) when g=n
at x = X, we assume T2(x1) = Tl(x1), where Ti(x) is the unknown

temperature of the first rod. We have (in designations of the system

(3))

— Sup — talpy = Ty (2,), S+ s = by

Hence

neTunleation —, —ewbe— i), 1y(0) = gt () + ponst o)

The condition at point X, for remaining rod will be found from

equality of the heat fluxes

o () To|, (P mtetu—dwta o o SbeSss — tubiay
T =1 ITim +T 1= e T Sn—teen

Constants Yqs ¥, are sought under the conditions

T =nTW=Tia), NE)=1Ti=z)+T)

from the system
antoamm=h [a—1%u)n+(tn— ] p=1°T" (6)

Having solved system (6) and substituting the expressions for
7* and T*, we shall obtailn for yq and Yo values identically coinciding

with expressions (5), which of course will determine the solution of

the system (3).



The result is readily generalized for an arbitrary number of
bodies, in which the propagation of heat is described by one-dimensional
equation. Actually, system of n bodies we shall consider as two
bodies: the first x, & x & x, 4, the second x4 ¥ x § x . On
basis of what has been proven, rejecting the second, we shall find at
point of contact the condition of heat exchange in the form (2).
Remaining system we again shall consider as two bodies etc. Finally,
in a similar menner it is possible from the entire system to isolate a
certain k-th body by means of removing others to the right and to the
left,
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ON THE CONVECTIVE INSTABILITY OF A COMPRESSIBLE FLUID IN
MAGNETOHYDRODYNAMICS
A. A. Rukhadze

(Moscow)

In an approximation of the method of geometric optics there is
solved the problem about convective instabllity of a compressible
ideally conducting fluid located in the fileld of gravity. The
obtained dispersion equation is analyzed in region of high and low
frequencies of oscillations of liquid. It 1s shown that a conducting
fluld in field of gravity may be unstable only with respect to low-
frequency oscillations, and there is obtalned a condition of instabil-
ity generallizing well-known criteria of convectlve instability,
obtained earlier,

1. Stability of a compressible conducting fluid located in
external magnetic and gravitational fields, under conditions, when
for the description of small oscillations of liquids there are
applicable equations of magnetohydrodynamics, in which the dissipative
terms may be ignored, has been investigated in works [1, 2]. In
obtaining the spectrum of oscillations of liquid in these works there
were used methods essentlially coinciding with that applied for

description of oscillations of a homogeneous medium, when the fluid
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in field of gravity is essentially inhomogeneous. Such inconsistency
results in dependence of spectrum of eigen values on the point of
space. Furthermore, in works [1, 2] as equation of state of fluild
there is used equation of Polsson's adiabat which limits the
generality of the analysis, '

In this work, for the purpose of eliminating the indicated
deficiences, for the problem of convective instability of fluid in
field of gravity there is applied method of geometric optics, where
equation of state of liquid has not been specified, Method of
geometric optics successfully was applied in works [3-5] for problem
of stability of a slightly inhomogeneous plasma being retained by
the magnetic field., This method is associated with theory of

asymptotic solutions of equations of the type

Y4+eleny=0 (1)

where q(®w, x) 1is a gradually varying function in region of variation

x, and namely

Eym< @)

The spectrum of eigen values of equation (1) in case of real
q(w, x) (below we shall consider such a case) 1s determined by the

relationship

Sb)’m-u (3)

where the n are integers significantly exceeding unity. Integration
in this relationship must be made over regions of transparency
(q(w, x) 2 0), located between transition points at which q(w,x) = O.

If in region of varlatlion of x, points of the transition are absent

and q(w, x) > O, then integration is made over entire region of
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variation of x. The latter is valid under any nondissipative boundary
conditions for the function y(x).

2, System of equations of magnetohydrodynemics for an ideally
conducting fluid under the condition of ignoring the dissipative

processes, has the form [5]:

%-nﬂvxll. divEi =0 (’4)
p(’i.-]-(v-')v)'-—'('-l-"—:-)'i‘l';(.'v).'l'"

2 +dvev=o, E+ns=0, p=pr.n .

The latter of these equations represents equation of state of the
fluid, which associates among themselves the pressure P, density p
and entropy S (or the temperature T). Here we shall be limited by
consideration of case of plane geometry when external magnetic field
HO, whose lines of force are not distorted is directed along z-axlis,
i.e., HO = Hoez, field of gravity g is directed along the x-axis, i.e.,
g8 = B&y» and all the equilibrium magnitudes characterizing the
fluid, depend only on one coordinate X. The equilibrium state of

fluid in which Vo = 0, 1s determined by equation of equilibrium

V(niiL)=re (5)

We shall investigate stability of the equilibrium state of
fluid in field of gravity by imparting the small perturbations

PPl p=Ntn S=5+S H-oBi+h, v
For magnitudes characterizing the perturbation of the equilibrium
state of fluid, the dependence on time and coordinates can be taken
in the form f(x) exp (-iwt + ikyy + ikzz). System of equations (4)
for perturbed magnitudes here can be reduced to one second order

differential equation for function u = p,v_:

:., "



g , 448 - ,
T o T e e )
P =K (v 04wl — K]

(P ' _*.";‘
aegmmrrtrrer=m ve(®h T
B R 2
Here v, is the Alfvén velocity, u, 1s the speed of sound in a
1liquid,* and the prime :ignifies differentiation in x,

By means of substituting
) s
--vuv(--“s.«na)

where A(x) is the coefficient at u', equation (6) reduces to an
equation of form (1), If here we take into consideration the condition
of applicability of approximation of geometric optics (2), then for
determining the spectrum of oscillations of a weak-nonhomogeneous

fluid in the field of gravity we obtain the following dispersion

equation:

o {?ﬁm[‘-(*.'+~.»(v.-+'-.-«-m+5)+
+.!:7’ o0+ "“"'.f(".'_“ — ) — kMo ]}"., - (8)

#For a fluid, in which equation of Poisson state 1is valid
M""-.ﬂ.n ravenge VIl .

We note also that equations of monoliquid hydrodynamics (4) are
applicable and in case of a nonisothermal plasma, in which Te > T1

(see [6]). Here the speed of sound is equal to

V7T

-— e T TR D e e dm— a—
.
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3, To analyze dispersion equation (8) in the general case it
is difficult., There is no necessity of this., For an investigation
of the stability of a fluid in field of gravity it is sufficient to
be limited to the analysis of equation (8) in limiting czses of
high and low frequencies of oscillations of a nonhomogeneous fluid.

In region of high frequencies of oscillations, when w2 >
> (ky2 + kzz) (Va2 + uoz), the components containing gravitational
field g, in dispersion equation (8) within the framework of approxi-
mation of geometric optics can be ignored, As a result we obtain a
dispersion equation for determining the spectrum of magnetohydrodynamic

i
oscillations of a nonhomogeneous fluid * g

Yo Smmm — -0} e ©)

It is readily seen that with respect to such high-frequency
oscillations a nonhomogeneous fluid is stable, 1.e., always w2 > 0,

Another situation takes place in region of low frequencies of
oscillations of a nonhbmogeneous fluid when there are fulfilled the

conditions .
LA TR (PR

*The dispersion equation (9) does not contain that branch of the
Alfvén waves which describes oscillation of components of speed and
magnetic field perpendicular to the plant of vectors Ho and k.. Equa-

tions for these components are detached from remaining equations in
system (4), and in case of a nonhomogeneous fluld, just as in a
homogeneous are found to be algebraic. Equality to zero of determin-
ant of these equations results in the following expression for fre-
quency of oscillations w? = kzzvae. Dependence of frequency of
oscillations on the x-coordinate in this case should not cause any
perplexity, because these oscillations are not natural oscillations of
a nonhomogeneous fluid. They characterize only development in time of
initial perturbations of components of specd and magnetic fleld
perpendicular to the plane of the vectors Ho and k,
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The dispersion equation (8) in this case takes the form:

({1 - wprrammmr + o o=t ) = e (10)

From this equation it follows that a nonhomogeneous fluid in the
field of gravity the fluid may be unstable with respect to the low-

frequency oscillations (i.e., w® < 0) only under the conditions

© a=(ano+aE)we-r<o (11)

' L (..~.. +.§) (...+ o)—'+ *.".'Uc' <°

Fulfillment of at least one of these local conditions in region
of transparency of fluid is necessary, but is not a sufficlent
condition of the instability, On the other hand, the fulfillment of
either of these conditions in entire region of transparency knowingly
i1s sufficlent for instability of the fluid. Condition (11) generalize
well known criteria of convective instability of conducting fluids
obtained in works [1, 2, 7, 8], where there were considered different
particular cases of the oscillations,

For an incompressible fluid (U, — ®) conditions (11) take the

form

brod +adico

Such a condition is obtained in work [8] for a "cold" fluid
(ug =* 0). Conditions of instability (11) correspond to those obtained
in work [7] and are always fulfilled. Finally, the conditions

h‘ »
B8 ohs
obtained in works [1, 2] follow from (11) at k= O, In works (1, 2}

(see also [7]1), as already was noted above, during investigation of
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convective instability of a nonhomogeneous fluid there were used the
same methods which are used for the description of oscillations of

a homogeneous medium, And precisely, the solution of equations for
perturbed magnitudes were sought for in the form exp (1ot + 1kyy +
+ 1k, z + 1kxx). Thus, it is possible to proceed, if the spectrum of
oscillations of a nonhomogeneous medium is found to be independent
of the point of space. From dispersion equation (10) it is evident
that this takes place in the case when integrand in equation (10)

in entire plasma is constant, Here, the spectrum of oscillations of

fluid is determined by expression:

hi = WgVg N

aiub {012 T~ (12)

where

| ' 2wt
&J(u.~.'+(~)w—f. L=+ FETTEy
B (0 + 6 )0+ 01—+ U oS00
Here d is the linear dimension of fluid along the x-axis where
magnitude ™/d plays role of wave number k.. From expression (12)
it follows that the fluid is unstable during fulfillment of one of

the conditions
AL, RO (13)

within the 1imit € = 1 (i.e., k, = 0) these conditions transform
to (11). These conditions, however, have a narrower sense than
condition (11), since they were obtalned just as expression (12), on
the assumption that A1 and 31 are constant in the entire fluid.

From the analysis made of dispersion equation (¥' it follows
that conducting nonhomogeneous fluid in field of gravity may be
unstable only with respect to low-frequency oscillations, Oscillations

of an unstable fluid bear an aperiodic character, 1In case
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B% > kzevae(uo2 + vae)A, increment of increase of oscillations

T~ b Y TATITIT wen 4LO, or Y~V T+l when B<O

For the case B < kzzvaa(uo2 + Vg )A, increment of increase of

oscillations
T~ VTATIoS + o8

In conclusion I thank V. P, Silin for his discussion of the

work,
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INVESTIGATION OF CRISIS OF BOILING DURING THE FLOW OF
UNDERHEATED METHYL ALCOHOL
P, I. Povarnin

(Moscow)

At present there are known many works on study of crisis of
boiling during forced flow of underheated water in wide range of the
variation of pressures [1-3].

The use in technology of other heat-transfer agents, mainly
organic compounds, and expansion of concepts on character of phenomenon
require new investigations. At the same time there are few works
of thls type. In particular, in alcohols there are known the articles
by L. S. Sterman and N. G. Styushin [4] in which there are described
experiments on the crisis for isoprcpyl and ethyl alcohols, Here
these experimerits encompass comparatively narrow interval of variation
of speed of flow from 0,2 to 7.0 m/sec with the pressure at 2 atm and
zero underheating,

Below there are described investigations of crisis of boiling
during forced flow of methyl alcohol on the bases of the All-Union
Government Standard llo, 6995-54 in pipes of small diameter at
pressures from 5 to 70 atm, the speed of liquid up to 45 m/sec and

underheating up to a temperature of saturation from 8 to 200°¢.
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Description of experiment. Experimental installation was a closed

contour with circulating pump, a flow-rate meter, devices for main-
taining the pressure, preliminary preheating ahead experimental sector
and cooling of liquid in front of pump, analogous to the installation
in our experiments with water [1].

Experiments were made in machined and seamless tubes of stalnless
steel and bronze with an internal diameter of 2.0 to 3.5 mm, with the
thickness of wall 0,2-0,3 mm and length of tube from 40 to 210 mm,

The method of conducting the experiment, measurement and calculation

of the experimental magnitudes remained the

same as in experiments with water. The

possible accuracy of measurements was eval-

uated in following limits [1]: determination

of heat flux with an accﬁracy of t12%, deter-

mination of speed of flow 15%, determinatlon

of temperature of fluid +5°C, determination

of temperature of internal surface of tube

L |
Fig. 1. Graph of depending upon magnitude of heat flux q
model experimental o
dependences t, = from %5 to 30°C.
= f(q): 1-st type In distinction from experiments with
(above) — sudden
temperature Jjump, water the phenomenon of crisis of boiling
accoumpanied by an
overueating 1 or during flow of methyl alcohol was complicated
det-chment 2; 2-nd
type (below) — by the thermal decomposition of working fluild
crisls is compli-
cated by a carbon- with the formation of a layer of carbon scale
deposit formation,
at point of bend n on internal surface of tube, In accordance
there is observed
spontaneous incre- with this all experiments were divided into

ment tw as a result

of which there
occurs the detach-
ment 3 on overheat-

ing 4. characteristic for water, when in process of
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two groups. Experiments of first type pro-

ceeded according to the well known diagram



experiment the heat flux q gradually increases with the maintenance
of constancy of all the remaining parameters, Here in sequen. : there
were observed stages of convective heat exchange of surface boiling
and crisis with sudden surge of temperature and frequent overheating
of tube (Fig. 1, upper graph),

Experiments of second type. Passing through the stages of
convective heat exchange and surface boiling, on internal surface of
tube there began to be deposited layer of carbon scale which resulted
in a spontaneous rise in temperature of external surface of wall
measured by a thermocouple. In this case there could be recorded
during a certain time the wall temperature in a recalculation for
the internal surface which exceeded the saturation temperature by
several hundred degrees (see Fig. 1, lower graph). The opening
of tubes showed that layer of carbon scale in cerfain cases attained
a thickness 50 p, It must be noted that the formation of similar
scales was observed also for other 1lnvestigators during work with
organic liquids, for example for Balley and Dean [5] during work with
the rocket fuel JP-4, It may be assumed that the marked difference
between temperatures of internal surface of tube and boundary layer
of liquid occurs as the result of temperature differential in layer
of carbon scale, Calculations showed that thermal conduction of
carbon scale material in this case should be of an order of
0.1 kcal/m°Cehr,

Thus, the genesis of a vapor film during the crisis occurs not
on metallic surface of wall of tube, but on surface of carbon scale
layer and crisis in certain cases 1s prolonged. For the critical
thermal load in these experiments there was taken the magnitude q,,

corresponding to point of beginning of spontaneous rise tw'
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Cleaning the tube of carbon scale made it possible to make
repeated experiments where there was observed a good frequency of
the results, In a prolonged circulation the alcohol was altered, there
was observed an increase in acidity, contents of water, manifestation
of suspended particles et cetera, Therefore, after 10 experiments the
alcohol in the contour was completely replaced.

Results of the experiments. In all there were conducted 156

experiments, data on which are presented in Table 1. Experiments
were conducted in separate serles with maintenance of constant
pressure in each series. Experiments during small underheating at
8-10° were very few and pulsational conditions recorded for water

in work [6], were not observed. Given below calculating dependences
pertain to region of large underheatings At > 20 and nonoscillating
regimes of the flow,

In Table 2 there is given t'.z number of experiments N, conducted
at various pressures p and there are indicated the number N1 and N2
of crises of first and second type N = N1 + N2. From table it is
evident that at low pressures p = 5 and 10 atm the crisis more fre-
quently generated according to 1st type, i.e., in pure form, although
with these pressures there were observed cases of carbon scale forma-
tion., In proportion to the rise in pressure to 30, 50 and 70 atm the
number of crises of 2nd type complicated by thermal decomposition
continuously increased and at 70 atm crises of 1st type amounted to
8% of the total, A decrease in percentage of crises of 1st type was
observed also with an increase in speed of flow,

In Table 2 there are indicated also the wall temperatures at
which were recorded, respectively the beginning of thermal decomposi-

tion of alcohol T. and moment of genesis of a crisis in pure form T,.

0]
As 1s evident, these temperatures overlap each other and at all
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pressures there is possible the genesis of a crisis of both types,

Table 2
P atm ~ N M%) M| N%] TeC| To %
3 [ ] 419 1| 0 115135 145 15
10 8] 22 |M 2| 49 [150—-1m| tho-a%
0 8| 171|488 18 | $1.5 [ 1U—105] 1K -2
0 . 411 2100 |1e-2m| 2 -225
° b 3 [ ] ujw t1Us—-20| 25-24)
Total 158 | 0 | R 108 | 68 - -

Discussion of results., In work [1] it 1s shown that for water

within a wide range of pressures of underheating and of speeds of

flow of 1liquid there is valid the empirical formula

o AL+ BB (1 + CHPS (1)

where A, B, C are coefficlents depending only on the pressure.
The use of equation (1) for methyl alcohol during processing
of data of described experiments made it possible to establish that
character of change of coefficients A, B, C for both liquids is
identical at identical given pressures T = p/p, cr given temperatures
T = T/T*, corresponding to them where p,, T, are respectively the
pressure and temperature at the critical point of a gilven substance.
The recorded fact makes 1t possible to express coeffilcients of
equation (1) in criterial form. In this case magnitude A represents
that hypothetical value q,, which should take place during a zero

underheating and a zero speed of flow

o = 1.55-10° & .:.. (2)
“-_:L'.’._.i._._, ‘.-ﬁ%:—ﬁ-‘.-, ‘.-——ﬂ—— (3)
(i —n" m . eme-w

Here Y1+ Yo are specific gravities of liquid and vapor on the

1ine of saturation; c_., r, J, W, A are respectively the heat capacity,
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latent heat of vaporization, surface tension, viscosity and thermal
conductivity of 1liquid under the same condltions; g = 9,81 msec'2
is the acceleration due to gravity; 427 is the mechanical heat
equivalent [kgm/kcal); (K;), is the value at q = 1.

Influence of underheating on crisis of boiling, coefficient B
in equation (1), is obtained from following considerations. S. S.
Kutateladze 7] showed that influence of underheating on crisis

under conditions of free convection is expressed by relationship
t/te=1—D J’-:-'%. Aimiy—t* ()

Here Al is negative during underheating, and q corresponds tc
q, during a zero underheating. The processing of experimental data
in water, alcohols and other organic liquids made 1t possible to
replace in case of a forced flow equation (4) by a simpler relation-
ship on the basis of eyuation (1). It was found that for all
investigated heat-transfer agents the coefficient B in this equation

is inversely proportional to the absolute boiling point T, at a glven

pressure.
For water
B = 9.5/T,,
for methyl alcohol
B = 6.25/T.

In order to take into account the influence of speed of flow on
crisis of boiling (coefficient C in equation (1)) there was used work
(8], in which it is shown that difference between stability of a vapor
bubble on surface of heating during free convectlion and during

compulsory flow may be calculated by the Weber number
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'-ﬂ"-, or We (‘ll':"h) (5)
if for the geometric dimension 1 we take a magnitude, proportional to
the break-away diameter of vapor bubble during free convection, Under
these conditions for coefficient C there was obtained the expression
(P — Prandtl number)

cnm i (2", o (mri)

Thus, magnitude of heat flow during a crisis of boiling under
conditions of forced flow and underheating of main mass of liquid up
to saturation temperature is determined in a general form by

the criterial equation

Kim P (K Ko Ko P W, /0 841T) (6)

or by its concrete form of the heat-transfer agent under consideration

— methyl alcohol
o.-a.u-wi"w's-‘!-( +“"’ u) [a+mos "'"’" (“)“'] (7)

A comparison of coefficients A, B, C with experimental data

showed that difference between the calculated and experimental values
of A at pressures, remote from critical point does not exceed 2% and
in region near the eritical 8.5%., For coefficient B such deviations
in general were not observed. For the coefficient C there are
recorded larger deviations where they increase in proportion with
increasing proximity to critical reglon; thls can be explained by
the inaccuracy in determining the physical properties of substance

and indistinctness of phenomenon of crisis of boiling in this regilon.
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In Fig., 2 there 1s given a comparison of experimental and cal-
culated values of q, at all operating pressures, From graph 1t is

evident that over 60% of all

experiments .s concentrated in

band *20% frum the calculated

curve and remaining points deviate

not more than by 407,

The investigation of crisis

of boiling of methyl alcchol made

in a forced flow in tubes of

L

. i 8w £ 2

small diameter within wide range

in variation of pressure the con-
Fig. 2. Comparison of experi-

mental data for q, by calcula- tour, of speed of flow and under-
tion on basis of equations (2)
and (14). heatirg up to the saturation

temperature showed a lack of
influence if dimension of the tube on crisis of bolling of given
liquid. At all pressures there are recorded cases of complication
of crisis of bolling by thermal decomposition of alcohol on surface
of heating, where with increase of pressure the probability of
decomposition increases, The conducted treatment of experiments
makes it possible to propose criterial equation (7) for determination
of q,, useful for water, methyl alcohol aind other liquids.
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18 June 1962
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DETERMINING THE SHAPE OF A GAS BUBBLE IN AN AXIALLY
SYMMETRIC FLUID FLOW

0. M, Kiselev

(Kazan')

There are known only a few works devoted to the determination
of shape of free boundaries of flow which take 1into account the
effect of forces of surface tension. The problem on finding the
shape of two-dimensional bubble in a two-dimensional potential flow
of an incompressible fluid 1inside a rectilinear channel was solved
be N, Ye. Zhukovskiy [1]. In 1955 Mcleod [2] by another method
solved particular case of Zhukovskiy's problem (the flow is unlimited,
the pressure inside bubble is equal to pressure of stagnation),
Finally M. I. Gurevich [3] investigated the effect of forces of
surface tension on compressibility factor of stream. Lower is offered
method of approximation of determining the shape of a gas bubble 1in
an axi-:ly symmetric potential flow of an incompressible fluid, It
is shown that the sought shape differs little from an oblate ellipsolid
of revolution, There are determined basic dimensions of bubble

depending upon physical parameters of the flow,
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Designations

V is the speed of flow, Ri’ R2 are the major radii
Wn is the speed of un- of curvature of
disturbed flow, bubble,
v is the dimenslonless 2a is the length of
speed, Vv = W/Wn bubble (diameter, )
parallel to x-axis
P {iqﬁgg pressure in 2b is the thickness of'
4 bubble (dlameter
p, 1s the pressure of !
0 stagnated flow, §f£§i¥§1CUlar to
p: 1is the pressure of >/
i gas in bubble (pi = c is=t2e aspect ratio
= const, Py 2 po), p is the density of
liquid.

T is the force of sur-
face tension (T =
= const),
The flow around of a gas bubble by an axially symmetrical poten-
tial flow of an ideal incompressible fluid (Fig. 1) is examined in
cylindrical coordinates x, r.

On the boundery of liquid and gas there
must be fulfilled Laplace equation

r(g+x)-n—r (1)

(1ts conclusion can be found, for example,

Fig. 1.

in work [4]). By means of the Bernoulll

equation we shall transform (1) to the form

TR
(Id;-‘;‘L_;. a-ﬂ"L'_%-) (2)

Let us assume that x = x(t), r = r(t) are the parametric equa-
tions of surface of revolution; then, designating differentiation
with respect to the point t, we have

P M LYIAL 1 1 is)

1
K= @R @ean R G T
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Thus, equation (1) can be presented in the form

l-l(i‘+ﬂ—r(tr—:r)3/|aj
ra =i+ (3)

We shall show that in a definite interval of variation of param-
eter a equation (3) will be satisfied with a fairly high degree of
accuracy, if bubble has form of ellipsoid of revolution oblate in
direction of x-axis,

For such ellipsoid

smacost, rmbsint OISR, a/b=eSH)

yo Ll A —rGF—iRg)a
r@ 4

oy L= =) ainty) ]
'I"_“_.,”h.q. mA(T. 6 0)

The flow around oblate ellipsoid of revolution has been investi-

gated (see, for example, in work (5]). Using given formulas there,

we shall have
Salntt

s+w-£+a1——a—m—-aa, )
.-.m(?ﬁmﬂn}'m—c) (%)

With the fixed value c we shall determine the parameters ¥y and

B in wuch a way so that the functional
ale .
10.0= S (A—-Bras

acquires a minimum value, Heving required a vanishing of the partial
derivatives from I through vy and B, we shall obtain the system of

equations

{—¢

U,i—l(vl_c') '“"R(Yl—ﬂ]- HEr e
100 4- 10¢* _.‘—.' % ‘+0".(Yl——.|)_
= LMy =) = BV =R (VTR
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where K(V1 - cz), E(V1 - cz) are the total elliptical integrals of
first and second kind., The solution

Table 1
of this system at different values of
c v ’
: ¢(0.5 s ¢ s 1) are given in Table 1.
1.0 0.5
0.9 0,817 o.gws o.ogu The magnitude of a is determined by
s | oma | oee |om
ol LBk | iR |08 formula (4).
0.5 2.1400 4.1048 0.9375
Table 2
. 1= te /b Y]
¢ A 8 | 1w A 3 e A s |ms
1.0 1 1 0 { 1 0 ] 1 [}
09| 1.0000 ] t |o0.06f 1.4088| 1.1078 | —0.07 | 1.2419| 4.2405} 0.1
08| 10047 ¢ !o0.37] ¢.2315] 1.2357| —0.35| 1.6000 | 1.6040 | 0.39
07! 1.0145] ¢ [0.07] 1.3768] 1.3808 | —0.87 | 2.2084 1 2.1853 | 1.22
o6l 1.0320] ¢ [1.80] 1.561 | 1.5790 | —1.9t | 3.2490 | 3.18n0 | 3.28
08 ] 1.0 ] ¢ |3.06] 1.7044 | 4.8300| —3.14 | 5.3650 | 5.1948 | 7.10

In Table 2 there are given the magnitudes of A and B
calculated at the points t = O, 1/4m, 1/27 at corresponding values

P 4 of parameters c, ¥, B. Character of change

of indicated magnitudes is shown in Fig. 2.
The magnitude

(2, = —:--S'M w1484

characterizes the accuracy of equallity (3).

The obtained data indicate that at

[

L i

0 s a < 1 the shape of the bubble actually is
Flg. 2. close to the shape of an oblate ellipsoid of
revolution., With an increase in a the difference between them
increases (magnitude of error 0 increases).
In setting up the physical parameters of the flow basic

dimensions of bubble a, b can be found from the graphs of Figures
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3, 4 and taking into account formulas (2).

AN

Fig. 3. Fig. 4.
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ON THE RES1STANCE OF A FLAT PLATE PERPENDICULAR. TO
A HYPERSONIC FLOW OF A RAREFIED GAS
0. G, Fridlender

(Moscow)

There is considered an almost free molecule flow with the
primary collisions of the reflected and inciuent molecules taken into
account. The formula for the distribtution of pressure along flat
plates of arbitrary form in plan is obtained in the form of simple
integral and for round and polygonal plates — 1n explicit form. By
numerical integration there is found the value Cx for a round plate,

The calculation of primary colllsions of reflected and incident
molecules in almost free-molecule flows, is found in works [1-4] and
others devoted to this subject., Proceeding from assumptions taken in
these works, we shall use the method proposed in work [5].

We shall consider in an almost free-molecule flow (Knudsen
number K z 1) at high speeds (Mach number M 2 1) the influence of
primary collisions on aerodynamic properties of plates having one
characteristic linear dimension. We shall assume the temperature of
wall of an order of temperature in an undisturbed flow and constant

(Tw ~ Ty T, = const), and coefficlent of accommodation a = 1, then

it may be assumed that the incoming molecules with a speed Wm collide
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with the stationary reflected molecules (since V., << Vgp); collisions
between the reflected molecules may be ignored, Owing to the
collisions part of molecules previously which had encountered any
element ds1 of the surface now will not encounter 1it, and conversely,
the part which earller had not encountered it will be scattered and
willl encounter this element,

Let us consider influence of element ds2 of flat plate on its
other element ds,. Let us assume that these elements are encountered
by a flow perpendicular to plate. Assuming that the reflected
molecules have a Maxwellian distribution we shall obtaln density of
reflected molecules for the plate equal to

A=V, x"p, B= (zlir.) %

This follows from law of conservation of mass

Ay V= his‘ss""n' x

xozp [P (V0 + V.‘ +V v, v, a."

On the assumption the Knudsen K >»> 1 and, consequently, in
determining the number of collisions it can be assumed the number of
incident and reflected molecules at any point of space 1s the same as
in a free-molecule flow,

For determining the influence of several elements of the surface
on element d51 it 1s possible to add the influence of each of them,
calculated independently. Number of molecules not encountering per
unit of time the element ds1 owing to collisions with molecules

reflected from element d52 is equal to

. N *
lﬂ;-}uﬁ.&V.ﬂnﬁ. mmpde, o=
Moy ~nPtn—t+ 2

Here no2 1s the cross section of collision of equivalent solid
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spheres; ds1 has the coordinates (xi, yi); n, is the density of

(LR molecules at point (X,, ¥4, z) reflected by
element dsa; do is the solid angle at which
there is seen the element ds2 from point
(xi, ¥q» z); x 1s the angle between z-axis and
direction (Fig. 1) to element ds, with coordi-

Fig. 1.
nates (x,, y2) from the point (x,, ¥4, z). Then

(A-ou-u.. N )

s, A
‘f;-Ms‘.?"-z“" o (o — 0P+ (0 — W

The pulse which carried these molecules is equal to
Py = AV fdndinn
We shall determine number of molecules, which, in being dispersed
in molecules reflected by element dse, encounter per unit of time the

element dsi. It is equal

-«
dN:.-%;SS Vhts? cos ydw'drdyds = -—' dodey SSSN::;‘
(B =s=n)l+ly—nP+ "=(t-s-)'+(v—n)'+l')
Here X' 1s the angle between direction to element d51 and the
z-axis and do' is the solid angle, at which there 1s seen element

ds, from the point (xyz).

The determination directly of dN'{2 results in cumbersome calcula-
tions. They are essentially simplified if we operate now with func-
+ + - ant +
tion dN12, but with dN12,21 dN12 + dN21 where dN21 is the number of
molecules encountering element d82 per unit of time owing to scatter-
ing in molecules reflected from ds, . (Let us note that by virtue

+  _ awt — oant
of symmetry dN,, = dNy, and, consequently, dN12,21 = 2dN12.) Then

arata 2572 i [+ ) v
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We shall introduce the spherical coordinates

s—g=raindcong, y—y=reindsing, smrcond
1 = 2g = 7008 o, n—h=resiag

Here 1 1s equal to 1 or 2 for first and second integral, respec-

tively. Integrating over r and over ¢, we shall obtain

WPyt = SAmY 20 Y cont 0 sin 0,40 = 1.64mV,, Lt

_ +
Since dP12+21 = 2dP12, then

. wl = 0.4x"ntmay, w.,%',‘.—”

Thus, the pulse being obtained by element d51 per unit of time
will decrease from collision with molecules scattered by the element
d52 by a magnitude dPZ2 - dP12. The total decrease 1in pressure in
comparison to pressure in free-molecule flow at any point of arbitrary
flat plate being flowed-around by a flow perpendicular to its plane,

owing to the primary collisions is

.AP =k S}‘-ﬂ -k, il. (Ddy, k= 048" 'ma W B = (1)
V! & Te ] [ |
-o.m"_"si_.r 5=W."“(-;-) . l-m

Here ¢ is the angle of polar system of coordinates with center
at point, where we calculate the correction, Ry = Ri(v) — equation cof
boundary of plate in the same system of coordinates. We note that
in the calculation of correction for the energy ylelded per unit of

surface per unit of time, we shall

AE =03 V AP
Proceeding 1n (1) to the system of coordlnates Ty L2 independent

of the fact where we calculate correction, we shall obtain
AP = &)\ R (0(0) LT dg, 5
sreb\mm g (2)
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The relationship between Ry, @ and @, is

given by the expressions (Fig. 2)

)ola @y — resi
Pig. 2. B =i W —tamineeie—w gy = PR

Here (ry9,) are coordinates of the point at
which there are calculated the correction, and rl(wi) is the boundary
of plate in the new system of coordinates. Let us conslder examples,

1. After taking for the round plate with radlus a for a
stationary system of coordinates the system with origin at center of

circle, we shall transform expression (2) to the form

N ==

At the points ry = 0 and rp= & respectively we have
AP@) =2nek,, AP(0) = bk,

In the remaining by substitution 9, = 2% - 1 we shall reduce it

to well-known standard forms of Legendre elliptical integrels

For Cx of the plate the calculations give

a,-c.-ou’r"/};—,rf. (,_.})

Here Cxo is the drag coefficient in a free-molecule flow, This
agrees with results which earlier were obtained in work [6] with the
same assumptions but by a somewhat different method.

2. In case of polygon plates expression (1) is integrated in
explicit form,

Since equation of a side of a polygon or of its extension is

R = | | (3)
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where ]hil 1s the distance from origin of coordinates to the side or
its extension and the vector hi is directed from the origin of
coordinates to boundary andcﬁij the angle of slope of edges, then

for an n-square we have

| 4
AP = kD 1h, | [1a1g0.5 (9,,, —¢,) — Intg0.5 (9, —3)]—
[ ]

-‘.ili;llhlco-s(v..,—-.)—lltco-?(v.— sl (4)

where the subscript s pertains to edges, for which 1/27 = arg hg <
< 3/2m, and the subscript q — to edges for which 3/2m = arg hq < 5/em,

furthermore, we assume that O = @_, wq < 2r (here Py is the argument

s

of the radius-vector, directed to points of n-square) and O = aos

aq < 2w,
The author is grateful to M. N, Kogan for his constant direction

and numerocus advices and to A, V, Zhbakovoy who made most of the

calculations,
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ON THE INTERACTION OF PERTURBATIONS WITH SHOCK WAVE IN
A ONE-DIMENSIONAL TRANSIENT MOTION OF GAS
Zh, S, Sislyan

(Moscow)

We shall consider one-dimensional transient flow of gas caused
by motion ot a piston moving in a long cylindrical tube with variable
speed, We shall assume that speed of piston in considered interval
of motion differs little from certain constant value up, i,e., we

shall assume that
() muylt + X0} (1)

Here x = x(t) 1s the law of motion of plston (point signifies
differentiation with respect to time), € 1s a small magnitude
characterizing deviation of value of speed of piston from the constant,
and function X*(t) has in the considered Interval of motlon an crdcer
of unity. By virtue of the made assumption the speed D(t) of shock
wave developing immediately after beginning of motion of piston also
moving away piston st a varlable speed will also differ little from
a certain constant value U (corresponding to motion of piston with

constant speed up)
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D(t) = U + eD'(t) (2)

For determining a perturbed motion of gas being found between
piston and shock wave, we shall use differential equations of one-

dimensional nonisentropic flow of the gas

~ 9 ) ’ (3)

By Btelme sRteRE+E=0  mEtema—e
and conditions by which there are associated parameters of gas from
both sides of shock wave

01 (D — ug) = po (D — ), D=+ (D= +n (%)

23l ¢ h2 =83+ h0

The subscripts 1 and 2 designate parameters of gas ahead of and
behind the shock wave, The magnitudes u, p and p are respectively
the speed, pressure and density of gas, and v 1s the ratio of the
heat capacities. The gas ahead shock wave is at rest (u1 = 0), The
functions Uss Py and Pps characterizing motion behind shock wave

we shall seek in the form:

w=sli+nt...h p=pU+eo+...)k w=p'ltot...) (5)

Here u2°, p2o and p2° are constant and correspond to the state of
gas behind shock wave during motion of piston with a constant speed.

Substituting expressions (5) in equations (3) and ignoring terms
higher than first order in e, we shall obtain the following system

of linear equations for determining the functions u, p and p

2wl +R) =0 wRteR+TE=0 (6)
ZtwZ-if+w)=e  (w=T)
The common solution of this system containing three arbltrary

functions has the form
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Pyl l(0° + ")t —3) 4 Fafs — (0’ — &") ]}
P o= Py((n° 40"t — 5] + Foz — (90" — 00"} 8] + Pu(3 — we"t) . (7)
s gpller + ool = Als = —wh) (M =)
We shall linearize boundary conditions at the shock wave, sub-
stituting in (4) expressions (2) and (5), we shall obtain

’(l—ﬁ)-n'-+'(0—-.')-o
AP +NP (0 = oF —Ww’s (U — ') = 0 (8)
—aD —ae(U - -n+—7-|3.o-»-.

where in the adopted approximation it suffices, that these conditions
took place on the straight line x = Ut, Substituting under conditions
(8) expressions for p, p and u from (7), we have

(1-B) o+ W —w—a1 7+ U5+ &VI+ (U — ) Fom0

== P+ (U0’ + &P I (U P =0 (9)
(a: - l)(ﬂ—-'W+~'(U--°-¢-')h—~‘(0—-'+¢-‘N'o+ '%.; F=0

Eliminating D' and FB’ we shall obtain

) MO@AMy —1)—1
Mi—7i=0, A= O (10)

(1o G = L5 [T 12

From (10) and the first equation (7) it 1s evident that magnitude
A 1s the reflecting of perturbations from shock wave equal to ratio
of amplitude of perturbation reflected from shock wave, to amplitude
of perturbation overtaking it. In Figures 1 and 2 there are given
curves of variation of A for different values of y and Mi' From an
analysis of the curves 1t is evident that A is negative, i.e,,
reflection always occurs with change in the sign of the perturbation,
Furthermore the magnitude lkl is small, especially at small M1 and
v is not very close to unity, and for & given value of 7y asymptotically
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tends to a certain constant value when
M1 - ®, It is important to note also that
the coefficient A is fairly sensitive to

change of magnitude y; in absolute value A

increases with decrease of ¥ especially for

values of v, close to unity. At M1 = 0 and

v = 1 coefficlent A reverts to -1, i,e., the

perturbation are reflected, changing the

sign and maintaining its own magnitude. At

small values of M1 for ) there takes place

the following formula

P LI

i.e., magnitude ) has an order (M1 - 1)2. The

curves for A are tangent to axis of abscissas

Flg. 2.

at origin of coordinates,
We shall determine the functions F,, F,, F3 end D', From (1)

and third equation (7) we have

ez = Al =X (11)

Eliminating F, from relationships (10) and (11), we shall obtain

one equation for determining the function Fi
W0 =M (= MOX (D) (12)
where there are introduced the designations

'-(I+ldl.. l-*%;:. ogat

The unique limited solution of equation (12) 1s following

series [1]



fe
ni(o) = My 2"“ v (13 )
: o=y

For functions F2, F, and D' we have

3
-
D)= M zl'l'(ﬁ)
seg'

(14)
n(te) = - (5 we (4 1Y e (15)
(1-2)2 =, L2+ ) Zox oo (16)

By virtue of smallness of reflection A at aprroximate deter-
mination of field of flow between piston and shock wave it is possible
to ignore the influence of the reflected perturbations, In this
method of approximation the flow behind a curvilinear compression
wave is assumed approximately a simple wave (Riemann wave) in which
entropy and one of characteristic parameters have constant values
equal to their values at initial point of path of piston., A generali-
zation of this method consldering the variability of entropy in flow
and its vorticity after curvilinear shock wave in a one-dimensional
transient motion is given, for example by Yu. S. Zav'yalov [2].

The author thanks S. S. Grigoryan for valuable advice.
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ABOUT ESTABLISHED MOTION OF ELECTROCONDUCTING FLUID IN A
RECTILINEAR CHANNEL DURING PRESENCE OF TRANSVERSE
MAGNETIC FIELD
O. A, Berezin

(Leningrad)

We consider established motion of electroconducting fluld in a
rectilinear channel whole lateral walls (¥ = ta) are ideally conduct-
ing, and the upper and lower (z = tb) are nonconducting, There is
perpendicular to upper and lower walls of channel the applied constant
transverse magnetic field Bz = Bo, and through lateral walls of
channel there is passed the direct current 1y = 10, relating to unit
of length of the electrodes. This problem at io = 0 also of 1deally
conducting walls of channel has been solved by Ya. S. Uflyand [11],
and for nonconducting walls by Shercliff ([2]. In work by G. A.
Grinberg [3] the solution of indicated problem is reduced to the
solution of integral equation containing double series in MacDonald
functions.

Below the solution of problem reduces to the solution of one
infinite system of algebraic equations, which may be solved by method
of successive approximations, and also there is given an approximate

solution at large values of Hartman number,
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Assuming the induced magnetic field and speed of flow having
only one component along the x-axis the equation of magnetohydro-

dynamics may be presented in the form

é'ﬁ"""ﬁ")"’" ;=0 X (1)

'1;""’17‘)4'5.,"”' -- r+w-h-n

Here p is the pressure, o is the conductivity of medium, 1 is the
coefficient of viscosity, ¢ is the velocity of light, u 1s the
magnetic permeability.

Here electric field strength has the components

..¥ .2’- Q-%. ‘-"" ‘-*o .-‘:’
System (1) can be reduced to the form
BrmtE=o LT P TR (4)

The boundary conditions for considered problem will have follow-

ing form:
e
Bu—thJ wheni=—1 ("'&) (5)

The solution of problem will be sought in the form

e(f+ i)W 2EER s afwa viaFira e

re(f+ )28 - Ri-gnfva v-gagwra (6)
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Substituting (6) in (4), for V and W we shall obtain two separate

equations
o .o M0 ow oW M
wHw-T'=% wWrw-T"= (7)
Solution of system (7) we take in the form

re(f+ D B B, o YESPEIE

[
&
vo(f+ D En it e LEER )
The constants c and bn were determined from conditions (5); we
have
 AM—aM= ;2..«-!_-"_’34-»”;2» sianng (9)
‘rizsk“kiw e +“M‘z5.'.th~kdlut-0 (10)

Multiplying each of equations (9) and (10) respectively by
~ﬂ.-—-*u‘¥. mﬂ_-"-w-‘ﬂ-“"
and integrating results in ¢ from -1 to 41, we shall obtain

weogt Dhany  oprg+ T bty =0 (11)
oul [~}

Here

e | i et

,,,-ga.’.unum = q, N-{a.’.gnmm (=02t a

Excluding cJ from (11), for determining the unknown constants

bJ we shall obtain one infinite system of algebraic equations
w= 3 (w-giE ) (12)
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The determining of coefficients ch and bn may be reduced to
the solution of one integral equation as follows,

Equality (10) may be satisfled after assuming

i ..gol.teuﬁ:i!'_’i -,ma.‘,‘g
[

[

T IVETV RT3
o

Here ¢(€) is an arbitrary even function, vanishing at £ = %1,

Hence

.,-:“‘.n g '(0"%'-'“&'5"—'-"'

(14)
5.--'._“'_'7 S"“’*?"m‘"

Substituting (14) in (9), for determining the unknown function

9(t) we shall obtain the Integral equation

-
aM-—-amM=aM sd'lm () cop (28 =11 88 ooy )8ty
13 | S st

My ¢ b2
—-ruzg . sin anf sin ant &t
omg =4

(15)

Let us consider case of larger values of Hartmen number M, 1In

this case th knk =~ th unk ~ 1, We shall assume

iq(l)cl-"!i":eu ={)= m&.‘:iﬂﬁa-(am-aum%g (1)
-l ' =)
Sw,.%fi."T..uuuuam-(am-aup!,".( (17)
<2 & o .

In the fulfillment of conditions (16) and (17) equation (15) ic
identically satisfied. Multiplying equation (16) by cos [(2J -
- 1)1€/2], and equation (17) by sin J7€ and Integrating in € from

-1 to +1, we shall obtain
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ag—tpuw_ﬁ-tﬂ quu--@‘ g‘—lpulilﬁs-t)’“ -

ﬂs'm‘.'.. =) 8t 4 (18)

!..*.i-'& - lgduilwua-/.ug—qm -
. +

-‘-g o0 M i jost e =araly 10
- "_.' T ( 2 )

At large M approximately we have
M -!'a-__ﬂ_% (19
_‘.’“"T""ﬂ‘!)_ TR = (19)

and also
ﬁ'“"T"'"“' T T (20)
We assume
-t 3 acatmspe
From equation (19) we find coefficients Ay, we have

P Gn—t)n(~1" (21)
[P 1 Bm—1PaY) V WO F (m— ¢

We shall show that the function f(t) found in this manner at

large M alco satisfles equation (20). Using relationships
4 -3¢ o
FHTE=TT =) SR G (22)
[ [_J
$_1¥—lr‘ cos PR 1)BE_ z !h—l)i—t)"‘ x
E - '+ +‘ - L
— )t eh!'h!lml) ch ¥ Mt

cquation (20) may be transformed to the form
ot} o LT - -
| 'Wwﬂ:ﬁ!-?g'ﬁ (23)
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Using the concept

»
M v ~vMi

th =i42 (—1)"¢
T2 ;

we shall obtain

M MV HTER) kM, o
3“Tmm{aw-vﬁ+ e (24)
1 1
=i~ [ - AT
Here (25)

L 1 in {
Y= Gy IR TR - a R R
1 S 1y [L=t= 1 exp i VI 3 wi
'H'{cl('ht'ﬁhi 2:,( "[ Cho VI 1 & — vMP + n° +
+ |-g—n‘.:g(—-t/.t’m-vm ]__
Ch + & 4 AP 4 St
'_..uti -1y [1-—(—1)’0: M@E-v) | 1-5-1)‘ox;!-ng-/.+v)[]}
T_‘ Fh—vi'ykﬂ'i' . ChtvWat 4

It follows from this that €

3 has the order of first term of
right-hand side of equality (24), divided by ch (1/2)M. Sinc- M ls
large, then, by ignoring ey and substituting (24) in (23), we shall
obtain the identity which had to be proved., Thus, at large M
expressions for coefficients cy and bJ in solution (8) may be written

out as

16M8(2) — 1) n (— 1Y a3

Y= PP (y—1ra) O 2
162 n (— 1Y w
by = — BT ) (4 A T

The obtained values of the coefficients cJ and bJ attest to the
fact that approximately j = 1/2(M + 1) of the first coefficlents
increase linearly with the number j. A decrease of these coefficlents
begins from the values J, comparable with 1/2(M + 1), This property
of the series is characteristic in general, for boundary value pro-

blems, setup for equations having a small parameter with higher

derivatives which is accompanied by certain calculating difficulties,
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The indicated difficulties to a significant degree can be sur-

mounted by means of G, A, Grinberg's [4] method.
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EXPERIMENTAL INVESTIGATION OF SPEED OF SOUND IN
ARGON ON LINE OF SATURATION
I. S. Radovskiy

(Moscow)

Measurements of speed of sound in liquified argon at low
temperatures have been covered in several works dedicated to this
subject. However, for curve of phase equilibrium "1iquid-vapor" in
literature there are only a few values of speed of sound obtained
experimentally near the point of hardening [1, 2].

Practically data on speed of sound in argon on line of saturation
up to present are lacking.

The author made systematic measurements of speed of sound in
vapcr and liquid phases of argon on curve of phase equilibrium at
temperatures from 83.94 to 150,65°K, i.e., from triple point to the
critical. For realization of these measurements there was created
experimental installation on basis of which there is assumed the
method of acoustic interferometer with variable distance between
radiator of ultrasonics and the reflector. Theory of method in
detail is described in the literature [3, 7.

The diagram of interferometer being used 1is presented in Flg. 1.

Raslc parts of interferometer are: radiator of ultrasonics 1 (quartz
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plate of X-cut with natural frequency of oscillations of about 500
kilocycles), quartzholder 2, directing glass 3,

reflector 4, nut 5 and micrometric screw ©

with pitch of thread 0.5 mm, during rotation

of which there is realized a vertical disploce-
ment of the reflector, Transmission of torque
to micrometric screw from reversible motor 1is
realized by glandless magnetic clutch consisting
of constant magnet 7 and armature 8, The
chassis of interferometer 9 is made in the form

of thick-walled copper block which contributes

to a rapid levelling of temperature in inter-
ferometer,

The design of installation provides for

a reduction to a minimum of the heat exchange

between interferometer and environment, Insid
vacuum jacket 10 placed in open Dewar flask with liquid nitrogen,
there is created a vacuum of an order 10”7 mm mercury column, There-
fore, the losses of heat by interferometer reduce basically tc
radiation and constitute an insignificant magnitude, For their
ompensation there serve two constantan heaters (the main and the
regulating), wound directly onto chassis of interferometer. By
alculating and then experimentally there was ascertalned that even
with significant temperature differentials between interferometer
and boiling nitrogen (order of 1quC) the total power of heaters dot
not exceed 5 wo This made it possible to conduct comparatively
simply and fairly accurately the automatic regulating of the inter-
ferometer,

The temperature was measured by standard platinum resistance

318



A&-Re e VNN 0 -2

thermometer on potentiometer PMS-48 with an accuracy of 0,02%%,

The temperature regulation was realized by means of turning on and
turning off the heater, Here a large part of thermal loss 1is
compensated by main heater turned on constantly, and for the regulating
heater there is necessary 5 to 10% of total power., The automatic
turning on and turning off of heater is realized by sensitlve relay
RP-5 onto whose winding there 1is supplied the noncompensated part of
voltage drop in resistance thermometer augmented by photocompensational
amplifier F-16, The thermal inertia of such & regulator as a conse-
quence of small power of heaters is insignificent, and high ampli-
fication factor of amplifier F-16 makes it possible to close and
release relay contacts during a change of measured voltage drop by

not more than 0,05-0,1 uv, Therefore, despite the simplicity of
regulator, relative changes of temperature during experiments did

not exceed *0,005°C,

Pressure in interferometer was measured by loadplston manometer
MP-60 of class 0,05,

For the excitation of ultrasonic oscillations of the quartz there
were used signals of frequency meter 121a, amplified by resonance
amplifier by which simultaneously there was measured the frequency of
oscillations,

The reaction of interferometer during displacement of reflector
was recorded by a photocompensational amplitier F-16 and automatically
was recorded by the self recorder N-16, Method of recording of
recaction is presented in work [5].

Results of measurement of cpeed of sound are given in the
table, and also in Fig. 2, In saturated vapor the speed of sound with
increase of temperature of first increases and at 124,5°K passes

through a maximum, With approximation to the critical temperature the
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speed of sound sharply decreases attaining minimum value at the criti-

cal point,
Table
?.°K | F.hg 1-10.11 see] T.°K | P, u'u{ ¢, spec] T.°8 r.kg/em', &8 g0
Vapor phase
83.84 0.8 100.4 | 122.00 | 13.88 185.8 | b . .
84.11 0.0 100.7 | 124.24 | 15.00 106.1 | ::3 g:“l :z;
.40 0.73 100.9 | 124.48 | 15. 28 186.0 l 140.24 | 47.08 162.9
84.98 0.79 | 100.2 | 125.16 | 16.08 | 1859 : 140.61 | 47.58 | w08
88.3 0.83 100.6 | 128.40 | 10.74 185.7 ° 180.81 | 48.17 154.9
07.37 1.3 171.2 | 130.00 | 0.2 1.5 | 10.07 | 48.62 1583.0
.84 1.63 | 174.3 | 134.44 | 26.97 | 9847 | 150w | 48.77 | 1wk
%.34 2.2 | 176.7 | 138.30 | 30.08 | 103.0 | 15025 | 48.00 | 1489
%.92 3.0 | t79.6 | 142.97 | 36.44 | 180.2 | 15043 | 490,25 | 1.3
104,08 4N 1014 {103.20 | 6.0 | 1799 | 13048 | 0. 13.5
108.88 .28 192.8 | 148.40 | 41.00 | 175.7 | 1%0.58 | 49.41 1209
113.87 .60 | 1845 | 147.40 | 43.48 | 973.2 | 15090 | 490.50 | 1248
118.29 11.18 185.2 | 148.04 | 44.00 | 170.8 | 150.62 | 40.58 120.2
Liquid phase
0.94 - 085.9 93.62 - 78.5 | 146.40 | 41.58 %88
84.12 - 0649 | 95.19 - | 8.1 | 1862 | 42.02 | 5.0
4.9 - 863.1 97.16 -— 7M.S | 1418 ] 4.2 .8
8.7 - 20071 o6 | 277 | 784 | 14838 | 45.30 | 217.3
85.18 - 858.2 | 100.16 - | 1508 | 149.15 ] 46.71 | 215
85.30 - 07.1 | 103.98 4.4 | w5 | 169 4. 184.4
85.44 - 856.0 | 112.75 8.10 | 647.5 ] 150.05 | 48.53 169.5
g.a - 3; :g.g :a.g g: 150.98 | 4v.12 | 141.5
HERE IR T P
. - d . d 28.8 | 150.57 - 122.6
8.5 -— §33.4 | 140.07 | 32.33 | 360.9 | 150.841 - .7
90.41 - 8204 | 143.57 | 31.25 | 3183 | 190.63 | 9.0 | 1.2

In liquid phase the speed of sound

monotonically decreases from trirle point
to the critical, Deceleration of sound
intensifies with increasing proximity to

critical temperature. In interval of

temperatures from 103 to 121.5°K there

is ascertained a llnear dependence of

speed of sound in liquid phase on the

temperature

emq(l —eAT) (0= T48 a4/ 2cc,a = 0.0114)

A linear dependence c(t) was obtained also by other authors for

many liquids [4, 6]. A deviation from linearity was ascertained only
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in critical region and in approaching the temperature of hardening.
For argon the linear dependence c(t) was found to be valid in a
comparatively small interval of temperatures,

In conducting the experiments special attention was glven to
critical region and temperatures close to temperature of hardening,
Ca In these regions there is obtained large

number of experimental points. In region
H‘hh close to temperature of hardening there 1is
q revealed an anomalous behavior of curve of

L A speed of sound in liquid phase in the interval

Fig. 3. of temperatures 85.6-85,9%K (Fig. 3). T1he

causes of anomaly are, obviously, the stiuc-
tural changes assoclated with transition from liquid state into the
solid and which are accompanled, possibly by the dispersion of speed
of sound,

In critical region there is ascertained the mutual location of
curves of speed of sound in liquid and vepor phases., Interest toward
this question 1s caused by the fact that in a number of works with
other substances [5, 7] these curves happened to be intersecting,
i.e., speed of sound in 1liquid phase in interval of about 0.5°C from
criticel point was found to be lower than speed of sound in the vapor,
Yu, S, Trelin [5] explains thls phenomenon by influence of admixtures
of external gases, because even insignificant amount of the latter
markedly decreases the speed of sound in the liquid phase,

In described experiments there was used a chemically pure argon
with contents of admixtures not more than 0,02%. As can be seen in
Fig., 2 an intersection of curves is not detected. In interval O.BOC
from critical point they practically colncide, but then diverge.

The obtained results to a certain extent corroborate the assumption
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of Yu., S, Trelin about influence of admixtures.
Total error in a major part of experiments did not exceed 0.2%.
In Fig. 2 there is plotted also curve of speed of sound in 1liquid
phase obtained in dissertation by Adkhamov (Moscow State Universlty,
1954 ) by means of calculation with the use of molecular-kinetic
theory Bogolyubov, A comparison of theoretical and experimental curves
shows that results of Adkhamov's calculations qualitatively correctly
retlect temperature dependence of speed of sound 1n liquid phase of
argon, However, quantitatively discrepancy between calculated and
experimental data reaches more than 100%.
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INFLUENCE OF MAGNETIC FIELD ON OPTIMUM COMPOSITION
OF AN ELECTROCONDUCTIVE GAS MIXTURE

E. P. Zimin and V. A, Popov

(Moscow)

In presence of a magnetic field the electrical conductivity
becomes a function of magnetic field strength and, furthermore,
acquires an anisotroplic character,

For a Lorentz gas, according to Spitzer [1], Ohm's law takes

the following form:
doar+ Wul—l-’._."'n‘*"LV' (1)
r a ag agv e

where n, is the concentration of electrons, e is the charge of
electron, P, is the electron pressure,
Introducing Larmor frequency of electrons w and assuming gradient
of electron pressure equal to zero, equation (1) may be transformed
to the form
J+ﬁ-|lxl-¢o‘
(om0, oe22)

'“-ﬂ

E=B+uVXE

(2)

where m is the mass of the electron, T is the time of the free path,
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The second term of left-hand side of this equation corresponds to the
Hall effect,
We shall solve equation (2) with respect to j. For this purpose

we shall multiply it vectorially by H
‘-
B+ {0-mB —&0)) =k, =N (3)

Here there is used the expansion of vector of electric field
strength into two components: E” — parallel to vector of magnetic
field strength H and El — normal to it. The two terms in brackets
are obtained as a result of opening of double vector product (J x

x H) x H. Further, multiplylng equation (2) scalarly by H, we find

JE=ol-B, ~ ﬁ'.'u-l)-l
It is obvious that mixed product is equal to zero, so that

GHH - o INE, ()

Substituting (3) and (4) in (2), we finally obtain

)=k + TEE B - TEOR i

The electric conductivity along magnetic field remains constant,
whereas electric conductivity in transverse direction depends on
magnetic field (~(1 + m212)'1).

Tt is of interest to determine condition of maximum of trans-
verse electric conductivity of a mixture of a practically nonionizing
ras (diluent) with ges having a low ionization potential admixture
in the presence of a magnetic field. The problem reduces to seeking
the dependence of optimum admixture from magnetic field strength.

e transverse electrical conductivity of mixture is equal to
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o 5 o el —

- 388 2 -
R e s &
= n, /(0 + a) (5)

Here a is the degree of ionlzation of mixture, n, and n, are
concentrations of the admixture and diluent, Q 1s the effective cross
section of collisions of electrons with neutral atoms of mixture, 1In
the case of small degrees of ionization of admixture (x = ne/n2 << 1),

ignoring the Coulomb interaction of electron with ion, we shall obtain

I Ty S
C=pn/p B=Qs/ Q)

where Q1 and Q2 are the cross sections of collisions of electron
with neutral atoms of diluent and admixture respectively, Py 1s the
partial pressure of admixture, p is the total pressure of tnc mixture,

The magnitude x is determined in accordance with the Saha equation
o XD x(r)-.a(z'"" )"'n"-i‘h T‘?elp (- =)
» L A w

Here uy is the ionization potential of the admixture, k and h
are the Boltzmann and Planck constants, 1 1s the number of degrees of
freedom, 8y 8 and g, are the statistical weights of the ion, electron
and neutral, A is a constant depending on the selection of units of

measurement of pressure. Flnally we obtain
385.10* /KNVs(eB3—1)+1 (ur )-
U= v? » FE=—DFIPFr T \Twm

Here v is the mean square velocity of electrons, T 1is the

temperature,
For determining the optimum value € = e, it 1s sufficient to

find root of equation Bol/as = 0, which reduces to the cublic equation:

PHUy =0 y=t4l cm—[T+ O], b= t=s (1) (6)
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The discriminant of this equation D = 8’ + b° = -(73 + 4/372 +
+ 16/27y) < 0; therefore, it has three different real roots

V=iV Toiemlh(s+2m), emarccon(=ble[™) (vt

It is possible to show that at any vy the solution at n = 3 has
the physical sense
tmegP—=)=2VTF YocnYos—Ys

At relatively small and large y we obtain the asymptotic ex-
pressions:

t~t ot 1KY, I~VH st 1Y

The limiting composition of mixture corresponds to g, = 1; using
the second asymptotic expression, we can determine maximum value
v, = 1/3(8 - 1)%.

In Figures 1 and 2 there are given the dependences of g, on 7Yy
and magnetic field strength H for mixtures of 2 number of gases with

Cs (at pressures — 0,1, 1, 2, 5 and 10,0 atm and T = BOOOOK in Fig. 2).

At a fixed pressure value beginning from a certain value H at
which optimum concentration of a readily lonized admixture is still
relatively small, the latter practically ceases to depend on nature
of diluent. With a decrease in pressure marked pecullarity begins
to manifest itself at smaller values of magnetic field strength., At
specific values of magnetic field strength Hm optimum value of relative

concentration of the readily ionized admlxture becomes equal to unity
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i.e,, at H > Hm question about determining the optimum composition
of mixture loses sense, Under these conditions the pure vapors of the
readlly ionlzed admixture possess maximum electric conductivity,

The dependence of the ratio of maximum transverse electric
conductivity (corresponding to optimum composition of mixture) (om)
to maximum electric conductivity at H = O(OOm) on the magnetic fleld

strength 1s determined by expression (the subscript 1 is omitted):
& 2149V
e (£+SF+7

We note that o, 1is determined by value g, = (B - 1)'1, corres-

ponding to equation [2]

20 (e~r7%=m)

Obvlously, at large 7y
gt (@ =130—-1""

At during v > Ve 85 was shown above, maximum electric conduc-

tivity is pussessed by the pure vapors of the admixture, for which
P

I =T

+1
<7 i ]
B ""’?’ ~ - B N
A . L
(EEot o -
’ -.'.Aro'CO 3 \\ L ol ,_._:....h 1
9 W eCs 'n\ \ i __-i-h
P v R 5
T I A Y [ W 0, i ags
Figa 3' Fig. 4'

Here 9 is the conductivity of pure vapors of the admixture, De-

pendences X and Xy on Yy and H for mixtures Cs with Ar, He and 002 are

presented respectively in Figures 3 and 4 (for Fig, 4, T = 3000°K,
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P =3 atm),

As one should have expected, an anisotropic electric conductivity
oceurs in mixtures at smaller H values, than in pure cesium, However,
at H < Hm the electric conductivity of any considered mixture 1is
higher than electric conductivity of pure cesium,

From approximate formula for Y it is evident that
Hy=@ 1) QuieY mik?

At B >> 1, which corresponds to mixtures being considered here,

Hm does not depend on nature of diluent
By Qi)Y AT
For example, Hm = 3.45~105 gs. in case of admixture of Cs at
T = 3000°K and p = 3 atm,
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CERTAIN METHODS OF INVESTIGATING THE DYNAMIC STRUCTURE
OF PLASMA FLOWS

A. M, Trokhan
(Novosibirsk)

Multislot attachment for a photoregister, The basic instrument

for measurement of speed of plasma contalning optiﬁal heterogenelties
is at present the photoregister, The chief merits of use of photo-
registers together with their high rellability, peculiar to an over-
whelming majority of kinematic methods of measurement [1], are:
continuity of registration during a certaln interval of time, an
extermely high time resolving and simplicity of utilized equipment,
A defect in the use of phototiming 1s a possibility of measuring
speed of plasma only along one straight line isolated in image of
flow by slot of the photoregister. For measurement of field of
speeds of plasma usually there are used exposure photographings,
However, use of exposure photographings in view of the difficulty of
identification of heterogeneities in the photographs 1s found to be
limited, being used mainly for investigating shock waves and fluxes
containing sharply nonhomogeneous regions or particles,

The author used a very simple device, making 1t possible to use

photoregister for measurement. of the velocity fields of a plasma,
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The principle of operation of device is evident from Fig. 1.
Close to the plasma flux under investigation containing a certain
heterogeneity 1, there 1is placed a
opaque diaphragm 2, having a number
of parallel slots located at differ-

ent height across flow section. The

beams of light passing through
;igislforDiﬁﬁgizlgi g:ii:gg;e. these slots are scattered by means
of a periscope in direction parallel

to velocity of flux and emerge through slots in diaphragm 3. As a
result of the scanning of image of the outlet slots which are made
by usual method we obtain a multichannel phototracing which makes it
possible to determine field of speeds of flux in the investigated
section and its change during period of scanning.

The design of a 5-3lot periscope, assembled of mirrors 1is
presented in Fig. 2, and an example of the result, obtained during

its use, is shown in Fig. 3. In this phototracing there is fixed

the propagation of reflected wave in shock tube,

GRAPHIG NOT
REPRODUCIBLE

Fig. 2. Five-slot mirror periscope.
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Fig. 3. Five-channel phototracing of
propagation of shock wave,

A consequence of presence of the difference of the variation
of the beams in periscope is a necessity of sufficient diaphragming
of objective for obtaining the required depth of sharpness. For
example, maximum difference of the variation of the beams in peri-
scope shown in Fig, 2, amounts to 220 mm, Taking maximum magnitude
of the small circle of aberration equal to 0,1 mm, and scale of
image equal to 1:10, we find maximum relative aperature of the
objective equal to 1:10,

Another consequence of presence of difference of the variation
of beams is a certain difference of image scale for recording channels
on the phototracing. Most conveniently for determining the scale of
images we apply the measurement of the channels of the recording trace,
Width of the channel is equal length of corresponding inlet slot in
scale of image, and true dimensions of slots are known, therefore,

the determination of scale with sufficient accuracy presents no

difficulty.
The photoelectric registraticn of time of passage of optical
heterogeneities. Use of photoregister, especially the multislot,

makes it possible to obtain very extensive information about dynamic

structure of the investigated fluxes. However, it not always is

. 331



mmmlqlE

"IrB e

found to be convenient to obtain results in the form of photograph.
Thus, for example, if there is required statistical treatment of
results of measurement in time, the use of photographic recording
results in very great time-consuming work., Furthermore, photographic
recording is difficult, if the luminosity of the flux is weak. In
such cases a photoelectric recording is more convenient.

At present photoelectric recording is fairly widely used for
investigating shock processes.

In present work the registration of time of the transit of
optical heterogeneities by means of photomultipliers was used for
measuring speed of a gas flow in plasmatron of alternating current.
lere was used the following measuring scheme., At a certain distance
along flux near investigated region of
flux there were placed two photo-
multipliers with corresponding dia-
phragming devices, separating narrow
beams of light. The passage of

h b t
Fig. 4. Typical result of eterogeneities (peaks of brightness)

recording during photo- ast the first of multipliers caused
electric registration of P . st of multipliers ca
times of transit, the starting of driven sweep of oscil-

lograph, and the signals in second
multiplier caused vertical deflection of the beam, Measurement of
time between moment of starting of sweep and passage of heterogeneity
which had caused the starting past second multiplier, makes it
possible to determine the speed of plasma average on a given basis,
In the given measuring scheme there is possible both a single
registration and also one averaged by time. In Fig. 4 there is
presented the result of measurement obtained by means of superposing

of oscillograms for approximately two hundred transits of
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h;te?ogqggities. By regulating the time of exposure of screen of
oscillogrgﬁh, there can be obtained in any manner a large time-
averaging of the results, and by using the photographing of screen
on a continuously moving film, it is possible to fix the variation
of speed of flux in time,

Coincidence circuit, The most general method of obtaining

statistical characteristics of the flux is the differential ansalysis
of probability of times of transits of

! 2 v

[ }{7 4}{:}4* optical heterogeneities, The diagram of
|+ H {4}{:}{ v an installation for such an analysis is
Fig. 5. Diagram of is given in Fig. 5.

measurements by method

of coincidences. Signals from two investigated points

of the flux proceed to photomultipliers 1,
and then to the cathode repeaters 2 and divisors 3; The divisors
are used so that even with a significant difference in level of
signal from investigated points of flux at the output we obtain
signals of approximately identical amplitude, Signals of both
channels are delivered to identical delay lines 4, and then to
coincidence counter 5.

Principle of measurement consists in the following: optical
heterogeneities (for example, brighter regions or particle), passing
through investigated points, cause a corresponding series of pulses,
If the manifestation of pulses in first and second channels is
independent and bears a random character, then the circuit will
record only random coincidences, The average number of randon

coincidences, recorded in unit of time 1s equal to
N.o=2tni0g (1)

Here N is the number of recorded random coincidences, ng, Ny is
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the average number of pulses per unit of time in the channels, 7 is
the resolving time of coincidence counter,

Let us assume that investigated flow of gas 1s directed along
x-axis, We shall consider elementary areas normal to the flux,
located at points 1 and 2, displaced one with respect to the other
by certain distance L along x-axis, Let us assume also that the num-
ber of pulses being recorded by the first and second channels per
unit of time is equal to the number of heterogeneities passing through
the corresponding elementary areas.

The number of particles which have passed through first area
and which are passing after this through second area per unit of
time may be determined as follows:

"""'S""'"' ‘ (2)

]

Here n, is the number of heterogeneities passing through first
area per unit of time; p(y, z) 1s the probability frequency of
passage of heterogeneities which have passed through first area and
are passing through points of plane of second area; F2 is the area
of second area,

If the heterogeneities which have passed through first area pass
also through the second, then between the pulses being caused by their
passage in first and second channels, there occurs a time shift equal
to time of the transit,

Thus, if at least part of heterogeneities which has passed
through first area, passes also through the second then during delay
of pulses of first channel by a magnitude of the transit time there
will take place coincidences caused by the passage of the same
heterogeneity.

Number of coincidences per unit of time during the delay t in
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first channel 1is equal to

(N.).-N..K Pat @t (3)
[ ]

Here T 1s the resolving time of coincidence counter, p(t) is

the probability frequency of time of transit of base L along the x-axls,

System N12 = N 18 consistent, i,e,, at the same moment of time
through second area there may pass both the "true" heterogeneity
(1.e., which has passed preliminarily through first area), so also
the random, and at the same time they will be recorded as one, there-
fore, the total number of coincidences in system at a given magnitude

of delay in first channel will be equal to .
Ny N4 (N =N, (%)
Here Nt is the number of random colncidences occurring
simultaneously with the ture,

Assuming the probabilities of the manifestation of signal and

nolse independent, we find
[}
Ny= nst \ ply, 9)dF Yr.(od
=t

Using (1)-(4), we shall find the signal to noise ratio, i.e.,
the ratio of total number of coincidences during a given time of

delay in first channel to the number of random coincidences

g NV '-'Eﬁj.m. -wIp.m (5)

Having assumed for simplicity ng=n,=n and taking into
consideration the position of the areas and flux regimes as constant,

it is #ossible to write

N, -
-,!-|+unu-‘—$ (6)
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From (6) it is evident that if magnitude nt is fairly small,
the signal-to-noise ratio may be as large as desired, On the other
hand, if magnitude nt approaches 0.5, the signal-to-noise ratio
upproacheé 1, 1.e., signal is indistinguishable from the noise. This
also is understood, At nt = 0,5 within any interval of time 21,
solvable by a counter, is found to be, on an average, according to
the pulse and counter mﬂlt count continuously independently of the
fact whether the signal is true or not.

Regulating by the divisors 3 (Fig. 5) the levels of signals,
proceeding through the channels, it is possible to attain that which
system will consider only the sharpest expressed heterogeneities,
and thus magnitude n will be found to be fairly small, Resolving

-6 -8

to 10~ sec; thus, n

time of counters amounts to usually T = 10
may be falrly large.

It must be noted that the discussion above is valid for statisti-
cal distribution of the heterogeneities, If in distribution of the
heterogeneities there are any periodicities, then for obtaining of
unique solutions by indicated method it is necessary that linear
scale of these periodicities is larter than the base of measurement
being utilized. This requirement is equivalent to requirement of
absence of corresponding harmonics in the results of measurements,

By varving the position of second area relative to the first and

measuring dependence of frequency of count from time of delay, there
can be found ¢ifferential function of probability of transit of
heterogeneities; this fully determines the statistical position of
vector of speed of flux at the first point., This method is convenlent
for study of characteristics of turbulence and may be applied for
investigating both the plasma and also a cold gas. The hetero-

geneitles being utilized for measurements can have the most diverse
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nature (hotter clusters of plasma, drops of burning fuel, artificially
introduced solid or 1liquid particles etc.).

Furthermore, given method may be used for

study of structure of the flux, Thus,

in Fig, 6 there are given results of

measurements of time of transit of

N
heterogeneities on a base of 12 mm in a

Fig. 6.t Regu%t origea-'

surements of trans

times by mears of the complex flow including relatively large
method of coincidences. particles., As can be seen from Fig. 6,

time of trensit in this case has a large dispersion and is grouped
near two values t = 14 and 31 microseconds, The first corresponds
to particles, moving with an average speed of 850 m/sec and the
second to a motion of purely gas heterogeneities with a speed of
390 m/sec, |

In these measurements there was used photoelectric transducer,
assembled in multipliers of type FEU-29,

For selecting the base of measurement there was used the optical
system, There were used delay lines and a counter from }nstallation

for registration of coincidences and anticoincidences — SSA,
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