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PREFACE 

Unsteadiness effects upon the aerodynamic and stability charac- 

teristics of a slender body In hypersonic flight can be vitally Impor- 

tant In determining reentry-vehicle and Interceptor performance.  In 

this Memorandum, a very simple physical model, Newtonian snowplow the- 

ory, Is used to estimate the unsteady forces associated with the os- 

cillatory motion about a fixed center of rotation of a slender two- 

dimensional airfoil which translates hypersonically through a uniform 

atmosphere. 
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SUMMARY 

Unsteady forces acting on two-dimensional oscillating airfoils 

are calculated by Newtonian snowplow theory. A pressure formula which 

is valid for linear and nonlinear oscillations is obtained, and com- 

parisons are made with the exact, linearized gasdynaraic theory for a 

hypersonic slender wedge. These comparisons indicate that Newtonian 

theory is not very accurate for the calculation of unsteady stability 

derivatives and seems to be inferior to estimates made using simple 

impact theory. 
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reduced frequency,  Uü//U, when CY = real part of 5?      eia>C 
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reference length (length of airfoil); all lengths are non- 
dimensionalized by i 

nondimensional distance to center of rotation 

pitching moment 

aerodynamic stiffness. M\ 

aerodynamic damping. 
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P. 

T 

N 

pressure 

time 

velocity of translation 

nondimensional distance in space-fixed coordinate system; 
X = 0 corresponds to location of nose at t » 0 

nondimensional coordinate measured from nose in body-fixed 
coordinate system 

dimensionless body-surface ordinate 

dimensionless transverse displacement of point on body sur- 
face 

angular displacement 

angular velocity 

angular acceleration 

isentropic exponent 

ambient density 

thickness parameter 

frequency of oscillation 
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I.  INTRODUCTION 

Knowledge of the aerodynamic and stability characteristics of a 

slender hypersonic vehicle in unsteady flight is important for the ac- 

curate prediction of reentry-vehicle and interceptor performance. In 

general, the accurate determination of unsteadiness effects by the so- 

lution of time-dependent gasdynamic equations is quite complicated, 

and it is necessary to develop approximate techniques for estimating 

unsteady force coefficients.  This Memorandum discusses the further 

application of a simple physical model, Newtonian snowplow theory, to 

the calculation of unsteady forces on an oscillating body. 

The pressure acting on a two-dimensional or axisymraetric hyper- 

sonic missile undergoing rapid acceleration was estimated in Ref. 1, 

using Newtonian snowplow theory. The cross-plane analog> was intro- 

duced in order to relate the two-dimensional unsteady hypersonic mo- 

tion of the missile surface to an equivalent unsteady one-dimensional 

piston motion, which was then solved by assuming a strong shock wave 

and the spatial uniformity of the gas between the piston surface and 

the shock wave. 

The pressure on the piston surface was computed by the applica- 

tion of Newton's law in the form P(t) - d/dt (m(t)v(t)), where m(t) 

is the mass of the gas in the shock layer between piston surface and 

shock wave, and v(t) is the velocity of the gas in the shock layer, 

which is assumed to be identical with the piston velocity. 

These same ideas are employed here to estimate the pressure on 

an oscillating two-dimensional slender body in hypersonic flight.  A 

specific example, that of a thin wedge undergoing small-angle oscilla- 

tions, is computed, and comparisons are then made with results of more 

accurate calculations using the equations of hypersonic gasdynamics, 

as well as with results of some wind-tunnel experiments. 

These comparisons seem to indicate that Newtonian theory is not 

very accurate for the estimation of unsteady forces if Y = 1.4, prob- 

ably because of the relatively large magnitude of the corrections 

due to the density ratio, (Y - 1)/(Y + I), being nonzero. 
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II.  ANALYSIS 

ARBITRARY SLENDER AIRFOIL 

A two-dimensional airfoil traverses a uniform atmosphere with a 

constant hypersonic velocity of translation, U, and undergoes an os- 

dilatory motion about the center of rotation, located at X « X,, 
* 1 
Y » 0. 

All lengths are rendered nondimensional by the overall body 
* 

length, £.     The X -coordinate system is fixed in the moving body and 

is measured from the nose, while the X-coordinate system is fixed in 

space and is measured from the horizontal location of the nose at 

time t = 0 (see Fig. 1). 

The body shape is  fixed and is described by 

Y*    =    TF(X*) (1) 

where T « 1,  and F(0)  = 0,  F(l)  ■  1. 

For the present theory to apply, the angular displacement, a(t), 

is required to be no larger than T, and the transverse velocity and 

acceleration induced by the oscillations are required to be no larger 

than those which occur over the same body in steady flight.  Thus, 

Qr(t)    -    T5?(t) (2) 

where c?(t) ~ 0(1);  and 

TU /x dS\ w) ■ rlS« o) 

where TT dt ~ 0^ • and 

3(c) . isi^—2 

t2 W it 
S(t)    -   ^   £.«.) w 
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Y*= TF (X#) 
P(0)-0 
F(1)-l 
£],T, X*, Y* are Himensionless 

-   X 

Fig. 1—Coordinate system 
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where 

L-SL2L     nn\ 
IT dt 

With these orders of magnitude,   the transverse displacement of a point 

on the upper surface measured from the horizontal,  y,  is given to terms 

of 0(T
2
)  by 

y    =    T[F(X ) + flfdj  - X )] (5) 

The dimensional transverse velocity of a point on the surface is 

• s «•' 
=    XT 

dX dt        dt v   1 

IT T? *      U ,  U /x da \ .. *N      ~ U Fx* -I + I^üdEJ^i " x) -n (6) 

and the dimensional transverse acceleration is  then 

A1- 
« .  1    -    it 
dt iH^*%%]^-^-^t (7) 

At the fixed station in space, X - 0, which corresponds to the 

X-coordinate of the nose at  time t ■ 0,   the flow pattern can be cal- 

culated as an unsteady one-dimensional flow with an equivalent piston 

velocity dy/dt  •   X. 

The mass of the gas  (per unit piston area)   in motion at time  t 

at the fixed station X » 0 is approximated by the mass of all  the gas 

which has been swept by the piston up to time t,   or 

m(t) P-T y(t)  -^nose^0)     * (8) 
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Snowplow theory assumes that the velocity of the gas in the shock 

layer can be approximated by the velocity of the piston, so that the 

pressure on the piston, P(t), can be written 

P    =    ^(mV) (9) 

where 

V(t) 
d£ 
dt 

or 

P(X*,t) ■     P, 
IT

2
 

2 r U   T L Fx* + ^ <*i - x*) •] 
+ PJJVIFCX*) + a(t)(£1 - X*)   - a(0) J 

LFXX    +u2 dt2  
Ul      X )       2 U dtj (10) 

Note that 5(0)  « Q?[t  - X  (A/U)].    If a(t)   is  the real  part of a      e ^, 
Ilia X 

then the pressure formula becomes 

P(X ,t) = p, U2T2[Fy. 
O CD      X 

Mi 
O    00 

*  + ika(ll  - X ) •f 
i   U  If^j + aii1  - X*) - Q? e"lkX I .] 
X Fx*x* " k2(X1 - X*)a - 2ik^ 1 (U) 

where k ■ cui/U.  This formula is not restricted to small values of the 

amplitude, S  ; as long as the amplitude a        is 0(1), the pressure 
max max 
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formula should be applicable. This is not a linearized analysis of 

the unsteady motion, and it can be used to calculate force and stabil- 

ity coefficients for both large and small departures from a uniform 

hypersonic translation, as long as the slender-body approximation is 

still valid and the reduced frequency is not too large. 

If the pressure, as calculated from Eq. (10), is greater than 

zero, then there should be no anomalies associated with the time-de- 

pendent detachment and reattachment of the Newtonian free layer.  The 

present theory is not applicable to calculation of the unsteady os- 

cillations of an axisyrametric body, since there is no equivalent un- 

steady one-dimensional piston motion. 

If the amplitude, a      , is small, then Eq. (11) may be linearized max ^     *    *      j 

in the angular displacement, which results  in the following equation 

for  the unsteady component of the pressure: 

"unsteady    '    Py5;T2|Fx*2[ik(X1  - X*)  -  1] 

- F[k2(Jei  - X*) + 2ik] 

+ fjft^CUj - x ) - 
* 

e-lkXi ■'} (12) 

EXAMPLE;  SLENDER WEDGE ———^————^——^——_ 

Restricting further to a slender wedge surface, where F = X ,  re- 

sults in 

unsteady 

n   TT2   2~        " 

*    * 
-2 - k (i1 - X )X    + 2ik(£1 - 2X ) (13) 

(2) 
Following Molntosh,^       Eq.   (13)  can be written in the form 

lower upper 

.   1~    ikt/T        JT \ 
4T a e      (Li + iL2) (14) 
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where the subscripts "lower" and "upper" refer to the respective wedge 

surfaces and L. and L are real functions of X and k only, and where 

L1 = 2 + k^(X1 - X )X (15a) 

is the in-phase component of the pressure, 

= -2k(jei - 2X*) (15b) 

is the out-of-phase component of the pressure, and C , the pressure 
2   t 

coefficient, is defined by C = p/p (U /2).  When the appropriate 
■ •    P OD     GO 

Newtonian limiting process is applied to Mclntosh's solution for the 

oscillating wedge in hypersonic flow, Eqs. (15a) and (15b) can be ex- 

tracted. 

Mclntosh^  has applied hypersonic small-disturbance theory to 

the calculation of the unsteady pressure component on a slender os- 

cillating wedge. A linearization in the amplitude of the oscillation 

is employed, resulting in a theory which is valid for arbitrary Y, 

M2 - », T2 - 0, 5? - 0, k ~ 0(1), and the full range of values of M T 
CD 

between zero and infinity.  Values of k which are of unit order are 

involved in flutter applications of unsteady-flow theory. For these 

values of k, Mclntosh's solution is given as the sum of an infinite 

series, which has been computed for only a few cases. 

Mclntosh calculates the full solution for L^ aad L^ for Y = 1.4, 

k ■ 0.25, and f1 ■ 0 and 1 at certain values of X . An estimate of 

the accuracy of snowplow theory is possible by comparing with those 

results. 

For I« ■ lt k ■ 0.25, and X » 2.0, the exact hypersonic theory 

(1/K2 -»0 Y » 1.4) gives Li     ■ 2.02, while the present theory v ^exact 
eives L, » 2.125. For these same conditions, L,     - 0.85, while ■    i ^exact 
the present theory gives L« ■ l«5« 

^Impact Newtonian theory, obtained^by neglecting all acceleration 
effects, yields 1^ - 2, L,, - -2k(/1 - X ). 
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For I. ■ 0. k ■ 0.25,  Y ■  1.4,  and 1/K   -* 0,   Li - 2.03 and 
exact 

At Lo = 0.35.     The present theory gives L.  -  1.97  and L. ■ 0.5. 
^fexact 1 2 

X    ■ 3,  under  the same conditions,  Li ■ 2.85 and Lo = 1.8, 
exact ^exact 

while the present theory gives L,  = 2.58 and L- » 3. 

Application of unsteady-flow theory to dynamic-stability problems 

typically involves reduced frequencies, k, which are much less than 

one.    For  example,  if uu ■  10 rad/sec,  i ■ 10 ft,  and U =  10    ft/sec, 
-2 2 

then k =  10    .     For small values  of k and 1/K    -• 0,  Mclntosh's series 

formulae for L.   and L   may be summed,  resulting (for Y ■  1.4)  in 

exact 

'exact 

2.0 

2.7 kX    - 2.0U, 

which should be compared to Eqs.   (15a)  and (15b).     Mclntosh's calcu- 

lations also indicate that due to e « (Y - 1)/(V + 1)  being nonzero, 

the first correction term to Newtonian theory is not negligible at 

Y ■ 1.4 and has an especially large effect on the out-of-phase compo- 

nent ,   L  . 

The pitching moment about  the center of rotation of a synmetric 

wedge is 

.1 
f*    ~ 

2 P(X1 - X ) dX (16) 

or,  using Eq.   (13), 

M Arrp u2 (vJ) 

♦ ♦tt(iJ-^*fV«Ti>.< 00 (17) 
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Two dimensionless coefficients which have been measured on slen- 

der wedges in high-speed  flow are the aerodynamic  stiffness,  defined 

by 

m 
a p U X nao   as 

2'2^yU=o 
(18) 

and the aerodynamic damping,   defined by 

m. 
a 

i   /an 
00    00 

(19) 

The present theory gives 

and 

m 
a 

= -4|i. (20) 

m. = 4U- (21) 

.(4) 

Appleton^ has calculated these coefficients, using a perturba- 

tion theory similar to that used by Mclntosh, and has further made 

the low-frequency approximation k « 1. In addition, he reports the 

results of an experimental investigation of m^, m^ performed by East 

at Southampton on a slender wedge (wedge half-angle = 9.5 deg, M^ ■ 9.7) 

in air.  (Here, Appleton's presentation of East's data is used.) 

Appleton's theoretical results. East's experimental data, and the 

present results are plotted in Fig. 2. Also included are the results 

of Newtonian impact theory. 

m a 
= 4 k - T)- (22) 
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/ Appleton 
I      theory 

M = CD 

Appleton 
theory 

M = 10 

0.5 

/   Newtonian 
/ impact 

Newtonian 
snowplow 

Data of East 

•   m., M = 9.6 
a 

Stability derivatives in air, 
M«, =9.7 

Wedge half-angle =9.5 deg 

Appleton \ \Appleton 
theory     \ \ theory 
M = 10      \ \M = a> 

Fig.2—Aerodynamic stiffness and aerodynamic damping 
on. slender wedges in high-speed flow 
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I 

■ 

m. 
<y 

4  I l4 3) (23) 

While  the present theory gives good results  for  the stiffness coeffi- 

cient,  m ,  it seems to be only qualitatively correct for the damping 

coefficient, m.,  and does  not agree very well with the experimental 

data.     It  should be pointed out,  however,  that  there were experimental 

difficulties,  associated with side-wall interference effects, which 

may be reflected in the test data. 
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III.     CONCLUSION 

Newtonian theory is a  systematic approximation to the equations 

of hypersonic gasdynamics  for  slender bodies in steady and unsteady 

flight.     Although it is most accurate for cases where Y "• 1|  in steady 

flow it  leads to simple and useful approximations  for pressure and 

force coefficients in air, where Y ■  1.4. 

In this Memorandum,  Newtonian theory has been extended to the 

calculation of force and pressure coefficients on an airfoil undergo- 

ing oscillations about a mean translational motion,  where the ampli- 

tude of  the oscillations may be of the same order as  the body thick- 

ness. 

The theory is thus not restricted to small-angle oscillations; 

it  should be applicable to both linear and nonlinear excursions  from 

a mean steady flow. 

The specific case of a slender wedge undergoing small-angle os- 

cillations in air has been treated here,  and stability derivatives 

have been compared to those which have already been determined theo- 

retically using hypersonic  small-disturbance theory,  and experimen- 

tally in gun-tunnel studies at the University of Southampton. 

The comparison indicates  that Newtonian theory is not very accu- 

rate for  the calculation of the out-of-phase component of pressure and 

pitching moment when Y ■  1.4 and,   in fact,  seems to be no more accu- 

rate  than simple impact  theory.    Neither impact theory nor Newtonian 

theory is capable of giving the out-of-phase component of the pressure 

with acceptable accuracy if Y > 1,  although the in-phase component is 

given satisfactorily.    Clearly then,  a simple and accurate technique 

for  engineering estimates of unsteady force coefficients has yet to 

be developed. 



.13- 

REFERENCES 

1. Cole, J. D., Estimate for the Pressure on Rapidly Accelerating 
Bodies in High-Speed Flight. The RAND Corporation, RM-4153-PR, 
January 1965. 

2. Mclntosh, S. C, Jr., "Hypersonic Flow Over an Oscillation Wedge," 
AIAA J.t Vol. 3, No. 3, March 1965, pp. 433-440. 

3. Appleton, J. P., "Aerodynamic Pitching Derivatives of a Wedge in 
Hypersonic Flow," AIAA J., Vol. 2, No. 11, November 1965, pp. 
2034-2035. 

4. East, R. A., A Theoretical and Experimental Study of Oscillating 
Wedge Shaped Airfoils in Hypersonic Flow, University of South- 
ampton, Report AASU-228, November 1962. 



Ill i* -M      ..,-. 

DOCUMENT  CONTROL DATA 
OPtWNATINC   ACTIVITY 

THE   RAND CORPORATION 

2a REPORT SECURITY CLASSIFICATION 
UNCLASSIFIED 

2b GROUP 

3   REPORT   TITLE 

NEWTONIAN  SNOWPLOW THEORY  0*  OSCILLATING AIRFOILS 

4. AUTHOR(S)  (LMt nom«, fir«t nom«,initial) 

Aroesty,  J.,  A.  F.  Charwat,   S.  Y.  Chen,  J.   D.   Cole 

S   REPORT   DATE 
May  1966 

7 CONTRACT or  GRANT   NO. 

SD-79 

,AVAILA*iLiTV/UMiTiTIÖM MTiCK 

DDC  1 

6o. TOTAL NO  OF  PAGES 
22 

8.   ORIGINATOR'S   REPORT  NO. 
RM-4415-ARPA 

6b NO  OF REFS 
4 

10. ABSTRACT 

Calculation   of  unsteady   forces   acting 
on   two-dimensional  oscillating   airfoils   by 
Newtonian   snowplow   theory.      A  pressure 
formula,   valid   for   linear   and  nonlinear 
oscillations   is   obtained,    and   comparisons 
are   made   with   the   exact,   linearized   gas- 
dynamic   theory   for   a hypersonic   slender 
wedge.      The   comparisons   indicate   that, 
wh^le   Newtonian   theory   is   less   accurate 
than   simple   impact   theory,   neither  gives 
reliable   estimates   of   unsteady   stability 
derivatives   in   air. 

9b   SPONSORING AGENCY 

Advanced Research  Projects Agency 

II   KEY WORDS 

Physics 
Airfoils 
Fluid dynamics 
Gas dynamics 
snowplow theory 
Oscillation 
hypersonic flow 
Aerodynamics 

J 


