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Stochastic Duels with Time-Of-Flight Included*

by
C. J. Ancker, Jr,

System Development Corporation
Santa Monica, California

ABS TRACT

The fundamental duel in the Theory of Stochastic Duels is extended
to include projectile time-of-flight., As a preliminary, the marksman firing
at a passive target is studied, Two firing procedures are assumed. In
one, refiring proceeds as rapidly as possible, whereas in the other the
duelist delays until h« observes the effect of each round. Both fixed
(discrete) and continuous (random) firing-times are considered., Also included
is the case where time-of-flight varies uniformly with elapsed time., General
solutions and examples sre given, The analysis indicates in a quantitative

way how time-of=flight may radically influence the cutcome,

*
Presented at the Twenty-Ninth National Meeting of the Operations
Research Society of America, 19 May 1966, Santa Monica, California,
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I, INTRODUCTION

In a number of previous papers [1]-{9], the basic one-versus-one stochastic
duel has been developed and then extended to include such things as limited
ammunition supply, limited time-duration, surprise, and variable kill probabil-
ities, In addition, to some extent, the case of more than two adversaries has
also been considered. Our principal concern here is to extend the fundamental
duel to those situations in which projectile time-of-flight has a significant
effect on the outcome., Previously, time-of-flight has always been assumed
to be zero. There are, of course, many situations in which time-of-flight
plays an important role in combat, Clearly, one such case occurs where
the distance between the combatants is rather large. An example is the
artillery counter-battery duel.

In the basic model, two opponents, A and B, start with unloaded weapons
and with unlimited supplies of ammunition. They load (starting together at
time zero) and fire, repeating this process until one or the other or (under
certain conditions) both are killed, There is no time-limit on the duel
thus making certain one of the two (or three) outcomes occurs. On each
round fired, A has a fixed probability, Pys of killing B, and similarly,

B's kill probability is Pge The time between rounds fired is different for
each contestant and is taken to be either a random variable or a constant,
Finally, we assume each contestant's time-of-flight to be either a random

variable or a constant.
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Time-of-flight is incorporated in two different ways. In the first
procedure, as soon as the weapon is fired it is immediately prepared and
refired without delay. Thus, as far as the winning combatant is concerned,
the succession of events is a series of firinps (separated only by the time
between rounds); these events continue until the killing round is fired, and
then the actual kill occurs at a later time thus including the time-of-flight.
Of course, it is possible that more rounds may be fired in the time between
the firing of the killing round and the time it lands, but this is of no
consequence,

In the second procedure, the first round is prepared and fired, and the
rentestant waits until it lands,. lle then prepares and fires the second
vound, and so on. This mipht correspond tc artillery under observed fire
conditions where each round (salvo, volley) is observed and corrections made
before the next one is fired, The principal objective of the analysis is
to determine the probability of the three outcomes (with time-of-flight
included, the probability of a draw is always non-zero).

It is convenient to consider first the simpler problem of the marksman
firing at a passive tarpet. This problem is intrinsically interesting, and
more importantly, the duel is mathematically equivalent to a situation in
which two marksmen are firing at two tarpets and the first one who scores a
hit is declared the winner.

In what fnllows we shall derive the general solutions to a number of
models and then illustrate the results by example. In all cases where

continuous density functions are employed we use the negative exponential
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density function in the example. This is done for simplicity and economy.
Although examples using the negative exponential can be handled directly without
the use of characteristic functions (which use is fundamental to our method),

they do illustrate the method, which is our purpose,

II, THE MARKSMAN FIRING AT A PASSIVE TARGET

The objective is to derive the probability density function of the time
to a hit,

A, Random Firing-Times

In this model the time between rounds fired by the marksman is a
continuous random variable with probability density function f(t). We shall
subdivide this section into two parts, the first describing the procedure
in which there is no delay between rounds fired, and the second the procedure
with delay.

1. No Delay Between Rounds Fired.

In this case the marksman loads, lays, and fires at his nomnal
rate not waiting to observe the effect, until finally one round hits the
target., Note that for long times-of-flight and a fast rate of fire there
may be several rounds in the air at once, If the random variable, time
between rounds is denoted by T,and if Tt is the random variable, time-of-
flight, then one complete sequence might appear graphically as in Figure 1,

Let TF be the time at which the killing round is fired and TK be the
time at which the target is hit., Since the probability of a hit on each round

fired is not unity, and since the time between rounds fired is a random
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- TIME AT WHICH jth ROUND IS FIRED

@ - TIME AT WHICH KILLING ROUND IS FIRED

@ - TIME AT WHICH TARGET IS HIT

Figure 1.
The Marksman Firing at a Target with Random Firing-Times
and with No Delay

variable, TF and TK are clearly random variables, We shall proceed as

in the former papers. First, let us derive the probability density function

of TF which we shall call h(t), If p is the marksman's hit probability

and q = 1-p, then

h(t) = pE(t) + pq £CE)XE(E) + pq> £CEYAE(E)RE(L) + +..

+p™ ) + . .
=p J o
j=1

or, converting both sides iuto characteristic functions,

S 1S U PR Y 11 1
v =p 1@ . (W
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where
* denotes the convolution integral,

n* denotes n iterated convolutions of a function with itself,

é(u) = JweiUtf(t)dt is the characteristic function of f(t),
0

and
®(u) is the characteristic function of h(t).

Thus, inverting,

h(e) = &= I: e;_i,::‘fg‘) du (2)
and now if the density function of 1 is g(t), then the density of TK is
2(t) = =(t)*p(t)
or in terms of characteristic functions
T(u) = ¢(u)¥(u) (3)
where
¥(u) is the characteristic function of g(t),
and
T(u) is the characteristic function of 2(t).
Inverting (3),
-iut
L(e) = &= fw e Sty ()
L 1

In the important special case where T is a constant, then g(t) is §(t-1)

and Y(u) = eiUT and
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~iu(t-1)
- B e $(u) du
He =% r_: 1-q¢(u) ’ )
Example 1
Let
r 1 ~t/t

f(t) = re £ and g(t) = T e
where r is the rate of fire and 1 is the mean time~of-flight. Then
r 1
¢(u) = -1y and ¥(w) = o3 .

Thus, from (4),

pr e-iut du
L(t) = 2n [t: (pr-iu) (l-itu) °

The integrand has two poles in the lower half of the complex plane at u = -ipr,

and u = - %5 This expression may be integrated around the contour in Figure 2.

Figure 2,

Path of Integration in Examples 1, 2, and 3

As R+ the integral on C tends to zero and we have by the residue theorem

pre ot )

- br(e
L(t) 1-prt

Example 2
Similarly if g(t) is a constant, 1, and f(t) is as in Example 1, we

have from (5),




T ——

19 May 1966 9

SP-1017/009/00

-iu(t-1)
v o PX e du
2o 2n Ii: pr=iu

t>1 (7)

2, With Delay Betwe:n Rounds Fired,

This case differs from the previous one in that after each firing

there is a delay until the round lands. Graphically, this appears as follows

(the notation is the same as before):

& T R
B ek Ml SO,

? - TIME AT WHICH jth ROUND IS FIRED
- TIME AT WHICH CORRESPONDING ROUND LANDED
@ - TIME AT WHICH KILLING ROUND IS FIRED

@ - TIME AT WHICH KILLING RGUND LANDED

Figure 3,

The Marksman Firing at a Target With Random
Firing Times and With Delay




19 May 1966 10 SP-1017/009/00

Thus, the time to fire the killing round is

hee) =p § o e (xR ()

3=1
or
- —bbu)
*W " i@ &
Inverting,
=iut
- 2 e $(uw)du
MO = E . Tavw 2
and
2(t) = -;-1-; C e-iut T(u)du = % Ce-iUt¢(u)w(u)du
- P e-iut u) ¢(u)du (10)

2v | _. 1-qé(uw)y(v)

For g(t) a constant, T,

-iu(t=-1)
2(t) = % r - iurt 2luidy ‘ (11)
7 e 1ege” ¢(u)

Equation (11) is difficult to deal with because of the essential singularity

in the denominator. It is included for completeness,

Example 3

Using the same assumptions as in Example 1,

=iut
o(t) = Pr e du
2n }_ (r=iu) (1-itu)=-qr
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The poles are at u = -(i/r){(1+r'r) _-l_-.V(1+r'r)1r - 4pr‘r}, which gives on integra-

tion

prt e-(t/T)(1+rr)sighjgt/t)\/(l+rt)2-4 prT]

\k1+rr)2 - A4prt

2(t) = (12)

It is obvious that the inclusion of time-of-flight can greatly change the
outcome. For instance in Example 2, we may write

() = Lo(t)ePTt

where 2p(t) is the solution with zero time-of-flight. Clearly the factor
ePTT can range from 1 to =, depending on the value of the parameters p, r, and

1, which is to be expected.

B, Fixed Firinpg-Times

We shall not consider all the possible cases here, as they are not all
physically meaningful, Thus only the no-delay situation with fixed time-of-

flight is given (see Figure 4), The time between rounds is a, and t is the

a a [} a 7\ T
X X X s ==X X *
0 ] 2 3 -] hd ©
Figure 4,

The Marksman Firing at a Target
With Fixed Firing Times and With No Delay

time of fiight, The solution may be written down at once:

1

h(t) = P(t=na) = pqn- n=1l,2,¢0e0 (13)

and

£(t) = P(t=natt) = pd" 1.  n=1,2,... (14)
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I1I, THE NO-DELAY DUEL

A. Random Firing-Times

If we let TA and TB be the random times at which A and B respectively

fire killing rounds, then Figure 5 illustrates the ways that various outcomes
may occur. Note that Th and Ty are their respective times-of-flight, which

we take to be random for the moment,

i * N
X *
0
N ¢

¢——— REGION | REGION 1I REGION il—

Figure 5,
The No-Delay Duel with Random Firing Times

In Figure 5, if TB falls in Region I, then B wins; if it falls in Region II,
both contestants are killed, and we call the outcome a draw; if it falls in
Regicn III, A wins,

Thus, the probability that A wins is

P(A) = P (TA+T A<TB) .

This means that if A's time-of-flight is added to A's time-to-kill we can
immediately use the results of the fundamental duel [1] by replacing
¢A(u) by TA(u) = ¢A(u)wA(u) where the notation carries on in an obvious
way from the marksman results given above., The subscripts refer of course

to a particular contestant. Thus,
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P(A) = 5 E b (=) 8, (-u) [0 (w)-1] &2 (158)
- 1/2 + 50 (p)[+° by () oy (-0)e () L2 (15b)
1 du
- RCRUCRINER (150)
1
"l fu A S (15d)

where (P)J means the Cauchy principal value of the integral and J i J mean
L ‘U
contour integration in the complex plane around the contours shown in Figures

6a and 6b, respectively., The radius p is finite but less than the distance to

(a) Figure 6. (b)
The Paths of Iategration for Equations

(15¢), (15d), (16b), (19¢), (20b), (30a)
and (30b)o

the nearest singularity, and of course, the integral must vanish on C as R,
The conditions under which contour integration may be used have been shown

[1] to be thpse in which f, _(t) are differentiable functions of bounded

A,B

variation and in which 1lim f(t)=0, This holds throughout the remainder of the
o ]

paper.
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P(B) is obtained by interchanging A and B in (15) and draws are given by

P(AB) = 1 - P(A) - P(B)

1
W emam— - - - (
201 | _ 9, (=u) o, (u) (¥ (u)=¥, (~u) Jdu/u (16a)
- o ¢, (=u)o_ (u) [y (W)=, (=u)] du/u . (16b)
oni IL,U SRS L
Example &4
Let all the density functions be exponential with L and r, as tke rates
of fire and v, and 1, as the mean times-of-flight, Then, from (15d),
P(A) = =k I 1| [ _PaTa PR'8 | du
2ni L l+irAu } pArA+iu pBrB-iu u
_ 1 PATA \ 7
141 ,PpTp I’1x"A+”13"'13'

The part in brackets is the solution to the corresponding fundamental duel with
zero time-of-flight. Thus, the coefficient in front corrects the fundamental
duel to include time-of-flight, Clearly, time-of-flight can be very important
since for a given PpTp the correction factor may vary from 0 to 1 depending

on the value of 7,,

A

In a similar manner

PAYAPBIB "B (1+"APATA) + TA(1+"8PR™B) 1

P(AB) =
(1+erAr A) 1+ A"B"n) (p AT A+pBrB) (18)

For the case of fixed time-of-flight, which is perhaps of more practical
interest than the random case, the general solution is given by replacing

wA(u) in (15) and (16) by exp[itAu] where appropriate. Thus
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1 du
P(A) Tl [i: exp[-irAu]¢A(-u)[¢B(u)-1] m (19a)
1
® Sh1 (P)J': exp[-i'rAuNA(-u)QB(u) du/u (19b)
1
= [L exp[-irAu]¢A(-u)¢B(u) du/u , (19¢)
and
P(AB) = =- 0,00, (w) [exp[ityul - expl-ir,ul) il (20a)
271 ) ATYUB B A u
i [ explitoule (~u)o ()2 - =i | expl-it.u)e. (~u)o. (uv) 2 . (20b)
2ni U B A B u 2ni L A A B u °
Example 5
The exponential assumptions in Equation (19c¢) give
P,.T P
1 A”A BB du
P(A) = —-I exp[=it,u] - —_—
2ni A pArA+iu PRy iu/ u
] PATpCXP [-PyTpT, ] (21)
?
PATA'PRTR
end
p,Tr P ! p,r pPT \
1 AA BB du 1 : A A BB du
P(AB) = o= J expit_ul - = s exp[-it, u) - - —_
2ni B pArA+1u PpTp iuju 27l JL A pArA+1u Pplp iu| u

pyrp(d=explepyrot, 1) | prrp(-exp[-p,r,7.1)
PATp t PpTg

(22)

In this case the correction factor in P(A) is exp[-pBrBTA] which apain may vary

from 0 to 1 depending on TA'
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B. Fixed Firing-Times

Let al and b1 be fixed times between rounds fired. The ratio allb1 is

assumed to be rational and a/b is the reduced ratio if 81 and b1 contain a

common factor. That is, a/b is relatively prime., We shall only consider the
important case where the times-of-flight are fixed at Th and T respectively.
We have previously [4] shown that if A has fired j rounds then B has fired

[j%] rounds where the notation [x] means the largest integer less than ovr equal

to x. Let us first consider how A may win., In Figure 7, if A fires the

A
o (o] o o
A e SR s! SO ot o N g 5
0 1 2 3 { '
| '
{ |
! :
| |
by b by L b by o
B X x—...——x X X' X: 7
0 1 2 k |4_ TB |
Figure 7.

The No-Delay Duel with Constant Firinpg-Times

killing round on the th'trial, then it hits at time jal+ and clearly B must

A
fail every firing time in the interval (O,jaI+TA). The number of rounds fired

38,7
by B in this interval is [—<==] = [ja/b + Tﬁ/bll' 0f course, we must
1 )

account for the possibility of A winning on any round, Thus

P =, L 4y ey A (23)
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and similarly for B,

j-lq [jb/a+1'B/a1] (24)

P(B) = p, ) A A .

i=1

In the case of draws, we refer again to Figure 7., If A fires a killing
round on the jih- trial, then, for a double kill, B may fire a killing round

anywhere in the interval (ja1+TA, jal_ TB). B's kt—h- round (fired just prior

jal-TB th
to this interval) is his <—1;-— round. The notation (x) means the maximum
1

of the largest integer less than x or zero. Clearly the number of rounds

r a
Jagtt,- Gb TB/bl )b1

T « For the moment let

included in the interval is [
1

(j% - TB/bl) = (x). Thus
[j_aib-i-TA/bl - (x)]-1

FE | +k
P(AB) = p,p, 21 a; qb(x>

. k=0
=y (ja/b-TB/bl) [ja/b+rA/b1]
=p, L gy g - qp . (25)
i=1
Example 6
a
Let -b—l- = ¢, i,e,, a=¢c, b =1, vhere ¢ is a positive integer. Then
1
from (23)
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- et /b, ]

SCRL N a7,
=1

[TA/bll +e o
= P95 1
J=0

[tA/bll +c

P4
. -AB . (26)

C
1~q,9,

(2,35’

In 1like manner,

j-1 (JC'TB/b].) _

o [jett,/a ]
ZlqA 1y g N1

P(AB) = Py
A

The second series in the expression above is simply P(A). The first must be

iTn/b1]+1
broken up into two series, one for j < |— . = R, and one for j > R.
Thus,
R 3-10 T3 Hestplty)
P(AB) = p, jzlqA G te, L oa q - P(A)
j=R+1

je=[tp/b, 1-1

R v 4-1
=l-gq,+p, ] q q - P(A)
A YA jufHl A B
a [t./b.] + )
« ( c-a+ [-c-]c TA 1] =
o [-c-ljl_pAqB _pAqB >
qA 1 - c 1 c ? (27)
q,9g - 9,9,
)

where o = [tB/bll +1 .



19 May 1966 19 SP-1017/009/00

IV, THE DUEL WITH DELAY

Only random firing-time will be considered in this section. The preceding
discussions show that the general solutions for this case have the same form
as for the no-delay case and are given by equations (15) and (16). The only
difference is that the distributions of times-to-kill are somewhat different.
These distributions have been developed under the marksman section and their

characteristic functions are (see Equation (8)),

% Ppo (W)
¢, (u) = 5= R (28a)
AT T Toq, 8, (W, (W
and
Ppd, (u)
B'B
$_ (u) = . (28b)
B 1-qB¢B(u)¢B(u)
Example 7
Again using exponential density functions with T, and I, as rates of
fire and T) and L as mean-times-of-flight, we have from equations (15¢) and
(28), 1 (pArApBrB)
I+it,u
1 A du
P(A) = =
2ri q,r qQ,r u
+iu - LA ro-iu - BB
TA T+t ul| '3 -1t u

The integrand has two poles in the lower half-plane at

2
(1+rBrB) i;v/(l-TBrB) = ATBqun .
2t

B

uw= =1

After much manipulation, using the residue calculation,
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2
PATALPATATE PRt aTp= (gt TA TRt TA TR T Tp) (PprpTp=1-TpTp) ]

P(A) = . (29)

(pArAjB-pBrBtA)2+(TB+rAtAtB+rA+rBTAtB)[pArA(1+rBrB)+pBrB(1+rAtA)]
We shall not continue this example since the calculations, although straight-
forward, are lengthy. The case in which both contestants have fixed time-delay
again runs into the problem of essential singularities in the denominator and
will not be attempted.

The fixed firing-time case will not be developed. However, it is easy
to see that all the results in Section IIIB hold if one simply replaces
21474

b1+'rB

by a b, by b

3 17740 By 1

if numerator and denominator contain a common factor.

+ips and let a/b be the reduced ratio of

It is inatructive to look at some cases of mixed procedures.

V. MIXED PROCEDURES

Clearly both sides in the duel need not use the same procedure in respect
to delay or no-delay. Also the weapons may have such different characteristics
that although time-of-flight may be significant for one, it may be entirely
negligible for the other, There are many such possible combinations and we

shall look at only two here. The is best done by example.

Exaggle 8

Let us assume that A has a fixed time-of-flight, Tyo and uses the delay
procedure, while B has essentially a zer» time-of-flight. Then one form of

the general solution is
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P(A) = E%T ILexp[-irAu]¢A(-u)¢B(u) %2' (30a)
1 du
P(B) = 1 t35.1 fu¢5(-U)¢A(U) — (30b)
P(AB) = 1 - P(A) - P(B) , (30¢)
where
p,%,(u)
ATA
¢A(u) l-qA¢A(u)exp[irAu] (31a)
. ppdy (u)
B(u) = W . (31b)
Again, for exponential density functioms,
p,r,expl-p,r.7,]
P(A) = A A BB A : (32a)
r,(1=q, exp[-p rpT, D+ pory
and
p,r,(1-exp[-p,r .7, 1)
P(AB) = —meitth BBA . (32b)

- o T
ry(1-q, expl-pyryT, D+ pyry
In this case we see that, compared to the fundamental duel, P(A) is reduced

by even more than the factor exp[-pBrBTA].

Example 9

For this example let us suppose both combatants have fixed times-of-flight
but that A uses the delay procedure while B uses the no-delay procedure, Then
P(A) is precisely the same as in the preceding example and the exponential
assumption gives equation (32a). However, P(B) and P(AB) again contain

essential singularities and will not be attempted,
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VI. DUELS WHERE TIME-OF-FLIGHT VARIES LINEARLY WITH TIME

As a final problem let us consider a situation in which both A and B use
the no-delay procedure, both have continuous random firing-times, and times-of-
flight vary in some linear fashion. This latter feature might be approximated
if either one or both contestants are moving at a fairly constant velocity.

Consider Figure 8.

A A
. O
A1m {
‘ I
|
/////// i a
]
H s
. Ly
a-b
s TA
Figure 8,

Linearly Increasing Time-of-Flight

A's time-of-flight, Tyo increases linearly with elapsed time from a value b
to another value a and then remains at a. This corresponds to a situation in
which A and B are separating at a uniform rate until some maximum separation
occurs, which then remains constant. B's time-of-flipght varies similarly,
Other situations are included in this formulation as we shall see later., The

probability that A wins is
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P(A) = P {TA+1AiTB}
a~b
P{TA+b+mTAiTB} OiTAim
a-b
+P{TA+a£TB} TA:m

where, as before, TA, TB are A's and B's times-to-a~kill, The parameter m is
directly related to the rate at which separation is occurring. P(A) may now be

written in terms of our usual density functions as

a~b
P(A) = J o hA(tA)th fth(tB)dtB + [mhA(tA)th fw hB(tB)dtB . (33)
L (1+m)t +b -a;—b i

First, we shall make two different transformations in (33). For the first

double integral, let t, = &b, for the second, let t, = £~-a, This gives

A 14m’ A
a=b
Tas_b.ii_
P(A) = ! hA(1+m) T th(tB)dtB + [“ hA(E-a)dg [th(tB)dtB . (34)
b E at-b'a 4

m
We have previously shown [1] that the inner integrals may be replaced by

1 e-iu£[¢B(u)-1] du

2 iu *

When this substitution is made and the order of

integration reversed,

2D 4,
[¢,(u)=1]du m

&by g
Al4m’ (1+m)

(35)

1 ~iug
+ -2'"_1 r T ———— e hA(E"'a)dE .

m
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Again we shall transform the inner integrals by n = %i% for the first and

n==E=a for the second. Thus

ash
m
P(A) = 5or E[¢B(u)-1]a-ibu du/u jo i WO
+5eT E [op(w-11e2" dusu r el (e (36)
a-b
o

It can be shown that for density functions of our type,

a -iwa
I el (ryde = = r st flze ] oo
0 2xni 1 w

Using this result on the inner integrals we have, after some simplification

P(A) = 2—11'1- re'ia% A (=l (w)-1] ﬁ-‘l

. J-»a{exp[-i (—"“;’n-’-’-) ul-1} r-» [¢B(w)-1]{e-ibwtbA[u-(1+1n)w]-e-iaw<bA(u-w)}dw

2 u w
4 (37)

+

This result also applies for the situation depicted in Figure 9 if we replace

m with -m in equation (37). Of course, a cannot be negative, so if the sloping
line goes to the x-axis simply let a = 0. This represents the situation

in which the opponents are closing on one another. The expression for P(B)

may be written down at once by interchanging A and B in (37) and replacing

the parameters a, b and m by the corresponding ones for B, say ¢, d and n.

As usual, P(AB) = 1- P(A) - P(B), which completes the solution.
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a-b
m
Figure 9.
Linearly Decreasing Time-of-Flight

Example 10

Again for exponential firing times,

P
AA’ )
P(A) = du
(pAr +1iu) PR iu

o pA A ]—w{ exp{-i(—)ul -1| r« il s
== Pp B-iw [pArA-i[u-(1+m)w] = } dwidu .

pArA-i(u-w)

The poles in the lower half-plane (both for the first inteprand and the inner

integrand of the second expression) are at u,w = -ipBrB. From which
P,r, expl-ap;r,]
P(a) = T, +p,.r
PATA Pp"B
a-b - u "
i [ exvl-(r)ul-l}r exl-bpyry]  exploapgryl ] g,
2ni = u lpArA+(1+m)pBrB-iu pArA+pBrB-iu

. The integrand has two poles in the lower half~-plane at u = - 1 [pArA+(1+m)pBrB]

3 and u = - { [pArA+pBrB]. Using these,
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. a-b 1 = 1

7 1 B} ‘
PprpH(14m)pyr (38)

We may immediately get the case of opponents who are closing on one another

by setting a = 0 and replacing m by =m,

1 1

= " -|Ri - -
P(A) = p,r, exp[ prrB]'{exp[ (mi[pArA+(1 ”)pBrﬂ PoT, Pty  PT H(I-m)pyT,
1
PATAH(1-mpyry (39)

Two limiting cases are easily checked from (39). If m*~ we should pet the

fundamental due with zero time-of-flight, which we do, i.e.,

Pafa
PATA PRI

P(A) = . (40)

If m = 0 we should get the fixed time-of-flight case or

PAT, exp[-prrB
PATA*PRTR

P(A) = ) (41)

which again checks, since we interpret b to be Tpe

If we let a»~ in (38), the expression is for 7, increasing without limit.

A
Thus

(42)
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This differs from the fixed time-of-flight case only by the (1+m) factor in the
denominator. Since this factor may vary from 0 to = it may change P(A) not at all,

or reduce it to zero, or put it at any value in between,

VI. CONCLUSION
Various situations in which time-of-flight may be sipgnificant have been
examined, General solutions to the problem of the marksman versus a passive
target and to the problem of the duel have been given, with examples of each.
In all cases, as one might expect, if time-of-flipght is large relative to
the other parameters (particularly with respect to time between rounds fired)
it has a major influence on the outcome., Some idea of the quantitative

effect may be obtained from the examples.
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