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ABSTRACT 

The fundamental duel in the Theory of Stochastic Duels is extended 

to include projectile time-of-flight. As a preliminary, the marksman firing 

at a passive target is studied. Two firing procedures are assumed.  In 

one, refiring proceeds as rapidly as possible, whereas in the other the 

duelist delays until ha  observes the effect of each round. Both fixed 

(discrete) and continuous (random) firing-times are considered. Also included 

is the case where time-of-flight varies uniformly with elapsed time. General 

solutions and examples are given. The analysis indicates in a quantitative 

way how time-of-flight may radically influence the outcome. 

1 

* 
Presented at the Twenty-Ninth National Meeting of the Operations 
Research Society of America, 19 May 1966, Santa Monica, California. 
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I.     INTRODUCTION 

In a number of previous papers   [l]-[9], the basic one-versus-one stochastic 

duel has been developed and then extended to include such things as limited 

ammunition supply,  limited time-duration, surprise, and variable kill probabil- 

ities*    In addition,  to some extent,  the case of more than two adversaries has 

also been considered.    Our principal concern here is to extend the fundamental 

duel to those situations in which projectile time-of-flight has a significant 

effect on the outcome.    Previously,  time-of-flight has always been assumed 

to be zero.    There are, of course, many situations in which time-of-flight 

plays an important role in combat.    Clearly,  one such case occurs where 

the distance between the combatants is rather large.    An example is  the 

artillery counter-battery duel. 

In the basic model,  two opponents, A and B, start with unloaded weapons 

and with unlimited supplies of ammunition.    They load  (starting together at 

time zero)  and fire, repeating this process until one or the other or (under 

certain conditions) both are killed.    There is no time-limit on the duel 

thus making certain one of the two (or three)  outcomes occurs.    On each 

round fired, A has a fixed probability, p  , of killing B, and similarly, 

B's kill probability is p.,.    The time, between rounds  fired is different for 

each contestant and is  taken to be either a random variable or a constant. 

Finally, we assume each contestant's time-of-flight to be either a random 

variable or a constant. 
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N Time~of-flight is incorporated in two different ways. In the first 
i 

procedure, as soon as the weapon is fired it is immediately prepared and 

retired without delay. Thus, as far as the winning combatant is concerned, 

the succession of events is a series of firings (separated only by the time 

between rounds); these events continue until the killing round is fired, and 

then the actual kill occurs at a later time thus including the time-of-flight. 

nf course, it is possible that more rounds may be fired in the time between 

the firing of the killing round and the time it lands, but this is of no 

consequence. 

In the second procedure, the first round is prepared and fired, and the 

contestant waits until it lands, lie then prepares and fires the second 

found, and so on. This night correspond to artillery under observed fire 

conditions where each round (salvo, volley) is observed and corrections made 

before the next one is fired. The principal objective of the analysis is 

to determine the probability of the three outcomes (with time-of-flight 

included, the probability of a draw is always non-zero). 

It is convenient to consider first the simpler problem of the marksman 

firing at a passive target. This problem is intrinsically interesting, and 

more importantly, the duel is mathematically equivalent to a situation in 

which two marksmen are firing at two targets and the first one who scores a 

hit is declared the winner. 

In what follows we shall derive the general solutions to a number of 

models and then illustrate the results by example. In all cases where 

continuous density functions are employed we use the negative exponential 



m   i 

19 May 1966 5 SP-1017/009/00 

density function in the example.    This is done for simplicity and economy. 

Although examples using the negative exponential can be handled directly without 

the use of characteristic functions  (which use is  fundamental to our method), 

they do illustrate the method, which is our purpose. 

II.     THE MARKSMAN FIRINH AT A PASSIVE TARGET 

The objective is to derive the probability density function of the time 

to a hit. 

A.    Random Firing-Times 

In this model the time between rounds fired by the marksman is a 

continuous random variable with probability density function f(t).    We shall 

subdivide this section into two parts,  the first describing the procedure 

in which there is no delay between rounds fired, and the second the procedure 

with delay. 

1.    No Delay Between Rounds Fired. 

In this case the marksman loads, lays,  and fires at his normal 

rate not waiting to observe the effect, until finally one round hits the 

target.    Note that for long times-of-flight and a fast rate of fire there 

may be several rounds in the air at once.    If the random variable,  time 

between rounds    is denoted by T, and if T  is the random variable,  time-of- 

flight,  then one complete sequence might appear graphically as in Figure 1. 

Let T    be the time at which the killing round is fired and T   be the 
F K 

time at which the target is hit.    Since the probability of a hit on each round 

fired is not unity,  and since the time between rounds fired is a random 
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•X- 
1 

-X- 
2 

•X- 
3 n-1 

 0" -© 

J 
?    - TIME AT WHICH jth ROUND IS FIRED 

@ - TIME AT WHICH KILLING ROUND iS FIRED 

Q  - TIME AT WHICH TARGET IS HIT 

Figure 1. 

The Marksman Firing at a Target with Random Firing-Times 

and with No Delay 

variable, T    and T    are clearly random variables.    We shall proceed as 

in the former papers.    First, let us derive the probability density function 

of T_ which we shall call h(t).    If p is the marksman's hit probability 

and q ■ 1-p,  then 

h(t) - pf(t) + pq f(t)*f(t) + pq2 f(t)*f(t)*f(t) + ... 

+ pqn'1fn*(t) + .   .   . 

-P    I    qJ-1fj*(t) 

or, converting both sides into characteristic functions, 

*(u) - p I    qj"%j(u) 
l-q*(u) 

(1) 
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where 

* denotes the convolution integral, 

n* denotes n iterated convolutions of a function with itself, 

4>(u) ■  e  f(t)dt is the characteristic function of f(t), 

and 

$(u) is the characteristic function of h(t). 

Thus, inverting, 

h(t) , L f V^a2du (2) 

and now if the density function of T is g(t) , then the density of T is 

Ht)  = h(t)*g(t) 

or in terms of characteristic functions 

T(u) = *(u)i|;(u) (3) 

where 

ij>(u) is the characteristic function of g(t), 

and 

T(u) is the characteristic function of J-(t). 

Inverting (3), 

*(t) ' 27 
f"° e"iutt<;u^(;u)du a) 

l-q$(u)     ' K  } 

In the important special case where T is a constant, then g(t) Is 6(t-T) 

and 4*(u) * e   and 
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W       2ir J^        l-q*(u) (5) 

Example 1 

Let 

f(t) - r e"rt and g(t) - ^   e"t/x 

where r is the rate of fire and T is the mean time-of-flight. 

Thus, from (A), 

Then 

C-iut   . e du 
(pr-iu)   (1-ixu)     ' 

The integrand has two poles in the lower half of the complex plane at u • -ipr» 

and u ■ - —•    This expression may be integrated around the contour in Figure 2, 

Figure 2. 

Path of Integration in Examples 1, 2, and 3 

As R-*» the integral on C tends to zero and we have by the residue theorem 

pr(e-Prt-e-t/T)    . (6) Ut) 1-prx 

Example 2 

Similarly if g(t)  is a constant, T, and f(t)  is as in Example 1, we 

have from (5), 
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,.       -iu(t-T), 
£(t) » 2L [      * jdu r J —CO 

2ir   I pr-iu 

- pre-Pr(t-T) t ± T (7) 

- 0   . t   <   T 

2. With Delay Between Rounds Fired. 

This case differs from the previous one in that after each firing 

there is a delay until the round lands.  Hraphically, this appears as follows 

(the notation is the same as before): 

-x 0—H3 0 
n-1 

x    - TIME AT WHICH jth ROUND IS FIRED 
J J   

[x] - TIME AT WHICH CORRESPONDING ROUND LANDED 

@ - TIME AT WHICH KILLING ROUND IS FIRED 

0 - TIME AT WHICH KILLING ROUND LANDED 

Figure 3. 

The Marksman Firing at a Target With Random 

Firing Times and With Delay 
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Thus, the time to fire the killing round is 

h(t) - p I    ^"^(t^'^it) 

or 

9W      l-q«j.(u)*(u)     ' 
(8) 

Inverting, 

Mt}      2* J        l-q<Ku),Ku)      » 

and 

*(t) 
2it  I 

» »00 

e"iut T(u)du fen « — 00 

e        *(u)^(u)du 

2 

For g(t)  a constant, T, 

_ f4" e" ut<fe(uH(u)du 
It  J^     l-q<J>(u)lKu) 

t(t)   - fc 

Ceo       _i 

-»      1-, 

-iu(t-x)A/ . . 
<Ku)du 

qe      4(u) 

(9) 

(10) 

(ID 

Equation  (11)  is difficult to deal with because of the essential singularity 

in the denominator.    It is included for completeness. 

Example 3 

Using the same assumptions as in Example 1, 

-iut 
Kt) 

2TT   I 
' —00 

du 
(r-iu)(l-iTu)-qr    ' 
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The poles are at u » -(i/x) i(l+rx) + V(l+rT) - 4pn >■, which Rives on integra- 

tion 

«O . tS  e-(t/T)(1+")sl,hQ;t/x?V<l,rT>
2-. pr,3 _ (u) 

V(l+rt)2 - Aprt 

It is obvious that the inclusion of time-of-flight can greatly change the 

outcome.  For instance in Example 2, we may write 

Ut) - H0(t)e
prT  , 

where l^it)  is the solution with zero time-of-flight.    Clearly the factor 

prx er      can range from 1 to », depending on the value of the parameters p,  r,  and 

T, which is to be expected. 

B.    Fixed Firing-Times 

We shall not consider all the possible cases here, as they are not all 

physically meaningful.    Thus only the no-delay situation with  fixed time-of- 

flight is given  (see Figure 4).    The time between rounds is a, and T is  the 

a        a       a 
 X X X- —x:—~—© ——-0 0        12       3 n-1 

Figure 4. 

The Marksman Firing at a Target 

With Fixed Firing Times and With No Delay 

time of flight. The solution may be written down at once: 

h(t) - P(t-na) - pq11"1      n-1,2  (13) 

and 

H(t) - P(t-na+r) - pq""1 .   n=l,2,... (14) 
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III.    THE NO-DELAY DUEL 

A.    Random Firing-Times 

If we let T.  and T_ be the random times at which A and B respectively 
A B 

fire killing rounds, then Figure 5 Illustrates the ways that various outcomes 

may occur. Note that T. and T_ are their respective times-of-flight, which 
A      B 

we take to be random for the moment. 

REGION I 

 *H— TA—H 
 <x) 0 
TB—4 

■REGION II- «—REGION III— 

Figure 5. 

The No-Delay Duel with Random Firing Times 

In Figure 5t if Tß falls in Region I, then B wins;     if it falls in Region II, 

both contestants are killed, and we call the outcome a draw; if it falls in 

Region III, A wins. 

Thus, the probability that A wins is 

P(A) - p <WV  • 
This means that if A's time-of-flight is added to A's time-to-kill we can 

immediately use the results of the fundamental duel  [1]  by replacing 

*.(u) by T.(u) ■ 4>(u)iJ>  (u) where the notation carries on in an obvious 

way from the marksman results given above.    The subscripts refer of course 

to a particular contestant.    Thus, 
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-1/2+JL (?) r *A(.U) ♦/.«) *B(u) ji 

2*1 JT ♦A(-„)«A(-u)*B(u) * 

1 + 2TT J *A<"U )*A(-u)*B(u) du 
u 

'1 where (P)  means the Cauchy principal value of the integral and M 

(15a) 

(15b) 

(15c) 

(15d) 

mean 

contour integration in the complex plane around the contours shown in Figures 

6a and 6b, respectively. The radius p is finite but less than the distance to 

(a) Figure 6. 0>) 

The paths of Integration for Equations 

(15c),   (15d),  (16b),  (19c),  (20b),  (30a) 
and (30b). 

the nearest singularity, and of course, the integral must vanish on C as R-*». 

The conditions under which contour integration may be used have been shown 

[1] to be those in which f. _(t) are differentiable functions of bounded 
A,J> 

variation and in which lim f(t)-0. This holds throughout the remainder of the 
t-x» 

paper. 
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\* P(B) is obtained by interchanging A and B in (15) and draws are given by 

P(Aß) - 1 - P(A) - P(B) 

"2^1 I  *A(-u)*B(u)[t)/B(u)-^(-u)]du/u (16a) 

. JL f  *A(-u)*_(u)[i|/_(u)-*.(-u)l du/u . (16b) 

Example A 

Let all the density functions be exponential with r. and r as the rates 

of fire and xA and Tn as the mean times-of-flight. Then, from (15d), 
A      0 

P*rA     PDrt p(A).a.f   1  1   ?ArA      PBrB   du 
2niJL lfiTAul  pArA+iu   pBrB-iu u 

VA     \ (J7) 

1+TAPBrB   |PAWBJ 

The part in brackets is the solution to the corresponding fundamental duel with 

zero time-of-flight.    Thus, the coefficient in front corrects the fundamental 

duel to include time-of-flight.    Clearly,  time-of-flight can be very important 

since for a given PRrR the correction factor may vary from 0 to 1 depending 

en the value of T.« A 

In a similar manner 

. "AVliWlim-WA) + TA(H-VBr1» 1 
(1VA)(lt'AV»><VAV»» <18> 

For the case of fixed time-of-flight, which is perhaps of more practical 

interest than the random case,  the general solution is given by replacing 

i|> (u)  in  (15)  and (16) by expflt.u]    where appropriate.    Thus 
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P(A) 2iri  I 
• —00 

?JTJL 

exp[-iTAu]*A(-u)[*B(")-l] ~ 

cxp[-iTAu]*A(-u)*B(u) du/u 

2id   ,    exp[-ixAu]*A(-u)*B(u)  du/u    , 

(19a) 

(19b) 

(19c) 

and 

'(AB)  - ^i- j *A(-u)*B(u)|eXp[iTBu] - exp[-iTAu]j ^ (20a) 

JL f    exp[iV]*A(-u)*B(u)^ - ^ J    exp[-iVl y-u) yU) ^ .   (20b) 

Example 5 

The exponential assumptions in Equation (19c) give 

PC A) 2iri 
expf-it.u]I r. 

L A     \VA+iu 

PBrB     \ du 
PBrB-iu| u 

PArAGXpf-pBrBTA] 

"AWB 

(21) 

end 

P(AB) 2iri 

PArA PBrB     \ du        if 
exp[iT-.u]        '   ''. ——T"   ~""77        exp[-iT.u] 

U B        PÄrA+1U        PßViu    U        U± JL A 

/pArA     \ 
PArA+1U 

Pnrn     \ B B du 
u PBrB"iU 

PArA(l-exp[-pBrBTA]) + p^U-exp^r^]) 
(22) 

1 A A  • B B 

In this case the correction factor in P(A) is expf-p-.r^x ] which apain ray vary 
J>   J)   A 

from 0 to 1 depending on T  . 
A 
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B.    Fixed Firing-Times 

Let a.  and b. be fixed times between rounds fired.    The ratio &./b.   is 

assumed to be rational and a/b is the reduced ratio if a.  and b.  contain a 

common factor«    That is, a/b is relatively prime.    We shall only consider the 

important case where the times-of-flight are fixed at T    and T    respectively. 

We have previously [4] shown that if A has fired j rounds then 8 has fired 

[jH rounds where the notation  [x] means the largest integer less than or equal 

to x.    Let us first consider how A may win.    In Figure 7, if A fires the 

°1    „     °1     ..   al -X ! X- 

^L_x.      b< x x x 1 x—r 1 2     k    k'.—H 
Figure 7, 

The No-Delay Duel with Constant Firing-Times 

th killing round on the j— trial, then it hits at time ja.+t    and clearly B must 

fail every firing time in the interval (Ojja.+T.).    The number of rounds fired 

Jal+TA , by B in this interval is  [    r      ] -  [ja/b + f./bj].    Of course,we must 

account for the possibility of A winning on any round.    Thus 

"<« " »4 <A
J-yWb+tA/bl' (23) 
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and similarly for B, 

P(B) - pB I qJ-V"b'-V-ii 
j-l 

(24) 

In the case of draws, we refer again to Figure 7.  If A fires a killing 

round on the j— trial, then, for a double kill, B may fire a killing round 

anywhere in the interval (Ja^^t Ja.-T ). 3's k— round (fired just prior 

to this interval) is his round. The notation (x) means the maximum 

of the largest integer less than x or zero. Clearly the number of rounds 

included in the interval is 

(jf - TB/bj> - <x>. Thus 

JW^b- Vbl>bl 
For the moment let 

[ja/b+TA/b1 - (x> ]-l 

»(»> - PAPB j »J-1 )<,„<*>+k 
1=1       L—- 

k=0 

PA J qA A j-l A 

j-l/ (W'h^ 
~ ^ 

[ja/b+TA/b1] 
(25) 

Example 6 
a. 

Let c, i.e., a ■ c, b ■ 1, where c is a positive integer. Then 

from (23) 
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P(A) - P.  I qA
j"\ 

UeH^J 

IVbl' + c 
P

A"B 

VB 

j-0 
I <«u«,c>J 

AnB 

^VB 

(26) 

In like manner, 

P(AB) - P> 

The second series in the expression above is simply P(A). The first must be 

rtyi» i+i- 
broken up into two series, one for j <_   '      ■ R, and one for j > R. 

Thus, 

R -        dc-yb^ 
,(AB) " PA   lA'X + PA    I   *{~\ - P<A> 

J"1 j-R+l 

-  1 
93 

- <U + PA      l 
J-l 

Jc-[TB/bl]-l 

*A      'A 
j-R+l 

qA    qB - P(A) 

1 - qA   i1 
P

AqB 

c- a+  [—]c c 
[TA/b   ]   +   C 

1 " Vß 

PAqB 

1 " qAqB 

. (27) 

where a •  [tB/b.] + 1 
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IV.     THE DUEL WITH DELAY 

Only random firing-time will be considered in this section.    The preceding 

discussions show that the general solutions for this case have the same form 

as for the no-delay case and are given by equations  (15)  and  (16).    The only 

difference is that the distributions of times-to-kill are somewhat different. 

These distributions have been developed under the marksman section a«d their 

characteristic functions are  (see Equation  (8)), 

PA<f>A(u) 
*A(U)  " 1 .   r v ,   , A     , (28a) A 1-q  i>  (u)if).(u)     ■ 

and 

JATA 

PBVU) 

*n(u)  » ■: .   , v ,   ,  N     . (28b) 
Bv l-qB4>B(uHB(u) 

Example 7 

Again using exponential density functions with r.  and r    as rates of 

fire and T    and T_ as mean-times-of-flight, we have from equations  (15c)  and 
A 13 

<28)' ,    f T^d™^ P(A,  - &    f A du 
'L   I    .. VA ' r.+iu - "A l+ixAu 

A 

r -iu - 
VB   1   U 

■B l-iV 

The integrand has two poles in the lower half-plane at 

(1+TBrn> ±W-v/T*w7   . 
— * 

After much manipulation, using the residue calculation, 
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P(A) -  PArAIPArATB2-pBrBTATB"(TB-t-rATATB+TA+rBTATB) < VBV^VB* 
3     # (M) 

(VAVpBrBTA)2+( V'AYB^AV^B5
 
(pArA(1+rBTB)+PBrB(1+rATA) ] 

We shall not continue this example since the calculations, although straight- 

forward, are lengthy. The case In which both contestants have fixed time-delay 

again runs into the problem of essential singularities in the denominator and 

will not be attempted. 

The fixed firing-time case will not be developed. However, it is easy 

to see that all the results in Section IIIB hold if one simply replaces 
al+TA a, by a,+T., b. by b,+T_, and let a/b be the reduced ratio of . . - 1    1 A" 1    IB" h,+x_ 

if numerator and denominator contain a common factor. 

It is instructive to look at some cases of mixed procedures. 

V.  MIXED PROCEDURES 

Clearly both sides in the duel need not use the same procedure in respect 

to delay or no-delay. Also the weapons may have such different characteristics 

that although time-of-flight may be significant for one, it may be entirely 

negligible for the other. There are many such possible combinations and we 

shall look at only two here. The is best done by example. 

Example 8 

Let us assume that A has a fixed time-of-flight, T , and uses the delay 

procedure, while B has essentially a zen time-of-f light. Then one form of 

the general solution is 
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P(A)  " 27T   j exp[-lxAu]*A(-u)*B(u) &L (30a) 

P(B)«l+~-    f fr(-u)*.(u) — (30b) 
ZTTI    Jy u           A         u 

P(AB)  -  1 - P(A)  - P(B)      , (30c) 

where 
PA*A(u) 

*A<U>  = 1 T^Ts n 1- (31a) A l-qA<J>A(u)exp[ixAu] 

PR*n(u) 

V«> - T^ÖJ  • <31b) 

Again,  for exponential density functions, 

»^ PArAexp["PBrBTA] 

P(A) - —T\ : TTT. * (32a) rA(l-qAexp[-pBrBTA])., p^ 

and 
p r (l-exp[-p r T ]) 

P(AB) j—- : T4V!  • (32b) rA(l-qAexp[-pBrBTA])+ pßrB 

In this case we see that, compared to the fundamental duel, P(A) is reduced 

by even more than the factor exp[-p_r_T. ]. 
Ü   a   A 

Example 9 

For this example let us suppose both combatants have fixed times-of-flight 

but that A uses the delay procedure while B uses the no-delay procedure. Then 

P(A) is precisely the same as in the preceding example and the exponential 

assumption gives equation (32a). However, P(B) and P(AB) again contain 

essential singularities and will not be attempted. 
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VI.    DUELS WHERE TIME-OF-FLIGHT VARIES LINEARLY UITH TIME 

As a final problem let us consider a situation in which both A and B use 

the no-delay procedure, both have continuous random firing-times, and times-of- 

flight vary in some linear fashion.    This latter feature might be approximated 

if either one or both contestants are moving at a fairly constant velocity. 

Consider Figure 8. 

•> k 
/ 

'A 
A™ 

/ 
a 

♦ 
b 

♦ \] 

a-b T 
m A 

Figure 8. 

Linearly Increasing Time-of-Flight 

A's time-of-flight,  TA,  increases linearly with elapsed time from a value b 

to another value a and then remains at a.    This corresponds to a situation in 

which A and B are separating at a uniform rate until some maximum separation 

occurs, which then remains constant.    B*s time-of-flight varies similarly. 

Other situations are included in this formulation as we shall see later.    The 

probability that A wins is 
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I 

I 

P(A)  - P  (TA+TA <.Tß} 

• P {T. + b + i T    < TJ 0 < TA  < — A A —    B —   A —   m 

+ P  {TA + a < Tö} T.  > — A —    B A —   m 

where, as before, T , T    are A's and B's times-to-a-kill.    The parameter m is 

directly related to the rate at which separation is occurring.    P(A) may now be 

written in terms of our usual density functions as 

a-b 

P(A) - j    m hA(tA)dtA f hB(tB)dtB + f hA(tA)dtA f hB(tB)dtB . (33) 

0 (l+m)tA+b ^ Va 

A m 

First, we shall make two different transformations in (33). For the first 

double integral, let t. » TT~; for the second, let t. » £-a. This gives 
A  ±+m A 

?(A) -1" vi& fc fhB(vds+r v£-a)d5 rhB(tB>dtB • «4) 
b £ a-bL        £ 

We have previously shown [1] that the inner integrals may be replaced by 

i A~  e~luS[*B(u)-l] du 
■s—       " ■' . When this substitution is made and the order of 

-.00 

integration  reversed, 

Ä^+a ,     f+°°  [*R(u)-l]du    (•    m . ,        . 

><« - 2TT f —»— I      e   VÖ ?fer 
—oe b 

(35) 

1     f**  t*B(u)-l]du    p _ J - j [•.(«)-l]d«    , 
e      shA(?-a)dC  . 

a-b  , —— +a m 
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Again we shall transform the Inner integrals by rj ■ ^^ for the first and 

n " £ - a for the second. Thus , a—D 
Cm 

[♦B(u)-l]e-lbu du/u    f   e-i(1+n)n\(n)dn 
  *" 

+ 2iri 
^- J     [*B(u)-l]e~iau du/u    J    e"iunhA(n)dn       . (36) 

a^b 
m 

It can be shown that for density functions of our type, 

fa    lut-./#>% .„        1    I** <t>(w+u)fl-e~lwal   . 
j0
e   f(t)dt" iz. J_ ^w Ldw- 

Using this result on the inner integrals we have, after some simplification 

«« - Ä    !    e"iaU*AWl*B(u)-l] f- .J, r 
2wi J 

x H~{exp[-i  (^~)  u]-l)/fH>  [»B(w)-ll| 

Air '— U \''-00 

e~ W$ [u-(l+m)w]-e   «J> (u-w) l dw | du 

(37) 

This result also applies for the situation depicted in Figure 9 if we replace 

m with -m in equation (37). Of course, a cannot be negative, so if the sloping 

line goes to the x-axis simply let a » 0. This represents the situation 

in which the opponents are closing on one another. The expression for P(B) 

may be written down at once by interchanging A and B in (37) and replacing 

the parameters a, b and m by the corresponding ones for B, say c, d and n. 

As usual, P(AB) - 1- P(A) - P(B), which completes the solution. 
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Figure 9. 

Linearly Decreasing Time-of-Flight 

Example 10 

Again for exponential firing times, 

P(A) 
rA f~ ie"iau 

--'A'A+iu) 1 PBV
lu du 

VA prexp[-l(^)u]-l| p 
4 IT       '-»^ U J   /_«, - PBrB-iw 

-ibw -law e 
PArA-i[u-(l+m)w] PArA-i(u~w) dw du  . 

The poles in the lower half-plane  (both for the first integrand and the inner 

integrand of the second expression)  are at u,w ■ -ip rn.    From which 

P(A) 
pArA exPt-aPB

rB] 

VA"VB 

^ n expr-<ü=b)uMl 

2*1    J    1 u J 

exp[-bpBrR]    exp[-apBrß] 

PArA+(l+m)pBViu " PArA+PBrB-iu 
du 

I 
The integrand has  two poles in the lower half-plane at u « - i  [p r +(l+m)p r_] 

and u » - i  [p.r.4p rj.    Using these, 
A    A        13    D 
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P(A) - pArA exp[-bpBrB){e:   r-(^j[pArA+(l+In)pBrj 

+ 1 X 
VA'KWPBV 

VA+VB        
PArA+(1"hn)pBrB| 

(38) 

We may Immediately get the case of opponents who are closing on one another 

by setting a ■ 0 and replacing m by «m. 

P(A) - pArA exp[-bpBrB] H-äK PArA+(l-m)pBr 
|

P
AVVB " PArA+(1-m)pBr 

PArA+(l-m)pBrBj ' 

Bj 

(39) 

Two limiting cases are easily checked from (39). If m-*° we should get the 

fundamental due with zero time-of-flight, which we do, i.e., 

P(A) 
PArA 

PArA+PBrB 

If m » 0 we should get the fixed tlme-of-flight case or 

P(A) 
PArA exP[-bpBrB] 

PArA+PBrB 

(40) 

(41) 

which again checks, since we interpret b to be T.. 

If we let a-*» in (38), the expression is for T increasing without limit. 

Thus 

P(A)  - 
PArAexp[-bpBrB1 

PArA+(1+m)pBrB 
(42) 
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This differs from the fixed time-of-flight case only by the (1+m) factor in the 

denominator. Since this factor may vary from 0 to » it may change P(A) not at all, 

or reduce it to zero, or put it at any value in between. 

VI.  CONCLUSION 

Various situations in which time-of-flight may be significant have been 

examined, General solutions to the problem of the marksman versus a passive 

target and to the problem of the duel have been given, with examples of each. 

In all cases, as one might expect, If time-of-flight is large relative to 

the other parameters (particularly with respect to time between rounds fired) 

it has a major influence on the outcome. Some idea of the quantitative 

effect may be obtained from the examples. 
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