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The Generalized Cayley-Hamilton Theorem in n Dimensions

John S. Lew
Brown University

In 1949, Reiner(l)5 by means of the Cayley-Hamilton theoren,
obtained a canonical form for a polynomial relation between a
stress matrix and a strain-velocity matrix; since that time an
extensive theory has been developed for cinonical forms of non-
linear constitutive equations. More recently, for a polynomial
relation between ne tensor and a number of other tensors, the
probiem of finding the restirictions imposed by a symmetry group
was reduced by Smith and Rivlin(z), and by Pipkin and Rivlin(3),
to that of finding an integrity basis for a set of such tensors;
and then, for the full (or proper) orthogonal group in Euclidean
2-space Or 3=-space, such a basis was determined by Rivlin(“),
Spencer and Rivlin(S), and Spencer(G), and its irreducibility
proven by Smith(7).

In this develooment, an important tool has heen a genersliza-
tion of the Cayley-Hamilton theorem, in 2-space or 3-space, from
one to several matrix variables(B). During this time, it has
been clear that the corresponding identity in n-space, for any
particular n, could be obtained i~ a finite but discouraging
number of stepsj however the form of this relation for an arbil-

trary n has not been given. We shall obtain this form, which is

the intuitive generalization of the results in two and three

See Reference k.
See Reference 7.
See Reference 3.
See Reference 5.
See References 9,10,11.
See Reference 8.
See Reference 6.
See Referenca 9.
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dimensions, and note that, properly expressed, it is a polynomial
relation in the given matrices and their traces with all coeffici-
ents +1.

For an arbitrary real or complex nxn matrix A the Cayley-

Hamilton theorem states that

1) (-l)iAn_isi(A) = 0

0

M

where A° = I, and si(A) is the i'th symaetric polynomial in the
characteristic roots of Ae If we let tJ(A) = tr AJ for

j = 1,2,00a then the well-known relations‘”’
517 %
2) 25, = syt = t,
353 = s5ty - slt2 + t3

and so forth can be solved recursively for each Sy in terms of

tl’ooo, ti to Yield

1t
ct

1351

2
2 t) - t,

3) 2!s

- 43
1 = - A
3 s3 tl Jtlt2 + 2t3
and sn forth. Thus the Cayley-Hamilton theorem can be expressed
as a relation in A a2nd the tj(A).

In one dimension this process gives
L) A.ItrA=20
which is trivialj and in two dimensions it gives

2] = o.

5) A2 - &L tr A+ %Ii(tr A)2 - tr A

(9) See p, 9 of Reference 12.
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If we apply to this equation the polarization operator dBA’ that
is, if we replace A by A+xB, for a2 real variable x, and evaluate

the derivative in x at the point x = O, then we obtain

6) AB+ BA ~AtrB-BtrA+ I[trAtrB=-tr AR] =0

which is the generalized identity in two dimensions(lo). Note

in this result that all permutations of A and B appear, since
A and B need not commute, but that the fraction % Cisappears,
since scalars commute and traces have cyclical symmetrye.

In three dimensions equations (1) and (3) give

7y A= A%t A + %A[(tr 1)2 « tr 49)

2 . 3

- %I[(tr A)3 -3 trAtr A+ 2tr 4] =0

applied to which the polarization operator dBA again yields a
relation in two variables. However, we desire a completely
polarized relation, in which no matrix variable has degree more
than unity. Thus if we also apply dCA for another 3x3 matrix C,
and let & denote the sum over all permutations of (4,B;C), then

we obtain
8) 0 = ZABC - ZAB tr C + ZA[tr B tr C - tr BC]

- If[tr Atr Btr C - tr A tr BC - tr B tr CA - tr C tr AB

+ tr ABC + tr CBA]

which is the generalized identity in three dimensions(ll). Note
here again that all fractions disappear by the properties of

scalars and traces.

(10) ©See Reference 5.
(11) See Reference 5.
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Now in the derived expression Ior each Sy the terms corres-
pcnd: to pertitions of 1; that i1sy; %0 sequencés .y, = (ml,mg,..) of
non-negative integers with q{g) = 1, where

o o0
9) p(p) = 2 (J--l)m3 5 a(p) = 2 Jmy

J:l j:l
Each m, is interpreted as the number of subsets containirg pre-
cisely J elements in the corresponding subdivision of a set con-~
taining precisely i elements, so that clearly o O for j > 1 ana
thus such sequences have all entries but a finite number equsal to
zero. If we let v denote the sequence (ty,t,;.ss) with tJ==tr pd
as before, then we may let

T o P!

10) T’. = tl t2 ) ’
a product which thus has all factors but a finite number equal to

unitye.
Fach partition p with q(p) = g labels a conjugate class C

in the group Sq containing all permutations of q elements, namely
that class in which all permutations may be factored into disjoint
cycles of which my have length 1, m, have length 2, and so forth.

The parity of all elements in C, is easily shown to be sgn(p) =

B
(_1)p(p), and the number of elements in Cp is well-known to be(lg)
_ TS
11) cw) = ql/myimyl..01 72 ..,

a quotient whose denominator has all factors but a rinite number

equal to unity. However, the general expression of the set (3)

(13)

can then be written

12) ils, = (2; isgn(u)c(ph:“
q(p)=

(12) See 3.6 of Reference 1 or IV.4 of Reference 2.
(13) See 6.2 of Reference 1 or (4.24) of Reference 2.
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and the form (1) of the Cayley-Hamilton theorem can be rewritten
n i n-1
13) .2 (=1)7A Z  sgn(.)c(p)th(a)/id = C.
i=o q(p)=1

Now we need only completely polarize this equation, noting
that it 1s homogeneous of degree n in f3 that is, we need only
replace the n equal variables A by all permutations of n distinct
vafiables Al,...,An, and put the sum of all such expressions
egual to zero. For each i1 the corresponding term in (13) then
yields nl terms, of which we may collect all those terms such
that An(l)""’An(i)’ in any order, appear irn the inner sum, and
Aq&i+l)""’An(n)’ in any order, aprear in the outer sum. Thus
for each 1 we obtain a sum over the (?) ways to select 2 subset

of 1 elements from {A;j,esesh }, With each summand of the form

1k)

(-1)*[Z all vermutations of AH(i+l)'"An(u)]coeff’(An(1)7°°"%¢i))

and to find the coefficient for each selection we need only
replace the i equal variables A by all permutations of 1 distinct
variables AT’.(].),...’AT[(.'L) in

)ml my my

1,01
15) Z Sgn(}l)(tr A ...(tr A ) mlxooomill 5000k

q(p)=1i
and take the sum of all such expressionse

But for each p in the sum (15) many of the resuiting i{ terms
are equalj in particular, for each J the my traces of pronducts
containing J factors may be permuted in all mjl ways without
changing the result, and in each of these mj traces the J factors

may be cycled in j ways without changing the result. Since the

various terms are otherwise distinct, the order of their oo

s S = . e it e
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degeneracy 1s precisely the denominator associated with the
given p in the sum (15), and thus the coefficient is precisely
the sum, over all partitions p of 1 and all essentially distinct
permutations of the An(j)’ of terms

my m,

16) sgn(u) I tr(AK(j)) I tr(a

A
b
=1 =1 )

n(m+23-1) *Ar(a o))

In summary, the generalized Cayley-Hamilton theorem in n
dimensions usserts the vanishing of the sum for 1 = Oyeeeyn of
a'l essentially distinct terms of the form (14), in which the
coefficient is the sum for a(p) = 1 of all essentially distinct
terms of the form (16). Furthermore, the coefficients are
independent of n, and have the forms given in equation (8) for
1=1,2,35 finally, oy the principle just stated, the

coefficient for i = 4 has the form

17)
trAtrBtrCtrD - trAtrBtrCD - trAtrCtrBD - trAtrDtrBC - trBtrCtrAD

- trBtrDtrAC - trCtrDtrAB + trA(trBCD + trDCR) + trB(trACD+ trDCA)
+ trC(trABD + trDBA) + t1D(trABC+ tPCBA) +: trABtrCD + trACtrBD
+ trADtrBC - trABCD = trABDC - trACBD - trACDB ~ trADBC - trADCB

Since the polarization process dBA can be defined over any

field of characteristic zero(lh)

s these results are ali valid
over any such field. Indeed since the coefficients are simpler
in the completely polarized equations, these results may well be
provable directly in n variables, rather than through (13).
However, this discussion indicates the explicit form of the
desired relation, and thus reduces the labor of deriving it to

merely that of writing 1t down.

(1%) See pe 4 of Reference 12.
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