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The Generalized Cayley-Hamiltcn Theorem in n Dimensions 

John S. Lew 
Brown University 

In 19^5) Reiner  , by means of the Cayley-Hamilton theorem, 

obtained a canonical form for a polynomial relation between a 

stress matrix and a strain-velocity matrixj since that time an 

extensive theory has been äeveloped for canonical forms of non- 

linear constitutive equations. More recently, for a polynomial 

relation between ne tensor and a num>er of other tensors, the 

problem of finding the restrictions imposed by a symmetry group 

was reduced by Smith and Rivlin^ , and by Pipkin and Rivlin^ , 

to that of finding an Integrity basis for a set of such tensorsj 

and then, for the full (or proper) orthogonal group in Euclidean 
(k) 2-space or 3-space, such a basis was determined by Rivlin  , 

(1) (6) Spencer and Rivlinv , and Spencer  , and its irreducibility 
(7) proven by Smith  • 

In this development, an important tool has been a generaliza- 

tion of the Cayley-Hamilton theorem, in 2-space or 3-space, from 

one to several matrix variables  . During this time, It has 

been clear that the corresponding identity in n-space, for any 

particular n, could be obtained i^ a finite but discouraging 

number of steps ^ hov/ever the form of this relation for an arbi- 

trary n has not been given. We shall obtain this form, which is 

the intuitive generalization of the results in two and three 

(1) See Reference h. 
(2) See Reference ?. 
(3) See Reference 3» 
(k) See Reference 5» 
(5) See References 9,10,11# 
(6) See Reference 8* 
(7) See Reference 6» 
(8) See Reference 5« 
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dimensions, and note that, properly expressed, it is a polynomial 

relation in the given matrices and their traces with all coeffici- 

ents +!• 

For an arbitrary real or complex nxn matrix A the Cayley- 

Hamilton theorem states that 

1) 2 (-DV^S.CA) = 0 
i=o       1 

where A0 = I, and s.(A) is the iHh symmetric polynomial in the 

characteristic roots of A. If we let t .(A) = tr A** for 

j = 1,2,••• then the well-known relationsw/ 

si = h 
2) 2s2 = s1t1 - t2 

3s3 = s2t1 - 3^2 + t3 

and so forth can be solved recursively for each s^ in terms of 

t1,.«., t. to yield 

U31 =   t, 

3) 2]s2 = t^ - t2 

3,s3 = t^ - 3^2 + 2t3 

and so forth. Thus the Cayley-Hamilton theorem can be expressed 

as a relation in A and the t.(A)« 

In one dimension this process gives 

k) A - I tr A = 0 

which is trivialj and in two dimensions it gives 

5)      A2 - A tr A + |l[(tr A)2 - tr A2] = 0. 

(9) See p. 9 of Reference 12. 
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If we apply to this equation the polarization operator cU., that 

is, if we replace A by A+xB, for a real variable x, and evaluate 

the derivative in x at the point x = 0, then we obtain 

6) AB + BA - A tr B - B tr A + l[tr A tr B - tr AE] = 0 

which is the generalized identity in two dimensions   • Note 

in this result that all permutations of A and B appear, since 

A and B need not commute, but that the fraction ^ disappears, 

since scalars commute and traces have cyclical symmetry» 

In three dimensions equations (1) and (3) give 

7) A3- A2tr A + |A[(tr A)2 - tr A2] 

- |l[(tr A)3 - 3 tr A tr A2 + 2 tr A3] = 0 

applied to which the polarization operator dg^ again yields a 

relation in two variables. However, we desire a completely 

polarized relation, in which no matrix variable has degree more 

than unity. Thus if we also apply d^ for another 3x3 matrix C, 

and lets denote the sum over all permutations of (A,B,C), then 

we obtain 

8) 0 = 2ABC - SAB tr C + 2A[tr B tr C - tr BC] 

- I[tr A tr B tr C - tr A tr BC - tr B tr CA - tr C tr AB 

+ tr ABC + tr CBA] 

(11) 
which is the generalized identity in three dimensionsv '. Note 

here again that all fractions disappear by the properties of 

scalars and traces. 

(10) See Reference 5» 
(11) See Reference 5» 



Now in the derived expression Tor each s., the terms corres- 

pcnd: tc partitions of ij that is,1 to' sequences .^i. = (m-,,m2,.«) of 

non-negative integers with q(^) = i, where 

CO oo 

9) p(u) = 2 (j-l)m.  ,    qdO = 2 jm. . 
j=l     2 0=1 J 

Each m1 is interpreted as the number of subsets containirg pre- 

cisely j elements in the corresponding subdivision of a set con- 

taining precisely 1 elements, so that clearly -  = o for j > i and 

thus such sequences have all entries but a finite number equal to 

zero« If we let z  denote the sequence (t^t^,,,..) with t. = tr A^ 

as beforej then we may let 
m-j m« 

10) i?   = h ^ •"  ' 

a product which thus has all factors but a finite number equal to 

unity. 

Each partition p. with q(p.) - q labels a conjugate class C 

in the group S containing all permutations of q elements, namely 

that class in which all permutations may be factored into disjoint 

oycles of which m-t have length 1, nu have length 2, and so forth. 

The parity of all elements in C.. is easily shown to be sgn(ji) = 
r 

(-1)P^ , and the number of elements in C is well-known to be^ ' 

m, nu 
11) c(^) = ql/m1!m2I...l 

x2 ^... 

a quotient whose denominator has all factors but a finite number 

equal to unity. However, the general expression of the set (3) 

can then be written^ -^ 

12) iJs. =  2 sgnOOcCp.)^ 
1  q(^)=i 

(12) See 3*6 of Reference 1 or IVA of Reference 2. 
(13) See 6.2 of Reference 1 or (^.2^) of Reference 2. 
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and the form (1) of the Cayley-Hamilton theorem can be rewritten 

13)      2 C-DV""1 2  sgn(i-)c(lxH^(A)/il = C. 
i=0       q(n)-i 

Now we need only completely polarize this equation, noting 

that it is homogeneous of degree n in A; that is, we need only 

replace the n equal variables A by all permutations of n distinct 

variables A,,,.,,A , and put the sum of all such expressions 

equal to zero. For each 1 the corresponding term in (13) then 

yields nl terms, of which we may collect all those terms such 

that Ajr (;p »••• ^-(j) > ^n any order, appear in the inner sum, and 

A /.^^...jA^/ s, in any order, appear in the outer sum« Thus 

for each i we obtain a sum over the (?) ways to select a subset 

of i elements from (A^,,,,^ }, with each summand of the form 

IM 

(-1)1[S all permutations of AK(i+1). ..A^^jcoeff •(Ait^,,,.,i^i)) 

and to find the coefficient for each selection we need only 

replace the i equal variables A by all permutations of i distinct 

variables A~(i)>'»-J^d) lri 

m,      . mj        m,   m.. 
15)   2  sgn(KL)(tr A) 1.,.(tr A1) ym,i...mAl  •%,.i 1 

q(li)=i 1 i 

and take the sum of all such expressions» 

But for each p, in the sum (15) many of the resulting ii terms 

are equal; in particular, for each 'J the HK traces of products 

containing j factors may be permuted in all m^i ways without 

changing the result, and in each of these m.. traces the j factors 

may be cycled in J ways without changing the result. Since the 

various terms are otherwise distinct, the order of their 
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degeneracy is precisely the denominator associated with the 

given ^ In the sum  (15)» and thus the coefficient is precisely 

the stain, over all partitions jj. of i and all essentially distinct 

permutations of the A- /-^J of terms 

m.        nip 

16) sen{ll)jnitr(An(j))^itr(A1t(mi+2;i.1),A^(i:ii+?;j))... . 

In summary, the generalized Cayley-Hamilton theorem in n 

dimensions asserts the vanishing of the sum for 1 = 0,««.,n of 

a'1 L essentially distinct terms of the form (1^), in which the 

coefficient is the sum for q(n) = i of all essentially distinct 

terms of the form (16)• Furthermore, the coefficients are 

independent of n, and have the forms given in equation (8) for 

i = 1,2,3? finally, Dy the principle just stated, the 

coefficient for i = ^ has the form 

17) 
trAtrBtrCtrD - trAtrBtrCD - trAtrCtrBD - trAtrDtrBC - trBtrCtrAD 

- trBtrütrAC - trCtrDtrAB + trA(trBCD+ trDCB) + trB(trACD+ trDCA) 

+ trC(trABD + trDBA) + ti'D(trABC+trCBA) +'. trABtrCD + trACtrBD 

+ trADtrBC - trABCD - trABDC - trACBD - trACDB - trADBC - trADCB 

Since the polarization crocess d^. can be defined over any 

field of characteristic zerov" /, these results are all valid 

over any such field. Indeed since the coefficients are simpler 

in the completely polarized equations, these results may well be 

provable directly in n variables, rather than through (13)« 

However, this discussion indicates the explicit form of the 

desired relation, and thus reduces the labor of deriving it to 

merely that of writing it down. 

(I'T) See p. h  of Reference 12. 
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