
MAC-TR-27

0 OCAS - Q-LINE CRYPTANALYTIC AID JYSTEM

by

Daniel James Edwards

SMay 1966

I r-• Project MAC

"MASSACHUSETTS INSTITUTE OF TECHNOTZOC-"

Massaclusetts Institute of Technology

Project MAC

545 Technology Square

Canmbridge, Maseachusetts

02139

Work reported herein was supported in part by Project

MAC, an M.I.T. research project sponsored by t.1e Advanced

Research Projects Agency, Department of Defense, under

Office of Naval Research Contract Nonr-4102(01).

Reproduction of this report, in whole or in part, is

permitted for any purpose of the United States Government.

This technical report was composed and reproduced,

on-line in the MAC computer system, with the aid of the

TYP.*ET and RUNOFF programs.

- - - -. , -. - - -- -'--÷-

I

OCUS - ON-LINlE CRYPTj'VALYTIC AID SYSTEM

DANIEL JA:-TS EDWARI)S

S.B., Massachusetts Institute of Technology

(1959)

SUBMITTED I" PARTIAL FU FILL.T!IT O !H!E

P1QUI'JErNTS FOR THE DECREE OF

MiSTER OF SCIENCE

at the

Z4ASSACiUSETTS INSTITLUTE OF TECHNOLOC-Y

January 17, 1966

Signature of Author t________________________

Department of Electrical Enaineerirng, January 17, 1966

Certified by (Original signed by Marvin L. Minsky)

¶ Thesis Supervisor

I
t b(Original signed by Truman S. Gray)S Accepted by ____________________________

SChairman, Departmental Committee cn 'raduatc Students

.|A

OCAS - ON-LINE CRYPTANALYTIC AID SYSTEM

by

DXIIEL JAMES EDWARDS

"-.bmitted to the Depart'ment of Electrical Engineering on January 17,

.966, in partial fulfillment of the requirements for the degree of

Master of Science.

ABSTRACT

Deficiencies of various programming languages for dealing with
quantities frequently encountered in cryptaialysis of simple cipher

systems are discussed. A programming syster is proposed which will

permit a cryptanalyst to write and debug proarams -to aid in the

solution of cryptograms or cryptographic systems. The basic
elements of the proposed programming system are discussed in detail.
They include. 1) a proaramming lanquaoe to handle both algebraic

quantities and character strings, 2) a display gene.rator to permit

quick specification of a display frame containing both alphanumeric
strings and numerical data for an on-line CRT display device, and 3)

an on-line program to control operation of the system and aid iý-

debugging programs written in the proposed lancuaqe.

Thesis Supervisor: Marvin Lee Minsky

Title: Professor of Electrical Engineering

77FA4

OCAS - ON-LINE CRYPTANALYTIC AID SYSTEM

by

DALVIEL JAMES EDWARDS

-'bmitted to the Departxient of Electrical Engineering on January 17,

.966, in partial fulfillment of the requirements for the degree of

Master of Science.

ABSTRACT

Deficiencies of various programming lanquages for dealing with
quantities frequently encountered in cryptanalysis of simple cipher

systems are discussed. A programming syster is prop)sed which will

permit a cryptanalyst to write and debug proqrams -to aid in the
solution of cryptograms or cryptographic systemn. The basic

elements of the proposed programming system are discussed in detail.
They includet 1) a proaramming lanquage to handle both algebraic

quantities and character strings, 2) a display gene::ator to permit

quick specification of a display frame containing both alphanumeric

strings and numerical data for an on-line CRT display device, and 3)
an on-line program to control operation of the system and aid ix.

debugging programs written in the proposed lanouage.

Thesis Supervisor: Marvin Lee Minsky

Title: Professor of Electrical Engineering

%

- --

--r.~r

I

ACKNOWLEDGEF!ENTS

The author woul. like to express his appreciation to Prf. !'arvin L.

Minsky who acted as tiesis supervisor; to Messrs. Edward L. Glaser

and Oliver G. Selfridge for their constant source of inspiration in

completing this thesis; to Mr. Donald K. Pollock for nis help in

obtaininq hard to get crvptocraphic literature; and to my wife Joyce

for her patience durinq the entire project and help in typinq the

final manuscript.

I

4

Il

iii

A!

- -- 1

TABLE. OF CONTENTS

SECTIO PACE

S~ABSTPACTi

ACKNOWLEDGEMENT ii

1 DEFINITIONS

2 iNTRODUCTION 3

3 ON-LINE CRYPTA1,ALYTIC AID SYSTEfM (OCAS) 7

3.1 Ojn-line Cryptar.alytic -id Lancuaqe (OCAL) 7

3.1.1 Basic Data Types 8

3.1.2 Conpound Data Structures 9

3.1.3 Declardtions 9

3.1.4 Statements 10

3.1.5 Procedures 10

3.1.6 Relation: l.

3.1.7 Arithmetic 11

3.1.8 Logical Expressions 11

3.2 On-line Cryptanalytic Display Generator (OCDIS) 11

3.3 On-line Debugging ard Control Proarara (ODBUG, 12

4 Il'MPLE-:,TATIOON 13

5 EXAMPLES OF OCAL APPLIED TO CRYPTOGRAP'HIC PPOCESSES 15

5.1 Simple Frequency Count 15

5.2 Longest Repeate.1 Sequence 16

6 WONCLUSIO:S 17

APPENOWE{•S PACE

A 2VIVON CIPHER SYSTEMIS i9

B SOLT!ION OF 11IE RAMLFI2CE CIPHER IN SNOBOL 21

C DETAILED DESC IrPTIO'N OF OCAL SYNTAX 27

C.1 Syntax Noctation 27

C.2 Basic Program rl!ments 28

C.2.1 Character Set 28

C.2.2 Identifiers
C.2.3 Use of Blar.ks 28I C.2.4 Comments 2E

C.2.5 Statements 28

C.2.6 Blocks 28
C.2.7 Statement Labels 29

C. 3 Basic Data Types 29

C.3.1 Logic 29

C.3.2 Integer 29

79'1

Siii "
[-.q

5'AB3LE OF CONTENTS

APPENDICES PACE

C.3.3 Real 29

C.3.4 Character 30

C.3.5 String 30

C.3.6 Reader 31

C.3.7 Alphabet 31

C.3.8 Type Transfer Procedures 32

C.4 Basic Declarations 32

C.5 Compound Data Structures 23

C.6 Expressions 33

C.6.1 Arithmetic Expressions 33

C.6.2 Relational Expressions 34

C.6.3 Logic Expressions 34

C.7 Statements 35

C.7.1 PROCEDURE 35

C.7.2 BEGIN and END 35

C.7.3 Assignment 36

C.7.4 PROCEDURE Calls 36

C.7.5 Iteration 36

C.7.6 Conditional 37

C.7.7 GO TO 37

C.7.8 VALUE 37

C.7.9 RETURN 37

C.7.10 ERROR 37

C.7.11 ON 38

C.7.12 SNOBOL Pattern Matching 39

C.8 Input/Output Procedures 40

C.9 Reader Functions 41

C.10 Resource Allocation 43

D ON-LINE CRYPTA1ALYTIC DISPLAY GENERATOR (OCDIS) 45

D.1 Procedures 45

U.2 Formats 46

D.3 Display Descriptors 47

E ON-LINE DEBUGGING AND CONTROL PROGPAM (ODBUG) 49

F AN EXhaPLE IN OCAL -

FINDING THE PERIOD OF A PERIODIC CIPHER 51

BIBLIOGRAPHY 53

I

I
C4_

S4

4LA____________

W _____________________

40-

I• SECTION 1

DEFINITIONS

"This thesis is primarily concerned with an on-line computer
- J programming system designed to ease the work of a cryptanalyst.

The following definitions are given to acquaint the reader with

some of the terms comronly encountered in the field of

cryptanalysis.

Cryptology is the branch of knowledge that deals with the

development and use of all forms of secret communication.

3 Cryptography is thý! branch of cryptology that deals with secret

d writing.

-A Cryptanalysis is the branch of cryptology that deals with the

2 analysis and solution of cryptographic systems.

'4 A Cipher is a cryptographic system which conceals, in a

Scryptographic sense, the letters or groups of letters in the

message or plaintext. (Appendix A gives a list of common cipher

systems.)
- Enciphering is the operation of concealing a plaintext, and the

result is a cipher text, or in general a cryptogram.
4 Deciphering is the process of discovering the secret meaning

of a cipher text.

A key is the variable parameter of a cipher system, prearranged

between correspondents, which determines the specific application of

a general cipher sysem being used. The use of keys permits almost
endless variations within a given cipher system. In fact, the

value of a s'pecific cipher system is loased on how hard it is for an

- enemy" to break a cryptogram or series of cryptograms, assuming he

knows the complete details of the system but lacks the keys which

were used tn encipher the cryptograms originally. (See Appendix B

for an example of a cipher and a key.)

A code is a cryptographic system which substitutes symbol

Sgroups for words, phrases, or sentences found in the plaintext. It

involves the use of a codebook, copies of which are kept by each
correspondent.

2 Encoding is the operation of concealing a message using a code.

SDecoding is the process of recovering an encoded -message.

.4 _ A code differs from a cipher because a cnde deals with

plaintext ir variable size units, such as words or phrases, while a

cipher oeals with plaintext in fixed size units, usually a letter at

a time.

V !

3

SECTION 2

INTPODUCTION

The history of using ciphers to convey messages from one person

to another goes back to earliest times. The Scytale, a trans-

position cipher device, was originated by Lacedaemonians and used

extensively in Ciu;ero's time. Modern substitution ciphers can b'

traced back to the cipher used by Julius Caesar, who substituted D
for A, U for B, F for C, ... to B for Z, etc. in correspondence that

he wished to keep from prving eyes.

The invention of the printing press brought many people in

contact with tlie field. The first of a nearly constant stream of

books on cryptology was Chronologia flystica, published by

Trithemius, abbot of Spanheim and Iluerzburg, in 1516. Since that

time much progress has been made in the use of ciphers and codes for

diplomatic, military, and even criminal purposes. Books by Yardley

and Pratt (see Bibliography) give graphic pictures of the uses of

codes and ciphers from the middle sacs up through the late 1920's.
By the late 1930's, advances in the art of communications made

cryptology a very sensitive area. The first rumblings of World War

II led the governrmnts of the major world powers to impose an

information blackout on new literature available on the general

subject of cryptanalysis. Since then, no new major works on the

subject have been made available to the general public (with the

possible exception of IYRAUD's book - see Hiblioaraphy). All books
published since 1940 have dealt with analysis of cryptogranhic

systems which have been common knowledae since the late 1920's.

Public interest in the field has been maintained by the American

Cryptogram Association (ACA) which was founded in 1929 and still

publishes The Cryptogram, a bi-monthly maqazine of articles and

cryptograms. The hobby of solving cryptograms provides a

fascinating intellectual challenge to those so inclined. Patient

analysis and flashes of insight, combined with the thrill of

uncovering something hidden, give cryptanalysis an enjoyment which

is almost unique.
The advent of modern high-speed diqital compaters raises

speculation as how best to apply the computer's vast bookkeeping
powers to the field of cryptanalysis. Crptanalysis may be thought

of as a recursive process where one forms hypotheses and then checks

the validity of the resulting implications. And creativity is

associated with the forming of new hypotheses. By rapidly and

accurately checking the validity of implications, computers can

MST'-~~--~

If
4 SECTION 2

provide the analyst with information needed to forr. new hypotheses.

The kind of aid a computer would provide can be seen in

Yardley's discussion of breaking the Japanese diplomatic code

preceding the Washington Armament Conference of 1921-22. The
clerical work in this instance required preparing 60,000 index cards

with fragments of Japanese messages in both plain and code text.
This prornration was done by a "corps of typists" working many

hours. After the cards were prepared, they were sorted into various

categories and summerized by hand onto large summary sheets. Tasks
like this could easily be accomplished by a digital computer.

Solution of ciphers also requires a certain amount of routine

bookkreping, s"ch as counting letter fr2quencies and looking for

repeated digr~phs. Also, Colonel FrLedman's advice about using a
soft pencil with a big eraser .s well taken, for in solving

cryptograms by hand the eraser is used almost as frequently as the

pencil.

Let us again examine the idea of using a computer, this time
with a CRT display. Why no, have the conputer allow an operator to

make a guess and watch the computer work out the consequences? If
the guess does not "prove out", the operator can erase the guess and

its consequences with a single key stroke. The advent of modern
time-shared computer systems, complete with CRT displays, places all

of the above-contectured uses of a computer within the realm of
practicability, because an expensive computer need not be tied up

while the analyst is trying to figure out what to do next.

The problem then resolves to: what language can a cryptanalyst

use to program an on-line computer to perform thp various tasks

pertaining to solving a cryptogram? Let us list some of the

r-.quirements for such an On-line Cryptanalvsis Aid Language (OCAL)

and then examine some existing lancuaaes in light of these

requirements. First, the OCAL must handle strings of alphabetic

characters and manipulate these strincs easily. Second, the OCAL

must handle algebra with ease, including matrix operations. Third,

the OCAL should be embedded in a machine environment which allows

the cryptanalyst to write and check out programs on-line. Finally,

I the OCAL must be reasonably efficient in its use of computer time

and storage, if reasonable response times are desired in a

& time-shared computer environment.

Available languages for proqraminc computers include basic

machine language, LISP and its derivatives, the ALGOL family of
Slangua-es, and string-processing Alanguaaes such as METEOR and

SNOBOL. Nachine language, even with macros, is rejected because it £

is much too hard to program and quickly check ideas. The OCALA should be a tool which a cryptanalyst can use easily, while machine

7P whie T

M1 vi

SECTION 2 5

language, even in the hands of a skilled programmer, is a blunt
instrument at best. LISP on the other hand, while not easy to

learn, is a powerful language for many types of complex data
manipulation tasks. LISP handles algebraic tasks with moderate
ease, matrix manipulations with some difficulty, and strings with

still more difficulty. Finally, storage efficiency leaves much to
be desired, and this objection is especially critical when the

problem of using large dictionaries in the OCAL is considered.

Therefore, LISP is rejected as the OCAL. The other LISP-like

languages, such as SLIP, threaded lists, and IPL (the machine
language of list processing) suffer similar deficiencies.

Next, the ALGOL family of languages, such as ALGOL, MAD, AED,
PL/I, an(even FORTRAN is considered. These languages handle

algebra with ease, but their string-handling abilities are almost
non-existent. Furthermore. none)f these languages is particularly

well adapted to on-line use. This, coupled with the difficulty of
adding good string-processing features to any current time-sharing
version, leads us to look elsewhere for the OCAL.

Finally, let us examine the rather interesting

string-processing language SNOBOL. The heart of SNGBOL is an

elegant pattern-matching algorithm which allows a string to be
tested for a complicated pattern in one statement. In order to test

tbe suitability of SNOBOL for cryptanalysis, a program to solve the
simple railfence cipher was written and debuqqed in about 15
sman-hours using the Compatible Time-Sharinq System at Project MAC.

(See Appendix B for a discussion of the railfence cipher and a

resulting SNOBOL program.)
Writing the railfence proaram revealed several weaknesses in

SNOBOL. First, the arithmetic was workable but someahat awkward.
Second, there was no provision for arrays, which made the solution
scoring by digraphs rather difficult. This problem was solved in

the railfence program by making the digraph scoring array into a

series of fixed strings which were accessed by the pattern-matchingS~ statement.

The most serious deficiency of SNOBOL was the lack of a
functional argument provision in the pattern-matching statement.
That is, pattern elements could be fixed strings, arbitrary strings,

arbitrary strings of fixed lenath, or repeats of previously-matched - -

pattern elements. Missing was provision for making a pattern

element into an arbitrary string, subject to a predicate procedure
which could examine the state of the pattern match to that point.

(This deficiency is not present in the string-processing language
SMETEOR which is an improved LISD implementation of the

string-processing language COMIT. 1owever, METEOR still suffers

U-

~ 1T~74 2

A

iz

6 SECTION 2

from the same problems as LISP, reaarding efficient use of time and

storage.)

These deficiencies ruled out SNOBOL as the OCAL, but the

pattern-matching concept was considered imnortant ind was extended

along the lines of allowing a pattern element to specify a predicate

procedilre. This extended S!:OBCL statement was then incorporatee in

the final design of OCAL.

With no single languagle suitable for the OCAL, two courses of

action were open. Either take an existing language and extend it to

overcome deficiences, or design a new languaqe aimed specifically at

the field of cryptanalysis. The first alternative was rejected,

because extending an existing language does not usually allow one to
insert new ideas without redesigning the entire language. The

author was interested in what could be done from soratch, and

therefore he chose the second alternative, design of a new language.

Hence, the specific goal of this thesis is to specify and

demonstrate an On-line Cryptaitalytic Aid jystem (OCAS) which will

permit a computer programmer, who is already familiar with
cryptanalytic procedures, to Pasily program and -test an attack on

any of the 30 different cipher systems that reaularly appear in

The Cryptogram (Again, see Appendix A).

I

-I

'I

__ _ _ _ _ _ _ _ -|- -

SECTION 3

ON-LINE CRYPTANALYTIC AID SYSTEM (OCAS)

The proposed On-14ne Cryptanalytic Aid System (OC}S) has the

following parts. First, a computer prooramminq language, OCAL,

which easily handles both algebraic calculations and character

string manipulations. Second, an On-line Cryptanalytic Display

Generator (OCDIS) to allow people to interact more rapidly with the

program than using just a teletypewriter. And finally, an On-line

Detugging and Control Program (ODBUG).

Each cf these parts will be discussed in later sections. This

section will discuss some of the basic design criteria of the OCAS.

First, the system should be reasonably easy to use, once the basic

languages involved are learned. Second, the system should contain a

complete set of text-editing and program-debugging aids. Third, the

system should be "fail-soft". That is, it should be forgivina to

common progranming mistakes and the operator should be able to

regain control of a run-away program. Finally, the system should be

open-ended so that new programs can be added with ease. And using

OCAS, the cryptanalyst should be able to let the computer handle

most of the bookkeeping tasks involved in solving a cryptogram or

cryptographic system.

Another design criterion for the OCAS was ease of

implementation. The difficulties of fully implementing ALGOL are

well known. Everything ir OCAS had to be easily implementable on a

reasonable machine. It was hoped that a skeletal implementation of

OCAS could be completed in four months. This introduced the

conflicting design goals of a complete language versus speed of
implementation. During development of system specifications, this

conflict was usually resolved in favor of a complete language: so

as a consequence, the skeleton implementation was started but not

completed.

3.1 ON-LINE CMYPTANALYTIC AID LANGUAGE (OCAL)

OCAL is a problem-oriented computer proaramming language with

the general area of cryptanalysis as the problem domain. OCAL is

basically a synthesis of the MAD and SNOBOL computer programming

languages, combined with ideas taken from SLIP and PL/I. Th'&s

section describes the basic features of OCAL. (A complete desrrip-

tion of OCAL syntax can be found in Appendix C.)

w 7-

7

8 SECTION 3

3.1.1 Basic Data Types

The following quantities comprise the OCAL basic data types:

a) Logic - a two-bit quantity standing for True, False,
Neither, or Undefined. The reason for introducing a basic
four-value logic is to make the results of certain logical
comparisons more obvious to the programner. For instance, the

question "Is ten grea':er than an orange?" could be answered

"Undefined" because the quantities involved in the comparison are
not comparable.. An example of use for logic value "Neither" might

be in response to the question "Given that cipher A stands for
plaintext Q in a simple substitution cipher, does cipher text MKP
stand for plaintext THE?" The answer "Neither" in this case means

undecided, for the information given is insufficent.

Situations requiring a simple Boolean decision can be made on a
"True" or "Not True" (e.g., "False', "Neither", or "Undefined")

basis.

b) Integer - the standard computer quantity used for integer

arithmetic and subscripting expressions for compound data

structures.

c) Real- floating-point numbers used primarily in arithmetic
calculations.

d), Character - a two- to eight-bit representation of a member
of the ASCII character set. Each character is associated with an

alphabet (defined next) which gives the mapping from a particular
ASCII character subset into the full ASCII character set. The

Character is the b=sic constituent of the string (defined later) and

may also be used in subscripting expressions for compound data

structures.

e) String - an ordered set of characters all taken from the
sane alphabet. A string may be arbitrarily long and is associated

with an alphabet that gives the mapping of character representations

Sinto ASCII characters. Also associated with a string is an integer

giving its current length in characters.

f) Reader - an object which may be associated with a string.

A reader may be thought of as the reading head of a Turing machine,
with the associated string being the Turing-machine tape. A reader

can move up and down a string, read characters out, or write

characters into a string. In addition, a reader can be positioned

SECTION 3 9

at the head of a string, at a preset place on the string, or at an

arbitrary place on the string.

g) Alphabet - defines a mapping function from the ASCII

character set (the standard OCAL alphabet) into a subset of ASCII.

The alphabet concept is used to gain storage and subscriptinq

efficiency when dealing with characters and strings. An alphabet

may map any number of characters in the domain (ASCII) into a single

character in the range. Characters appearing in the domain, but not

in the range, are mapped into the null character (i.e., ignored).

In addition, each alphabet provides two extra characters in the

range corresponding to logic values 'reither" and "Undefined". This

feature allows OCAL to indicate certain logical decisions or

conditions within a string.

Also associated with each alphabet is an integer equal to the

cardinality of the mapping range, excluding the logical characters

"*Neither" and "Undefined". This permits character and string

arith-metic to be done modulo the size of the alphabet.

h) Statement Label - a special data type referring to a part

of an OCAL procedure. Statement labels are data types to permit

assigned GO TO statements and functional arguments in OCAL.

3.1.2 Compound Data Structures

The OCAL compound data structure is taken from the PL/I

language. Compound data structures can consist of any of the

previously-mentioned basic data types and other compound data

structures. Various parts of a compound data structure can be

accessed either by name or by subscripting expressions. Thus, a

real array in OCAL is simply an n-dimensional compound data

structure consisting of real numbers.

3.1.3 Declarations

Declarations are used in OCAL to associate data types with the

local variables used in a procedure. All variables must be declared

at the head of the procedure or block in which they appear.

Variables may be either local or global in scope: local variables

are defined only within the block or procedure containing the

declaration, and global variables are defined in all blocks and

procedures.

Declarations are also used to define compound dAta structures;

in which case all the elements of the declaration must be basic data

Stypes or already-declared compound data structures. That is,

recursive definition of a compound data structure is not permitted.

'Po

I

10 SECTION 3

3.1.4 Statements

Statements in OCAL may b. either simple or compound. Simple

statements are terminated by a semi-colon, or the end of the line on

which they appear, unless the continuation character "." (period)

"appears as the first character on the following line. Executable
statements may be symbolically labeled with one or more labels.

Compound statements are groups of statements enclosed within

the statement parentheses, BEGIN and EM:D. A compound statement is
called a block, and blocks may be nested to any depth.

OCAL statements fall into the following categories:

a) Declarations - type identification, data structure,
and procedure structure;

b) Control - GO TO, conditional, and iteration;

c) String pattern matching - similar to the basic
SNOBOL string pattern-matching statement;

d) Assignment - assigns values to symbolic quantites;

e) Execute - calls a specific procedure, but ignores

any values returned;
f) Error control - allows an OCAL procedure to retain

control even thuugh a called procedure has taken an

error return.
(A detailed list of statements with their syntax is in Appendix C.)

3.1.5 Procedures
Procedures may have a fixed or variable number of arguments or

parameters. If the procedure has a variable number of parameters,

the global integer variable "NUMEROFPSETS" gives the number of

parameter sets for any particular procedure call. Parameters are

referenced by the local name which is given procedure declaration.

Procedures may be defined recursively and keep their working
storage on push-down lists. Procedure calls are made in the form

fn.(al,a2, ... ,an)
where "fn" is -he procedure name and the period [.1 distinguishes a

procedure call from a subscripted variable. The "ai"s are the

- parameters for the called procedure.

A procedure with no arguments is called by the procedure name

followed by a period.
A procedure may be given a value by the statement

VALUE e

where "e" is any expression.

There are two procedure ruturns in OCAL; first, the normal

return is specified by the stat:ement

"RETURN e

I-T
I~

SECTION 3 11

or by executing the last statement of a procedure, and the second

return is given by the statement
ERROR a

where *s" is a string. On executing an error return, control is

returned to the last procedure Ahich executed the statement

ON ERROR, s
where "s" is any simple or compound statement (usually a GO TO
statement, or a block ending with a GO TO or DISMISS statement).

3.1.6 Relations

These are logical operators that compare integer, real,

character, and logical quantities. The value of a comparison is the

logical quantity "True" if the relation holds, OFalse" if the

relation does not hold, and "Undefined" if the quantities are

incomparable (e.g., is 'blue" equal to 3.14?).

3.1.7 Arithmetic
Normal infix operators may be used in arithmetic expressions in

OCAL. Each operator takes operands whose type is character,

integer, or real and produces a result which is the same type as the

highest type of any operand; the ranking between types is character

lowest, integer next, and real highest. Furthermore, if characters

appear in any arithmetic expression, the result is taken modulo the

alphabet size associated with the first-mention.d character. This

feature may be suppressed if desired.

3.1.8 Logical Expressions

Standard logical infix operators are available in OCAL. Each

operator takes two arguments whose type is logic, character, or
integer. The logical operators produce a result which is the same

type as the highest types of any operands; the types being ranked

with logic lowest, character next, and intecer hiqhest. The value
of a logical operator is the bit-wise combination of the operands
after type transfers (if any) have been performed.

3.2 ON;-LINE CRYPTANALYTIC DISPLAI GENERATOR (OCDIS)

OCDES is intended to permit a cryptanalyst to easily specify a- -

CRT display of the quantities available in OCAS. The display may

either be fixed (unchanged until the cryptanalyst interacts with the

computer) or dynamic (changed periodically to reflect intersiediate

results associated with some continuing set of procedures being

- executed by the computer). The display is organized using a set of

formats which correspond to pages in a book. The operatoi" =an
;,

i ii ! i i ii i iii ! ! !1 ii ! i i i iii i i i ii ii ii ! 1 1 i i! i ! ii i i i iii

ii

12 SECTION 3

"flip* pages with pushbutton commands from the display console. A

static display is compiled once, each time it is brought onto the
screen. A dynamic display is compiled when brought onto the screen
and then portions of it are periodically recompiled to keep up with

changing portions of input data.
The CRT display itself is run in program-interrupt mode, so

that computations can proceed even when a display is visible. (A
summary of the features of OCDIS is given next, and detailed
specifications for the OCDIS programs may be found in Appendix D.)

Each display contains a log in the upper left hand corner which

gives the current date, time, frame number, and title for identifi-
-.'catic.n of still photographs taken of the display. This log is main-

tained by the system and thus is not a burden to the cryptanalyst.
The main data type used in a cryptographic display is the

string. A string display may be organized by the number of strings
to be displayed in parallel. For a simple substitution display this
could be three lines; one for the cipher text, one for the plain-
text, and one blank line for general eye relief. The line length in

characters is preset, and when data is supplied this basic three-

line format is repeated down the display until all data are used.
In addition to strings, OCDIS can display other basic data

types and compound data structures, such as matrices and character
arrays. Vectors can be displayed either as a table of numbers or as

a bar graph.

3.3 ON-LINE DEBUGGING XND CONTROL PROGRAM (ODBUG)

ODBUG is similar to the DDT family of debugging packages for

the Digital Equipment Corporation PDP-l,4,5,6, and 8 computers.

ODBUG permits the cryptanalyst to examine and set the contents of
variables. It can also execute OCAL statements interpretively, and
thus acts as the OCAS control program by calling the various OCAL

programs the cryptanalyst wants to use.

ODBUG can also be used to set break-points in OCAL programs

which, when executed, will return control to ODBUG. If the analyst
is satisfied with the program's perforuance. he can resume the

program at the break-point or he can initiate antther procedure.

Since OCAS is adept at handling strings, ind since an OCAL
program is basically an ASCII string until it is compiled, ODBUG can

call procedures to perform simple editing functions on OCAL programs
"that are stored as strings. Thus, with ODBUG as a control program,
OCAS will be a complete system for writing, editin', debugging, and
running programs written in OCAL. (Complete spucifications for
ODBUG can be found in Appendix E.)

c~_7 -

Yr

13

SECTION 4

IMPLEMENTATION

The initial implementation of OCAS will be as an interpreter

for the Digital Equipment Corporatiop (DEC) PDP-6 computer, using

the DEC Type 340 display located at Project MAC. This computer is

run by the Project MAC Artifical Intelligence Group, under the

direction of Prof. Marvin L. Minsky, and has many- advantages for

on-lin- experimentation with systems usina computer-generated
displays.

The SNOBOL-type, string pattern-matching aloorithm, a simple
storage-control algorithm, and the ele.nentary reader functions have

already been programmed in PDP-6 machine language. The next step is

to program the OCAL interpreter in machine languaqe. After that,

input/output procedures will be programmed around thb •tAndard PDP-6

input/output package for the on-line teletype, paper tape reader,

paper tape punch, and DECtape unit. Finally, the basic OCDIS and
ODBUG routines will be programned in machine languaqe. It is

estimated that this first implementation cf OCAS will take from 500

to 1000 man-hours to program and check out.
After experience is gained with OCAS in an interpreted form, an

OCAL compiler and loader can be written to increase the efficiency
of debugged OCAL programs. Specifying, prograrming, and debugging

this package will take an additional 1000 man-hours.

A

4 j

1

15

SECTION 5

EXAMPLES OF OCAL APPLIED TO CRYPTOGRAPHIC PPOCESSES

So far, the design of OCAS has been based on the author's

intuition of what he would like to have the computer do as an aid to

solving cryptograms. This intuition is based both on experience

with inter-active computer systems, and with solving ACA cryptograms

in several cryptographic systems using pencil and paper. Let us

examine some of the elementary cryptographic bookkeeping tasks and

see how these would be expressed in OCAL. (An example of a complete

OCAL procedure to find the period of a periodic cipher, such as a

Vigenere or Beaufort, can be found in Appendix F.)

5.1 SIMPLE FPEQUENCY COUNT

Often a count is made to determine how many times each letter

is contained in a cryptogram. To do this kind of count in OCAL

would require the declarations:
CHARACTER C

I READER SCAN

ALPHABET ENG ('ABCDEFGHIJKLMN•OPQPSTLUVWXYZ')

STRING CRYPT

INTEGER FCOLUNT

DECLARE FCOUNT (ENG)

[The last declaration makes FCOUNT a vector equal in length to the

alphabet ENG, which contains just the letters A through Z.]

CRYPT = READ.('PTR','.')

[R-ad an ASCII string from the photoelectric paper tape reader, up

to and including the first period.]

CRYPT = ENG. (CRYPT)

[Convert the string into the alphabet ENG.]

ATTACH. (SCAN ,CRYPT)

[Attach the reader SCAN to the string CRYPT.]

C = $C. (SCAN)

ENDSTRING = F!

DO UNTIL ENDSTRING, BECIN

FCOUNT(C) = FCOUNT(C)+l

[Enter a DO loop with character variable C set to the first

character of the string CRYPT.]

C = $IC. (SCAN)

END

~§Z7W PTA
MN~

Aci

*16 SEC-31ON 5

2 The reader function $IC. 2,dvances the reader one character position

and reads the nex:t character into the variable C. When the reader
reaches the end of the string CRYPT, the frequency count will be

found in the vector FCOM1;T.

5.2 LOI.(E.ST PREPEA!. CD SEQ M24C.r

The problem here is to find the longest, non-overlappina,

repeated sequence in the string CRYPT. This example demonstrates the

SNOBOL-type pattern-matching statenent in OCAL:

INTEGfER N

STRING CRYPT, Fl LI. ,RPT, P
N= 1

[Set the lenath of the first trial repeated string to one.]

SCANFLAC = T!

DO WHILE SC;A:FLA(r, BEGIN

C[PYPT *R/N* *FIL * R

[Scan the string CRYPT for the ftrst instance of a string of length j
N followed by an arbitrary string, followed by a repeat of the first

string. If a match is found, set the string x-riables R and FILL to

the substrings of CRYPT that they match.]

N = N+1

RPT = R

END

When the SNOBOL pattern scan succeeds in finding i match, the lenath

of the trial string is incremented by one and the repeated strinq

fount on this trial is remembered in the string RPT. When the DO
loop teririnates, the first occurrence of the loncest non-overlapping

repeated string will be found in RPT.

-7

S. ~ - ,'__.,_ _ - _ _ _ _ _. - - -
i. - D

17

SECTION b

CONCLUSIONS

This thesis describes an inter-active computer programming

system (OCAS) which is intended to ease the solving of cryptograms

by giving a cryptanalyst the necessary tools to esily program a

computer. As may jbe expected in this type of prc'ject, the system

has grown considerably since its inception. Unfortunately, it was

not possible to completely program and debug the described system in

the time available 4or this thesis.

A computer programmer who is working with cryptographic systems

frequently deals with both character strings and algebraic

quantities. The programming system described has a computer

programming language (OCtaL) which is intended to manipulate both of

these kinds of data. Note, however, that OCAL is definitely a

language for computer programmers who are familar with cryptographic

procpdures: it is not an attempt to produce a "COBOL" for

cIryptanalysi s.

The programming system also includes a display generator to
permit easy specification of CRT displays to accompany OCAL

programs. In addition, the programming system includes an on-line
debugging and control proqram (ODBUn) to ease debugging of programs

written in OCAL.

Even though the system described was intended to provide
computer aid for solving cryptograms, certain parts of the system

may be of interest to people designing other inter-active computer

software. The concepts to be emphasized in this respect are:

first, the general "fail-soft" design philosophy of not letting

innocent programming mistakes "bring the house down", and second,

the integrated system of program writing, editing, debugging, and

running.

The other portion of this thesis which may be of interest to

persons not interested in the field of cryptanalysis is a discussion

of deficiencies in the SNOBOL string-manipulation language. For

example, addition of predicate procedures to the SNOBOL scan

algorithr - tly enhances the power of the lanauage. This

addit- pouer may be of use to those interested in
natura.-.anguage processing.

19

APPENDIX A

COMEMON CIPHER SYSTEIMS

Problems enciphered in the following cipher systems appear

regularly in the bi-monthly magazine THE CPYPTOGRA/v published by the
Amcrican Cryptogram Association. This list is included to show the

variety of cipher systems that people frequently solve with pencil

and paper. It has beer the goal of this thesis to write a computer
programming language which will permit a cryptanalyst to attack any
one of these systems quickly and easily.

Amsco

Beaufort

Beaufort, Variant

Bifid

Cadenus

Fractionated Morse

Grandpre

Grille
Gronsfeld

Keyphrase

Myskowsky
Nihilist Substitution

Nihilist Transposition

Phillips j

Playfair

Playfair, Seriated

Porta

Portax

Quagmire (Vigenere with mixed tableaus)

Ragbaby

Railfence
Simple Substitution

Slidefair

Transposition, Auto
Transposition, Columnar

Transposition, Route
i ~Tri-Dic~ital•:

Trifid
Tri-Square

Vigenere -

Vigenere, Auto Key
Vigenere, Running Key

- - -!

21

APPENDIX B

SOLUTION OF THE RAILFENCE CIPHER INC SNOBOL

The Railfence cipher is a simple form of transposition cipher.

The plaintext is written in a zig-zag route thus-

S R N H
A EA E C P E

ML IF E I R
P L C

The cipher text is then taken off in rows giving the following

cryptogram:
SRNHA EAECP EMLIF EIRPL C.

The key consists of how many letters deep the zig-zag is (known as

the rail depth) and whether the zig-zag starts off in W form (as the

example does) or in inverted W form.

The railfence program was written to test SNOBOL's suitability

as a computer programming language for solving cryptograms. The

method of attack used in the railfence program was to prepare a

string as long as the cryptogram in the form:

1234543212345432123...

where the highest number in the string indicates the rail depth

being tested. The letters of the cryptogram are taken off one by

one and substituted for the l's first, then the 2's, etc. The

resulting string is the trial decipherment which is then scored by

using a digraph weight table. This table is found in strings CWA

through CWZ in the program. The score is the sum of the weights for

each digraph. In making a sequence of trials, the one with the

highest score is chosen as the best solution for the cryptogram.

The program in SNOBOL was written to allow the operator to

direct the search among the various rail depths and forms by asking

for instructions. The instructions consist of simple entries

indicating a particular depth and form, trials over a series of

depths in both forms, or END which terminates the program.

Writing the program in SNOBOL revealed some serious limitations

of the overall suitability of S!NOBOL for general cryptographic work.

Among these are: 1) lack of arrays and floating-point numbers, 2)

lack of generalized functional arguments for the string

pattern-matching elements, and 3) overall system slowness in running

relatively simple examples. (The total main-frame computer time was

- p

Ea

22 APPENDIX B

often more than 30 seconds even for simple examples).

The railfence program example is included here to demonstrate

the kind of problem OCAL was designed to solve. In the example, A
bold capital letters are the computer program typing and lower-case

letters are operator responses. Explanatory remarks added for this

manuscript are set off by brackets.

AN EXA14/PLE OF THE RAILFENCE PROGPA.

snobol rfence [calling the program in CTSS]
W 1314.2 [timee of day furnished by CTSS]
EXECUTION (CTSS indication that the progra.,i erating]

WHICH PROBLEM (railfence program asking for problem ident.]
(m-a 63) [problem found in the March - April 1963

issue of The Cryptogram]
PROBLEM IS
SASEP AISNI CRPOB INGAF COEAH OCN;NR NSOIS OIIAH RT. (tM-A 63)

TRY (railfence program asking for directions)
help [operator asking for directions]
OPTIONS ARE
ALL M THRU N
WHERE N AND M ARE POSITIVE INTEGERS INDICATING
THE INCLUSIVE RAIL DEPTHS TO BE TESTED BOTH IN
STRAIGHT AND INVERTED W STYLE,
END
WHICH TERMINATES THE RUN,
+N
-N
FOR A SINGLE TRIAL
WHERE N IS THE NUMBER CF RAILS AND
THE SIGN INDICATES STRAIGHT OR
INVERTED W STYLE RAILS.

TRY
all 4 thru 6
RAIL DEPTH SCORE

.4 37
-Ii 39
+5 60
-5 54
+6 53
-6 50

SOLUTION
SCORE ON 5 W STYLE RAILS IS 60

SIGNINASANFRANCISCOSHOEREPAIRSHOPBOOTICIAN

TRY
end [operator is satisfied with result and

£ terminates the run]
SR 15.466+5.083 [15 seconds of computer time were spent

running the program and S seconds were •nent
swapping it in and out of core. Statistics
are from an actual CTSS run)

T-T,

APPENDIX 8 23

* RAIL FENCE PROGRAM

START CWIA - 'B2C2DlFlGiI iJlKiL2MlN3P2R2S2T2V2W1XiYI'
CWB - 'Al~lE~&IlL2OlRlU2Yl'
CWn - 'A2E2H21IK2LlO2RlTiU1'
CWO - 'A2DlE2FiI2~JIOIRlUlViYl'
CWE - 'A2CiD2FlGiLlMiN2PlQ2R2S2VlWiX3I
CWF - 'AlElFlllLlO2RlTlUl'
CWG a 'AiE2H2IiLlO2R2Ui'
CWH - 'A3114I202T1'
CWI - 'AlBIC2DiE1F2GlK2L2MIN3O2R1S2T2V2X2'
CWJ - 'AlElO2Ul'
CWK - 'A1E3I2NiOiSlYi'
CWL - 'A2DE3I2KIIL2O2SM~UMY'
CWM a 'A3BiE3I2MiO2PiUl'
CWN - 'A1ClD2EiG2IiJiKlNiOlSiT2UlVlXlYI'
CWO a 'AlBiCi~lF3G1I 1K2LlM2N3OiP2R2SlT2U3V2W2XlI
CWP - 'A2E2H1IiL2O2R2TlU1'
CWQ a us,-
CWR - 'AlD1E2GiI iKlLlMlOlTiUlVl'
CWS - 'A2E2H2I2KiLit~iNlO2P2QiSIT3U2WlI
CWT - 'A2E2H4I3O3RiSiT2U2Wl'
CWU - 'AlBiCiDiElGiLlIt~N2PlR2S2T2
CWV - 'A2EI4I2O2'
CWW - 'A2E2H31201'
CWX a 'AlCiEiIiOiP1Tl'
CWY - 'AlElO?'
CWZ - 'E302'
MAXRAILS - '9'
WRFLX(*WHICH PROBLEM')
IDA a RDFLX()
ID a TRIMMIA)

RD HOLD
RDA SYSPIT *LINE*

LINE 'END OF PROBLEMS' /F(ROB)
WRFLX('PROBLEfi NOT FOUND') /(END)

ROB LINE ID /SiRDC)
LINE '.ý ISCRD)
HOLD - HOLD LINE /(RDA)

ROC WRFLX('PROBLE'4 IS')
HOLD ,'(C)' /F(RDO)
WRFLXIHOLO)

ROD ~ IIRFLX(LINE)
LINE *HOLD LINE
LINE '.2 /S(RDl)
HOLD '~LINE

SYSPIT *LINE* /(RDO)
R01 LINE '(C)'

EPUALS(C,*.') IS(DN)

CIPHER a CIPHER C /(ROi)
O N WORK a CIPHER

COUNT a SIZECUORK)
TRY WRFLX(11)

WRFLX('TRY')
GUESS a RDFLX()
GUES~S - TRIM(GUESS)
DELTA - '1'
OsC - 10
N . '1'
GUESS 'ALL' 'Fl' * Ni' * F2' ' -'N2' /S(MLPA)

TRYl GUESS '*' a
GUESS 'END' /S(END)
GUESS '-' a /F(DNA)
DELTA - '0'V DELTA
N - GUESS

DNA .NUI4(GUESS) IS(ONB)

-~ ~ ~ ~__ ___ ____ ____ ___ ____ _Z

I

-; 24 APPENDIX B

WRFLX('OPTIONS ARE')
WRFLX('ALL N THRU M')
WRFLX('IHERE N AND M ARE POSITIVE INTEGERS INDICATING')
WRFLX('THE INCLUSIVE RAIL DEPTHS TO BE TESTED BOTH IN')
WRFLX('STRAIGHT AND INVERTED W STYLE.')
WRFLX('END')
WRFLX('WHICH TERMINATES THE RUN,')
I;RFLX('+N')
WRFLX('-N')
WIRFLX('FOR A SINGLE TRIAL')
WRFLX('WHERE N IS THE NUMBER OF RAILS AND')
WRFLX('THE SIGN INr)ICATES STRAIGHT OR')
WRFLX(WINVERTED W STYLE RAILS.') /(TRY)

DUB RAILS CUESS (AMLP2)
14LPA .GT(NI,'Il) /F(TRY1)

.IT(N1,N2) /F(TRYl)
RAILS - NI - '1'
MAXRAILS = N2
WRFLX('RAIL DEPTH SCORE')

?LP RAILS = RAILS + '1'
.GT(RAILS,MAXRAILS) /S(FINIS)
N - '1'

MLP2 PATTERN =
D = DELTA
C - COUNT

rMtLP1 PATTERN - PATTERN N
N = N+ D
C =C - '1'
.EQ(C,'O') /S(PI)
.GE(N,RAILS) /S(REV)
.LE(N,'I) /F(MLPi)

REV D = '0' - D /(MLPi)
PI WORK = CIPHER

N - #tV
MOR WORK *CH/1'i* =
MRI PATTERN N w CH /S(MOR)

N = N + '11
.GT(NRAILS) /F(MRI)
NSC = '0'
WORK = PATTERN
WORK *SC/l''* =

3tl FC = SC
WORK *SC/'1'* = /F(FIN)
PUT = 'Clt' FC
SPNT SC *11/1I'* /F(SL1)
NSC NSC + W /(SL1)

FIN .GT(NSC,., -C) /F (AG!)
WIN = PATTERN
RLS = RAILS
OSC = NSC
TYPE = "
.GT(DELTA, 2 0') /S(AGN)
TYPE - ' INVERTED'

AGNJ .1NUM(GUESS) /S(FINIS)
*. - DELTA * RAILS
. LT(l1-, 1'0) /S(AGN1)
H = '+' M

AGNI WRFLX(' ' 4 ' ' NSC)
DELTA - '0' - DELTA
.EQ(DELTA,'*1') 1S0tLP) o
N - RAILS /(ILP2)

FINIS WIRFLX(' ')
WRFLX('SOLUTION')
WRFLX('SCORE ON ' RLS TYPE ' W STYLE RAILS IS ' OSC)
WRF LX(W I I)
/I(TRY)

END START

7-

APPENDIX B 25

RAILFENCE PROBLEMS FROM THE CR flPTOGRAM

TOTIA SHHSI SESRI REEWE FTEBU nUM4NN 14OTNT FOAOA AC. (S-0 65)

!TEER DANSO EDXRE TNIRL EFNSE SDOOT BIRTY RRIRK CIEKE HDEAZ OENOH

EHEOG LENEI NTTBU 1P. (J-A 65)

OESDH OHSAN GEUHA TNNST AETYO OHNTY EIAPE LRION TGECM GTEOL OESOO

HET. (14-J 65)

OEOWA RHRKS EPWHM KE5TI ASPLO ITEHS LUTMO EERLI STWLA YMGEO E.

(M-A 65)

ENELY MSVRI VAYOB BNYWI EONAH RTAIO WOLR~1 GHUGO BRSID LYINF ON.

(J-F 65)

SITWS 1IBHO VCUHE OEYVN ETAAA GUOEO IHRWO IGTOS DTLWN AIYP'T LOULW

IFAOB AODFK DARFE S. (N0D 6'.)

RIOAN RISEW NGMTS DADAE HFMEH OEHTH KATTS ISTEL TRHTF EV(YFH DEOLH

VAKIS IROSI EIFTO TEFSH WHKTR S. (S-0 64.)

VSDIH HLRAN ENITO SOTEL BCACO NESIN ERDLA EE8AI DHPSS HENAN CMBTW

OTA14C Y. (J-A 6'.)

WUAAA IYRTB YLFBR AESIL FLAEH GATNA ALEOP OOIFE NFSO. (M-J 6'.)

ADHNR EOSAM NLOSI 1HEHF SLARA BTEWE MOMFO TAiEA UENEH MLHSF NSLTA

SWVRG TDNRO TOIEW AEHOO. (N-A 64.)

SASEP AISNi CRPOB INGAF COEAH OCNNR NSOIS OIIAH RT. (1-1-A 63)

END OF PROBLEMS

[The above-listed problems where included as an appendage of

the railfence program to facilitate testing. A more realistic

cryptanalysis program would allow an analyst to type in a
specific problem followin5 the WHICH PROBLEM query of the

program, rather than call a preloaded problem out of the program.]J

A

27

APPENDIX C

DETAILED DESCRIPTION OF OCAL SYNTAX

This appendix describes current specifications of the on-line

cryptanalytic aid lannuage. OCAL is intended to be a problem-

oriented computer programming lanquaqe, desiqned t,. make the
solution of cryptograms easier by providina a cryptanalyst with

computer aid. The ideas incorporatec1 in OCAL have been taken from

many languages, such as MAD, PL/I, SNOBOL, LISP, and SLIP. However,

OCAL was not intended to have the full generality of a language such

as PL/I. Instead, OCAL was originally specified for easy implemen-

tation on a computer such as the Diqital Equipment Corporation

PDP-6. As the design continued, some compromises were made to

provide more features in the language, so that some of the
specifications may change when the lanouane is finally implemented

on a computer.

C.1 SYNTAX NOTATION

In this appendix, meta-variables will be tyned in small letters

without intervening blanks, as the following:

identifier

label
boolean-expr

Capital letters indicate words that are part of the lanauage, such

as:

PROCEDURE

DO

STRING

BEGIN

The meta-symbol ... is used to indicate that an arbitrary number of

the rreceding meta-symbol can follow. All other punctuation marks
such as. , - ; must appear as indicated. Optional portions of
definitions will be set off using pairs of slashes [/]. For

e;:ample,

LABEL namel/,name2 ,.../

means that the declaration LABEL is followed by at least one name

and optionally, an arbitrary number of names separated by commas.

WE.7

-- ~:

LI

* 28 APPENDIX C

"C. 2 BASIC PROGRAM ELEMENTS

C.2.1 Character Set

The basic claraoter set for OCAL is the revised ASCII character

set. This character set is used for both language and data.

C.2.2 Identifiers

An identifier is a string of 29 or fewer alphanumeric
characters; the initial character must be alphabetic. Identifiers

are used for variable names, array names, statement labels,

procedure names, and keywords.

C.2.3 Use of Blanks
Identifiers and constants (except string constants) may not

contain blanks. Identifiers and/or constants may not be immediately

adjacent. They must be separated by an operator, equal siqn, paren,

colon, semi-colon, period, or blank. All format effecters, such as
horizontal tab, vertical tab, and line feed are treated as blanks,

and multiple blanks are treated as one blank.

C.2.4 Comments

If the first character at the beginning of a line (i.e., after
a Carriage-Return Line-Feed [CRLFJ combination) is a star [*J then

the entire line up to the next statement terminater (i.e., semi-

colon or CRLF) is treated as a comment and is ignored in OCAL.

C.2.5 Statements

A statement is any single statement found in the language and

is terminated by a semi-colon or a CRLF. Sometimes a statement can

contain ano+-her statement as a sub-piece. ;For example, see the IF
statement). If a complete statement does not fit on one line, it

may be continued on the next line by makina the first character on

the next line a period I.]. In this case, both the CRLF and the

period are ignored by OCAL. This is true even within string

constants.

C.2.6 Blocks

A block is a group of statements enclosed between the

statements BEGIN and ELD. SE111 and END act as statement paren-

theses and define a block. Blo-cks may be nested to any depth. A

"* •block may appear anywhere in the lanquaqe a statement can appear,

except that a block cannot appear in place of a declaration or

PROCEDUPe statement.

ff

APPENDIX C 29

C.2.7 Statement Labels
Statements may be labeled to permit reference to them. A

statement label has the form,
id:/id-... / statement

where "id"s are identifiers. In this case, the identifiers are

11 called statement labels and may be used interchanqeably to refer to

the labeled statement. Labels before procedures are special cases

and are called procedure names (see Section C.7.1, PROCEDURE

Statement). Only one label may appear before a PPOCEDURE statement.
Statement labels appearing before declarations in OCAL are

ignored.

C.3 BASIC DATA TYPES

C.3.1 Logic

A four-value logic is used in OCAL. The values and their
meanings are:

T- true

F - false

N! - neutral or neither

U! - undefined

The logic values are ranked from los:est to highest, with N: lowest,

then F!, T!, and U! highest. The result of loqic constants combined

under the operation .A. [AND] produces the lowest of the operands.
Similarly, the operator .V. [inclusive OR] produces the highest of

the operands. The operator .N. [NOT] inverts T! with F! and N!

with U!. The operator .X. [exclusive OR] behaves like .%.

[inclusive OR] unless both operands are the same, in which case the

* • result is the .N. [NOT] of the first operand.

C.3.2 Integer

An integer is an optionally-signed string of decimal digits, or
_! .an optionally-signed strinm of octal digits, followed by the letter

K. For an octal integer, the K may be followed by an octal exponent

Z •given as a one- or two-digit decimal integer. The maximum size of

an integer depends upon the particular OCAL implementation. On the

"Z PDP-6, up to ten decimal digits or twelve octal digits are

permitted. 1-

- C.3.3 Real

A real number is an optionally-signed strinq of decimal digits

including a decimal point Iperiod]. In addition, a real number may

have an ex-onent, indicated by the letter E, followed by an

optionally signed one- or two-digit, decimal-integer exponent. The

| !

30 APPENDIX C

maximum precision of real numbers is dependent on the particular

implementation of OCAL. On the PDP-6, the exponent magnitude must be

less than 10-to-the-38th power and the precision is limited to eight

decimal digits.

C.3.4 Character
A character is a two- to eiqht-bit quantity representing an

element of the ASCII character set mapped by an associated alphabet

(see Section C.3.7). Characters are indicated in the language by a
double quote mark ["] followed by one ASCII character or by a number

sign [#] followed by exactly three octal digits. Characters may be

mapped by alphabets from the ASCII character set to a subset of
ASCII and back again.

For example, the ASCII character A may be represented by either

of the following:
"A

#201

C.3.5 Strinti

A string is an arbitrarily long sequence of ASCII characters

delimited by single quote marks [']. A string may contain any

combination of ASCII characters. The characters single quote ['1,
double quote ["], and number sign [*) have special meaning when

denoting a string in OCAL. Single quotes delimit the string, which
means that one double quote mark is iqnored and the character
immediately following it is inserted in the string, no matter what

that character may be. The double quote mark is used as a "quote"

character; so that a single quote may be inserted in the string

using the double quote mark. Since not all eiaht-bit ASCII

characters can be generated from a normal teletypewriter keyboard, a

special quote character, the number sign If], is used to insert
untypable characters in a string. A number sign must be followed by

three octal digits, from 000 to 377, inclusive. This octal number
represents the dcsired ASCII cnaracter.

Note thai. the carriage return and line feed characters may

appear in a string. if a desired string will not fit on one line,

the statement continuation convention may be used, in which case

neither the CRLF nor the following period will appear in the string.

For example, the following all represent the same ASCII string

in OCAL:
'ABC'
'A"B"C'

S'#201B#203'

--.

APPENDIX C 31

C.3.6 Reader

A reader is a special data type which may be associated with a

given string. Using special reader functions, a reader may be moved

up and down the string. A reader can also read characters from a

string and write characters into a string (see Section C.9, Reader

Functions). The reader was introduced into OCAL as a flexible way

of transforming character strings into characters, and vice versa.

C.3.7 Alphabet

An alphabet specifies a mapping from the ASCII character set

into ASCII. The idea was introduced into OCAL to add efficiency

when dealing with characters as subscripts for compound data

structures and arrays. Alphabets also allow core storage to be used

more efficiently when storing character strinas. In addition,

alphabets can be used to exploit certain mathematical relationships

often found between the characters of a particular cryptoqram or

cryptographic system. The alphabet declaration has two parts: the

name, and the defining string given in OCAL string notation. In

addition to the characters in the defininq string, each alphabet

includes two extra characters in the domain, standing for the logic

values N! and U!. These are included to give OCAL the ability to

indicate certain logical decisions within a string. However, the

character corresponding to N! and V! are not included in the

cardinality of the alphabet.

The declaration of an alphabet defines two objects within OCAL.

First, a mapping function is called like an OCAL procedure which

converts an ASCII string or character into a string or character in

the given alphabet. Under this mapping, any character appearing in

the domain (ASCII), but not in the range, is mapped into the null

"character (i.e., ignored). Second, the declaration permits the

alphabet name to be used as a global integer variable whose

magnitude is equal to the cardinality of the the defined alphabet.

"An alphabet can also specify the mapping of many characters in

the domain into one character in the range. This is accomplished by

observing the following conventions in the defining strinq. All

characters enclosed within parentheses in the defining string are

mapped into the same character as the first character after the open

parenthesis. If either of the literal characters open parenthesis

Sor close parenthesis ")" is desired in the range, it must be

preceded by a double quote mark in the defining string.
S(NOTE% a double quote mark is introduced into an OCAL string using

the form "".)

For example, the following will declare a five-letter alphabet

called AS, consisting of the characters A B C (and). In addition,

32 APPENDIX C

the ASCII characters D and E will be mapped into the character C.
ALPH?'I3Er AS('AB(CDF)""("))

Using the alphabet A5, the ASCII string 'ABCDEF(ABZ)l will be mapped
into the string 'ABCCC(AB)',

C.3.8 Type Transfer Procedures

The following procedures are available to transform quantities

from one basic type to another. They are:

CHARACTER. (q)

where 'q" is a logic, integer, or real quantity and the result is a
character in the ASCII alphabet;

STRING. (q)

where *q" is a logic, character, integer, or real quantity and the
result is a string in the ASCII alphabet;

LOGIC. (q)

where "q" is a character, integer or real cuantity;

INTEGER. (q)
where "q" is a logic, character, ASCII string of diqits, or real

quantity; and

REAL. (q)
where "q" is a logic, character, ASCII string of digits in PEAL

form, or integer quantity.
The procedure

ASCII. (s)
will transform the string "s" in any alphabet to an ASCII string.

C.4 BASIC DECLARATIONS

In an OCAL procedure, each variable must be declareJ before it

is used. The following forms are used to declare variables in an

OCAL .rocedure:
LOGIC id/,id,id.../

INTEGER id/,id,id...

REAL id/,id,id.../
CHARACTER id/,id,id.../

STRING id/,id,id.. ./
READER id/,id,id.. ./
ALPHABET id(st)

LABEL id/,id,id.../

EXTERNAL id/,id,id.../
£ GLOBAL id/,id,id...f/

where "id" is an identifier and "st" is an OCAL string. The LABEL

declaration means that the variable stands for a statement label.

4- -0-47 - - ~ -

IZ

APPENDIX C 33

The GLOBAL declaration means that the variable is to be made

available to all OCAL procedures and is always defined. The
EXTERNAL declaration means that the variable is a GLOBAL variable

defined by some other OCAL procedure. The variables mentioned in a

GLOBAL or EXTERNAL declaration must also appear within one of the

type declarations. Variables not mentioned in a GLOBAL or EXTERNAL

declaration are defined only within the procedure or block which

contains the declaration.

C.5 COMPOUND DATA STRUCTURES

The ccmpound data structures in OCAL are taken from the data

structures found in the programming language PL/I. To avoid

repetition of material, the following seetions in Chapter 2 of the

PL/I manual (IBM Form C28-6571-0) should be implemented iii OCAL:

DATA AGGPEnATES - page 43

ARRAYS - page 44

STRUCTURES - paae 44

ARRAYS OF STPUCTURES - pane 44

N•A-ING - page 45

SIMPLE NAMS - page 45

SUBSCRIPTED NAIMS - page 45
QUALIFIED NAMS - page 46

SUBSCRIPTED QUALIFIED NAMES - page 46

The only restriction on the data structures in OCAL is t!'at blanks

are not permitted within qualified names. In implementing these

data structures in OCAL, it should be noted that each element of a

compound data structure must be previously declared to be one of the

basic data types, or must be a previously declared compound data

structure. The recursive definition of a compound data structure is

expressly prohibited in OCAL.

C.6 EXPRESSIONS

C.6.1 Arithmetic Expressions

The following infix operators are available for arithme.tic

expressions in OCAL:

+ addition

- qubtraction
* multiplication

/ division

Arithmetic is performed on cnaracter, integer, and real data; the

data types being ranked with chardcter lowest, integer next, and

real highest, The operands of any operator are converted to the

S. - --. .-o -

3A

34 APPENDIX C

type of the highest operand, and the result is of that type unless

one of the operands was a character. In that case, the result of

the arithmetic expression is of character type and is taken modulo

the size of the alphabet corresponding to the first character

encountered. If this action is not desired, the followinq "dotted"

operator set may be used:

.+. addition

.-. subtraction

. o*multiplication

./. division

.R. remainder
The "dotted* operators perform only the necessary type matching and

indicated arithmetic.

C.6.2 Relational Expressions
Relational expressions return logic values and are used in

making comparisons between various quantities. The relational

operators are:
.G. greater than

.GE. greater than or equal

.L. less than

.LE. less than or equal

.E. equal

.NE. not equal
The operands may be of logic, character, integer, or real type. As

in arithmetic expressions, type conversion takes place between
character, integer, and real data types. However, if one operand is

of logic type, then they both must be of logic type or the result

will be U! [undefined]. Normally, the result of a relational

expression is T! [true) if the relation holds and F! [false) if it

does not.

C.6.3 Logic Expressions
The logical operators available in OCAL are:

.A. and

.V. inclusive or

.X. exclusive or
N. not

The operands of a logical operator may be of logic type (ranked

lowest), character, or integer (ranked highest). The result is of

the same type as the highest operand and is the bit-wise combination

of the operands according to the operator, unless both operands are

of logic type. In this case, the truth tables indicated in Section

C.3.1 are used.

.m1I .

mm |- - -

APPENDIX C 35

C.7 STATEMENTS

C.7.l PROCEDURE

The PROCEDUPM statement marks the beginninc" of an OCAL function

oc procedure. it gives both the procedure name and the list of

parameters the procedure is to receive. OCAL procedures may be

recursively defined without any special declaration. The parameter

list for a procedure may specify either a fixed or variable number

of parameters. The form of the PROCEDURE statement for a fixed

number of parameters is

id: PROCEDURE/(namel,name2,...)/

where "id' is the identifier giving the procedure name and the

optional parameter list is enclosed in parentheses. Names in the

parameter list give dunmy names for arguments used by the procedure.

Each dummy name must appear in a type declaration statement in the

procedure.

For a variable number of parameters, the PROCEDURE statement

has the form

id: PROCEDURE (/ff,.../(v,v,...)/,f,f.../)
where *id" is the procedure name and tho *f"s indicat.e optional

parameters that are always present in the procedure call. The 'v'r

in parentheses indicate a set of parameters which may be repeated

zero or more times in any procedure call. Again, all the dummy

parameter names must appear in type declaration statements for the

procedure. At each activation of the procedure, the global integer

variable NUMEROFPSETS will contain the number of parameter sets in

this procedure call. Individual members of a parameter set may be

referenced by the convention

par En] / (subs) /

where "parn" is the dummy name in the procedure parameter list, (n)

is an integer or integer variable referring to a particular

parameter :et, and the optional (subs) is any subscripting

expression associated with the parameter. Note that it does not

make sense for the value of n to exceed the value of the inteqer

variable NUMBEROFPSETS.

An OCAL procedure is terminated by an END statement (see next

section). If control reaches an END statement for a procedure, it

is equivalent to executing a RETUM; statement with no return

expression specified.

C.7.2 BEGIN AND END

The BEGIN statement or block marks the beginning of a compound

statement which may appear any place a single statement can appear

(except for a PROCEDURE statement or declaration). In addition, a

VA*-

36 APPENDIX C

compound statement may start with type declaraticn statements,

declaring local variables defined only within that compound

statement or block. Variables used but not declared within a block

are assumed to be declared in the procedure or in a block which

encloses this one.
The statement

END /statement-label/

is used to terminate both a block and a procedure. The optional

statement label, if present, must match the label on the

corresponding BEGIN or PROCEDURE statement.

C. 7.3 Assignment

The = sign is used to denote assignment in OCAL. This form

gives
vl/,v2,v3.../ = el/,e2,e3.../

where the "v"s are either variables which may be subscrip~ted, or

certain reader functions, and the "e"s are any OCAL expressions. If

more than one variable or expression occurs, the assignments are

made in pairs, el assigned to vl, e2 assigne2' to v2, etc. If there

are more expressions than variables, the excess expressions are

evaluated but the values are ignored. If -here are more variables

than expressions, the last expression value is assigned to the

remaining variables.

Automatic type conversion is done within the following groul-s

of data types:

character-integer-real

logic-character-integerj

Assignments made to a character variable are made as stated, if i

the expression is of character type. Otherwise, the expression is

taken modulo the size of the alphabet (if ,ny) associated #ith the
character.

C.7.4 PROCEDURE calls

Procedures are called with
procedurename./(pl,p2,....)/

This uses the MAD convention of following the procedure name with a

pej'icd to differentiate it from a subscripted variable. The "p's

ar.! optional parameters which, if present, are enclosed in

parentheses. However, a statement may consist of only a procedure

call, in which case any value returned oy the procedure is ignored. -•

C.7.5 Iteration

The iteration statement DO allows a statement or block to be

repeated zero or more times until scme logical r-,ndition is met.

1' 414

APPENDIX C 37

The DO statement takes the following forms:
DO UNTIL loqicexpr, statement

J DO WHILE logicexpr, statement
DO NEITHER loqicexpr, statement

The UNTIL form repeats the statement until the logical expression

logicexpr is not F! [false]. The WHhILE form renpats while logicexpr

is T! [true]. The NEITHER form repeats statement while loaicexpr is

1N! [neither or neutral].

C.7.6 Conditional

The conditional statement takes the form

IF logicexpr, statement

If the logical expression "loqicexpr" is T! [true], the statement is

executed. Otherwise, the statement is skipped.
4

C.7.7 GO TO
The GO 7O statement has the form

GO TO label

where label is a statement label or variable of LABEL type.

C.7.8 VALUE

The value returned by on OCAL procedure may be indicated by the

statement
VALUE expr

where expr is any expression.

C.7.9 RETURN

A particular activation of an OCAL procedure, is terminated by

executing the END statement associated with the procedure or by

executing the statement

RETURN /expr/

The value returned by the procedure is the value of the optional
expression "expr". If expr is nnt present, the value is taken from

the last VALUE statement executed in the procedure. If expr is not

present and no VALUE statement has been executed, the procedure
returns a null value.

C.7.10 ERROR

A particular OCAL procedure may be terminated by the statement
ERROR /string/

Executing this statement causes control to return to the laat ON

ERROR statement executed (see ON statement). The value of thL

optional string associated wit!. the last error statement is found as

the value of the global string variable ERROPSTRING.

..... . -~ - --- -- �-.. .,,. --

___ -~- -----2-

I

38 APPENDIX C

_T C.7.11 ON

The ON statement (an idea taken from PL/I) allows a programmer
to retain control in spite of certain interrupts which might cause

the OCAS job to terminate. The form of the ON statement is

ON condition, statement

where the "statementV (usually compound) is executed when the

interrupt corresponding to *condition" is found. The interrupt
conditions which the programmer can interc-pt with the ON statement

are:
ERROR - error return from an OCAL procedure

CLOCKTICK - every time the system clock ticks

PDLOVERFLOW - overflow of push-down list

STORAGEFULL - no free storage left

DISBUFFERFULL - overflow of display buffer

DISPLAYSTOP - the display has executed
a stop instruction

STORAGEUSED - allotted storage has been used
(sae Storaqe Allocation, Section C.10)

KEYSTROKE - one character has entered the
on-line teletype buffer

If appropriate, the programmer can return control from the interrupt

to the statement OCAL was executing when the interrupt occured by

executing the statement

DISMISS

This permits OCAL to resume processing the previous calculation

after some interrupt processing has been done.

The effect of an ON statement may be canceled by leaving the
procedure in which the ON was executed, or by the statement

REVERT condition

which causes any interrupts corresponding to condition to be handled

by an ON statement e..ecuted in a higher procedure.

The system may be requested to handle interrupts by the
statement

SYSTEM condition

This instructs the system to do normal processing (if any) of any

interrupt corresponding to this condition. The effect of a SYSTEM

tatement is canceled by leaving the procedure in which it was

executed, or by executing a REVERT or ON statement epm--ifying the

same condition.

An interrupt on a particular condition may be simulated by the

program by executing the statement

INTERRUPT condition

-i

'IM

Ole2

I
E

APPENDIX C 39

This has the same effect on OCAL as if the interrupt corresponding

to condition had happened when r-he INTERRUPT statement was executed.

Once an interrupt corresponding to a certain condition has

happened, further interrupts for the same condition are inhibited

until a DISMISS statement has been executed or until an ON, REVERT*

or SYSTEM statement specifing the same condition is executed.

C.7.12 SNOBOL Pattern Matching

The pattern-matching statement in OCAL is taken directly from
the SNOPOL string-processing language. The basic forms of the

SNOBOL statement are:

input /pe pe ... /

input = st st /st ... /

input pe pe ... = /st st ... /

where "input" is a string or string variable, *pe a are pattern

elements (defined later), and "st"s are strings or string variables.

The SNOBOL statement works in this manner: the input string is

scanned from left to right for a match against the nattern elements

in the given order. If a match is found and the - sign is present,

matched pattern elements are replaced by the concatenation of

strings "st" (if any).

Pattern elements may be string constants, string variables or

arbitrary strings found in the input string itself. Arbitrary

strings are denoted by string variables bracketed by stars.

For example: *Al*

HOLD
Arbitrary strings match any substring in the string input, including

the null string. Arbitrary strings may be subject to a number of

conditions. An arbitrary string designated

will match a substring exactly three characters long. The general

form of a fixed-length arbitrary string is

*name/n'

where "name" is a string variable and "n" is an integer or integer

variable. An arbitrary string may be subject to the condition of

containing a matching number of left and right parentheses. This

•_ condition is designated by

'(name)'

j where "name" is a string variable.

An arbitrary string may be subject to a condition specified by

a general logical procedure by using the form

*name/proc. (arglarg2,...) _A

where 'name* again is a string variable, *proc' is a logical

procedure, and the "args* are any procedure arguments. The largs*

- '| '-

--. ,~- ------ --- .. .

t

40 APPENDIX C

may specificaliy contain string variables which are substrings

matched earlier in the SNOBOL pattern-matching statement. The logic

procedure should return the value T! [true) if the proposed contents

of name are satisfactory, N! [neither] if the proposed contents of

name are not satisfactory because the string is too short, and the

value F! (false) if the proposed contents of name are unsatisfactory

for any other reason. If the logic procedure returns the value U!

[undefined], the SNOBOL pattern scanner will take an ERROR return

with the input string as the ERROR string.

After the pattern match is complete, the arbitrary

string-variable ndmes contain copies of the strings they matched in
the input. These names may be mentioned in the concatenation

section of the SNOBOL statement or in any other statement following

thr, pattern-matching statement. Note also that string-variable

pattern elements may have the same name as arbitrary pattern

elements matched earlier in the pattern-matching statement. This

makes it possible to search the input string for non-overlapping
repeats of an arbitrary pattern element.

If the SNOBOL pattern match succeeds, the global logic variable

SCANFLAG is set to T! [true]. Failure to find a match causes

SCANFLAG to be set F! [false]. This condition can be tested by the
IF or DO statements.

C.8 INPUT/OUTPUT PROCEDURES

input/output procedures in OCAL will initially be limited to

handling strings. Since the OCAL character set (ASCII) is quit.,

general, strings can be converted to any other data type in OCAL.

Conversely, output material can be converted to ASCII strings in

OCAL, Two basic procedures are furnished with OCAL. They are:

READ.(file/,termin/)
WRITE.(file,string)

The argument file is either 'PTR', 'PNCH', 'TTY' or 'namel name2'

specifing photoelectric tape reader, paper tape punch, on-line

teletype, or file names on backup storage (DECtape on the PDP-6).

Only one file from backup storage may be open for reading and one

file ophn for writing at a time. If the optional second argument

"termin" is present in the RFhD call, the READ procedure returns as

value the ASCII string of all characters up to and including the

first match of the string termin. If termin is not present, the

value of the READ procedure is all characters then i- the input

buffer. An end-of-file on backup storaqe is signaled by havinq the

last character be ASCII character EOT.

-I7ý7

APPENDIX C 41

The second argument of the WRITE procedure is the output
AI string.

A file on backup storage may be closed by using the call

CLOSE. (file)

.• i where "file" is a string 'namel name2' as cescribed above.
Examples:

"INP = READ.('TTY','9215#212')

will read one line from the on-line teletype, up to and including

the Carriage-Return (215) Line-Feed (*212). The resulting string

will be placed in the string variable INP;

WRITE. ('PNCi' ,OUT)

will punch the contents of the string OUT on the paper tape punch;
IN = READ.('ALPHA DICT',' ')

will read from backup storage file ALPHA DICT the first string up to

and including a space.

C. 9 READER FUNCTIONS

Special flunctions for using the READER data type are available

in OCAL. The general form of these functions is

$fn/fnfn...1. (ready)

where the "fn"s are elementary reader functions and "readv" is a

variable of reader type. The elementary reader functions are:

C - Write one Character into a string if this appears on the

left side of an assignment statement, otherwise read one

character out of a string.

V - Set the reader position to the integer Value if this

appears on the left side of an assignment statement. Otherwise

return the integer value of the current reader position in
characters from the head of the string.

I - ._ncrement the reader position which moves the reader on4

character position forward on the string. If an attempt is

made to pass the end of the string, the global logic variable

ENDSTRING _s to T.1 [true]. Otherwise, the ENDSTRINCG is set to

SF! [falsel. If the "I" is on the left side of an assignment

statement and an attempt is made to pass the end of the string, C

the string is extended one character position and the global

- •logic variable EXTENDSTRING is set to T! [true). In any other

case EXTENDSTRING is set to P. [false], and attempts to pass

the end of the string leave the reader position unchanged and

set the ENDSTRING variable.

____ ___ ___ ___ ___ - -~----~=,-.-.-- - "~ _ - .2

S42 APPENDIX C

D - Decrement the reader position which moves the reader one
character position towards the beginning of the string. Any

attempt to pass the beginning of the string will leave the
reader position unchanged and the global logic variable

BEGINSTRING set to T! [true]. If no attempt is made to pass

the beginning of the string, BEGINSTRING is set to F! [false].

RI - Rotary Increment. This behaves like I [increment], except

that passing the end of a string will position the reader at
the beginning of the string.

RD - Rotary _Decrement. This behaves like D [decrement], except

that attempts to pass the beginning of a string will position
the reader at the end of the string. No global variables are

altered by RI end RD.

M - Mark. This notes the -urrent position of the reader on the

string for future reference.

P - Position. Return the reader to the position set by the

last 14 [mark].

N - Initialize. Return the reader to the beginning of the

string.

A reader may be attached to a given string by calling the

ATTACH procedure with

ATTACH. (rdr,st)

where Irdra is a variable of the READER type and "st* is any

non-null itring.

Examples (The following declarations hold throughout this

example: R is a READER variable, S is a STRING variable, C and D
are CHARACTER variables, and I is an INTEGER variable. The initial

contents of S are 'ZLNOPQ'.)

ATTACH. (R,S)

[attach reader R to string S
C - $C.(R) 4!

[set C equal to the chajzacter L)
D - $IC.(R)

[set D equal to the character M-
I - $V•.(R)

[set I equal to 2 and remember the value an a mark]

.1

APPENDIX C 43

MV.(R) - 4

[position the reader over the character 0)

SIC.(R) = D

(replace the character P with the character MI

s$i. (R)

(this will produce no value but will set the global logic variable

ENDSTRING to T' truel. The reader will be left positioned over the

character R)

SIC. (R) C

(set the global variable EXTENDSTRING to T! (true) and will append

the character L to the end of the string)

$P. (R)

[return the reader to the t'ark. The reader will be positioned over

the first It on the string]

$N. (R)

[return the reader to the head of the string]

As a result of previous reader functions, the string S will now

contain 'LMNOMQLI.

C. 10 RESOURCE ALLOCATION

Two resource allocation statements are available in OCAL. The

statement
ALLOT PUSHDOWNLIST n

will allot Ono registers to the system push-down list where n is an

integer or integer variable. The push-down list space allotment may

be changed at any time, but an insufficient push-down list will

cause a system interrupt.

The statement

LIMIT STORAGE n
will cause a system interrupt after n words heve been used from free

storage. The number of words of storage used since the beginning of

the current OCAS job is found in the global integer variable
STORAGEUSED.

Push-down overflow or storage-limit interrupt may be handled in

OCAL by using the ON statement. These features allow the OCAL

program to limit larga searchas or catch certain procedures that are
in an infinite loop.

S-7-

45

APPENDIX D

ON-LINE CRYPTANALYTIC DISPLAY GENERATOR (OCDIS)

The following procedures will be available to generate "RT

displays in OCAS. The inital implementation of CCDIS will be for

the DEC Type 340 displ-"' attached to the Project MAC PDP-6.

D. 1 PROCEDURES

The display is organized about a display format which is the
argument to several display piocedures. Only one format may be on

the CRT at one time. Different formats may be thought of as
different pages which may be displayed in any order under the
control of an OCATL program. The basic display proce-bire is

CO1'ILEDIS. (frm/,q,q,q..../)

where "frm" is a string or string variable giving the display format
and the optional *q"s are the variables or constants which are to be
displayed in the given format.

individual items within an already-compiled format may be n. aed

and named items may be changed using the procedure

CIIANGEDIS. (frm,name,item)

where "frm" is the format, "name" is a string or strina variable

giving the name of the item in the format, and "item" is the new
value of the quantity to be displayed. The advantage of this
procedure is that individual display items in a large format may be

changed without recompiling the entire display.

The display is started by the procedure

STARTDIS. (frn)

where 'fr." is the format. In addition to the requested format,

each STARTDIS will cause a log display to appear in the upper left
hand cor-.er of the screen. The log gives the current date. time,

frame number, and a short title for the display. The log
information iz useful in identifying still photographs taken of the
display and is maintained by the system without being a burden to

the progra.mmer. The log information for a particular console session

may be initialized using the procedure call

V4

S46 APPENDIX D

iI

LOG.(date,time,frame,titie)

where "date" is an integer giving the current Julian day, "time" is

an integer giving the current tire in 60ths of seconds after

midnight, "frame" is the inital frame number, and "title" is a

short string used to title the display. A neqative number in the

date, time, or frame positions will leave those constants unchanged.

The frame number is incremented by one every time a new format is

displayed. The system will automatically update the date, time, and

frame number once they are initialized.

The display may be turned off usin,- the procedure call

STOPDIS.

Room for the display buffer may be dynamically allocated by

calling the procedure

BUFPERDIS. (n)

where rn" is an integer variable or constant qivinq the size of the

display buffer in words of core storaae. If the display buffer is

too small for a particular display, the buffer will overflow. This

condition may be detected in an OCAL program with the ON statement

using the DISBUFFERFULL condition.

All displays are maintained in program interrupt mode, so that

calculations may continue even when a display is visible.

D. 2 FORM•ATS

A format is an ASCII string in the form

'x y item item...

where x and y are octal inteqers aiving the absolute reference point

in screen co-ordinates for the rest of the format. Each item is a

"list of display descriptors; the entire list for any one item beina

enclosed in parentheses. The display descriptors for a particular

item may be in any order and only those descriptors relevant to the

item being displayed need be included in the list. Certain display

descriptors, such as SIZE, INTENSITY, and RELOC effect each item in

the display. If they are not specified for a particular display

item, the previous item's value is used for SIZE and INTFNSITY, and

tne RELOC is taken from wherever the last itemi finished.

I
!

APPENDIX D 47

D. 3 DISPLAY DESCRIPTORS

Each display descriptor is enclosed in parentheses. It

consists of a descriptor tyne followed by modifiers or values

separated by spaces. The display descriptors are:

(TYPE t) - gives the basic type of data auantity to be displayed as

this item. Permitted types are STRIN-G, CHARACTER, INTEGER, REAL,

and LOGIC.

(RELOC x y) - the octal integers x and y give the starting location

of the display item in screen co-ordinates relative to the format

reference location. If RF:LCC is not specified, the item will be

displayed starting wherever the last item stopped.

(NAIE nm) - gives the external name of this display item. Named

items may be changed without recompiling the entire display format

by using the CVAIZGEDIS procedure.

(SIZE n) - where n is a decimal integer from 1 to 4 giving the

character size or dot separation to be used. (See the Type 340

section of the PDP-6 manual.)

(INTENSITY n) - where n is a decimal inteuer from 1 to 8 giving the

relative intensity of the displayed item.

(CASE c) - where c is UPPER or LOWER. This is used to determine the

case of an alphabetic character or string display

(SPACE n) - where n is NO or a decimal integer. This descriptor is

for string displays. NO causes spaces in the string to be

suppressed. An intever will cause a space to be inserted after

every nth letter (5 is a typical value).

M(WIMIr1 n) - where n is a decinal integer. Thin lescriptor sets the

width iii characters for a string display. If the string to be

displayed is longer than n characters, the string is broken into

lines of length n. The space between successive lines is normally

one vertical character space, but this may be increased to n

character sraces using the VSPACE descriptor.

(DEPRESS n) - where n is a decimal integer. This descriptor, used

in string displays, declares that the string should begin n vertical

character spaces below the position specified by RELOC.

48 APPFNDIX D

(VSPACE n) - where n is a decimal integer aiving the number of

vertical character spaces between successive lines of a string

display.

(BASE) - declares this item to be a control string which is not

displayed. The control string is used as a reference for the

variable spacing descriptor BELL.

(BELL n) - where n is a decimal integer number of characters. It is

used to prevent words in a string from being broken between succes-

sive 1-es in the display. BELL causes the display line to end at

the first space after n characters relative to the BASE reference

string. If no BASE string is specified, the string bp-ny displayed

will be used as the reference string.

(OFFSET) - declares that the next parameter in the argiument list is

an integer offset to be applied to the current string. This

descriptor is useful when displaying cryptooraphic slides.

(CONSTANT '000) - every character after the space followina

CONSTANT up to the special terminating character 4000 is taken as a

constant string to be displayed. CONSTANT's need no argament in the

corresponding position in the COCWPILEDIS call.

(ARRAY nl:ml /n2:m2/) - where the arguments are array subscript

ranges in the OCAL format. This desciptor is tsed to declare that

the display argument is a one- or two-dimensional ARRAY. Only

art •,i of type C•ARACTER, INTEGER, or REAL m-t h,- displayed.

(BARGP.APH n:m) - where n and n are integers. This descriptor

indicates that the display is a one-dimensional array that is to be

displayed as a bar graph. Only XNTEGER or REAL arrays may be

displayed as a bar graph.

ik• (SCALEFACTOR) - is used with the BARGRAPH descriptor. It indicates

that the next item in the call is a real nunber whicY is to multiply

each item in the bar graph display.

(LINE x y) - where x and y are octal integers. This causes a line

to be drawn fron the current relative location to the point x,y

relative to the format reference point. The line may be solid or
dotted, depending on the SIZE descriptor.

- I
-I

__ _ _ _ _ _ _ _ _ , -

7771,

49

APPENDIX E

ON-LINE DEBUGGING AND CONTROL PROGRAr' (ODBUC.)

This appendix describes the features of the on-line debugainq

and control progrn, for OCAS. The program makes use of an OCAL

interpreter so that an OCAL statement may be executed by typing it

cn the Console. Ir addition, the followina features are included:

.var - causes the contents of tae *variable "var" to be printed out

cn the on-line console. After the printout the varible is "open",

which means new contents nay oe inserted by typing them using OCAL

conventions. A statement terminater "closes" the variable. If

nothing is typed before the statement terninater, the contents of

the variable remain unchanged.

/S - causes the current OCAL table of active symbols to be typed out

giving both the symbol names and their types.

/D name - causes the entire current state of OCAS to be dumped on
backup storage in a file called NAMt SAIVED.

/R name - restores the state of OCAS from the NAM SAVED file on

backup storage.

/P pro - where pro is the name of an interpreted OCAL procedure.

This permits ODBUG to insert a breakpoint in this procedure (see

//B).

/B id - places a breakpoint at the staterhent label 'id" in the

currently-addressed OCAL procedure. Lxecutinq a breakpoint returns

'control to ODBUG. If "id" is not specified, any outstandinq

breakpoint is removed.

/C - allows OCAS to continue executing statements after the last
breakpoint was executcd.

/G id - starts the OCAL interpreter at the statement label "id" in

the currently-addressed procedure (see /P).

BREAK - a single depression of the BREAK button will return control

to ODBUG as if a " :eakpoint had been executed. The proaram may be

restarted using the /C command.

- -- ___ ____________ --------- A

-14

51

APPENDIX F

AN EXA14PLE IN OCAL - FINDING THE PERIOD OF A PERIODIC CIPHER

The following example is based on a method suggested by William

G. Bryan in Cryptographic ABC's for finding the period of a

cryptogram enciphered with a periodic cipher (e.g., Vigenere or

Beaufort). The method consists of finding the distance in

characters between each and every A in the cryptogram. The

distances are then factored and tallies are made for each factor

corresponding to a suspected period of the cryptogram. Usually a

range of periods from 3 to 12 is tested. This procedure is repeated

for each B, each C, etc., down to each Z. Next, the tallies

corresponding to each period are sunned and weighted by the period.

The highest weight usually indicates the period of the cryptogram.
This method of finding the period is known as the "Kasiski*

method after Major F. W. Kasiski, a German cryptanalyst, who

published a paper on it. in 1863 (see page 127 in GAINES). This

method works because in a periodic cipher, the key must be repeated

a number of times to produce a cryptogram and, as a result, many

times the distance between two occurences of the same cipher text

letter is a multiple of the key length .nich is the period.

EXAMPLE
*

* KASISKI METHOD IN OCAL
*

PERIOD: PROCEDURE (CRYPTPERNM)

* PARAMETERS ARE:
* CRYPT - A STRING GIVING THE CRYPTOGRAM
* PER - AN INTEGER VECTOR WITH SUBSCRIPT RANGE N TO M

THE WEIGHTED TALLIES ARE RETURNED IN THIS VtCTOR
* N - AN INTEGER GIVING THE LOWEST PERIOD TO BE TESTED
S 1m - iNTEGER GiViNG HIGIIIST TOBE,•,,,•,T•

* DE%.LARATIONS NEXT

STRING CRYPT
CHARACTER C
INTEGER PER,N,14
INTEGER DIST,INDEX,ALPS,K,L1,L2
INTEGER SEP,TR
READER R
DECLARE PER(*)

* THE VECTOR PER IS DIMENSIONED IN THE CALLING PROCEDURE

DECLIRE niST(LENGTH.(CRYPT)/5)

• DECLARING THE LOCAL VECTOR DIST

_JR

52 APPENDIX F

READER R

* THE ACTUAL PROCEDURE BEGINS HERE

ATTACH. (RCRYPT)
ALPS = SIZE.(ALPHABET.(CRYPT))
INDEX 1
DO WHILE INDEX LE. ALPS, LOOP1: BEGIN

• ITERATE OVER THE SIZE OF THE ALPHABET

C -$NC.(R)

• RETURN READER TO HEAD OF STRING AND READ FIRST CHARACTER
*

K = 1
DO UNTIL ENDSTRING, LOOP2: BEGIN

• READ THE STRING CRYPT CHARACTER BY CHARACTER
*

IF C .E. INDEX, CONDI: BEGIN
DIST(K) = SV.(R)

*

* RECORD DISTANCE FROM HEAD OF STRING

K z K + 1

END CONDI
C = $IC.(R)

• INCREMENT THE READER AND READ NEXT CHARACTER
t

END LOOP2
LI = 1
DO UNTIL Li .E. K, LOOP3: BEGIN

• COMPUTE THE CHARACTER DISTANCE BETWEEN EACH OCCURENCE

L2 = L1 + 1
DO UNTIL L2 .G. K, LOOP4: BEGIN

SEP = D!ST(L2) - DIST(L1)
TR - N
DO UNTIL TR .G. M, LOOP5: BEGIN

* TEST EACH PERIOD FROM i To m FOR REMAINDER 0
4

IF (SEP .R. TR) .E. 0,
PER(TR) = PER(TR) + 1

TR = TR + 1
END LOOP5

L2 - L2 + 1
END LOOP4

Li - L1 + 1
END LOOP3

INDEX = INDEX + 1
END LOOP1

- NOW WEIGHT EACH ITEM !N PER BY THE RESPECTIVE PERIOD

~K --= 1
DO UNTIL K .G. M, LOOP6: BEGIN

PER(K) M PER(K) + I
"K=K 1

_,-- EtD LOOP6

A* ALL DONE

END PERIOD

.1

53

BIBLIOGRAPHY

ARDEN, Bruce et al, The Michigan Algorithm Decoder (MAD), University

of Michigan, November, 1963

BAZERIFrS, Commandant E., Les Chiffres Secrets Devoiles, Paris, 1901

BOBROW, Daniel G., OMETEOR: a LISP Interpreter for String

Transformations", The Programming Language LISP: Its Operation and
Applications, Information International Inc., Cambridge, Massachu-

setts, 1964

BRYAN, William G., Cryptographic ABC's, American Cryptogram Associ-

ation, 1960

DEC, DDT-6 Reference Manual, Digital Equipment Corporation, Maynard,

Massachusetts, 1965

DEC, Programmed Data Processor-6 Handbook, Form F-65, Digital Equip-

Sment Corporation, Maynard, Massachusetts, 1965

EYRAUD, Charles, Precis de Cryptographie Moderne, 2nd edition, 1959

FARBER, David, et al, "SNOBOL, A String Manipulation Language*,

Journal of the Association of Computing Machinery, Vol. 11, No. 2

(January 1964), pp. 21-30

FRIEDMAN, William F., An Introduction to Methods for the Solution of

Ciphers, Riverbank Laboratories Publication No 17, Geneva, Illinois,

1918

GAINES, Helen F., Cryptanalysis, Dover Publications, New York, 1956

GRISWOLD, Robert E. and POLANSKY, I. P., String Pattern-Matching in

the Programming Language SNOBOL, Memorandum MM-63-3344-3, Bell Tele-
phone Laboratories Inc., July, 1963

* IBM Operating System/360 - PL/I: Language Specifications, Form C28-

6571-0, 1965

- • McCARTHY, John, et al, LISP 1.5 Programmer's Manual, MIT Press,

Cambridge, Massachusetts, 1963

54

NAUR, Peter, et al, "Revised Report on the Algorithmic Language
ALGOL 60", Communications of the Association for Computing Machinery

Vcl. 6, No. 1, (January 1963), pp 1-17

PRATT, Fletcher, Secret and Urgent, Blue Ribbon Books, New York,

1939

SACCO, General L., Manuale di Crittografia, 2nd edition, Rome, 1936

WEIZENBAUW, Joseph, "Symmetri.c List Processor (SLIP)", Communica-

tions of the Association of Computing Machinery, Vol. 6, No. 9

(September 1963), pp. 524-536

YARDLEY, Herbert 0., The American Black Chamber, Blue Ribbon Books,
New York, 1939

YNGVE, Victor H., et al, COMIT Programmers Reference Manual, MIT
Press, Cambridge, Massachusetts, 1961

ZANOTTI, Mario, Crittographia: Le Scritture Segrete, Milan, 1928

1~

I

UNCLASSIFIED
Securily CIhssificatioe

DOCUMEN4T CONTROL DATA - R&D
(. -00.c1t , . W.5 o6154 bd• oS •t Zr t b nd t..•.f a.•-4.0.4 -. 1 b. .aan•d - 4d,. se o.n.I? two.t S. fle fl

S. '5JIGINATING OCTIVITY C, .. dM ,) JZ. $(P y SECURITy CLASSIPICA-IO'

Massachusetts Institute of Techrology UNCLASSIFIED
Project MAC

S. REPORT TITLE

OCAS - On-line rgrptanalytic Aid .yssew

4.. ODECRIPTIVE kOTE'J (Ct). It ,w .p tsd S/. d re. 8 .)

Master's Thesis, Electrical Engineering
3. AUTMOR(S! W11rw,, ist.• . !Mu)

Edward-, fl-niel J.

11. REPORT DATE 1 DA. O. OfPAE ?jb 14 OF REFS

May l9u6 54 2
I. CCIYRAC: 0. OR. INT NO. $a ORItNATO"'S RCPONT NS58CWSt

Office of Naval Research, c:-.'-4•02(O1) MAC-TR-27
b. t1ROJZCC S40. A - -2

Nr-048-189 14 O?545ft 49-0 "T NOWI (A.,, fh--b- h" S..7.

10 AVMAIL,•,Y,,.Io.1.TI0N NOTICES Defense contrnctors may obtain fro.: Defense Documentation
Center, Document Service Ce--ter, C8mtL, . Station, Alexandria, Virginia 22314:

Others fzoc: ClearinGho-use for Federal SciEntlfic and Technical Information (CF.7TI)
Sills Building, 5285 Port Royal Road,, Springfield, Virginia 22151

SO. SUPPLESISNTA-V NOTES M SP OfSO*N SOLITARYT ACTIVITY

Advanced Research Projects Agency
None 3D-200 Penrtgon

Washington, D. C. 20301
IS. AeSTRACT

Deficiencies of various programming languages for dealing with quantities
frequently encountered in cryptaualysis oZ slple cipher systems are discussed.
A progr--ming system is proposed which vill pamiz, a cryptanalyst to write and
debug progra=s to aid in the solution of cryptogra=s or cryptographic systems.
The basic elements of the proposed progr*r;ing sys'em are discusced in detail.
They include: 1) a progran=ing language to handle both algebraic quantities
and character strings, 2) a display generator to permit quick specification of
a display frame containing both alphanumeric strings and numerical data for an
on-line C!r display device, and 3) an on-lint program to control operation of
the system and aid iv debugging programs written in the proposed language.

OIL xry WORts

Computer fultiple-access computere Real-time co=muter systes
Cryptanal)siz On-line computer systc TLie-sharing
Machine-aided. coguition Programming Languages Tize-sharcd compu:er syst=ms

DD ,°., 1473 (M.I.T.) UNCLASSIFIED
ScCuity classixicei=o

