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ABSTRACT

A finite-difference approach to the description of the electro-
magnetic field structure within the region bounded by the earth and
some outer spherical boundary is studied. Within this medium, a
current sheet and a free charge sheet are assumed to exist in a spherical
geometry.

The medium is assumed to be two-dimensionally inhomogeneous
and to consist of a plasma gas. The earth is considered to be perfectly
conducting, and the field distribution at the outer boundary is caused
to assume the form of a system of spher.cal waves which are propagating

outwardly.

ii




o T T T R Y VRIS S R T U SRS A A RN AT SRR SRR pRRae A st

%
S TABLE OF CONTENTS
A Page
ABSTRACT i1
LiST OF FIGURES W
I. INTRODUCTION i
II. MATHEMATICAL DEVELOPMENT 2
A. The Working Differential Equations 2
B. Finite-Difference Equations 10
III. THE FORM OF THE FIELDS AT THE OUTER BOUNDARY 23
A. Solutions to the Vector Wave Eguation 24
B. Derivation of the ¥-Function 27
C. The Final Form of the Fields 33
iIv. COMBINATION OF THE EQUATIONS AND BOUNDARY
CONDITIONS 38
A. Evaluvation of the Fields at the Inner Boundary 39
B. Field Calculations 41
V. COMPUTATIONAL METHODS 42
Vi. CONCLUSIONS 45
APPENDICES
A. Finite-Difference Formulae 40
B. Derivation of the Conductivity Matrix 50
C. Usefui Properties of the Spherical Bessel Functions
and Associated Legendre Polynomials 60
BIBLIOGRAPHY AND REFERENCES 63

iii




B N g T R T R N R U O P T TRy 0% e s S I N o S

No.

R P e SR

LIST OF FIGURES
Page
Quadrant of Constant ¢ -Plane g-r grid 7
Quadrant of Constant ¢ -Plane A-1 grid 7
A General Discontinuity 15
Definitions for the Finite-Difierence Formulae 46

iv




=

Lexov. - =R
AR T St

I. INTRODUCTION

An investigation into the nature of the electromagnetic field of the
earth produced by beth current and free charge sources located in the
upper atmosphere is the basis of this problem.

The medium surrounding the earth is taken to be generally
inhomogeneous and anisotropic. The two spherical boundaries which
enclose the cavity of interest are the earth or the earth's core for the
inner boundary and the magnetospheric boundary for the outer confine-
ment of the fields. It may, however, be desirable for a different boundary
to be chosen for the outer limits of the problem.

At some altitude is postulated a current sheet and a sheet of free
surface charge. Both will initially be assumed to be positioned at the
same altitude in order that the notation used may be simplified. The

fields within the boundaries are mathematically examinad.




II. MATHEMATICAIL DEVELOPMENT

Mathematical analysis is now performed on the problem. Because

of the geometry of the system, spherical coordinates are used.

A. The Working Difierential Equations
The appropriate place to begin the proBlem is the group of

Maxwell's equations which, written in the standard vector notation, are

VxH-J+-a-—t- (1)
Vx§=-—g-? (2)
V.B=0 (3)
vV.D=p {4)

For the purposes of this problem, it is assumed that the

9D
displacement current, <—, is small enough compared to the free current,

at
-
J, so as to be negligible. This approximation is generally valid for the
media under consideration if the frequencies used are small. However,
the approximation is only valid within plasma regions and does not hold
with the relatively thin air layer. The frequencies of interest are those
frequencies of the micropulsations in the range from about 0. 001 cycles
per second to a maximum of 1 cycle per second. This assumption reduces

eguation (1) to

(5)

i

VxH =




For a medium which is linear (non-magnetic), the magnetic
- -
flux density B is related to the magnetic field intensity H by the permea-

bility constant of the material,

If the permeability is not a function of time, then equation (2) becomes

Vx5=-uz§1- (6)

The time dependence of all field quantities is assumed to be
iwt
of the form e = . Thus,
- - — —> it
E(r,t) = E(r)elw
- —> —> - it
H(r,t) = H(r)e ~.
There is no loss of generality in this assumption since any other forms
of time variations may be constructed from the assumed mode by a
Fourier series.
The curl equation (6) is now of the form
- . -
VxE = -igpH. (7)
iwt . . . .
The factor e is understood to be associated with each of the field
quantities and is henceforth not written.
For media which are anisotropic, the conductivity is usually
expressed as a dyadic. The free current density is then given by the

vector operation

“iy
1]

all
b4




In spherical coordinates this operation is expanded into the three com-

ponents as

Jr - UrrEr+ OreE6+0r¢E¢

J =0

8 or E +0_ E

B 0565t TgeTs

qu = 0’¢E +0¢E +o‘¢¢E¢.

If the curl operations are performed in this coordinate system, equations
(5) and (7) become, in component form,

9H

1 7 .
rsind ae(H¢ sin ) - a¢ UrrEr+0r 6E6+OI¢E¢ (8)
9H
1 1 T 0
ATt LN % F:* %96%0" To9 " ©)
Hl‘
[ 55 = G¢rEr+o¢9E9+0¢¢E¢ (10}
aEe
rsmBl_ae(E sin @) - 5o ] = -igpH_ (11)
aEr
T e s -é—r-(rE )] - iwuH (12)
3E
1ré ryo_ .
<[5 = Ep) - 5p ) = CiewHy (13)

These are the general equations which are made use of in the solution
of this problem.
As they stand, equations (8) through (13) are rather un-

manageable in the three dimensions. If it is assumed that the conductivity




is not functionally related to the azimuth angle ¢, a simplification may
be made which allows a type of separation of the preceding equations.
For this case it is assumed that a symmetry exists which allows the
fields to be separated into the form of

im¢

E(r, 6, ¢) E(r, 8)e

H(r, 8,6) = H(r, 8)e ™%

When applied to equations (8) through (13), this assumption yields, with

the factor elmd> understood.
rsme[ae (H sin 8) - 1mHe] = GrrEr+ 0r9E9+0r¢E¢ (14)
= —a-(rH Y| = E + E_ + E 15
sme or ¢]-06r r” %8678 °e¢ ¢ (13)
[-5;(1'H ae] OprFet 04 aFa* 940 Fy (16)
1 9 . . s
— [-3—9 (E, sin ) - 1mEe] = - igpH_ (17)
- - —a—(rE = ~iwpH
61n8 or ¢)] - T Hg (18)
E
1rd r .
;E—ﬁ_(rEe)—a—e]—quH(p. (19)
The derivatives in equations (14) through (19) are now
expanded, and the terms are rearranged to give
9E
_ cos 8 1 @ im
Hr T iwursin® ¢  iwur 38 ¥ igpr sin 6 EB (20)




6
9H
_ 1 rcos§ 1 ¢ _im _ _
Er - o, [r sin 6H¢ *T 98 “rsin 8 HB oreEe Gr¢E¢] (21)
9H 9H
0. 1.1 2
—3-1:-—0(1)1'E1‘+0¢9E9+0¢¢E¢+r 38 rH6 (22)
oE oE
6 _1 _r 1 :
or r 96 EG le'HdJ (23)
oH .
-2 - . - - am gl
or c’BrEr GBGEB UB(P Ed; rsin § B, r H¢ (24)
oF im 1
o et Teme T Foo (25)

The radial fields are therefore expressed in terms of the tangential
fields and their derivatives, while the derivatives of the tangential
fields in the radial direction occur in terms of the fields and their
tangential derivatives only. A method for the calculation of the fields
now presents itself,

Consider a quadrant of the constant ¢ -plane, as shecwn in
Figure 1, partitioned by a grid of N points in the §-direction by M
points in the radial direction. Between level L (levels referring to the
radial direction) and level L+1, a boundary exists which carries a
surface current j'.s and ?’ free surface charge distribution Py

If the tangential fields on the inner boundary are completely

specified, then their derivatives with respect to the polar angle 8 are

-

i
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Figure 2

Quadrant of Constant ¢-Plane A-r grid




specified, and equations (20) and (21) may be utilized for the Jdetermination
of the two radial field compenents at all points on the inner boundary. Inte-
gration of the equations (22) through (25) then yields the tangential fields
at the second level. This process is continued until the fields at level L
are known. After proper boundary conditions are applied at the discon-
tinuity between levels L. and L +1, the fields at level L.+1 are determined,
and the marching process is continued through level M.

The method may, of course, be employed for the entire
range of polar angle § from 0° to 18C°. However, the summetry of the
earth's dipole field about the equatorial plane leads to a simplification
in that fewer points are needed if the plane of §=90° is thought of as an
artificial boundary. The field quantities are then terminated at this
boundary as odd functions about §=90° (in which case the field is zero
at the boundary) or even functions about the equator (in which case the
derivatives of the fields with respect to the polar angle is zero).

If the radial component of the electric field is chosen as
being an even function of 8 about 5=90°, then it can be shown that
H_ and E, must also be even functions about the equator while Hr’ E

8 ¢

and qu are odd functions. The converse is also true. It is also true

8

that the integer m specifies a symmetry of the fields about the pole.
Some difficulty may arise in the use of the differential

equations (20) through (25) at points near the equatorial axis if equal

?’z
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increments of the angle theta are used. In order that more points be
located near this axis, giving greater resolution in this area of trouble,
the independent variable theta is changed to cos §. The two-dimensional
space under consideration may now be represented as in Figure 2.

The transformation from angle increments to increments
based on the cosine of the angle is effected by the substitution of A =cos 8

into equations (20) through (25). Then,

sin § = l-)\z,
and

3 _ 2 9

38 - VI"M o

The working equations now become

’ 1- 2 3E¢
H = M + = E (26)
r fwyr ]"—1 X <;l> iwpr N wur ’1_)\7_ 8

H

rr =ra1- 22 ¢ T oA -rm He ’r E Oré ¢] e

g oL [ A Ji-a2 9Hy o
T (o)

9H, 122 9H_ |
B - 0¢rEr+c¢E +0¢¢ 6" T T HB (28)
3Ee__1-x2 aEr-lE - o
ar T ox r 8 TR ¢ (29)
8H¢ im 1

=-¢,E -¢ ,E -0, E,-—==——H -—H (30)
ar 8 g0 8 69 ¢ rm r r ¢
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3E
2 - ipH +—B g .l (31)

or Brfl)\zrrqb

Now equal increments of A are used instead of the 8 increments.

B. Finite Difference Equations
The most straightforward manner for the solution of
differential equations such as equations (26} through (31) on a high-speed
digital computer is the finite difference approach. The finite-differencing
of equations (26) through (31) follows with the aid of standard formulae

found in Appendix A. The equations are then written as

(p)q)+ N1-A" [E¢(p.q+1) E¢(p» q- 1)]

H s = -
AP q) o r——l - ¢ iwpr 2AN
+ —F=—=— E (p, q) (32)
wprJz-xZ o
E (p,q) =7 { H, (p,q) - XZ[H‘P(p’qm ki 1)]
Orr r'Jl X ¢ 2AN

im

-————-H . E s -
T plPrd) - 0 gEg(p:q)- 0 (B,

(ma)} (33)

He(p+ls q) - HB(P"L q)
2Ar

= 0‘¢rEr(P, q) + 0¢ eEe(p’ q)+ 0¢¢E¢(p' q)

i ’1_;\2 [Hr(P’ q+l) - Hr(Pt q-1)

T 2A\

{34)

-;He(p.q)




. E":i i‘&iﬂ’” “'-‘%’5-7‘-
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A
L E
i{;‘ ii Ee(p+1’ Q) - Ee(p-l! q) _ ,ll_xz Er(p’ q+1)- Er(p’ q-l)
oy e Sl 2N
- - - i 35
r Ee(pt q) 1 H¢(p’ q) ( )

H¢ (ptl, q) - H¢ (p-1,q) _
2AY

—oerEr(p,q) - °eeEe(p’ q)- 09¢E¢(p, q)

im

1
- ——— H _(p,q) - = H_(p,q) (36)
e1-22 T 9
E (ptl,q) - E, (p-1,q) .
[ e ¢ = iUJlJ. Hg(p'q) + —m

E _(p,q)
r l-)\z T

1
-z E¢(p,q) . (37)

In equations (32) through (37) all conductivities are those at the point

{p» g), the \ is )\q, and r is r .

The final form of the difference equations follows from the

solution of equations (34) through (37) for the tangential {ields at the layer

p+1l. The results are the following equations:

Hr(P’ q)=-

J1-22

-—-—-—-———r___E »q) + 57— E  (p, g+l

N1-22

- 37 E, (p,g-1) + ——==—= E (p, 38
Ziapr &%, TP a-l) i nZ olPr 9) (38)

m
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id

A
E (p,q) = H (p,q) - — H _(p, qt1)
T o r1-22 ¢ 26 ran °
rryr Irr
1-22
- H¢(P, g-1) + EG(P,Q) (39)
20__x A wprn 1= A2

He(p+1, q) = He(p-l, q) + 2Ar c¢rEr(p, q)+ 2Ar °¢9Ee(p’ q)

+ 2Ar o¢¢E¢(p, q

\ -
7

Arn1- XZ

Hr(P’ q+l)

rA\
/ 2
ArN1-A 2AYT
_ -1) - == 40
A% H (p,q-1) - — He(p.q) {40}
ar1 -2 Arn1-22
Ee(PH,Q) = EB(P-I,Q) - TTIAN Er(P, g+l) + A Er(P, q-1)
2Ar .
-+ E4lp.q) - 2ispAr H (p, q) (41)
Hylpth q) = Hylp-l, q) - 205 AT E (P, q) - 2470 gFg(p, a)
2
- 2Arg, E (p,q) - -l—nl—ArrH (ps q) (42)
0 ¢ wi-2%2 ©

2AT

r

2imAr 2Ar
E (ptl,q) = E_ (p-1,q) + 2iwpAr H (p,q)+ ———=E (p,q)~—E (p,q).
plPtha) = E (p-1,q) par H (p oz T Eo

(43)
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e The functional form of the difference equations is
H (P a) = £[E, (pa), E (p.q+) Ey(pea-1), Eg(p,q) | (44)
E_(pq) =f[H¢(p»q) » Hy(patl), Hy(p,a-1), Hylp.a),
Eglp:a) s E,(pa) (45)
Hylptl a) = £[Hy(p-La), E (1a) s Eglpsq) . E, (p,q)
H_(pa+l) , H,(p,9-1), Hy(p,q) (46)
Ey(pth ) = f[E(p-L,a), E_(pra#l), E_(p,g-1),
Eg(pa) , Hy (p,a) | (47)
H¢(p+1,q)~=hf[H¢(p-lsq). E (pq), Ep.q), Ey P q)
H, (prq) » H,(pra) | (48)
E,(p+1a) = £ E (0-L,a) , Hylpa)» E (pra), Eylpra) |- (49)

Since the forward difference is used in the initial step,

He(p-l, q), Ee(p-l, q), H¢(p-1, q) and E¢ {p-1, q) in equations (44) through
(49) are replaced with He(p, q), Ee(p, q) , Ee(p, q), H¢ (p»q) and E¢ P> 9)»
respectively, although the exact equations change by a factor of two.

Because of the symmetry conditions imposed, the central difference

formula will also be used at A\=0 and \=1.
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Initially all tangential fields at the inner boundary are set
equal to zero except He(l, 1). From equation (38) it is seen that Hr(l, q)
is zero for all q. Equation (39) is used to determine Er(l, g)asa
function of He(l, 1), all other tangential fields on that level being zero.
Equations (40) through (43) are then applied to yield the tangential fields
at all points on the second radial level in terms of He(l, 1), since all
quantities cn the right-hand side of these four equations are either zero
or are in terms of He(l, 1).

With p=2 for the second level, equations (44) and (45) yield
the radial fields Er(Z, q) and Hr(Z, q) as a linear function of He(l, 1) and,
therefore, all fields at the second level are specified as a function of
He(l, 1). The process of obtaining the six field components at each level
is continued until all fields directly below the current sheet and charge
distribution are known in terms of He(l, 1),

In order that as much accuracy as possible be retained in
the caiculations, the level below and the level above the discontinuity
should be relatively close to this level as in Figures 1 and 2.

A general discontinuity is represented in Figure 3. Surface

current and surface charge are present on the boundary.
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A General Discontinuity
The boundary conditions for the fields around such a dis-
continuity are
n (H1 - HZ) =0 (50)
n. (E,-E,) = ps/eo (51)
n X (H -H)=7J_ (52)
nX(El—EZ)zo. (53)

- -
The unit vector n for this problem is the radial unit vector a_. Expansion

of these four equations in spherical coordinates gives

Hr1~ HrZ =0 Erl- ErZ = ps/eo
Ho - Hg =3 Eg-Egp=0
Hy - Hoz =Jsg Epn~Eg =0 >

or, in terms applicable to Figure 2,
H (L+l,q) = H (L, q)

H (L+l,q)=H (L,q) - JSG(Q)

¢ ¢




E (L+l,q) = E_

(L,q) + pgla)/e

Ey(Ltl, q) = Eg(L, q)

E (L+l,g)=E
¢( G)

for allq, 1<q <N.

¢

(L,q) ,

16

These expressions relate the six field components at level

L +1 to the six components at level L. Since those at level L are already

known in terms of He(l, 1), both tangential and radial fields are now

related to He(l, 1) and the source terms directly below sach point on the

discontinuity.

Symbolically,

E (L+l,q)=f [He(l, L, ps(q)}

Eg(L+1,q) = £ [He(l, 1)]

E¢(L+1,q) =1

Hr(L+ Lq)=

H(L+l,q)=1{

8

H¢(L+l,q) =1

[He(l, 1) ]

[Hg 1 ]

.
Hy(L 1), I, (a) |

(Hg(L 1), T ) ]

The functions are linear with respect to HS(I’ 1), ps(q), qu) {(g), and

Jse(q). Now, from equation (46) through (49), the tangential fields

at level 1.+ 2 are, in functional form,
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oD r At B
RIS (2 =
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-J

Hy(L+2,q) =f[H6<L,q), E_(L+1q), By(L+Lq),
E¢(L+1,q), Hr(L+l,q+1), Hr(L+1’ q-1),

HB(L+1,q)] (54)

EyL+2,9) = f[Ee(L,q), Fr(L+1, q+1), E_(L+1, q-1),

EglltLq) HyiL+1q) ] (55)

H (L+2,q) = £[H,(L,q), E (L+Lq), Eg(L+Lq),

¢

E,(L+Lq), H (L+l,q), Hy(L+1q) ] (56)
E,(L+2,q) = {[E (L), Hy{L+l,q), E (L+1,q),

E¢(L+1,q)]. (57)

Since
E_(L+l,q+1) = f[He(l, 1), ps(q-i-l):l
E(L+1, q-1=f[H(L1), pla-1) ],
Hy(L+2,q) = £[Hg(L 1), T (@), pla) ]
Eg(L+2,q) = {[H(l 1), p (a+1), p la-1), T g(a) ]
H(L+2,9) = {[HyL 1), T_da), plq) ]

- 1Y -|
E,(L+2,9) = {[Hy(L 1), T_ (@), pyla) ],

so that by equations (44) and (45),




[y
[¢ o]

H (L+2,q) = £[HgL D), I_ (q+1),

{(q), Ps(q)’ JS

¢ ¢

Poat1) T  (q-1h pla-1), T g(a) ]

B (L+2,q) = {[HglL 1), T g(a), pla)s T gla+D),

pglatll, T pla-1s pofa-1), I (@) ]

It can be seen that, as more and more steps are taken away
from the sources, the fields at angular location of N\ become functions
of more and more of the source components, so that, at level M (outer

boundary) the fields may be functions of all the source terms. Thus

Hg(M, q) = €[ Hy(L, 1), 3 ), T @), -0, T_o(N), T (1)

@) - TN, p M)y ce s p ()],

Tso ¢

and likewise for the remaining three tangential components. If all
tangential fields at the inner boundary are zero except He(l, 2j, then

similar results are obtained as

Hy(M. q) = £[H(1,2), T (n), T (n), o o) ],

¢

n=1,2, ..., N.

In this manner the outer tangential fields are found as
functions of each of the tangential magnetic fields at the inner boundary
and the source terms at each point of the discontinuity. The results

may be noted as

i
[}
:
'
3
H
1
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Eq(M, q) = Aque(l, 1)+ -0c + AqNHe(l, N) + Aélqu(l, 1) +-«- +
AqNH (1, N)+O.q J ¢(1)+ anJs¢(N)+ a(’llee(l)
oot a'qNJSe(NH Bqlps(l) oo+t Bqus(N) (58)
E¢(M,q)= Bque(1,1)+- .+ B Nl N) + B:; H¢(l 1) +.
BqNH¢(1 N)+ yql (1) S REER - YqNJs¢(N)+Y<';1Jse(1)
Feeo 4 Y:lNJse(N)-i- 6q1p5(1)+.-- + anps(N) (59)

= 1, ' H (L, 1)+--
Hy(M, q) = C_ (L 1)+ - + C Holl, N+ Cp oL 1+

CanHp LN+ 5 T (- on 4 BT s NI+ 83,7 6l0)
S+ BT o)+ e (e e (N) (60)

- . o e § ¢ o o
H¢(M,q) = D Hy(l, 1)+ +D \(Ho(l, N)+ DL H (L1 +- .. +

D' H (G, NY+¢c .J
qN ( )gq

. Jeo (N)+ ¢!

H+...+ QqNJ ql se(1)

S¢
PR g:;N‘Tse(NH \)qlps(l)+ cee 4 \;quS(N). (61)

In order to conveniently determine the coefficients in equa-

tions (58) through (61), we shall have to treat the source terms Js¢’ Jse

o
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and pg a8 unknowns. Then each coefficient is determined by setting all
variables to zero except the variable associated with the coefficient
desired, which is given the value of unity.

For instance, to determine the value of the 4N coefficients
A P B D 1; q=1, 2, ..., N; all fields H, and H, at the inner

ql’ Tql’ "ql’ Tq 8% ¢

boundary points are set to zero except He(l, 1) which is unity, and all

p ©

sources are assumed zero. Then

A = EG(M,q)

ql
By, = E, (M q)
Cq1 = Hg(M:q)
Dql = H¢(M, q)

so that the coefficients are determined from the outer boundary fields

produced by only a unity HB(I’ 1). Similarly, a"ql’ Vql’ gql and qu are

found by letting all tangential magnetic fields at the inner boundary be zero,

().

and all source terms be zero except Js

¢

In this manner all the coefficients are determined, and the
outer tangential fields are found as known functions of the tangential
magnetic fields at the inner boundary and the source distribution.

Equations (58) through (61) may be rewritten in more

compact form as

-~ v - e C m———— e —




v
[

N

_ . H
E (M, q) = Z[Aane(l, n)+ A! H

¢(1» n)

n=]1

to T 00 el T o)+ Bqnps(n)] (62)

N
E,(Mq) = Z[Bane(l, n) + Bl H (Ln)

n=1

YT )+ YL T tn) + 6o () ] (63)

N
, Hg(M, q) = i[cane(l, n) + Gl H (1, n)

' n=1

+ 8 T + €0 T o)+ o (0) ] (64)

N.
H, (M. q) = Zl [anHe(l, n) + D! H
n=

* CanTap ™) CnTagt®) + Vo o () ] (65)

¢(1, n)

Given a means for determining the tangential fields at one of the two
boundaries and the source distribution, one is able to calculate the
tangential fields at the other boundary and therefore ail the fields
between the earth and magnetosphere or within the constant dipole

field cavity surrounding the earth. Equations (62) through (65) may also

be written in matrix form,

- 00 T HaLY |
] 1

Ee(M.q) Aql"' AqN Aql AqN e

H (1, N)

1 1

E¢(M.q) i Bql' .. BqN Bql BqN 8

= H.(1,1) +A1 (66)
1 't ... C! ?

He(M q) qu CqN cql ch ¢

H_ (M, D .... 1., D (1,

| ¢( q)_ | Doy DqN Dql DqN_ -H¢(1 N)—i

T - — > = R LR— — - .
S o R BT, e




where

qN aql * * ]

[ YqN qu * L] *
]

LN St ¢

1
+ N Ca1

3

o'qN Bql .

]

YgN “q1 "
]

gqN nql . e e

!
qN Vqlo ¢« o

VqN
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III. THE FORM OF THE FIELDS AT THE OUTER BOUNDARY

In some manner the tangential fields at the outer boundary must
be determined in order that the matrix (66) may be inverted for the
solution of the magnetic field intensities at all points on the surface of
the inner spherical boundary. The finite-difference equations (38} through
(43) may then be utilized for the final resolution of all rields between the
two radial boundaries.

Two alternatives are available for the specification of the outer
boundary fields. If the scope of the investigation includes the effect of
the boundary conditions above on the field configuration within the con-
fines of the radial limits, various distributions may be assigned to the
tangential fields at the outer boundary. The problem then develops as
to what physical significance the chosen boundary condition has. This
procedure is particularly applicable to the case in which the exterior
boundary is considered to be a conductor supporting a surface current.

The alternative to this specification is the mathematical genera-
tior of functions which might conceivably describe the form of the fields
at the outer boundary. In order that this may be achieved, an investi-
gation of the electromagnetic waves produced in a épherical system is

made.

23
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The field configuration at the outer limits of the region of interest
is assumed to be of the form of spherical waves propagating radilly
outward. The wave is considered to have propagated a sufficient distance
that the medium in which the f{ields are examined may be assumed to be

similar to free space with very small free electron densities.

A. Solutions to the Vector Wave Equation
If the displacement currents are retained in the Maxwell
equations, then
VxH = (0+iwe)E. (67)
The curl of equation (7) is

VxVxE = -igVx (uH). (68)

If it is assumed that the permeability of the medium is censtant with

respect to the spuce coordinates, equation (68) becomes
- —
VxVxxE = -ignVx H. (69)

The permeability is then taken to be that of free space, Mo

Upon substitution of (07) into (69), we have

VxVxE = -iwp(o + iwe) E,
or
— 2—>
VxVxE=%kE, (70)
where
2 2 .
k = w pe - 1wpo.
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If the charge density in the region of interest is taken to be negligible,

equation (70) becomes the familiar vector Helmholtz equation
V E+k E= 0 (71)

Except for the simplest of cases, the vector Helmholtz
equation cannot be resolved into three scalar equations which are easily
solved. For certain coordinate systems, however, there exist three
. ’ . . . - -y ->
independent vector solutions which are designated as L, M and N type

6,9

solutions. ’

If n is a constant vector with certain properties, then the

three solutions are

L=Vy (72)
M=Vxny (73)
- 1 -

N=-1—<'VxVxn\lr, (74)

where | is a function satisfying the scalar equation
2
qu; +k ¢ =0 (75)

in the particular coordinate system being used.

Hwelet n = r = ra, the radial vector for the spherical
system, then
= 2 !
M vV x ar(r v)
T = 1 -
i vV x anr(rw) .
- T—— - hanam St -w PP e L T, A

R A ST o trs .|
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M, when decomposed into its three components, is

M =9
r
R )]
8 sinf 3¢
L
M¢>"a
Likewise,
(V x M) L 8 (ginpdyy. 1 2%y
rsing 96 26 rs1n26 8d>2
-9 9y 1
(VxMg=5g (or *T V)
G oL © 3y 1
(VXM)¢' e a¢ (ar +r¢)
Ii the vector operations of
> 2
VxVxM-k M=0
are carried out, the results are
(VxVxM -kKM =0
r T
o M ..l 8rl 8 28y . 1 @ . o8y
(VxVx Mgk Mg= -5 562 35" ar) T2 5650 05¢)
sin 8
+ 1 32jl k2 ()
2
ZsinZd 3¢2 sin 6 a¢
—- 2 _arl a 298y 1 0 8y
(V x ¥ x M) - X M¢-ae[ 5520 52) + 5 3g(sin03%)
T r sin 9

1 8 ¥
+ IENAE (W)
rzsm 8 aqb ]
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But the expression in each of the brackets is just V2¢ in the spherical

coordinates. Therefore,

- 2 1 9 ryl 2
(VxVxM)e-kMe—°m 8_¢LV ¢+k¢] =0

> 2. _ 0 -
(VxVxM)¢-kM——a—e[V¢.k¢J- 0.

Thus, since the { scalar is constructed to satisfy equation (75), the

-

vector M is a solution of the vector equation (71). In a similar fashion

-
N may also be shown to be a solution of (71).

The electric field mav now be represented as a M or N
type field. It was shown that M contains only components transverse
to the radial direction, while N has not only transverse components, but

also a radial component. If the electric field is described by E=M H

becomes

I:I’ = -.L- Vx I\—Z,
iwp

- —
and the system of fields is transverse electric in nature. If E = N, then

the fields are seen to be transverse magnetic.

B. Derivation of the y-Function

For the spherical system under consideration, the expansion

of the scalar equation (75) is given by

z_a_q’.).*.___l.___

1 a?‘\y
or

2

L2 9 (singd¥ 2. .
r?‘ Y (r Y, (s1neae)+ +ky = L. (76)

r sin§ r sin § 9¢
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If we assume a solution of the form
V(E 8 @) = 4 (5 U (8) y,(9), (1)
we have, after substitution of {77) into (76),
!
V. dr dr ‘ge sin@ d@ d8
2
d g
5 = 12 %+k2r2= 0. (78)
t"¢ sin 8 d¢
Because of the separated state of the variables, three equations are
extracted from equation (78); namely,
dz%
2 - m i, (79)
d¢
dy 2
1 ) m 2
me— a— 3 - i | =
sing agt*mOgg ) T Ta ¥t P V= 0 (80)
sin 6
; dy 2
1 d, 2 'r .2 p .
Tt H& TR -0 (81

2
where m2 and p are separation constants. Equation (80), when expanded,

becomes

4V ose e 2wl

m
;& i)y, = 0.
dBZ sin§ d§ sinze 8

After the substitution of A =cos §, this becomes

2
a“y dy 2

ah L a2’ Boyy-0, @
a\ 1-2
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an equation having singularities at X = +1. If p2 = n{n+1), the solution of
interest will remain finite at these singularities.
The solutions to equations (79) are in the form of sinusoids.
In order that the {-solutions be single-valued, the constant m must take
on integer values, m=0, 1, 12, .... . The solution to (79) may then
be written as
q;¢ =acosm¢ + bsinm¢,

or

= aelmqb + be-lmd,. (83)

.é‘
¢
The second form is used in this problem since this is the variational

form assumed in the finite-difference approach. 1If the m in equation

(82) takes on the value m =0, there follows

(1 xz)ﬁﬁ zxd¢e+ +1)y .= 0 84
ﬂ~\2 = dh n(n )\i‘e- . ( )

Differentiation of (84) with respect to M yields

2
2 d dy
(1-);2)-32(-(11)? - 4>\C-1—29-» 2 ;—k+n(n+1)?;)\-e- - 0.
ax dn

A second differentiation yields

5 L2 2 2
A-N)——(—=") - 22+ () + [n(nt]) - 2(241)] —5 =0,
d\ d\ d\ ax
and the third time,
3
2. a¢ d¥g a d3¢’e d3‘”e
(=M (——5) - 2(3+1)2 o (3 )+ [n(n+]) - 3(3+1)] —5= = 0.
dn dA d\ dA
T ~ W e smme e e e my—

- 'za‘-sa‘.‘:*,;’!,i_ 5

S
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The general expression for the mth derivative of equation (84) is
m m
2. 4> 4 ¥ a 9 V¥
(L-A)—— (—F ) - 2(m+)r —)
dxn  da da
qu,e
+ [n(nt+l) - m(m+1)] = 0,
a™
Now, letting
2
2. ™/
v = (l-k ) ’
equation (86) becomes
2, d° 2.2 d 2.7
1-\")—= [(1-\") v]-2(m+l)A= [(1-17) v]
2 dx
dx
2™,
+ [n(n+l) - m(m+1)]{1-X\") v=20. (87)

After a small amount of algebraic manipulation, one finds that (87)reduces

to
2 a° d 2
@-A\)=5 - 2A 3 + [n(+l) - =5 v = O. (88)
dan 1-\

Equation {84) is a special equation which has solutions in the form of the

Legendre nolynomial Pn(X), so the solution to {88) must be

m/ m

L2 a

yo=clit-2) T =P 1.
daa

The function within the bracket is called the associated Legendre Poly-

nomial of order m and degree n. It is symbolically noted as

- - — T = e —— g g— - —_— - — - ~

mw?;m:muw%umm
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m
¥g= B (). (89)
The third of the three separated equations is
dy

1 d,2 r 2  n(n+l) _
_'Z.d_r(r dr)+[k_ 2 ]\"’r—()'

r r

The substitution of p=kr and R= v.T leads to

dZR n(n+1)

—5 +[l-—=— 1R =0 (90)
dp p

Now, if R= 'J; S, equation (90) becomes Bessells equation

2 2
8 %§§+[1--———-—(“+¥2) 1s = o,
dp P p

with solutions of the form of

where Zn+1/2(p) represents the various Bessel functions of order n+1/2.

The solution to the separated equation in (81) is therefore

1
v =d 7 Cav1/2lP)

The Hankel functions are chosen for this problem, and so

the §, may be written in terms of these Bessel functions of the third kind,

yomad 4

— —

1 (2)
T '\]IT n+1/2(kr) + e'\]; Hn+1/2 (kr)’




L)
[ Y

and, using the definitions found in Appendix, the final form of the radial

component of the separated solutions is

§_ = fhfll') (kr) + ghf‘)(kr).

r

The combination of equations (83), (89) and (91) yields the
total form of the solution to the scalar wave equation (75) in spherical

coordinates,

= [ae™? 4 b ™ c pr’:‘(x)][fhg)(erghff‘)(kr)].

Two of these terms may be discarded for this problem. Since a depen-
dence on ¢ of the fields for the finite-difference calculations was taken
m¢ me is not required here.

i -1
to be e , the term e

The selection of the proper Hankel function depends on the

fact that only an outgoing wave is desired. Now,

2 2 .
k = pe - iwpo.

For a passive medium, ¢ is positive real so that k will lie
in the fourth, and, for the particular root chosen, k will have a negative
imaginary part. In order for the wave to die cff at very large distance,

LZ)(kr ), must be selected for

the second spherical Hankel function, h
the representation of the outward propagating wave.

The general solution is therefore

im
= ae ¢

A
-

(@) m
h “(kr)P (1) (91)

where the constant a is a combination of previous constants.

"~
A

O A O

[N
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C. The Final Form of the Fields

The M and N solutions may now be constructed using (91).

im ime¢ (2)

M, = o s (k) PN

. dP(\)

img  (2) n
M, = - 0 ) —55
N_= E{‘rﬁ e ime hg')(kr)Pm o)

ap™

N, = %;elmd’ d oy h( ) (kr) ] —‘U}-)-

' imo d 2
N, ® g ™ £ ra¥r) 12700

—-— -l
When \=cos § is substituted into these six equations, M and N become

M_= 0 (92)
_im img . (2) m
Me‘ —-——1- = e h “(kr)P_"(\) (93)
dP™(1)
M, N1 By 2 = (94)
ima. (2
N_= E(ki‘:—ll e“‘“"’hfl )(kr)P;n().) (95)
[ . ) dP™M)
No= = L 5= [r h‘ Yaer)] —2— (96)

N = im im¢ d

( )
—— e (kr)]P (\). (97)
? k12 &t

fun bt - - ————
B - ———— Ll
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Since any solenoidal E field may be constructed from a
linear sum of transverse electric and transverse magnetic waves,

E = Z(AnMn+ B N ), (98)

n

where An and Bn are constants determined by the boundary conditions,
In other words, An is the amplitude of the nth mode transverse electric
wave, and Bn is the amplitude of the nth mode transverse magnetic wave.
The index n must be summed up to a value high enough to include the
highest ordered mode present in the system. Since the finite-difference
method employed N points in the angular direction, the highest mode
we shall consider is the NP mode.

The magnetic field ﬁ, as derived from Maxwell's equation,
is

nn

H = -rl—VXIZ(Aﬁ +B N },
(8 n n
n
and, since An and Bn are constant with respect to the space coordinates,
Heor Y {a i)+ (xR} 99
iwp iU n n n n
n

Equation (74) defining N is rewritten, yielding

ﬁ:%vXﬁE, (100)

ané from equation (73), M is given by

- e g . T T — e " ——— -— —
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M= Vxny = —LVxn(-kZ\y)
2
k
- 1 - _2
M= -t vx@viy. (101)
kZ

: From a vector identity and the knowledge of the properties of the vecter

-—
n, we have

Vx(Vyxn)=-nV-Vy = -aviy. (102)

Upon substitution of (102) into equation (101), the vector

—'
solution M becomes

M= VxVx(Vixn).
2
k
It can be seen that
—I;I = Vy x_r:,

if equation (73) is expanded, and therefore,

M = VxVxM,

= |'—'
™

which, by equation (100), reduces finally to

1\—2= Vx—I\?.

1
K

The magnetic field is thus given most conveniently by

o)
n
'
|

k — -
: Z[AN +B M ]. (103)

v —_—— e —_— - - =
e > - SRS ISR T T L -
= -
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Finally, with equations (92) through (97) substituted into (98) and (103),
the general field expressions for the spherical wave propagating out-

wardly are

N
E =z {Gn “‘1’::1) ime (2)(k )P (x)} (104)
n=

N . .
E,= 2 {Fn —im  im¢ hf’(kr)pnm(x)

ol NIAE
. Gn_JI_gi e1m¢ d - [r h( Nr )]dp M} (105)
+G —B__ imo d =[x h(z)(k 1P (x)} (106)

’ krN 1-)»2

§ et
nl
- G_ ;;-’—n-——Ji? R hg‘)(kr)p':(x)} (168)
H, = ) -F_ wprj;"‘? imé d ol h %) xx 1PN

(109)
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The four expressions of these equations for the tangential
fields may be written in symbolic form using notation introduced pre-
viously.
N
. = !
E4(M, q) z [Fo2gn * Gl (110)
n=1
= !
E¢(M,q) i[Fann+anqn] (111)
n=1
N
= !
HQ(M,q) 2 [anqn-i-anqn] (112)
n=1
N
= !
H, (M, q) zltanqn+ G gl (113)
n=

where the terms a o al ,

1 1
an’ °gn bqn’ fqn’ fqn’ gqn and gqn are the

complex terms in the field equations (105), (106), (108), and (109) and

are functions of both the mode number and the angular position.

IR T T, r———
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1IV. COMBINATION OF THE EQUATIONS AND BOUNDARY CONDITIONS

There now exist two expressions for each of the fields tangential
to the outer boundary. Equations (62) through (65) are equated to (110)

through (113), yielding
N N
i = ] 1
z [2goFy + 28,Gy,] zl[Aane(l, o) + Al H (Ln)]
n=1 n=

N
" z g T 0 + @l T (0 + B p ()] (115)

n=1
§ N
1 - ‘ '
1[bann +5! G ] zl[Bane\l, n) + B! H_ ()]
n= n=

+ i“qnjw‘“’ YL T o)+ 6 e (m)] (116)

(1, n)]

N N
1 - 1

z (£ Fp * £0,G, ] z [C nHgllm) + Gl H

n=1

n=1

N
+y [8nTep ™ * B To (4 m p ()] (117)
n=1

N N
r t = 1 2
zngann + gl.G ) Zl[anHe(l, a) + D} H (Ln)]
n= n=

N
+ zl[gqn;rsq’(n) +5 T o) £ v p ] (118)
n=

The quantities which are known in these 4 N equations are all the coeffi-

cients plus the source terms Js (n), Jse(n) and ps(n) while the unknowns

¢
38
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are He(l, n), H, (1, n), Fn and Gn. There are, therefore, 4 N equations

¢
with 4 N unknowns,

A. Evaluation of the Fields at the Inner Boundary

. S f
Since, for each g, both the coefficients o’qn’ aqn’ Bqn’ an’

] 1 1
an’ Bqn’ gqn’ gqn’ nqn’ gqn’ gqn and an and the sources Js¢(n)’

Jse(n) and ps(n) are known in the problem, let the following substitutions

be made
N
n=

N
SZq = - z [anJS¢ (n) + Y:;n‘]‘sﬂ(n) + aqnps(n) ]
n=s

N

Sy - zltgqna'sd,(n) +8 T () p (n)]
n=

N
S4q - El[ganS(p(n) + g(';I].JS e(n) + anps(n) :‘l
n=

Then equations (114) through (117) may be rewritten in matrix form

(where the coefficients a g _and g:qn are the

1 $
qn’ aqn’ gqn’ fqn’ fqn’ gn
negative values of those calculated previously). This matrix is shown

on the next page.
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The system of matrices may now be inverted by some method

to give the values of He(l,q) and H (l,q) for eachgq, q=1,2, ..., N.

¢

Once this is done, all the tangential fields at the inner boundary are

determined, and the problem may then be concluded.

B. Field Calculations

Once the tangential fields at the inner boundary are completely
determined, all fields within the system are calculated from the finite-
difference equations {38) through (43) in a step-by-step manner as before.
The proper boundary conditions are applied at the discontinuity, and the
procedure is continued until all six field components are known at each
of the grid points. This concludes the procedure except for perhaps a
few checks on the accuracy of the method.

Although checks would increase the length of the computation
it might be desirable, at least until the calculations prove to be reliable,
to perform one or more checks on the accuracy of the calculations.

One such verification consists of solving for the coefficients
Fn and Gn in the matrix which was to be inverted. The fields at the outer
boundary calculated from those coefficients in equations (104) through
(109) should be the same as those calculated in the last iteration process.

Any computational instability of the fields either in the
radial direction or polar angle direction must be carefully examined for

computational troubles such as significant figure problems,

- - -3 - S AE D Nl G EERN T g Wrp——
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V. COMPUTATIONAL METHODS

A program for the digital computer may be most conveniently
written with several subprograms or subroutines. A brief outline of
such a program followz.

Quantities which rnust be inserted into the computer initially
include the f{requency, w; the plasma frequency, u;p; the number of
grid points in the radial direction, M; the number of grid points desired
for A\, N; the molecular weight of ions or mass ratic of ions to electrons,
o.o; the radius of the inner boundary, Rmin; the radius of the outer
boundary, Rmax; the current distributions, Je(q) and J(P(q); the charge
density, p{q); and the radial location of the sources. Of course, con-
stants such as By and ™ must be included in the program. The quantities
listed above are read intc the computer to enable the programmer to
change one or more of these parameters easily.

After all inputs are within the computer, the conductivity matrix
is calculated in a separate subroutine. This matrix has components which
are found in Appendix B. These numbers are stored for later use.

The next quantities to be calculated in another subroutine are the
coefficients of the matrix (06). The functions aqn, al

!
an’ “an’ Pqn’ qn’
f(']n, gqn’ and g:;n of equations (110) through (113) are then computed with
separate subroutines for the calculation of the Hankel functions and the

associated Legendre polynomials. Once all elements in the first matrix

42
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AZ are determined, the matrix is inverted by Gaussian elimination for

the field quantities He(l, q) and H (1, q); this may also be accomplished

¢
in a separate subroutine.

The main program may then be used for the final calculation of
all the field guantities. To eliminate the need for even more storage
space, the six field components are printed as they are calculated at
each radial level.

Although the use of many subroutines increases the amount of
storage space required, it greatly simplifies the isolation of errors or
possible trouble areas in the program, as well as simplifying the writing
of the program. If storage space is the prime factor in the calculations,
as it is likely to be, all calculations may be accomplished in the main
program. If further reduction in either the amount of core storage or
time needed is necessary, the problem may be solved in separate parts
or programs with the output of one program used as the input of the next.
In such a way the conductivities, the coefficients for the matrix {66}, and
the eight functions of (110) through (113) may be calculated separately and
used as input to a final program to invert the matrix AZ.

A high-speed digital computer possessing an extremely large
memory capacity is needed for quantitative resuits from this problem.
Because of the large storage volume needed, all calculation should, if

possible, be accomplished using only single precision arithmetic. For

this reason means must be foundto circumvent any significant figure problems.
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Several subtle difficulties are present in the direct application of
some of the difference equations. One such problem of significant figures
iies in the calculation of H, from equalion {30). For this problem an

¢
auxiliary field Ep was utilized by Chapman (1966) as defined by

E = E_.
b krEr+k9 g

For further details see reference 3.

e




VI, CONCLUSIONS

Many notions present themselves as to how the quantitative results
may be used. One aspect of the problem that certainly should be examined
is the effect of various current distributions and charge density distri-
butions on the fields at the surface of the earth. A person need not limit
the source to one current sheet, but, by extending the idea of this problem,
he might examine the fields with several such current rings or sheets of
charge encircling the earth.

The variation of the electromagnetic field with the several parame-
ters of interest is another needed route of investigation. These parameters
include, among others, the frequency, plazsma Irequency, altitude of the
prevailing sources, and aititude of the undistorted dipole field cavity.

In order that an adequate resolution may be achieved and a minimum
chance of instability due to computational errors be realized, a large
number of grid points must be involved in the quantitative consideration
of this problem. For this reason the present digital computer available
{(Control Data Corporation 1604) could only be utilized if the problem were
divided into the several parts mentioned previously. Attempts in the
computational region will most likely be made after the installation of the
new computer (Control Data Corporation 6600) in the Computation Center

at The University of Texas.
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APPENDIX A
FINITE-DIFFERENCE FORMULAE

The finite-difference formulae are based on polynomial apprexi-
mations. See reference 4 for details of the formulae. Three methods
of differencing exist; namely, forward differencing, backward differencing,
and central differencing. For the use of this problem, only the expressions
for the derivatives of functions are of interest.

Let y(x) be a functicn of x (it may also be a functicn of other
variables, but each of these is held constant for these approximations
of the partial derivatives, and so no generality is lost by the consider-
ation of only x), Y. be the value of the function y at the value of x = yn,

Y 0t1 be the value of the function at the next poirnt chosen on the x-axis

{(x ,> xn), and Yo-1 be the value of y at the point directly to the left of

n+l

x_on the x-axis. The figure illustrates the notation.

94
4y
Yt b — — - - — o ——
Yt — — — ——= -
Unog e e =
v !
71
I
Lo
l ! 1 ———
Ao~y Xn Aan X
Figure 4

Definitions for the Finite~Difference rormulae -
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The forward difference formula for the derivative of y with

v

- 5:"«3?{'(
R Ry

*
13

respect to x evaluated at x = X is given by the series

Ty

C]‘Yn 1 i
> -l-'x—[(ynﬂ- Yn) -E(Yn+2- 2yn+l+ y’n).{” o ]’

where h is the increment on x between xn and xn+l' The backward

difference formula is, if h is also the increment between xn and xn,

-1

dy . ; .
ax K[Yn‘ Yn~l)+z(yn~ 2yn-1+ Yn-2! =t o ]’ .

and the formula for the more accurate central difference is

dy
_E.=_1..[( - )-3.( -2 +2 - 4o o -
dx  2h Va1 Yn-1! "B Va2 T YT “Yn-1"Yn-2

If approximations to the first order only are used, the difference

formulae become simply

dyn yn+1 h yn

dx X - X
n+l n

for the forward difference,

Wy YnY
dx  x - x
n n-1

n-1

for the backward difference, and
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for the central difference. The central difference formula is most con-
venient when the increments taken in the x-direction are all equal.
However, non-uniform increments may also be used, with the various
formulae being modified accordingly.

The central difference formula is used whenever possible, and
so it is employed in the computation of the derivatives of the field with
respect to A at all pcints. The central difference is used to approxi-
mate the derivatives with respect to r except in the initial step from
the inner boundary when the forward difference is used.

Let AN be the incremental change in A\ used in the grid, and Ar
be the radial distance between two adjacent levels. Also, the notation

], A(p,; q) is taken to mean the value of A at the radius rp and angle
(cosine)X. A(p+], q) therefore signifies the value of A at the next radial

and the same value of A. The difference formulae are then

dA _ A(ptl,q) - Alp,q)
dr Ar

dA _ A(p,q) - Ap-1,9)
dr Ar

dA A(p+l,q) - Alp-1, q)
dr ZAT

for the forward, backward, and central difference, respectively, for

the radial derivative, and




-

-

for the same differences of the tangential derivatives.

dA _ Alp,qtl) - A(p,q)
d\ AN

d_A = A(P: q) - A(P, Q'l)
d\ AN

dA _ A(p,q+l) - A(p,q-1)
d\ 2AN

All six of these

expressions are for the derivatives evaluated at the point (p, q).
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APPENDIX B
DERIVATICN OF THE CONDUCTIVITY MATRIX

Bostick {1964} derived the conductivity tensor from considera-
tions of particle interaction using basic equations of plasma physics.
The complex conductivity tensor is based on the generalized Ohm's law,
the equation of motion for the charged particles in an ionized gas, and
the equation of motion for neutral particles. The following is an outline
of the derivation of the conductivity elements used by Chapman (1966).

It is presented here since the conductivities must be calculated for this

problem.
Let fl, f2 and f3 be defined by

fin
hefen™ 7 (A-1)

fin me
277 *m fen (A-2)

Mg

f3 - fie+ fen+ -m—l fin ’ (A-3)

where the terms { , f,
en

and f'e are the effective collision frequencies
in i

between electrons and neutral particles, ions and neutral particles, and
ions and electrons, respectively, and m_ and m, are the electron and
ion masses.

If the electron plasma frequency wp is defined as

50




L
.
R
17 R bopr it 4

@
tv
o
(2]

T
{ﬁ?& 2 Noq
s, . Ww - m
;‘ P e o
Do where No is the electron charge density, then the generalized Ohm's law
is given by o
1 - - - — _ - - -
> L(un +£,) T+a T x k] =E+V_ xkB
€ W
op
Bf . Ap
s 2L T -V ) (A-4)
e P n Noq

In equation (A-4), _.f is the current desnity, k is the unit vector in the +2
direction, we is the cyclotron resonance frequency for electrous, .\; is
the average plasma velocity, Vn is the average velocity of the neutral
particles, and P, is the perturbation in pressure of electrons.

The equation of motion for the charged component of the plasma
is

o1i

igN mV = T-N mf (V -V )+ JIXkB - Ap_  (A-5)
o P o 2'p n o P

€

in which m is the ion mass and pp is the perturbation in pressure

difference of ions and electrons.

The equation of motion for the neutral particles is

Bofl
iwNm Vn =-

- J-N mfy (V_ -V ) - ap (A-6)

where N is the particle density of neutral particles, and p is the
n

perturbed pressure of the neutral particles.
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Equation (A-4) is rearranged to give

B f
(ioNm, + Nmf )V - Nmf V = ol J+JIxkB (A-7)
o i o i2° p 012 n w, o
and equation (A-6) is rearranged to give
- - Bof]_ -
~-Nmf V +(N mif +ioNm,)V = - J . (A-8)
o i2 p o i2 i’ 'n w,

If equations (A-7) and (A-8) are solved simultaneously for vn and V ’

P
the results are
B f B ff
. N ol = =» = ol2 —»
. (f2+1No)( my J+JkaO) - - J
sz T — (A"q)
.l N 2 N
Nomi[1c,f2(l+T\I—)- W T\r—]
o o
B £ L, B . .
-2 o iw)T 4L ( T+Tx kB )
- e 2" w, )
V= . (A-10)
. N 2 N
Nomi[1mf2(1+-1-\1-)- w N—]
o )
Then
B f{
ol . N . N > =
Lo - 1w(1+-ﬁo—)J+1wi\—I;- BoJxk
Vp..vn = . (A-11)
N 2 N
N m [lu)fz(l'}"ﬁ- -w _1;]'_‘_]
o o

When equations (A-9) and (A-11) are substituted into equation (A-4) and

the resulting terms rearranged, there results
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iw+f Bzfz igN m
-3 3 "ol o} (1+..§_)
2 2 A No ]
eowp W,
e W Nm, B {
+Jxk[ -2 u‘,’liwg] (A-12)
e W e o
P
\{
m
- - - o i . N 2 -
-(Jxk)xk[T(fz+ lw}? Bo] = E,
where
2 N wz N
= (Nm) liwf,) (+g) - 7 [ ]
o 2 o
With the cyclotron frequency defined by
Y%e@ ™ m
e
then the first term in equation (A-12) is reduced to
. 2
iw+f B { le m,
3 __o 1
2 2 )]
€ W w
op e
iw+f, £, f/f
— - 2(m)!_ ]}ew, (A-13)
% %% 7 fz (N+N

the second term becomes
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Ye ZNomi B4 LN 2
[ 2 A w YN ]eou'p:
e W
op
{ W, , w, N flff2 o,
2 2 N+N [ ]} “ow  , (A-14)
e w ) o . W N P
op op 1+1f—(N+N)
2
and the third term becomes
Nm
o i . N 2 2
-[T(f2+lwﬁ;) Bojeowp -
2 142 N
w me 1 fZ Nc 2
- ( )[ ][ ] e w° (A-15)
iwe w” ™ R4 Jbpy 2 T °P
w owp N f, N+N
o 2 o

Let a be defined as the right-hand side of equation (A-13), b as the right-~

hand side of equation (A-14), and c as the right-hand side of equation (A-15).

Then

- 22—

ajJ +bIxk + C(Txk)xk = ew E. (A-16)

Now, the earth's magneti< field is assumed to be of a form pro-
duced by a magnetic dipole at the center of the earth with a magnetic

moment of

M = 8.06 x 1015 weber /meters.

b

e
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Also, from Prince, Bostick, and Smith (1964), the strength of the static

field is given by

Bo':- —Mé-»\/‘i cosZB + 8in29

r
or
_ Mh
B,= 3>
T
where .
h = 1«{-3).z .
m, No
Defining e = r;; and n= N ¢ one finds that
f12(1+ n)
a = (f +iw) - —— (A-17)
3 ao[1w+f2(1+n)]
2
21
b = Mqhs {1’ PR i—f i+ )]} (A-18)
m_r ottWT R\
2. nf, +tiw
h 2
¢ = - (Mg (A-19)

T
mer3 1wo,0[1 w+ f2(1+11,]
Equation (A-12) is specified in terms of the rectangular coordinate
system, but the problem for which the conductivity matrix is needed is in
the frame o. the spherical coordinate system. It is therefore necessary

that equation (A-12) be transformed over to the spherical system.
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The unit vector k is given in terms of the unit vectors ;r and ;".!1
- N e
b
ag by s
k = krar + keae,
where
2
K =.-—2C088 (A-20)
r J )
1+3cos 6
Kk =.—>2n8 (A-21)

8
'J1+3cosz 8

Then .-]"x K becomes

Jxk = (arJr+a9J9+a¢J¢) x (krar-i-keae)
- - - - - .
Jxk = -a.r.I(#ke+a.eJ¢kr +a¢ (JrkefJBkr), {A-22)
and
(IJxk)x k= ar[kB(Jekr - Jrke)] + a.e[kr(.]'rk9 - Jekr)]
- 2 2
+ a¢[-J¢(kr + ke)] .
But k2 —l»kZ =1, so
T 8 -
P
- - -::—» _ - _ --v 52
(Fxk)xk ar[ke(Jekr Jrke)] + aa[kr(JrkB Jekr)] a¢J'¢ . {A-232)
Equation (A-16), reduced to component form with the substituticn of
equations (.A-22) and (A-23), is

s
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% B 2 2
N - - = E A-24
‘i i J’r(a Cke)+J9(Ckrke)+J¢( bke) eowp , ( )
| B
- J {(ck, k J k2)+J bk ) = 2E (A-25)
lekgk )+ e(a'c r ¢( ' T ol T
J (bk )+ T (-bk ) + J, (a-c) = 2E (A-26)
r 8 ] r ¢ - % %
The determinant of these three equations is
a ck'2 ck k -bk
a r 6 3]
D= k, k kz bk = af(a-~ )2+ bz] (A-27)
= ckok, a-ck - = af(a~-c .
bk -bk a-c
8 r
. The three equations (A-24) through (A-26) are inverted to give the current

distribution in terms of the three electric field components. In matrix

form, the resulting equations are

Jr Orr °rg Orqb Er
To|“ 1% "8 g By
J o c o E
¢ ¢r ¢e ¢ ¢
L - 4 i
The resulting conductivity matrix is
’ B a(a—c)+[b2~c(a«c)]k2 sz- cla-c)ik k abk N
r - r 8 8
>
-_op 2 A 2 2
G = 5 [b -cfa C)"krke afa~c)+[b ~cla- c)]ke - abkr (A3)
-apnk -
ap 5 a.bkr afa-~c)
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where a is defined by (A-17}, b by (A-18), c by (A-19), kr and k, by

8
(A-20) and (A-21), and D by equation (A-27).

The conductivity matrix A, is very general, containing in its

3
terms the effects of aprticle interaction. If the medium is assumed to
be such thal very few ion-electron, ion-neutral particle, or electron-

neutral particle collisions occur, elements contained in the matrix are

greatly simplified.

For no collisions,

Therefore

and the three terms 2a, b, and ¢ are found to be

a = 1w
_ Mg
b = 3h
mrr
e
_ (Mqh )2 1
€ == 3/ Tuwa
mer [o]

Then the various components cf the matrix become

2 2
2 h M
a(a-c)=-w [l- 5 { q3)]
wa mr
o e

v WU e e

Pt i,
by

e e gl — — -




59

2 M
b -cla-c) = 3) {1 —-[1-——( q3) ]}
mprxrx 0 m.r
€ e
2
kK, - 2NN
r h
ab:iwh—M%
mer

tof-o”

9_) ] f-}i-,’)z}.

It is seen that a(a - c) and bz- c(a-c) are entirely real while al:

and D are purely imaginary., This causes cr¢. oe¢, °¢r' and cr¢ 0 t
be real, and Oprt Trg’ cer, Oag’ and o¢¢ to be imaginary. Also, it
may be noted that Opg = cer, Gr¢ = 0‘¢r, 0‘9¢ =-c¢e.
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2 2 2
’ Mgh h M
b -cla-c) = (- {1+——[1- (=) |}
“ L)
m r wa m.r
e o e
2
krkg _ 2\ 1Z-x
> h
ab = igh q3
m r
e
2
Mgh
tof- o’ ’ ] F ) L
mr
e
It is seen that a{a - c) and bz- c(a - c} are entirely real while ab

and D are purely imaginary. This causes or¢, 06¢’ o¢r, and 0¢6 to
be real, and O Tpg’ Car’ 0665 and o¢¢ to be imaginary. Also, it
may be noted that O.g™ Tor? cr¢ = 0¢r, UB(P =-o¢e-
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APPENDIX C

USEFUL PROPERTIES OF THE SPHERICAL BESSEL FUNCTIONS
AND ASSOCIATED LEGENDRE POLYNOMIALS

SPHERICAL BESSEL FUNCTIONS

The spherical Bessel functions of the third kind are defined by

n(p) = W B, (p)

2p nt:

), \ _ ,‘_‘r_r_ (2}
h (p) = Zp Hn%_(p)-

. (1) (2) . .
The Hankel functions Hn A (p) and Hn a2 (p) are linear combi-

aations of the Bessel functions of the first and second kins, namely,

W, ,
Hn%(p) = Jn_*_%(p) + 1Nn+%(p)
2 -
Hf_1+)_‘12_ (p) = Jn+%(p) - 1Nn+%(p),

For large values of p, the approximations for the Spherical

Hankel functions are, as p—*w,

b o) = 2 0

{2) o 1ot -ip
h]:1 (p) =~ 5 (i) e .

(1)

0 (p) or hflz)(p), then some useful recurrence

If zn(p) is either h
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relations for the spherical functions are

2n+1
5 z () =2 ,(p)-2_ ,(p)
d 1
Tp [2aP)] = 2, y(p) - Ll-;:—Zn(p)
d rz =2z Z
-;i;[ (P = P’ 2P) - 2 . (p)
4 nz_(p) - (a+1)Z__ (p)
35 [Zn(P)] = 2n+1l
a™ _ n+l n+l
—m e 2] =p 2 _ (p)
dp
drn 1 m -n
= 2,0 = 10Tz, (),
dp ~ p

for n=0, 1, ¥2,.. ., and m=1,2,3, ... .

ASSOCIATED LEGENDRE POLYNOMIALS

The associated Legendre polynomial is defined by

2 m/2 g™

m
P (A) = (-\) — P_(\),

n dxm n,

or
m/2

m,. . (-2 @Mt yR

Pn () = n n+m ‘
2 n! d\

s
i BEEEEE . -
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Some recurrence relations which are useful in the calculation of

the associated Legendre polynomials on a digital computer are, with the
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notation of the functional dependence on \ omitted,

m m
p . (2n+tIAPy - (n+m)P_ 4
n+l n-m+l
2 -
P™ = AP+ (n4m) W 1-2° PP
n+l n n
1A% PP i m+ A P™ - (n-m+1) P™
n n m n+l

J 1-2° P:”l = zme;n- (n-m+1)(n+m) 122 pm-l

n
= sz—i—k [n-m+)(n+m)P™ L PPy md1-0% p™
,\/]_—_;E n n n n
2 dP;n m m
(1-2%) =2 = (+)AP] - (n-m+1) P
2 dpfun m m
(1-A") == = (a+m)P__ - nAP] .




BIBLIOGRAPHY AND REFERENCES

Bostick, F. X., Jr., Propagation Characteristics of Small-
Amplitude Hydromagnetic Disturbances in the Earth's
Upper Atmosphere, Ph.D. Thesis, The University of
Texas, 1964.

Chapman, S., IGY: Year of Discovery, University of Michigan
Press, Ann Arbor, 1962.

Chapman, C. W., A Study of the Application of Finite-Difference
Techniques to ULF Waves in a Spherical Model Inhomo-
geneous, Anisotropic, Atmospheric Plasma, Ph.D.
Thesis, The University of Texas, 1966.

Fox, L., Numerical Solution of Ordinary and Partial Differential
Egua.tions, Addison-~ Wesley, Inc., Reading, Mass., 1962,

Massey, H.S. W., and R.T.F. Boyd, The Upper Atmosphere,
Hutchinson of London, London, 1960.

Morse, P. M., and Feshback, Methods of Theoretical Physics,
McGraw-Hill, Inc., New York, 1953.

Prince, C. E., and F. X, Bostick, Jr., General Dispersion
Relations for Partially-Ionized Gases, Elect. Engr. Res.
Lab. Sci. Rept. No. 129, The University of Texas, 1963.

Prince, C. E., Jr., F. X. Bostick, Jr., and H. W. Smith, A
Study of the Transmission of Plane Hydromagnetic Waves
Through the Upper Atmosphere, Elect., Engr. Res. Lab.
Sci. Rept. No. 134, The University of Texas, 1964.

Stratton, J. A., Electromagnetic Theory, McGraw-Hill, Inc.,
New York, 1941.

63




UNCLASSIFIF.D
Security Classification

'DOCUMENT CONTROL DATA - R&D

(Sscurity classification of title, body of abstrect end indozing annctction muet be entcred when the overn!l report ie classitied)

1. ORIGINATIN G ACTIVITY (Corporate suthor) 26. REPORT SECURITY C LASSIFICATION

Electrical Engineering Research Laboratory --

The University of Texas 26 arour

3. REPORT TITLE
A Finite-Difference Study of the Effect of Current and Charge Sources
on the Electromagnetic Field of the Earth

4. DESCRIPTIVE NOTES (Type of report and incluaive dates)

Technical

S. AUTHOR(S) (Last name. first neme, inttial)

Boehl, John E.
Bostick, Francis X., Jr.

S. REPORT DATE I'7a. ToTaL no. OF pPaAgES 7b. NO. OF REFS
20 May 1966 63 9
8a8. CONTRACT OR GRANT NO. 92. ORIGINATOR'S REPORT NUMSER(S)
Nonr 375(14)
b PROJECT KO. 143
NR 371 032
<. 9b. OTHER s&ﬂonf NO(S} (Any other numbers that may be assigned
this repo:
d.

10 AVAILABILITY/LIMITATION NOTICES

11. SUFPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research
Washington, D.C.

o —

13. ABSTRACT
A finite-difference approach to the description of the electromagnetic

field structure within the region bounded by the earth and some outer spherical
boundary is studied. Within this medium a current sheet and a free charge
sheet are assumed to exist in a spherical geometry. The medium is assumed
to be two-dimensionally inhomogeneous and to consist of a plasma gas. The
earth is considered to be perfectly conducting, and the field distribution at the
outer boundary is caused to assumec the form of a system of spherical waves
which are propagating oatwardly.

Key Words

Ultra low frequency waves
Boundary value problem
Numerical Analysis

DD .no%, 1473 UNCLASSIFIED

Security Classification




