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ABSTRACT

A finite-difference approach to the description of the electro-

magnetic field structure within the region bounded by the earth and

some outer spherical boundary is studied. Within this medium, a

current sheet and a free charge sheet are assumed to exist in a spherical

geometry.

The medium is assumed to be two-dimensionally inhomogeneous

and to consist of a plasma gas. The earth is considered to be perfectly

conducting, and the field distribution at the outer boundary is caased

to assume the form of a system of spherical waves which are propagating

outwardly.
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I. INTRODUCTION

J An investigation into the nature of the electromagnetic field of the

earth produced by both current and free charge sources located in the

upper atmosphere is the basis of this problem.

The medium surrounding the earth is taken to be generally

inhomogeneous and anisotropic. The two spherical boundaries which

enclose the cavity of interest are the earth or the earth's core for the

inner boundary and the magnetospheric boundary for the outer confine-

ment of the fields. It may, however, be desirable for a different boundary

to be chosen for the outer limits of the problem.

At some altitude is postulated a current sheet and a sheet of free

surface charge. Both will initially be assumed to be positioned at the

same altitude in order that the notation used may be simplified. The

fields within the boundaries are mathematically examined.



II. MATHEMATICAL DEVELOPMENT

Mathematical analysis is now performed on the problem. Because

of the geometry of the system, spherical coordinates are used.

A. The Working Differential Equations

The appropriate place to begin the problem is the group of

Maxwell's equations which, written in the standard vector notation, are

-- - 8 D
VxHJ + 8t (1)

V x = -EB (2)
at

V. B =0 (3)

V. D=p. (4)

For the purposes of this problem, it is assumed that the

aD.
displacement current, OD is small enough compared to the free current,

J, so as to be negligible. This approximation is generally valid for the

media under consideration if the frequencies used are small. However,

the approximation is only valid within plasma regions and does not hold

with the relatively thin air layer. The frequencies of interest are those

frequencies of the micropulsations in the range from about 0. 001 cycles

per second to a maximum of 1 cycle per second. This assumption reduces

equation (1) to

V x H = J. (5)

z
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For a medium which is linear (non-magnetic), the magnetic

flux density B is related to the magnetic field intensity H by the permea-

bility constant of the material,

B =FH.

If the permeability is not a function of time, then equation (2) becomes

-* 8H
VxE = (6)

The time dependence of all field quantities is assumed to be

iwt
of the form e . Thus,

E(rt) E(r)e

-- *. -4- iwt
H(r,t) = H(r)e

There is no loss of generality in this assumption since any other forms

of time variations may be constructed from the assumed mode by a

Fourier series.

The curl equation (6) is now of the form

-9.1 -0.V xE = -iwpL. (7)

iwt.
The factor e is understood to be associated with each of the field

quantities and is henceforth not written.

For media which are anisotropic, the conductivity is usually

expressed as a dyadic. The free current density is then given by the

vector operation

J = 0- E.
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In spherical coordinates this operation is expanded into the three com-

ponents as

J 0 g +0 E +or Er rr r re e 0 + y

JO = Or E +a E 0 E+

J o CrE+ YO8 + T E

Pr re0E0
J¢ =gcrr + gpeEe+ •€ 'P.

If the curl operations are performed in this coordinate system, equations

(5) and (7) become, in component form,

(H sin = -+ E +r +a
r sine (H800 (P rrr rr 95 (8)

8r s Hn r ay

S (r HH)] = E+ Eae + E+ E (9)

OH
[•~ e---] 0 rEr+ 0  sEe+o E¢v (10)

rL-Or8 00 q5j 'r r q5 8 eP'

. -[a ( sie)BE -L
r sin 0 eL(Epsn )-] 00 ~Lr (1

BEr Isin e 8E)j = -re(rr (12I)

8E
rLr(r Ee) ae =iwLH (13)

These are the general equations which are made use of in the solution

of this problem.

As they stand, equations (8) through (13) are rather un-

manageable in the three dimensions. If it is assumed that the conductivity
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is not functionally related to the azimuth angle 4, a simplification may

be made which allows a type of separation of the preceding equations.

For this case it is assumed that a symmetry exists which allows the

fields to be separated into the form of

E(r, 6, 4) = E(r, 8) e imo

H(r, 0,,) H(r, 0)e m(.

When applied to equations (8) through (13), this assumption yields, with

the factor e understood,

r sin e 7 (H 0 sin 0) - imHe arr r+ arGOa0, (14)

rL- -HH E + C + E + E (14)rsinLB 4? r rH(r r re rOA (A44

Ha .(rH 3Hr Y oE + o8 8P E 0+ 8 4E0 (15)
1- ri

rL r 0e (P 4r r ?8 44??

1 E -L (E,, sin )- imE 8  = -iWuLH (17)r sine b - e= r

Lr Lsin8im Er r- (r = -iwpH0 (18)

OE

l1 ra r] -iiH(r -r (rE 0) -5 -8 (

The derivatives in equations (14) through (19) are now

expanded, and the terms are rearranged to give

H = cos8 E 1• i j + im E (20)
r iw•r sin 8 iwlr 8 8 iW1±r sine e
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1 1Cose 1 OH# im H
r •r Lr-sine4P + r e r sin e r8 ea r (2

8H01 8r 1
0 = rEr + aeEe+ a Ep +.L r He (22)

8E OEe 1 r 1

Or - r oe r E 8 iwfHp (23)

OH i
L a= - F- F Hr - Ho (24)Or Oerr Be 0E rsi--n r r

aEim 1
Srsin H -- E (Z5)

The radial fields are therefore expressed in terms of the tangential

fields and their derivatives, while the derivatives of the tangential

fields in the radial direction occur in terms of the fields and their

tangential derivatives only. A method for the calculation of the fields

now presents itself.

Consider a quadrant of the constant 4-plane, as shcwn in

Figure I, partitioned by a grid of N points in the e-direction by M

points in the radial direction. Between level L (levels referring to the

radial direction) and level L+ 1, a boundary exists which carries a

surface current Js and a free surface charge distribution PS.

If the tangential fields on the inner boundary are completely

specified, then their derivatives with respect to the polar angle 0 are
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M

r

L • • 0 =90°
SL L+ M- m (equator)

Figure 1

Quadrant of Constant p -Plane P- r grid

X= 0 =1. 0
(equator ) (pole)

Figure 2

Quadrant of Constant (p-Plane X - r grid
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specified, and equations (20) and (21) may be utilized for the determination

of the two radial field components at all points on the inner boundary. Inte-

gration of the equations (22) through (25) then yields the tangential fields

at the second level. This process is continued until the fields at level L

are known. After proper boundary conditions are applied at the discon-

tinuity between levels L and L + 1, the fields at level L + I are determined,

and the marching process is continued through level M.

The method may, of course, be employed for the entire

range of polar angle e from 0' to 1800. However, the summetry of the

earth's dipole field about the equatorial plane leads to a simplification

in that fewer points are needed if the plane of 8=90° is thought of as an

artificial boundary. The field quantities are then terminated at this

boundary as odd functions about 8 = 900 (in which case the field is zero

at the boundary) or even functions about the equator (in which case the

derivatives of the fields with respect to the polar angle is zero).

If the radial component of the electric field is chosen as

being an even function of e about 9 = 900, then it can be shown that

H 0 and FB, must also be even functions about the equator while H r, E

and H 1 are odd functions. The converse is also true. It is also true

that the integer m specifies a symmetry of the fields about the pole.

Some difficulty may arise in the use of the differential

equations (20) through (25) at points near the equatorial axis if equal
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increments of the angle theta are used. In order that more points be

located near this axis, giving greater resolution in this area of trouble,

the independent variable theta is changed to cos e. The two-dimensional

space under consideration may now be represented as in Figure 2.

The transformation from angle increments to increments

based on the cosine of the angle is effected by the substitution of X = cos e

into equations (20) through (25). Then,

sine = Ji17,
and

a =8

The working equations now become

X 4 +1-•kZ E¢
Hr= . ,fE+5 E_ (26)

r i 4ll2 iw •ir w2 r e

Er aX[* -H JiTYZ ___0 im He aEe ~EO] (27)

r--yrr= r- ra+x~SS+44t r l -;7 r 8 G_28)

e a E +kc E +a E -17;--H&Hr81Or O r r 00 e 00 p r OX r~e(8

ar - X2 Br E - iw± H• (29)Or r Rk r

H im 18-E• - CFeE - GOOE- r Hr--H (30)
er rr eee e p rF1Li_,j_ r r 0'
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H im E 1 (31)
Or riuLHe+ r•.k2 r

Now equal increments of X are used instead of the 0 increments.

B. Finite Difference Equations

The most straightforward manner for the solution of

differential equations such as equations (26) through (31) on a high-speed

digital computer is the finite difference approach. The finite-differencing

of equations (26) through (31) follows with the aid of standard formulae

found in Appendix A. The equations are then written as

X - E,(p, q) + jl7 [ (p, q+l)- E 4 (p,q-l)]

iw±r 4 X iwLr IZA

+ M~r7  E 0(p, q) (32)

H,~(p~2 H j7(p, q+l - H(p. q-1)

r r rJfT 'r J

im
r•_z H (p, q)- r8 E (p, q) - SroE (p, q) 1 (33)

H(p+l, q) - Hr(p-l, q)

8 ay E (p, q) + cy E (p, q)+ oyE (p. q)
ZAr Or r 4O8 e 0

(34)

_Xj [Hr(p. q+l) - Hr(p, q-l)
- q)r ~~ ZA



Ee(P+l, q) - Ee(P-l, q) k7 E (p, q+l) - Er (p, q-1)
~~ r ~ r~ A

ZAr r e

r (p, q) - iw H (p, q) (35)

HE (p+l, q) - HE (p-l, q)
ZAr =C B°r Er (p, q) - oe E e(p, q) - yE(p, q)

i= - H (p, q) - Im H (p, q) (36)
rI - -X2 

(7

E •(p+l, q) - E •(p-1, q) r
=wý H pE)+ ' F (p, q)zAr iW SpJ)+r-k r

- q(p, q) "(37)

In equations (32) through (37) all conductivities are those at the point

(p,q), the X is X, and r is rq' p

The final form of the difference equations follows from the

solution of equations (34) through (37) for the tangential fields at the layer

p+ 1. The results are the following equations:

H(p, q) E 0 (p,-q) + r E (p, q+l)

r q iW r -X p ) + iu3r A8

Ziw~r Ak (p, q-.l) + mrl Ez g(p. q) (38)



H~~q =2H(pq) F- 72HX+,
or 2 o- 2a r (PAXl

rr rr

1- iX H0(,q1+ m EGp )(39)

Zcy r AX H4 (p q-1) +w _x 2
rr

H (pl, q H'8(-1, q + ZAr a rEr(p'q)+ ZArc aE e(p, q)

+ ZArca E (p, q) -r 1-k2 H(pq_

+. rAj- X? H (p, q-1) - -A H (p, q) (40)

E (P+1,q) = E (P-1,q) -E (p, q+1) + rj_-TE (p, q-1)
6 6 rAX r rAX r

-A E q ZiWp.ArH ) pq) (41)

H (p+.L. q) = H (p-1, q)Zcy Ar E (p,cq) -ZraE(.q

H4 (p~,) (P''1)-Or r oerc8E(pq

-ZAr cy E ~(p, q)- 2Zim Ar H (P. q) (42)

Z~r

2r H ) pq)

E4 )(P+",q) E E4 (p-1, q) + Ziw 1 ±Ar H (p, q)+ -ZimAr E (p )Z ArE(p -

(43)
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The functional form of the difference equations is

Hr(p,q) = f[E(p,q), E (p, q+l), E (p, q-1) E (p,q)] (44)

Er (p, q) = f[ II(p,q), H((p,q+l), H (p,q-1), Hl(p, q),

E 0(p, q) , E 0(p, q) (45)

.H H8(P+l, q) = f1H e(p-1, q),. E r(p, q) , JEe(p, q), E 0(p. q)

Hr (p, q+l), Hr(p, q-1) , H0 (p, q) (46)

E8(p+I, q) = f[E (p-l, q) , Er(p, q+l), Er(p, q-l),

E 0lp, q) , H 0(p, q) ( 47)

H 0(p+l, q) f f[H (P(p-1, q) , E r(p, q), Ee(p. q), E 0(p, q)

Hr(p,q) , H(p, q)] (48)

E (p+l, q) = iE l(p-l, q), H0(p, q), Er (p. q), E• 0(p, q) . (49)

Since the forward difference is used in the initial step,

He(p-l, q), Ea(p-1, q), H 1 (p-1, q) and E (p-1, q) in equations (44) through

(49) are replaced with Hl(p, q), E8 (p, q) , E8 (p, q), H (p, q) and E 0(p, q),

respectively, although the exact equations change by a factor of two.

Because of the symmetry conditions imposed, the central difference

formula will also be used at X =0 and X =1.



14

Initially all tangential fields at the inner boundary are set

equal to zero except H (1, i). From equation (38) it is seen that Hr(1, q)

is zero for all q. Equation (39) is used to determine E r(1, q) as a

function of H9 (1, 1), all other tangential fields on that level being zero.

Equations (40) through (43) are then applied to yield the tangential fields

at all points on the second radial level in terms of H8 (1, 1), since all

quantities on the right-hand side of these four equations are either zero

or are in terms of He(l, 1).

With p = 2 for the second level, equations (44) and (45) yield

the radial fields Er (2, q) and H r(Z, q) as a linear function of He(l, 1) and,

therefore, all fields at the second level are specified as a function of

H (1, 1). The process of obtaining the six field components at each level

is continued until all fields directly below the current sheet and charge

distribution are known in terms of He(l, 1).

In order that as much accuracy as possible be retained in

the calculations, the level below and the level above the discontinuity

should be relatively close to this level as in Figures 1 and 2.

A general discontinuity is represented in Figure 3. Surface

current and surface charge are present on the boundary.
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Figure 3.

A General Discontinuity

The boundary conditions for the fields around such a dis-

continuity are

n (H1 H2 ) = 0 (50)

n. (E- E2 ) = ps/Co (51)

nl X (H 1 H 2 ) j (52)

n X (El- E-) = 0. (53)

The unit vector n for this problem is the radial unit vector a . Expansionr

of these four equations in spherical coordinates gives

Hrl HrZ =0 Erl- Er2 = ps/C°

H -0H = JSO ESI-E = 0

H 0-H =-Js0 Es- E l = 0 0

or, in terms applicable to Figure 2,

Hr(L+l, q) = H r(L, q)

Ho(L+l, q) = H 8 (L, q) + J SO (q)

H b(L+l,q) = H 1(L,q) - Jso(q)
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E (L+l, q) E (L, q) +rr

E (L+lq) = E (L, q)

for allq, l<q_<N.

These expressions relate the six field components at level

L+1 to the six components at level L. Since those at level L are already

known in terms of H (1, 1), both tangential and radial fields are now

related to H 0(1, 1) and the source terms directly below each point on the

discontinuity.

Symbolically,

Er (L+I,q) = f He(l,I), Ps(q)]

E (LI, q) = f 1H 0(1, 1)5E (L+lq) f

H r (L+lq)= f FH((l,l)1

H (L + l, q)= f [H(I 1) , (q)]

IT1(L+1,q) = f1IHll(, 1), 1S O.q)

The functions are linear with respect to HSa(l, 1), ps(q), J s(q), and
Js (q). Now, from equation (46) through (49), the tangential fields

at level L + Z are, in functional form,
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H (L+Zq) = f[H (Lq) , Er(L+lq), Ee(L+1,q),

E (L+I,q), H (L+l,q+l), H r(L+I, q-1),4, ~ rr

H (L +1, q) 1(54)

Ee(L+Zq) = f[E (Lq), E (L+I, q+l), E (L+I, q-1),

E (L +,Eq), HLL+Iq) (55)

H (L+2,q) = f 1H ((L, q), E r(L +1, q), E 0(L +1, q),

E (L+1,q), Hr(L+ 1, q), H (L+1,q)1 (56)

"E(A(L+2, q) = f IE ((L, q), H 0(L +1, q), E r(L+l1, q),

E4 (L+ 1, q)]. (57)

Since

"E (L+l,q+l)=f[Hs(1,1), ps(q+1)]

E(L+l, q-1)= f[H(l, 1), ps(q -

He(L+Z,q) = f[He(ll), J so(q), ps(q)I

Ee(L+Zq) = f[Ha(1, 1), ps(q+l), ps(q-1), Jso(q)]

H (L+Z,q) = f[HS(1, 1), Jso(q), ps(q)I

0 p~
Eo L+Zq =F 1 Jby esoq)d4

so that by equations (44) and (45),
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H (L+ Z, q) f H (1, 1 se (q) ps(q), J (q + 1),
r qSfFH(1,so

PS (q+l1), J s•b(q-l1), p s(q -1). J so(q)•

Er (L+2, q) = f[Ha(l, 1), 5so(q), ps(q), Jsolq+1),

Ps(q+l1), Js(q -l1), ps(q -1),1 IJs (q)]j•{

It can be seen that, as more and more steps are taken away

from the sources, the fields at angular location of X become functions

of more and more of the source components, so that, at level M (outer

boundary) the fields may be functions of all the source terms. Thus

Hl(M, q) = f[He(ll, 1) , J (2), ) s ) , J (N), J S1),
se' '" se(N sp)

J s(Pl(), '. -, I Js(PN) , p si) ..-- , PS(N) ,

and likewise for the remaining three tangential components. If all

tangential fields at the inner boundary are zero except Hel(, 2), thern

similar results are obtained as

HlMO, q) = fFHell, 2), Jso (n) , J o (n), ps(n)]

n=l, , .. , N.

In this manner the outer tangential fields are found as

functions of each of the tangential magnetic fields at the inner boundary

and the source terms at each point of the discontinuity. The results

may be noted as
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E (M,cq) = AqiH(1,l) + ... +A H (1, N)+ A' H4 (l, i)+.. +

AiNH (1, N)+a qJ s•(I)+... + qNJs (N)+ 'q1J s(1)

+... +a' J s(N)+ 0 qlPs(1) +... + qNps(N) (58)
SqN~s8 i

E (M, q)= B1H)(1, 1)+. o. + BNH (1, N) + BlH (I, I)+... +

'p q1H9 l 0qN el Bq 1H(P

BqNH (1, N)+ y sq1 J (1) +... + YqNJsp (N)+ yqlJ I (1)

+... + Y' J (N)+ 6 ()+--. + 6 Ps(N) (59)
qN so qlPs qNs

Hs(M, q) = Cql H(l, I)+... + CqNHS(1, N)+ CqlH ,(1, I)+... +

CqNH (1, N) + 'ql s(A(1)+... + ý q1.J i (N)+ gq 1S(1)

+... + + qNJs (N) + qlPs(1)++ThlN~s(N) (60)

H(M,q) = DqlHe(1,1)+--- +DqNH (lN)+ Dq'H1(I,i)+...+

DqNH'(1, N)+ Cq1Js (1)+... + JqN sp(N)+ C lJs(1 e)

+... + VqlPs(1)+... + q N(N). (61)
qN (N) +'qN S

In order to conveniently determine the coefficients in equa-

tions (58) through (61), we shall have to treat the source terms J Jso
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and p5 as unknowns. Then each coefficient is determined by setting all

variables to zero except the variable associated with the coefficient

desired, which is given the value of unity.

For instance, to determine the value of the 4N coefficients

Aql, Bql* Cql' Dql; q = 1, 2, . •., N; all fields H and H at the inner

boundary points are set to zero except He(1, 1) which is unity, and all

sources are assumed zero. Then

Aql = E (M, q)

Bql = E (M, q)

Cql = Ha(M, q)

Dq1 = H4 (M, q)

so that the coefficients are determined from the outer boundary fields

produced by only a unity H 8 (1, 1). Similarly, a ql, Yql, ýql and Cql are

found by letting all tangential magnetic fields at the inner boundary be zero,

and all source terms be zero except J S(1).

In this manner all the coefficients are determined, and the

outer tangential fields are found as known functions of the tangential

magnetic fields at the inner boundary and the source distribution.

Equations (58) through (61) may be rewritten in more

compact form as



4;1

N

Ee(M, q) :[AqH-(1, n) 4- A' H (1, n)X. q qn
71 n=l

+ aqJ (n) + aqn J (n) + p (n) (62)
qznso qn so qn s

N

E (M, q) =[BqnH(1 n) + B' IH (1, n)
0 qn qn

n=l

+ Y J (n) + yJ (n) + 6 P (n)1 (63)
qn so qn sO qn s

H (M, q) = qn[He(l, n) + CqnHp(l, n)

n=l

+ §qJ (n) + J (n) + (npsn) (64)
qn so qn sO rjnps

H (M, q) D [nH (l, n) + Dn H (1, n)
Y[qne qn4

n=l
I

+ J (n) + Js(n)+ vPs(n) (65)
qn so qn se n

Given a means for determining the tangential fields at one of the two

boundaries and the source distribution, one is able to calculate the

tangential fields at the other boundary and therefore all the fields

between the earth and magnetosphere or within the constant dipole

field cavity surrounding the earth. Equations (62) through (65) may also

be written in matrix form,

E0(M, q) A A A' A' He(I, 1)
q1* qN ql" qN

E (Mq) B ql'B B ... B'N H(1, N)

H (Mlq) C C C' q, C' H (1, 1) A1 (66)
ql" qN ql'" qN

qD'... D' Ho(1,N)_ _ q1 qN
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where

Gql* qN qi qN ~q1 qN JSo)

3 (N)
q qN l qN qi N se(1)

~ql ~qN V q1 §qN'1 T'XN 3 (N)

cq1 * qN C ql . . CqIN Vql* . .VqN
P p'(N)

and q =1, 2, . ,N.



, III. THE FORM OF THE FIELDS AT THE OUTER BOUNDARY

In some manner the tangential fields at the outer boundary must

be determined in order that the matrix (66) may be inverted for the

solution of the magnetic field intensities at all points on the surface of

the inner spherical boundary. The finite-difference equations (38) through

(43) may then be utilized for the final resolution of all iields between the

two radial boundaries.

Two alternatives are available for the specification of the outer

boundary fields. If the scope of the investigation includes the effect of

the boundary conditions above on the field configuration within the con-

fines of the radial limits, various distributions may be assigned to the

tangential fields at the outer boundary. The problem then develops as

to what physical significance the chosen boundary condition has. This

procedure is particularly applicable to the case in which the exterior

boundary is considered to be a conductor supporting a surface current.

The alternative to this specification is the mathematical genera-

tior of functions which might conceivably describe the form of the fields

at the outer boundary. In order that this may be achieved, an investi-

gation of the electromagnetic waves produced in a spherical system is

made.

Z3
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The field configuration at the outer limits of the region of interest

is assumed to be of the form of spherical waves propagating radilly

outward. The wave is considered to have propagated a sufficient distance

that the medium in which the fields are examined may be assumed to be

similar to free space with very small free electron densities.

A. Solutions to the Vector Wave Equation

If the displacement currents are retained in the Maxwell

equations, then

VxH = (a+iwe)E. (67)

The curl of equation (7) is

V XV x E -iwVx (ýtH). (68)

If it is assumed that the permeability of the medium is constant with

respect to the space coordinates, equation (68) becomes

V xV x E = -iw.xVxH. (69)

The permeability is then taken to be that of free space, Lo"

Upon substitution of (o7) into (69), we have

V xVxE = -iw•(u+ iWE)E,

or

-. 2--
V x V x E = k E, (70)

where

k wk =w •± -1wj•.
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If the charge density in the region of interest is taken to be negligible,

equation (70) becomes the familiar vector Helmholtz equation

V E+kE •- 0 (71)

Except for the simplest of cases, the vector Helmholtz

equation cannot be resolved into three scalar equations which are easily

solved. For certain coordinate systems, however, there exist three

independent vector solutions which are designated as L, M and N type

solutions. 6,9

If n is a constant vector with certain properties, then the

three solutions are

L =(72)

M = Vxn (73)

"-. 1 "•

N = VxV xn*, (74)

where * is a function satisfying the scalar equation

V +k2* = 0 (75)

in the particular coordinate system being used.

If we let n r = r a , the radial vector for the sphericalr

system, then

M = V xa (rr)

-... 1
N k xVxar(r.
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M, when decomposed into its three components, is

M =0
r

Me= 8
e sine '8p

S8

Likewise,

2
(V 0 s * 1 2_

r r s (s8 -0 r sin) 2 2

(VxM)o:-- (8 + 1 )

-* i -8 ( I

(VxM)=s ( +- i)"
~sin 0~Or r

If the vector operations of

2-.
VxVx -k = 0

are carried out, the results are

2(V x V x M)r - k Mr 0

-*xxm k 2Mo I a I1 a (r 2 _I) +l (si •0
(Vn- x5 x0 M)-= sn - 2 -5 Tr( r +280(sn )

r r sin

+ 82*t kz 22 2 2 sin 2 1 (D )

r sin-O 80z

2 L r ) + I ae at-
(V xV x -kM =-----r- r s(sin e-) 0

9 80 sr9 2 Or Or r 2 sin 0

I a2 2a1 kz + a

+ +- k -(
r sin 9 81

•,, m mp ., •'. 2,



But the expression in each of the brackets is just V 4 in the spherical

coordinates. Therefore,

(V xV xM)ek M e='ýn [V2  + kZ 0

(Vx v x M) -kM -[V + k 0.

Thus, since the * scalar is constructed to satisfy equation (75), the

vector M is a solution of the vector equation (71). In a similar fashion

N may also be shown to be a solution of (71).

The electric field mav now be represented as a M or

type field. It was shown that M contains only components transverse

to the radial direction, while N has not only transverse components, but

also a radial component. If the electric field is described by := 9, i

becomes

-IT - k 'V
S_ k VxM,

and the system of fields is transverse electric in nature. If E = N, then

the fields are seen to be transverse magnetic.

B. Derivation of the 4-Function

For the spherical system under consideration, the expansion

of the scalar equation (75) is given by

2 + 1 a a 1 e k.

1 . (r 4)+ ) + (sin 58 + - a * + . (76)
2 Or b r 2 sine r sin 28 84



'0

If we assume a solution of the form

1 (r, e, 0) = 4r(r)4e(e) %(), (77)

we have, after substitution of (77) into (76),

1 d dr 1 1 d d T
dr dr)+4e sin8 d (sin

+ I d_• 2 2 2

+*o .12 + k r = 0. (78)Ssln2 e d€z

Because of the separated state of the variables, three equations are

extracted from equation (78); namely,

0 = - M 2 t (79)2

dd2

1 d d e 2sin d(sin -- ) - p 0 (80)
sin 2

I d z d i1r Zp2
2~ dr(ra - -r) + (k - *) r =0' (81)

r r

2 2
where m and p are separation constants. Equation (80), when expanded,

becomes

d 2 e cos e de (p2  mz0.

de2 sin e dG sin 2 e

After the substitution of X = cos 9, this becomes

dX 2 e - 2Xd$8+ (p - m) = 0, (82)
dX2 -X 2 e



'0

an equation having singularities at X = ±1. If p = n(n+ 1), the solution of

interest will remain finite at these singularities.

The solutions to equations (79) are in the form of sinusoids.

In order that the *-solutions be single-valued, the constant m must take

on integer values, m=0, +1, +2 ..... .. The solution to (79) may then

be written as

0 = acosmqp + bsinm(p,

or

=ae P + b e i . (83)

The second form is used in this problem since this is the variational

form assumed in the finite-difference approach. If tne m in equation

(82) takes on the value m = 0, there follows
d2 -- dz '-e c
2 d 2  d + n(n+1) 0. (84)

Differentiation of (84) with respect to X yields

dz d2 ~e dOej d~e de

2 2 2

2d 2  dX d d- dX--

and the third time,

2 dz d 3  d d3
8  

d 3 8

( )-X)d ( d)-Z(3+l) X-(- )+d + [n(n+l)- 3(3+1)]- = 0.

dX 2 - --3 dX dX3 dX 3
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The general expression for the mth derivative of equation (84) is

(1 2 d m 
d m

(l- )-( ) _- m,)X_

dX2 dX m dXdm

d m e
+ [n(n+l) - m(m+l)]- = 0.

dXm

Now, letting

2 M/Z

equation (86) becomes

2 2- M/z d,-]

dk'

+ [n(n+l)-m(m+l)](l-X ) v = 0 . (87)

After a small amount of algebraic manipulation, one finds that (87)reduces

to
22dv dv(1- kz - + [n(n+l) l- 2J v = 0. (88)

Equation (84) is a special equation which has solutions in the form of the

Legendre polynomial P (k), so the solution to (88) must be
n

m n

The function within the bracket is called the associated Legendre Poly-

nomial of order m and degree n. It is symbolically noted as
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= m

cP (x). (89)

The third of the three separated equations is

1 d 2 dr n(n+l)Tr (r Zy- + [kr ? 0.

r r

The substitution of p =kr and R= rr leads to

dR + E1 (n+) ]R = Oý (90)

dp p

Now, if R= S, equation (90) becomes Bessels equation

d S 1 dS (n+ I1/Z) 0
dp2 +----+[ [1- P ]S = 02

with solutions of the form of

S = Zntl/Z(P),

where Z n+1 / 2 (p) represents the various Bessel functions of order n+1/2.

The solution to the separated equation in (81) is therefore

•r = d Z n+ll2(p).

Tr

The Hankel functions are chosen for this problem, and so

the *r may be written in terms of these Bessel functions of the third kind,

= - H (kr) + e-IH2 (kr),
rn+1/2Z4 n+1/Z
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and, using the definitions found in Appendix, the final form of the radial

component of the separated solutions is X

r=fh n .(kr) + gh n~ (kr).

The combination of equations (83), (89) and (91) yields the

total form of the solution to the scalar wave equation (75) in spherical

coordinates,

[aeimo + be im][cPm(k)][fhnl)(kr)+ghmnZ)(kr)].

Two of these terms may be discarded for this problem. Since a depen-

dence on 0 of the fields for the finite-difference calculations was taken
im$

to be e , the term er is not required here.

The selection of the proper Hankel function depends on the

fact that only an outgoing wave is desired. Now,

k2 2
k2= W 2 Le- iwýLa.

For a passive medium, a is positive real so that k2 will lie

in the fourth, and, for the particular root chosen, k will have a negative

imaginary part. In order for the wave to die off at very large distance,

the second spherical Hankel function, h(Z)(kr), must be selected for
n

the representation of the outward propagating wave.

The general solution is therefore
im42 pm

a mOh (Z) (kr) P(M) (91)
n n

where the constant a is a combination of previous constants.
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C. The Final Form of the Fields

Li The M and N solutions may now be constructed using (91).

M = 0

r

im im4A h)(2) pm(k)

M = s-n e hn (kr)P X
sie n

dP M (W
M -e imo h (2)(kr) nn de

N = n(n+l) eim45 h(2) (kr)Pm (W)
r kr n n

d Pm

N imo d [rh(2)(kr) n (k)
0 kr dr- n d

N im eim~p d Frh ()(kr) ]Pm(k).
=krsin 0 dr nn

When X= cos 0 is substituted into these six equations, M and N become

M = 0 (92)r

M h im eim4ph(2)(kr) P m() (93)

dpm(k)
M 1- e h()(kr) (94)n dX

n(n+l) im (n)(k2)Pm95
N =- ei h (9P5m(k))r r n n

d Pro (k)

N- =l-X7 im* d [rh()(kr)] n (9
0 kr e d'-rndX (96)

= im eimo d [rh (2)(kr) ] pr(k). (97)
kr -- dr n n
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Since any solenoidal E field may be constructed from a

linear sum of transverse electric and transverse magnetic waves,

E = (A M +B N ), (98)

n

where A and B are constants determined by the boundary conditions.n n

In other words, A is the amplitude of the nth mode transverse electricn

wave, and B is the amplitude of the nth mode transverse magnetic wave.n

The index n must be summed up to a value high enough to include the

highest ordered mode present in the system. Since the finite-difference

method employed N points in the angular direction, the highest mode

we shall consider is the Nth mode.

The magnetic field H, as derived from Maxwell's equation,

is

H = 1 k-Vnn)--- V x (A. M2 + B -
iwýL n n n

n

and, since A and B are constant with respect to the space coordinates,n n

H 1 A MA+(V )B (V Nn)}
iwp. Ln( n n n

n

Equation (74) defining N is rewritten, yielding

N k VxM, (100)

and from equation (73), M is given by
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M= Vxn- V x n) (-k
k-

f x (n V (101)

From a vector identity and the knowledge of the properties of the vector

n, we have

V x (Vr x )nV - V -nV (102)

Upon substitution of (102) into equation (101), the vector

solution M becomes

M k VxV x(V1xn).

It can be seen that

M =V x n,

if equation (73) is expanded, and therefore,

M - VxVxM,

which, by equation (100), reduces finally to

M x N

The magnetic field is thus given most conveniently by

-90. k~- 9

H = J-5 n-N n+ B M ]. (103)

iw•n 1n
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Finally, with equations (92) through (97) substituted into (98) and (103),

the general field expressions for the spherical wave propagating out-

wardly are

N
E ? {G n(n+l) eim5 h( 2 )(kr) Pm((k)} (104)

r L kr n n
n=l

N im imp(2) m
e 4 F h()(kr) P (X)n Lfl nn

nzl N l-..

- G lX72 eimod [(2) d(m(X

S kr e dr n rh (105)

N 2d Pm(k)
E' IF -f eimh(2h)(kr)

n n dX
n=l

+G im eim d (Z)(kr)]Pnm(k)} (106)
kr J17- dr n n

N { n(n+l) imr (2) ( (107)
H = I f-F e n (kr) P (107

r n iwjtr n
n=l

N dlP *m dr(k)
A Fn iwp----r dn

n=l

-G mk im4P h(Z)(kr) Pm(X)} (108)
n W L _ _e n

H,= I-F m im dT [rh(Z)(k)Pm()

n=l n wdrr%_X? n n

eG 1 im(Ph(Z)(kr) n ( (109)
n iwp. n dX
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The four expressions of these equations for the tangential

fields may be written in symbolic form using notation introduced pre-

viously.

N
E@(Mq)=Y [Fn a +G aqn] (110)

eL qn n qn
n=l

E (M,q) [Fnbqn+ Gn bq n (111)
n=l

N
He(Mq) =[Fnfqn n q+G f (I12)

n=l

N
H (M,q)- =[Fngqn +Gngqn'+ , (113)

n=l

where the terms aqn, a' b b f' qn' ftqn g and g' are the
qn nqn qn qn qn' qn q'n

complex terms in the field equations (105), (106), (108), and (109) and

are functions of both the mode number and the angular position.



IV. COMBINATION OF THE EQUATIONS AND BOUNDARY CONDITIONS

There now exist two expressions for each of the fields tangential

to the outer boundary. Equations (62) through (65) are equated to (110)

through (113), yielding

N N
I [a F +a C n = G [A H (l,n) + At H (l,n)]
n=l qn n qn n = qn qnP

N
+ I [an J (n) + a InJ (n) + P (n)] (115)

n=l qnS qns qns

N
[b F + bqnG] I [B H(1, n)+B' H (1, n)

qn n qn n L.~qn O qn
n=l n=1

+ • [qJs (n)(+ yqnJs(n) sqn s(n) (116)
n=1

N N
[qnFn + fInGn,] [CqnH (ln) + C' H (ln)3

n=l n=l

N
+ X [ §J s(n) + n' J (n)+ Tnps(n)] (117)

qn so qn s4 pn
n=l

N N
X gnFn + gqnG] =X [D H ((ln) + D' H (l,n)

n=l n=l qn qn (P

N

+ I [CqnJs (n) + Sqnjs (n) + VqnPs(n)] (118)
n=l

The quantities which are known in these 4 N equations are all the coeffi-

cients plus the source terms J s(n), J so(n) and ps(n) while the unknowns

38
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Sare H e(l, n), H (1, n ), F and G n T here are, therefore, 4 N equations

S~with 4 N unknowns.

A. Evaluation of the Fields at the Inner Boundary

Since, for each q, both the coefficients anD a

qn qn qn' Yqnj

qn qn qnl qn 1qn' C ' and v and the sources Jso(n),

J so(n) and ps(n) are known in the problem, let the following substitutions

be made

N
S - [aj (n) + aq.nJs(n) + qnPs (n) ]

N
S q = -I [Yqn Js (n) + yqJsl (n) + 6qnPs(n) ]

n=l

N
S3 q - [qns4(n) + q nJs(n) + nps~n)]

n=1

N

S (n) I~ + (n) +v P(n)l4q= -I [Cqnjsn) Cqnjsn qn sn=l

Then equations (114) through (117) may be rewritten in matrix form

(where the coefficients aqn, a' , b , f f I j g and g' are theqn bqn qn qn qn qn

negative values of those calculated previously). This matrix is shown

on the next page.
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The system of matrices may now be inverted by some method

to give the values of He(l, q) and H (l, q) for each q, q =1, 2, ... , N.

Once this is done, all the tangential fields at the inner boundary are

determined, and the problem may then be concluded.

B. Field Calculations

Once the tangential fields at the inner boundary are completely

determined, all fields within the system are calculatei from the finite-

difference equations (38) through (43) in a step-by-step manner as before.

The proper boundary conditions are applied at the discontinuity, and the

procedure is continued until all six field components are known at each

of the grid points. This concludes the procedure except for perhaps a

few checks on the accuracy of the method.

Although checks would increase the length of the computation

it might be desirable, at least until the calculations prove to be reliable,

to perform one or more checks on the accuracy of the calculations.

One such verification consists of solving for the coefficients

F and G in the matrix which was to be inverted. The fields at the outer
n n

boundary calculated from those coefficients in equations (104) through

(109) should be the sarne as those calculated in the last iteration process.

Any computational instability of the field's either in the

radial direction or polar angle direction must be carefully examined for

computational troubles such as significant figure problems.



V. COMPUTATIONAL METHODS

A program for the digital computer may be most conveniently

written with several subprograms or subroutines. A brief outline of

such a program followz,.

Quantities which must be inserted into the computer initially

include the frequency, w; the plasma frequency, w p; the number of

grid points in the radial direction, M; the number of grid points desired

for X, N; the molecular weight of ions or mass ratio of ions to electrons,

ao ; the radius of the inner boundary, R min; the radius of the outer

boundary, Rmax; the current distributions, Je(q) and J (q); the charge

density, p(q); and the radial location of the sources. Of course, con-

stants such as L0 and T7 must be included in the program. The quantities

listed above are read into the computer to enable the programmer to

change one or more of these parameters easily.

After all inputs are within the computer, the conductivity matrix

is calculated in a separate subroutine. This matrix has components which

are found in Appendix B. These numbers are stored for later use.

The next quantities to be calculated in another subroutine are the

coefficients of the matrix (66). The functions a , an' , b ' b' , f ,
qn qn qn qn qn

fn gt' and g' of equations (110) through (113) are then computed with
qn qn qn

separate subroutines for the calculation of the Hankel functions and the

associated Legendre polynomials. Once all elements in the first matrix

4Z
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"A are determined, the matrix is inverted by Gaussian elimination for

the field quantities He(1, q) and HP(1, q); this may also be accomplished

in a separate subroutine.

The main program may then be used for the final calculation of

all the field quantities. To eliminate the need for even more storage

space, the six field components are printed as they are calculated at

each radial level.

Although the use of many subroutines increases the amount of

storage space required, it greatly simplifies the isolation of errors or

possible trouble areas in the program, as well as simplifying the writing

of the program. If storage space is the prime factor in the calculations,

as it is likely to be, all calculations may be accomplished in the main

program. If further reduction in either the amount of core storage or

time needed is necessary, the problem may be solved in separate parts

or programs with the output of one program used as the input of the next.

In such a way the conductivities, the coefficients for the matrix (66), and

the eight functions of (110) through (113) may be calculated separately and

used as input to a final program to invert the matrix A .

A high-speed digital computer possessing an extremely large

memory capacity is needed for quantitative results from this problem.

Because of the large storage volume needed, all calculation should, if

possible, be accomplished using only single precision arithmetic. For

this reason means must be found to circumvent any significant figure problems.
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Several subtle difficulties are present in the direct application of

some of the difference equations. One such problem of significant figures

lies in the calculation of H from equation (30). For this problem an

auxiliary field E was utilized by Chapman (1966) as defined by
p

E =k E +ksE.p r r + o

For further details see reference 3.



•ii/IVI. CONCLUSIONS

Many notions present themselves as to how the quantitative results

may be used. One aspect of the problem that certainly should be examined

is the effect of various current distributions and charge density distri-

butions on the fields at the surface of the earth. A person need not limit

the source to one current sheet, but, by extending the idea of this problem,

he might examine the fields with several such current rings or sheets of

charge encircling the earth.

The variation of the electromagnetic field with the several parame-

ters of interest is another needed route of investigation. These parameters

include, among others, the frequency, plasma frequency, altitude of the

prevailing sources, and altitude of the undistorted dipole field cavity.

In order that an adequate resolution may be achieved and a minimum

chance of instability due to computational errors be realized, a large

number of grid points must be involved in the quantitative consideration

of this problem. For this reason the present digital computer available

(Control Data Corporation 1604) could only be utilized if the problem were

divided into the several parts mentioned previously. Attempts in the

computational region will most likely be made after the installation of the

new computer (Control Data Corporation 6600) in the Computation Center

at The University of Texas.
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APPENDIX A

FINITE-DIFFERENCE FORMULAE

The finite-difference formulae are based on polynomial approxi-

mations. See reference 4 for details of the formulae. Three methods

of differencing exist; namely, forward differencing, backward differencing,

and central differencing. For the use of this problem, orly the expressions

for the derivatives of functions are of interest,

Let y(x) be a function of x (11 may also be a functicn of other

variables, but each of these is held constant for these approximations

of the partial derivatives, and so no generality is lost by the consider-

ation of only x), yr be the value of the function y at the value of x = yn

Yn+l be the value of the function at the next point chosen on the x-axis

(x n+l> X n), and y n- be the value of y at the point directly to the left of

x on the x-axis. The figure illustrates the notation.

-._ - -- h -'I

/I I
L 2 I

Figure 4

Definitions for the Finite-Difference Formulae
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The forward difference formula for the derivative of y with

respect to x evaluated at x = x is given by the series
dy n

n 2 n+2 n+1
dx' = •(Y+l- Yn)"(ng ZYn+I+ yn)+" "

where h is the increment on x between x and x The backward

difference formula is, if h is also the increment between xn-1 and xn,

dy n

¶ ~ y~-d~x- = n • - Yn -l) + (yn - 2 Yn- 1 n_-2...J

and the formula for the more accurate central difference is

dy n

- = h Yn+l Yn-i 6 -n+ " n+ n- Yn-z)+

If approximations to the first order only are used, the difference

formulae become simply

dyn Yn+l Yn

dx Xn+1 X n

for the forward difference,

dyn Yn- Yn-i
dx xa- xn-

for the backward difference, and

Y n Yn+l- Yn-l

dxZ(Xn+ - x.)
2 xn+l x,,,
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for the central difference. The central difference formula is most con-

venient when the increments taken in the x-direction are all equal.

However, non-uniform increments may also be used, with the various

formulae being modified accordingly.

The central difference formula is used whenever possible, and

so it is employed in the computation of the derivatives of the field with

respect to X at all points. The central difference is used to approxi-

mate the derivatives with respect to r except in the initial step from

the inner boundary when the forward difference is used.

Let AX be the incremental change in X used in the grid, and Ar

be the radial distance between two adjacent levels. Also, the notation

A(p, q) is taken to mean the value of A at the radius r and angle

(cosine)X. A(p+!, q) therefore signifies the value of A at the next radial

and the same value of X. The difference formulae are then

dA = A(p+l,q) - A(p, q)
dr Ar

dA A(p, q) - A(p-l, q)
dr Ar

dA A(p+], q) - A(p-l, q)

dr ZAr

for the forward, backward, and central difference, respectively, for

the radial derivative, and



AA

dA = A(p, q+l) - A(p, q)
dX AX

dA = A(p, q) - A(p, q-1)
d% AX

dA A(p, q+l) - A(p, q-l)
,d% 2AX

for the same differences of the tangential derivatives. All six of these

expressions are for the derivatives evaluated at the point (p, q).



APPENDIX B

DERIVATION OF THE CONDUCTIVITY MATRIX

Bostick (1964) derived the conductivity tensor from considera-

tions of particle interaction using basic equations of plasma physics.

The complex conductivity tensor is based on the generalized Ohm's law,

the equation of motion for the charged particles in an ionized gas, and

the equation of motion for neutral particles. The following is an outline

of the derivation of the conductivity elements used by Chapman (1966).

It is presented here since the conductivities must be calculated for this

problem.

Let f1' f2 and f 3 be defined by

f.
f f in (A-l)
1 en 2

f. m
f in e (A-2)
=2- + m fen

m
f= f +f +_f. , (A-3)ie en m. in

i

where the terms fen! f. and f. are the effective collision frequenciese in ie

between electrons and neutral particles, ions and neutral particles, and

ions and electrons, respectively, and me and mn. are the electron ande 1

ion masses.

If the electron plasma frequency w is defined asP
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vw W W-



N q
p; e o

where N is the electron charge density, then the generalized Ohm's law
0

is given by

1 (iw + f 3 ) J+We J x k=+p xkB

C wop
B 0f tipeBofl -* Pe

+- (V - V+-F (A-4)we p n) Nq

We aq

In equation (A-4), J is the current desnity, k is the unit vector in the +z

direction, w is the cyclotron resonance frequency for electrons, V ise p

the average plasma velocity, V is the average velocity of the neutraln

particles, and pe is the perturbation in pressure of electrons.

The equation of motion for the charged component of the plasma

is
Bf.

iwNomV =- J-N mf(V -V) + JxkB - Ap (A-5)
o p w e 0 Z2p n 0 pe

in which m is the ion mass and p pis the perturbation in pressure

difference of ion: and electrons.

The equation of motion for the neutral particles is

Bio fI _- -PV - p
iwNmvn W -N mf2(Vn- ) p Apn (A-6)

where N is the particle density of neutral particles, and p is the

perturbed pressure of the neutral particles.



Equation (A-4) is rearranged to give

-Bof
(iwN m. + N m.f)V - Nn f n J + J x-kB (A-7)

01. 0 1 p 0 12 nl We 0e

and equation (A-6) is rearranged to give

-o- Bo0f -1
-N mif 2V + (Nomifz+ iwNm.) V = - . (A-8)

e

If equations (A-7) and (A-8) are solved simultaneously for V and V ,
n p

the results are

. N Bol - -* -o f1fz 2
(f N0 J +-J x kB 0) - 0(Z+ N-( w o w

V e e (A-9)

N m N w2NN0 m iL'.'fz(l+ -) - N
o 0

- (fz+ iw)J +fz(• J+JxkB)w. We 22We 0

n T ZN
iwf?(I+ w 2~ NA-0

o 0

Then
Bol f N N --

e iw(l+-R-)J+iwT- BoJxk (i
-0We 0 0

pN nNmi iwf (1 + _)N )2 N-N ]

oo ol2 N

When equations (A-9) and (A-il) are substituted into equation (A-4) and

the resulting terms rearranged, there results
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iw+f Bf2 iwN m.-,- o 1o i N
j --- Z ( 1+ N--L

COW WA 0

o p e

w Nm. B2
-~- e 0 1 0ol. N

C W e 0
op

N m.
-(Jxk)x[ A (f2 +iiW-') Bo : E,

0

where

A = (N m ) [iuwf 2 (1+v) - ,..J
o 2 N

With the cyclotron frequency defined by

qB
w =e m

e

then the first term in equation (A-12) is reduced to

Siw+f3 B fo iwN nm.__ ~l+ Ni ] 2

2 21 A +N C 0 opC W W 0o p e

iw+f 3  f1  f If/f z

2 m. L w N -IC0Wp(A-13)
CoWp CoWp f N+N 0

the second term becomes
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we N m. B f COW

2 A W 0 op

L W e 0 ,4
0 p

. fe 1/f N
-2 ZN+N [owe (A-14)

e0W LWp E;0-(oWp o N •Wp

'2 0

and the third term becomes

N m. N 2

A (f2+ iN) 0 0 o -0

2 I~iw NZ l+i-~
W m 1f N

- e [ N .W 2  N eW 2 (A-1)

iWe W 1. 1+ n I[,+ _ _ Op
0op N f N+N

Let a be defined as the right-hand side of equation (A-13), b as the right-

hand side of equation (A-14), and c as the right-hand side of equation (A-15).

Then

aJ + bJxk + C(Jxk)xk = E w E. (A-16)op

Now, the earth's magnetic field is assumed to be of a form pro-

duced by a magnetic dipole at the center of the earth with a magnetic

moment of

M = 8.06 x 1015 weber/meters.
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Also, from Prince, Bostick, and Smith (1964), the strength of the static

field is given by

B = - 4Icos2e + sin2 e
o 3

r

or

B=
o 3 '

0 r3

where
h = -Fl+ Ak

m. N
Defining a = m and Tj= -,one finds thato mN

e

f 2( + TI)
a = (f + iw) - [ifl)] (A-17)

2f 2

b _ Mqh p. 1 +(A-18)
m r 0[Wf21-)e

CMqh 3 2 + i w (A-19)c = • (-_j. . (A-19)

m r W% liw+f2 (l+t'i)]
m r 0 +fl+lJw-w

e

Equation (A-1Z) is specified in terms of the rectangular coordinate

system, but the problem for which the conductivity matrix is needed is in

the frame o, the spherical coordinate system. It is therefore necessary

that equation (A-12) be transformed over to the spherical system.
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The unit vector k is given in terms of the unit vectors a and
r

ae by

k =krar + ka

where

k Cos e (A- 20)

S+3cos 8

k sin (A-Z1)
r 1/i+3cos 2 e

Then J x k becomes

Jxk = (arj +aeJ 8 +a ) x (kra +k a

- P. -N-ý -. 0 -N-0

Yxk = -a J k +a J k +a (Jrk- J kr (A-B 2)

and

(Jxk) xk=a[k(k -r~ 9k( r Jrk 9 )] + r[kr(Jrk 8 Jk)

--1 2 2
+ a [0 -J (k r+ k)J

But k +k =1, so
r e

(J x k) x k = ar[ke(Jskr- Jrk + ae[kr(Jrka- J kr)]-aJ. J A-23)

Equation (A-16), reduced to component form with the substitution of

equations (-A-22) and (A-23), is
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Jr(a cke ) + Je(ck kr) + J (-bke) wo Er (A- 24)

dZ

Jr (Cek r) +Je(a-ck) + J(bkr) = w Ee (A-25)r r o0 p

Jr(bke)+ Je(-bkr) + J(a-c) e €w 2 E• (A-26)

The determinant of these three equations is

a- ck2 ckrk -bke re e
D ck k a - ck2 bk = a[(a- c)2 +b ]. (A-27)

rr r

bk -bk a - c

The three equations (A-24) through (A-26) are inverted to give the current

distribution in terms of the three electric field components. In matrix

form, the resulting equations are

r arr a ro Er

Je J Or :: a: E

The resulting conductivity matrix is

a(a - c) + (b2 - c (a - c)]k2r 2- c(a - c)]k k abk
r r8

2
0Dp [br- cla_ c)8]krk a(a- c)+ [b2- c(a- c)]ke -abk (AD rr 3

-aLk abk a(a-.c8 r
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where a is defined by (A-17), b by (A-18), c by(A-19), k and k by

(A-Z0) and (A-21), arnd D by equation (A-27).

The conductivity matrix A3 is very general, containing in its

terms the effects of aprticle interaction. If the medium is assumed to

be such LhaL very few ion-electron, ion-neutral particle, or electron-

neutra! particle collisions occur, elements contained in the matrix are

greatly simplified.

For no collisions,

f. =f. =f =0.
ie in en

Therefore

fl f f = f3 = 0,

and the three terms a, b, and c are found to be

a =iw

b ILL--! h
3

m r
e

c =-(Mqhj 1
3 iwam r 0

e

Then the various components cf the matrix become

1[ h 2 (Mq
ala - c) = w 2-u 2 NM 2

wa m r
O e
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22,+ 1 [1 hZ 2 q Z

b2 -c(a-c) = ( {i h a- "Z_- - }
m r 0 w a m.r

e o e

kk•kre
h

ab = iwh Mq3
m r

e

D =iW{ W2[ 4-eM9.) 3Mh 3)
wa mr mr

O e e

It is seen that a(a - c) and b 2- c(a - c) are entirely real while at

and D are purely imaginary. This causes ae•, a•, and a,0 t

be real, and a rr, ar, ar, O'a and a 00 to be imaginary. Also, it

may be noted thata =ar a r# =ar r aeP ="a ae"
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•:I h2

"!bz- cla - c) = ýq3 I+a 1El-

m r 0 w L m r•"•e oe

kk k•-k

h

Mq
ab = ih 3

m re

t, m r mr
o e e

2
It is seen that a(a - c) and b - c(a - c) are entirely real while ab

and D are purely imaginary. This causes, ar rotG a 4 ,t, and a 0a to

be real, and arr' 0 re' , r' a ee and Cy to be imaginary. Also, it

may be noted thata =a f er r = ,a = - o$ e"
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APPENDIX C

USEFUL PROPERTIES OF THE SPHERICAL BESSEL FUNCTIONS

AND ASSOCIATED LEGENDRE POLYNOMIALS

SPHERICAL BESSEL FUNCTIONS

The spherical Bessel functions of the third kind are defined by

hll)(p) = H() i(P)
n Zp n-:I(

h(?)(p) Nih I I
n Zp n+-,jP

The Hankel functions Hn-, (P) and Hr,+ý2 (p) are linear combi-

,iations of the Bessel functions of the first and second kins, namely,

H(i)
Hn+•(p)= Jn+-, (p) + i NnI (p)

H(n+ (p) = Jn+(p) -in+ (P)"

For large values of p, the approximations for the Spherical

Hankel functions are, as p-P0,

h(1) (P) 1 )n+le ip
n p

h(2) ( I (i)n+l e-ip
n p

If z (p) is either h(l)(p) or h( )(p), then some useful recurrence
nnn

60
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relations for the spherical functions are

2n+l
Z (P) = Zn(p)- Zn+(p)

d n+l

d ZP) Z 1 +)- Z (p)jZn(P)] = Znl(p) - Zn

d n3Zn(p) . (n+l(p)
P- [Z(P)] = p+l

d 1 P nZ n-l(P) -(n+l)Zn+l(p)

d-p [nP) 2 n+1

m

Sm ZnP)] =(-l)mp-nZn+mlP),

dp p

for n=0, t±1, ±2, • ., and m=l, 2,3,.

ASSOCIATED LEGENDRE POLYNOMIALS

The associated Legendre polynomial is defined by

m 2 m/2 d m
n - Pn,(X)

or

pnml() _ (1 - /2) d n+rn(X - 1)n
n 2n n! dn+m

Some recurrence relations which are useful in the calculation of

the associated Legendre polynomials on a digital computer are, with the



AZ

notation of the functional dependence on X omitted,

m mm1
pm = x l n + (n+ m) Pni

n+lnml

2 mn-m in

1l-X P m+l= (n+m+l)XPm- (n-m+l)PPm.n n n+l

Jl- P m+=Zimxpm- (n-m+1)(n+m),l-k Pm-1
n n n

m n P =rX[(n-m+l)(n+im)P m1+P m+]+m rl-j Pm
J,-n 2  n n n

dP m
(1-X ) (n+)XPm -(n-m+i)Pm

dX n n+1

dPm
(-2 ) = (n+m)P I nXpm
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