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This book contains the collected and unified material necessary 

for the presentation of such branches of modern cybernetics as the 

theory of electronic digital computers, theory of discrete automata, 

theory of discrete self-organizing systems, automation of thought 

processes, theory of image recognition, etc. Discussions are given 

of the fundamentals of the theory of boolean functions, algorithm 

theory, principles of the design of electronic digital computers and 

universal algorithmical languages, fundamentals of perceptron theory, 

some theoretical questions of the theory of self-organizing systems. 

Many fundamental results in mathematical logic and algorithm 

theory are presented in summary form, without detailed proofs, and 

in some cases without any proof. 

The book is intended for a broad audience of mathematicians and 

scientists of many specialties who wish to acquaint themselves with 

the problems of modern cybernetics. 
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POREWORD 

The objective of the present book Is to acquaint the reader with 

several new scientific directions which constitute the basis of cyber- 

netics In Its modern concept. In the most general framework all these 

trends can be subdivided Into two major groups - the general theory of 

Information conversion, and the theory and principles of the design of 

various kinds of Information converters. However, the material which 

can be associated with these major trends Is so extensive that It 

could hardly be presented even In summary form In a single book. 

Therefore It has been necessary to make a selection of the material In 

accordance with some general principles. 

The material for the present book has been selected In accordance 

with two basic principles. The first principle Is the requlr^nent for 

a sufficiently rigorous formulation of the material to permit present- 

ing It In the form of a mathematlc theory (although with the bent In 

the direction of practical simulation which Is characteristic of cy- 

bernetics). The second principle Is that the author limits himself, as 

a rule, to the digital methods of representing Information and the dig- 

ital conversion of Information. 

As a result of the selection, the book contains the following 

basic sections: algorithm theory (including programming for general 

purpose electronic digital computers and universal algorithmic lan- 

guages for programming), theory of discrete automata (including the 

theory of boolean functions and the concept of the principles of the 

design of general-purpose electronic digital computers), theory of 
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discrete self-organizing systems (including elements of the theory of 

optimal decisions) and, finally, mathematical logic (proposltional cal- 

culus, restricted predicate calculus and formal arithmetic), consid- 

ered as a basis for the automation of the process of the design of 

design of deductive (based on a particular system of axioms) theories. 

The degree of detail of the presentation of the material Is deter- 

mined first of all by the degree of Its novelty. The newer branches, 

related to cybernetics Itself, are discussed In greater detail, the 

fundamental theorems are supplied with quite detailed proofs. At the 

same time. In such branches as abstract algorithm theory and mathemat- 

ijal logic, which have developed within the framework of traditional 

mathematics, the material Is presented more briefly, proofs, as a rule, 

are omitted. 

The author has attempted, however, to give an understanding of 

the basic Ideas and methods which are used to establish the validity 

of such fundamental, from the point of vltw of mathematlc logics, prop- 

ositions as the Godel theorem on the Incompleteness of arithmetic or 

the theorems which establish the algorithmic Insolubility of particu- 

lar problems. 

The book does not pretend to replace specialized monographs on 

the Individual sections which are Included here. Its primary intention 

is to aid a wide audience of mathematicians and engineers to master 

that minimum of knowledge which is necessary for work in the field of 

the theoretical problems of modern "digital" cybernetics. It is well 

known that the existence of detailed monographs on a particular theme 

does not always make it possible for readers without specialized pre- 

paration to become acquainted with the subject. Convincing proof of 

this is the fact that In spite of the existence of specialized mono- 

graphs, such a theorem as that of Godel mentioned above, which is of 
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fundamental Importance for all of mathematics, remains unknown to 

large numbers of mathematicians except for hearsay. 

As for the present book, it presents to the reader (but only In 

one  chapter,  the fourth),  the knowledge of only those elements of math- 

ematical analysis and probability theory which are known to practical- 

ly every engineer, without mentioning mathematicians.  The less widely 

known mathematical results necessary for the understanding of the main 

content of the book are included as supplementary material.   An example 

of this sort of supplementary material might be the series of proposi- 

tions of probability theory presented in Chapter 4, §2. 

In case the reader wishes to extend his knowledge in a particular 

area or become acquainted with the detailed proofs  of those proposi- 

tions which,  although included in the book,  are not proved in detail, 

we shall make a summary of the contents of the book with an indication 

of the specialized monographs (in Russian)  pertaining to the individu- 

al sections.   Unfortunately,  this  sort of monograph cannot be found per- 

taining to all the sections of the book. 

The first  chapter presents a description of the basic  theoretical 

universal algorithmic  systems (normal Markov algorithms,  the Kolmogorov- 

Uspenskiy algorithmic  system, recursive functions,   the Post algorithms, 

and  the Turing machine).   Also presented are the basic principles of 

the proofs of the algorithmic insolubility of certain very simple mass 

problems. 

At the present time "uhere is no unifying monograph available on 

the intire theory of algorithms as a whole.   Moreover, not all the ques- 

tions mentioned above are covered in any detail in the monographic  lit- 

erature.  Among the principal monographs  on the individual algorithmic 

systems we might mention the following:  on the theory of normal algo- 

rithms. Theory of Algorithmsi A.A.   Markov  (Ref .53);   on the  theory of 
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recursive functions and Turing machines. Introduction to Metamathemat- 

ics, S.C. Kleene (Ref 42) and Course on Computable Functions, V.A. Us- 

penskiy (Ref 76). 

The theory of boolean functions and its applications to the theo- 

ry of discrete automata circuits are presented in the second chapter. 

These questions are discussed in greater detail in the morograph of 

V.M. Glushkov, Synthesis of Digital Automata (Ref 26). 

In addition, the second chapter covers the fundamentals of prepo- 

sitional theory. More detail on prepositional calculus can be found, 

for example, in the monograph of P.S. Novikova, Elements of Mathemati- 

cal Logic (Ref 6l). 

The third chapter is devoted to the abstract and structural theo- 

ry of discrete (finite) automata. The questions relating to this sub- 

ject are considered in more detail in the monograph of Glushkov 

mentioned above. These questions are covered from somewhat different 

positions in the monograph of N.Ye. Kobrinskiy and V. A. Trakhtonbrot, 

Introduction to the Theory of Finite Automata (Ref 47). 

The fundamentals of the theory of discrete self-organizing sys- 

tems are presented in the fourth chapter. A definition is given of the 

quantitative measure of self-organization sind self-learning, a study 

is made of the behaviour of random automata and automata operating in 

conditions of random external inputs. Special attention is devoted to 

the problem of the recognition of images and the theory of one class 

of devices (the so-called a-perceptron) intended for the resolution of 

thiL problem. Some questions of the simulation of conditioned reflexes 

are considered, and also questions of the teaching of meaning recogni- 

tion and the generation of new concepts. At the end of the chapter, in 

connection with the laea of self-adjustment and extremal regulation, 

descrptions are given of several general methods for the solution of 
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extremal problems (the method of steepest descent and Its refinement, 

the simplex method of solution of the problems of linear programming 

and the so-called method of sequential analysis of variants for the 

solution of the problems of dynamic programming). 

So far no unifying monograph is avialable on the material of the 

fourth chapter. Moreover, almost all the questions discussed in this 

chapter (with the exception of the method of steepest descent and the 

simplex method) have not yet been covered in th^ monographic litera- 

ture. Several questions allied with those considered in this chapter 

(but not completely Identical to them) are covered in Neurodynamics1 

P. Rosenblatt which has not yet been translated into Russian. A large 

number of monographs is devoted to the methods of solution of experi- 

mental problems (with the exception of the method of sequential analy- 

sis of variants). However, we shall not list them here since these 

questions have no direct relation to the primary theme of the present 

book. 

The fifth chapter covers the basic principles of the design of 

the general-purpose electronic digital computers and the programming 

for these machines. So many monographs have been devoted to this ques- 

tion that it would be very difficult to list them all. In particular, 

we might cite on the subject of programming the monograph of B.V. 

Gnedenko, V. S. Korolyuk and Ye.L. Yushchenko, Elements of Programming 

(Ref 31), As for the principles of computer design, in spite of the 

existence of many good specialized monographs on this question, a de- 

tailed presentation of the material in zhe  framework we need does not 

exist; the principles of the design of the electronic digital compu- 

ters are presented, as a rule, in Isolation from the general theory of 

algorithms. 
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In addition, the fifth chapter presents a detailed description of 

the universal algorithmic language ALGOL-60 and gives examples of 

ALGOL programming of various problems, primarily from the theory of 

self-organizing systems. In particular, a discussion is given of the 

question of the programming of the perceptron learning process and of 

a simplified model of the process of biological evolution. Again, on 

this question there is little information in the monographic litera- 

ture: Report on the Algorithmic Language ALGOL-60 (edited by P. Naur), 

published by the Computer Center of the USSR Academy of Sciences (Mos- 

cow, i960) is of a reference nature and not suitable for paractical in- 

struction on the ALGOL language. 

In the last (sixth) chapter there is given a summary exposition 

of the fundamentals of the restricted predicate calculus (includlnf 

the formal system of Gentzen) and of formal arithmetic (including the 

Godel theory on arithmetic incompleteness). Detailed proofs of the 

propositions presented can be found in the previously cited monographs 

of Kleene and Novikov. This chapter also contains elements of the auto- 

mation of proofs and formulations of theorems in deductive theories. 

The questions touched on here have not yet been covered in the mono- 

graphic literature. 

As indicated by the list of the material presented in the book, 

several interesting branches of modern cybernetics are not included in 

the book. Considering the criteria mentioned previously for the selec- 

tion of material, we could, for example, include a presentation of the 

fundamentals of mathematical linguistics or elements of game theory. 

However, even without this, the considerable size of the book has 

forced the author to refrain from attempts to include any additional 

material. At the same time, the contents of the book do encompass 

those questions which at the present time as usually considered the 
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basis of theoretical cybernetics (with account for limiting ourselves 

to discrete methods). The author hopes, therefore, that the book will 

be of assistance In mastering the mathematical appa.ratus of cybernet- 

ics and preparing for work In the theoretical fields to Individuals 

occupied In Individual applied aspects of cybernetics and also to the 

Individuals interested In the theoretical problems of cybernetics. 

In the present book extensive use has been made of material from 

courses on the various branches of cybernetics and mathematical logic 

presented b y the author at Kiev University and at the Kiev House of 

Scientific and Technical Propaganda In 1959-1962. A part of this mate- 

rial (theory of algorlths, for example) has been published previously 

for service use. The present book can be considered to be the first 

sufficiently complete textbook for students of the branches of cyber- 

netics mentioned above. 

- 8 - 
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Chapter 1 

ABSTRACT THEORY OF AUTOMATA 

§1. ALPHABETIC OPERATORS AND ALGORITHMS 

In modern mathematics It Is customary to call the structurally 

specified correspondences between words In abstract alphabets algo- 

rithms. 

Any finite ensemble of objects, termed the letters of a given al- 

phabet, is called an abstract alphabet. The nature of these objects is 

a matter of complete Indifference to us. For example, the letters of 

the alphabet of any language (Russian, Latin, Greek, etc.), digits, 

any symbols, figures, etc., can be considered to be letters of ab- 

stract alphabets. If we wish to, we can introduce an abstract alphabet 

whose letters will be considered to be entire words of any particular 

language (Russian, for example). It is important only that the alpha- 

bet considered be finite, 1.e. that it consist of a finite number of 

letters. 

Introducing the concept of an (abstract) alphabet, we define a 

word in this alphabet as any finite ordered sequence of letters. For 

example, in the alphabet A = A(x,y) consisting of the two letters x 

and ^ we consider any sequence x, y, xx, xy, yx, yy, xxx, ... to be 

words. The number of letters in a work is termed normally the length 

of this word, so that the words we Just listed in the alphabet have re- 

spectively the lengths 1, 1, 2, 2, 2, 2, 3*... 

Along with words of positive length (consisting of no less than 

one letter), in many cases it is convenient to consider also an empty 
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word, not containing even one letter.%In the present chapter use is 

made of the small Latin letter e to designate an empty word. Sometimes, 

however, it is convenient to designate the empty word in complete ac- 

cordance with its definition, not writing any letter in the place cor- 

responding to this word. 

We note that, with the accepted definition, the concept of a word 

in the Russian alphabet will differ from the concept of a word as ac- 

cepted In ordinary language. With our definition, words are to be con- 

sidered any combination of letters. Including meaningless combinations: 

the combinations of letters "algorithm", "mathematics", "«kit", "dddd" 

must to an equal degree be considered words of the Russian alphabet 

(considered as an abstract alphabet). 

With expsmsion of an alphabet, i.e., with inclusion in its compo- 

sition of new letters, the concept of the word may undergo significant 

changes. If, for example, we expand the Russian alphabet by the "let- 

ters" ("   " — parentheses) and (, — comma), then the four words 

which we have Just written out in the Russian alphabet can be consid- 

ered as a single word in the alphabet expanded in this fashion. By com- 

plementing the Russian alphabet with the punctuation marks and the 

separation mark (empty space left between two neighboring words), we 

can if we wish consider entire phrases, paragraphs and even entire 

books as individual words. 

In Just the same way, the expression 69 + 72, which is two words 

(69 and 72) in the alphabet A of the 10 digits (0,1,2,3,4,5,6,7,8,9), 

Joined by the sum sign, can be considered as a single work in the ex- 

panded alphabet A which is obtained as the result of Joining to it the 

new letter "+" (sum sign). 

Alphabetic operator or alphabetic representation is the term giv- 

en to any correspondence (function) which associates words in a 

- 10 - 
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particular alphabet to words in the same or another fixed alphabet. 

The first alphabet is here termed the input, and the second the out- 

put alphabet of the given operator. In the case of coincidence of the 

input and output alphabets, we say that the alphabetic operator is giv- 

en in the corresponding alphabet. 

Hereafter we consider primarily single-valued alphabetic opera- 

tors, associating to each input word (word in the input alphabet of 

the operator) no mere than one output word (word in the output alpha- 

bet of the operator). If the alphabetic operator does not associated 

with a given input word 2  any output word (including an empty word), 

then we say that it is not defined on this word. The ensemble of all 

words on which an alphabetic operator is defined is termed its domain 
[ 

of definition. 

On the basis of the foregoing, in the future we shall always un- 

derstand (if not otherwise specified) by the term "alphabetic operator" 

a unique, generally speaking, partially defined mapping of a set of 

words in the input alphabet of the operator into a set of words in its 

output alphabet. 

Thanks to the possibility of specifying the alphabetic operators 

on less than all the words, we can, without loss of generality, every 

time consider that the input and output alphabets of the operator coin- 

cide. For this it is sufficient, clearly, to combine the input and out- 

put alphabets of the given operator cp into one common alphabet A and 

to consider the operator 9 as an operator in this combined alphabet, 
j 

specified only on those words which appeared in the primitive region 

of definition of the operator cp. 

With each alphabetic operator there is associated an intuitive 

concept on its complexity. The simplest operators are those which per- 

form letter-by-letter mapping. This mapping consists in each letter x 
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of the input word 2  being replaced by some letter ^ of the output al- 

phabet operator, depending only on the letter x and rot on the choice 

of the Input word JD. Letter-wise mapping Is completely defined by spec- 

ifying the correspondence between the letters of the input and output 

alphabets. 

The so-called coding transformations, which for brevity we shall 

term simply codings, are of great importance for the later discussion. 

In the simplest case the words in one alphabet, say in alphabet A, are 

coded by words in the other alphabet, B, as follows: to each letter a. 

of the alphabet A there is associated some finite sequence b^ t b. , 
11      12 

...b.  of letters in the alphabet B, called the code of the correspond- 

irg letter, such that to the different letters of the alphabet A there 

are associated different codes. 

For the construction of the desired coding transformation it is 

sufficient now to replace all the letters of any word JD in the alpha- 

bet A by the codes corresponding to them. The word thus obtained in 

the alphabet B we tern the code of the original word JD. We stipulate 

that the coding transformation must necessarily be reversible. In oth- 

er words, different words in alphabet A must have different codes. The 

condition of reversibility of the coding is nothing other than the 

condition of mutual uniqueness of the corresponding coding transforma- 

tion. 

It is easy to see that reversibility of the coding is not ensured 

by the single condition that the codes of the various letters (words 

of length l) be different. Actually, if to the letter a, there is as- 

sociated the code bb, and to the letter a2 the code b, then the code 

bbb will clearly correspond both to the word a-^ap and to the words 

a^ and a2a2a2. 
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It Is not difficult to verify that the coding will be reversible 

whenever the following two conditions are fulfilled: 

a) the codes of the different letters of the original alphabet A 

are different; 

b) the code of any letter of the alphabet A cannot coincide with 

any of the Initial segments of the codes of the other letters of this 

alphabet.* 

Actually, let us assume that both of these conditions are satis- 

fied and let the word q = b. b. ...b. be the code of some word p = 
:L1 :L

2   ^-n 
a. a.. ...a. In the alphabet A. Let us show that from the code q we 
Jl J2   Jm 

can uniquely recover the word JD. In view of condition b) only one ini- 

tial segment of the word c^ cam coincide with the code of any letter of 

the alphabet A. It is clear that the code of the letter a. is such a 

segment. Discarding this segment, we obtain the code q, of the word 

P-, = a. ...a. . Applying to it the same reasoning, we restore uniquely 
2    m 

the following letter (a. ) of the word JD, and so on. Using this tech- 
J2 

nique, all the letters of the word £ are restored one after the other. 

Consequently, to any given code there can correspond only one word in 

the alphabet A, which proves the reversibility (mutual uniqueness) of 

the coding transformation. 

Condition b) is satisfied if the codes of all the letters of the 

original alphabet have identical length. By convention we call the cod- 

ing in this case normal. Use of coding permits reducing the study of 

arbitrary alphabetic trans formations to alphabetic transformations in 

some once-and-for-all selected standard alphabet. Most frequently, as 

such a standard alphabet there is chosen the so-called binary alphabet, 

consisting of two letters which are usually identified with the digits 

0 and 1. 
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Let A be an arbitrary alphabet and B be a standard alphabet (bi- 

nary, for example) consisting of more than one letter. If n is the num- 

ber of letters In alphabet A and m is the number of letters in 

alphabet B, then we can always select the number k so as to satisfy 

the inequality 

m»>n. (1) 

Since the number of different words of length k in the m-letter 

alphabet is clearly equal to m , then inequality (l) shows that we can 

code all the letters In alphabet A with words of length k in alphabet 

B so that the codes of the different letters are different. Any such 

coding will be normal and will generate, in light of what was said a- 

bove, a reversible coding transformation of the words in alphabet A 

into words in alphabet B. We designate this transformation by a and 

use a" to designate the reverse transformation which transforms each 

word jj in the alphabet B, which is the code of some word £ in alphabet 

A, into the word JD. 

Now if cp is an arbitrary alphabetic operator in alphabet A, then 

the transformation -^ = a" cpct obtained as the result of sequential per- 

formance of the transformations a" , cp and a will be, obviously, some 

alphabetic operator in the standard alphabet B. We term this operator 

the alphabetic operator in the alphabet B, conjugate (with the aid of 

the a coding) with the alphabetic operator cp. 

The operator ep is uniquely recovered from the conjugate operator 

f  and the corresponding coding transformation a 

«p-otfoT1. (2) 

With the aid of this equation,  and also its dual equation which 

was  written previously 

t^d-spa (3) 
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the arbitrary alphabetic operators are reduced to alphabetic operators 

In the standard alphabet. This reduction, of course, can be performed 

by an infinite number of different methods, since there exist infinite- 

ly many different codings of words in any given alphabet by words in 

the standard alphabet. 

The described reduction can also be accomplished in the case of 

alphabetic operators for which the input and output alphabets are dif- 

ferent. For example, let cp be an arbitrary alphabetic operator with 

the input alphabet A and the output alphabet C, let B be the standard 

alphabet, let a be any (reversible) coding of words in the alphabet A 

by words in the standard alphabet, sind let y  be an analogous coding of 

the words in alphabet C. 

Now it is easy to see that the transformation -^ = a" ^ is an al- 

phabetic operator in the standard alphabet B by which under the condi- 

tion of knowing the coding transformations a and y the original trans- 

formation <p is uniquely restored. 

The concept of the alphabetic operator is extremely general. Actu- 

ally any processes of information conversion reduce to it or can be in 

some sense reduced to it. Here and in the future, by information we 

shall understand not only intelligent communications but in general 

any information on processes and states of any nature which can be de- 

tected by the sense organs of man or by instruments. 

For certain specialized forms of information, for example infor- 

mation which is lexical or numerical, the alphabetic method of specifi- 

cation is the most natural and is constantly used. The transformations 

of these forms of information are reduced to the alphabetic operators 

in the most indirect fashion: both the input and the output informa- 

tion in any information converter in this case can be represented In 

the form of words, and the conversion of the information reduces to 
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the establishment of some correspondence between the words. We recall 

that with rational expansion of the alphabet with words, account can 

be taken In the lexical Information not only of ordinary words, but 

also entire sentences and even any sequences of sentences. 

One of the characteristic tasks of the conversion of lexical in- 

formation Is the translation of texts from one language to another. It 

Is well known that the translation problem does not reduce to t^he prob- 

lem of ostabllshlng the correspondence between the words of the lan- 

guages which are Involved in the translation. If, however, we consider 

as words the entire books or at least individual sections of the book, 

then the problem of translation completely reduces to the problem of 

establishing correspondence between such generalized words. Thus, the 

problem of translation from one language to another can be treated as 

the process of the realization of some alphabetic operator. 

It is worthy of note, moreover, that quite high-quality and gram- 

matical translation permits, as is known, the possibility of known mod- 

ifications of the translated text. Therefore the process of transla- 

tion is described, not by the usual single-valued alphabetic operator, 

but by a multi-valued, or so-called probabilistic, alphabetic operator. 

Such an operator associates with each input word from the region of 

its definition not a single output word, but a whole ensemble of out- 

put words. In the specific application of this operator to a particu- 

lar input word JD there is a random selection of the output word from 

the ensemble of output words corresponding to the word JD. 

In addition to the alphabetic operators for the translation from 

one language to another, we can construct alphabetic operators which 

resolve other problems of the conversion of lexical information, for 

example the problem of editing texts In a particular language, the 

problem of composing abstracts of articles, etc. It is n'-t difficult 
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to expand the field of application of the alphabetic operators, using 

the alphabetic representation not only for lexical information but al- 

so for other forms of information. For example, using the known tech- 

niques of chess notation, we can write chess positions in the form of 

words consisting of the letters of the Russian and Latin alphabets, 

digits, and punctuation marks (comma). In this case the process of the 

chess game can be interpreted as the process of establishing the cor- 

respondence between any given position and the position resulting from 

it after performing the next move. Thus, again in this case we are 

dealing with an alphabetic operator (probabilistic, generally spoakin^). 

Similarly, it is not difficult to represent in the form of proces- 

ses or realization of the alphabetic operators many other processes of 

information conversion, for example the orchestration of melodies, the 

solution of mathematical problems, the problem of production planninc, 

etc. 

It may seem at first that for the characterization of the conver- 

sion of continuous information (for example, visual or random auditory 

uensatlons) the concept of the alphabetic operator is insufficient. 

However this is not so, or more precisely, not entirely so. 

The reception and conversion of continuous information is always 

accomplished with the aid of nonideal Instruments which do not react 

to extremely small variations of the characteristics of the informa- 

tion being converted. In real instruments, detecting and converting 

continuous information, there always exist several limitations which 

make it possible to consider this information as alphabetic informa- 

tion. For greater clarity, let us consider visual information (the 

same phenomena occur with the other forms of specifying continuous in- 

formation). 
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The first limitation is that of the resolving power of the instru- 

ment which receives the information. This limitation leads to the situ- 

ation where sufficiently closely spaced points of the portion of space 

on which the information in question is distributed (for example, a 

picture or drawing) is sensed by the instrument (say, the human eye) 

as a single point. This implies the possibility of considering this in- 

formation as Information given, not at an infinite number of points, 

but only at a finite number of points. 

The second limitation is associated with the limited sensitivity 
        I 

of the Instrument receiving the information. This limitation leads to 

the instrument being able to distinguish only a finite number of lev- 

els of the quantity carrying the information (for example, the bright- 

ness of individual points of a drawing). 

On the basis of the described limitations we come to the conclu- 

sion that the instrument, as a result of its nonideal nature, can at 

each given instant sense only one pattern of a finite (and not infin- 

ite as it might seem without account for the limitations indicated) 

number of different patterns of the instantaneous spatial distribution 

of the information in question. 

Introducing for each such pattern a special literal notation, wo 

come to the finite alphabet A which with account for the indicated lim- 

itations is completely adequate for the characterization of the infor- 

mation arriving at the input of the Instrument (nonideal) which we are 

considering at every given instant of time. If we denote by the letter 

r. the number of spatial points sensed by the instrument as individual 

points, and by the letter m the number of levels of the physical quan- 

tity carrying the Information which are distinguished by the instru- 

ment, then the number of letters in the alphabet A will be equal, it 

is easy to see, to m (for simplicity we assume the number of levels 
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which are distinguishable by the instrument to be identical for all 

points of the space). 

Of course, the number of letters in the alphabet A which we have 

Just estimated may be found to be excessively large (in the case of 

the reception of visual information by the human eye it may be esti- 

mated as a one with several thousand zeros following it). Nevertheless 

it is still finite, and from the abstract theoretical point of view 

the essential thing is only whether the alphabet A is finite or infin- 

ite. 

Continuing our investigation, we note that every real instrument 

which receives and converts information has, along with the two limita- 

tions Indicated, a third limitation. Here we are dealing with the lim- 

ited passband of the Instrument, which does not permit it to differen- 

tiate excessively rapid changes of the received quantities. In view of 

the familiar Kotel'nlkov principle (Ref 46), the limitation of the 

pass band is equivalent to the Introduction during the information 

transmission in place of the usual continuous time a conditional dis- 

crete time, neighboring Instants of which differ from one another by 

quite definite (although usually very small) segments of time. Roughly 

speaking, as such an elementary segment of time we select the maximal 

segment in the course of which the instrument in question is incapable 

of differentiating the variations of the quantity carrying the informa- 

tion. 

After the introduction of this descrete time, the information re- 

ceived by our Instrument after any finite segment of time t naturally 

is represented in the form of a word in the previously introduced al- 

phabet A. The number of letters in this word is equal to the number of 

instants T-.,...,TI. of the discrete time located in the given time seg- 

ment t, and its i-^th letter (i = l,2,...,k) is the information 
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received by the instrument at the instant of time T. expressed in the 

porm of a letter of the alphabet A. 

Since analogous considerations arc applicable not only to the in- 

put information but also to the output Information, any real informa- 

tion converter must be considered (with account for the limitations 

indicated above) as an instrument realizing some alphabetic operator. 

The alphabetic operator realized by the instrument completely (with 

an accuracy to the information coding) determines the informational es- 

sence of this instrument, in other words the information conversion 

performed by this instrument. 

Thus, we have established the extremely great generality of the 

concept of the alphabetic operator. Actually the theory of any informa- 

tion converter was found to reduce to the study of the alphabetic oper- 

ators. And man encounters information converters literally at every 

step of his practical existence. The various instruments and devices 

for automatic control aj?e information converters. Finally, one of the 

must important and essential aspects of the study of the activity of 

man himself is the aspect associated with consideration of man as a 

very complex and highly-perfected information converter. All this 

makes it possible to consider the theory of the alphabetic operators 

one of the most important component parts of cybernetics. 

The basis of the theory of the alphabetic operators are the meth- 

ods of representing them. In the case when the region of definition of 

definition of the alphabetic operator is finite the question of its 

representation, at least in the theoretical sense, is resolved very 

simply: the operator can be represented by a simple correspondence ta- 

ble. In the left side of such a table we write out all the words ap- 

pearing in the region of definition of the operator in question, and 

in the right side we write the output words obtained as the result of 
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the application of the operator to each word from the left side of the 

table. 

Of course, if the region of the definition of the alphabetic oper- 

ator is sufficiently large, this method of representation can become 

excessively cumbersome and therefore not applicable in practice. How- 

ever, for the moment we shall not take such considerations into acount, 

limiting ourselves to the establishment only of the theoretical possi- 

bility of representing particular alphabetic operators. 

In the case of am infinite region of definition of the alphabetic 

operator, its representation with the aid of a simple correspondence 

table becomes impossible in principle, since man does not have at his 

disposal the means to permit him to actually write o'lt or perceive an 

infinite set of words. However, it is well known that man long ago 

learned to represent operators on infinite sets of words without writ- 

ing out the entire correspondence tables. For this purpose it is suf- 

ficient to consider, for example, the alphabetic operator represented 

by the formula 

xx...x-*yy...y   (n=l,2,...)- /^v 

n times  n+1 times 

This formula defines the correspondence on an infinite set of 

words, achieved without actually writing out the entire correspondence 

table (which, of course, in this case cannot be done). In place of the 

correspondence table Itself, this formula gives a rule with the aid of 

which, after a finite number of steps, there can be established the 

output word corresponding to any prescribed input word from the re- 

gelon of definition of the alphabetic operator being considered. 

An analogous situation arises every time we need to represent an 

alphabetic operator with an infinite region of definition; in place of 

the correspondence table itself there is given a finite number of 
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rules permitting after a finite number of steps the finding of the pre- 

scribed line of this table (the value of the alphabetic operator on 

any Input word appearing In the region of Its definition). 

alphabetic operators represented with the aid of finite systems 

of rules are customarily termed algorithms. 

On the basis of the discussion above, we can easily understand 

that every alphabetic operator which can actually be represented Is of 

necessity an algorithm. In particular, all alphabetic operators with 

finite regions of definition represented by (finite) correspondence ta- 

bles will be algorithms. Formula (4) also represents an algorithm. 

It is not difficult to construct other examples of algorithms. 

Associating with each whole positive number its square, we obtain an 

alphabetic op^ ator in the alphabet consisting of all the digits of 

the number system used for the representation of these numbers. Since 

the rules for squaring make it possible after a finite number of steps 

to obtain the square of any prescribed whole number, this operator can 

be considered as an algorithm. 

All the specific alphabetic operators considered in the present 

chapter (including the operators for translation from one language to 

another, chess moves, etc. ) also can be represented with the aid of 

finite systems of rules and can, consequently, be considered as algo- 

rithms. 

We must emphasize one distinction existing between the concepts 

of the alphabetic operator and the algorithm. In the concept of the al- 

phabetic operator only the correspondence itself, established by the 

operator between the input and output words, is of essence, and not 

the method by which this correspondence is established. In the concept 

of the algorithm, on the other hand, the primary emphasis is placed on 

the method of representation of the correspondence established by the 
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algorithm. Thus, the algorithm Is nothing other than an alphabetic op- 

erator together with the rules defining Its operation. 

The concept of equality for the alphabetic operators and algo- 

rithms Is defined In accordance with the foregoing. Two alphabetic op- 

erators are considered equivalent If they have the same region of def- 

inition and associate with any prescribed Input word from this region 

Identical output words. The concept of equality for algorithms In- 

cludes the conditions of equality for the corresponding operators, but 

also provides for coincidence of the systems of rules which represent 

the operation of these algorithms on the Input words. The algorithms 

for which there coincide only the alphabetic transformations (opera- 

tors) defined by them, but, generally speaking, not the methods of rep- 

resentation, we shall term equivalent algorithms. 

Usually In the abstract theory of algorithms we consider only 

those algorithms to which there correspond single-valued alphabetic 

operators. Every algorithm A of this kind differs In that to any Input 

word 2  from the domain of Its definition It associates a completely de- 

fined output word q ^ A(p) regardless of the conditions In which the 

algorithm A operates. Such algorithms and their corresponding alphabet- 

ic operators will be called determinate. 

In many cases It Is advisable to expand the concept of the algo- 

rithm. Introducing Into the system of rules which describe the algo- 

rithms the possibility of the random selection of particular words or 

particular rules. Here the probability of a particular selection must 

be either fixed In advance or determined In the process of realization 

of the algorithm. Such algorithms will be called random and will lead 

to the multl-valued alphabetic operators. More precisely, for any In- 

put word 2  appearing In the domain of definition of the random algo- 

rithm A, this algorithm uniquely defines the probability a (q) of the 
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appearance of the different output words c[ as the response to the In- 

put word JD. The probabilities a (q) In the case of the usual random al- 

gorlthm must not vary In the process of Its functioning, although the 

algorithm Itself can, of course, give different responses with repeat- 

ed application to the same Input word jo. 

We need to consider also the so-called self-variable algorithms. 

I.e., those algorithms which not only transform the Input words ap- 

plied to them but also themselves change In the process of this trans- 

formation. The result of the action of the self-variable algorithm A 

on a particular Input word 2  depends not only on this word but also on 

the history of the preceding operation of the algorithm, 1.e., on the 

(finite) sequence of Input words processed by the algorithm A prior to 

the arrival at Its Input of the word JD In question. 

The generalization of the concept of the algorithm by means of 

the Introduction of the possibility of self-variation Is applicable to 

both the determinate and the random automata. In the latter case, de- 

pending on the history of the pre/lous operation of the algorithm, 

there are changes of the probabilities <* (q) of the different output 

words 2  associated by the algorithm A to any given Input word JD. This 

dependence can, moreover, also be expressed by a random function rath- 

er than a determinate one. 

The self-variable algorithms are conveniently represented In the 

form of a system of two algorithms, the first of which, the so-called 

operational algorithm, performs the processing of the Input words, and 

the second, termed the monitoring or controlling algorithm. Introduces 

specific changes Into the first, operational, algorithm. In Chapter ^ 

It Is shown that the property of self-variability of the algorithm is 

determined not so much by the structure of the device which realizes 

the corresponding algorithm, as by the method of fractlonatlon of the 
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input Information into Individual words, which, as noted above, in the 

case of the abstract alphabets is to a considerable degree arbitrary. 

Thus, depending on the choice of this method the same device may in 

some cases realize a self-variable algorithm, in other cases it will 

realize a non-self-variable algorithm. 

Throughout the first three chapters we shall consider only the 

conventional (determinate, non-self-variable) algorithms without malt- 

ing this stipulation in every instance. In the later chapters use will 

be made also of the generalized concepts of the algorithms introduced 

above. 

§2. NORMAL ALGORITHMS 

In this and the several following sections we shall study certain 

general methods of representation of the algorithms which are charac- 

terized by the property of universality, 1.e., those methods which 

make It possible to obtain an algorithm which is equivalent to any pre- 

scribed algorithm. In this chapter rarious universal methods or repre- 

senting algorithms are discussed, not in the historical sequency in 

which they were developed, but In an order which is most convenient 

from the point of view of the present volume. We begin our exposition 

with the so-called normal algorithms suggested and studied by Markov 

(Ref 53). 

Every general method of representation of algorithms is termed an 

algorithmic system. The algorithmic system usually Includes objects of 

a dual nature which, following Kaluzhnin (Ref 37) * we shall term opera- 

tors (or, more precisely, elementary operators) and Identifiers (more 

perclsely, elementary Identifiers). Elementary operators are quite sim- 

ple (simply represented) alphabetic operators whose sequential perform- 

ance realizes any algorithms in the algorithmic system in question. 

The Identifiers serve for the recognition of particular properties of 
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the information processed by the algorithm and for the variation, de- 

pending on the results of the identification, of the sequence in which 

the elementary operations follow one another. 

For indicating the set of elementary operators and the order of 

their sequencing one after the other in the representation of any spe- 

cific algorithm, it is convenient to make use of the directed graphs 

of a special kind which, following Kaluhnnin (Ref 37)* we shall term 

the graph-diagrams of the corresponding algorithms. 

The graph-diagram of an algorithm is a finite set of circles (or 

other geometrical figures), termed the elements of the graph-diagram, 

which are interconnected by arrows. To each element, other than the 

two special elements which are termed the input and output, there is 

associated some elementary operator or identifier. Prom each element 

representing an operator, and also from the input element, there e- 

merges precisely one arrow; from each element representing an identi- 

fier there emerge precisely two arrows; no arrow emerges from the out- 

put element. Any number of arrows can enter an element. 

The algorithm defined by any given graph-diagram operates as fol- 

lows. The input word enters first the input element and travels in the 

directions indicated by the arrows, being transformed on passage 

through the operator elements by the operators associated with these 

elements. When the word enters an identifying element a check is made 

of the condition associated with this element (application of condi- 

tional Identifier). If the condition is satisfied, the word emerges 

from the element along one of the arrows (usually indicated by the sym- 

bol "+"), and if the condition is not satisfied it emerges along the 

other arrow (indicated by the symbol "-"). 

The word is not altered in the identifying elements. If the input 

word 2  applied to the input element of the graph-diagram, after passing 
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through the elements of the diagram and being tranr formed, arrives aft- 

er a finite number of steps at the output element. It is considered 

that the algorithm is applicable to the word jg (the word 2  ls ln the 

domain of definition of this algorithm), sind the result of the action 

of the algorithm on the word 2  w111 be that word which is in the out- 

put element of the diagram. If after the application of the word JD to 

the input element of the graph-diagram its transformation and movement 

along the graph-diagram lasts infinitely long, without arrival at the 

output element, then it is considered that the algorithm is not appli- 

cable to the word jg, in other words, the word 2 I3  not in the domain 

of definition of the algorithm. 

In normal algorithms use is made only of one type of elementary 

operator, termed substitution operators, and one type of elementary 1- 

dentlfler, termed occurrence identifier. We shall describe these iden- 

tifiers and operators in more detail. To do this we shall first ac- 

quaint ourselves with the concept of occurrence of one word in another. 

Let 2 an^ J be two arbitrary words in a particular alphabet. Wo 

say that the word jj occurs in the word jg if the word 2  can be repre- 

sented in the form p ■ p-^Po* where p, and Pp and some words, possibly 

even empty ones. The occurrence found for the word ^ in the word £ is 

termed first left (or simply first) occurrence if in the considered 

representation of the word 2  ln the form p = PnQPp the word p, has the 

shortest possible length among all similar representations of the word 

The occurrence identifier is given by the indication of some 

fixed word c^, and the sense of its application is that for any given 

word 2  a check is made of the condition of whether or not the word jj 

occurs in the word 2*   The substitution operator is usually given in 

the fo^Tn of two words connected by an arrow, q-^ -*. q  The operation of 

- 27 - 

1V^"  **"" '  .^m   —" ' 



the operator amounts to performance of the substitution of the word q0 

in place of the first left occurrence of the word q, in any given v;ord 

JD. If we separate explicitly the first occurrence of the word q^^ in the 

word JD, writing the word _p in the form p-^q^Pp, after the application of 

the considered operator it is transformed into the word p-jq2P2• 

In the application of the occurrence Identifier we agree to sepa- 

rate the found (first left) occurrence of the identified word in the 

given word by the use of parentheses. For example, applying to the 

word p B xxyxyxx the occurrence Identifier of the word q = xy, we sepa- 

rate the first occurrence of the word £  in the word £ as follows: p = 

x(xy)xyxx. 

The algorithms which are represented by graph-diagrams consisting 

exclusively of word occurrence identifiers and substitution operators 

are termed generalized normal algorithms. Here it is assumed that to 

each substutution operator of the form q., -♦ q2 there is conn )cted only 

a single arrow: an arrow with a "+" sign emerging from the q, identi- 

fier. 

An example of a graph-diagram cf a generalized normal algorithm 

is shown in Fig. 1. On this figure the identifiers are shown in the 

form o^ rectangles. The operator xy -♦ denotes substitution of an empty 

word in place of the first occurrence of the word xy. In accordance 

with the notation of the empty word which was used in the preceding 

section, this operator can be written also in the form xy -♦ e. 

Considering the operation of the algorithm A given by the graph- 

diagram of Fig. ],we note that the first operator from the top per- 

forms the transposition of x to the left and of %  to the right portion 

of the word until the word takes the form xx. ..xyy. ..y (all x precede 

all %).   Only after reduction of the word to this form does the second 

operator come into action, annihilating the pairs xy until only x or v 
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remain In the word. If In the originally given word JD there were m x's 

and n y's, then as a result of the operation of the algorithm A it is 

transformed Into the word q «» A(p), having the length |m-n| and con- 

sisting of only x's (if m > n) or only y's (if n > m). 

Having considered the generalized normal algorithms, let us turn 

to the characteristic of the normal algorithms themselves. Those gen- 

eralized normal algorithms whose graph-diagrams have some special form 

are termed normal algorithms. In order to describe this form we note 

that as a result of the definition of the generalized normal algo- 

rithms presented above, every operator q-, -► qp occurs paired with the 

identifier q, in the graph-diagram of such algorithms. 

Let us combine in the graph-diagram each such pair of elementc in- 

to a single element, retaining for it the notation of the correspond- 

ing operator. 

>—T-^  a 

Fig. 1. a) Input; Pig. 2. a) Input; 
b) output. b) output. 

From each combined element there will emerge two arrows: an arrow with 

the symbol "+" along which there is directed the word subjected to the 

action of the operator of the given element, and an arrow with the sym- 

bol "—" along which the word is directed if the element operator is not. 

applied to it. Nonapplieability of the substitution operator to a word 

denotes the absence of the occurrence of the left portion of 1 ho opera- 

tor (the word q, in the operator q-^ -*■  q«) in the given word. 
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Using the described technique for combining elements, the graph- 

diagram of the algorithm shown In F^c- 1 can be represented In the dia- 

gram shown In Fig. 2. Such a graph-t.ii-rram with combined elements In 

the case of the normal algorithms must satisfy the following condi- 

tions: 

a) all the combined (operator-Identifier) elements of the graph- 

diagram are ordered by means of assigning them the sequential numbers 

from 1 to n, sind a negative output (arrow with symbol "—") of the 1-th 

element Is connected to the (l + l)-th element (1=1, 2,...,n — l)and a 

negative output from the n-.th element Is connected to the output ele- 

ment of the graph-diagram; 

b) the positive outputs (arrows with the symbol "+") of all the 

combined elements are connected either to the first or to the output 

element of the graph-diagram. In the first case the substitution of 

the operator of the corresponding element Is termed ordinary. In the 

second case It Is termed final. 

c) the Input element Is connected by an arrow to the first com- 

bined (identifier-operator) element. 

These conditions are necessary and sufficient for the graph- 

diagram which satisfied them to represent an ordinary normal algorithm 

rather than a generalized normal algorithm. It Is easy to verify that 

the graph-diagram shown In Fig. 2 Is not a graph-diagram of a normal 

algorithm since It does not satisfy the second of the conditions Just 

formulated (condition "b"). 

The normal algorithms are customarily represented not by graph- 

diagrams but simple by the ordered set of substitutions of all the op- 

erators of the given algorithm, termed the diagram of the given algo- 

rithm. Here the ordinary substitutions are written, as shown above. In 
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the form of two words connected by an arrow (q, —■ q«) while the final 

substitutions are designated by an arrow with a dot (q-, -* .qp)« 

The order of performance of the substitutions is completely deter- 

mined after this by the conditions ,ra", "b" and "c". Actually, as a re. 

suit of these conditions the arbitrary i-th substitution of the algo- 

rithm diagram must be performed in, and only in, the case when it It 

the first of the applied substitutions (all substitutions from the 

1-st to the (i - l)-tb not applied). The process of performing the sub. 

stitutlons is terminated only when none of the substitutions of the 

diagram is applicable to the word obtained or when some final substltu 

tion Is performed (for the first time). 

As an example, let us consider the operation of the normal alr.o- 

rithm A given by the diagram 

yyx -+ y, 

xx— y, 

yyy - • x. 

Let us assume that we sire given the input word p = xyxxxyy. The 

first substitution of the algorithm A is not applicable to this word, 

in order to apply the second substitution we isolate the first occur- 

rence of its left part (xx) in the word p:p «= xy(xx)xyy. After perform- 

ance of the second substitution of the algorithm, we obtain the word 

P-i = xyyxyy* to which the first substitution of the algorithm is appli- 

cable: p, ■ x(yyx)yy-*> xyyy ■ p2. Only the third substitution is appli- 

cable to the resulting word: p2 = x(yyy) -». xx = p^, and since it is 

denoted as a final substitution, the word p- is the final result of 

the action of the algorithm A on the original word £, i.e., p^ = A(p). 

If the third substitution of the algorithm A were not a final sub- 

stitution, then the process of substitution could be continued and in 

place of the word p- = xx we would obtain the word p^. = y as the re- 

sult of the action of the algorithm on the original word JD. 
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The use of final substitutions in the normal algorithm diagrams 

along with the ordinary substitutions is necessary in order to have 

the possibility of realizing in such diagrams the arbitrary construc- 

tive alphabetic operators, i.e., those alphabetic operators which arc 

determined with the use of a finite number of rules. Actually, any nor- 

mal algorithm A whose diagram does not contain a single final operator 

can terminate its operation only when none of its substitutions is fur- 

ther applicable. This implies directly that repeated application of al- 

gorithm A to the word A(p) obtained as a result of the application to 

any input word £ cannot change this word. In other words, the follow- 

ing identity relation (valid for any input word 2)  Is satisfied for 

the algorithm A (see Markov [53])! 

A{A{p))'A{p). (5) 

By no means every constructive alphabetic operator satisfies this 

relation. An example of an alphabetic operator for which relation (5) 

is not valid is the operator B, whose action on any word 2 amounts to 

prefixing some fixed letter x to the left of this word: B(p) = xp. 

Prom what we have said above it is clear that this operator cannot be 

realized by the use of a normal algorithm whose diagram does not con- 

tain final substitutiora. 

At the same time it is easy to verify that this operator is real- 

ized by the normal diagram consisting of the single final substitution 

-♦ «x (or, what is the same, e -► »x). Actually, as a result of the defi- 

nition of occurrence taken above, an empty word occurs in every word JD, 

and its first occurrence will not have a single letter on its left. It 

follows directly from this that the use of this substitution on the ar- 

bitrary word 2  converts it to the word xp. 

It is no less evident that in the construction of the theory of 

normal algorithms we cannot limit ourselves to only final substitutions. 
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Actually, the normal algorithm whose diagram consists only of final 

substitutions operates on each input word ^ with no more than one of 

these substitutions, after which the required output word A(p) is ob- 

tained immediately. In view of the finiteness of the algorithm diagram, 

the moduli of the differences of the lengths of the words p and A(p) 

are bounded in the aggregate (for any selection of the input word 2) 

by the same number N (the maximum of the moduli of the differences of 

the lengths of the words in the left and right sides of the substitu- 

tions of algorithm A). 

There do exist, however, simple constructive algorithms for which 

the moduli of the differences of the lengths of the input and corre- 

sponding output words are not bounded in the aggregate. An example of 

such operators might be the operator D for the doubling of the input 

words, whose action on any input word JD IS determined by the equality 

D(p) = PP« Prom what we have said above, it is clear that the repre- 

sentation of this operator in the form of a normal algorithm whose dia- 

gram contains only final substitutions is obviously impossible. 

Thus, if we present to an algorithmic system based on the use of 

normal algorithms the requirement of universality (possibility of con- 

structing a normal algorithm which Is equivalent to any a priori speci- 

fied algorithm), then a necessary condition for such universality is 

the use of both forms of substitutions, both final and ordinary. This 

condition is also sufficient, i.e., we can formulate the normalization 

principle (see Ref. 53)» 

Normalization principle. For any algorithm (constructively given 

alphabetic representation) in the arbitrary finite alphabet A we can 

construct an equivalent normal algorithm on the alphabet A. 

The concept of a normal algorithm on an alphabet which is used on 

the formulation of the normalization principle means the following. In 
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many cases It Is not possible to construct a normal algorithm equiva- 

lent to a given algorithm (in the alphabet A) If we use only letters 

of the alphabet A In the substitutions of the algorithm. However, we 

can construct the required normal algorithm by adding to the alphabet 

A some number of new letters or, as we usually say, performing an ex- 

pansion of the alphabet A. In this case It Is customary to say that 

the constructed (normal) algorithm Is an algorithm on the alphabet A. 

We agree, however, that In spite of the expansion of the alphabet the 

algorithm will as before be applied only to words In the original al- 

phabet A, 

As shown by Markov [53] and Nagornyy [58], If we can construct 

the normal algorithm equivalent to a given algorithm In the alphabet A 

by Joining to the alphabet A some (possibly very large) finite number 

of letters, then we can  construct Its equivalent normal algorithm by 

adjoining to the alphabet A only a single additional letter. 

It Is not possible to give a rigorous mathematical proof of the 

normalization principle, since the concept of the arbitrary algorithm 

Is not a rigorously defined mathematical concept. Therefore, we must 

approach Its substantiation Just as we approach the substantiation of 

every law or principle of natural science. The substantiation which we 

can give the normalization principle In this framework makes It possi- 

ble to consider this principle credible to a very high degree. We 

shall Indicate the basic processes of this substantiation. In order to 

simplify the formulations, we shall agree, following Markov [53], to 

term a particular algorithm normallzable if we can construct its equiv- 

alent normal algorithm (using, possibly, expansion of the alphabet) 

and term it unnormallzable otherwise. We can now state the normaliza- 

tion principle in a somewhat altered form. 

All algorithms are normallzable. 
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The validity of this principle is based first of all on the fact 

that all the algorithms known at the present time are normalizable. 

Since in the course of the long history of the development of the ex- 

act sciences a considerable number of different algorithms have been 

devised, this statement is convincing in itself. 

In actuality it is even more convincing. We can show that all the 

methods known at the present time for the composition of algorithms 

which make it possible to construct new algorithms from the already 

known ones do not go beyond the limits of the class of normalizable 

algorithms. In other words, if the original algorithms were normaliza- 

ble, then any compositions of these algorithms (among the number of 

forms of compositions known at the present time) will also be normal- 

izable. This implies that for the construction of an example of an un- 

normalizable algorithms it is necessary to use techniques which arc 

qualitatively different from everything the mathematician has encoun- 

tered up till now. 

However this is not all. A whole series of scientists have under- 

taken special attempts to construct algorithms of a more general form 

and all these attempts have not been carried beyond the limits of the 

class of normalizable algorithms. We shall consider one of these at- 

tempts (the algorithmic scheme of Kolmogorov-Uspenskiy) below. The 

failure of these attempts is in itself the most striking evidence in 

favor of the validity of the normalization principle. 

Thus the normalization principle should be considered sufficient- 

ly substantiated, although this substantiation does not exclude com- 

pletely the possibility of its refutation in the future (by construc- 

tion of an example of an unnormalizable algorithm). In any case, the 

normalizable algorithms encompass a significant portion of the algo- 

rithms (if not all) and therefore the system of normal algorithms can 
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be considered in practice to be a universal algorithmic system. 

Let us consider now some of the common forms of compositions of 

algorithms which were mentioned above. We shall define not the composi- 

tion of the algorithms themselves, but the composition of their corre- 

sponding alphabetical representations, however, as remarked above, the 

possibility of normalization of the result of the composition of the 

normal algorithms makes it possible (at least in the class of normal 

algorithms) to extend the definition of the composition of the repre- 

sentations to the composition of the algorithms themselves. 

One of the most common forms of composition of algorithms (repre- 

sentations) is the superposition of algorithms. In the superposition 

of the two algorithms A and B the output word of the first algorithm 

(A) is considered as the input word of the second algorithm (B), SO 

that the result of the superposition of the algorithms A and B can be 

represented in the form D(p) = B(A(p)). This definition extends to the 

superposition of any finite number of algorithms. 

A superposition of generalized normal algorithms can be consid- 

ered an a generalized normal algorithms. For this it is sufficient 

that the output element of the graph-diagram of each preceding algo- 

rithm be combined with the input element of the succeeding algorithm. 

The normalization of a superposition of normal algorithms requires con- 

siderable skill, however it too can always be accomplished [53]. 

We shall point out some other forms of compositionb of algorithms. 

The union of the algorithms A and B in the same alphabet x is the 

term given to the algorithm C in the same alphabet which transforms 

any input word £ contained in the intersection of the domains of defi- 

nition of the algorithms A and B into the words A(p) and B(p) written 

side by side; this algorithm is considered undefined on all the remain- 

ing input words. 
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A ramification of algorithms Is a composition of the three algo- 

rithms A, B and C. Designating the result of this composition by D, we 

shall consider that the domain of definition of the algorithm D coin- 

cides with the Intersection of the domains of definition of all three 

algorithms A, B and C, and that for any word p from this Intersection 

D(p) - A(p) If C(p) = e, and D(p) = B(p) If C(p) ^ e. 

A repetition (iteration) Is the composition of the two algorithms 

A and B. Designating the result of this composition by P, we define 

that for any Input word jj the corresponding output word P(q) Is deter- 

mined by the following condition: there exists such a series of words 

q = q0' ql' q2' ••,' qn ^ p(q)' that for a11 1 = 1' 2>-"* n(i±  = 

= A(qlÄl), for all 1 «= 1, 2,..., n- 1 B(q.) / e,  and B(q ) = e. In 

other words, the algorithm A is applied sequentially several times 

until a word is obtained which is transformed by the algorithm B Into 

the empty word e (we can, of course, select any other fixed ford rath- 

er than the empty word). 

All the methods described for the composition of the normal algo- 

rithms lead to normallzable algorithms [53]. 

Of very great Importance for the normal algorithms. Just as for 

every universal algorithmic system, is the problem of the construction 

of the so-called universal algorithm. Let us consider the universal 

algorithm in application to the normal algorithms. 

Let us be required to construct a normal algorithm which will per- 

form the operation of any normal algorithm if we are given the diagram 

(substitution set) of this latter algorithm. 

The exact formulation of the problem on the universal algorithm 

can be accomplished by various methods. We shall describe one of the 

most natural methods for such a formulation. To do this we first of 

all fix some standard alphabet 1  (for example, binary). For all other 

- 37 - 



i 
possible alphabets we fix some definite method of coding the letters 

of these alphabets in the selected standard alphabet. In the case of 

the binary standard alphabet this can be done, for example, as follows: 

the letters of any given alphabet are numbered sequentially using the 

j   natural numbers, after which the 1-th letter Is assigned the binary 

code, beginning and ending with zero and having between these zeros ex- 

actly 1 ones. If the total number of letters In the given alphabet Is 

equal to n, then we Introduce also the additional ((n + l)-st, (n + 2)- 

ndj etc.) letters for the designations of the symbols used In the dia- 

grams of the normal algorithms (arrows, dots, separation sign between 

formulas) and also for the designation of the special end sign which 

stands at the beginning and end of the algorithm diagram. 

After writing the algorithm diagram with a single word and coding 

the letters of this word by the method Just described, we obtain a 

word In the standard alphabet, which Is termed the transform of the 

given algorithm. For example, for the normal algorithm given by the di- 

agram 

y-* ., 

the transform Au of the algorithm A In the binary alphabet can be ob- 

tained as follows: we fix the numberatlon of the letters, considering 

x to be the first, ^ the second, the arrow to be the third, the dot to 

be the fourth, the separation symbol to be the fifth, and the end sym- 

bol to be the sixth letter. Then the transform Au of the algorithm A 

Is written as: 060 010 020 030 010 050 020 030 040 060. Here, for brev- 

ity. In place of writing out In a row any positive number n of ones we 

have written this number n Itself. 

Along with the transform of the algorithm A, there can also be ob- 

tained by use of the coding In the standard alphabet 1 described above 
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the transfCi-in pu of any Input word £ of this algorithm. 

The following theorem on the universal normal algorithm Is valid 

(see Markov [53])» 

There exists such a normal algorithm U, termed a universal normal 

algorithm, which for any normal algorithm A and any Input word £ from 

the domain of definition of this latter algorithm transforms the word 

Aupu, obtained by suffixing the transform of the word p to the trans- 

form of the algorithm A, into the word which is the transform of the 

corresponding output word A(p) into which the algorithm A transforms 

the word JD. If, however, the word £ is chosen so that the algorithm A 

is not applicable to it, then the universal algorithm U Is not appli- 

cable to the word Aupu, 

This theorem is of tremendous value, since it implies the possi- 

bility of the construction of a machine which can perform the opera- 

tion of any normal algorithm, which means, in view of the normaliza- 

tion principle, the operation of any arbitrary algorithm. For this 

purpose it is sufficient to insert into the machine a program, i.e., 

the transform of that normal (normalized) algorithm whose operation 

the machine is to perform. 

However, although in principle the possibility has been proved of 

the normalization for all the algorithms known at the present time, 

the actual performance of the normalization is a very serious matter 

even for the relatively simple algorithms (the algorit;>jn for the multi- 

plication of two whole numbers, for example). This means that the pro- 

gramming for a machine simulating the universal normal algorithm would 

be excessively unwieldy and  impractical. Therefore, in practice the 

machines which make possible the realization of the operation of any 

algorithm are designed on the basis of the use of other algoriUimic 

systems which differ from the system of the normal algorithms. These 
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systems are described In Chapter 5. 

§3. THE KOIHOaOROV-USPENSKIY ALGORITHMIC DIAGRAM 

The present section describes the method suggested by Kolmogorov 

and Uspenskl [43] for the determination of algorithms of the most gen- 

eral form. For the construction of the corresponding algorithmic dia- 

gram they choose the method which Is based only on those properties 

which are without question Inherent to any algorithmic diagram and 

which will realize these properties In particular specific forms with- 

out permitting any loss of generality In doing so. 

L the construction of such a generalized algorithmic diagram It 

is useful to picture as a vlsuallzable model a man who Is performing 

the computation or other processing of Information In accordance with 

a particular precisely prescribed system of rules. The man performs 

uhe role of Information converterj while the converted Information It- 

self .3 located outside of the man. We shall assume for deflnlteness 

that this Information Is written on sheets of paper, and that the man 

has at his disposal an unlimited supply of clean sheets and an unlim- 

ited reserve of space for storage of tllled-out sheets. The transforma- 

tion of the Information realized by the man Is broken down Into Indi- 

vidual discrete steps. At each such step the man surveys some number 

of completed sheets and, depending on the contents of these records, 

using a strictly defined and time-Invariant bystem of rules located In 

his memory, he performs certain alterations In the reviewed Informa- 

tion. These alterations may be of three forms: erasure (annihilation) 

of the entire reviewed Information or some portion of It, recording 

on the reviewed sheets of new Information, alteration of the ensemble 

of reviewed sheets. 

At first glance It seems that the requirement for the Invarlance 

In the system of rules used for the performance of the processing of 

- 40 - 

» 

-1» 'U-'S- 



the Information significantly narrows the range of problems considered 

In comparison with the problems which can in actuality be solved by 

man, since man is capable of altering the rules in the course of the 

operation. In actuality this limitation is not significant, since the 

nature of the alteration of the Information at each step of the proc- 

essing depends not only on the rules of the transformation but also on 

this information itself. In this connection it is possible in case of 

necessity to vary the nature of the information transformation wion 

the course of time, to introduce corresponding changes in the informa- 

tion itself, and not in the rules stored in the memory of the proces- 

sor, in other words, to write down in the rules on the sheets of paper 

the required alterations and not to memorize them. 

An absolutely necessary limitation in the design of any algorith- 

mic system is the capability of the information processor to absorb at 

any given instant of time only a limited quantity of information. If 

the total volume of the material being processed exceeds the volume of 

this active zone of the processor, then the information must be 

brought into the processing gradually, step by step. 

After these preliminary remarks we turn directly to the descrip- 

tion of the Kolmogorov-Uspenskiy diagram. The information in this dia- 

gram, as in general in the case of the alphabetic conversions. Is writ- 

ten with the aid of a finite number of symbols, letters, which we 

shall designate as T0, T-., ..., T . To achieve the greatest possible 

generality, we shall also establish certain relations between the sym- 

bols, these relations belonging to one of the types R1, R2, ..., Rm. 

For each type of relation R. we fix the number k. of related symbols 

(letters). We designate by K the maximal number among the numbers k,, 

.... k . The relations between the symbols are introduced in order to '    m 
take account of the case of complex letters  which designate,  for 
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example, entire pharases In ordinary language. In that case the compo- 

sition of the phrase (letter) may include Indications of the relative 

positioning of Information (other letters) which has direct relation 

with the letter In question (say. Information which must be brought In- 

to consideration In the following step of the algorithm). The limiting 

of the number of related symbols depends on the boundedness of the In- 

formation contained In each letter (otherwise the letter cannot be con- 

tained entirely in the active zone and It must be divided Into Individ- 

ual portions). 

Let us assume that all the relations 

y'  Y*       T"     l*1 which any given letter can occur are or- 

'~°", dered In some way and numbered, and that 

the cotal number of such relations Is 

bounded by the same number s. We shall use 

circles to designate the letters. Intro- 

ducing when necessary numeration of these 

circles with numerals written adjacent to 

the corresponding circles. These numerals have no relations to the 

type of symbol (letter) designated by the given circle. When necessary, 

the symbol of the corresponding letter 1ü written Inside the circle 

which represents It. 

Any relationship between sumbols (letters) can now be represented 

as shown In Pig. 3» 

The subscripts of p1, p2, ... , pk on this figure show the posi- 

tion occupied by the relation In question In the ordered set of rela- 

tions for the corresponding (designated by the numbered circles) let- 

ter. These subscripts (regardless of the choice of the letters and 

the form of the relation R) can take only the values 1, 2, 3, ..., s. 

Pig. 3. 
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We can considerably simplify the writing of the Information In 

this diagram by adding to the number of letters T0, T,, ..., T a + K 

+ m letters: s letters for the designation of the numbers of relations 

in any given element (squares In Pig. 3)* K letters for the designa- 

tion of the numbers of relations with the letters for any given rela- 

tion R (triangles In Pig. 3), and m letters for the designation of the 

R-TJ Rp* " * ' ^m rela^:1-ons themselves. If we denote all the new letters 

by circles, then the information takes the form of a set of circles 

connected between one another by paired bonds. Then there is no re- 

quirement for any special numeration for the order of occurrence of a 

letter in particular relations, since, as shown in Pig. 3, all the let- 

ters related with any single letter will inevitably be different. 

Thereby the relations in which a given symbol (letter) occurs are num- 

bered automatically—by the numbers of the sumbols (letters) with 

which the given symbol is related. 

Thus, finally, the information in the written algorithmic diagram 

is represented by an arbitrary finite set M whose elements are the 

fixed letters TQ, T,, ..., TN (N > l) where in the set M each of the 

letters Tp, T_, ..., TN can occur any number of times, and, in addi- 

tion, in the set there occurs each time one and only one of the let- 

ters T0 or T,. On this set there is established a paired relation (cer- 

tain letters "Join" pairwise with one another) so that the following 

condition "a" is satisfied: all the letters connected with any clngle 

letter of the set M are palrwise different. 

In other words, the Information is in the form of some one-dimen- 

sional complex (linear undirected graph), whose vertices (designated 

by the circles) are identified with the letters TQ, T,, ... , TN and 

the (undirected) lines connecting certain pairs of vertices are identi- 

fied with the paired relations between the letters described above. 
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The requirement for the occurrence In the complex in question 

(the set M) of one and only one vertex Identified either with the let- 

ter T0 or with the letter T1 Is associated with the necessity for the 

establishment of the reference point (center of the active zone) of 

j   the information, and one of these letters (we assume that it is the 

letter T0) is required for the compleses designating the information 

whose processing is not yet completed, and the other (in the present 

case the letter T,) is required for the complexes designating the ter- 

minal information from which the final results of the operation of the 

algorithm must be extracted. 

The vertex of the informational complex S, which is identified 

with the letter T0 or T,, is termed the initial vertex of the complex. 

The active zone of the complex S is the subcomplex of the complex S 

which consists of the vertices (letters) and the lines (relations) be- 

longing to the chains of length X < P containing the initial vertex, 

where P is a number which is determinate, fixed for the given algo- 

rithm. Here and hereafter we use the term chain to designate any fi- 

nite sequence of vertices B,, Bp, ..., B such that any two neighbor- 

ing vertices in this sequence are connected by lines; the number of 

all these vertices (equal to p— l) is termed the length of the chain, 

and these lines themselves are also Included in the chain in question. 

The ensemble of all the vertices of the active zone of the infor- 

mation complex which are connected with the Initial vertex by chains 

of length P and are not connected with it by chains of lesser length 

is termed the boundary of this zone. The complex is called bound If an- 

y two of its vertices can be connected by a chain. The ensemble of ver- 

tices and lines lying beyond the limits of the active zone of the com- 

plex S is termed the external portion of the complex. 
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Two complexes are termed mutually isomorphlc if between their ver- 

tices we can establish mutually single-valued correspondence ., where 

the corresponding vertices are designated by the Identical letters T0, 

T-,, ..., TN, and corresponding pairs of vertices are either simultane- 

ously connected or simultaneously not connected to one another. Mutual- 

ly isomorphic complexes are in essence identical, and differ perhaps 

only in the method of their representation (position of the vertices 

on the plane, for example). 

In view of the boundedness of the total number of vertices in the 

active zone of the information complex of any given algorithm and the 

boundedness of the number of letters T0, T,, ..., TN for any given al- 

gorithm A, there exists only a finite number of different (pairwise 

nonlsomorphic) active zones U,, Up, ..., U . Starting from this, the 

rules for their processing can be given by the simple correspondence 

table U. -► W. (i = 1, 2, ... , r). 

The complexes appearing in the right side of this table must have 

subcomplexes which are isomorphic to the boundaries of the correspond- 

ing active zones Ü., and these isomorphisms must be fixed once and for 

all. In other words, to each vertex lying on the boundary L(U.) of the 

active zone U. there must be associated a completely determined vertex 

of the complex W. (l = 1, 2, ... , r). Each of the complexes W. must 

satisfy all the conditions imposed above on the information complexes; 

in particular, it must have one and only one Initial vertex, designat- 

ed by the letter T0 or by the letter T,. 

With the aid of the constructed correspondence table, we deter- 

mine the operator R« which performs the direct processing of the infor- 

mation complex at each step of the operation of the given algorithm A. 

In the considered information cemplex S (initial and intermediate), we 

find the initial vertex. Drawing from it all possible chains of length 
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P, we construct the active zone and determine its boundary L(U). 

Further, we find that (single) active zone from the left side of 

the correspondence table which Is Isomorphlc to the found active zone 

U. As a result of the properties defined above of the Information com- 

plexes (in particular the property "a") and the connectedness of the 

two complexes U. and U with one another, only one Isomorphism Is possi- 

ble. This makes possible unique Identification of the vertices lying 

on the boundary L(U) of the active zone U with the corresponding ver- 

tices, for the Isomorphlc case, lying on the boundary L(U1) of the ac- 

tlve zone IL and, using the Identification of the vertices employed In 

the correspondence table, also with certain vertices of the complex U.. 

Now It Is easy to remove all the Interior, I.e., not lying on the 

boundary L(U), portion of the active zone U sind replace It by the sub- 

complex W. of the complex W. which Includes all the elements of this 

complex except Its vertices which were Identified earlier. Thus, we 

"insert" Into the Information complex In question the new complex W' 

In place of the Internal portion of Its active zone while retaining un- 

changed the boundaries of the active zone. 

Since In the complex W. the Initial vertex occupies a new posi- 

tion with relation to the boundary of the previous active zone, the 

new active zone, determined after the Insertion, will have a different 

boundary. The new Information complex S1 obtained after such sin Inser- 

tion then will be the result of the application of the direct proces- 

sing operator R. of the algorithm A In question to the original Infor- 

mation complex S. The direct processing operator Is applied to the 

resulting Information complex until obtaining a complex whose Initial 

vertex Is designated by the letter T, and not by the letter TQ. 

Such a complex Is termed a terminal complex and Its maximal bound 

subcomplex, containing the Initial vertex T^, Is considered to be the 
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solution. I.e., the information complex obtained as the result of the 

action of the algorithm A on the initial (input) information complex 

SQ. If, however, the algorithm continues operation without end without 

obtaining a terminal complex at any step, then. Just as in the case of 

the normal algorithms, we take it that the algorithm in question is 

not applicable to the given initial complex S0. 

We can expand the definition of the algorithm so as to permit in 

the right side of the table correspondences of a complex without an in- 

itial vertex. The application of the substitution wi^h such a right 

side leads to natural termination of the algorithmic process, since 

the determination of the active zone and the further substitution be- 

come impossible. 

However, since the terminal complex (in the sense defined above) 

does not appear, again in this case the algorithmic process must bo 

considered to have terminated without result and the algorithm is con- 

sidered inapplicable to the corresponding initial information complex. 

Still another type of unsuccessful termination of the alcorlthmlc 

process is possible in which the correspondence table does not contain 

all forms of active zones which sire possible for the given algorithm. 

In the case when the information complex reaches a state in which al- 

though there is an initial vertex designated by the letter T0 none of 

the substitutions of the correspondence table are applicable. It is al- 

so considered that the algorithm is not applicable to the correspond- 

ing Initial information complex. 

We must make still one more remark on the nature of the substitu- 

tions in the correspondence table. If special measures are not taken, 

as a result of the substitutions the condition "a" Introduced above 

may be violated; this condition must be satisfied by all the informa- 

tion complexes we are considering. In order to avoid such a distortion 
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of the information, It Is clearly sufficient to assume that any  vertex 

of the arbitrary complex W. from the right side of the correspondence 

table, which in the process of "insertion" is identified with some ver- 

tex C[ of the boundary of the active zone in the complex W. , can be con- 

nected by lines only with the initial vertex and with the vertices des- 

ignated by the same letters as the vertices with which there is con- 

nected by lines in the complex U, the vertex corresponding to the ver- 

tex cj. 

This condition (we term it "b") does not violate the generality 

of our considerations. The boundary used in performing the "insertion" 

operation is defined quite arbitrarily. If we included in the boundary 

not only those vertices which are removed from the initial vertex by 

the distance P (connected with it by chains of length P but not by 

chains of lesser length) but also the vertices which are removed from 

it by the distance P — 1, then, establishing the isomorphism of the 

boundaries in the compleses IL and W. we would obtain, as it is not 

difficult to see, a stronger limitation on the correspondence table 

than the limitation imposed by the condition "b". 

Careful analysis of the description of the Kolmogorov-Uspenskiy 

algorithmic diagram shows that in form this diagram to a very signifi- 

cant degree is reminiscent of the operation actually performed by a 

man when he processes information supplied to him externally in accord- 

ance with the particular rules of an algorithm which he has memorized. 

The developers of this diagram took special measures not to lose gener- 

ality in the nature of the transformation performed. Nevertheless, 

they demonstrated that the diagram which they described gives the pos- 

sibility of constructing only normalizable algorithms. This result can 

be considered confirmation of the normalization principle formulated 

in §2. 
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§4. OT'    HEORETICAL ALGORITHMIC SYSTEMS 

L..^oorically the first algorithmic system which received fairly 

complete and thorough development was the system based on the use of 

constructively determinate arithmetic (integral) functions which were 

given the name recursive functions. The use of these functions in the 

theory of algorithms is based on the idea of numeration of the words 

in any alphabet by means of the sequential natural numbers. This numer- 

ation can be accomplished most simply by arranging the words in in- 

creasing order of their lengths, and arranging words having the same 

length in an arbitrary (lexicographic, for example) order. 

After numeration of the input and output words in an arbitrary al- 

phabetic operator, this operator is transformed into the operator y = 

= f (x) in which both the argument x and the function ^ itself take non- 

negative integral values. The function f(x), of course, can not be de- 

fined for all values of the argument x but only for certain values of 

x which constitute the domain of definition of this function. Such par- 

tially defined integral and shole-valued functions are usually termed 

arithmetic functions for brevity. 

Among the arithmetic functions we separate the following particu- 

larly simple functions which we shall term elementary arithmetic func- 

tions; the function identically equal to zero (defined for all whole 

nonnegative values of the arguments); the identity functions f(x.) = 

= x., which repeat the values of their arguments; the direct succes- 

sion function f(x) = x + 1, which also defined for all whole nonnega- 

tive values of its argument. 

Using as original functions the elementary arithmetic functions 

Just listed, we can with the aid of a small number of general construc- 

tive techniques construct ever more and more complex arithmetic func- 

tions. In the theory of recursive (constructive arithmetic) functions 
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three operations are of particularly great Importance:   superposition, 

primitive recursion and  least root operations. 

The operation of superposition of functions Involves the substltu- 

tlon of some arithmetic  functions  In place of the arguments of other 
1 

arithmetic functions. Thus, from the already known functions v.e can 

construct new arithmetic functions. For example, performing the super- 

position of the functions f(x) = 0 and g(x) = x + 1, we arrive at the 

function h(x) ■= 1. With the superposition of the function g(x) with It- 

self there appears the function p(x) ■ x + 2, etc. 

The operation of primitive recursion makes It possible to con- 

struct an n-place arithmetic function (function of n arguments) from 

two given functions, one of which Is (n — l)-place, and the other Is 

(n + l)-place, the method of this construction Is determined by the 

following two relations: 

f(x JC^.O) =g(xl *„_,);        (6) 

/ («i, x,..., x^,, xn+ l)=h (JCJ, x, *„, y),       (7) 

where y = fCx,, ..., xn.i >  ^c ) • f Is the function being determined 

and js and h are the given functions. 

For a proper understanding of the operation of primitive recur- 

sion we must note that every function of a smaller number of variables 

can be considered as a function of any larger number of variables. In 

particular, constant functions, which It Is natural to consider as 

functions of a zero argument, can If desired by considered as func- 

tions of any finite number of arguments. 

As an example, let us consider how the operation of primitive re- 

cursion Is applied to construct from the elementary arithmetic func- 

tions the two-place summation function f(x,y) = x + y. This function 

Is determined with the aid of the Identity function g(x) = x and  the 

direct succession function h(x) = x + 1 
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/(x.O) =*=**(*); 
f(x.y+\) = (x + y)+l=hU{x y))- 

We can construct similarly the product, exponential, power and 

other widely known arithmetic functions. 

The functions which can be constructed from the elementary arith- 

metic functions using the operations of superposition and primitive re- 

cursion any (finite) number of times in any sequence are termed the 

primitively recursive functions. 

The majority of the arithmetic functions are primitively recur- 

sive functions. Nevertheless the primitively recursive functions do 

not include all the arithmetic functions which can be defined construc- 

tively. In the construction of all these functions use is made of oth- 

er operations, in particular the least root operation. 

The least root operation makes it possible to determine a new a- 

rithmetic function fCx,, ..., x ) of n variables with the aid of the 

previously constructed arithmetic function gCx,, ..., x , y) of n + 1 

variables. For any given set of values of the variables x.. = a.,, ..., 

x_ = a as the corresponding value f(a,. a0, ..., a ) of the function n   n r   -o      x l' 2      n 

being determined fCx,, x^, ..., x ) we take the least integral nonnuga- 

tive root y = ß of the equation g{o.1,   ..., a . y) ■ 0. In the case of 

nonexistence of integral nonnegative roots of this equation, the func- 

tion f(x.j, Xo, ••., x ) is considered indeterminate for the correspond- 

ing set of values of the variables. Usually it is also presumed that 

the function f(x1, x^, ..., x ) is indeterminate on the set x, = a,, 

Xp = cto* •.., x = a - if with the existence of the least root y = ß 

of the equation g(a.j, ou, ..., a , y) « 0 for at least one integral 

nonnegative value of y = 7 which satisfies the re]ation 0 < 7 < ß - 1, 

the function g(a1, otg, ..., an, y) is indeterminate. 
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The arlthmttic functions which can be constructed from the elemen- 

tary arithmetic functions with the aid of the operations of superposi- 

tion, primitive recursion and least root are termed partial recursive 

functions. If these functions are In addition everywhere determinate, 

then they are termed general recursive functions. 

In this definition,, Just as In the definition of the primitive re- 

cursive functions, provision Is made for the possibility of performing 

all admissible operations in any sequence and any finite number of 

times. There exists, however, the result of Kleene [41] whic« makes it 

possible to obtain any partially recursive function from two primitive 

recursive functions with the use of sequential application to them of 

a single least root operation and a single superposition operation. 

This result can be formulated more exactly as: 

for any partial recur&ive function f (x1, ... , x ) there exist two 

primitive recursive functions g(x1, ..., x^,y) and h(x) such that the 

function f(x1, ... , x^) can be obtained from them in the form t{Xmt 

..., O = h (p. [g(x1, ..., x^, y) « 0]), where u is the least root 

operator. Here the function h(x) can be chosen once and for all, re- 

gardless of the choice of f. 

The partial recursive functions are the most common class of con- 

structively definable arithmetic functions. They include, in particu- 

lar, all the arithmetic functions which can be given in the form of 

finite recursive schemes of arbitrary form. By finite recursive scheme, 

here we understand any finite system of equalities r = s, where r and 

js are any finite (containing a finite number of symbols) expressions 

constructed from the known primitive recursive functions of unknown 

functions with numerical and literal arguments, where the values of 

the unknown functions for any given values of the arguments must be de- 

termined uniquely after a finite number of steps (depending on the 
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selection of the values of the arguments) as a result of the applica- 

tion of two rules. The first rule (substitution rule) consists In the 

substitution Into some one of the given equalities In place of one of 

the arguments some one of Its numerical values. The second rule (re- 

placement rule) makes It possible to use an equality of the form x « 

= f(x,, x2, .,., x ), where x, x,, x2, ... , x^ are numbers for the re- 

placement by the quantity x of some occurrence of the quantity f(x,, 

Xg, ..., x ) In one of the equalities r * B. 

It Is found that all the general recursive functions and only 

such functions can be represented In this manner. This situation makes 

It possible, following Erbran and Qodel, to define the general recur- 

sive functions as functions represented by the finite recursive 

schemes of the form described above. 

If, retaining the condition of slngle-valuedness, we do not re- 

quire the definability of the values of the functions appearing in the 

scheme for all values of the arguments, we can represent the partial 

recursive functions by similar schemes. It Is of essence that no recur- 

sive definitions (using finite schemes) make It possible to go beyond 

the limit of the class of partial recursive functions. 

After accomplishing the numeration of the Input and output words, 

any normal algorithm can be realized In the form of a partial recur- 

sive function. Conversely, any algorithm which Is realizable with the 

aid of the partial recursive function is equivalent to some normal al- 

gorithm. Thus, we can draw the following Important conclusion. 

An algorithm is normalizable when and only when it can be real- 

ized with the aid of the partial recursive function. 

This proposition shows that even on the basis of the arithmetic 

(numerical) approach to the theory of algorithms there is no departure 

from the class of the normalizable algorithms. 
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Let us consider two other approaches to the theory of algorithms 

proposed In 1936 by Post [63] and Turing [73]. 

In the algorithmic system proposed by Post, the input and output 

information is represented in the standard binary form, while the al- 

gorithm is in the form of a finite ordered set of rules termed orders. 

For the writing of the input, output and intermediate information use 

is made of a hypothetical endless information tape which is divided in- 

to individual cells, in each of which there can be located only a sin- 

gle letter (digit 0 or l). Those cells in which ones are written are 

termed signed and those in which zeros are written are termed unsigned. 

At any instant of operation of the algorithm only a finite number of 

cells can be signed. 

The operation of the algorithm is accomplished in discrete steps, 

in each of which there is performed one of the orders which constitute 

the algorithm. To each step there corresponds a definite active cell 

on the information tape. Some initial cell is fixed as the active cell 

for the first order. Further changes of the location of the active 

cell on the tape must be provided for in the algorithm itself. The or- 

ders which constitute the algorithm can belong to one of the following 

six types. 

First type. Flag the active cell of the tape (write one in it) 

and go to the performance of the i-th order (i can be any number from 

the numbers used for the numeration of the orders of the algorithm). 

Second type. Erase the flag of the active cell (write zero in it) 

and go to the performance of the i-jth order. 

Third type. Shift the active cell one step to the right and go to 

the performance of the 1-th  order. 

Fourth type. Shift the active cell one step to the left and go to 

the performance of the i-jth order. 
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Fifth type. If the active cell is signed (one Is written there), 

then go to the performance of the J-th order, and If the active cell 

Is not signed (zero written there), then go to the performance of the 

1-th order. 

Sixth type. Stop, termination of operation of the algorithm. 

Algorithms composed of any finite number of rules of the type des- 

cribed are called Post algorithms. It has been shown that the Post al- 

gorithms reduce to the algorithms realizable with the aid of the par- 

tial recursive function, and, conversely, any partial recursive func- 

tion can be represented by an algorithm of the Post system. Thus, we 

can formulate the following proposition. 

The class of all algorithms equivalent to the Post algorithms co- 

incides with the class of all normallzable algorithms. 

The algorithmic scheme proposed simultaneously by Post and Turing 

[73] Is quite close to the scheme Just described. In the Turing scheme, 

which Is customarily termed the Turing machine, the Information is al- 

so recorded on a bilaterally Infinite Information tape which is divid- 

ed Into individual cells. However, in contrast with the Post algorithm, 

here an arbitrary finite alphabet is required for the writing of the 

Information. Each cell of the Information tape serves for the writing 

of a single letter. This letter can be surveyed by a sensitive element, 

the so-called head of the Turing machine, which is capable of displace- 

ment along the Information tape In both directions. The head of the 

Turing machine can be in a finite number of different states q,, q2, 

•••j qn> 
can print In the surveyed cell any letter x,, x2, •••^m and 

can shift to the right or left along the information tape by one cell. 

The writing of the algorithm realized by the Turing machine is ac- 

complished with the aid of the operating program of this machine, 

which is a set of five symbols of the form ^^^k^j.'r,' Tl10 
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wrltten-out group of five symbols designates that ♦he Turing machine 

head which Is In the state q1 and senses the letter x. recorded on the 

tape will print In place of this letter the new letter x. (which can 

In a particular case coincide with the previously recorded letter x.)t 

transfers to the new state ci (which also can coincide with the previ- 

ous state) and makes a shift along the tape of the magnitude s , equal 

to ±1. 

The original scheme of the Turing machine was Intended for the 

writing out o. the values taken by an arbitrary single-place partial 

recursive function with values of the argument equal to 0, 1, 2, .... 

In this case, of course, the Turing machine must operate infinitely 

long. We can  construct a Turing machine which computes the values of 

any a priori given partial recursive function. It is advisable, how- 

ever, to modify the original scheme of the Turing machine described a- 

bove. Let us assume that the last symbol s of the group of five sym- 

bols describing the operation of the Turing machine can take, in addi- 

tion to the values ±1 Introduced above, a third value—"stop machine". 

With this addition the Turing machine is converted into an ordinary al- 

gorithmic system. It either processes the input word £ initially writ- 

ten on the tape infinitely long or after a finite number of transforma- 

tion steps it stops. In the first case it is presumed, as usual, that 

the algorithm realized by the machine is not applicable to the input 

word 2*  In the second case the Information remaining on the tape at 

the instant the machine stops is taken as the output word into which 

the machines transforms the given input word 2»  In this case, of 

course, it is necessary to have in the alphabet used for the recording 

of the Information on the tape a special empty word to designate those 

cells in which no information is written. 
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We can show that all algorithms which are realizable with the aid 

of the described modifications of the Turing machines are normallzable 

and, conversely, any normallzable algorithm can be realized with the 

aid of a Turing machine specially constructed for this purpose. Making 

use of the sriting of the programs of operation of the Turing machines 

and of their input words in some standard alphabet, we can construct 

a universal Turing machine by exactly the same method used in con- 

structing the universal normal algorithm (§2). Giving the universal 

Turing machine the representation of the program of any given Turing 

machine M and the representation of any input word £, we obtain the 

representation of the output word cj into which the machine M trans- 

forms the input word JD. If, though, the algorithm realized by the mach- 

ine M is not applicable to the word £ (the machine M works infinitely 

long on its transformation), then the algorithm realized by the univer- 

sal Turing machine also is not applicable to the word formed from the 

representation of the word £ and the program of the maching M. 

Thus, in spite of the considerable qualitative difference, all 

the described algorithmic systems lead, in essence (with an accuracy 

to equivalency), to the same class of algorithms. This conclusion Is 

still another confirmation that the modern theory of algorithms em- 

braces an extremely broad class (if not all) of constructively definab- 

le alphabetic operators. 

§5. THE CONCEPT OP ALOORITHMICALLY INSOLUBLE PROBLEMS 

Every algorithm is the method of solution of some mass problem 

which can be formulated in the form of the processing not of one, but 

an entire set of input words into the corresponding output words. 

Since both the condition and the solution of any problem can be ex- 

pressed in the form of individual words, every algorithm can be consid- 

ered as a universal method for the solution of an entire class of prob- 

lems. - 57 - 
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A detailed analysis shows that there also exist those classes of 

problems for whose solution there Is not and can not be a single uni- 

versal technique. The problems of the solution of this kind of problem 

are termed algorlthmlcly Insoluble problems. However the algorithmic 

Insolubility of the problem of the solution of problems of a particu- 

lar class does- not at all Indicate the Impossibility of the solution 

of any  specific problem of this class. The question concerns the Impos- 

sibility of the solution of all problems of the given class by the 

same technique. 

For a better understanding of the problem of the algorithmic In- 

solubility we shall present examples of algorlthmlcly soluble and algo- 

rlthmlcly Insoluble problems. 

A typical example of an algorlthmlcly soluble problem Is that of 

the proof of Identities In ordinary algebra. For simplicity we shall 

limit ourselves to the cases when the Identities are constructed from 

rational numbers and letters (designated variables) with the aid of 

the addition, subtraction and multiplication operations. The following 

general technique for the solution of this problem Is well dnown from 

the school algebra course: using the distributive way for multiplica- 

tion, we remove the parentheses In the right and left sides of any giv- 

en Identity and perform the reduction of like terms in accordance with 

well known rules. After accomplishment of all these transformations, 

both the left and right sides of the original Identity are transformed 

Into polynomials. The Identity will be valid when any only when these 

polynomials Identically coincide with one another. In other words, the 

validity of the Identity means that after the transfer of all the 

terms of the transformed Identity Into one side these terms mutually 

cancel, the result being the conversion of the Identity into the trivi- 

al Identity 0=0. 
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Thus, the identity problem in elementary algebra is algorithm!cly 

solvable--there exists a single constructive technique which makes it 

possible after a finite number of steps to decide whether any fiven ■n^~ 

lation is an identity. We can, however, construct examples of such al- 

gebraic systems in which the Identity problem is an algorithm!cly in- 

soluble problem. As such algebraic systems we might select, for exam- 

ple, the semigroups or groups given by systems of generating elements 

and defining relations. Examples of semigroups with insoluble identity 

problem were first found by Post [64] and corresponding examples for 

groups were found by Novikov [60]. 

Without writing out the defining relations explicitly, we shall 

clarify the essence of these examples. Let x^, Xp, ..., x be letters 

of some finite alphabet. The set of all words in this alphabet, includ- 

ing the empty word e, is termed a free semigroup with the generating 

elements x,, x2, ..., x , if for the arbitrary pairs of words p, q 

there is introduced the multiplication operation amounting simply to 

the suffixing of one word to the other. We agree to designate the free 

semigroup with generating elements x,, x2, ..., x by F(x1, Xp, ..., 

x ), and the result of multiplying the word £ by the word ^ we desig- 

nate by pq. 

In the free semigroup we can introduce any set of defining rela- 

tions , which are formal equalities between two nonidentlcal words: 

p. = q. (i = 1, 2, ...). Two words in the free semigroup P with the 

given system S of defining relations are termed identical, or mutually 

equivalent, if one of them can be obtained from the other by an arbi- 

trary number of substitutions into the second word of the right sides 

of the defining relations in place of the left and, conversely, the 

left in place of the right. For example, in the semigroup with the sys- 

tem of generators (x, y) and one defining relation xy = yx the words 
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p - xxy and q - yxx are mutually Identical since the first word can be 

obtained from the second as the result of two substitutions of the 

form described above: q • yxx-»- xyx-»- xxy ■ p. With the reverse substi- 

tution, the chain of substitutions written above can be read in the re- 

verse direction, which makes possible not only the transformation of 

.the word JJ into the word £ but also of the word jg into the word 5. 

The identity problem of words for the semigroups is formulated as 

follows. 

Assume that in the arbitrary free semigroup F with a finite num- 

ber of generators there is given any system of defining relations S 

consisting of a finite number of relations. We are required to find 

the single constructive technique which makes it possible after a fi- 

nite number of steps to decide whether any two given words of the semi- 

group P with the system of defining relations S are identical or non- 

identical. 

For some systems of defining relations the problem formulated is 

solvable; however, as Post [64] has shown, there also exist such sys- 

tems of defining relations for which the problem of the identity of 

the words is algorithmicly insoluble. This does not mean, of course, 

impossibility of establishing the identity or nonidentity of any fixed 

specific pair of words. There does not exist a single technique for 

the establishment of the identity of any pair of words, similar to the 

technique described above for the proof of the validity or nonvalidity 

of any relation in elementary algebra. 

The problem of word identity for groups in its basic features co- 

incides with the corresponding problem for the semigroups. The free 

group 0 with the generating elements x,, x2, ..., x is constructed as 

the ensemble of words composed from the letters x,, Xp, ..., x and 

the "inverse" letters x^ , Xg" , ..., x^"  . In this case two mutually 
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inverse letters standing side by side cancel one another (become equiv- 

alent to an empty word) 

^ - T^ - •• (8) 

In the determination of the Identity of two words In a gi^oup with 

the system of defining relations S, we must take account not only of 

the relations appearing In this system but also the relations of the 

form (8). Just as for the remigroups, the word identity problem for 

groups which are specified by a finite number of generating and defin- 

ing relations is algorithmlcly insoluble in the general case. Examples 

of groups with Insoluble word identity problem were first constructed 

by Novikov [60]. 

How can the algorithmic Insolubility of a particular problem be 

proved? The classical example of such an Insoluble problem is the prob- 

lem of the recognition of the selfapplieability of algorithms. For 

the exact formulation of this problem we shall treat only normal algo- 

rithms in alphabets consisting of no less than two letters. With this 

assumption we can, without losing generality, stipulate that some let- 

lers of the alphabet of any algorithm with which we will be concerned 

will be identified with the two letters (0 and l) of the standard bina- 

ry alphabet. Prom the assumed condition, for any algorithm A consid- 

ered, its representation Au in the standard binary alphabet can be con- 

sidered as the input word of this algorithm. If the word Au appears in 

the domain of definition of the algorithm A, then the algorithm is 

termed selfapplicable, otherwise it is termed nonselfapplicable. 

Both selfapp11cable and nonselfappllcable algorithms exist. An 

example of the self applicable (normal) algorithm is the so-called 1- 

dentity algorithm in any alphabet X, which contains two or more than 

two letters. By definition this algorithm is applicable to any word p 

in the alphabet I and transforms any input word into itself. An 
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example of the nons elf applicable algorithm is the so-called zero al- 

gorithm in any finite alphabet <). This algorithm is given by a scheme 

containing the identity substitution-* y (where ^ is any letter of the 

alphabet D). By its very definition it is not applicable to any input 

word, and this means that it is not applicable ot its own representa- 

tion. 

The problem of the identification of the selfapplicability of 

the algorithms amounts to finding a single constructive technique 

which makes it possible, after a finite number of steps using the 

scheme of any given algorithm A in some fixed algorithmic system (for 

example, in the system of normal algorithms), to recognize whether the 

algorithm A is selfapplicable or not. 
a 

If we consider that the normalization principle formulated in §2 

is valid, we can assume that the single constructive technique in ques- 

tion is none other than the normal algorithm B, defined on any word j), 

which is the representation of the arbitrary normal algorithm A and 

which transforms this word into two different fixed words q^^ and q^ de- 

pending on whether the algorithm A is selfapplicable or not(the word 

q1 is the code of the word "selfapplicable" and q2 is the code of the 

word "nonselfapplicable"). 

On any input word 1 which is not the representation of any (nor- 

mal) algorithm, the algorithm B also must be defined. Actually, other- 

wise, not obtaining any result after some number (sufficiently large) 

of steps of operation of the algorithm, we would not know whether the 

word _1 is the representation of a selfappllcable or nonselfapplica- 

ble algorithm. It is clear also that the result of the application of 

the algorithm B to any word which is not the representation of an algo- 

rithm must be different from the word q1 and also from the word cu. 

Let us assume that the algorithm B with the indicated properties 
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exists. In this case there exists the normal algorithm C In the same 

alphabet J, as the algorithm B, defined on all those and only those 

words In the alphabet 1, which are the representations of nonself- 

appllcable algorithms (we recall that from the definition Itself of 

the algorithm B, the alphabet X includes in itself the standard binary 

alphabet). 

Actually, let us construct the normal algorithm D in the alphabet 

X, whose domain of definition consists of only the single word Qp. Such 

an algorithm can be given, for example, in the form (normalized) of 

the superposition of two normal algorithms D, and Dp, the first of 

which is given by a scheme consisting of the single substitution Qp -* •, 

while the second is given by a scheme consisting of substitutions of 

the form x1 -f x., where x. runs through all the letters of the alpha- 

bet X. It is clear that the first algorithm transforms into an empty 

word only the word q«, while the domain of definition of the second al- 

gorithm consists only of an empty word. Therefore the domain of defini- 

tion of the superposition D of the algorithms D, and Dp will consist 

only of the word q«, which we require. 

After constructing the algorithm D, forming the superposition of 

it with the algorithm B, and normalizing this superposition, we arrive 

at the normal algorithm C in the alphabet X, whose domain of definition 

consists of all those and only those words in the alphabet X which are 

forms of nonselfapplicable algorithms. However, this property of the 

algorithm C is intrinsically contradictory, since the algorithm C can- 

not be either applicable or nonapplicable to its own representation Cu. 

Actually, in the first case the algorithm C would be applicable 

to its representation and therefore would be selfappllcable. But this 

would contradict the fact that as a result of its construction the al- 

gorithm C must be applicable only to the nonselfapplicable algorithms. 
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In the second case, being nonappllcable to Its representation, the al- 

gorithm C would belong to the number of the nonselfappllcable algo- 

rithms. But then, by definition the algorithm C would have to be appli- 

cable to Its representation, since It Is applicable to the representa- 

tion of all nonselfappllcable algorithms. Consequently, the algorithm 

C Is selfappllcable. 

Thus, the assumption on the algorithmic solvability of the prob- 

lem of the recognition or selfapplicability leads to a logical contra- 

diction and therefore is not valid, which proves the algorithmic unde- 

cidability of this problem. 

We have substantiated this conclusion only for the condition that 

the algorithm normalization principle is valid. However, the nature of 

the contradiction used for the proof of the algorithmic insolvability 

of the problem of the recognition of the selfapplicability of algo- 

rithms is in actuality more profound. The reader who is familiar with 

the paradoxes of the theory of sets and of mathematical logic will eas- 

ily note that this contradiction has the same nature as the contradic- 

tion in the known paradox of Rüssel which establishes the intrinsic 

contradiction of the concept of a "set of all sets not containing it- 

self as an elriinent." 

This circumstance leads to the conclusion that the algorithmic un- 

decldablllty of the problem of the recognition of selfapplicability is 

not a result of the narrowness of the modern exact concept of the algo- 

rithm. If we were able to construct an exact concept of the algorithm 

which Includes certain nonnormalizable algorithms, then the problem of 

the recognition of the selfapplicability of the algorithms would re- 

main as before algorlthmlcly undecldable. 

Prom the algorithmic undecldablllty of the problem of the recogni- 

tion of the selfapplicability of the algorithms, the algorithmic 
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undecldabillty of a whole series of other problems is developed. The 

general method for these derivations amounts to the derivation from 

the assumption on the existence of the algorithm which solves a partic- 

ular problem Q of the existence of the algorithm which solves the prob. 
"i 

lem of the recognition of the selfapplicability of the algorithms. 

Since the latter is Impossible, the existence of the algorithm which 

solves the problem Q also is Impossible. 

Using the genneral method, the algorithmic undecidability of a 

set of different problems has been proved. Including the general prob- 

lems of the identity of words for groups and semigroups considered a- 

bove. We shall mention some other algorlthmlcly undecldable problems 

whose undeciaabillty has been established by this same method. One 

problem is that of the recognition of the applicability of some algo- 

rithm to a particular word. There can be constructed an algorithm A, 

operating in some alphabet X,  for which there does not exist an algo- 

rithm in the alphabet! , and in any expansion of it, which transforms 

into some fixed word those and only those words to which the algorithm 

A is not applicable. 

The problem of the construction of an algorithm which transforms 

into the fixed word £ all the words to which any given algorithm A is 

applicable is, as it Is not difficult to see, algorlthmlcly undeclda- 

ble; for its solution it is sufficient to construct the algorithm B 

which transforms into the word £ all words in the alphabet of the algo- 

rithm A and to form the superposition of the algorithms A and B. We 

stipulate that an algorithm annuls particular words it it transforms 

them into the empty word e. The problem Of the recognition of annul- 

ment for any given algorithm A consists in the construction of the al- 

gorithm B (in the same alphabet as A) which annuls all those and only 

those words which algorithm A does not annul. This problem in the 

-65 - 

-» 



trlx U. The representation problem consists In finding the general con- 

structive technique by which, after a finite number of steps for any 

matrix U and any finite system S of matrices, we would be able to know 

whether the matrix U Is representable In terms of the matrices of the 

system S or not. 

We recall that the algorithmic undecldablllty of all the Indica- 

ted problems Is proved on the assumption of the validity of the normal- 

ization principle; however, as noted above, the nature of this 

. 66 - 

general case Is algorlthmlcly undecldable, namely: we can select the 

algorithm A so that the algorithm B with the Indicated properties can- 

not be constructed. 

Quite frequently In the proof of the algorithmic Insolvablllty of 

particular problems use Is made of the Post [64] proof of the algo- 

rithmic Insolvablllty of the following problem, which has been termed 

the Post combinatorial problem. Assume that In the arbitrary finite al- 

pabet X there are given any finite systems S of pairs of words (p,, 

<ll) >  •••* (Pn* QJJ)» 
We are required to construct a single constructive 

technique which will make It possible for any such system S after a 

finite number of steps to answer the question of whether we can con- 

struct a word p.,  p.  ... P1  from the first elements of the pairs of 
H 12    ^-k 

the system S such that It will coincide with the word q.,  q.  ... q. , 
11 12     1k 

constructed from the corresponding second elements of ^he same system 

of pairs. 

The problem of matrix representablllty Is also algorlthmlcly un- 

solvable. For the formulation of this problem we stipulate that a ma- 

trix Is representable In terms of the matrix U,, Up, ..., U if for 

some finite sequence (generally speaking with repetitions) U, U.  ... 
11 12 

IL  of these matrices the product U. U.  ... U.  of all the matrices 1k n 12    ^-k 
appearing In the given sequence coincide with the glv^n original ma- 
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undecldabillty is more profound and. In a certain sense, is independ' 

ent of this principle. 

Manu- 
script 
Page 
No. 

13 

[Footnotes] 

The word jg is termed the initial segment of the word q if 
the word q has the form ü B pr, where r is any word (includ' 
ing, possibly, an empty word). 
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Chapter 2 

BOOLEAN FUNCTIONS AND PROPOSITIONAL CALCULUS 

§1. CONCEPT OP BOOLEAN FUNCTIONS 

Boolean (or switching) function Is the term customarily given to 

those functions for which'all the arguments, and the functions them- 

selves, can take on only two values. 

The role of the boolean functions In cybernetics Is determined by 

two basic characteristics. First, the boolean functions are a conveni- 

ent apparatus for the description of the circuits of many Information 

converters constructed using the discrete principle, since with cur- 

rent technology It Is far easier to construct discrete elements func- 

tioning directly In the binary alphabet and not In some other alphabet. 

Second, the boolean functions are sldely used In mathematical logic, 

which Is one of the foundations on which the automation of the complex 

thought processes Is founded. 

The use, along with the usual variables which take on numerical 

values, of the boolean variables, which have only two possible values, 

plays a significant role In the design of various kinds of practical 

algorithmic systems for programming on the electronic computers. The 

boolean functions can also be used successfully for the solution of 

certain general questions of the theory of algorithms, for example to 

refine the concept of algorithmic complexity. The two possible values 

of the variable which figure in the definition of the boolean func- 

tions can be designated arbitrarily. In practice, however, two nota- 

tion systems are used most frequently. The first (for use of the 
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boolean functions In the theory of automata circuits) assigns to the 

possible values of the boolean variables the notations 0 and 1. We 

shall term the symbols Introduced, Just as In the case of numerals, ze- 

ro and one, considering that here the zero and one appear not as numer- 

als, but only as convenient notations for the letters of the abstract 

binary alphabet. In the future we shall assign these symbols several 

properties which make It possible to consider them (with one exception) 

as ordinary numerals (this is precisely the convenience of the nota- 

tion system being considered). But all such properties must be precise- 

ly defined before use. We cannot, in particular, yet make use of the 

properties of zero and one which result from the existence of the oper- 

ations of addition and multiplication for numbers, since we have not 

yet defined these operations for these symbols. 

In the second system of notation, the words "true" and "false" 

serve as the notations for the two possible values of the boolean vari- 

ables. This system of notation is used in mathematical logic, primari- 

ly in the portion which is called prepositional calculus. Its applica- 

tion is associated with the circumstance that in the proposltlonal cal- 

culus the boolean variables are interpreted as the proposltlonal vari- 

ables, considered from the point of view of the truth or falsity of 

the proposition. 

In the present and three following sections we shall make use of 

the first system of notation without specifying this each time. When 

it is necessary to make a transition from one system of notation to 

the other, we stipulate that one corresponds to true and the zero cor- 

responds to false (we could, of course, assume exactly the opposite 

correspondence). 

Let us consider the boolean functions of any finite number of ar- 

guments. Of the number of arguments is equal to n, then it is customary 
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to term the corresponding function n-place. As a result of the fact 

that each boolean variable can take only two values, the domain of def- 

inition of any boolean function will of necessity be finite. It Is easy 

to see that the domain of definition of an n-place boolean function 

can consist of a maximum of 2n different elements, which are all possi- 

ble sets of values of Its n arguments. We will usually order the argu- 

ments of a given boolean function by assigning them the numbers 1, 2, 

... , n. In this case the set of values of the arguments Is Identified 

with some cortege (finite ordered sequence) of zeros and ones. For ex- 

ample, the set of values x. ■ 1, x« ■ 0, x- « 0 of arguments of the 

three-place boolean function ffa,, x?,  x~) can be abbreviated In the 

form of the cortege 100, and the set x, « 0, Xo B 0, x~ = 1 can be 

written In the form of the cortege 001. In the future we frequently 

shall term these corteges simply sets (here the arguments are always 

numbered In a definite order—In the order In which they are encoun- 

tered In the notation f(x1, x«, ..., x ) corresponding to the boolean 

function). The term boolean In application to a cortege (set) denotes 

that the corresponding cortege is composed of zeros and ones. 

Each cortege of length n, composed of zeros and ones (a boolean 

cortege), can be Identified with some vertex of an n-dlmenslonal unit 

cube having the corresponding coordinates. For the two-dimensional 

case, when the n-dimensional cube reduces to a square, the method of 

identification of the boolean corteges with the vertices Is shown in 

Fig. 4. As a result of the possibility of such identification, the 

boolean sets (corteges) will sometimes be termed points. 

In the present chapter we shall limit our- 

selves (with the exception of specially stipulated 

cases) to the consideration of only those boolean 

functions whose domain of definition Includes all 
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sets of values of Its arguments. Thus, the n-place boolean function 

must be defined at 2 different points. If we do not exclude the case 

when a particular boolean function can be undefined on at least one of 

the sets, then it is termed a partial boolean function. The considera- 

tion of the partial boolean functions is useful for the synthesis of 

the circuits of descrete automata. In the theoretical aspect there is 

particular interest in the boolean functions which are everywhere de- 

fined, the more so since in case of necessity every partial boolean 

function can be redefined (generally speaking, by an arbitrary method) 

on those sets on which it was not initially defined. Therefore, speak- 

ing of the boolean functions hereafter (if not stipulated otherwise), 

we will understand them to be these everywhere-defined functions. 

We remark also that in the consideration of a particular boolean 

function we shall consider the number of its arguments given. The ne- 

cessity for this stipulation is due to the possibility of treating ev- 

ery n-place function as (n + l)-place, (n + 2)-place, and in general 

as an (n + k)-place function for any natural number k. Actually, for 

example, the const ant-function (equal identically to zero or one) cam, 

if desired, be considered as a function of any number of arguments, ar- 

guments of which it is in actuality, however, independent. Similarly, 

we can to any function f(x1, x2, ..., xn) add any  desired number of 

new arguments x ,,, ..., x k, on which the values of the function actu- 

ally does not depend. For this it is sufficient to assume that for all 

sets of values of the variables x,, x^, ..., xn+jc the following equali- 

ty is valid 

f \*i» *•• '"**ii'   »l+l,"■, n4-4/ =,, ' '*!• •fc ••• •'n?' 

We shall term the described operation of the conversion of the n- 

place function into an (n + k)-place function the operation of formal 

assignment of arguments. This operation is obviously applicable to any 
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functions (and not only boolean). 

As we noted above, there are exactly 2 boolean sets (corteges) 

of length n. These sets can be considered as the representations of 

certain whole numbers in the binary number system such that the set 

OL., a2, ..., a is identified with the binary representation of the 

number a,^11'1 + a2'2
n"2 + ... a

n_i'2  + an (here the boolean values 0 

and 1 are considered simply as the usual numbers 0 and 1). We shall 

term this number the number of the corresponding set. The numbers of 

the sets vary from zero (for the set consisting only of zeros) to 

2n - 1 (for the set consisting only of ones). The number of the set 

010 will be the number 0-22 + 1«2 +0=2; the number of the set 101 

will be the number 1«2 + 0-2 +1=5, etc. 

Arranging the sets in columns one after the other in the order of 

increase of their rnmbers and placing alongside each set the value of 

the boolean function on this set, we obtain the value table of the 

boolean function. Since on each set the function can take either of 

two values (0 or l) regardless of its values on the remaining aets, 

for m sets we can define exactly 2m different (differing from one an- 

other by their values on at least one set) boolean functions. Keeping 

in mind the total number of sets for n variables (equal to 2n) defined 

above, we come to the conclusion that the number of different boolean 

functions of n arguments, which we shall designate B(n)J is determined 

by the equation 

^(n)-^. (9) 

With n = 1 the quantity B(n)  is equal to 4, and with increase by 

1 this quantity is squared: B(n+l)  = (B(n))  .  Thus,  if the number of 

single-place boolean functions is equal in all zo 4,  then the number 

of different two-place  (boolean)  functions will be equal to 16, three- 
p ji 

place to 256,  four-place to 256    ~ 65,000,  five-place to 256    ~ 4 
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million, six-place to about 16 trillion (16.10 ) and r,o on. Th« 

practical possibilities of sorting all the boolean functions are thiu; 

limited to the three-place or at best the four-place functions. 

Although every boolean function can be given in the form of its 

value table, in the majority of cases of practical application of th^ 

theory of boolean functions this method of specification is inconveni- 

ent. Therefore, one of the primary tasks of our further constructions 

will be the development of new and more convenient methods of specify- 

ing the boolean functions. In this connection, of particular impor- 

tance are the boolean functions of one and two arguments, since, as 

wl 1 be shown later, with their aid we can represent any boolean func- 

tions. Therefore, we shall make a more detailed study of the single- 

place and two-place boolean functions. 

Of the four single-place functions cp (x) which can in general be 

constructed, two functions are the constants 0 and 1 ivhich are not ex- 

plicitly dependent on x. Still another function simply repeats the val- 

ue of its argument q)(x) = x and therefore also is net of inter'.1. . Thr 

last, fourth, function, for which we introduce the cpocial nota ' /i« X 

or 1 x, always has a value which la the opposite to that of Itn irgu- 

ment: 0 = 1 and 1 = 0. This function is termed inversion ur neintlon. 

The expression x (and also the expression ~1 x) is read as "negation x" 

or "not x." In the theory of boolean functions, and also in the appli- 

cations of this theory to the synthesis of automata circuits, follow- 

ing tradition, we shall make use of the notation x. In mathematical 

logic ,(end of the present chapter and beginning of the sixth chapter) 

and also in the practical aspects of the theory of algorithms (end of 

the fifth chapter) it is for several considorationc more convenient to 

use the notation "1 x. 

Of the 16 different two-place boolean functions r(x, y) whlc;h in 
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general can be constructed, six functions reduce to functions of a 

smaller number of arguments. These are, first, again the two constant 

functions (0 and l), second, the two functions which repeat the values 

of some argument (y or y), and, third, two functions which are the ne- 

gations of each of the arguments (x and y). 

The ten remaining funetions f(x, y), which actually depend on 

both of their arguments, can be divided into pairs such that the sec- 

ond function of the pair is the negation of the first function (i.e., 

it has on each set a value which is the opposite of the value of the 

first function). In this case use is actually made of the single-place 

boolean function x for the construction of the single-place negation 

operation on the set of all boolean functions. The application of the 

negation operation to any boolean function £ can be treated as the sub- 

stitution of the function in place of the argument of x Inzo  the func- 

tion x. Such a substitution of some 1 oolean functions in place of the 

arguments of other boolean functions (termed superposition of these 

functions) will be widely used hereinafter for the formation of vari- 

ous operations on the set of boolean functions (boolean operations). 

For the designation of the operations thus construct'., we usually 

make use of the notation of the boolean functions which generated 

these operations. In our case g (or ~1 g) will serve for the notation 

for the negation of the arbitrary boolean function g. 

The separat! jn described above of the two-place boolean functions 

into pairs (g, g) makes it possible to actually limit ourselves to the 

description of only five functions, which we select au the first ele- 

ments of the pairs indicated. 

Let us begin the description with conjunction, aloe termed (logi- 

cal) produce, or the logical AND operation. In mathematical logic 11 

is customary to designate the conjunction of the variables x and ^ by 
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x & y or x Ay (we shall use the second of these notations). By defini- 

tion, the conjunction x A y Is equal to one when, and only when, both 

of Its arguments x and %  are equal to one. 

For the conjunction x A y to be equal to zero it is sufficient 

that at least one of its arguments (x or y) become zero. These proper- 

ties of the conjunction are completely analogous to all the properties 

which the product xy would have if the cofactors composing it could 

take on only two numerical values—0 and 1. This circumstance suggests 

considering the boolean constants (0 and l) as sort of "pseudo-numbers" 

for which the multiplication operation is defined which possesses all 

the properties of the usu?l multiplication operation for the numbers 

0 and 1: 

00 -=0, 01 =0, 10 =0. 11 =1. 

In the  theory of boolean functions and in its applications  to  the 

theory of automata,  it  is  convenient to take precisely this point of 

view.   Moreover, in these cases  we shall simply Identify the  conjunc- 

tion operation with multiplication, both in name and in form of repre- 

sentation.   In other words,  in place of the notation x A y we shall use 

the notation    x«y,    or xy,  and also shall make use of the  corms "prod- 

uct,"  cofactor"  and all the properties of multiplication from conven- 

tional elementary algebra.   It  is  easy to understand  that,  as a result 

of  the coincidence of the definitions,  multiplication in our case  will 

have all the general (satisfied identically)  properties of multiplica- 

tion in conventional algebra (commutativity, associativity,  and so on). 

At  the same  time,  the  limitation on the set of possible values of  the 

quantities   leads to the appearance for the  logical multiplication 

which we are  considering of some properties which  conventional multi- 

plication does not have.   For example,  in the case of logical multipli- 

cation the  identity relation    x«x    = x becomes  invalid if in place  of 
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the values 0 and 1 we substitute into this relation other numerical 

values of the quantity x. 

Just as in the case of negation, multiplication (conjunction) can 

be considered not only as a function, but also as an operation on the 

set of all boolean function. For this purpose it is sufficient in 

place of the independent variables x and jf to substitute in the pro- 

duct xy two arbitrary boolean functions f and £: p = fg. Similarly, any 

other two-place boolean function b(x, y) defines a two-place, or, as 

it is usually customary to say in algebra, binary operation on the set 

of all boolean functions, which we shall term and designate Just the 

same as the corresponding function b(x, y). Of course, in this case 

the independent variables x and ^ are replaced by the arbitrary bool- 

ean functions f and £. Hereafter we shall use the described technique 

for the introduction of new binary operations on the set of boolean 

functions without detailed explanations. 

The possibility of the interpretation of conjunction as conven- 

tional multiplication suggests also looking for boolean analogs for 

conventional (numerical) addition. In contrast with multiplication, 

here there cannot be complete analogy, of course, since the equality 

1 + 1 = 2 In the case of conventional addition Introduces a third quan- 

tity (two) which differs from both zero and one. With the limitation 

to only the boolean (binary) alphabet, the direct interpretation of 

this fact is, of course, impossible. Therefore we can define two dif- 

ferent (but incomplete) analogs of numerical addition for the boolean 

quantities, setting the "sum" of two ones equal to either one or zero. 

The operation (two-place boolean function) which arises with the 

first assumption is termed disjunction, logical addition, and also log- 

ical (the so-called inclusive) OR. For the designation of this opera- 

tion we fix the special symbol (disjunction sign) V- Thus, the 
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disjunction of the two quantities x and %  (independent variables or 

functions) will be designated as x V y. The quantities x and ^ them^ 

selves in this case are termed the logical addends, or more frequently 

the disjunctive t3rms. 

The system of relations which completely defines the operation of 

disjunction is written in the formoy 0 =0, 0 yi = •. 1 V 0 ^ M Vl =1 

The first three relations are exactly the same as in the case of con- 

ventional (numerical) addition, and only the fourth relation differen- 

tiates logical addition from conventional. In view of the relations in- 

troduced, the disjunction oi uhe two quantities x and ^ is equal to ze- 

ro when and only when both these quantities become zero. If even one 

of the quantities indicated takes the value 1, then this same value of 

1 is taken by the disjunction itself, regardless of the value of the 

other disjunctive term. 

A more fortuitous analog of conventional (numerical) addition is 

obtained in the case when the "sum" of the two ones is assumed to be 

equal to zero. The operation which arises in this case (two-place bool- 

ean function) is usually termed the non-equivalence operation, exclu- 

sive OR, and also modulo two addition. The last term is associated 

with the fact that this operation coincides with modulo two addition 

as defined in number theory if the zero and one are considered as ordi- 

nary numbers. 

For brevity we shall term this operation simply addition and 

shall use such terms as sum and addend by analogy with conventional ad- 

dition. We shall use the usual (+) sign to designate the operation of 

modulo two addition. In order to emphasize that we are not discussing 

conventional addition, we will at times put a circle around this sym- 

bol. 

The operation of addition of boolean quantities is defined by the 
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following four relations: 0+0=0, 0+1=1, 1+0=1, 1+1=0. 

The first three of them are exactly the same as in the case of conven- 

tional (numerical) addition (and the same as in the case of logical ad- 

dition--disJunction), so that the specific nature of the operation in- 

troduced is defined primarily by the fourth relation. With this same 

relation there is associated the term for the addition operation, ex- 

clusive OR , which is used in mathematical logic. If we interpret one 

as true and zero as false, then the sum of two boolean quantities will 

be true when and only when either the first or second quantity is true, 

but not when they are both true. In the case of the logical sum (inclu- 

sive OR) the sum is also true when both addends (disjunctive terms) 

are true together. OR in this case does not exclude the simultaneous 

truth of both terms, it does not separate the question of the truth of 

the sum into two mutually exclusive cases, and this is the source of 

the association of the term "inclusive" as applied to OR in the logi- 

cal pom (disjunction). 

Still two more two-place boolean functions are the result of the 

single binary operation termed implicationj or the operation of logi- 

cal succession. We use the symbol 3 for the designation of this oper- 

ation. Implication is defined by the following four relations: 

0 3 0-1, 0 D l = 1, l D 0 = 0. ibl = 1 . In the implication x D y, in con- 

trast with multiplication, disjunction and addition, the order in 

which the terms are arranged is of essential importance. With a rever- 

sal of this order the value of ehe  implication changes so that x D y 

and y D x are two different boolean functions. 

If we designate the two-place boolean function f(x, y) by the cor- 

tege a a.a2a^), where a is the value taken by this function on the 

set with the number i(i « 0,1,2,3), then the implication x D y will 

correspond to the cortege (1101) while the implication y ,D x corre- 
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sponds to the cortege (lOll). We note at the same time that the prod- 

uct, disjunction and sum of the variables x and ^, regardless of the 

order in which these variables are written, are respectively the cor- 

teges: (0001), (0111) and (0110). 

From a consideration of all the corteges presented, it follows, 

incidentally, that all five of the two-place boolean functions which 

we have defined (product, disjunction, sum and two implications) are 

pairwise different. It is easy to see that the cortege for the nega- 

tion of any booletn function is obtained from the cortege for the func- 

tion itself by replacing all the zeros by ones and all the ones by ze- 

ros. Using this rule, we can determine the cortege for negation of the 

product xy, negation of the disjunction x \j y,  negation of the sum 

x + y, and the two negations for the implications x D y and y D x. 

These corteges will be respectively (1110), (1000), (1001), (OOIO) and 

(0100). 

It is easy to verify that, together with the five functions previ- 

ously introduced, the five new functions (negations of the preceding 

five) compose a system of ten pairwise different two-place boolean 

functions. They all differ also from the constant-functions 0 and 1 

and the functions x, y, x, y, considered as functions of the two vari- 

ables x and JT, since the latter functions are characterized by the cor- 

teges (0000), (1111), (0011), (0101), (1100), (1010) respectively. 

Thus, we have written out all 16 of the two-place boolean functions 

which can in general be constructed. 

Let us make a few more remarks concerning the functions intro- 

duced above. The function xy (negation of the product) which is charac- 

terized by the cortege (1110) and the binary operation which is de- 

fined by it are customarily termed Sheffer's stroke function. It is 

easy to verify (using the definitions of negation and disjunction) 
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that the Sheffer stroke can be represented not only in the form of the 

negation of the product xy, but also In the form of the disjunction of 

the negations x V y. 

The negation of the disjunction x V y—the so-called Pierce func- 

tion—characterized by the cortege (1000), can be represented also in 

the form of the product of the negations of the variables x and ^, i.e. , 

in the form x . y. It is easy to see that both the Sheffer stroke and 

the Pierce function, similar to the product, disjunction and sum, are 

symmetric functions, i.e., they do not change their values with permu- 

tation of the arguments. 

The negation of the sum x + y, termed the equivalence operation 

or logical equivalence possesses a similar property. For the designa- 

tion of this function and also for the binary operation defined by it, 

we use the special symbols -^ or s(equivalence symbol). The function 

x + y s x -w y is characterized by the cortege (1001). The terms "equiv- 

alence" and "nonequivalence" as applied to the functions x — y and x + 

y respectively emphasize the fact that the first function is equal to 

one when and only when the values of its arguments are equal to one an- 

other, and the second—when the values of its arguments are unequal. 

The function (binary operation) of implication can be expressed 

by disjunction and negation. It is easy to verify that x D y = x V y 

and y Dx -• x V'y. Negation of an implication, also termed the inhibit 

function. Is easily expressed by the product and negation: x D y = 

x«y ,  y ^) x = x . y. Both implication and the inhibit function are ex- 

STiples of asymmetric boolean functions, since they change their values 

with permutation of the arguments. 

In conclusion we note that in reading formulas the conjunction 

symbol A (or &) is pronounced as "and," the disjunction symbol V is 

read as "or," the sum sign + (or ®) is read "plus," the implication 
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sign D Is read "implies," the equivalence sign — (or s) is read as e- 

quivalent," and the negation sign (or ~1 ) is read as "not." 

All the ten listed two-place boolean functions correspond to the 

respective two-place boolean operations, which we shall designate and 

name exactly the same as the functions which define them. 

§2. BOOLEAN ALGEBRA 

Boolean algebra will be termed the set of all (finite-place) bool- 

ean functions considered together with the operations of negation, dis- 

junction and multiplication (conjunction) specified on them. 

We shall use the letters u, v, w, ... (with or without subscripts) 

to designate any elements of boolean algebra, i.e., in other words, an- 

y boolean functions. One of the primary problems of boolean algebra is 

the establishment of the identity relations of the form A(u,v,w, ...) = 

= B(u,v,w, ...) where A(u,v,w, ...) and B(u,v,w, ...) designate formu- 

las, i.e., expressions of boolean algebra, constructed from a finite 

number of letters u,v,w, ..., the signs of the three operations of the 

algebra, the boolean constants (0 and l) and parentheses for the desig- 

nation of the order of performance of operations. 

The formulas must be constructed properly. In other words, thoy 

must reduce to completely determinate boolean functions after the se- 

lection of particular boolean functions as values of the letters u,v,w, 

... appearing in these formulas. We can give a rigorously formal defi- 

nition of the properly constructed formula, introducible recurrently 

using the rule: all the letters u,v,w, ... (with or without subscripts) 

and the constants 0 and 1 are properly constructed formulas. If A and 

B are properly constructed furmulas, then (Ä), U)V(B) and  (A)«(B) 

are also properly constructed formulas. A set of properly constructed 

formulas is considered coincident with the set of all formulas which 

can be obtained as the result of sequential (multiple, generally speak- 
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Ing) application of this rule. 

The Introduction of each additional operation into the formula is 

accompanied by the appearance of one or two pairs of parentheses. To 

avoid excessive cumbersomeness of the formulas, we somewhat expand the 

concept of the rule for the construction of the formula, making it pos- 

sible to drop some parentheses by analogy with the way this is done in 

elementary algebra. To do this we introduce the rule on the priority 

of operations: other conditions being equal, negations are performed 

first, then multiplication, then disjunction. When it is necessary to 

perform operations in a different order, parentheses are required. In 

addition, the negation sign written by a bar over an entire expression 

would have had to have been written. It will also be established later 

that the order in which like operations are performed which follow di- 

rectly after one another in the formula is of no concern, so that in 

this case the parentheses are again redundant and can be dropped. Fi- 

nally, we recall that the multiplication sign between letters can be 

dropped. 

All the properly constructed formulas obtained as the result of 

the described expansions will hereafter be termed simply formulas, per- 

mitting using in them in addition to the letters u,v,w, ... any other 

letters of the Latin alphabet. 

There is a very simple general rule for the verification of the 

correctness of the identity relations in boolean algebra. The essence 

of this rule amounts to the following. 

Every formula A(u,v,w, ...) of boolean algebra can be considered 

as the representation of some boolean function of the variables u,v,w, 

.... Actually, of we assign these variables some constant values (0 

and l) then, using the relations which define the operations of nega- 

tion, disjunction and multiplication (i.e., relations of the form 
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13 = 1, 0V1 -=I and so on), we can after a finite number of steps find 

the value (0 or l) of the formula A(u,v,w. ...) for the selected val- 

ues of the variables u,v,w, .... and this then means that our formula 

Is some everywhere-defined boolean function of the variables u,v,w, .... 

It is easy to understand that the (identity) relation A(uiv,w, 

...) = B(u,v,w, ...) is valid in and only in the case when the formu- 

las A(uJv,w, .,.) and B(u,v,w, ...) represent one and the same boolean 

function of the variables u,v,w, .... For the verification of the fact 

of the indicated equality of the two representations it is sufficient 

to verify whether the values of these representations on all sets of 

values of the variables u,v,w, ... coincide or do not coincide. 

Thereby we have constructed a general algorithm, suitable of the 

verification of the correctness of any identity relations in a boolean 

algebra, since in view of the flnlteness of the number of sets of val- 

ues for any finite number of sets of the boolean variables the verifi- 

cation described always terminates after a finite number of steps. 

Moreover, it becomes clear that it is sufficient to establish the 

Identity relations in the boolean algebra for the case where all the 

letters appearing in these relations are considered as independent 

(boolean) variables. In case of necessity, moreover, any boolean func- 

tions can be substituted in place of these variables. 

We shall designate the independent variables by the letters x, y, 

z (with or without subscripts). We shall also use these same letters 

for the writing of the identity relations of boolean algebra. We shall 

make a verification of the indicated relations with the aid of substi- 

tuting into them all the possible sets of values of the variables (let- 

ters) appearing in these relations. 

As an example let us consider the commutativlty relation for mul- 

tiplication 
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xy~yx. (10) 

To convince ourselves of the correctness of this relation It is 

sufficient to note that Its left and right parts are equal to zero on 

the sets (00), (01), (10) and equal to one on the set (ll). In view of 

the triviality of such a verification we shall not repeat it in the su- 

ture and shall limit ourselves to simply writing out the relations we 

need, which we shall also term laws or rules. 

In addition to the relation (law) of commutativity, for multipli- 

cation there also exist the so-called law of associativity, expressed 

by the equality 

x{y2) = (xy)z. (11) 

Multiplication satisfies still another law, usually termed the 

idempotency law 

*«-*• (12) 

As a result of this law, the concepts of power and raising to a 

power have no actual Importance for the boolean algebra. 

The laws of commutativity, associativity and idempotency extend 

also to the disjunction operation. The corresponding relations are 

written 

xVy-yV«*. (13) 

x\J{y\Jz)~{x\/ y)\Jr, (14) 

Multiplication and disjunction are related with one another by 

the first and second distributive laws,  which can be expressed by the 

relations 

x{y\lz)~xy\Jxz; (16) 

x\Jyz~{x\J y){x\Jz). (17) 

We note that,  on the strength of the agreements made on the prior- 

ity of the operations,  the right side of relation (16)  is a simpllflca- 
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tion (as a result of discarding the redundant parentheses and the mul- 

tiplication sign) of the formula (x-y) y {xz),  while the left side of rela. 

tlon (17) is a simplification of the formula {x)y (yz)   . 

For multiplication and disjunction there are valid the so-called 

absorption rules, expressed by the following relations 

x\Jxy~x', (18) 

x{x\Jy) = x. jig^ 

For the negation operation the law of double negation is of great 

Importance 

* = *• (20) 

On the strength of this law any even number of negations performed in 

sequence does not alter the result, while any odd number is equivalent 

to performing a single negation. 

For the various transformations in boolean algebra we frequently 

need to make use of the so-called de Morgan rules, which combine to- 

gether all three algebraic operations, 

l^ = ~x\Jy\ (21) 

x\Jy=x.y. (22) 

We point out several more relations which include the constants 

0 and 1: 

*V' = i; (23) 

^=0: (24) 

*0=.0: (25) 

X'\=x: (26) 

'VO-x; (27) 

«Vi-i; (28) 

T-0: (29) 

(Ui. (30) 

Relation (23) is called the law of the excluded middle, relation 
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(24) Is the law of contradiction. Relations (25) and (28) can be con- 

sidered as particular cases of the absorption rules. 

Let us consider some corollaries from this system of relation- 

ships. Prom the laws of commutatlvlty and associativity for disjunc- 

tion and mltlpllcatlon, there follows the possibility of performing 

In any order the actions for finding the values of the product and the 

disjunction for any finite number of terms. Prom this there follows 

the previously noted possibility of writing formulas of the form 

X\\J*t\J-\/xn  and *i*f"'*m  without parentheses with no chance of ambigu- 

ity as the result of variations of the order of performing the opera- 

tions. 

We note also that, as follows from relations (25) and (28), the 

presence of even a single one in the disjunction of the form x^ xt\j... 

\j x„ is sufficient to transform the entire disjunction into a one. Just 

as the presence of even a single zero cofactor in the product x^Xg ... 

x transforms this entire product into zero. At the same time, rela- 

tions (26) and (27) show that in any disjunction the terms equal to ze- 

ro can be dropped, and In any product the terms equal to one can bo 

dropped. 

On the strength of relation (20), any number of negations per- 

formed in sequence reduces either to a single negation or in general 

to the absence of any negations. We shall use x (read as "wavy x") to 

designate an expression which can be equal to either of the two expres- 

sions x or x. Pollowing the rule established above for the verifica- 

tion of Identity relations in boolean algebra, we shall term the formu- 

las representing the same boolean function of the variables appearing 

in them equalt  or equivalent, to one another. Although the equality or 

inequality of any two formulas of boolean algebra can in principle be 

verified by means of the sorting of all possible combinations of the 
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values of the variables appearing In them, with an Increase of the num- 

ber of variables this method becomes excessively cumbersome and is not 

suitable In practice. Therefore, one of the primary tasks of boolean 

algebra Is the development of more economical methods of establishing 

the various kinds of relations which obtain In this algebra. 

For the resolution of this problem we can make use of the previ- 

ously derived relations (l0)-(30), applying them repeatedly and In var- 

ious combinations. For example, two-fold application of relation (12) 

makes It possible to establish the validity of the relation xxx = x, 

multiple application of relations (10) and (13) makes It possible to 

extend the laws of commutatlvlty for disjunction and the product to an- 

y desired number of disjunctive terms and, correspondingly, cofactors. 

Thus, there arises the possibility of proving various relations in 

boolean algebra by transforming their left and right sides using rela- 

tions (l0)-(30). If in doing this we manage to reduce the left and 

right sides of some relation to the same formula, then the validity of 

the corresponding relation is thereby established. 

It is not clear a priori whether such a method makes It possible 

to derive all the relations existing in boolean algebra. However, in 

actuality such derivation is always possible. To establish this fact, 

let us define some standard type of formula to which we shall try to 

reduce all the formulas of boolean algebra. In the reduction of a par- 

ticular formula A of boolean algebra to the standard form we shall al- 

ways fix some finite set M of the boolean variables x,, x2, .... , x , 

of necessity Including all the variables which occur in the formula In 

question. We shall term every product of the variables or their nega- 

tions (i.e., the product of the form x.  x.  . .. x. ) an elementary 
11 12     ^-k 

product if each letter is encountered in the product no more than one 

time. 
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For example, the products x^Xp or x^XgX-, are elementary, while 

the products x^x, or x-HLx- are nonelementary. We shall Include among 

the elementary products the variables x. themselves and their nega- 

tions x,, considering them as products consisting of a single cofactor. 

It is convenient also to consider that the constant 1 is an elementary 

product—the product of zero (empty set) cofactors. The number of co- 

factors in a product is called its length. The elementary products for 

a selected set M of variables can thus have any length from 0 to n in- 

clusive. 

The elementary products of maximal length (in the present case, 

of length n) are customarily termed constituents of unity for the se- 

lected set (M) of variables. It is easy to see that every constituent 

of unity contains all the variables of the set M (either in the direct 

form or in the form of the negation) precisely one time each, and that 

the total number of all such constituents is equal to 2n. 

The disjunction of any  number of elementary products which does 
\ 

not contain two identical products is termed the disjunctive normal 
l 

form. The disjunctive normal form which consists exclusively of con- 

stituents of unity is termed the ideal disjunctive normal form. 

Just as in the case of the products, in this definition it is not 

excluded that the disjunction in question can consist of a single term 

(disjunction of length l) and even of an empty set of terms (disjunc- 

tion of length 0). In the latter case the disjunction is taken equal 

to zero by definition. Thus, the formulas o, J^, *iV*i*3. I  can be consid- 

ered as disjunctive normal forms. The first of these formulas consists 

of an empty set of terms, the second consists of a single term, the 

third consists of two terms, and  the fourth consists again of a single 

term which is the elementary product of zero length. 

Replacing in all the definition the disjunctions by products, 
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products by disjunctions, the (boolean) constant 0 by the (boolean) 

constant 1 and vice versa, we obtain respectively the definitions of 

the elementary disjunctions, constituents of zero, the conjunctive nor- 

mal form and the ideal conjunctive normal form. 

In boolean algebra, as a result of the fact that with replacement 

of zero by one and one by zero the disjunction is transformed into con- 

Junction and vice versa, there arises a unique duality of the proper- 

ties of disjunction and conjunction (multiplication). Performing such 

a replacement, we can automatically for any property (relation) de- 

rived herafter obtain its dual property (relation). In particular, to 

all the properties of the disjunctive normal forms we can associate, 

using the indicated duality law, the corresponding properties of the 

conjunctive normal forms. Since this association is accomplished each 

time almost automatically, we shall limit ourselves in the future to 

the consideration of only the disjunctive normal forms. 

Using relations (10), (ll), (13)-(16), (23) and (26), we can 

transform any disjunctive normal form into its equivalent ideal dis- 

junctive normal form. Let us consider the process of such a transforma- 

tion using the example of the disjunctive normal form of three varia- 

bles x\Jyz\/xy*,   which for brevity we shall designate with the single 

letter f. 

The third term of this formula is a constituent of unity and 

therefore does not require any transformations. In order to he  a con- 

stituent of unity, the second term lacks the multiplier x (i.e., x or 

x), and the first term lacks the factors y and z. On the basis of rela- 

tions (23), (26) we can write that f =x{y\l~y){z\j~z)\j yz{x\j~x)\j kyz   . Using 

the first distributive law (relation (16)) and relations (10), (ll), 

(13)-(15) we sequentially bring our form to the form f ^ {xy \J xy) 

{z\/7)\J~yzx\J~yzx\Jxyz=xyz\/x^z\/x~yz\Jxyz\Jxyz\Jxyz\Jxyz =xyz\J xyz\yxijz\lxyz\JxyzSJ'xyz.     . The 
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last expression In this chain of equalities is the desired ideal dis- 

junctive normal form. We now establish the following Important result. 

Theorem 1. With the aid of relations (l0)-(30) any formula of 

boolean algebra can be reduced to the ideal disjunctive normal form. 

Actually, using several times the de Morgan rules (21) and (22), 

the double negation law (20), and also the relations (29) and (30), any 

formula  A(x,, x2, ... x ) of boolean algebra can be reduced without 

difficulty to its equivalent formula B(x1, x2, ..., xn, "5^, x2, ..., 

IL), which does not contain any negations other than the negations as- 

sociated directly with the letters x,, x«, ..., x . It is easy to clar- 

ify the transformations required in this case from the example 

x \J yz \J yz ~ {x \J yz) -(yz) ~ x [yz) (y \J z) = x{y\J z)(y V z). 

The described technique of sequential dropping of the negation signs 

is applicable to any formula of boolean algebra. 

The formula B(x1, Xg, ..., 3^^, x2, ..., "5^) is constructed 

from the letters (with or sithout negations) shown in its designation 

with the use of only the multiplication and disjunction operations. Re- 

lations (10), (ll), (13), (14) and (16) show that expressions. Just ex- 

actly as in the usual school algebra course (considering disjunction 

as addition), can be transformed to remove all the parentheses and to 

group all like terms. After such transformation with subsequent ac- 

count for relations (25), (26) smd (2?) our formula 13 transformed in- 

to a disjunction of certain products of the letters x,, x^, ..., x 

and their negations. With the aid of relations (10), (12), (24) and 

(25) all these products can be transformed to their equivalent elemen- 

tary products or zeros. Now, using formulas (27) and (15), we reduce 

our formula to the ideal disjunctive normal form. An example qf this 

was discussed above. Thereby the theorem is completely proved. 

It is clear that the resulting ideal disjunctive normal form is 
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equivalent to the original formula since we used equivalent transforma- 

tions in each of the steps described above. 

We note that all the steps performed are reversible, so that with 

the use of relations (l0)-(30) we can also accomplish the reverse con- 

version from the constructed ideal disjunctive normal form to the orig- 

inal formula A(x1, x2, ..., x ). 

Theorem 2. For the arbitrary boolean function f of any finite num- 

ber of variables x,. x0, ... . x there can be constructed one and, 
i  d      n 

with an accuracy to permutation of the disjunctive terms and cofactors, 

only one ideal disjunctive form with the same set of variables to 

which it is equal. 

To each set (a.jOu, ..., a )  of values of the variables x,, Xp, 

..., x there corresponds exactly one constituent of unity x, x«... x , 

which becomes unity on this set. This constituent is uniquely defined 

by the condition x. = x., if a, =1 and by x. = x. if a, = 0(i = 1,2, 

..., n). All the remaining constituents for the given set of values of 

the variables have zero values. Since in a disjunction the terms which 

are equal to zero can be discarded, then it becomes clear that the dis- 

junction £  of the constituents of unity corresponding to all the sots 

on which the values of the function f are equal to unity is an ideal 

disjunctive normal form equal (as a boolean function) to the function 

f. It is clear also that every variation in the composition of the con- 

stituents of unity occurring in the form ^ will inevitably alter its 

value table and, naturally, will destroy the established equality. Con- 

sequently, the formg  is defined uniquely by the function f, Q. E.D. 

In view of the indicated uniqueness of the definition, the form £ 

is customarily termed the ideal disjunctive normal form of the consid- 

ered function f. 

Two other important results follow directly from theorems 1 and 2. 
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Theorem 3» Any boolean function can be represented In the form of 

a formula of boolean algebra. 

Theorem 4. With the aid of relations (l0)-(30) every formula of 

boolean algebra can be represented in any other formula which is equiv- 

alent to it (i.e., representing the same boolean function). 

Actually, as the formula representing any given boolean function 

f we can choose its ideal disjunctive normal form. We can always trans- 

form any formula A into Its equivalent formula B by means of the ideal 

disjunctive normal form £, which, as a result of theorem 2, will be 

common for formulas A and B. The chain of transformations which trans- 

forms the fonnula A into r, and the chain reducing B to £ taken in re- 

verse ordr.v fon the strength of theorem 1 such chains exist) consti- 

tute a chain of transformations which transform the formula A into the 

formula B. 

We note that not all the relations (l0)-(30) written out above 

from the proof of theorem 1 are used in the transformations (for exam- 

ple, relation (17) is not used). Therefore, if desired the system of 

relations (l0)-(30) can be abbreviated such that theorems 2 and 4 will 

be valid as before. 

The second remark concerns the fact that the method of transform- 

ing the formula A into its equivalent formula B by means of the ideal 

disjunctive normal form £ common to both of them was necessary only to 

establish the principle of the possibility of conversion from A to B. 

In practice this method usually turns out to be too cumbersome, as a 

result of which we generally look for more direct ways to convert from 

A to B (although, of course, sometimes there may not be a way which is 

significantly shorter to get from A to B than the "roundabout" method 

indicated above). 

An important problem which is solvable within the framework of 

- 92 - 

■ 11 ■ iw—-wwr^aHw^—" 



boolean algebra is the problem of the minimization of formulas. The 

sense of this problem Is the finding of a general technique (algorithm) 

which makes It possible for any formula of boolean algebra to find Its 

equivalent formula having the minimal possible complexity. 

As the criterion of the complexity of a formula it Is most natur- 

al to take the number of operations appearing In this formula, so that, 

for example, the complexity of the formula x will be the number 1, 

whlüe the complexity of the formula {x\/y) (yVz) will be the number 5 (two 

negations, two disjunctions and one multiplication). However, follow- 

ing the tradition established In the majority of the works on the mini- 

mization problem, we shall make use of a different criterion, taking 

the complexity of a formula to be the total number of letters appear- 

ing In It. Here we are speaking of the number of occurrences of the 

letters (including, possibly. Identical letters In this number) and 

not of the number of different letters In the formula. Thus, for In- 

stance, In view of the criterion we have defined, the complexity of 

the formula (x\Jy)(x\Jy)   should be considered 4, not 2. 

It Is not difficult to understand that the set M(A) of the differ- 

ent formulas of boolean algebra v;hose complexity does not exceed the 

complexity of any fixed formula A will Inevitably be finite. Therefore 

the problem formulated above of the minimization of formulas can In 

principle be resolved by the sorting of all the formulas of the set 

M(A) in the order of increasing complexity until a formula is found 

which is equivalent to formula A. However, the algorithm based on this 

sorting is so cumbersome that is is not suitable in practice. 

The problem of the construction of more economical algorithms for 

the minimization of formulas in boolean algebra has not yet been 

solved in the general form. Therefore, in practice we limit ourselves, 

as a rule, to the problem of finding the minimal formula in a particu- 
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lar class of formulas and first of all In the class of all disjunctive 

normal forms. This problem is usually termed the problem of the mini- 

mization of the boolean functions, which, of course, is not entirely 

accurate, since we are not speaking of the minimization of the func- 

tion (which remains unchanged in the minimization process) but of tht 

minimization of the formulas which represent the function (in the pres- 

ent case—the disjunctive normal forms). 

All the methods of minimization In the class of the disjunctive 

normal forms are based on the concept of the prime implicant. The im- 

p11cant of the boolean function f is the term given to every boolean 

bunction £ whose reduction to unity is possible only on those sets of 

values of the variables on which the function f reduces to unity. We 

stipulate that the implicant £ covers with its unities some unities of 

the function f. Prom the properties of the disjunction it follows that 

the disjunction of any (finite) set of implicants gugt gn  of the func- 

tion f will again be its implicant. If in this case the unities of the 

implicants ^i,ft g*,  considered all together,, cover all the unities of 

the function f, then this disjunction simply coincides with the func- 

tion /: ftVftV- v*.=/. 

The reverse is also clear: any term of the disjunction coinciding 

with the function f is the implicant of this function f is the impli- 

cant of this function, and the unities of all the terms of the indi- 

cated disjunction all together cover all the unities of the function f. 

In particular, every disjunctive normal form £  of the boolean function 

f can be considered as the covering of this function by the set of all 

terms of form £, each of which is the implicant of the function f. In 

this case the elementary product^ appear in the role of implicants. 

We note that with a reduction of the length of the elementary 

product (as the rusult of dropping part of ^he cofactors) the number 
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of unities covered by It Is Increased. The elementary product of maxi- 

mal length (constituent of unity) for n variables reduced to unity on- 

ly at one point, while the elementary product of length n — k reduces to 

unity at 2 points. Therefore it is of advantage to cover any given 

function f by elementary products of the minimal possible length, i.e., 

by such elementary products that they themselves are implicants of the 

function f, but none of their internal parts are implicants of this 

function. Such elementary products are customarily termed prime impli- 

cants of the boolean function in question. 

The set of all prime implicants of any boolean function f covers 

all its ones. Therefore the disjunction £ of all prime implicants of 

the function f, termed the reduced disjunctive normal form of this 

function. However, this representation will usually not be the most e- 

conomlcal, since some prime implicants can elver ones which are alroad- 

y covered by the remaining implicants. Discarding from the form £ all 

such redundant Implicants, we transform it into the so-called irreduci- 

ble disjunctive normal form of the function f in question. 

A boolean function can have, generally speaking, not one but sev- 

eral irreducible disjunctive normal forms. For instance, the function 

of the three variables x, y, z, reducing to zero only on the sets (OOO) 

and (ill) and equal to unity on all the remaining sets, has five dif- 

ferent irreducible disjunctive normal forms. At the same time, we can 

show that any two-place boolean function has a single irreducible dis- 

junctive normal form. 

It is easy to understant that among the irreducible disjunctive 

normal forms of any boolean function f there are inevitably contained 

all its minimal disjunctive normal forms (there may be several of them), 

i.e., those disjunctive normal forms of the function f which contain 

the smallest number of letters in comparison with all ehe remaining 
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disjunctive normal forms of this function. 

We can construct sufficiently economical algorithms for finding 

all the prime Impllcants and all the Irreducible disjunctive normal 

forms of any boolean function. However, for separating the minimal 

forms from the number of Irreducible disjunctive normal forms there 

is not In the general case any significantly simpler method than the 

method of sequential sorting and  comparison of all the Irreducible dis- 

junctive normal forms (see Zhuravlev [36]). 

One of the most effective algorithms for finding the prime impll- 

cants and the irreducible disjunctive normal forms is the algorithm 

proposed by Blake [8]. The essence of the Blake algorithm is the fol- 

lowing. It is not difficult to establish that in boolean algebra there 

is satisfied the identity relation of the form 

AB\JÄC = AB\J ÄC\j BC. (31) 

If in this relation we consider A to be a letter and B and C to 

be elementary products, then from relation (31) there is derived the 

rule for identity transformation of the disjunctive normal forms which 

makes it possible if they contain two terms of the form xp and xq to 

complement them with a new term (elementary product) pq. It is possi- 

ble, it is true, that this term vanishes or coincides with one of the 

disjunctive forms present in the form already. It is easy to under- 

stand that in view of the ^initeness of the total number of elementary 

products (given variables) new terms will not be obtained by means of 

a finite number of steps of application of the indicated rule. Blake's 

result amounts to the statement that the transformed form of f after 

reaching suitable "stabilization" will contain all the prime impll- 

cants of the boolean function which It represents. 

After obtaining the disjunctive normal form £ containing all its 

prime Impllcants, it is not difficult to free it of all the terms 
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which are not prime Implicants. Actually, if any elementary product P 

from £  is not a prime implicant, then, being in any case an impllcant 

of the function £, it Includes in itself some prime Impiicant £ of 

this function and, consequently, can be represented in the form P = pq. 

Since in ^ there is the disjunctive term JD, then it can be used to ex- 

clude from jj the term P = pq with the aid of the relation (l8);pvpq =P« 

Such an exclusion is usually termed the elementary absorption opera- 

tion. Its application to the disjunctive normal form £ provides after 

a finite number of steps the cancellation of all the terms which are 

not prime implicantsand the conversion, thusly, of the form £ into the 

simplified disjunctive normal form g0. 

In order to go from the form g0 to some irreducible disjunctive 

normal form, we can find the redundant terms in gQ by the same method 

of Blake: if some term in the form gQ (or in any other disjunctive nor- 

mal form consisting of prime implicants) can be obtained from the re- 

maining terms with the aid of the application (possibly more than once) 

of relation (l8), then this term is redundant and it can be excluded. 

By applying such an exclusion process repeatedly, we reduce the 

form g0 to the irreducible disjunctive normal form g,. Actually, on 

the strength of the result of Blake presented above, with the aid of 

relation (30) we can obtain from the form g-^ all the prime implicants 

appearing in g0. But further exclusion of terms of the form Ci Is not 

possible. Actually, if we attempt such an exclusion at least one of 

the unities of the function g, will be uncovered. It is clear that the 

prime impllcant (excluded from g-^ covering this unity now cannot be 

recovered from the disjunction of the remaining terms by any elementa- 

ry transformations, in particular with the aid of the application of 

identity (3l). 

In order to obtain all the irreducible disjunctive normal forms, 
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the described exclusion method should be applied several times with 

variation of the rder In which the attempts are made to exclude the 

various terms. As we mentioned above, the finding of the minimal dis- 

junctive normal forms requires a complicated operation In the sorting 

of all the Irreducible disjunctive normal forms (which can be of vai.- 

led complexity). Therefore In practice the solution of the problem of 

minimization Is usually limited to finding some one, randomly selected. 

Irreducible disjunctive normal form. 

As an example of the application of the Blake algorithm, we shall 

show the process of minimization of the disjunctive normal form / = *i/*V 

MxyS/xyz. 

Applying relation (31) to the pairs composed from the first term 

with the second and fron the first term with the third, we reduce the 

given form f to the form ft =xy2\/xy\/xy2VyzVxz.  Application of relation 

(3l) to any pair of terms of the form f1 does not lead to the appear- 

ance of new terms. Consequently, all the prime Impllcants of the func- 

tion f (the function represented by the form f) are contained In the 

form f-,. 

The application of the operation of elementary absorption to the 

form f1 leads to the reduced disjunctive normal form f2 ■ xyVyzVxz.  The 

first term of the form f2 can be obtained with the aid of relation (31) 

from the remaining two terms and Is thus redundant. Excluding It, we 

come to the form f^ = yzvxz, which does not contain redundant terms and 

which Is, consequently, the desired Irreducible disjunctive normal 

form. In the present case the Irreducible disjunctive normal form is 

the only one and as the result of this It coincides with the minimal 

disjunctive normal form. 

More detailed information on the various methods of minimization 

of the formulas of boolean algebra can be obtained in special mono- 
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graphs on the theory of the synthesis of the circuits of discrete auto- 

mata (see, for example, Glushkov [26]). Some additional information on 

this question Is presented also In §4 of the present chapter. 

§3. THE CONCEPT OP COMPLETE SETS OP BOOLEAN OPERATIONS 

Theorem 3 of the preceding section shows that for the representa- 

tion of any boolean function In the form of a formula constructed from 

the arguments and the boolean constants 0 and 1, It Is sufficient to 

use In all three types of boolean operations, negation, multiplication 

and disjunction. Every set of boolean operations which possess such a 

property Is customarily called a complete set. 

In addition to the s«t consisting of the operations of negation, 

multiplication and disjunction, we can also construct other complete 

sets of boolean operations. Prom the de Morgan relations (21) and (22) 

written out In the preceding section, it follows that the disjunction 

operation can be represented by the operations of negation and multi- 

plication, and that the multiplication operation can be represented by 

the operations of negation and disjunction. Therefore a complete set 

of boolean operations can be composed from the negation operation and 

any of the two remaining operations of boolean algebra (multiplication 

or disjunction). 

Prom the operations of any complete set of boolean operations 

there can be constructed any boolean operations, in particular the op- 

erations of negation, disjunction and multiplication. In order to per- 

form the required construction it is obviously sufficient, using the 

operations of the complete set being considered, to represent the bool- 

ean function which defines the required operation. Conversely, If from 

the operations of some set we can construct the operations of negation 

and multiplication or negation and disjunction, then. In view of what 

we have said above, this is sufficient for the possibility if  ropro- 
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sentlng any boolean function and, u  isequently, for the completeness 

of our set. As a result we come to he following proposition. 

Theorem 1. For the completeness ni any set of boolean operations 

It Is necessary and sufficient that with ^he aid of the operations of 

this set we can construct the function x and one of the functions xy 

or «Vy- 

Using the criteria of completeness from Theorem 1, we can rela- 

tively easily establish the completeness of many sets of boolean oper- 

ations. One such set is, in particular, the set consisting of tne oper- 

ations of multiplication and addition (modulo two). Actually, it is 

easy to verify that the following relation is valid 

x-x+l. (32) 

Thus, negation can be expressed by addition. Since multiplication 

itself appears in the set in question, on the basis of Theorem 1 we ar- 

rive at the conclusion on the completeness of this set. 

With the aid of the operations of addition and multiplication 

there is constructed still another interesting algebra of the boolean 

functions, termed the Zhegalkin algebra. In its general properties (ex- 

pressed by the identity relations) this algebra approaches most close- 

ly the algebra with the conventional addition and multiplication opera- 

tions which is studied in high school. Like conventional addition,, mod- 

ulo two addition satisfies the associativity and commutativity rela- 

tions (for boolean multiplication these properties were established in 

the preceding section). The distributive law x(y + z) = xy + xz is al- 

so satisfied, making it possible to remove parentheses in expressions 

Just as in conventional algebra. 

After removal of the parentheses, any formula in the Zhegalkin al- 

gebra is represented in the form of the sum of the products of the var- 

iables, including, possibly, the products consisting of a single cofac- 
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tor (single letters) and of a zero cofactor (the constant l). On the 

basis of the relation xx = x and the commutativlty of multiplication, 

we can consider that in any of the products obtained no letter will oc- 

cur more than one time. 

Identical products. Just as in conventional algebra, are consid- 

ered similar terms and are subject to the operation of reduction of 

like terms. The rules for this reduction are different from the corre- 

sponding rules in conventional algebra, amounting, in the final analy- 

sis, to the easily verifiable identity relation 

x + Jt-0. (33) 

Thus, any even number of identical addends mutually cancel, while 

any odd number is equivalent to only a single addend, since the zero 

addend^ do not alter the values of the sum and can be immediately 

stricken from the sum. 

The reduction of likes terminates our description of the reduc- 

tion process, which we shall call the process of reduction of formulas 

in the Zhegalkin algebra to the canonical form. Let us demonstrate 

this process using an example. Let there be given some formula f = 

■ (x + y)(x + z) + y(z + x) of the Zhegalkin algebra. After removal of 

the parentheses, this formula takes the form f, = x + xy + xz + yz + 

+ yz + xy. After combining like terms, the terms xy and yz, encoun- 

tered twice in the formula, cancel and the formula itself is reduced 

to the final (canonical) form f2 = x + xz. 

In view of the completeness of the set of operations of the Zhe- 

galkin algebra and the possibility of reduction of any of its formulas 

to the canonical form, every boolean function f can be represented in 

the Zhegalkin algebra by a formula of canonical form. It is not diffi- 

cult to show that the last formula is determined uniquely by the func- 

tion f with an accuracy %o  possible permutation of addends and cofac- 
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tors. We shall call this formula the canonical polynomial of the given 

boolean function f. 

The uniqueness of the determination of the canonical polynomial 

can be established by simple reasoning. Let f;L and fg be two different 

canonical polynomials of the boolean function f. Being equal to this 

function, the polynomials ^ and f« are equal to one another as func- 

tions (for all values of the variables). In the equality ^ ■ f2 iden- 

tical terms in the right and left sides can be mutually cancelled. In 

the right and left sides of the identity relation arising after this 

f' - fi there is not a single pair of identical terms (addends). 

Let us fix one of the addends £ which is composed of the smallest 

number of letters in comparison with the remaining addends. Then all 

the remaining addends will differ from the selected addend £ by at 

least one letter. Let us fix the set of values of the variables so 

that all the letters appearing in 2  take the value 1 and all the re- 

maining letters take the value 0. On the strength of this remark, only 

one of the addends, and precisely the addend jo, will become unity with 

the selected set of values of the variables, all the remaining addends 

will be equal to zerc But then the relation fi = fi is brought to the 

form 1=0 (or 0 «= l), which is not possible of the original relation 

f, ■ fo was identical. Thereby we have refuted the assumption made in 
l   ^ 

the beginning of our discussion on the existence of two different (al- 

though equal to one another as functions) canonical polynomials f-^ and 

fp for the same boolean function f. 

Canonical polynomials which do not contain products of two or 

more variables (i.e., polynomials which are the sum of individual let- 

ters and, possibly, the constant 1, and also the polynomial identical- 

ly equal to zero) are the so-called linear boolean functions. All the 

remaining boolean functions are nonlinear. Corresponding to this divi- 
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slon of the functions, all the boolean operations which they determine 

are also divided into linear and nonlinear operations. 

It is easy to see that with any superpositions (substitutions of 

one in the other) of linear boolean functions the functions resulting 

from the superposition will again be linear. This means, clearly, that 

with the aid of the linear (boolean) operations we cannot construct an- 

y nonlinear operation. This implies that every complete set of boolean 

operations must include at least one nonlinear operation. 

The operations of negation and addition (modulo two) are linear 

operations, since the canonical polynomials representing their boolean 

functions will be the linear formulas x + 1 and x + y. At the same 

time the functions xy and xVy. and consequently the multiplication and 

disjunction operations which they define, are nonlinear. The first of 

them has as its canonical polynomial the formula xy, and the second — 

the formula x + y + xy. Both these formulas contain the nonlinear term 

xy. 

Let us introduce still another division of the boolean functions 

and their corresponding boolean operations into two classes: the class 

of monotone functions (operations) and the class of nonmonotone func- 

tions (operations). To do this let us define for the sets of values of 

the boolean variables the order relation <, assuming that 0 < 0, 0 < 1, 

1 < 1 and that for any two sets of identical length (Cl
1
U2 ••*  n^ anci 

(ß1ß2 ... ß ) the relation (^^ • • • an) < ^1^2 •••
ßri^is vallci when 

and only when for all i ■ 1, 2, ..., n a < ß^ if these sets are dif- 

ferent, then we shall say that the first of them is the smaller and 

the second is the larger. We note that certain sets, for example the 

sets (01) and (lO), will in this case be incomparable with one another, 

since the definition presented does not make it possible to consider 

that one of them is larger or smaller than the other. 
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The boolean function f Is termed monotonic If with transition 

from any smaller set A of values of Its variables to any larger (in 

comparison with A) set B the value of the function cannot diminish. 

I.e., transition from the value 1 on the set A to the value 0 on the 

set B. If, however, even for one pair of the sets A, B such that A < B, 

f (A) = 1, and f(B) = 0, then the function f Is termed a nonmonotonic 

boolean function. The boolean operations determined by these functions 

are correspondingly divided Into monotonlc and nonmonotonic. 

For any superpositions (substitutions of the function Into func- 

tion) of the monotone boolean functions we again obtain monotone func- 

tions. Actually, If the functions f(y1, y2, ..., y ) and ^(x,, Xp, ... 

x ) are monotone, and the function cp Is substituted, say. In place of 

the variable y,, then, on the strength of the nomotonlclty of the func- 

tion cp with any Increase of the set of values of the variables y2, y^, 

... y , x,, Xoi ..., x , the set of values of the variables cp, y2, y-, 

... y will either Increase or remain unchanged. In both cases the val- 

ue of the complex function f(cp, ypj Vot  •••>  ym)j 
in view of the mono- 

tonlcy of the function f(y-,, Yo»  •••* ^rr)»  cannot diminish, which 

proves Its monotonlclty. 

With transfer over to operations, the fact Just established means 

that with the aid of only the monotone boolean operations we cannot 

construct any nonmonotone boolean operation (for example, negation), 

which Implies that every complete set of boolean operations must of 

necessity Include at least one nonmonotone operation. 

The simplest example of nonmonotone operation Is that of negation. 

It Is found also, that In a certain sense every nonmonotone operation 

Includes the negation operation. More precisely, the following proposi- 

tion Is valid. 

Theorem 2. The negation operation can be constructed with the aid 
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of any nonmonotone boolean operation. 

Let us consider an arbitrary nonmonotone boolean operation. It 

Is defined by some nonmonotone boolean function f(x,, Xp, ... x ). In 

view of the nonmonotonlclty of the function f, there are two sets A 

and B of values of Its variables such that A Is smaller than B, and 

the function f takes on the value ] on the set A and the value 0 on 

the set B. The set A differs from set B In that In certain of the loca- 

tions where In the set B there stand ones. In the set A there stand ze- 

ros. Replacing sequentially, one by one, these zeros by ones, sooner 

or later we arrive from the set A, where f(A) ■ 1, at set B, where 

f(B) = 0. Consequently, In one of the sequential replacements of zero 

by one the value of the function f must change from 1 to 0. This means 

that for some 1 (l < 1 < n) f^, a^,  ..., a^, o, •-'i+1, ..., <n) = 1 

and f{cLit  a2,.. ., 1, a1_1, ..., aj =0, where a1, a2, ..., o^, ai+1, 

..., a are certain boolean constants (0 or l). But them, as It Is easy 

to see, the boolean function f{a-i,  ap* •••* ai_i* x>  ai+i' • • • ■» an) 

of the one variable x can be nothing other than the negation of this 

variable, i.e., x. Interpreting the function f as a boolean operator, 

we obtain the required representation with the aid of this negation op- 

eration. 

In the classification of the boolean operations we shall exclude 

from consideration the zero-place operations (constants 0 and l), and 

also the trivial single-place operation which repeats the values of 

its argument. It is also natural to not differentiate between the oper- 

ations which arise from the same boolean function with various permuta- 

tions of its arguments. Taking account of this, we shall have a single 

one-place operation, negation x, and eight two-place operations, multi- 

plication xy, disjunction xyy, addition x + y, the equivalence opera- 

tion JC~I/. the implication x Zi y,  the inhibit operation xy, the Sheffer 
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operation ivy and the Pierce operation xy. 

It Is easy to verify that only two of all the listed nine boolean 

operations are monotone: multiplication and disjunction. Only three op- 

erations are linear; negation, addition and equivalence. Thus, we ar- 

rive at the following result. 

Theorem 3. Among the nine single-place and two-place boolean oper- 

ations, those of multiplication and disjunction are nonlinear (but mon- 

otone), those of negation, addition and equivalence are nonmonotone . 

(but linear). The remaining four operations, inhibit, implication, 

Sheffer and Pierce, are both nonlinear and nonmonotone. 

It is not difficult to derive the following Important result from 

Theorems 2 and 3» 

Theorem 4. With the use of any nonlinear operation there can be 

obtained either the multiplication or disjunction operation. 

Let us consider the arbitrary nonlinear operation defined by the 

nonlinear boolean function f(x,, x2, ..., x ). The canonical polynomi- 

al of this function contains at least one product with two or more co- 

factors. Let us separate among all such products one of those which 

have the smallest length _!• This product contains no less than two co- 

factors and, consequently, has the form x^x.p, where £ is the product 

of some set of letters (possibly empty or containing only a single let- 

ter). Keeping the letters x^ and x. unchanged, we replace all the let- 

ters occurring in 2  ^y ones, and all the remaining letter.? (from the 

number of letters x,, Xp, ..., x ) by zeros. After this substitution 

the product which we separated out becomes x.x. and all the remaining 

products of length greater than one become zero, since each of them 

contains at least one letter different from x,, x. and from the let- 

ters occurring in JD. 

After this substitution we obtain the boolean function of two var- 
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lables (p(x., x.), whose canonical polynomial has the form x.x. + ux. + 

+ ßx. + Y, where a, ß, y  are the boolean constants (0 or l). If this 

function is equal to x.x. or *,V*/ = *'*/+*< f*/. then the theorem is 

proved. Otherwise, being nonlinear, this function, on the strength of 

Theorem 3j will inevitably be nonmonotone. But them, by Theorem 2, 

with the aid of the boolean operation defined by the function tp we can 

express the negation x = x + 1. Having available the functions x., x,, 

x. + 1, x. + 1 we can in the function cp replace x. by x. + ß, and x. 

by x. + a, after which we obtain the function ^(x., x.) with the -anon- 

leal polynomial (x. + ß)(x. + a) + a(x. + ß) + ß(x. + a) + 7 = x.x. + 

+ axi + ßx. + aß + ax. + aß + ßx. + aß + 7 = x.x. + ö, where the let- 

ter ö designates the boolean constant aß + y. If 6 = 0, then iA(x., X.) 

= x.x., and the theorem is proved. If, however, 6 = 1, then -^(x.x.) = 

= x.x. + 1 = x.x.. Since we have already constructed the negation, 

from the last function it is again easy to obtain the product x.x.. 

Thus, in all cases we can with the aid of the given operation con- 

struct expressions for the function xy or xy/y, and consequently, also 

for the operations defined by them, Q.E. D. Now it is easy to derive 

the following condition of completeness for the sets of boolean opera- 

tions. 

Theorem 5» In order that a set of boolean operations by complete, 

it is necessary and sufficient that at least one nonlinear operation 

and at least one nonmonotone operation be included in the composition 

of this set. 

The necessity of this condition was established above, and the 

sufficiency is a direct result of Theorems 2 and 4. 

We agree to call the complete set of boolean operations irreduci- 

ble if from it we cannot exclude a single operation without the set 

losing its properly of completeness. Theorem 5 makes it easy to list 
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all the irreducible complete sets composed from slnglerplace and two- 

place boolean operations. These are four sets, each of which consists 

of a single operation (implication, inhibit, Sheffer operation and 

Pierce operation), and six complete irreducible sets consisting of two 

operations: combination of the operation of multiplication with each 

of the operations of negation, addition or equivalence, and combina- 

tions of the operation of disjunction with each of the same three oper- 

ations. 

The concept of completeness which we have used has made it possi- 

ble in the construction of the boolean functions to use not only the 

arguments of these functions and the operations from the corresponding 

complete set, but also the boolean constants 0 and 1. If we exclude 

the possibility of using the constants, then there arises a new con- 

cept of completeness which we shall term strong completeness or com- 

pleteness in the strong sense. 

By no means all the complete sets of the boolean operations satis- 

fy the condition of strong completeness. For example, the set consist- 

ing of the operations of addition and multiplication, being complete, 

nevertheless is not complete in the strong sense. It is easy to see 

that without the use of the constant 1 all the boolean functions con- 

structed with the aid of this set of operations vanish at the point at 

which all their arguments take on zero values. Thus, with the use of 

only the operations of addition and multiplication (without the con- 

stant l) there cannot be represented a whole series of boolean func- 

tions, for example the function x or the function identically equal to 

unity. 

At the same time, the sets composed from the operations of nega- 

tion and multiplication or negation and disjunction are complete not 

only in the conventional sense but also in the strong sense. In order 
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to convince ourselves of this It Is sufficient, obviously, to provn 

the possibility of representing the constants 0 and 1 with tho aid of 

the operations indicated. This is done by the formulas 0=jtx. I = xJc. 

The necessary and sufficient conditions for strong completeness 

for the sets of boolean operations were found by Post [62]. In order 

to formulate these conditions, it is necessary to become acquainted 

with three new remarkable classes of boolean functions and tho opera- 

tions which they define. 

The boolean function (operation) f(x,, Xp, ..., x ) is termed a 

zero-preserving function (operation) if f(0, 0, ..., 0) a unity- 

preserving function (operation) if f(l, 1, ..., l) =1 and a self-dual 

function (operation) if f(x1, Xp, ..., x ) = f(x1, x2, ..., x ). The 

result of Post mentioned above can now be formulated as follows. 

Theorem 6. In order that a set of boolean operations bo complete 

in the strong sense it is necessary and sufficient that this sot in- 

clude in Itself at least one nonlinear operation, at least one non- 

monotone operation, at least one non-zero-preserving operation, at 

least one non-unity-preservlng operation, and at least one operation 

which is not self-dual. 

The necessity of the conditions formulated in Theorem 6 is proved 

by exactly the same method as in the case of the conventional complete- 

ness: it is necessary to convince ourselves only (and this is not dif- 

ficult to do) that without using the constants, with the aid of the 

zero-preserving operations we can construct only those boolean func- 

tions (and this means the boolean operations as well) which also pre- 

serve zero. The situation will be the same with the operations which 

preserve unity and with the self-dual operations. Proof of the suffi- 

ciency reduces to establishment of the possibility of construction of 
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the constants 0 and 1 and the subsequent application of Theorem 5^ The 

details of this proof can be found In the article of Yablonsklly [83] 

(see also Glushkov [26]). 

Of the nine single-place and two-place boolean operations listed 

above, six operations are not zero-preserving: negation, the equiva- 

lence operation. Implication, and also the Sheffer and Pierce opera- 

tions. 

The list of operations which are not unity-preserving also in- 

cludep. six operations: negation, addition, the inhibit, Sheffer and 

fierce operations. 

Finally, all the operations other than negation are not self-dual: 

multiplication, disjunction, addition, implication, and also the opera- 

L;ions of equivalence. Inhibit, Sheffer and Pierce. 

The  Sheffer and Pierce operations possess the most remarkable 

property: each of them, considered individually, is a complete, in the 

strong sense, set of boolean operations. These sets, of course, are ir- 

reducible in the sense that from them we cannot remove a single opera- 

tion without the set losing the property of strong completeness. 

It is easy to show that every operation which is not zero-preserv- 

ing is either also not unity-preserving or is not a self-dual opera- 

tion. This implies that in any irreducible strong complete set of bool- 

ean operations there cannot be more than four (and not five, as it 

might seem a priori) different operations, and irreducible strong com- 

plete sets consisting of four different boolean operations actually do 

exist. 

§4. APPLICATION OP BOOLEAN ALGEBRA IN THE THEORY OF COMBINATION CIR- 

CUITS 

Combination circuits are the simplest technical devices for the 

conversion of discrete information. Let us assume that we have at our 
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dlspcs'xl a finite number of types of signals of a particular nature 

(mechanical, electrical, optical, etc.) composing the so-called signal 

S alphabet. We shall use the term combination circuit for any device P 

which realizes some alphabetic operator A = A(s) In the alphabet S and 

satisfies the following conditions. 

1. The domain of definition of the operator A Is the set of words 

In the alphabet S having the fixed length m > 1 (depending on the 

choice of the device P). 

2. All the input words from the domian of definition of the opera- 

tor A are transformed by the circuit P into output words of the same 

length n > 1 (also depending on the choice of P). 

3. All the letters (signals) composing the input word are applied 

simultaneously to the m points of the circuit P which are called its 

input poles, and at the same time, also simultaneously, all the let- 

ters (signals) of the corresponding output word appear at another n 

points of the circuit which are called its output poles.  The input 

and output poles are numbered in a strictly fixed method and are asso- 

ciated with the corresponding locations of the input and output words, 

so that the i-th input pole (i =1, 2, ..., m) and the J-th letter of 

the output word appears at the J-th output pole J = 1, 2, ... , n. 

Of course, every real technical device has some Internal delay, 

so that the condition of simultaneity of the appearance of the input 

and output signals in the combination system is not to be understood 

too literally. We are considering some abstraction of the actually en- 

countered case in which ehe indicated delay can be neglected in compar- 

ison with the interval of discrete operation of the circuit, deter- 

mined by the time for the replacement of one input word by another. 

In practice, the combination circuits are usually characterized 

by the absence of memory in them. This means that the output word ap- 
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pears at the output poles of the circuit only for that time while the 

corresponding input word is applied to the input poles. After the ap- 

plication of the input signals has been terminated, the circuit "for- 

gets" these signals, so they cannot affect the process of the forma- 

tion of the response of the circuit to the following combination of 

signals applied to its input poles. 

Conditions 1 and 2 impose, at first glance, very strong limita- 

tions on the alphabetic operators which can be realized by the combina- 

tion circuits. In actuality, however, words of the same length (select- 

ed each time in accordance with the specific conditions) can be used 

to code any finite ensemble of words. 

Thus, with suitable coding the combination circuits can realize 

any alphabetic operators with finite domains of definition. 

The simplest technique for equalizing the lengths of any fixed 

set of words by coding consists in the suffixing (repeatedly, general- 

ly speaking) to the words of lesser length an empty word which Is spe- 

cially introduced into the alphabet for the purpose of bringing the 

number of letters composing these words up to the number of letters 

composing the longest word of the set in question. Of course, other 

techniques of resolving this problem are possible. 

We note also that, with suitable treatment of the operation of 

the combination circuits, we can consider that the same combination 

circuit is capable of realizing not one, but any finite set of alpha- 

betic operators. To accomplish this it is sufficient to separate all 

the input poles of the circuit into the so-called information and con- 

trol poles. If we consider the transformed input word to be only that 

combination of input signals which is applied to the information poles, 

then by fixing various control words (i.e., words applied to the con- 

trol poles) we will obtain different alphabetic operators which associ- 
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ate the output words of the circuit to the Information Input words. 

The technique for the variation of the alphabetic operators real- 

ized by the combination circuit with the use of the control words Is 

completely analogous to the technique described In the first chapter 

for the organization of the operation of the universal algorithm: to 

the Input of the universal algorithm there Is applied not only the in- 

formation word to be transformed but also the control word, for which 

we select the representation of the specific algorithm which is to be 

realized. 

For technical reasons it is simpler and more convenient to select 

the binary alphabet as the signal alphabet. In this case two types of 

signals are usually identified with the boolean constants 0 and 1. Wo 

shall term the combination circuits with such a signal alphabet binary, 

or boolean, combination circuits. 

In the binary combination circuit each output signal is some bool- 

ean function of the input signals of the circuit. If the circuit has m 

input and n output poles, then the alphabetic operator realized by it 

is completely characterized by the system of n boolean functions of m 

variables which give the output signals on each of the n output poles 

as a function of the signals on the m input poles. We shall term this 

system of functions the output functions of the circuit in queslion, 

and the circuit itself will be termed a boolean (m, n)-terminal not- 

work. 

The results of the preceding section lay the theoretical base for 

one of the primary problems of the theory of boolean (m, n)-terminal 

networks—the problem of their synthesis. The essence of the problem 

of the synthesis of combination circuits in general and of boolean (m, 

n)-terminal networks in particular amounts to the development of the 

methods which make it possible to construct circuits which are as com- 
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plex as desired from a fixed (usually quite small) number of types of 

elementary combination circuits, which in the case of the binary cir- 

cuits are called logic elements. 

Any boolean (m, l)-terminal network can be selected as a logic el- 

ement. In view of what we have said above, its operation can be charac- 

terized by the output function fCx,, x^,  ..., x ), which is a boolean 

function of m variables which gives the relationship of the single out- 

put signal of the element we have selected as a function of the ensem- 

ble of all its input signals. We say that the selected logic element 

realizes this boolean function or, correspondingly, realizes the bool- 

ean operation defined by this function. 

Let us assume now that some set of logic elements has been select- 

ed. Th. synthesis of the combination circuit from the elements of the 

selected set amounts to the sequential connection of the output poles 

of some elements to the input poles of other elements in such a way 

that several output poles are not connected to the same input pole, 

and so that closed circuits are not formed along which a signal emerg- 

ing from some element Q and passing, possibly, through other elements 

again can arrive at one of the input poles of the same element Q. Here 

we shall assume that we have at our disposal an unlimited number of 

copies of any element of the selected set so that there will be no 

shortage in quantity (but not number of types ) of logic elements at 

any time. 

After completing the described process of the connection of the 

output poles of some elements to the input poles of others, some set M 

of input poles and some set N of output poles are free of any connec- 

tions with other poles. It is natural now to take the set M as the set 

of input poles and the set N as the set of output poles of the complex 

circuit constructed as a result of the described process. 
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If in the process of the connection of the polos we have observed 

the limitations presented above, then the circuit constructed will 

give an output signal on each of the n poles of the set N as a com- 

pletely determined boolean function of the signals on all m poles of 

the set M. Therefore we can consider it as a combination circuit In 

the binary alphabet or, more precisely, as a boolean (m, n)-terminal 

network. 

It is easy to understand that the set N of output poles of the 

circuit can be complemented by the poles which have been subjected to 

connection, which we shall term the internal nodes of the circuit. 

With use of several types of specific physical realizations of the bi- 

nary signals, we can connect several output poles to the same input 

pole. Ambiguity does not arise as result of the arrival of several sig- 

nals at the same pole in view of the existence of the so-called natur- 

al separation of signals. Natural separation amounts to the fact that 

a zero signal is formed on a particular pole when and only when all 

the signals arriving simultaneous"ly at this pole are equal to zero. If, 

however, even one of the arriving signals is equal to one, then the 

combined signal is equal to one. In this case the input signals of the 

circuit ccui, evidently, also be applied to certain of its internal 

nodes, as the result of which they are included in the set M of input 

poles of the circuit. 

If the synthesized circuit has a single output pole and is thus 

characterized by a single output boolean function f^, x2, ..., x^), 

the described process of construction of the circuit by the method of 

sequential connection of the nodes in essence repeats the process of 

the sequential construction of the formula representing the func- 

tion f (x-, . x^, .... x ) with the aid of the operations which are real- 

ized by the logic elements which we have used. The synthesis of the ar- 
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bitrary boolean (m,l)-terminal network Is possible if the set of indica- 

ted operations is strongly complete.Since every (m,l)-terminal network 

can be made up of n individual (m,l)-terminal networks, then in the case 
11 

of satisfaction of the condition of strong completeness we obtain the 

possibility of constructing arbitrary binary combination circuits. 

In practice, however, it Is found as a rule that it is not diffi- 

cult to apply to the synthesized circuit signals which are identically 

(at all instants of time) equal to zero and one using channels special- 

ly assigned for this purpose. Moreover, for the zero signal we fre- 

quently do not need any special channel, since with several physical 

realizations of the signals a zero signal appears on each isolated, 

i.e., not connected to anywhere, input pole. In this case the condi- 

tion for the possibility of the synthesis of an arbitrary binary combi- 

nation circuit is now not strong, but rather ordinary completeness of 

the set of operations which are realized by the selected logic ele- 

ments. In this case, for brevity we speak of the completeness or incom- 

pleteness of the set of logic elements themselves, rather than the 

boolean operations realized by them. 

Among the logic elements which are most frequently used in prac- 

tice there are the so-called AND and OR elements which realize respec- 

tively the boolean operations of multiplication and disjunction. As a 

rule, along with the two-input AND and OR elements which realize the 

functions xy and xyy, wide use is made of the multi-input variants of 

these elements which realize the boolean functions x-, x^ ... x and 

The boolean (1,1)-terminal network which performs the negation op- 

eration also frequently figures among the logic elements under the 

name of inverter. In the realization of ehe signals 0 and 1 in the so- 

called potential circuits using two different levels of electrical po- 
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tentlal, the AND and OR circuits can be constructed with the aid of re- 

sistors and semiconductor diodes, and the inverter with the use of re- 

sistors and semiconductor triodes (transistors). 

When we use two-input AND/OR/lNVERT elements as the sot of logic 

elements, the problem of the synthesis of the boolean (m, l)-terminal 

networks reduces to the problem of the construction of the formulas of 

boolean algebra which represent the output functions of these (m, l)- 

terminal networks. The interest is not in the construction of some cir- 

cuit with the given output function (in view of what we have Just said 

this is not difficult), but rather the construction of an adequately 

economical system which uses the smallest possible number of logic ele- 

ments. In this case the problem of the construction of economical cir- 

cuits reduces to the problem of the minimization of the formulas of 

boolean algebra. 

Quite frequently in practice, in the construction of a particular 

combination circuit we have the possibility of applying to its Input 

poles not only the input signals of interest to us x.., Xp, ..., x , 

but also their negations x,, Xp, ..., x . In this case it is clearly 

sufficient for the synthesis of the circuit to have only AND and OR 

elements, and the problem of construction of sufficiently economical 

circuits is usually solved only in the class of the so-called two- 

stage circuits, i.e., circuits in which all AND elements precede the 

OR elements or, conversely, all OR elements precede all AND elements. 

Such circuits are obviously described by disjunctive or conjunctive 

normal forms, for which the minimization methods were discussed in §2 

of the present chapter. 

As an example of the synthesis of the two-stage combination cir- 

cuit let us consider the synthesis of the boolean (6,l)-terminal net- 

work with the output function f = xyzvxyvx^vyzvzz, assuminr; thai )n ihn 
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six Input poles of our circuit there are applied the signals x, y, z, 

x, y, z, and as logic elements we select the two-input AND and OR ele- 

ments. 

If we design the circuit In strict accordance with the originally 

given formula representing the function f, then the circuit will con- 

tain 7 AND and 4 OR elements. If, however, we minimize this formula us- 

ing the Blake method as was done (precisely for 

this formula) at the end of §2, then It Is 

found that the given function f can be repre- 

sented by a far simpler formula: f=yz\jxl.  The 

circuit corresponding to this formula contains 

In all two AND and one OR element. Representing 

AND and OR elements with circles having the letters C and P inside, we 

can represent the constructed circuit visually (Fig. 5). In the con- 

structed circuit the input poles to which the signals x and y are ap- 

plied are actually not used. Therefore the given output function can 

be realized by a boolean (4,1)-terminal network rather than by the 

(6,1)-terminal network assumed initially. 

In this example the output function of the circuit to be synthe- 

sized was given in the form of some formula of boolean algebra so that 

the synthesis process reduced in essence only to the simplification of 

this formula. In practice we encounter most frequently the case when 

the output functions of the circuit to be synthesized are given by ta- 

bles of their values. In this case the first stage of the process of 

circuit synthesis is the finding of some (not necessarily the most sim- 

ple) formulas which represent the given functions. A universal tech- 

nique for such construction is the method based on the use of the 

Ideal disjunctive normal forms (see §2): any boolean function can be 

represented in the form of the disjunction of the constituents of unl- 

- 118 - 



ty CO-    ending to those sets of values of the variables on which 

this  ..ctlon becomes unity. The representation obtained Is then sub- 

jected to minimization. 

In the case when the number of variables Is relatively small, it 

is convenient to search for the irreducible and even the minimal dis- 

junctive normal forms representing the given functions directly from 

the tables of the values of these functions. To facilitate this search 

use is made of special forms of writing of these tables in the form of 

the so-called Karnaugh maps (Veitch diagrams). 

The Karnaugh map is a table with four rows designated by the var- 

ious sets of values of the first two variables x and ^ and with 4 col- 

umns designated by the various sets of values of the last two varibles 

z, u. The map field (for the case of four variables) Is thus divided 

into 16 squares which ar numbered sequentially by numbers from 0 to 15 

Inclusive. The Karnaugh map for four variables: 

In using this map to specify a particular 

boolean function f(x, y, z, u), In each square 

there is written the value of this function 

(O and l) on that set of values of the variables 

whose number coincides with the number of the 

given square (the first two elements of the set 

under discussion here designate the row and the 

second two elements the column, at the Intersection of which the square 

in question is located). 

With this fomulation in the case of the partial boolean map: de- 

signated with zero, designated with unity, and not designated at all. 

The last squares correspond to those sets on which the values of the 

function in question are not defined. In the case of the everywhere- 

given boolean functions, in all the squares there will be written either 
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z^ro or unity, therefore these functions can be specified by the in- 

dication only of those squares in which there will be written ones, 

or, as we shall say, by indicating the ones configuration of the func- 

tion in question. 

The Karnaugh map is constructed so that the ones configurations 

which give the various elementary products are recognized very simply. 

For the case considered of the four variables, the ones configurations 

of the elementary products of length 4 (constituents of unity) reduce 

to separate, or as we shall say here, to elementary Karnaugh maps. 

The corresponding configurations which give all Cr«2^ = 32 ele- 

mentary products of length 3 are all possible pairs of elementary small 

squares standing in a row and thus composing a rectangle with dimensions 

2x1. It is only necessary to mentally Identify the opposite edges of 

the Karnaugh map — the upper with the lower and the left with the right. 

As the result of this identification it is necessary to consider, for 

example, that the elementary small squares with numbers 4 and 6 or with 

numbers 0 and 8 stand in a line, while the elementary small squares 

5 and 9 or 7 and 2 must not be considered as standing in a line. 
0 p 

Similarly the ones configurations which give all Cj»2 = 24 ele- 

mentary products of length 2 are all possible combinations of four 

elementary small squares forming (4 x l) - rectangles and (2x2)- 

squares, and for all Ch«2 = 8 elementary products of length 1 the cor- 

responding representations are given by all possible combinations of 

elementary small squares in (4 x 2) - rectangles. Here we must not for- 

get the identification of the opposite edges of the Karnaugh map. 

The elementary product corresponding to any of tne ones configura- 

tions listed above is easily found, since such a product is composed 

of all three and only the three cofactors (x, x, y, y, z, z u, u), 

which become unity on all the sets of values of the variables covered 
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by the given configuration. 

Using this rule it is easy to find, for example, that to the con- 

figuration consisting of the elementary product xyz and to the confic- 

uration ((2 x 2) -square.') consisting of the elementary squares 0, 2, 

8, 10 there corresponds the elementary product yü. 

When the boolean function f is given by the Karnaugh map, finding 

the irreducible and minimal disjunctive nonnal forms which represent 

this function reduces to finding the most economical coverings of the 

ones configuration which gives the function f using the ones config- 

urations described above which correspond to the elementary products 

of different length (see §2). 

Let us consider as an example the problem of finding such a mini- 

mal covering for the boolean function f given by the Karnaugh nap 

It is assumed that in the squares in which 

there are dashes the values of the function f can 

be arbitrary, so that If In the fonnation of a 

particular desired configuration it is necessary 

to place a one in a particular one of these 

squares this can always be dohe. 

It is easy to see that all the (4 x 2) - 

rectangles which can be constructed on the given map include at least 

one zero of the function f. This means that among the elementary pro- 

ducts of length 1 there Is no Impllcant of the function in question. 

There are two (2 x 2)-ßquares which do not contain zeros of the func- 

tion f: the "square" consisting of the four comer elements of the 

elementary squares and the "square" standing in the right lower corner 

of the map (it contains three ones and one dash). Together, these 

squares cover all the ones of the function f and therefore this func- 

tion (with an accuracy to the indifferent values designated by the 
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dashes) can be represented In the fom of the disjunction of the corre- 

sponding elementary products f "yuTy xt , 

The disjunctive nomal form found is, as it is easy to see, mini- 

mal for the function f with any possible interpretations of the indif- 

ferent values designated by the dashes. 

The described technique for finding directly the minimal disjunc- 

tive fonns is applicable not only for the boolean functions of four 

variables, but also for functions of a smaller number of variables. 

The Karnaugh maps of general form for functions of three and two vari- 

ables : 

In using the first table it is neces- 

sary to mentally identify the upper and 

lower edges, so that the elementary squares 

with numbers 0; 4 and Ij 5 are to be con- 

sidered neighboring. 

With the aid of certain additional 

tricks we can construct Karnaugh maps for 

5 and 6 variables. For a larger number of 

variables in the general case, the problem of finding the minimal re- 

presentations directly from the tables of the boolean functions be- 

comes so cumbersome that the corresponding ICarnaugh maps are of little 

assistance. In these cases we must resort to the analytic methods for 

minimization of the formulas of the type of the Blake method and other 

similar methods. 

The finding of the minimal disjunctive normal forms for the out- 

put functions of the boolean multi-terminal networks is extremely use- 

ful, not only for the synthesis of the two-stage circuits using AND 

and OR elements described above, but also for the synthesis of circuits 

using gate elements, usually termed simply gates. 
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Gate is the name given to the binary combination circuit with 

two input poles and one output pole. The operation of the gate amounts 

to the fact that it passes or does not pass to its output pole a sig- 

nal applied at one of its input poles (tenned gated pole) depending on 

whether there is applied to the second of the input poles (tenned the 

control pole) a signal equal to one or, correspondingly, a signal equal 

to zero. 

In the gate circuits (i.e., in circuits composed of gates) sig- 

nals are applied to the control input poles of all input poles of all 

the gates which are equal to some initial variables x, y, z, ... and 

their negations x, y, z, ... . In addition, there is still another in- 

put pole of the circuit to which there is applied the gating input 

signal, identically equal to one. For the gating signals the property 

of natural separation (see above) is satisfied, which ensures with the 

application of several gating signals to the same pole taht the sig- 

nal appearing on this pole will be equal to the disjunction of all 

these signals. The output signals of the gating circuits are also sig- 

nals of the gating type. 

The gating circuit for the case of a single output pole can be 

completely constructed using any formula which represents the output 

function of the circuit with the aid of the operations of multiplica- 

tion and disjunction applied to the input variables and their negations 

(an example of such a formula might be any disjunctive nonnal fonn). 

With this construction, to every multiplication there corresponds a se- 

ries connection, and to every disjunction there corresponds a parallel 

connection of gates or gate circuits composed of several gates. 

If we designated a gate with a circle with the letter B inside, 

then a gate circuit composed in accordance with the fomula f ={x\/~y)z\rxy, 

will have the fonn shown in Fig. 6. At the internal node of the clr- 
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cult designated by the letter A there Is generated the gating signal 

x\/y     (result of the parallel connection of the gates with the con- 

trol signals x and y). At the node B there Is generated the gating 

signal x and at the node C the gating signal xy (result of series con- 

nection of gates with the control signals x and ^). Finally, the out- 

put signal fo the entire circuit as a whole (at pole D) Is the result 

of the parallel connection of two gate networks with the output (gated) 

signals {x\/'y)2   and xy. 

The gate circuits Include the so- 

called relay-contact circuits which are 

constructed using electromagnetic relays. 

Gates of this type (relay contact) have 

two-way conductivity, transmitting the 

gated signals not only In the forward di- 

rection (from the gate Input pole to the output pole) but also in the 

opposite direction. This situation gives rise to additional diffi- 

culties In the construction of the theory of the relay-contact circuits 

(associated with the existence of the so-called 

bridge circuits and the appearance of paths for sig- 

nal transmission which were not initially planned). 

Such difficulties do not usually arise in the case 

of the electronic gates which do not have two-way 

conductivity. 

In the design of gate circuits using gates of all types the so- 

called cascade method (see [65]) can be of considerable assistance. 

This method is based on the use of the relation, valid for any boolean 

function f. 

• • • «'»I-I» ")*,r 
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The validity of this fomula Is easy to see by setting xn = 1 and 

xn = 0 in it. 

In application to the gate circuits, and also to the circuits con- 

structed using the AND and OR elements, formula (34) reduces the pro- 

blem of the synthesis of the circuit with the n-place out function 

f(x1, Xp, ..., x ) to the problem of the synthesis of the circuit with 

two (n - l)-place output functions /i(x„ jf, x„-\) = f (xt, x»  jcn-i, 1) and 

ftvht x,,..., xrt_i) =/(jf„ xt, ..., Xfi—i, 0) • 

The cascade of gate circuits realizing this reduction is shown in 

Fig. 7. With several output functions the circuit of our (n-th) cas- 

cade becomes complicated, however the reduction process it self re- 

mains essentially the same. Continuing the reduction process, we final- 

ly construct the required gate circuit, composed in the general case 

(for n variables) of n cascades. 

The application of a synthesis method analogous to the described 

cascade method permitted Shannon [80] to establish the following esti- 

mate of the number of gates (of any type) required for the realization 

(in the form of the output function of some gate circuit) of the ar- 

bitrary boolean function of n arguments. 

Theorem 1. For any real positive number e there exists the whole 

number N = N(e) such that any boolean function of n > N varialbes can 

be realized in the form of the output function of a gate circuit con- 

taining no more than (i^)?!^ gates. For a similar realization with 
n 

any n no more than  ^  gates are required. 
— n 
Similar complexity estimates of circuits, but for general assump- 

tions relative to the sets of logic elements used, were established 

by Lupanov (see [51], for example). It has also been shown that there 

exist boolean functions which cannot be realized by less than 

(1—e,,) =—  gates, where the quantity en in this case tends to zero 
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with unlimited Increase of n. 

It Is of Interest to generalize the results presented to the case 

of the arbitrary boolean (m,n)-temlnal networks constructed with the 

use of any two-input logic elements. Since every boolean (m, n)- termi- 

nal network realizes some alphabetic operator A with a finite domain 

of definition, the minimal possible complexity L(A) of the boolean 

(m.. n)-tennlnal networks realizing the given operator A can be taken 

as the natural quantitative complexity estimate of the operator A it- 

self. Here, in view of the absence of adequately substantiated reasons 

to give preference to a particular two-input logic element, it is 

clearly most natural in the construction of the indicated boolean (m, 

n)-tenninal networks to make use of all the types of two-input logic 

elements, considering the circuit complexity to be the total number of 

logic elements composing it. 

The described method is not directly suitable for the estimation 

of the complexity of alphabetic operators with infinite domains of 

definition. If, however, we are required to obtain not the absolute 

estimate, but only a relative practical estimate of the complexity of 

several alphabetic operators, we can first finitize (make finite) 

their domains of definition, discarding all the input words whose 1 

lengths exceed some number N. This number must be selected so that the 

probability of encountering in the practical application of the ope- 

rators in question input words longer than N will be sufficiently 

small. 

If for all n = 1,2,... there are given the probabilities p(n) of 

the occurrence of input words of length n, then we can also proceed as 

follows: the given alphabetic operator A is divided into the operators 

A,, Ap,... so that the operator A has as its domain of defination the 

set of all words from the domain of definition of the operator A whose 
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length is equal to n and It acts on these words Just like the operator 

A(n = 1, 2,..,). Let L(n) be the complexity of the operator A com- 

puted by the method described above. Then the complexity of the orig- 

inal alphabetic operator is quite naturally the infinite sum SL(n)o(«) . 

More rational estimates of the alphabetic operators can be ob- 

tained by using discrete automata with memory for the representation 

of the operators in place of the combination circuits. The fundamen- 

tals of the theory of such automata are considered in the following 

(third) chapter of the present book. 

§5- THE CONCEPT OP PROPOSITIONAL CALCULUS 

Prepositional calculus is the initial and simplest portion of 

mathematical logic. The primary problem which mathematical logic poses 

to itself is the formalization of the complex thought processes which 

go to make up so-called logical thought. This formalization is achieved 

by use of the construction of logical calculus. 

Every logical calculus includes in itself first of all some means 

for the formalization of the writing of various sorts of statements 

about which there is reason to say that they are true of false. It is 

customary in mathematical logic to call this sort of statement a pro- 

position. The fomalization, which is what we are considering here, 

amounts to the introduction of a rigorously defined system of symbols 

for the designation of various sorts of operations which make It pos- 

sible to construct more complex propositions from simpler propositions. 

As a result of the formalization, we have the possibility of writing 

propositions in the fonn of formulas constructed from the symbols In- 

troduced by the use of definite rules. 

In spite of the great importance of the formalization of the writ- 

ing of the propositions, formalization in itself does not constitute 

the calculus. For the construction of a particular logical calculus it 
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Is necessary also to define certain formulas and operations on for- 

mulas, termed axioms and derivation rules of the corresponding calcu- 

lus, which will make It possible to derive fomally all possible logi- 

cal corollaries from any given system of statements and will make It 

possible to characterize formally all the so-called Identically true 

propositions (formulas) of the calculus In question. 

In order to understand what Identically true propositions are, let 

us consider some examples. Propositions of the type "oxygen Is a gas" 

or "two times two Is eleven" are examples of the so-called elementary 

constant propositions. The elementary nature of these propositions 

consists In the fact that they cannot be divided Into simpler com- 

ponent parts which themselves would be propositions. Actually, the ex- 

pressions "is a gas" or "two times two" are not complete propositions 

since the question of truth or falsity has not meaning relative to 

them. The term "constant" In application to the propositions presented 

Is to emphasize that we are considering completely defined proposi- 

tions relating to completely defined areas of knowledge. 

We note that the truth or falsity of these propositions depends 

on the conditions In which they are considered and is established, as 

a rule, outside the limits of mathematical logic. In application to 

the first proposition this concept Is obvious (oxygen under certain 

conditions can be not only a gas but also a liquid or even a solid). 

The second proposition, however, at first glance seems obviously false. 

Actually, though, all we have to do is to assume that in place of the 

decimal system of numbers, we are using the ternary system under the 

condition of retaining the names of multiplace numbers with which we 

are familiar, and the proposition "two times two is eleven" (2x2= 

= 3*1 + 1 = 11) changes from false to true. 

Therefore, in the applications of mathematical logic it will be 
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necessary to specify the conditions under which a particular constant 

proposition Is made so accurately and definitely that the truth value 

of this proposition cannot undergo changes In the process of obtaining 

various sorts of conclusions and corollaries from the proposition with- 

in the framework of the logical calculus being used. Thus, any constant 

proposition must be considered to be true all the time or false all the 

time through the entire duration of a particular logical derivation. 

In prepositional calculus we are not Interested In the Internal 

structure of the elementary propositions, considering them as whole 

units. Therefor^ for their designation It Is nr.tural to make use of 

the Individual letters of some alphabet (usually Latin). Individual 

letters can also be used to designate the so-called variable proposi- 

tions. The tern "variable proposition" in application to a particular 

symbol means that in place of this symbol there can always be substi- 

tuted any specific constant proposition, either true or false. 

Propositions, both constant and variable, can be combined Into 

complex propositions by using as the connective the words "and", "or", 

"if - then", "not", etc. If variable propositions occur in the composi- 

tion of the complex propositions, then with replacement of them by 

certain propositions the complex proposition may be true, and with re- 

placement by others it may be false. For example, the complex proposi- 

tion "A and B" where A and B are variable propositions will obviously 

be true in the case and only in the case when both propositions A and 

B are true. 

However, there do exist complex propostions containing in their 

composition variable propositions which remain true for any values 

which can be given to the variable propositions mentioned. For ex- 

ample, the complex proposition "if it is incorrect that the proposi- 

tion A is false, then the proposition A Is true" remains true no mat- 
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ter what proposition is substituted in place of the variable proposi- 

tion A, Such propositions are customarily called identically true pro- 

positions. The problem of the separation of the identically true pro- 

positions in the set of all possible propositions is a most important 

task of any logical calculus. 

After all our preliminary remarks we turn to the construction of 

the prepositional calculus itself. 

Propositional calculus is constructed from formal objects of three 

types. The objects of the first type are the variable and constant 

propositions which are not separable into individual component parts. 

For their designation we shall make use of the capital Latin letters 

(with or without subscripts), calling them propositional letters. The 

objects of the second type are the propositional connectives - the for- 

mal equivalents of the connective words presented above "not", "and", 

"if - then". For their designation we shall make use of the correspond- 

ing symbols of negation ("] ), disjunction (v), conjuction (A) and im- 

plication O)- We note that in the reading of the fomulas it is more 

convenient to replace the implication symbol by the word "implies" and 

not by the words "if - then". The objects of the third type are the 

parentheses, which serve for expressing the order In which the pro- 

positional connective which we have listed are to operate. 

Similarly to the way in which the formulas of boolean algebra 

were constructed in the beginning of §2, the formulas of propositional 

calculus are constructed from the formal objects which we have intro- 

duced. The difference lies in the use of the additional symbol 3 (for- 

mal analogy of the boolean implication operation), and al&j in the re- 

placement of the dot In the designation of the conjunction (multiplica- 

tion) by the symbol A, and in the use of the symbol ~| standing before 

the negated expression in place of the bar over the negated symbol as 
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the sign of negation. 

The formulas of propositlonal calculus are the indlvldusl letters 

and also all the expressions constructed recurrently from the already 

constructed formulas A and B using the rules~i (91), («) A (©KOM) V («). (m) 3 (J8). 

Just as in the case of the fonnulars of boolean algebra, in order to 

simplify the writing, a part of the parentheses can be dropped if this 

does not cause any ambiguity in the order of application of the pro- 

positional connectives. It is assumed that in the absence of parenthe- 

ses is determined by the sequency "1* A * V , 3 and for like paren- 

theses the order is that of their appearance in the formula, read from 

left to right. In several cases an additional symbol is introduced in 

prepositional calculus =  (or ~; read as abbreviated notation In the 

form (A) = (B) of the expression   ((%) ^ (»)) A ((») = (90). in 

using this symbol it is assumed that it occupies the last place in the 

sequence of symbols we have Just written out (after the symbol ]3). 

As an Illustration of the method used for the reduction of the 

number of parentheses, we note that the formula ^A vßACDßVC 

is understood as ((—1^4) v (fl A Q) ^(B V P, and not in any other way, * oe 

formula A = B 3C must be understood as (A) = ((B) 3 (C)) and not as 

((A) - (B)) 3 (C), etc. 

The definitions introduced above resolve only the first part of 

the problem of the construction of the prepositional calculus - the 

problem of the formalization of the writing of the complex proposi- 

tions. The second part of this problem - finding the method for the 

determination of the identically true propositions - can be resolved 

in two ways: the contensive and formal approaches. 

In the contensive approach, which is easier to understand, we 

cannot for a moment forget about the contensive meaning of the con- 

cepts of the prepositional letters and the propositlonal connectives. 
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In this case use Is made to the maximal possible degree of the basic 

concept of the contenslve meaning.  Thus,  If the proposltlonal letter 

A designates a particular constant propoistlon,  then there Is no need 

to remember this proposition Itself,   It Is necessary only to know the 

value of the so-called truth function of this proposition: "true"  If 

the proposition A Is true,  and "false" if the proposition A Is false. 

The truth function of any proposltlonal letter denoting a vari- 

able proposition Is Identified with this letter Itself,  considering 

It as a boolean variable.  Thus,   the contenslve meaning of the proposl- 

tlonal letters  In our construction Is exhausted by their capability 

of taking two values: "true" and "false." 

We shall associate the contenslve value of the prepositional 

connectives only with the truth functions of the complex propositions 

constructed with their use.  Every formula A of proposltlonal calculus 

can be Interpreted as a formula In boolean algebra with inclusion in 

it of the additional operation of  Implication.  The  constant proposi- 

tions appearing in the formula A must be replaced by the correspond- 

ing boolean constants   (values of their truth functions).  The symbols 

corresponding to the variable propositions are considered as arguments 

of the boolean function represented by the formula A.   This function 

is then termed the truth function of the complex propositions  ex- 

pressed by the formula A, 

On the contenslve level of the construction of proposltlonal cal- 

culus,  those and only those formulas of this  calculus   (complex pro- 

positions) whose truth functions  take the value "true"  for all values 

of the variables  are considered  to be Identically true. 

We recall that as a result  of the agreement made  in §1,   the 

value "true"  corresponds to one and the value "false"  corresponds to 

zero.   Using the  value tables presented   in §1   for the conjuction XA;/ 
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(table expressed by the cortege (OOOl)), for the disjunction xvY 

(cortege (Olli)), for implication x^y   (cortege (1101)), and recalling 

that negation transfonns 1 into 0, and 0 into 1, it is easy to find 

the value table of the truth function for any formula of prepositional 

calculus. This table Is usually temed the truth table of the fonnula 

in question (or of the complex proposition defined by it). In fill- 

ing in the table we use the abbreviated designations: T for true and 

F for false. As an example we present the truth table for the fonnula 

A 3 B which defines the contenslve meaning of implication (considered 

as a prepositional connective): 

B Prom this table we see that the meaning of 

the term "implies" (corresponding to the proposl- 

tional connective 3) in prepositional calculus is 

somewhat different than in ordinary speech. Actu- 

ally, usually when we say that some proposition 

A Implies another proposition B we have in mind 

that the propositions A and B are casually re- 

lated with one another. Thus, the complex proposition which states 

that the proposition "this substance Is oxygen" implies the proposi- 

tion "this substance Is a gas" seems to us (with the reservation made 

above on the gaseous nature of oxygen) both true and reasonable. At 

the same time, the complex propostlon which states that the proposi- 

tion "it is cold in the winter" implies the proposition "two times 

two is four" seems to us complete nonsense. However, on the strength 

of the truth table constructed above for the fonnula A 3 B, in pro- 

positional calculus the second of these complex propositions must be 

considered true to no less a degree than the first. 

The reason for this presumption Is not difficult to understand. 

Actually, in limiting ourselves by the condition of considering the 
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the elementary propositions only form the position of whether they are 

true of false, we have thereby made all the true (and all the false) 

elementary propositions quite indistinguishable from one another. There- 

fore, in particular, in the definition of the content embedded in the 

connective 3 we are forced to operate only with the concepts of truth 

and falsity, and in this direction it is obviously not possible to 

penetrate into the inner structure of the elementary propositions of 

all classifications, which, or course, is necessary for the establish- 

ment of causal connections between them. 

Disclosure of the internal structure of the elementary propositions 

and the associated increase of the capabilities for logical analysis 

are achieved by means of more complex logical calculus, in particular 

the so-called predicate calculus (see Chapter 6). As for prepositional 

calculus, we must content ourselves with the relative poverty of its 

expressive capabilities, accepting this as a sort of payment for the 

simplicity and clarity of this calculus. 

The prepositional connective 2) is used later on as an instrument 

for obtaining logical corollaries from particular formulas of preposi- 

tional calculus and in the other, higher logical calculuses. Such 

corollaries must be true for truth of the original formulas. Therefore, 

the construction of the derivation must of necessity exclude the pos- 

sibility (by indicating its falsity in this case) of obtaining false 

corollaries with truth of the original formulas. At the same time, with 

falsity of the original information the obtaining of any corollaries 

(both true and false as well) does not indicate, of course, falsity of 

the construction itself of the derivation. This circumstance finds its 

concrete expression in the truth table for the formula A 2) B.   All we 

have said here will become more understandable after acquaintance with 

the formal aspect of propositional calculus. 
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The contensive aspect of propositlonal calculus which we have 

described makes it relatively easy to resolve the question on the 

identical truth of any complex proposition (given by more formula of 

the calculus): it is sufficient to sort over all possible sets of the 

truth values of the variable propositions composing it and verify 

vwiether on all these sets the truth function of the complex proposi- 

tion In question takes the value "true." For example, the formula 

\ABoA    will be an Identically true fomula of the prepositional 

calculus on the basis of the following verification: if A = Jl and 

fl =JI. then the fomula A/\BOA      reduces to JIDJI , which, in view 

of the truth table, gives the value H ; the same will be the case with 

/4='J1 and B=n    ; with  /I =H. , depending on the values of fl(Jl orH), 

we reduce our formula either to  J1DH, , or to  HDM > which, on the 

basis of the truth tables, in both cases leads to the value H • 

We can use the technique of transformations in boolean algebra 

for the proof of the identical truth of the formulas of propositlonal 

calculus. We need only first replace all the implications according to 

the formulae D«) =(-| 91 v83)(see S1) wlth application to the example we 

have Just considered, we obtain the following chain of transfonnation; 

A A BO A ~~iAAB)V A =(-A\/~B)\/A ~— AV A\/-iB =\ V ~B =\     Thin chain 

proves the identical truth of the formula we started with. 

The identically false propositions can be considered similarly, 

i.e., those (complex) propositions whose truth functions take the val- 

ue "false" for all values of the variable propositions composing the 

given proposition. It is easy to understand that the class of all 

identically false propositions coincides with the negations of all 

possible identically true propositions. 

In spite of the simplicity and the clarity, the contensive aspect 

of prepositional calculus also has several drawbacks. First, the meth- 
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od of proof of the truth of the formulas, based on the sorting of all 

sets of values of the arguments, does not pemit direct transfer of 

this method to the more complex calculuses In which the number of such 

sets may be Infinite. Second, the methods which we have derived above 

permit the direct determination not of the identically true proposi- 

tions, but of the propositions which are true with particular addi- 

tional assumptions (for example, the formula A 2) B, which is not iden- 

tically true, becomes true under the condition that the formula 

'>» A "l ß). ls false). But problems of this sort constantly arise in 

the various applications of logical calculus. We can, it is true, de- 

velop the corresponding methods within the framework 6f boolean alge- 

bra, however in this case still another essential difficulty is ag- 

gravated which is associated with the contensive aspect of proposl- 

tional calculus - the insufficient formalization of the proof process 

and the very concept of the proof of the truth of particular formulas. 

These deficiencies are eliminated in the completely formal ap- 

proach to the construction of prepositional calculus, which formalizes 

not only the method of writing the formulas (the method already de- 

scribed is adequate for this), but also the concept of the identically 

true formulas and the process of the derivation of the logical corol- 

laries from particular propositions. 

The formal aspect of prepositional calculus is characterized by 

the fact that in this case we completely avoid the contensive meaning 

of the formulas, regarding them simply as finite sequences of individ- 

ually distinguishable symbols. 

For the characterization of the set of all identically true for- 

mulas we construct the axiom system of the calculus in question. Such 

systems can be chosen in various ways. We shall consider one of the 

most widely used axion systems of predicate calculus (see Kleene [42]). 
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This system Includes the following axioms: 
1. AO(BDA). 

2. {A ZiB) D{{A D{B DC)) 3(A DC)). 

3. AO{BOAt\B). 

A. A f\B DM. 

h. A [\B Dfl. 

6. A-DA\j B. 

7. fl DM V B. 

8. (A DC) D((BD Q D(/1 V ß ^Q). 

9. (A DB) D((>1D -|Ä)D —\A). 

I0.n-.MD4. 11.«' Vg . 
The first ten axioms are simply ten formulas of prepositional 

calculus which are identically true by definition. The identical truth 

of the axioms presents the possibility of the substitution in place 

of the prepositional letters A, B, C appearing in them of any forulas 

of prepositional calculus (not necessarily true). Such a substitution, 

by definition, will not destroy the identical truth of the formula 

(axiom) subjected to this substitution. 

The eleventh axiom has its own specific nature. This is the so- 

called rule of derivation which makes it possible, by definition, to 

consider the truth of formula B proved if the truth of formulas A and 

A 3 B has already been proved previously. If the formulas A and A 2) B 
•      • • •      • 

are in this case identically true then fomula B will also be iden- 

tically true. It is presumed by definition that all identically true 

fomulas (and only such formulas) of prepositional calculus can be 

obtained from the axioms as the result of the described substitutions 

and applications (multiple, generally speaking) of the derivation 

rule 11. 

It in no wise follows a priority that the set formally charac- 

terized in this fashion of all identically true fonriulas of proposi- 

tional calculus will coincide with the set of all identically true 
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formulas defined contenslvely above. Since the fomal identical 

truth of the fomulas is established by the procedure of the deriva- 

tion or proof, they are also teimed (formally) provable formulas or 

(formal) theorems. 

The formulas which are identically true in the contensive senst, 

we shall for brevity term simply contenslvely true, contrasting them 

with the formally true (i.e., formally provable) formulas. 

The concept of formal derivation (proof) can be extended to the 

case when, in addition to the axioms, there is given also some quan- 

tity of formulas A,, Ap ..., A of the prepositional calculus as con- 

ditionally true formulas. These formulas are not derivable from the 

axioms (not formally provable) and therefore are not formally true 

formulas. The presumption on their truth is of a conditional nature 

and is retained only in the course of the derivation in question. In 

contrast with the axioms of propositional calculus, in these formulas 

we cannot, generally speaking, replace the prepositional letters ap- 

pearing in them by arbitrary formulas. In other words, conditional 

truth, in contrast with formal truth, does not have an Identical na- 

ture. 

However, the rules of the derivation themselves are in essence 

retained as before. The primary role, as before, is played by the con- 

cept of the direct corollary (axiom 11): formula B is termed the di- 

rect corollary of the formulas A and A 3 B. We say that the formula 
• •      • 

C of propositional calculus is derived from formulas A-,, k0>   ..., A^, 

If it can be obtained from these formulas and axioms 1-10 of preposi- 

tional calculus as the result of the application (a finite number of 

times) of the rule of the direct corollary. More precisely, in the 

case being considered those formulas and only those formulas will be 

derivable which are obtained as the result of the sequential appllca- 
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tlon of three rules. 1. Any of the fonnulas A,, A0,   ..., A Is derlv- 
• X   • <_ »11 

able. 2. Any of the axioms 1-10 (with account for the possibility of 

the substitution of any formulas in place of the letters appearing in 

them) is derivable. 3. If the fonnulas A and A 2) B are derivable, 
• •      • 

then formula B will also be derivable. The chain of fonnulas obtained 

as the result of the sequential application of these three rules, 

which terminates with some formula C, is termed the formal derivation 

of this formula. 

For the designation of the derviability we make use of the special 

symbol |- (read an "gives"), to the left of which there are written 

the conditionally true formulas and to the right are written their 

corollaries: A,, A0, ..., A  |- C. The axioms of prepositional calcu- 

lus are not written out explicitly here (the possibility of their use 

in the derivation is really included in the symbol [-- ) so that for 

any formally true formula B we can write f- B. In other words, the 

formally true formulas are considered derivable from the empty set 

of (conditionally true) fromulas. Therefore axioms 1-10 can also be 

considered as sort of rules of derivation which derive the formulas 

representing them from the empty set of formulas. 

We shall present very simple examples of the formal derivation, 

numbering the sequential steps. 

1. A 2) (A 2) A) (axiom 1, in which the letter B is replaced by 

the letter A). 

2.043 {A D A)) =» {{A  D {{A 3 A)0 A)) 3 M D A))  (axiom 2,  which the letter 

B is replaced by the formula A 2) A, and the letter C is replaced by 

the letter A). 

3. (A 3 ((A JA)  DA))3 (A DA) (application of the derivation 

rule 11 to the formulas obtained in steps 1 and 2). 

4. A D ((A 2)A) 3 A (axiom 1, in which the letter B is replaced 
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by the fomula (A DA)). 

5. A.^A (application of the derivation rule 11 to the formulas 

obtained in the preceding two steps). 

This chain of formulas is, on the basis of the definition, the 

formal proof of the formula A D A* i.e., its derivation from the empty- 

set of (conditionally true) formulas. Thus, the formula A DA belongs 

to the number of the formally true formulas ans it can be written as 

h A DA. 

Another example is the derivation of the corollaries from the 

three conditionally true formulas A, B, A D (B Dc)« The formula C 

can be derived from these formulas after 5 steps. 

1. A (first given (conditionally true) formula). 

2. B (second given formula). 

3. A D (B DC) (third given formula). 

4. B D c (direct corollary (from derivation rule 11) from formu- 

las 1 and 2). 

5. C (direct corollary of formulas 2 and 4). Thus, formula C is 

derivable from formulas A, B, A D(B Dc)* and we can write A, B, A D 

D(BDc) fc. 
Although the conditionally true formulas do not possess identi- 

cal truth, still, as it is easy to see, in the final writing of the 

(conditional) derivability with the use of the symbol f- any letter 

can be replaced by an arbitrary formula of prepositional calculus, if 

such a replacement is performed simultaneously both to the left and 

to the right of the derivability symbol. Replacement in only one side 

will lead, generally spea>cing, to error. 

In similar fashion we can prove the relations 

chain conclusion A3B,BZ)C\-ADC; (35) 

permutation of premises/i D(flDC)i-ßD(,4 DC);        (36) 
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importation AD(BDC)\-A t\BoC; (37) 

exportation A f\BDC\-AZ)(BOC); (38) 

contraposition ^DS|-~iSD n>l; (39) 

A -insertion A.B\-Af\B; (40) 

weak "| -removal Ax~A\-B. (4l) 

If we designate by F an arbitrary finite ensemble of formulas of 

propositional calculus, then, using somewhat more complex method of 

proof (induction during the derivation) we can obtain the following 

result (the so-called deduction theom). 

Theorem 1. If in the propositional calculus formula B is derivable 

from the combination of formulas T  and A then the formula A ^ B is 

derivable from F. 

Two universal proof schemes are also of importance in the theory 

of proofs. 

1. Proof by means of analysis of cases: if F, A f-C and F, B j- C, 

then 

2. Reduction and absurdum: if F, A |- B and F, A |- "~| B, then 

ri-~lA (43) 

It is easy to verify that all the axioms 1-10 of the propositional 

calculus are contensively true fomulas. In other words, the truth 

functions corresponding to them take the value "true" for all values 

of the variables. This property is obviously retained with substitu- 

tions of any fomulas of the propositional calculus in place of the 

letters appearing in the axioms. From the truth table for implication 

it follows directly that from the contensive truth of the fomulas A 
• 

and A 3B there follows the contensive truth of the formula B. But 

then, obviously, all the provable (formally true) formulas will inevit- 

ably be contensively true. The reverse is also true (although much 
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more complex to prove), so that the following irrportant result can be 

fomulated. 

Theorem 2. In the formal construction of proposltlonal calculus 

using the system of axioms 1-11, all those and only those formulas 

of this calculus will be provable (formally true) which are identi- 

cally true in the contensivt sense. 

Theorem 2 contains, actually, two results relative to the se- 

lected system S of axioms of the prepositional calculus. The first 

result is that the system S is contensively consistent or, other 

words, with the aid of the system S we cannot prove a single formula 

which is not a contensively true formula. 

The second result states the contensive completeness of the sys- 

tem of axioms S: there is no single contensively true formula of pro- 

positions which cannot be proved formally with the aid of this system 

of axioms. 

The question arises of whether it is possible to determine the 

properties of consistency and completeness purely formally without 

resorting to the contensive constructions. It is found that it is 

possible. 

It is natural to term the system of axioms of prepositional cal- 

culus formally consistent if with its aid we cannot derive any for- 

mula A together with its negation "| A, and formally Inconsistent in 

the opposite case. 

Prom the property of weak ""I -removal it follows directly that in 

the case of the formal inconsistency of the system of axioms any for- 

mula of prepositional calculus would be formally provable. Since, as 

the result of Theorem 2, for the system S the letter situation does 

not occur, then this system is not only contensively consistent but 

also is formally consistent, or, as is often said. Is simply a con- 
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slstent system of azloms. 

The property of formal completeness for the system of axioms can 

be defined as follows: a system of axiom Is termed formally complete 

(or complete In the restricted sense) If the addition to this system 

as a new axiom of any fomula which is not provable in the system 

leads to the system of axioms thus expanded being fonnally inconsis- 

tent. In this case it is usually presumed that the original axiom 

system was formally consistent. 

It can be shown that the system of axioms 1-11 of prepositional 

calculus which we have introduced is not only a contensively but also 

a formally complete system of axioms. Under the condition of satisfac- 

tion of the property of contensive consistency and with the use of 

only rule 11 as a derivation rule, from the property of formal com- 

pleteness, since otherwise any nonprovable contensively true formula 

could be used for consistent expansion of the original axiom system. 

In the axiom system we have chosen there is not a single redun- 

dant axiom. More precisely, no one of the formulas 1-10 can be formally 

proved with the aid of the ensemble of all the remaining axioms. This 

property is termed the property of independence of the axioms of the 

selected system. The property of independence is proved separately for 

each axiom with the aid of the construction of a contensive interpre- 

tation for which this axiom is not utilized while all the remaining 

axioms are utilized. 

We note, finally, that although the Joining of unprovable formu- 

las as new axioms to the prepositional calculus axiom system S which 

we have chosen, on the strength of the property of formal completeness 

of this system, destroys the property of its formal consistency, noth- 

ing prevents us from Joining to the system S the unprovable (in S) 

formulas A1, ..., A^ as conditionally true formulas rather than as 
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Identically true formulas. It can be shown that Inconsistency (the 

possibility of deriving some formula together with its negation) in 

this case arises when and only when the conjunction % A^f« A ••• A-'L  is 

an identically false fomula. 

As the result of this Joining, there arises a formal theory wuxw 

goes beyond the framework of mathematical logic proper, since the 

Joined formulas A,, A«, ..., A are not true in the strictly logical 

sense. If in our constructions there is sane particular contenslve 

meaning, then the contenslve truth of the formulas A,, A2, ..., A, 

must be postulated or have some clearly extra-logical basis. In that 

case it is natural to consider these formulas as axioms of the formal 

theory constructed on their basis. In order not to confuse them with 

the logic axioms 1-11 themselves, the latter are in this case termed 

not axioms, but axiom schemes, thereby emphasizing that each of the 

axioms 1-11 lj actually a whole set of axioms obtained from the for- 

mula corresponding to this axiom as the result of the replacement by 

arbitrary formulas of the prepositional calculus of the letters ap- 

pearing in this formula. 

n 
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Chapter 3 

THEORY OF AUTOMATA 

§1. ABSTRACT AUTOMATA AND AUTOMATON REPRESENTATIONS 

Let us consider the alphabetic transformations realizable by- 

discrete infomation processors which put out some output signal 

(letter of the output alphabet) in response to each Input signal 

(letter of the input alphabet). Such processors, considered without 

regard to their internal structure, are customarily termed abstract 

automata. 

For the specification of an abstract automaton, three sets must 

be given: the input alphabet X , the output alphabet Y and the set of 

Internal states of the automaton, which we shall denote by the letter 

A. The automaton operates in discrete time, whose sequential moments 

are conveniently identified with the sequential natural numbers 

t = 0, 1, 2, ... (which we can always do by suitable choice of the 

time measurement unit). 

At every given instant of discrete automaton time t = 0, 1, ... 

the automaton A is in some definite state a = a(t) of the set A of 

its internal states, which for brevity we shall term the state set of 

the automaton A. The state a^ = a(o) at the initial Instant of time 

t = 0 is termed the initial state of the automaton A. If the Initial 

state remains unchanged during any experiments with the automaton, 

then this automaton is termed an initial automaton. Since, however, In 

practice we do not consider any automata other than Initial, the term 

"initial" is frequently dropped. 
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At every Instant t of automaton time, beginning with t = 1, to 

the input of the automaton there is applied as the input signal one 

of the letters of the input alphabet X x = x(t). The finite ordered 

sequences of the input signals x(l)x(2) ... x(k) of the automaton are 

termed the input words of this automaton. Any input word from some 

a priori fixed set of admissible input words can be applied to the in- 

put of the automaton. 

Any admissible word p = x(l) x (2) ... x(k), applied to the in- 

put of a given initial automaton A causes the appearance at the out- 

put of the automaton of ehe output word q = y(l)y(2) ... y(k), which 

is some ordered finite sequence of the output signals of the automaton 

A (letters of its output alphabet Y) having the same length as its 

corresponding input word £  and which is uniquely determined by the 

input word jo. The resulting correspondence «p between the admissible 

input words £ and their corresponding output c^ is termed the (alpha- 

betic) representation induced by the initial automaton A in question. 

This representation q> is uniquely determined by specifying the 

two functions 6 and X, termed respectively the switching function and 

the output function of the automaton A in question. 

The switching function determines the state a(t) of the automaton 

at any instant of discrete automaton time t from the input signal x(t) 

at that same instant and from the state a(t _ l) at the preceding in- 

stant of automaton time 

a{t)^b(a(t-l). xit)). (^) 

The output function determines the variation of the output sig- 

nal y(t) of the automaton with these same variables 

y(0 = Mc(f-l). *(/))• (45) 

Specifying any input word p = x(l) x (2) ... x(k) and initial 

state a(o) of the automaton, with the aid of relations (44) and (45) 
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we can sequentially determine all the letters of the corresponding 

output word 

^<P(p) = J/(l)tf(2)...!/(*). 
t * 

Thus, the relations (44) and (45) actually define the representa- 

tion (p induced by the automaton. 

The switching and output functions are usually the abstract par- 

tial functions ö(a, x) and X(a, x) which specify the single-valued 

representations of some set of pairs (a, x) (a e A, x e X) in the sets 

A and Y respectively. Admissible input words are those and only those 

input words JD on which with the aid of the function 6 and X using the 

method described above there are determined their corresponding output 

words q)(p). 

The automaton is termed finite if all three of the sets A, X, Y 

defining it are finite. Since we limit ourselves almost exclusively 

to the consideration of finite automata, the word "finite" is often 

dropped. The automaton is called completely determinate If its switch- 

ing and output functions are given on all pairs (a, x), and partially 

determinate otherwise. 

The finite automata are customarily specified by two tables, 

termed respectively the switching table and the output table of the 

automaton. The rows of both tables are designated by the different 

letters of the input alphabet X of the automaton, and the columns by 

the different states of the automaton. At the intersection of the 

x-th row and the a-th column of the switching table there stands the 

element 6(a, x). I.e., some state of the automaton from the set of 

its internal states, and at the intersection of the x-th row and the 

a-th column of the output table there stands the element X(a, x), i.e., 

some letter of the output alphabet Y of the automaton. Thus the spe- 

cification of the switching and output tables determines both the sets 
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X, Y, A, and the switching and output functions of the automaton. For 
•    t    • 

fixing the initial state it is usually customary to designate the first 

column on the left of both these tables with tnis state. Thus, the 

use of the two tables makes it possible to specify any finite auto- 

mata, including the initial automata. 

Another method of specifying the finite automata which provides 

better visualization is that of the directed graphs. The vertices of 

the graph (shown as circles on the figures) are identified with the 

various states of the automaton. The arrow connecting the vertex _1 

with the vertex J signifies that there exists an input signal x which 

transfers the automaton from the state _1 into the state J, i.e. sat- 

isfying the relation 

/ = «(/.*). 

In order to differentiate precisely which input signals cause 

the transfer of the automaton fron state i into the state J, the arrow 

connecting the graph vertices corresponding to these states are flagged 

with the symblos of these input signals. The output signal ^ deter- 

mined by the pair (l, x) is usually placed on the graph alongside the 

input signal x and to differentiate it from the input signals it is 

inclosed in parentheses. 

Let us consider an example of the specification of a finite 

automaton using the switching and output tables of the directed graph. 

Let us choose for this purpose the relatively simple automaton with 

three internal states 1, 2, 3» two input signals x, y and two output 

signals u, v. We assume that this automaton is specified by the 

switching and output tables 
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i 2 3 

X 2 3 3 
y 3 2 2 

1 2 3 

u u v 
V u u 

X 

y 

The directed graph shown in Pig. 8 corresponds to these tables. 

The automata we have considered above are customarily termed 

Mealy automata (from the name of the scientist who first considered 

several questions associated with the functioning of such automata; 

see [55]). In practice we frequently have to deal also with somewhat 

differently defined automata which are termed Moore automata (see 

[57]). 

The Moore automata differ from the Mealy 

automata only in the method of defining their 

output functions. In place of the relation 

^(f)-X(fl(/- I). *(/)), 

which defines the output signal for the Mealy 

automata, in the case of the Moore automata 

we use a somewhat different relation 

Which the aid of relation (46) and the previously written rela- 

tion (44), Just as in the preceding case, there is detennined the re- 

presentation induced by any given Moore automaton. 

For reasons which will be considered later, we call the function 

y = [1(3) the shifted output function of the Moore automaton. The val- 

ue of this function for any state a is customarily temed the label of 

this state. The finite Moore automata are conveniently specified with 

the use of the so-called labelled switching tables. The labelled 

switching table is nothing other than the conventional switching table 

of an automaton in which above the symbols of the states designating 

the various columns of the table there are placed the labels of these 
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states.  For example,  the labelled switching table 

U   U   V 

I 2 3 
x  2 3 3 
y   3 2 2 

specifies the Moore automaton having the same switching table as tii^ 

Mealy automaton in which the output signal u corresponds to states 

1 and 2, and the output signal v corresponds to the state 3. In the 

representation of the Moore automata with the use of graphs, the 

symbols of the output signals label the corresponding vertices of the 

graph, and not the lines as in the case of the Mealy automata. 

We agree to consider that the delivery of the output signals in 

the Moore automaton begins at the instant of time t = 1 (at not at 

the instant of time t = 0). With this condition, for any Moore autom- 

aton A, it is not difficult to construct that Mealy automaton Ag hav- 

ing the same switching table and Inducing the same representation as 

the automaton A^.. 

Actually, if ö(a, x) is the switching function and u^) is the 

shifted output function of the Moore automaton Ap then we can define 

the Mealy automaton A2 by specifying its switching function 6(a., x) 

and output function X(a, x) = [i(&  (a, x)). Then 

y(t) . X(a(/- 1). x{t)) = VL{6{a{t- I).  *(*))) = fi(a(/)). 

which proves that the automata A, and A2 react completely identically 

to any sequence of input signals. The construction described is termed 

the interpretation of the given Moore automaton as a Mealy automaton. 

The physical meaning of such an interpretation (in real automata) con- 

sists in the shift of the automaton time by one elementary Interval 

of time, on the strength of which in the constructed Mealy automaton 

A,-, the output signals lead by one unit of automaton time their cor- 
c 

responding output signals  in the Moore automaton A...   It  is precisely 
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for this reason that the output functions of the Moore automaton are 

termed the shifted output functions. 

The described time shift maked It possible to consider the Moore 

automata as a particular case of the Mealy automata every time that 

we are Interested not In the real time of the appearance of a partic- 

ular output signal., but only In the sequence of succession of the out- 

put signals In time. It is exactly this situation which we encounter 

in the abstract theory of automata, being interested only in the re- 

presentations Induced by the automata and the switchings in their 

memory, and not in the method of composition of a given automaton from 

the elementary automata available to us. 

In the resolution of the latter question, constituting the sub- 

ject of the so-called structural theory of automata, the Mealy autom- 

ata are to be considered as a separate class of automata which 1c not 

an intrinsic subclass of the class of all Mealy automata. The differ- 

ence between these two classes of automata in structural theory IG 

due to the fact that in the Mealy automata the output signal arises 

simultaneously with the input signal which Induces it, while in the 

Moore automata there is a delay of one unit of automaton time. 

The possibility of the Interpretation of every Moore automaton 

as a Mealy automaton in the abstract theory of automata does not in- 

dicate, or course, the existence of the reverse possibility. Never- 

theless, for any Mealy automaton A we can construct a Moore automaton 

B which will induce the same representation as the automaton A. Here, 

in contrast with the preceding case, the set of states of automaton 

B will not, generally speaking, coincide with the set of states of 

automaton A, althought it will be finite whenever the latter set is 

finite. 

Actually, let us assume that there is given the arbitrary Mealy 
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automaton A with the set of states A, the Input alphabet X, the out- 

put alphabet Y, the switching function 6(a, x), the output function 

X(a, x) and the Initial state a0. We agree for simplicity of notation 

that here and hereafter we shall use In place of the switching func- 

tion the multiplication symbol, designating the value of the function 

6(a, x) by the product ax. 

Let us construct the Moore automaton B, selecting as the set B, 

of its states the set consisting of the initial state a0 and the set 

of all possible pairs (a, x) where a e A x € X. The input and output 

alphabets of the automaton B coincide respectively with the input and 

output alphabets of the automaton A. We detennine the switching func- 

tion of the automaton B, setting 

aox = (Oo, x)  and (a, xi)xl - {ax,, *,)• 

We determine the shifted output function M-(b) of the automaton 

B on each state b = (a, x) which differs from the initial state EQ 

with the aid of the relation M-Cb) = X(a, x). In the initial state the 

value of the function p. can be selected arbitrarily. As a result there 

is constructed some Moore automaton B. 

It is not difficult to see that theautomaton B induces the same 

representation as the automaton A. Actually, let us designate by the 

letter (p the representation Induced by the automaton A and by the 

letter if  the representation Induced by the automaton B. Assume that 

for any input word p = p-^ of length n ^ 1 it has already been proved 

that q>(p) = -^(p) = q (for the input word of length 1, i.e., for any 

single-letter word x, obviously, (p(x) - ^(x) = ^Ca», x)). 

Let us consider the reaction of both automata to the arbitrary 

word px. or length n + 1. Let us agree here and hereafter to designate 

with the word aj the state into which there transfers an automaton 

which was initially in the state a if to its input there is applied 
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sequentially, letter after letter-, the arbitrary word |. Ar.  a result 

of the definition of the switchinf, function in automaton B, a p = 

= (a0p,, x.). After application to the automata A and P of the Input 

signal x. the automaton A delivers the output signal y = x(anp, x.). 

Automaton B will obviously transfer into the state 

b = {aoPiX,, Xf) = (aop, Jf/) 

and will deliver the output signal 11(b), equal, as a result of the 

definition of the function [i,  to the signal X(a0p, x .). 

Thereby it is shown that the automata A and B react identically 

to any input word to length n + 1. Performing an induction with re- 

spect to n, we come to the conclusion that the representations induced 

by the automata A and B are identical. This conclusion is valid not 

only for the conventional (completely detemlnate) automata, but also 

for the partial automata. 

Let us characterize in more detail the representations induced 

by the automata. We note that the requirement for the arrival of an 

input signal and the departure of an output signal at every instant 

of automaton time, which at first glance is not satisfied in any spe- 

cific automata, in actuality is easily satisfied if we introduce 

special letters for the designation of empty input and output signals 

(i.e., the absence of any real physical signals) and consider these 

letters on a par with the other letters of the input and output alpha- 

bets. 

It is easy to see that the representation qp induced by the arbi- 

trary Moore or Mealy automaton satisfies two conditions: 

1) to any word £ in the input alphabet X the representation cp 

associates a word cp(ü) in the output alphabet Y which has a length 

identical to that of the word |j 

2) if the word i, coincides with the initial segment of the word 

i,   then the word (p(^1) is the initial segment of the word cp(^). 
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Let us tern the conditions Just formulated the automaticIty con- 

ditions of the representation cp and every correspondence between the 

words In the alphabets X and Y which satisfy these conditions an autom- 

aton representation or automaton operator. 

It is not difficult to show that every automaton representation 

can be induced with the aid of some abstract automaton (not necessar- 

ily finite). 

Let the automaton correspondence cp map the set of words in the 

alphabet X ■ (x,, x9, ..., x ) into a set of words in the alphabet 

Y = (y-,, y^f   •••* ym)' Let us construct the automaton A whose Internal 

states will be all possible words in alphabet X and the initial state 

will be the empty word e (word of zero length, consisting of an empty 

set of letters). The switching function 6 is determined trivially: if 

i  is any state of the automaton (word in the alphabet X), and x. is 

any input signal, then the '/alue of the function ö(^, x.) is assumed 

equal to the word gx.*.   After detemining the output function \  by the 

relation X(i, x.) = y., where y. is the last letter of the word cp(^xi), 

we obtain an automaton which realizes the original mapping cp. 

If the mapping q> of the set of words in the alphabet X into the 

set of words in the alphabet Y is given by a partial automaton, then 

it will be, of course, only a partial mapping, not determinate on all 

the words. However, as before, both conditions of automaticity will 

be satisfied for this mapping under the additional assumption that 

q)(i) exists. In this case the second condition of automaticity takes 

a stronger fom: if cp(i) exists and L   is the initial segment of the 

word i, then (p(^1) exists and coincides with some initial segment of 

the word q>(^). 

We shall term the rephrased conditions the automaticity condi- 

tions of the partial mapping (p, and every partial mapping satisfying 
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these conditions will be termed a partial automaton magging. 

It is easy to setablish the validity of the following proposi- 

tion. 

Theorem 1. Every partial automaton mapping can be induced with 

the aid of some partial automaton (not necessarily finite). 

This proposition is proved by exactly the sajne method as in the 

case of the complete mapping. The difference is that the states of 

the partial automaton are considered to be not all the words of the 

input alphabet, but only those on which the mapping cp is determinate. 

At first glance the automaticity conditions severely narrow the 

class of mappings which can be specified with the aid of the abstract 

automata. It is well known, in particular, that the requirement for 

equality of the lengths of the input and output words is not satis- 

fied for a large portion of the algorithms which must be satisfied 

by particular specific automata. This difficulty, seeming very seri- 

ous at first glance, in actuality is easily removed with the aid of 

receding of the input and output infomation on the basis of a very 

simple technique. 

The standard technque for the conversion of any partial corre- 

spondence <p between words in the alphabets X and Y into a partial 

automaton correspondence is based on the introduction into the alpha- 

bets X and Y of the letter a which was not contained in them prevl- 

iously. The letter a is termed an empty word. The appearance of the 

empty word at the automaton input corresponds to the case when in 

actuality nothing is applied to the automaton input. Similarly the 

appearance of the empty word as an output signal signifies the ab- 

sence of any signal at the automaton output. 

Let us consider the arbitrary word i  of length n in the alphabet 

X, to which the initially specified partial mapping cp associated the 
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word q = yd)  of length m in the alphabet Y. Let us designate by the 

letter i, the word in the alphabet X,  « XU (a), which is obtained as 

a result of the suffixing to the word | on the right m exemplars of 

the letter a. Similarly, we use the word q1 to designate the word in 

the alphabet Y, Y U(a), obtained as a result of the prefixing to tnc 

word £ on the left n exemplars of the latter a. We term this technique 

the standard technique for equalizing word lengths. 

Let us detemlne a new partial mapping cp, between words in the 

alphabets X, and Y,, setting q,» ^PiCii) and repeating this technique 

for any word £  In the alphabet X on which the mapping cp is determinate. 

We further define this correspondence on all the initial segments 

i\  '  of the word i-.,  assuming that q>-, (ii ' coincides with the initial 

segment of the word ^(i-,) having a length equal to z\   '. 

With this redefinition there arises the danger of loss of unique- 

ness of the mapping q>, since the word i\   '  can occur not only as the 

initial segment in the original word i-,,  but also as the initial seg- 

ment in another word, for example in the word s1 obtained as the re- 

sult of the application of the standard technique of equalizing word 

lengths from some word s  in the alphabet X. 

Since the word s, has the form s, = saa ...a, and the word l-, 

has the form i-, = iaa ... a, where the words _s and i  do not contain 

the letter a, then p = s = i if the word i\   '  has on the right at 

least one letter a : i| ' = pa.... In this case, consequently, the 

words s-, and i-, must coincide with one another and there is no danger 

of ambiguity arising. 

It remains, thus, to consider the case when the word S,\   '  =  p 

consists exclusively of letters of the alphabet X. In this case the 

length of the word £ will clearly not exceed the lengths of the words 

£ and s.  But then, as a result of the standard technique for the equal- 
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Izing of word lengths, the initial segments of the words cp(ü) and 

«p-j^S,), having a length equal to that of the word üj ' = p, consist 

entirely of the letters a and, consequently, coincide with one another. 

Thus, the occurrence of ambiguity is excluded again in this case. 

The partial mapping cp, between words in the alphabets X, and Y, 

which we have constructed satisfies both conditions of automaticity 

for partial mappings on the basis of the method of construction itself 

and is, consequently, the sought partial automaton mapping. 

The described technique for the transformation of any partial 

mapping into an automaton mapping is universal, however, precisely be- 

cause of its universality it does not always lead to the most econom- 

ical (from the point of view of the use of additional letters) solu- 

tion. This circumstance is particularly easily clarified for the case 

when the original partial mapping cp itself satisfied both conditions 

of automaticity. It is clear that the most economical solution In this 

case will be cp-, = cp. However, the c -scribed standard method (which we 

use, of course, in this case as well) leads to an unnecessary increase 

of the lengths of the original words which participate in the corre- 

spondence. 

Thus, the universal technique found does not avoid the necessity 

for looking for more economical solutions. Such economic solutions are 

usually found by adding empty letters to the words gradually, step by 

step, rather than all at once in the quantity provided for by the 

standard technique for equalizing word lengths, checking at each step 

for satisfaction of the automaticity conditions and stopping as soon 

as they are satisfied for the first time. Such an improved technique 

for equalizing word lengths will lead sooner or later to the appearance 

of the automaton mapping. 

Of considerable interest is the problem of finding the economical 
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recodlng of the mapping, given on a partlcularalgorlthmic language 

(for example, on the language of the normal algorithms) for the pur- 

pose of converting It into sn automaton correspondence, and also the 

problem of the construction of the theory of algorithms which satisfy 

the conditions of automaticity and therefore are termed automaton al- 

gorithms for short. One of the possible approaches to the theroy of 

automaton algorithms id developed in the following section. 

§2. EVENTS AND REPRESENTATION OF EVENTS IN AUTOMATA 

Let A be an arbitrary (partial, generally speaking) initial autom- 

aton, cp the mapping induced by it. For each letter y. of the output 

alphabet Y = (y., y0, ..., y ) of automaton A let us consider the set 
•     x   w        in 

R1 of all words i in the input alphabet X = (x,, x2, ..., x ) of this 

automaton for which the word q>(i) is defined and ends with the letter 

Let us term the set R^ thus defined an event, represented in the 

(partial) automaton A by the output signal y. (i = 1, 2, ..., m). If 

M is any set of output signals, then we shall term the union of events 

represented by all elements of this set an event, represented in the 

partial automaton A by the set M, 

It is easy to see that the sets R. are disjoint and that the set 

S of all words in the alphabet X which do not occur in even one of the 

sets R^  (i = 1, 2, ..., m) consists of all words forbidden for the 

given partial automaton. Here and herafter we use the term forbidden 

for all words in the input alphabet which when applied to the input of 

the given partial automaton lead for at least one component of their 

input signal to an output signal which is not defined in the automaton. 

We agree to call the ensemble of all forbidden words S the forbidden 

domain of the given partial automaton A. We agree also to term any 

set of words in the alphabet X an event in this alphabet. 
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From the definitions introduced, we can fonnulate the result ob- 

tained above in the form of the following proposition. 

Theorem 1. Specification of the partial automaton mapping cp, re- 

alizable by the partial automaton A with the input alphabet X = 

= (x^ x2, .,., xn) and with the output alphabet Y = (y^, y2, ..., y ) 

uniquely detennines the partition of the set P of all words in the 

alphabet X into m + 1 disjoint events in the alphabet X, and namely in- 

to the events FL, FU, ..., R , represented in the automaton A by the 

output signals y., y2, ..., y . and determines the forbidden domain S 

of the given (partial) automaton A. 

And conversely: knowing the events R,, Rp, ..., R represented 

in some partial A by the output signals y^, y2, ..., y we can uniquely 

recover the partial mapping cp between the words of the input alphabet 

X and the output alphabet Y realized by this automaton, without using 

the switching and output functions of the automaton. 

Let there be given the arbitrary word ^ = x. x.  ... x. in the 
11 12     1n 

alphabet X. For each k(l < k < n) we find the output signal y. using 
•'k 

the rule: y. is the output signal representing in the automaon A the 
•'l 

event R. which contains the initial segment x. x.  ... x.  of length 
Jk 1 2     1k 

k of the word i. If for all k = 1, 2, ..., n there exist the corre- 

sponding y. , then we set cp(i) = (p(x. x.  ... x. ) = y. y, ... y. . 
.]k ^ i2     in    J1   32 Jn 

In the case where an output signal k = 1, 2, ..., n with the required 

properties does not exist for even one y . , we assume that the partial 

mapping cp is not determinate on the word £, 

It is not difficult to see that as a result of the definition of 

events represented in an automaton, the partial mapping cp introduced 

in this fashion will then be precisely that partial mapping which is 

induced by the given partial automaton A. 

On the basis of this discussion we can formulate the following 
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proposition. 

Theorem 2. The specification of the partial automaton mapping qp 

between words in the alphabets X and Y = (y,, y«, ..., y ) is equiva- 

lent to the specification of the events R,, R2, ..., F^ represented by 

the output signals y, y2, ..., y in the partial automaton A which in- 

duces the mapping 9. 

Theorem 2 lays the foundation for the study of the automaton map- 

pings (in particular the automaton algorithms). For the description 

of such mappings it is sufficient to specify the partition of the set 

of all words of the input alphabet into a finite number of disjoint 

events. In order that the corresponding descriptions be of a construc- 

tive nature, it is necessary to limit ourselves to the consideration 

of only those events which admit effective description. 

It is natural that first of all the finite events, i.e., events 

consisting of a finite number of words, admit simple constructive de- 

scription. They can be described with the listing of the elements ap- 

pearing in them. For the characterization of some important classes 

of infinite events, it is advisable to introduce several operations 

on the set of events, thus transforming this set into an algebra - the 

algebra of events. 

For our purposes the most convenient Is the system of three opera- 

tions which is a modification of the operations first Introduced by 

Kleene [40] (see also Copi, Elgot, Wright [45] and Glushkov [21]). 

The first operation is that of the set-theoretic union of events. 

We shall designate this operation by the symbol V and tern it event 

disjunction. 

The second operation is that of event multiplication, which is 

not to be confused with the operation of set-theoretic intersection. 

If the event S consists of the words -^«(sM), and the event R con- 
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slsts of the words qß(ß e N), then product of the events S and R Is 

the name given to the event consisting of all possible words of the 

form iaqß (a e M, ße N). The operation of event multiplication is non- 

commutative: generally speaking the events SR and RS are different. 

The third operation is that of the so-called event Iteration, for 

which we shall use the braces as the designation, so that {S} denotes 

the iteration of the event S. The iteration of any event S is defined 

1 2 as the union of an empty word, the event S= S the event S.S = S the 

event S«SS = S^ and so on to infinity. In other words. If the event S 

consists of the words ^a(ae M), then its iteration (S) consists of all 

possible words having the form ia, iou ... ^a where a-,, ou, ...» Id. n Id 

..., an e M, and n = 0, 1, 2, 3, ... . 

We shall tenn the braces used for the designation of iteration 

Iteration brackets. For the designation of the order of operations we 

shall make use of round brackets, which we term conventional brackets. 

In the absence of brackets, used to alter the usual order of opera- 

tions, iteration is to be performed first, then multiplication, and 

finally disjunction. 

We agree to designate the single-element events, i.e., events con- 

sisting of a single word, by the symbol of this word. If X = (x,, 

x2, ..., x ), then the m + 1 single-element events x,, x^, ..., x ,e 

are termed the elementary events in this alphabet. 

Here and in the future we shall use the letter e to denote an 

empty word, consisting of an empty set of letters and consequently 

having zero length. This word will play only an auxiliary, service 

role. We agree, in particular, not to consider evnets which differ 

from one another only by an empty word as different. Thus, the empty 

word can, as desired, either be Joined to or removed from any event In 

question. This is associated with the fact that as a result of the de- 
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flnltlons which we have adopted the empty word cannot be represented 

In the automaton. 

We shall now introduce a concept which is central to all the 

subsequent considerations. 

Any event which can be obtained from the elementary events x,, 

x2, ..., xm, e in the finite alphabet X = (x^ x2, ..., xn) with the 

aid of the application of a finite number of operations of disjunction, 

multiplication and iteration is termed a regular event in this alpha- 

bet. 

This definition goes back to the definition of the regular event 

given earlier by Kleene [40] although it differs considerably in form 

(see Glushkov [21]). We note that the same event can be represented 

differently in terms of the elementary events. In the future we 

shall term each such representation (formula of event algebra) a reg- 

ular expression. 

One of the primary problems in event algebra is the establishment 

of the laws of the equivalent transformations of the regular expres- 

sions, i.e., those transformations which do not change the events re- 

presented by these expressions (with an accuracy to the empty letter 

e). 

Among the laws which are very frequently utilized in the equiva- 

lent transformations in event algebra are the laws of associativity 

for disjunction and multiplication, the commutativity law for disjunc- 

tion, the left and right distributive laws for multiplication with re- 

spect to disjunction (  S(/?vQ) =S/?vSQ, (/?vQ)S =(/?SvQS)    and others). 

The laws of distributivity make possible, in particular, the re- 

moval of brackets and the bringing of common factors outside of the 

brackets (as in conventional algebra). Here we need only recall that 

multiplication in event algebra is generally speaking, not commutative. 
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Any word can be represented as the product of elementary events - 

the individual letters constituting this v;ord. Any finite event Is re- 

presented in the form of the disjunction of the worV.s composlnr .1t. 

This implies, in particular, that all finite events are regular. 

The use of Iteration leads to the construction of infinite reg- 

ular events. At the same time is is not difficult to construct simple 

examples of nonregular Infinite events. For this it is sufficient to 

select such an increasing sequence of whole numbers n.., n , .. . , 

n., ..., that the differences n. , — n.(l =1, 2, ...) are not bounded 

in the aggregate (this condition is satisfied, for Instance, by the 

sequence of squares of the numbers of the natural series), and In any 

input alphabet X construct the event S consisting of all words in the 

alphabet X having lengths equal to n,, n2 and so on. 

The event S constructed in this way is of necessity nonregular. 

Actually, assuming the opposite, we would be able to find for S some 

regular expression R. Since the event S is infinite, this expression 

contains at least one set of iteration brackets enclosing an expres- 

sion differing from the empty word _e. Let us replace all the remaining 

iteration brackets in the expression R by an empty word, and the iden- 

tified brackets by the expression {p) where £ is an arbitrary non- 

empty word from the event enclosed in the identified brackets. As a 

result we obtain the regular expression R, for some event contained 

in the event S. 

Prom the expression R.. it follows directly that In the event S 

there appear words of the form rs, rps, rpps, rppps, ..., whose lengths 

constitute an infinite increasing arithmetic progression. But this 

contradicts the method of construction of the event S. Consequently, 

the event cannot be represented by any regular expression, i.e., it is 

a nonregular event. 
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Let us define also the concept of the cyclic depth of regular 

expression, meaning by this the maximal number of pairs of Iteration 

brackets embedded In one another which are contained In this expres- 

sion. For example, the expression {x{y} (x}) has a cyclic depth of 2, 

while the expression [x\/y)x{y]    has a cyclic depth of 1.   By  the cyclic 

depth of a regular event we shall understand the minimal cyclic depth 

of the regular expressions representing It. 

Regular events have particular Importance for the abstract theory 

of automata, since the class of regular events coincides with the 

class of events representable In finite automata. In the following 

sections we shall prove this Important proposition; here we shall con- 

sider the question on the relationship of the classes of events re- 

presentable In the Mealy and Moore automata. 

The general definition of the representation of events In an 

automaton given In the beginning of the present section related to the 

Mealy automaton. Since the Moore automaton Is a particular case of the 

Mealy automata, this definition Is applicable In full measure to It as 

well. However, In practice It Is convenient for the Moore automata to 

represent the events not by the property of the output at the Instant 

of the application of the last input signal of the words comprising 

the events, but by the property of the state of the automaton after 

the arrival at the input of the automaton of a word of a particular 

event. 

In other words, it is customary to consider that In the case of 

the Moore automata the events are some sets of the automaton states. 

On the strength of the definition of the Moore automata, this method 

of representing the events is completely equivalent to the method of 

representing the events by the sets of the output signals. The dif- 

ference lies only in that with the representation of the events by the 
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sets of the automaton states the empty word e Is representablc (with 

the aid of the initial state), while e  cannot be represented by any 

output signal (if, of course, we do not initiate the time reckoning 

from negative instants of time). 

However, we have agreed above not to consider events differing 

from one another only by the empty word e as different. Therefore the 

two methods of representation of events (states or output signals) 

in the case of the Moore automata are actually equivalent. 

Since the Moore automata can be considered in the abstract theory 

as a particular case of the Mealy automata, it seems natural that the 

class of events represented in the Moore automata is more scanty than 

the class of events represented in the Mealy automata. In reality this 

is not so. 

Let us assume that some event S is represented in some Mealy 

automaton A by the set M of its output signals. It is not difficult 

to see that the event S can be represented by some set of internal 

states of the Moore automaton B (inducing the same mapping 9 as the 

automaton A) which was constructed in the preceding section. 

We recall that the states of the automaton B are all possible 

pairs (a, x), composed from the states a of the automaton A and the 

letters x of its input alphabet X and also the initial state a0 of 

the automaton A. The shifted output function \i  of the automaton B on 

the Initial state a0 is determined arbitrarily, while on the state 

b = (a, x) it is detemined with the aid of the relation |i(b) = 

= X(a, x) where X(a, x) is the output function of automaton A. 

If h = gx. is an arbitrary nonempty input word, then in the 

automaton A the last letter of the corresponding output word will 

obviously be y = X(ang, x.). The automaton B, as it is not difficult 

to see, will be converted by the word h from the initial state a0 into 
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the state (aQg, x..). 

Thus, all the nonempty words or the original event will be re- 

presented in automaton B by the set K of all possible states (a., x. ) 

for which the relation X(a1, x.) e M is valid. 

§3. ANALYSIS OF  FINITE AUTOMATA 

The analysis problem amounts to the detemination of the events 

represented in the automaton by sets of output signals (in the case of 

the Mealy automata) or by sets of the internal states (in the case of 

the Moore automata). Since every Moore automaton can be interpreted 

as a Mealy automaton, it is sufficient to learn to analyze only the 

Mealy automata. 

We shall resolve the analysis problem only for the case of finite 

Mealy automata. All events represented in such automata are necessarily 

regular. The analysis algorithm is applied to the switching and output 

tables of the automaton being analyzed and as the final information 

gives the regular expressions for the events representable by each of 

the output signals of the automaton. An event which is representable 

by an arbitrary set of output signals is written, then, as the dis- 

junction of events represented by the individual output signals com- 

posing the given set. 

Let us consider the arbitrary finite Mealy automaton A with the 

set of internal states (a1, a^* •••> aD) with the input alphabet X = 

= (x1, x2, ..., xn) and the output alphabet Y = (y^ y2, ..., ym). 

Considering specified the initial state a.,, the switching func- 

tion ä{gi , x.) and the output function X(a., x.) of the automaton A, 

we shall look for the regular expression R for the event represented 

by some output signal, say the signal y,. We write out the internal 

states of the automaton a,, a. , ..., a. into which the automaton A 
1  Jl      Jk 

transfers from the initial state a^^ by means of the sequential initial 
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segments e, x. , x. x. , ..., x. x. , ... x.  of some Input word q. 
:L1  ^-l ^2 11 ^2 ^ 

Inserting the symbols for the states obtained into the v;ord 3 after 

the corresponding Initial segjnents, we transfonn this word Into the 

new word q1 = a^x. a. x^  ... a.  x. a. , which we agree to call the 1 I-L J1 ig     Jk:_1 ik Jk 
path corresponding to the word £• Separating In the given path the 

symbols of the internal states a., we obtain the Input word corre- 

sponding to the given path. 

We shall also use the so-called curtailed paths, obtained from 

the conventional paths by the dropping of the extreme right symbol 

of the internal state a. . We designate the path corresponding to the 

given input word £ by £' and the curtailed path by 3". 

It is evident that for the nonempty Input word ^ to belong to the 

event R., representable in the automaton A by the output signal y., 

it is necessary and sufficient that the curtailed path 3' correspond- 

ing to the word a terminate with the pair a.  x. , for which the out- 
Jk-1 ^ 

put function takes the value equal to y.. We tem all such (curtail- 

ed )  paths of the type y., or, generalizing (for any _l), representa- 

tive type paths. 

Paths (uncurtailed) corresponding to the input words which trans- 

form the autcanaton from some state a. into the same state a. are 

termed type a . paths, or cyclic type paths. If in some path cj' of the 

cyclic type a. there are no symbols of any Internal states a. , a, , 

..., a,  then we shall also term the path jj1 a path of the a.[a, , 

a, , ..., a. ] type (here the symbols in the square brackets are 
«2      Kr 

termed forbidden). 

The path jj1 of arbitrary type is termed simple if the curtailed 

path ci" corresponding to it does not contain two identical symbols of 

the internal states. Only a finite number of different simple paths 
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exists in a finite automaton. All simple paths of any given type can 

be found directly from the switching table or (for paths of the re- 

presentative type) from the switching and output tables of the autom- 

aton. 

Let us construct some auxiliary events in the alphabet Z = (x,, 

x2' •••« xn* 
ai* a2' •••» ar))* whose elements are curtailed paths in 

the given automaton A, We define the event S(y,) of type y as an event 

consisting of all (curtailed) paths of type y,, we define the simple 

event P(y1) of type y, as the disjunction of all simple (curtailed) 

paths of type y,. We shall tern the iteration of the disjunction of all 

simple paths of type t the simple event P(t) of any given cyclic type 

t = a .[a. , a. ,..., a. ] (j = 1, 2, ..., p, r < p _ l) (the disjunc- 

tion of an empty set of paths is an impossible event whose iteration 

coincides with the empty word e) and shall term the event consisting 

of all curtailed paths of type t  the event S(t) of type t. Finally, 

we term the iteration of the portion of the event S(t) containing 

words with only a single occurrence of the symbol a. the conditionally 

simple event U(t) of type t = a.[a. , a,  .... a. ]. 

Let there be given some set (curtailed) of paths of type y^. spe- 

cified with the aid of the regular expression Q. Inserting into this 

regular expression ahead of each occurrence in it of the symbol of 

the internal state a. the regular expression of the event S(a.) of 

type a. or of the event of type a^Eaj, * ä-rr >   . •. * a, ] = t, we obtain 

a new regular expression, representing as before only paths of type 

y,. We term this operation the embedding of the event S(a.) in the 

event Q. 

Now let _g" be an arbitrary (curtailed) path of type y,. The first 

(left) symbol of the internal state occurring in this path will be the 

symbol a^ Let us isolate also the last (extreme right) occurrence of 
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the symbol a^, in the path q" : q" = a-, ... a^s, where the word _s al- 

ready does not contain the symbol a,. Then the path q" can be repre- 

sented by the product of some number of words of the conditionally 

simple event U(a1) of type a, and the word a^s. 

In the word a  we find the first (left) symbol of the internal 

state: s = x. ai ...; after finding also the last occurrence of this 

symbol in the word _s, we obtain the possibility of representing the 

word _s by the product of the letter x. , some number of words of the 

conditionally simple event of type a. [a..] and some word a. r where 
Jk 1 Jk 

r does not contain the two symbols of the internal states a, and a , . 
i    Jk 

We further come to the conclusion that the path q" is contained 

in the event which is obtained as the result of the embedding of the 

conditionally simple event of type a^, in some simple path of type y-, 

ahead of the first occurrence in it of the letter a1, and the embed- 

ding of the conditionally simple events of type a. [a-,], a. [a-,, a. ] 
Jk 1   Je 1  Jk 

ahead of the succeeding occurrences in this path of the symbols of the 

internal states a. , a. , ..., and so on. 
Jk  Je 

But exactly the same process, obviously, can be repeated with the 

words of the conditionally simple events which were separated from 

the original path q". After this we come to the conclusion that the 

path q" of type y, occurs in the event which is obtained as the re- 

sult of the embedding in the simple event ?{y-,)  of type y^^ not the 

conditionally simple, but the ordinary simple events of types a,, a. 
Jk 

[a1], ... and the subsequent embedding in the paths constituting the 

embedded simple events of the conditionally simple events: for the 

conditionally simple event of type a, _ the types a [a,], a [a,, 
■L xi       y   i 

a  1,   ...,  for the simple event of type a.   [a1] - the types ^[a^ 

a    ,],  a    [a-,a. a  ],...  and so on. 
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We further come to the conclusion that  ;ain in the second stage 

we can embed not the conditionally simple, Yr\i  the  ordinary simple 

events, embedding. In turn (in the third stage) n the words consti- 

tuting them the conditionally simple events of stlil higher (in the 

sense of the number of forbidden letters) cyclic types. 

Increasing the number of stages of sequential embeddlngs, we 

finally come to the embedding of events of cyclic types In which all 

the letters except one are forbidden. Since for this kind of types 

the difference between the conditionally simple and the ordinary sim- 

ple events of Identical type no longer exists, the process of Increas- 

ing the number of stages and of new embeddlngs Is thereby completed. 

As a result we come to the conclusion that the path q" occurs In 

the event S, which Is obtained as the result of a finite number of 

sequential embeddlngs (divided Into a number of stages) Into the sim- 

ple event of type y, of simple events of ever higher and higher cyclic 

types. In view of the arbltratlness of the selection of the path q", 

the event S, Includes In Itself the event S(y1). 

At the same time, as remarked above, the process of embeddlngs 

similar to the process described cannot lead to an event containing 

the paths differing from the y1 type. Consequently, S, = S(y1), and 

the embedding process we have described gives a regular expression FL 

for the event S(y1), consisting of all paths of type y,. 

Dropping now In the regular expression FL all the symbols of the 

Internal states (replacing them with an empty word), we obtain the 

regular expression R which, as It Is easy to see. Is nothing other 

that the regular expression for the sought event, represented In the 

automaton A by the output signal y^. 

We have proved the following proposition. 

Theorem 1. An event represented In an arbitrary finite Mealy 
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automaton (and, consequently, also In an arbitrary finite Moore autom- 

aton) by any set of output signals Is necessarily regular. There exist 

a universal constructive technique (algorithm for the analysis of fi- 

nite automata) which makes it possible to find the regular expressions 

for events represented by the sets of output signals in .an arbitrary 

finite automaton. 

The described algorithm for the analysis of finite automata can 

be given a form which is more convenient for practical applications 

[22]. To do this we shall work not with the events in the set of paths, 

but with formal expressions termed complexes. 

For any set M of output signals of a given finite Mealy automaton 

A the term complex of type M (or output type complex) is given to the 

disjunction of all simple curtailed paths terminating with the palts 

a.x., to which there correspond the output signals contained in the 

set M. Complex of type a.[a. , a. , ..., a. ) (cyclic type complex) is 

the term for the formal expression obtained as the result of Joining 

with the disjunction sign all simnle paths of type a.[a. , a. , 
i i1  i2 

..., a. ] with the letter abstricken and enclosing the resulting for- 
r 

mal polynomial in the iteration brackets (a., a. , ..., a. are any 
i  n      ^-r 

pairwise different internal states of the automaton and 0 < r < p - 1 

where £ is the number of internal states of the automaton A). 

First step of the analysis algorithm. Fran the switching and oat- 

put tables of the automaton and the given (representative) set of 

output signals, by means of sorting of all possible variants of sim- 

ple paths we find the complex K(M) of type M and the complexes K(a.) 

for all the internal states a. of the automaton A. 

Second step. From the complexes K(a.), by exclusion of unneces- 

sary terms in the iteration brackets we find the complexes of higher 

cyclic types a-Co  | a , ..., a. ] (r < l). which are necessary for 
11  l2       r 
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the further constructions. 

Third step. Starting from the complex of type M, we sequentially 

replace all symbols of the Internal states a1 by complexes of cyclic 

type until we obtain an expression R not containing a single one of 

the Internal state symbols. The replacement rule can be formulated ab: 

If the path a,x. a. x. a  ... occurs in the complex of the type 
1 n Jl 12 J2 

M output, then the letter a, is replaced by the complex of type a-,, 

the letter a. is replaced by a complex of the type a. [a,], the 
Jl Jl •L 

letter a. by a complex of the type a. [a-,, a. ] and so on. If the 
J2 32 ^1 

term x. a. x. a. ... occurs in the complex of the type a. [N], where 
1 "1 2 2 

N is the set (possible empty) of internal states differing from a., 

then letter a. is replaced by a complex of the type a. [a.., N], the 
J-i 1 

letter a. by the complex of the type a. [a,, a., N] and so on. 
Jo 2 " 

In the third step,  as a result of the application of the replace- 

ment  rule a finite number of times,  we obtain the desired  regular ex- 

pression R for the event represented in the automaton A by the set M 

of output signals. 

The following proposition follows directly from the described 

algorithm. 

Theorem 2.   Every event represented in a finite Mealy automaton 

(or Moore automaton) having n internal states admits a regular ex- 

pression whose cyclic depth not does exceed ri. 

As an example let us  find the regular expression for the event S 

represented by the output signal v in the automaton whose switching 

and output tables were described  in §1 of the present chapter  (its 

graph is shown in Fig.   7). 

We find the complex K(v)  of type v directly from the tables 

K (v) =» iy V I^I* V i*»*»« 
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and the complexes of types 1, 2 and 3 

K(\) = e. K(2) - {«/ V xty), /C(3) = {x V ¥*)- 

We write out some complexes of the higher cyclic types: 

.K{2[\])=K{2)\  K(3I1.2I) = {x); 

^(2l3J)-/f(2|l.31)-|yr. /C(3(l))-/C(3). 

Designating the operation of embedding of complexes by an ar- 

row, we obtain the following sequence of embeddings: 

K(v)^y\J yK{3[l])x\/ xK{2[\])xK{3[l.2\)x = 
= y V y {x \J ytx] x \J x \y \J x,y\ x {x\ x -* y \J y [x y 

W yK {2\l.3])x, x V x \y y xK {3\l,2])y} x \x\ x = 
~y\/ y[x\/ y\y\x)xy x>y\/x{x)y\x [x\ x. 

The last of the regular expressions obtained is then the sought 

regular expression for the event S. It admits transformation and sim- 

plification with the use of the relations existing in event algebra. 

§4. ABSTRACT SYNTHESIS OF FINITE AUTOMATA 

The abstract synthesis problem is the opposite of that of the 

analysis of finite automata; it is necessary to find an effective 

method which will make it possible to find from the regular expressions 

for the events the switching and output tables of some finite autom- 

aton which represents these events. 

The problem of the synthesis of Moore automata is more general 

than that of the synthesis of the Mealy automata: since every Moore 

automaton can be interpreted as a Mealy automaton, by learning to 

synthesize the Moore automaton we also learn to synthesize the Mealy 

automaton as well. Therefore we shall solve the problem of synthesis 

of the Moore automaton. 

Let there be given in some finite alphabet X = (x^ x2, ..., x ) 

the 2  regular expressions R,, Rp, ..., R . Let us number all occur- 

rences of the letters of the alphabet X in the expressions R-, FU, .. 

• ••* ^V) by 'the sequential natural numbers, which hereafter we shall 
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tenn the subscripts of the corresponding places of these expressions. 

We emphasize particularly that the various occurrences of the sajne 

letter of the alphabet X will thus have different subscripts. 
« 

In the development of the regular expression Into a word, each 

of the sequentially written out letters of this word Is Identified 

with a particular occurrence of the corresponding letter In the ex- 

pression being developed. We agree to consider that In this Identifi- 

cation we enter particular places of the regular expression, namely: 

In the Identification of the last written letter with the occurrence 

numbered with the subscript J, we shall consider that we are In the 

J-th place of the corresponding regular expression. We say that the 

J-th place of the regular expression x.-follows after the 1-th place 

If after Identification of the last letter of some word ^ with the 

occurrence having the subscript 1 we can Identify the last letter of 

the word qx, with the occurrence having the subscript J. In each reg- 

ular expression there Is also Identified the Initial place, to which 

there is assigned the subscript 0 (identical for all given regular ex- 

pressions). If, In the process of Identification, the first letter x, 

of some word Is Identified with some occurrence of It In the regular 

expression, having the subscript J, then we consider that the J-th 

place xk-follows after the zero (initial) place (common for all given 

regular expressions). 

Finally, if the membership of some word 2  to the event with the 

regular expression R Is established as the result of the Identifica- 

tion of the last letter of the word 2  with Its occurrence In R, having 

the subscript J, then the J-th place of the expression R Is termed a 

final place of this expression. 

For any finite set of regular expressions R,, Rg, ..., R In the 

same alphabet X^ using the order of operations In the algebra of events 
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defined above, it is not difficult to compose the place sequence 

table. The rows of this table are designated by the letters of the 

alphabet X and the columns by the subscripts of all the places of the 

expressions FL, FU, ..., R . At the intersection of the x.-th row with 

the J-th column of the sequence table there are written out the sub- 

scripts of all the places which x.-follow after the J-th place. If 

there are no such subscripts, in the corresponding place of the table 

we place a special symbol designating an empty set of subscripts. We 

agree to use an asterisk as this symbol. 

Let us construct the Moore automaton A whose internal states will 

be all possible subsets of place subscripts in the given regular ex- 

pressions FL, FU, ..., R (including the empty subset). The switching 

function 6 of this automaton is constructed as follows: for any state 

a. of the automaton A (set of place subscripts of the given events) 

and for any letter x. of the input alphabet, the  state a, = &{&.,  x.) 

is defined as the set of subscripts of all places which x.-follow at 

least one of the places whose subscripts occur in a.. 

The shifted output function |i of the Moore automaton A is con- 

structed for the output alphabet Y consisting of all possible subsets 

(including the empty subset) of the set of all symbols R,, FU, ..., R 

of the given regular expressions. For any state a. (set of subscripts) 

of the automaton A, we select as M-(a.j) the set of all those recular 

expressions R,, FU, ..., FL, for which at least one of the subscripts 

occurring in a. is the subscript of a final place. 

We have constructed some finite Moore automaton A. From the meth- 

od of construction of its switching and output functions it follows 

directly that it represents (with selection of 0 as the initial state) 

each of the given events R,, R2, ..., R and the complement S of their 

union. The event R. is represented by the set of all those output slg- 
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nals (sets of symbols R,, Rp* ...» fL)* in whose composition there 

occurs the symbol R.(i =1, 2, ..., p). The event S Is obviously the 

empty set of the symbols R^, Rp, ..., R^. 

As a result we have proved the following proposition. 

Theorem 1. Any regular event can be represented in a finite autom- 

aton. There exists a single constructive technique (synthesis algo- 

rithm) which makes it possible from any finite set of regular events 

given by regular expressions to construct the finite Moore or Mealy 

automata representing these events. 

Combining the proved theorem with the result obtained in §2, we 

obtain the following result. 

Theorem 2. Regular events and only regular events are represent- 

able in finite automata. 

A similar result for automata of a special foim (neural networks) 

and for a more awkward form of definition of the regular event has 

been obtained previously by Kleene [40]. 

The following proposition also follows from the results obtained 

above. 

Theorem 3. The Intersection of two (and therefore of any finite 

number as well) regular events and the complement (in the set of all 

words In the basic alphabet) of any regular event are also regular 

events. 

The algorithm described above for the synthesis of finite autom- 

ata also admits the following interpretation which is more convenient 

for practical purposes [21]. 

Let there be given the £ regular expressions R,, FU, ..., R in 

the arbitrary finite alphabet X = (x^ x2, ..., xn). If any of the ex- 

pressions R. is the disjunction of several terms, then we can without 

losing generality consider that it is enclosed in ordinary (nonitera- 
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tive) brackets. Specially Introduced separation symbols (vertical bars) 

standing between any two symbols (letters, brackets, disjunction signs) 

of these expressions and also standing to the left of an expression 

(initial place) and to the right of an expression (final place) will 

be termed places in the expressions R,, FU, ..., FL. 

Places having a letter of the basic alphabet X standing directly 

on their left and the Initial place are termed basic places; the places 

having a letter of the alphabet X standing directly on their right are 

termed prebaslc. The Initial places of all the expressions R,, Rp, ..., 

..., R are Identified with one another In one single Initial place. 

We designate all the basic places with different nonnegatlvc whole 

numbers — the basic subscripts of these places. Here the Initial place 

takes the basic subscript 0. 

The operation of each basic subscript extends not only to the cur- 

responding place, but also to the places (basic and nonbaslc) which 

are subordinate to it. The place subordination rule expresses the or- 

der of the operations in the algebra of events. It Is defined by the 

following subscript extension rule. 

The place subscripts ahead of any brackets (iterative or conven- 

tional) extend to the initial places of all the terms standing Inside 

these brackets. The subscripts of the final place of any term enclosed 

in brackets extend to the place directly following these brackets. 

Place subscripts directly preceding iterative brackets or symbols of 

an empty word extend to the place directly following these brackets 

(respectively after the given symbol e). Finally, place subscripts 

following directly after Iterative brackets extend to the Inltla] 

places of all the terms enclosed in these brackets. 

All the subscripts appearing on the basic and nonbaslc places as 

the result of the application of the rule Just formulated are termed 
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nonbaslc. In this case the rule Itself must be applied until Its ap- 

plication no longer leads to the appearance of now subscripts on any- 

place. 

The indexing of the given regular expressions, the labeling of the 

places and the extension of the subscripts according to the formulateu 

rule constitute the first step of the synthesis algorithm. 

The second step consists in the construction of the switching 

table of the sought automaton A. Here the input signals are the letters 

of the original alphabet X, and the internal states of the automaton 

are identified with the sets of the basic subscripts. Let us agree for 

definiteness to denote these sets by the disjunction of the component 

subscripts, and the empty set of subscripts by an asterisk. 

The rule for the construction of the automaton switching table 

amounts to the following. 

The single-element set consisting of the subscript 0 serves as 

the initial state of the automaton A. The state a. is transformed by 

the input signal x. into the state a., consisting of the basic sub- 

scripts of all the basic places, separated by the letter x. from the 

prebasic places directly preceding them, whose subscripts (basic or 

nonbaslc) contain at least one subscript from the number of subscripts 

occurring in the state a^. 

In practical application of the fomulated rule it is convenient 

to separate the basic subscripts, placing them above a horizontal line 

specially drawn for this purpose. It is also advisable to separate all 

the subscripts (basic and nonbaslc) of the prebasic places, for example 

enclosing them in a rectangular frame. In the construction of the 

switching table it is sufficient to limit ourselves to only the states 

which actulaly appear in the process of the construction of the table, 

starting from the initial (zero) state. 
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The third step of the synthesis consists In the construction of 

the shifted output table, or, what Is the same. In the labeling of the 

states of the automaton A with the output signals corresponding to 

them. As the output signals we select the various sets of the symbols 

of the Initial regular expressions (including the empty set). The state 

labeling rule consists In the following. 

The state a. Is labeled with the set of those symbols of the ex- 

pressions R^j, Rp, ..., R , whose final place subscripts (basic and 

nonbaslc) Include at least one subscript from a.. 

The states labeled with the empty set of symbols are also termed 

unlabeled. 

We note that ^he constructed Moore automaton represents the event 

R. by the set of all those output signals which contain the symbol 

^  (1=1, 2, ..., p). 

The fourth step of the synthesis algorithm consists In the rede- 

signation of the internal states and the output signals to obtain a 

simpler writing of the switching table and the shifted output table. 

Here the internal states are most frequently numbered with the  se- 

quential natural numbers 1, 2, ..., k. 

Finally, the fifth step of the synthesis algorithm Is used when 

we are required to synthesize a Mealy automaton rather than a Moore 

automaton. It amounts to the construction of the conventional (un- 

shlfted) output table. As follows from §1 of the present chapter, for 

this it is sufficient to substitute in the switching table In place of 

the Internal states the output signals which label them. 

In the solution of practical problems which arise In the synthesis 

of automata, it is frequently convenient to assign Identica] basic sub- 

scripts to certain basic places, thereby Identifying these places. 

Such an Identification is possible if to the Identified places there 
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are subordinated  identical sets of prebasic and final places  (places 

satisfying this conditions are temed similar). 

Another case when It  is possible to Identify places relates to 

the so-called  corresponding places.   All those places  in the various 

regular expressions R,,  Rg*   ...*   R    or in the different terns enciob^^ 

in the same brackets, to which identical paths  (sets of words)  lead 

from the  initial place or correspondingly from the place directly pre- 

ceding the brackets, are temed corresponding. 

In the use C? the synthesis algorithm described above the basic 

subacriptE   jf the corresponding places always occur together in the 

states  of the automaton being synthesized.   It  is precisely this that 

makes possible their identical Indexing.  Substantiation of the possi- 

bility of i lentifying similar places results  from the minimization 

algorithm Oviscii^ed in §5 of the present chapter. 

We note that the places should be identified only with respect to 

one of the criteria  (similarity or correspondence),   since simultaneous 

identification with respect to both criteria can lead to errors.   In 

particular,  since the initial places are actually identified with re- 

spect to the correspondence criterion,  we cannot,  generally speaking, 

with the existence of more than one event identify the initial place 

in any event with another place using the similarity criterion. 

The validity of the following proposition results directly from 

the algorithm described. 

Theorem 4.   Events given by the regular expressions R,,  Rp,   ...,   FL 

in some finite alphabet X can be represented in a finite automaton 

(Mealy or Moore)  having no more than 2        internal states, where n is 

the total number of occurrences  of the letters of the alphabet X in 

the expressions  R^,,   Rp,   ...,   R^. 

Let us  consider what changes need to be made  in the synthesis 
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algorithm when.   In addition to the initial events  R.,,   FU,   ...,   R , 

there is also given the forbidden region S  in the alphabet X =  (x,, 

x'^*   • • •' ^tn' 2' 

The forbidden region can be specified  either with the  aid of some 

regular expression,   or as an ensemble of words  in the alphabet X not 

occurring in even one of the events R-,   FU,   ...,   FL.  These two methods 

are  essentially equivalent to one another,   since we can transfer from 

the first method of specification to theother and  vice versa. 

The forbidden region S by its  very definition pemlts  right mul- 

tiplication by the ensemble F of all words   (including the  empty word) 

in the alphabet X:  SP = S.  Therefore,  with specification of the for- 

bidden region by the regular expression R we can,  without  losing gen- 

erality,  assume that the expression R has the form 

/? = /?1|jrl VJf.V-.. VxJ. 

The synthesis algorithm described above gives the solution of the 

problem with the existence of a forbidden region. However, in this 

case many transitions in ther synthesized automaton are redundant in 

the sense that they will never be used in actual operation of the 

automaton. The problem consists in the determination of all such 

switchings and the construction in place of the conventional (com- 

pletely determinate) automaton a partial automaton in whose switching 

and output tables dashes stand in the places of the forbidden tran- 

sitions. The conversion to the partial automaton gives additional 

possibilities for subsequent simplification of the automaton. 

This problem in the case of the specification of the forbidden 

region as the ensemble of words in the alphabet X which do not occur 

in even one of the given regular expressions R^ R2, ..., R , is 

solved by a quite obvious method. After |-.he performance of the synthe- 

sis algorithm described above, the output signal designated by the 
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empty set of symbols R,, FU, ..., R , will correspond to the appear- 

ance of the forbidden input word. Consequently, it is sufficient to 

replace this output signal in the output table by a dash and to put 

a dash in all the places of the switching table corresponding to the 

appearance of the forbidden output signal (with superposltionlng'of 

the output table on the switching table the places labeled with a dash 

in the two tables must coincide). 

In the case of the specification of the forbidden region by the 

regular expression S, we apply the usual synthesis algorithm to the 

expressions S, R,, Rg, ..., R and consider as forbidden all outputs 

designated by the sets which include the symbol S. Forbidden outputs 

in the output table are replaced by dashes, which are transferred to 

the switching table using the method described above. It is clear that 

this technique actually leads to the solution of the posed problem. 

In this case we should consider that the expression has the form 

S -Sl|x,VXiV-..VJf<1». 

If the initially given expression for the forbidden region did 

not satisfy this condition, it must be replaced by the expression 

/?=SUIVxlV...V*nl. 

As an example, let us consider the synthesis of the partial Mealy 

automaton representing the event R = x [y}, with the existence of the 

forbidden region   S =yx{x\/y],   In the first step we perfonn the 

labeling of the places, the indexing and the extension of the indexes 

in the expressions R and S, using the possibility of Identification of 

similar places: 

0    1 i |0|  i2| 3 

je|V 

3 
y\ 

3 
J       ' I3|    |3       3 

Perfoming the second and third steps of the algorithm, we come 
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to the labeled switching table of the Moore automaton 

0 12* 3^ 
1 * 3 r 3 
2 1**3 

In the fourth step we Introduce the redesignation 0 -* 1, 1 -♦ 2, 

2 -♦ 3, «-►4, 3 "* 5i ( ) "^ u, R -♦ v, S -♦ w (here the brackets ( ) de- 

signate the empty set of symbols R and S). After this obtain the 

labeled switching table 

U V u u w 

12 3 4 5 
x1 2 4 5 4 5 ' 
1/32445. , 

Completing in the fifth step the conversion to the Mealy autom- 

aton, we obtain the switching and output tables 

112345 112345 
x\  2 4 5 4 5 
y\  3 2 4 4 5 

V u w u w 

U  V U U IV 

Finally, we perfom the conversion to the partial automaton. In 

the present case we shall consider the forbidden region to be the sig- 

nal w. Then the switching and output tables will have the form 

| I 2  3  4   5 12 3  4   5 

xl 2 4 - 4 -; 

yl 3 2   4  4 — 
X 

y 
V u — u  — 
U V   u   u  — 

However, state 5 Is redundant, since the automaton can never con- 

vert into it starting from the initial state 1. Discarding this redun- 

dant state, we come to the final switching and output tables 

112 3 4 112 3 4 

2 4 — 4 
3 2 4 4 

V u  — u 
U V   u   u 

§5. MINIMIZATION OP ABSTRACT AUTOMATA 

As indicated above, we consider the abstract automaton as a de- 

vice for the realization of automaton mappings. In connection with 
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this it Is natural not to differentiate automata which are equivalent 

to one another, i.e., automata which induce identical mappings. 

The primary task resolved in the present section Is that of the 

minimization of automata, i.e., the problem of finding the automaton 

with the minimal number of states in the class of all automata equi- 

valent to the given one. The method presented for the solution of this 

problem is a development of the ideas of Mealy [55]* Aufenkamp and 

Hohn [3,4]. 

Let a and b be two states of the same or of two different Mealy 

automata having common input and output alphabets. If for any input 

signal x^  the output signals determined by the pairs (a,x.) and (b^.) 

are identical, then the states a and b are termed l-equivalent states. 

If l-equivt„lent states are transformed by any input signal x. in- 

to states which also are 1-equivalent to one another, then they are 

termed 2~equlvalent. If 2-equivalent states are transformed by any In- 

put signal into states which are 2-equivalent to one another, then 

they are termed 3-equivalent, etc. 

It is easy to see that in the case of the application to them 

of any input word 1 the i-equlvalent states give rise to identical 

output words 1 =- 1, 2, ...). 

The 1-equlvalency relation for any 1=1, 2, ... has the prop- 

erties of reflexlvlty, symmetrlcity and transitivity. This Implies 

that the set of all Internal states of a given Mealy automaton Is 

partitioned by this relation into alsJoint classes of states which 

are i-equlvalent to one another. We term such classes 1-equlvalent 

classes or i-classes. 

States which are i-equlvalent for all 1 = 1, 2, ..., are termed 

equivalent states, and the classes defined by the equivalency ratio 

are termed equivalent classes or »-classes. 
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The validity of the following proposition follows directly from 

the definition of the states which are equivalent to one another. 

Theorem 1. Two states of the same or of two different Mealy autom- 

ata are equivalent to one another If and only if the application to 

them of any input word causes the appearance of the same output word. 

This proposition makes it possible to formulate the followlne re- 

sult as well. 

Theorem 2. Two Mealy automata are equivalent to one another (in 

the sense of the coincidence of the automaton representations which 

they induce) if and only if their initial states are equivalent. 

The application of the same input word £ to two equivalent states 

a and b transforms them anew into the equivalent states ap and bp. 

Since equivalent states are at the same time 1-equivalent, then for 

any input signal x. the pairs (a, x.) and (b, x.) define Identical nut- 

put signals. 

Thus, for every Mealy automaton A we can construct the new Mealy 

automaton B with the same input and output alphabets as automaton A, 

taking as the set of its internal states the set of all equivalence 

classes of the automaton A. The transitions and the outputs In autom- 

aton B are detennined as follows : the equivalence class K^ is trans- 

formed by the input signal x. into the equivalence class K2 contain- 

ing the state a.x , where a1 is any state contained in the class K,. 

To the pair K^x. there is associated in this case the output signal 

determined by the pair a.x^,. We shall term the automaton thus con- 

structed the canonical minimization of the Mealy automaton A. 

The validity of the following proposition follows from the meth- 

od of construction of automaton B and from proposition 1. 

Theorem 3. In the canonical minimization of any Mealy automaton, 

any two different internal states are not equivalent to one another. 
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For the realization of automaton correspondence it is sufficient 

to limit ourselves to the consideration only of the so-called con- 

nected automata, i.e., those automata in which every state is attain- 

able, or, in other words, which as the result of the application of a 

suitable input word can be transformed from the initial state into any 

other internal state. 

Actually, if the mapping qp is induced by the unconnected autom- 

aton A, then the attainable states of the automaton A form the new 

automaton B which is connected and induces the same mapping qp. We 

note that as a result of the application of the synthesis algorithm 

described in the preceding section, connected automata are always 

obtained. 

Let us consider some connected Mealy automaton A which induces 

the specified automaton mapping cp. The canonical minimization B of 

the automaton A is also connected and realizes the same mapping cp 

(with selection as the initial state of the equivalence class KQ con- 

taining the initial state of the automaton A). 

Let D be any automaton realizing the same correspondence and let 

d0 be its initial state. On the strength of the connectedness of the 

automaton B, for its every state K, we can select the input word p. 

such that KQP- = K^ (l e M). Let us construct the mapping V' of the set 

of states of automaton B into the set of states of automaton D, set- 

ting TK^) = a0p1  (1 e M). 

It is clear that tne initial states K0 and dQ of the aijtomata B 

of the automata B and D are equivalent to one another. But then the 

states K. and d. = ^(K.) are also equivalent for any i c M. If ^(K.) = 

= TKK,), then this implies equivalence of the states K. and K.. As 
J 1     j 

the result of proposition 3 this means that K. = K.. Thus, the corre- 

spondence y  is one-to-one, which Implies the validity of the follow- 
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ing proposition. 

Theorem 4. The canonical minimization of a connected Mealy autom- 

aton which Induces any given automaton mapping cp ID the automaton hav- 

ing the smallest possible number of Internal states alone all Mealy 

automata which Induce the same mapping cp (i.e., among all automata 

equivalent to the automaton A). 

This statement completely resolves the problem of the minimiza- 

tion of the Mealy automata under the condition that there exists the 

constructive technique for the construction of the equivalency classes 

for any given (connected) Mealy automaton. Such a technique has been 

suggested by Aufenkamp and Hohn [4] for the scale of finite Mealy 

automata. It is based on the following easily proved proposition. 

Theorem 3« If for some jL the partition of the states of the autom- 

aton into (i + l)-classes coincides with the partition into 1-classes, 

then it is also the partition into «-classes. 

Actually, if any pair (a., a.) of i-equivalent states is also 

(i + l)-equivalent, then the states a, and a. are transformed by any 

input signal x into states which are i-equivalent to one another. But 

then they are transformed by this same signal also into states which 

are (i + l)-equivalent to one another. Consequently, the states a, and 

a. are not only (i + l)-equivalent, but are also (i + 2)-equivalent to 

one another. 

We further find that the states a. and a, are n-equivalent for all 

n = i, 1+1, 1+2, ... and, consequently, are equivalent states. In 

view of the arbitrariness of the choice of the states a, and a. , pro- 

position 5 is proved. 

The Aufenkamp-Hohn algorithm for the construction of the e julva- 

lence class (»-classes) is based on the sequential construction of 

i-classes for all 1 --= 1, 2, ... . Since the partition into (i + l)- 
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classes Is a subpartition of the partition Into 1-classes, then In the 

case of finlteness of the automaton A, after a finite number of steps 

we obtain on the basis of theorem 5 the sought partition into «-classes. 

The partition into 1-classes is perfomed directly from the out- 

put table of the automaton: into the same l-class there are combined 

all the states to which there correspond Identical columns In the out- 

put table. Then there is constructed the so-called 1-table, obtained 

as the result of replacement in the automaton switching table of the 

internal states by the l-classes which contain them. 

In a single 2-class there are combined all the states belonging 

to the same 1-class to which there correspond Identical columns in the 

1-table. Then we proceed similarly: replacing in the switching table 

the automaton states by the 2-classes which contain them, we obtain 

the 2-table. From the 2-table we find the 3-classes, combining in one 

3-class all the states of the same 2-class to which there correspond 

identical columns in the 2-table. 

Arriving after a finite number of steps at the partition into 

«-classes, wo construct the canonical minimization of the original 

automaton A directly from its switching and output tables. 

As a result we have constructed the minimization algorithm for 

any finite Mealy automata. For the case of the Moore automata it is 

necessary to introduce certain changes in this algorithm, since by in- 

terpreting the Moore automaton as a Mealy automaton and minimizing It 

in accordance with the described algorithm, we construct an automaton 

which, although equivalent to the original, is possibly not now a Moore 

automaton. 

In order that the Moore automaton remain a Moore automaton during 

minimization it is evidently necessary and sufficient that Identically 

labeled states of the automaton not be related to different equlva- 
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lency classe" 

This '   .ülon can be satisfied most simply by Introduclnc for 

the Moore automaton the concept of O-equlvalency of the states and the 

partition of the set of states Into O-classes: we shall term any iden- 

tically labeled states of a Moore automaton O-equivalent. If two 0- 

equlvalent states are transformed Into two O-equivalent states by any 

input signal, then they are termed 1-equlvalent. 

All the further constructions (detenr.ination of the i-classes 

for 1 > 2, detemination of the equivalency classes and the construc- 

tion of the canonical minimization) are performed Just as in the case 

of the Mealy automata. Of course, in the case of the Moore automata 

for the construction of the canonical minimization B we can specify 

for it not the output table, but the shifted output table, labeling 

the states of the states of the automaton B (equivalence classes) by 

the same output signals which are used to label the states of the 

original automaton which occur in it. 

However, the theory of ininimization of Moore automata in the 

form Just described is not fully equivalent to the corresponding the- 

ory for the case of the Mealy automata. In particular, the proposi~ 

tlon analogous to theorem 1 does not extend to the Moore automata. 

To obtain equivalence of the two bheories it is necessary to 

consider as the reaction of the Moore automaton to the input word j) 

not that output word JCJ which is obtained as the result of the general 

definition of the automaton given in §1, but the word y.q, where y. is 

the output signal labeling that state in which the automaton was prior 

to the application of the word JD« With this definition of the reaction 

of the Moore automaton to the input word for this automaton, the pro- 

positions obtained from theorems 1, 2, 3> ^ of the present section by 

replacement of all Mealy automata encountered in their formulation by 
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Moore automata will evidently be valid. Theorem 5 remains, of course, 

valid for the Moore automata with the usual definition of the output 

reactions of the automata. 

With conversion to the usual understanding of the output reac- 

tions of the automaton, only those states into which the automaton 

cannot transfer starting from the other states are found to be in a 

special situation (for the case of connected automata only the initial 

state can have this property). It is easy to verify that for the re- 

storation of parallelism in thetheories of the minimization of the 

Moore and Mealy automata, in this case it is sufficient not to label 

similar states with any output signals. This permits in the formation 

of the O-classes relating such states to any O-class and thereby in- 

creases the posBibllltl^B of the minimization. 

However, the parallelism appearing here takes place not with 

minimization of the conventional everywhere-determinate automata, but 

with transfer to the more general problem of the minimization of par- 

tial automata. 

The essence of the problem of the minimization of the partial 

automata amounts to the following: given the partial automata (Moore 

or Mealy) A which induces the partial automaton on mapping cp defined 

on some set M of words of the input alphabet. Required to construct 

the partial automaton (Moore or Mealy respectively) B which induces 

the partial automaton mapping coinciding on the set M with the mapping 

cp and which has the smallest number of internal states among all 

automata (Moore or Mealy) satisfying this condition. 

Since there is only a finite number of differnt partial automata 

in which the input and output alphabets are common with the given fi- 

nite partial automaton A and in which the number of states does not 

exceed the number of states of automaton A, the formulated problem is 
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algorithmlcally solvable. However, the existing methods for the exact 

solution of this problem are associated with extensive sorting (see, 

for example, Ginsburg [19]) and are therefore unsuitable in practice. 

In practice, use is usually made of the following technique for 

the minimization of the partial automata: mentally filling in tht- 

stricken places in the switching and output tables of the given partial 

automaton A, we combine the states into k-classes and minimize using 

the same rules as in the case of conventional (everywhere determination 

of states into classes are checked, and from the resulting canonical m 

minimizations we select that which has the smallest numbers of states. 

This technique actually solves the problem of the construction 

of the partial automaton B with smaller number of states than the 

original automaton A, and the partial automaton mapping it  induced by 

the automaton B coincides with the partial automaton mapping cp induced 

by the automaton A on the domain of definition of the mapping cp. In 

this case the domain of definition of the mapping f,   generally speak- 

ing, is larger than the domain of definition of the mapping 9. 

We shall show how the described minimization technique operates, 

using as an example the partial Mealy automaton A given by the follow- 

ing switching and output tables: 

12 3 4     11 2 3 4 
2—24;    x\u — u u. 
— 344    y\— u V*ü 

Minimizing the given automaton,   we obtain two  initial possi- 

bilities  of combining into 1-classes,   leading to the  smallest  number 

of -classes, 

a, =(1.3.4.). bt =(2)andflI=(I.2). ft, =(3.4). 

Let  us  consider the first  possibility: the 1-tablo  is written 

II   2 3^ 
x'6,-6,0,. 
jM—a.Q.a, 
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From the 1-table we see that the class a, must be divided Into 

two 2-claBses: a2 ■  (1,  3) and c2 ■ (4); the third 2-class bg coincides 

with the 1-class b,  ■ (2);  the 2-table will have the form 

11 2 3 4 
«Ml—li ci. 
y\—atct ct 

From the 2-table we see that the 3-classes coincide with the 2- 

classes, which are,  consequently, the desired «> -classes.  In this 

variant the canonical minimization is represented by the table 

_Ifl»b: £? a,bfy 
«I*i~ ct; x\u — u. 
ylctfl» c, y\v u v 

In the second variant of the minimization,  the partition Into 

1-classes a1=(l, 2) and b1=(3, 4) leads to the 1-table 

;l 2 34 

y i— ti bA 

and to the partition into 2-classes ap =  (l,  2); bg ■ (3);  c2 =  (4);. 

The 2-table is written 

12 34 
* a, -a, ci. 
y I— bfy Ct 

which Implies that the obtained partition into 2-classes will not 

break down further and,   consequently,  coincides with the partition in- 

to »-classes.  The canonical minimization in this variant will be given 

by the tables 

at btCt a, bt ct 
x fit a, ct. x\u   u u . 
y \bt ct c, y\u   v  v 

The canonical minimizations obtained are essentially different: 

the first reacts to the  input word ^ with the output word  v,  while the 

second reacts with the output word u. 

§6.   STRUCTURAL SYNTHESIS  OP FINITE AUTOMATA 

In the structural synthesis stage we select the elementary autom- 
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ata from which the synthesis of the structural diagram of the given 

abstract Mealy or Moore automaton is accomplished. We shall assume 

that the elementary automata are of two kinds: elementary automata 

with memory, or memory elements (triggers, delay lines, etc.)* and ele- 

mentary automata without memeory, also termed logic elemt-nts. For 

simplicity we shall limit ourselves to the case when we have available 

only one type of memory element. 

The input and output signals of both the elementary automata and 

of the automaton under consideration as a whole are designated (coded) 

with a finite sequence of letters of some fixed finite alphabet, termed 

the structural alphabet. Usually, as the structural alphabet we choose 

the binary alphabet, consisting of two letters: 0 and 1. A second 

alphabet which plays a very Important role in the structural synthe- 

sis stage is the alphabet consisting of the symbols of the Internal 

states of the selected memory elements. We term it the state alphabet. 

The state alphabet may not coincide with the structural alphabet, how- 

ever, in practice the binary alphabet is usually also chosen as the 

state alphabet. 

One of the primary problems which is solved in the procesc. if the 

structural synthesis of automata is the writing out of the so-called 

canonical equations which establish the relationship of the signals 

applied to the inputs of the memory elements to the output signals of 

these elements and to the signals applied to the input of the entire 

automaton as a waole. In order to ensure proper functioning of the 

circuit, we cannot permit direct participation of input signals, ap- 

plied to the input of the memory elements, in the formation of the out- 

put signals which through the feedback circuits would be applied at 

that same instant of time to these inputs. In other words, the memory 

elements must be Moore automata and not Mealy automata. However, the 
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complex automaton fonned by these elements can, or coarse, be either 

a Moore or Mealy automaton. 

Let us assume that the elementary automata with memory used In 

the structural synthesis are Moore automata. After making a corre- 

sponding shift of the reference of the time Intervals for the output 

signals, we shall consider that the output signal at any Instant of 

time t of every memory element Is determined by the Internal state of 

th Is element at that same Instant of time. 

In order to have the possibility of synthesizing arbitrary autom- 

ata with minimal consumption of memory elements. It Is advisable to 

select as such elements Moore automata having a complete system of tran- 

sitions and a complete system of outputs, which for brevity we shall 

tenn complete automata. The completeness of the system of transitions 

means that for any pair of states of the automata there Is an Input 

signal which transforms the first element of this pair Into the second. 

This requirement Is equivalent to the requirement: In every column of 

the switching table there must be found all states of the given autom- 

aton. The completeness of the system of output In the case of the 

Moore automaton means that to each state of the automaton there Is 

placed In correspondence Its special output signal, differing from the 

output signals of the other states. Therefore, for the complete Moore 

automata It is natural to simply Identify the output signals with the 

corresponding Internal states of the automaton. We shall adhere to 

this method In the future. 

Let us choose as a memory element some complete Moore automaton 

B. The Internal states of this automaton are denoted by z,, Zp, ..., 

..., z  (r > 2). According to the assumed condition they will also be 

the output signals. For the designation of the Input signals of the 

memory element we shall use the letters s^ s2, ..., s  The alphabet 
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(zp Zg, ..., z ) Is nothing other than the state alphabet. We shall 

select the structural alphabet somewhat later, and for the moment we 

shall show how to find the so-called canonical equation of the autom- 

aton whose memory is composed from the elements of the selected type. 

Assume that we are given the abstract finite Mealy or Moore autom- 

aton A with the input alphabet X = (x,, Xp, ..., x ), the output alpha- 

bet Y = (y,, yg, ..., y ) and the set of internal states A = (a,, 

a«, ..., a ), specified by the switching function ^(a, x) and the out- 

put function X(a, x). Let the selected memory element B be given by 

the switching function v(z, s). We pose the problem of finding the 

canonical equations of the automaton A under the condition that Its 

memory is constructed from several copies Ir ', Ir ', ..., Ir ' of the 

elementary automaton B. 

For the construction of the automaton A the number k of memory 

elements must satisfy the condition r ^ p. In this case the various 

internal states a, can be identified with the various sets of states 

of the automata B^ ', B^ ', ..., Ir ', The process of such an identi- 

fication will be termed the coding of the states of the automaton A 

in the chosen state alphabet. Of course, the coding process is in es- 

sence not unique. However, we shall not go into the details of the 

question associated with the selection of a particular coding variant, 

but shall consider that this variant is already given. 

After coding, the states of the automaton A will be designated by 

the k-dlmensional vectors (z^ ', z^ ', ..., z^ '), whose components 

are the various letters z, Zp, ..., z of the state alphabet; the two- 

place output function X(a, x) of the automaton A is converted into the 

(k + l)-place function X (z^  ,... z^ ', x), which as before we shall 

term the output function. The equivalent of the switching function 

6(a, x) after the coding will be the system of k (k + l)-place func- 
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tlons (/^(z^,..., zM, x). ..., f^Cl^, ..., z^k^, x) of the 

transitions In the elementary memories. The function qr ' determines 

the state Into which the 1-th memory element must transfer at the in- 

stant of time t + 1, if at the Instant of time t the automaton A were 

In the state (z^ ', z^ ',..., z^ '), and to its Input there was applied 

the signal x(l - 1, 2, ..., kj t « 0, 1, 2, ... )• 

The next Important step Is the construction of the excitation 

functions ö (z^ ', ..., z' ^ x) of the memory elements (l = 1, 2, ..., 

..., k). The value of each such function Ö^ ' with the selected state 

(z^ ', z^ ', ..., z^ ') of the automaton A and the input signal x is 

determined as the input signal 8* ' of the i-th memory element which 

causes the transfer in the 1-th memory element due to the i-th switch- 

ing function, i.e., the transfer z^ -»-(p^ (z^1', ..., z^ ', x) 

(1=1, ..., k). The input signal S   can be selected by more than one 

method. Therefore the construction of the excitation functions of the 

memory element from their switching functions is not unique. 

The selection of the best method of construction of the excita- 

tion functions is associated with the problems of the following stage 

— the stage of combination synthesis. However, for many types of memory 

elements (delay lines, triggers with complementing input, etc.) the 

corresponding transfer is performed uniquely. For several types of 

elements we can idlcate hybrid combinatorial-computational techniques 

which permit a simpler, in comparison with the general technique de- 

scribed method of finding the excitation functions [23]. 

The excitation functions ö^ ', equated to the input signals S^ ', 

detennlned by them, then give the sought canonical equations for the 

feedbacks in the automaton A However, these function have a form 

which is still not completely satisfactory: the states of automaton A 

are coded in the iniversal (for the given type of memory elements) 
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State alphabet, which does not depend on the choice of the automaton 

A; for the designation of the input and output signals use Is made of 

various alphabets, including those which depend on the selection of 

the automaton A. Therefore it is necessary to fix the structural alpha- 

bet B, determined usually by the coding actually selected for the in- 

put signals of the memory element, and to code with the finite se- 

quences of the letters of this alphabet not only the input sißnals 

of the memory elements, but also the input and output signals x «o 
and 2.  of the entire automaton as a whole. This coding transforms the 

system of excitation functions ö'1^ found above into the new system 

of functions 

o</» (^)... .e(»>U|, ut «jHi - 1.2..... ft; / - 1.2. ... /). 

where each of the functions  6^   '  is the  input signal  (letter of the 

structural alphabet) which must be applied to the j-th Input channel 

of the i-th memory element at that time when the automaton A is  In the 

state  (z^   ',  z^   ',   ...,  z^   '), and to  its  input channel there are ap- 

plied the signals  (letters of the structural alphabet) u-^ Up, 

...,  u. 

• • > 

g 
Similarly, the output function X (z (i) oo 

>    • , x) found above 

is replaced by the system of functions X.(z^ ', z^ ', ..., z^ ', u1, 

Up» •••» uß:)(J " !' 
2' •••' h)' where the function X. determines the 

output signal (letter of the structural alphabet) appearing on the 

J-th output channel of the automaton A at the time when the automaton 

A is in the state (z^1', z^2', ..., z^ '), and to Its input channels 

there are applied the signa s u,, u , u 

(1) 
g 

We term the resulting function Ö.v ' and X. respectively the 

structural excitation functions and the structural output functions of 

the automaton A. 

In the case (usually encountered in practice) when both the 
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structural alphabet and the state alphabet are binary alphabets, the 

structural excitation functions and the structural output functions 

can be considered as ordinary boolean functions. The problem of the 

following stage (the stage of combinational synthesis) amounts to the 

actual construction of the found functions from the elementary logic 

functions, realized by the selected logic elements. The methods of 

solution of this problem were discussed in §4 oi* the preceding chapter. 

As the memory elements in the majority of the modern digital au- 

tomata, use is made of the complete Moore automata with two internal 

states. It is interseting to analyze th^ question of how many and which 

of the elementary automata satisfy these properties. Let us consider 

the case when the complete Moore automaton with the two states 0 and 1 

has only two input signals — x and ^. From the conditions of complete- 

ness it follows that in each column of the switching table of the au- 

tomaton there must be found both states - 0 and 1. This limitation 

leads to the existence of 4 possible switching talbes in all 

0 1 0 1    JO 1     |0 I 
Ö~f;   «n:  TTo. 
' 0    y|0 0    vIO 1 

x o o;  x 
vll 1   y 

After transformation of the input signals, the third table coin- 

cides with the first, the second with the fourth. Thus, there are only 

two essentially different automata of the required type, given by the 

swithcing table 3 

_0 I       |0 1 
x 
y 

1 I  and v\\ o 

If we set x = 0, y = 1, then the first table gives the well known 

memory element termed the delay (by one cycle) element, and the second 

gives the equally familiar element termed the complementing trigger. 

We note that the conventional electromagnetic relay with closing con- 

tacts can be considered as a delay element. 
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With an Increase of the number of input signals there appear new 

types of memory elements: trigger with separate Inputs, given by the 

switching table 

J0 ! 
«rTi 
tfO o* 
ill i 

the mixed trigger, given by the table 

J2J 
x o 1 
.« 0 0. 
2   1 1 
u  1 0- 

and others. 

With the existence of only two internal states it is not useful 

to increase the number of input signals to more than four, since with 

a larger number of input signals some of them will begin to duplicate 

one another (cause identical transitions in the  automaton). Therefore, 

it 1B not difficult to compose a catalog of all the complete essen- 

tially different Moore automata with two states (we shall consider as 

essentially different those automata whose swithcing tables do not 

convert one into the other with redeslgnated input signals). In ad- 

dition to the four listed types of automata, the catalog will contain 

three more automata given by the switching tables 

10  1 |0 1 IO I 
x 0  1;     x 
y0 0      y 
til 0      z 

0 1:    xö 0. 
11      ir|l  I 
10      z!l 0 

Of course, each of the listed typos of automata permits various 

modifications as the result of different coding of the input signals 

in the binary alphabet. Let us consider as an example the complete 

synthesis (abstract and structural to the determination of the canon- 

ical equations) of the Moore automaton A which is a sequential binary 

squarer. The automaton A operates as follows: to its Input there is 
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applied a two-digit binary whole number, place-by-place, lower places 

first. At the output of the automaton the square of this number must 

appear, a.so sequentially, beginning with the lower digits. In other 

words, the automaton A must realize the following partial mapping cp: 

0000 - 0000 
1000- 1000 
0100-^0010 
1100-^1001. 

It Is not difficult to verify that the mapping cp, continued to 

the Initial segment of the words, satisfies the condition of automat- 

Iclty. Denoting the zero signal at the Input by the letter x, and at 

the output by the letter u, and correspondingly the ones signal on the 

Input by ^ and on the output by v, we write this correspondence In the 

form 

xxxx -* uuuu 
yxxx -*■ vuuu 
xyxx -* uuvu 
yyxx -*■ vuuv. i 

I 

In the resulting correspondence the output signal u represents 

the event H =xVxx\/xxx Vxxxxvyx\'yxx\'yxxx\'xy\/xyxx\/yy\/  !/!/*•   , • and the out- 

put signal v represents the event Q = xyxyij\'yyxx    , Words which do not 

occur In the events R and Q are forbidden. By use of the forbidden 

words we can extend these events without danger of impairing in the 

synthesized automaton its reaction to the specified words. 

Since the events R and Q are disjoint, on the basis of what has 

been said we can replace the event R by the complement Q1 of the event 

Q. In this case the automaton can synthesize Just the one single event 

Q; the event Q1 is automatically represented by the set of all non- 

labeled states of this automaton. Keeping in mind that for the labeling 

of the states the symbols u and v will be used somehow or other, we 

denote the event Q by the letter v and its complement Q1 by the letter 

u. 
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The process of abstract synthesis leads to the following marking 

of the regular expression for the event Q = v: 

t>". y\v 

iQl      IQ, 

«|V|Jf|V !ß 

IJLi 
IQ 

y\*\x\) 
! ^l |6I 4 

Here the same basic Indices are assigned to a pair of correspc.id- 

Ing places  (index l) and to a pair of similar places  (index 4).  The 

labeled automaton switching table corresponding to the marking Is 

written 

\u V U U V uuu 
Ül 2 :) 4 5 6 • 

JK
1
« • * 4 • 6'4 •' 

y\l b 3  

Since the Initial state 0 represents only an empty word,  its 

label can be considered undetermined. 

After transformation of the state  (*) we obtain the table: 

— V U U V u u u 

0 12 3 4 5 6 7 
2 7 7 4 7 6 4 7* 
I 5 3 7 7 7 7 7 

The set of states of the Moore automaton given by the last table 

can be divided Into two 0-classes: aQ = (0,  2,  3,  5,  6, 7) and b0 = 

=  (l,  4).   Let us  construct the 0-table and from It determine the 1- 

classes: 
10    12   3  4  5 6 7 

_ Qo ^0 Oo Oo ^0 Qo Q<' ao. 
x ä0 aQ ao b0 Oo ao b0 a0' 
y lb0 a0 au Oo do 

au ao üo 

a, --- (0). &, » (1.4). c, = (2.5.7). d, =- (3.6). 

We construct the 1-table and determine the 2-class: 

I0—i 7444 54 ■•=(o) • b*~w >c* -(2) ■d'"(3,6): 
Jo..^_c. d. b, c. d. c. t   /« m (5)   gt m (7), 
x'Ct c, c, bt c, d, bt c, 
V '6, c, d, c, c, c, C! c, • 

The 2-table and the 3-classes will have the form 
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0   12  3  4   5 6  7 
L   a, «(OM,-  (1)   c,- 

(7). 
JT Ct i% i% bt gt ät b, fa 

y Pt ft ät gt gt Bt Bt Bt 

Since the 3-classes coincide, as Is easily verlfed, with the 4- 

classes,  they will also be «»-classes,  so that the automaton can be con- 

structed by combination of states 3 and 6.   After corresponding renum- 

bering of the states, the labeled switching table of the desired Moore 

automaton A is written 

— v u v u u U 

x 
y 

TTTTTT? 
3777647 
2 5 6 7 7 7 7 

Going to the structural synthesis, we choose as the memory element 

delay line with the switching table 

01 
00. 
11 

Since the synthesized automaton has 7 states,  while the memory 

element has 2 states,  we must select 3 memory elements  (2^ ^7).   Let u 

us denote their internal states by the letters z,,  22, z« and the in- 

put signals by s1, s«,  s~  (all these quantities can take the values 0 

and l).  We denote the states  of the automaton A by the values of the 

vector  (z,,   Zp*  z^).   Let us take the so-called nautral system of coding 

of the states,   in which each state is coded by writing its number in 

the binary notation system 

I-00I; 2=010; 3-011; 4-100; 5-101; 6-110; 7-111. 

Let us denote the physical input signül of the entire automaton A 

by the letter Q,  the physical output signal by d, and let us rewrite 

the labeled switching table of this automaton in accordance with the 

chosen coding system (such a table is usually called the physical 

switching table of the automaton in contrast to the previously consid- 

ered abstract switching table in which no account was taken of the pe- 
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culiarltles  of the  coding). 

1  d   1 — i 0 0 0 0 

111 XI 001   ! 010 
1       1 

on 100    101 1 0 

0 on in 111 in 110 

III 
f 

100 

111 

111 

111 1   , 1 010 101 no in 

The resulting physical  switching table of the automaton gives the 

states z'   = zi   (t + l),  zl = z2(t + l),  z'  = z«   (t + l)  of the memory 

elements at each succeeding moment  of time t + 1 as a boolean function 

of their states zn   = z,   (t),  z2 = Zp(t),  Zo = z~   (t)  and of the  Input 

signal c = c(t)  of the automaton A at the present moment of time t. 

from the swltchlnp; table of the delay element we see that  Its ctatc at 

any succeeding moment of time t + 1  coincides with the signal at  Its 

Input at the present moment  of time.   Therefore we can consider' that  the 

written-out table gives the structural excitation functions of the 

sought automaton A 

s/=a1 (2,. ri, za, c)   (t = l. 2. 3). 

We write out the tables of the values which determine respectively 

the functions s-,,   Sp,  s^  immediately  in the form of the Karnaugh map 

(see §4,   Chapter 2) 

Using the methods developed  in the preceding chapter,  wc find the 

minimal disjunctive normal forms  for the excitation functions  (input 

signals  of the memory elements)  of the automaton A 

Si = z, V «a; s2 -^j V *a V zfc V W; «* = ?,c V z^sZa V 

We also determine the structural output function (which determines 

the output signal d of the automaton A as a function of the states of 

the elements of its memory) directly from the labeled physical switch- 

- 203 - 

■ 



00 01 11 10 

09 — - i 0 1 0 

1 01 
«I 

i 1 i 1 1 

11 11 
• 

1 1 1 1 
! lo i 1 1 1 1 

n 10 

: ooi-i-i i 1 
•  1 

i 01 : 1 | 0 i 1 

| ii | o ! i .1: 
1 10 { 1 | 1 | 1 | 1 j 

00 01 ii 10 

00 — — 0 1 

01 1 1 0 1 

1 11 0 1 1 1 

j 10 | 1 r 1 1 0J 
ing table of the automaton A. The Karnaugh map for this function is 

written 

oil 

00 | 

01 1 1 1 0 
II 1 

10 | 

0 0 

i lo 
1 

From the Karnaugh map we easily find the minimal disjunctive form, 

which gives the required output function d, 

d « *iF, V itin- 

We note that all our functions were found to be determinate, not 

on all the sets, and we have extended their definitions in order to ob- 

tain representations for them which are as simple as possible. 

Let us introduce as logic elements invertors, and also two-input 

AND and OR elements. Denoting them by circles with symbols of the oper- 

ations corresponding to them""], A, V, and denoting the memory (delay) 

elements by squares with the letters z-, z0 and z, inside, we obtain 

A which Is shown in Fig. 9« This circuit includes, in addition to three 
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Fig. 9 

delay elements, h  invertors, 5 AND elements and 7 OR elements (16 lorjc 

elements and 3 delay elements in all). 
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Chapter 4 

SELF-ORGANIZING SYSTEMS 

§1. CONCEPT OF SELF-AI/TERATIGN AND SELF-ORGANIZATION IN AUTOMATA 

The concept of the algorithm and of the dlcrete automaton Is 

generally associated with the Idea of their Invariability with respect 

to time. Their corresponding alphabetic representations are pictured 

as something rigid, specified once and for all. With relation to the 

classical concept of the algorithm and to the usual understanding of 

the method of functioning of the discrete automaton this idea Is to a 

certain degree Justified. At the same time everyone knows that the 

most advanced of self-organizing systems are being simulated at the 

present time on the general purpose electronic computers, which are 

nothing other than discrete automata with a "rigid" structure, with 

the aid of programs, which are In essence algorithms written in some 

special form. 

The contradiction arising here Is to a considerable degree only 

apparert. The truth Is that the difference between the "rigid" and 

the "self-altering" Information converters Is quite arbitrary in the 

majority of the cases and in detemined not so much by the design of 

the converter itself, as by the organization of the experiment using 

the converter. The same information converter can in some conditions 

be considered to be rigid, unchanging, while under other conditions it 

can be considered as self-altering and self-organizing. 

To make these statements more precise, let us consider any dis- 

crete automaton A with the input alphabet X the output alphabet Y 
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the set of internal states A and the initial state a0. The usual im- 

pression of the nature of the functioning of the automaton implicitly 

presumes that after the application to its input of some v/ord 2  in the 

alphabet X and obtaining the corresponding output word q = ^(p) in the 

Y alphabet the automaton again returns to the initial state. Thus, at 
• 

the moment of the beginning of the application of each new input word 

the automaton is always in the same state aQ. As a result of this the 

mapping induced by the automaton £ is rigid, unalterable in the sense 

that the result of the conversion of any input word jg by the mapping 

£ depends only on the word £ Itself and not on the moment of time at 

which it was applied to the automaton input. 

We will term each of the possible input words of the automaton a 

question and the corresponding output word a response. In this case 

"rigidity" of the automaton amounts to the fact that to a particular 

question it always and under all conditions gives the same response. 

The automaton is thereby deprived of any capability for learning and 

Improvement of its responses. 

However, the transition of the automaton into the initial state 

described above prior to each new question is not at all mandatory. 

Moreover, it is not specified directly in the definition of the func- 

tioning of the automaton which was given in §6 of Chapter 3. It is 

natural to define the functioning uf the automaton so that the becin- 

nipg of each succeeding question finds the automaton in the state in 

which it was after the termination of the answer to the preceding 

question. With this definition, the automaton which we previously con- 

sidered to be rigid, unalterable will, generally speaking, change its 

responses in the course of time and can, in particular, be self-learn- 

ing, self-Improving, etc. 

Let us now define more precisely the method of functioning of 
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the discrete automaton with application to the theory of self-organiz- 

ing systems. Extremely important concepts defining the method of func- 

tioning of the automaton are the concepts of the cycle and informa- 

tion cycling. 

Assume that to the automaton input there is applied some (finit- 

or infinite) sequence of letters: x. x.  ... x. . To it there corre- 
11 12    ^-n 

spends some sequence of letters y1 y1 ...  y.    at the automaton output. 
Jl J2    Jn 

Let us assume that we have identified some increasing sequence k, 1, 

1, ... of moments of discrete time (l < k < £ <  ...). Then each pair 

...xJ       y ^x.  s.     ... Xj  f y * y.    ...  y..  )>   ^x.      x.        ... ^,      j , 
:L1 X

2 ^      Jl 32 Jk ^-k+l 1lcf2 ^V     Jk+1 
of words 

yJ. .p '•* yJit ... will be termed a cycle, and the operation Itself 

of the identification of the cycles will be termed the information 

(input and output) cycling operation for the automaton in question. 

In the future we will assume that for each automaton under con- 

sideration there is identified a particular class of admissible se- 

quences of input letters and that each such sequence (together with 

the corresponding sequence of output letters) is partitioned into 

cycles. The cycling operation is thus defined, generally speaking, not 

on some one pair of sequences, but on all pairs admissible sequences. 

In the abstract approach to the concept of the cycle and cycling 

there is no additional meaining Involved other than what has already 

been defined. However, in practice cycling always presumes that the 

pair of words (input and output) composing each such abstract cycle is 

in some sense a complete real cycle of functioning of the automaton, 

which can be considered separately from the remaining cycles. There 

are two cases which are encoantered most frequently: the case when 

the first word of the pair (input word) is a question posed to the 

automaton, and the second word of the pair is the response to this 
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question, and the case when the second word of the pair Is, as before, 

the response, but the first. In addition to the question. Includes In 

Itself an evaluation of the given response as well. Of course, In both 

cases It Is assumed that empty letters which may occur In either the 

first or second words need not be taken Into consideration. 

The situation which arises In these two cases Is shown In Figs. 

10 and 11 respectively. 

UUH/I 

Bonpoc 

t Omßem 

ft 
Fig. 10. 1) cycle; 
2) question; 3) re- 
sponse. 

We note that In the general case it is 

frequently advisable In the design of automata 

to provide for partial (and sometimes even 

complete) overlapping of the response and ques- 

tion (begin the response before the question 

Is temlnated). This situation Is reflected In Figs. 10 and 11. In 

performing the cycling operation the boundaries of the cycles are a?so 
1 

  UUH/I  — 

Bonpoc OueHHo 

OmOem 

— t 
Pig. 11. 1) cycle; 
2) question; 3) re- 
sponse; 4) valua- 
tion. 

determined basically by two methods. We con, 

first, simply fix some natural number k and 

require that the Input "rd output word in each 

cycle contain exactly k letters (including 

empty letters as well), We will term this k- 

cycllng. Second, we can define the boundaries of the cycles by fixing 

for this purpose a special letter or word, termed a label. For the 

separation of the cycles It Is most convenient to place such a label 

at the beginning of each successive question (here we will consider 

that the label Is a part of the question). We will agree to call this 

method of cycling label cycling. It is obvious that the combination 

of letters fixed as labels must be used exclusively for this purpose. 

A label can also be used within a cycle (for example, for Indicating 

the beginning of an evaluation), but this label must be different from 

the label which Indicates the boundary of the cycle. In the design of 
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the automaton it is frequently convenient to provide for the automaton 

to put out a special label at the end of each response. We will con- 

sider that in the operation of the automaton there are encountered 

only admissible sequences of Input signals, and that for each such se- 

quence the corresponding partition into cycles has been performed. 

The ordered sequence of cycles preceding the given cycle C in a 

particular fixed admissible sequence of the automaton A is termed the 

learning history of the automaton A for the cycle C. 

It is natural to term an automaton self-improving or self-learn- 

ing if in the course of the lengthening of the learning history it im- 

proves its responses. This definition, of course, in no way lays pre- 

tense to exactness and must be considered to be preliminary. The de- 

finitions for the concept of the Improvement (self-learning) of the 

automata will be made more precise in one of the following sections 

after a preliminary consideration of the probability-theoretic concepts 

which are necessary to such definitions. However, it is useful to men- 

tion here the directions of this further definition. First of all it 

is necessary to refine the concept of the quality of the response with 

the aid of the Introduction of some numerical evaluation of the re- 

sponse. Under this condition we can put exact meaning into the concept 

of Improvement of the quality of the response which was used above In 

the definition of the self-Improvement of the automata. 

Further, we must keep in mind that even the automata with the 

most clearly marked tendency to self-improvement do not necessarily 

improve their responses absolutely to all questions. Here we must con- 

sider the improvement of the quality of the resposnes on the average. 

The same is true of the learning history. Some relatively in frequent- 

ly encountered learning hirtories can obviously lead to deterioration 

of the average quality of the responses, however if the remaining 
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learning history leads to a sharp improvement of the response quality 

the automaton as a whole can be considered self-improving. 

Finally, it is obvious that we must differentiate self-improve- 

ment which is prespecified ahead of time by the automaton designer 

(regardless of the form of the learning history) and the really self- 

triggered self-improvement which is determined by the learning history 

which actually takes place and which therefore is not planned ahead of 

time. It is clear that only the second type of self-improvement is 

actually deserving of this name. As for the first type, in this case 

the designer actually places the correct responses in the automaton 

ahead of time, but in order to simulate the process of self-improve- 

ment he forces the automaton keep this information under Judgement for 

a certain time. As a result the automaton at first gives response;: of 

poor quality and only at the end of some period (some number of cycles) 

does it begin, using the information which has been stored in it, to 

give correct answers. However, we can hardly term this sort of Improve- 

ment of the quality of the automaton responses with time self-improve- 

ment. 

All that we have said give.-: an idea of the difficulties which 

must be overcome in the exact definition of the concept of self-im- 

provement. In a similar situation is the concept of self-organization, 

which it seems to us is somewhat more general than the concept of 

self-improvement. With self-improvement there must of necessity be im- 

provement of the quality of the responses. With self-organization the 

quality of the responses may not be determined at all. It is only nec- 

essary that in the course of learning the automaton on the average in- 

creases the deflniteness of these responses. The corresponding refine- 

ment of the definition will be given after the introduction of the nec- 

essary probability-theoretic concepts. 
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In the refinement of the concepts of self-organization and self- 

improvement it is convenient to make use of the so-called cyclic reduc- 

tion of the automata. Cyclic reduction is defined for the automata in 

which the set of admissible input sequences is fixed and the cycling 

of the input and output information has been performed. With satisfac- 

tion of these conditions, for any automaton A the input and output 

alphabets can be replaced as follows: the letters of the new input 

alphabet X«are considered to be all the different input words of all 

cycles in all the admissible sequences, the letters of the new output 

alphabet Y1 are similarly considered to be all the different output 

words of the indicated cycles. 

For any state a of the automaton A and any letter x1 of the alpha- 

bet X' (input word of some cycie), we use 6'(a, x') to denote the state 

into which the automaton transitions from the state a under the action 

of the input word x'. We use X^a, x') to denote the output word de- 

livered by the automaton A under the action of the input word x' in 

the case when the state a is taken as the initial state. Any admissi- 

ble input sequence of the automaton A can be considered ad the sequence 

xl(l)x,(2) ... of letters of the new input alphabet X'. Let us consid- 

er the set A' of all those states of the automaton A into which it can 

be switched from the initial state a0 by the input words of the fom 

x^l) x,(2) ... x'Ck) (k ^> 0), i.e., by all possible initial segments 

of the various admissible input sequences. The initial state a0 itself 

of necessity occurs in this set. 

Now it is not difficult to construct the automaton A' in which 

the set of internal states is the set A', the input alphabet coincides 

with the set X' and the output alphabet coincides with the set Y'. The 

switching and output functions of this automaton will be the functions 

6' and X' defined above, and the initial state will be the state a0. 
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It Is assumed that only admissible input sequences (rewritten in the 

alphabet X') will be applied to the input of the constructed autom- 

aton. In this case, as is easily verified, the definition of the au- 

tomaton A is completely correct: there are sufficient states and out- 

put letters to completely describe the functioning of the automaton 

under the influence of any admissible input sequence. 

We acree to term the automaton A' thus constructed the cyclic re- 

duction of the origina? automaton A. Obviously the information cycl- 

ing will be a 1-cycling in the automaton A'. In other words, In the 

cyclic reduction of any automaton both the questions and the responses 

are single-lettered. 

With cyclic reduction of automata the number of their internal 

states can only diminish or, at the least, remain unchanged. The num- 

ber of letters of the input and output alphabets will, generally speak- 

ing, increase. It is clear that with k-cycling of the original infor- 

mation cyclic reduction cannot cause a transition from finite alphabets 

to infinite. However, in the case of label cycling such a transition 

is completely possible — after cyclic reduction a finite input or 

output alphabet may be transfomed into an infinite one. 

Let us consider as an example the cyclic reduction of the autom- 

aton A with the three states 1, 2, 3, the two input letters x, £  and 

the two output letters u, v whose switching and output functions are 

given by the respective tables 

11 2 3    lU-i 
xv 2 2 '      x u v u- 
y\$ 2 1   y\v u v 

Assuming all the input sequences admissible and taking the state 

1 as the initial state, as a result of the cyclic reduction we arrive 

at the automaton A' with two states, four input letters Xj = xx, x^ ^ 

= xy, x^ = yx, x^ = yy,   four output letters »i "««. v2 ««», i», = vu, v*^ w. 
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The switching and output functions of this automaton are given by 

the respective tables 

II 2 
Xi|2 2 jc, 
x, 2 2'< xt 
Xi\2 2 x( 
x«|l 2 x« 

I   2 
Vt vt 

Vi v, 
Vt Vt 
0« Vi 

With the use of the cyclic reduction a very graphic solution Is 

found of the question of whether the automaton being considered Is 

rigid or self-altering with respect to the given cycllzatlon. Actually, 

we fomulate the following proposition. 

In order that the discrete automaton A with given cycllzatlon be 

rigid (i.e.. It does not alter Its responses to the same question In 

the course of time) It Is necessary and sufficient that af-^er cyclic 

reduction the output function Xf(a, x) not depend on the states of the 

reduced automaton A1. 

Independence of the output function on the states of the autom- 

aton means, obviously, equivalence between all the elements of each 

row of the output table of the automaton (elements standing In dif- 

ferent rows can, of course, be different). 

With application to the example considered above, the proposition 

Just formulated Immediately discloses the self-varlablllty of the au- 

tomaton A for the case of 2-cycllng of its Input Infomatlon. 

It Is easy to see that the automaton In which the output function 

does not depend on the states can be replaced by its equivalent (i.e., 

inducing the same alphabetic mapping) automaton having one single in- 

ternal state. The automaton with a single Internal state is in essence 

an automaton without memory. In the abstract theory of automata it is 

shown that every discrete automaton A can be minimized;, i.e., in other 

words, can be replaced by its equivalent automaton B (absolute minimi- 

zation of tho automaton A) having the smallest number of states among 

- 214 - 

■i,  «■>■• 



t 

all the automata which induce the same alphabetic mapping ac does au- 

tomaton A. 

If after cyclic reduction of any discrete automaton A (with given 

cyclization of the information) we then perform an absolute minimiza- 

tion, we obtain an operation which we shall tem complete cyclic re- 

duction of the considered automaton A (for the given cyclization). The 

validity of the following proposition resutls from the above consid- 

erations. 

In order that the discrete automaton A with given infomatlon 

cycling have the property of time independence of its elements, It Is 

necessary and sufficient that as the result of complete cyclic reduc- 

tion of the automaton A we obtain an automaton without memory. 

The converse is also true: the existence of a nontrivial memory 

in the automaton obtained as the result of complete cyclic reduction 

of the considered automaton A means that the automaton A is (relative 

to the given cyclization) self-adaptive. 

The relativity of the property of self-adaptability of automata 

(its dependence on the method of cycling the input information) Lc 

easily illustrated by the example of the automaton C with two states, 

given by the switching and output tables 

JI 2       11 2 
x\2 I*    x\u v' 
y\l 2      y\v u 

With any admissible input sequences in the case of 2-cycling of 

the input information, the result of cyclic reduction of the automaton 

C will be an automaton with a single state. Thus, even without minimi- 

zation we obtain an automaton without memory and, in view of the1 cri- 

terion formulated above, we arrive at the conclusion on the rigidity, 

invariability of the automaton C. At the same time, with 1-cycling of 

the input infomatlon the automaton C must be, obviously, considered 
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to be self-adaptive. In practical problems we can quite easily dif- 

ferentiate the rigid and self-adaptive automata simply because the 

cycllzatlon of the Input Infomatlon Is prespeclfled. 

We note that In the criteria considered and In the examples dis- 

cussed on the basis of these criteria we spoke not of self organiza- 

tion or self-Improvement, but only of self-adaptIvlty of the automata. 

The analysis of examples of self-organization and self-Improvement will 

be made In the later sections after creation of the corresponding 

mathematical basis and the Introduction of precise definitions. 

In the remainder of the present section we shall consider one 

terminological question. That is the usage of the terms "system" or 

"automaton" in combination with the concepts of self-adaptation, self- 

organization, self-Improvement and self-learning. As we see from the 

discussions already presented, all these concepts can be developed for 

the discrete automata. However, with this approach to the matter we 

essentially lose the possibility of penetrating into the structure of 

the corresponding process (self-adaptation, self-organization, etc.). 

The study of the structure of the self-adaptation and self-organ- 

ization processes is facilitated with the representation of such pro- 

cesses not in the form of Individual automata (algorithms), but in the 

form of systems of automata (algorithms). In the simplest case such a 

system consists of two automata (algorithms). The first of these, t 

termed the operational automaton (algorithm), directly processes the 

Information applied to the system input. The second automaton (algo- 

rithm), termed the controlling or learning automaton (algorithm), 

evaluates the results of the functioning of the operational automaton 

(algorithm) and Introduces into it the suitable changes (in the case 

when we are considering automata, these changes are Introduced into 

the switching and output functions of the operational automaton). 
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Over the controlling automaton (algorithm) of the first st'ige 

there can be placed the controlling automaton (algorithm) of the sec- 

ond stage, whose function is to evaluate the operation of the automaton 

(algorithm) of the first stage and introduce into it the required 

changes. By  analogy we can introduce controlling automata (algorithms) 

for the third, fourth, and any higher stages. We shall term the hier- 

archy of automata (algorithms) which arise in this fashion systems and 

shall develop the concepts of self-adaptation, self-organization and 

self-improvement for them. 

Of course, in the abstract sense, any, no matter how complex, 

system of automata is equivalent to a single automaton, however such 

reduction of the systems to Individual automata leads to loss of the 

possibility of study of certain properties of such systems which arc 

of practical interest, primarily the laws for the circulation of in- 

formation within the system itself. Therefore, in the future we shall 

deal not only with automata (algorithms) considered abstractly but al- 

so with systems of automata (algorithms) for whose study the Internal 

structure is of particular interest, i.e., the relations between the 

individual automata (algorithms) composing the system. 

§2. SOME AUXILIARY INFORMATION. FROM PROBABILITY THEORY 

In the present section we will present certain information from 

probability theory which is needed for out further constructionLi. In 

view of the fact that this presentation is of an auxiliary nature, 

proofs of most of the propositions formulated will not be included. If 

needed, the reader can find the corresponding proofs in the monographs 

of Feller [8l] and Kramer [48]. It is assumed that the reader is 

familiar with such elementary concepts of the theory of probability as 

the concept of the event, event probillty, etc. 

The concept of the random quantity is of very essential impor- 
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tance in the construction of the theory of the self-organizing systems. 

We shall limit ourselves to the consideration of only the random quan- 

tities which take on real values. Here, In addition to the conventional 

so-called unlvariate random quantities, we consider also the multl- 

variate random quantities whose values will be the finite ordered en- 

sembles of real numbers or, what is the same, the real vectors of a 

particular (finite) dimension. 

It is also important to differentiate continuous and discrete 

random quantities. The continuous random quantity can take any values 

in a particular region (open set) of the corresponding vector space, 

for example on some interval of the real axis (including the entire 

axis as well) in the case of the unlvariate random quantities. How- 

ever, the totality of the possible values of the discrete random quan- 

tity can be only the discrete sets of points. I.e., those sets, each 

point of which can be inclosed in a sphere (possibly of very small 

radius) which does not contain other points of the same space. An ex- 

ample of the discrete set might be the set of all points of rome Eucli- 

dean space which have integral coordinates. 

The property of randomness of the quantltleL we have considered 

manifests Itself in the so-called trials. In each trial the considered 

randan quantity takes a particular value from the domain of its defi- 

nition. The probability that the random quantity will take a particular 

value Is determined by the distribution law of this random quantity. 

The distribution law of the discrete random quantity x (unlvariate or 

multlvarlate) is specified with the aid of the real function f(x) de- 

fined for all values which the given random quantity can take so that 

for any value x. the magnitude of f(x1) is equal to the probability 

that the random quantity x will take the value x. in the given trial. 

The domain of definition of the discrete random quantities which 
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we are considering can be either finite or denumerably infinite. It is 

evident that in both cases the normalization condition 

S/(*i)-l. (^7) 

is satisfied, where the suimnation is assumed to extend ever the entire 

region of definition of the given random quantity. 

When the random quantity x is continuous, its distribution law is 

given with the aid of the so-called probability density function cp(x). 

This function is presumed defined in the region M of definition of the 

considered random quantity x and integrable in this region. With each 

successive trial the probability p(N) that the random quantity x will 

take a value from some subreglon N of its region of definition Is equal 

to the Integral of the probability density taken with respect to this 

subreglon: 

Whence follows directly the satisfaction of the normalization con- 

dition 

fsp(*)d* = l. (49) 

Two random quantities x and / are termed mutually independent if 

when the quantity x takes a particular value there is no change of the 

distribution law of the quantity ^ and vice versa. Similarly the inde- 

pendence of any set of random quantities implies that when all the 

quantities occurring in this set, other than the quantity x, take any 

values there is no change of the distribution law of this latter quan- 

tity with any choice of the quantity x from the indicated set. 

Trials performed with a particular random quantity x are termed 

Independent trials if the distrubution law of the quantity x remains 

unchanged in each trial and, consequently, does not depend on the val- 
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ues which the quantity x took In the previous trial:;. 

The domain of definition of the continuous random quantity can 

always. If need be, be extended over the entire space, assuming that 

everywhere except In the original domain of definition the probability 

density is equal to zero. 

We can also approximate the continuous distribution laws with the 

discrete laws and vice versa. In the first case it is sufficient to 

partition the domain of definition M of the corresponding continuous 

random function x into a finite number of sufficiently small (not only 

in volume, but also in diameter) subdomains M-, Mp, ... , M , select 

within each such subdomain M. a point x. and introduce the discrete 

distribution law f(x) on the selected points, setting f(x ) = /q)(x) dx 

(i = 1, 2, ..., n), where cp(x) is the probability density of the orig- 

inal continuous random quantity. In this case the probabilities pre- 

viously associated with the corresponding subdomains are concentrated 

in the individual points. 

With the reverse transition from the discrete distribution law to 

the continuous, on the contrary, there is a "diffusion" of the proba- 

bility initially concentrated in the individual points x. into the cor- 

responding subdomains M. so that for the probability density function 

(p(x) thus appearing the following relations are valid 

fq)(jt)d.t = /(*,)   (/ = 1.2 n). 

Frequently it is necessary to consider the infinite sequences of 

discrete distribution laws f^x) (1 = 1, 2, ...), having some contin- 

yous distribution law with a probability density function q)(x) in the 

form of its so-called limit distribution law. The following precise 

meaning is embedded in the concept of the limit distribution. First, 

the domains of the values M. of the discrete random quantities with 
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the distributions  laws f1(x)  converge to the domain of the values M 

of the continuous  random quantity x«   In the cases we  consider this 

convergence will mean that all V.  are contained  in M,  and for any ar- 

bitrarily small positive number e,  any arbitrarily large number N,  and 

for any point x from M in each of the sets M    with i > N there  is at 

least one point removed by less than e  from the point x.   Second,   for 

any subdomain P of the domain M and for any arbitrarily small positive 

number 6 for all numbers _i,  beginning with some number,  the following 

inequality must be satisfied 

* *PriMi 

The summation in the left side of this fomula is taken over all 

the points from M. contained in the subdomain P. 

The concepts of the mean value (mathematical expectation) of the 

random quantity and its second order central moments are of great Im- 

portance for the further constructions. 

Let x = (x-,, x2, ..., x ) be an n-dimensional continuous random 

quantity with the probability density function (p(x1, Xp, ..., x ). Ac 

noted above, without losing generality the function cp can be consid- 

ered determinate over the entire infinite space. Then the mean value 

of the random quantity x is defined as the vector m = (nu, nu, ..., m ) 

computed from the equation 

m--(m„m, m«) = ,f ( . . . { *q)(x,.xj         , 
ü   JL • (51) 

.... Xn)dXidXt. • • dXn- 

The second order central moments X., are determined by the equa- 

tions 
O»  0» » 

X.» = f J ... ( (JC, — m()(x* —m»)^,.JC,, ... 
-a» —OP"      -co 

....xn)dxldxt...dxn (52) 
(«,*=-- 1.2 n). 
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For the unlvarlate random quantity x there Is the natural second 

order central moment determined by the equation 

d= T(jc-m)««j)(x)d*. (53) 

This moment  Is uaually tenned the variance of the correspondIrg 

distribution. 

It  Is natural to transfer all these concepts and their definitions 

to the discrete random quantities as well. 

To do this we need only In equations  (51)-(53)  replace the Inte- 

gration by summation extended over the entire domain of definition M 

of the corresponding discrete  (vector) quantity x,  and In place of the 

probability density function ^(x,,  x_,   ...,  x ) write the probability 

distribution function of this quantity f(x).   As a result,  equation   (51), 

for example,   Is rewritten 

' 

m =2 7/(7). (54) 

All the remaining equations are changed similarly. 

For the multlvarlate randan quantities  It  Is  convenient to com- 

bine the second order central moments X-.   into the matrix  ||^lk|| and 

construct from them  (in the case when they are finite) Q (t,,  t2,   ... 

...,  t  ) ^^iv^-jtic'  With the aid of orthogonal conversion  (rotation) 

of the coordinate system this  form can always be reduced to the fom 
m 2 
z&l  (v'J   ,  where t[ are new coordinates and ou  are positive coeffi- 
1-1       ' I 
cients   (1 = 1,  2,   ..., m).   Foms of this type are termed positive semi- 

definite.   If m = n,   i.e.,   if the number of squares after reduction of 

the form Q is exactly equal to the dimension of the space, then the 

fonn Q is termed positive definite.  In this  case its determinant 

|Q|  =   I*-.. |   is of necessity nonzero and  (strictly) positive. 

For the positive definite form Q = 2    x.,   t.t.   we can define the 
i,k 1K    ! * 
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inverse form Q  = Q (t,, t2, ..., t ) = 2 M-j^t-t. , whose coeffl- 
1, K 

clents are given by the equations (i.. = Q.k/|Q|, where Q.. Is the alge- 

braic complement of the element X.. of the determinant |Q| -^ l^uJ 

(l, k = 1, 2, ..., n). This form will again be positive definite. The 

matrix obtained HMMIJI will obviously be the inverse of the matrix 

||X..||, since the latter is symmetrical (of course, the matrix IIMM^D« 

The following fundamental result [48] is of great Importance In 

probability theory. I 
4 

Theorem  1.   If the n-varlate random  (continuous  or discrete)  quan- 

tities x,,  x2,   ..., x,   are Independent and have the same distribution 

with finite second  order central moments X.^ for which the  rorr.i Q(t, , 

to,   ...,  t   )  =2      ^iir^i^ir ls positive definite,  and with mean value 
1, »c j 

equal to zero,  then as k-► «> the quantity    *=»—(*!+*»-f-••• + **)      has a 

limit continuous distribution also with zero mean value and with the 

(univariate)  probability density function 

(2n)''VW\ 

In the case when the form Q is degenerate,  we turn to the consid- 

eration of some  subspace L of the original space,   replacing the rapdorr 
i 

quantities x,, Xp, ..., x. by their projections on the subspace. Tfic 

subspace L Is chosen so that the new form Q of the central momentsjob- 

talned as the result of the indicated projection is already posltlye 

definite, while the projection onto any subspace perpendicular to H 

would lead to a degenerate form (such a space always exists). The ap- 

plication of theorem 1 in the constructed space L gives In this case a 

distribution in the original space as well, since all possible valuer, 

of the random quantities x-,, Xp, ..., x. (and this means their sums as 

well) lie in this subspace with the probability 1. 
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In several cases we limit ourselves to the selection of the sub- 

space K of maximal possible dimension of the number of all subspaces 

with the nondegenerate form Q. Let us show that the subspace L can be 

obtained from the subspace K as the result of a nondegenerate linear 

transfomatlon. 

If in the conditions of theorem 1 the mean value of the quantities 

x,, Xp, ..., x. is nonzero, then, denoting this mean value by m = (m,, 

nu* ...» m. ), We find easily that the mean value of the random quan- 

tity x = l/Tk (x1+x2+ ,.. + x. ) will be the quantity (m,«/k mp«/k, ..., 

..., rnVk) and that with sufficiently large k a good approximation for 

the distribution law of the random quantity x Will be the continuous 

law with a univarlate probability density function of the fom 

9(M. fB)- i e-,i<r^-mtvr,,.^tyT.....tn^nyk), 

Let us now apply theorem 1 and equation (55) to the so-called bi- 

nomial distribution. The binomial distribution arises as the result 

of the conduct of independent trials using the so-called Bernoulli 

scheme. This scheme, in addition to the property of independence of 

the trials, is also characterized by the fact that with each trial 

only two outccanes are possible, occurring with the probabilities £ 

and q = 1 — p respectively. Let us tenn the first outcome success and 

ther second failure of the trial and let us introduce the random quan- 

tity x., taking the value 1 in case of success of the i-th trial and 

the 0 in case of its failure (1=1, 2, ..., n). 

The random quantity k = x. + x2 + ... + x is clearly equal to 

the total number of successes with n Independent trials. Let us denote 

by C the number of combinations of n with respect to k (by definition 

Cn = ■L^, then lt is easy t0 find that the distrilDutJ-on (discrete) law 

of the random quantity k is given by the function 
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M*)~C*pV-» (ft-ü.l n). (36) 

This law is termed the binomial distribution law since the quan- 

tity cjjp q11"^ is obviously the (n - k + l)th term of the expansion of 

the expression  (p + q)    using the Newton binomial formula. 

The random quantities x^,  x2,   ...,  x    have the same distribution 

law with the mean value m = l«p + 0» (l — p) = p and the variance   (sec- 

ond central moment) d = (l — p)   »p +  (0 - p)   (l - p)  = p(l - p).   Prom 

theorem 1 and equation (55)   it follows that for sufficiently large n 

a good approximation for the distribution law of the quantity x = 

= k/Vh = l/yhfx..  + x~ + ...   + x ) will be the distribution law with the 

probability density function of the form 

tflx) =«    -  .    -—e~ wi-p) ' \0i 1 
k2np(l-p) 

The distribution law with the probability density function of the 

form r—_==e'"
1~£L     (with a > 0) we shall term the (generalized) unlvar- 

V2m ~   
late normal distribution law. It is not difficult to see that the value 

of the randan quantity distributed according to this law Is equal to m 

and that its variance is equal to a. 

It is easy to see that with multiplication of the normally dis- 

tributed random quantity x by the constant factor 2 the new quantity 

y = ex will also be a normally distributed random quantity and its 

mean value will be _£ times larger and the variance c^ times larger in 

comparison respectively with the mean value and the variance of the 

original quantity x. 

Comparing the results obtained with equation (57)> we come to the 

following proposition. 

Theorem 2. With a sufficiently large number n of Bernoulli trials 

with probability of success 2 the  distribution law for the total num- 

ber of successes k can be approximately expressed by the normal law 
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with the probability density function of the form «p(«)=-=~=7=e »5«=?). 

The mean value of the random quantity corresponding to this law is 

equal to pn and its variance Is equal to np(l - p), which agree with 

the exact values of the mean value and the variance of the original 

discrete random quantity k. 

As the result of the fact that in the derivation of the statement 

contained in theorem 2 the quantity x was multiplied by the factor 

«s/h, the continuous distribution qp for the quantity k obtained in theo- 

rem 2 does not possess, generally speaking, the property of the limit 

distribution for the original (discrete) distribution f of the quan- 

tity k with unbounded Increase of the number of trials n. 

However, it is not difficult to note that with sufficiently large 

values of n the probabilities calculated in accordance with the dis- 

tributions cp and f of finding the quantity k in any intergrctl whose 

length is cf the order of- the quantity «Tn (i.e., has the fom c>/h, 

where _c is t\  constant) wl?kl differ from one another by arbitrarily 

small amounts. 

In practice vie  usually need to calculate the probability of find- 

ing the quantity k on Intervals of the form [pn, pn ± za], where the 

quantity a  = /np (1 - p), equal to the square root of the variance of 

the distribution qp (and this means of the distribution f as well), is 

termed the mean square variation (or the mean square error) of the 

distributions qp and f. The following theorem is valid. 

Theorem 3. For any positive number £ the probability p(z) that 

the total number of successes in n Bernoulli trials with a probability 

of success £  will be found in the interval [pn, pn + ^/np (1 - p;J, is 

expressed by the equation p(z) » ${z)  = 1//27T x jie~'* dx.  •  With any z, 
u 

by choosing n sufficiently large,  we can make the  error in the calcu- 

lation of p(z)  using this  equation arbitrarily small. 
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We show the numerical values of the function ^(z) for come values 

of x with four decimal places: * (l) = 0.3413; <t> (2) = 0.4772; ^ (3) = 

= 0.4986; for z ^ 4 the values of ^(z) differ from 0. ^000 by less than 

half a unit of the fourth decimal place. 

We term the approximate equation in the condition of theorem 3 

the de Moivre-Laplace formula. As Indicated in theorem 3» the accuracy 

of this fomula increases with uae increase of the number n of trials 

performed. 

Let us consider a series of Independent trials, each of which has 

m different outcomes, and let p. (p. > 0) denote the probability of the 

1-th outcome of the trial (l =1, 2, ... m). We denote the total number 

of trials conducted by the letter n and the number of those which ter- 

minated with the 1-th outcome — k.(i =1, 2, ..., m). It is easy tu 

see of the quantities k., considered by Itself, is distributed in ac- 

cordance with the binomial law. We pose the problei of finding the 

Joint (multivarlate) distribution law of several quantities k., for ex- 

ample the quantities k,, k^, ..., k (l < r < m)' It is not difficult 

to verify that the solution of this problem is given by the equation 

f(kukt,. .., k,) — 

 n!  
Ä,!^!...*,!^-*,-*2-...-ftr)! * (58) 

Xpf'p*'.pj'(1 ~p,—p2-~-~Pf)"-*•-*•- • • -»' 

For this distribution law,  which is customarily termed the poly- 

nomial distribution law,  we  can obtain a continuous approximation  Just 

as we did above for its particular  (univariate)  case.   To do this  let 
• •      • • 

us consider the inultlvariate random quantities x'-1 = (xj, y.^, ..., xj;), 

ouch that the quantity x^  takes one of the values (100 ... 0), (OilO ... 

... 0), ..., (00 ... 01) or (000 ... 00) in accordance with the out- 

come of the J-th trial of the series we consider- first, second, ..., 
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r-th or any different from the (j = 1, 2, ..., n). All the random 

quantities xJ have the same distribution law, their mean values are 

equal, obviously, to (p,, Pp, ..., p ). The second central moment X** 
2 2 

is equal, obviously, to the quantity (l - pi) p. + (0 - pi) (l — p ) = 

= pi(l — p^) (i = 1, 2, ..., r). The second central moment X., with 

i ^ k also is easily calculated: Xlk = (l — p^^) (0 - P^) Pj^ + (0 - p.) 

^ "" pk) P^ + (0 - Pi) (0 - Pjc' (1 - Pi - Pk) = " PjPk- 

The detennlnant  1*^. |   of the matrix  HX^^^H of the central moments 

will be equal in this case,  as is easily shown,  to the product P1P2 

...   pr(l - p]L - p2 - ... - pr).  Thus,  the matrix  ||>-lk|| will be degen- 

erate only in the case when r = m.   In all the remaining cases  the qua- 

dratic form    Q{tltt tf) = Yhh tttt =* £pi (I — p<)^—2PiP»M        will be positive 

definite,  since  its detennlnant   |Q|   =  |X., |   is positive. 

Applying theorem 1 to the random quantity y = lA/n(y,  + y- + ... 
11 1 

+ yn)*  where y.  m  (x, — P1 >  x2 "" P2,   ,*•,  xr ~ ^r'' we come to the C0R~ 

elusion that with r < m it has a limit  (as n -* «») distribution law with 

a probability density function of the form. 

I    _l e--f-
l(lt.t O) 

The multlvarlate random quantity z = (k./n — p,, kp/n - Pp ... , k /n - 

— p ) is connected with the quantity ^ by the relation z = 1/Vh = y 

and will therefore have the same distribution law, but with a variance 

n-fold less than the variance of the quantity ^. Consequently, the 

probability density function of the distribution law for z is written 

1 -e~iQ ,<',•'• •»,. 
(5)TKHI 

It is now not difficult to establish the following result. 

Theorem 4. Let there be given the series of Independent trials 

with m different outcomes, having resprctively the probabilities 
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PT> Po* •••» Pm (same for all trials). If in the series of n trials 

we use k,, kp, ..., k. to denote the number of trials terminating re- 

spectively by the Ist, 2nd, ..., m-th outcome, then for any a priori 

given positive number e for the probability p of the simultaneous sat- 

isfaction of all the inequalities |k./n - p.| < g (1=1, 2, ..., m) 
.   i      fl 

there exists  the estimate 0> » m~-e-1"   (where  a and b ate 
n-r        v 

positive constants not dependent on n). 

For the proof of this theorem we note, first, that all the In- 

qualities  S—pl  I<B(/=1.2 m> are obviously satisfied if there are 
1 n 

satisfied the m - 1 inequalities 

l^-^' <m4=T     ('-«^....m-.!) 
(59) 

Actually 

ftm 
Pm 

fl — «i —" Äj —   ... — Km —I 

Pm~l) 

(1 — Pi —Pa—-. 

+ 

+ . . .+ 

m-1 
(m — 1) =«e 

It follows from the  considerations preceding the formulation of 

theorem 4 that the quantities  z.  = k./n — p.(l = 1,  2,   ...,  m -  l) 

have a limit   (as n -♦ ») distribution law with the probability density 

function of the form    m(Zv  2 e,n_,) ^an'^r'e-'"'«'«-»• *m-\h >  where a is  a pos- 

itive constant and P is a positive definite quadratic forro with  coeffi- 

cients nob depending on n For sufficiently large n the probability  ß 

that at least one of the  inequalities   (59)  Is not satisfied has,   ob- 

viously,  an upper estimate of the fom 

P<fC.    •    .J<P(?l.?S Zm-OdZifci  .    .    .dZm-U (60) 

where the region FL is the outer portion of the hypercube bounded by 

the hyperplanes z = ö1 {&1  < e/m - 1, 1 = 1, 2, ..., m - l). 
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After rotation of the coordinate axes for the purpose of reducing 

the fortn P to the sum of squares with positive coefficients b,, b2, 

..., b- , we can In the hypercube turned relative to the new axes In- 

scribe the new hypercube R, bounded by the hyperplanes z^«ö(6<6-, 

1 = 1, 2, ..., m - l). Integration of the transformed probability u . 

slty function over the region external to the new hypercube gives again 

an estimate of the fom (60), which can be strengthened by replacing 

all the coefflclentd b-,, b0, ..., b. , by the smallest coefficient 1      2 m-l 

among them, designated by £. 

As a result we obtain the new estimate 

(2i P<an~' (2(e-,'u^,d*)'^,. (61) 

Since 

17_ „II ^^<Tjr^^*f.^.i^. 

It Is easy to obtain the final estimate 

(62) 

ml O 
Denoting a/(gö) " by the letter a and gö by the letter b, we ob- 

tain the required estimate, for the present, It Is true, for all n be- 

ginning with some possibly quite large value. We can, however, also 

take account In the derived estimate of the remaining finite set M of 

values of n by Increasing, In case of necessity, the constant a. Since 

the probability p Is clearly greater than zero, it is sufficient to 

select the quantity a larger enough so that the right side of the esti- 

mate under discussion becomes negative for all values of n belonging 

to the set M. 

Thereby theeorem 4 is fully proved. 

In concluding the present section we shall describe still another 
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frequently encountered distribution - the so-called Polsson distribu- 

tion. This distribution can be treated as an approximation for the dis- 

tribution with the condition than the number of trials n in large, the 

probability of success p in each trial is small, and the product X ^ np 

is not small, but also is not large. In this case the probability a 

that exactly k trials lead to success is expressed by the approximate 

equation 

«*Hn- (63) 
In particular, for * «0 o«r-fc . 

The Polsson distribution has a maximum of the probability with a 

maximal value of k satisfying the inequality k < X. In the theory of 

discrete self-organizing systems we encounter the Polsson distribution 

in the organization of teaching automata words or sequences of words 

of differing length. With a random selection of the words being used 

in the teaching, the Polsson distribution frequently gives a sufficient- 

ly good approximation for the distribution law of the word lengths. 

We note that the mean value of a quantity having a Polsson dis- 

tribution (63) is equal to X. 

§3. A QUANTITATIVE MEASURE OF SELF-ORGANIZATION AND SELF-IMPROVEMENT 
IN AUTOMATA 

In the first section we encountered the concept of self-adapta- 

tlon in automata: it is natural to term automaton self-adaptive if it 

changes in the course of time its responses to the questions fed to It 

(for some cycling of the input and output infomatlon). However, not 

every self-adaptation should be Identified with self-organization. On 

the basis of the intuitive idea of self-organization, we should term 

self-organizing that automaton which improves the organization of its 

possible learning histories. For the quantitative characteristic of 

this improvement it is natural to make use of the probablllstlc-theo- 
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retlc concept known as entropy. 

We shall use the entropy concept only for the discrete random 

quantities. Let there be given the discrete random quantity x with the 

domain of definition R and with the distribution law f(x). In this case 

the entropy of this quantity, or, what is the sajne, the entropy of the 

distribution f(x)t is the tem given to the negative sum, taken over 

the region of definition R of the given random function, of the pro- 

ducts of the probabilities f(x) and their logarithms 

//«-2/(x)log/(x). (6k) 
p 

In the use of this equation it is assumed that for f(x) = 0 the 

product f (x) log f(x) is zero. Any positive number, strictly greater 

than unity, can be selected as the base of the system of logarithms. It 

is easy to see that with a change of the base of the logarithm system 

the values of the entropies for all the distribution laws are multi- 

plied by the same constant factor. In practice, use is commonly made 

either of the binary (with base two), natural, or decimal logarithms. 

As is shown in infomation theory (see, for example, Goldman [32]), 

entropy is the natural measure of the indefinxweness of the values of 

the random quantity: the greater this indefiniteness, the larger the 

value of the entropy. In particular, if the random quantity can take 

only two values with the probabilities £ and q = 1 — p respectively, 

the maximal value of the entropy is achieved with equality of these 

probabilities: p = q = 1/2, which corresponds to the intuitive concept 

on the maximal possible indefiniteness in this case. If, however, one 

of the probabilities JD or cj vanishes, then, as is easily seen, the val- 

ue of the entropy also vanishes, which again is in good agreement with 

common sense, since in this case there is actually no indefiniteness. 

With combination of the two Independent random quantities x and 
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y_  Into one multlvariate (with dimension equal to the sum of the dimen- 

sions of the quantities x and ^) random quantity z  = (x, y), the en- 

tropy of the distribution of the quantity z  is equal to the sum of the 

entropies of the distributions of the quantities x and ^. 

Actually, if the distribution lav/s of the quantities x and ^ are 

given by the functions f-j(x) and foW, then the distribution law of 

the quantity z  is obviously given by the product of these functions 

f1(x)fp(y). The entropy of the quantity z   (H ) is then calculated from 

the equation 

//, ~ - 2 E /, (*) h Uj) log [/. {x) f* (!/)! = 

— I /t(y) S /, (x) log/. (x) - S f. {x\ S ft (//) log ft (y) ~-H, + H* 
yiP,        jrePi "tP, i/tP. 

where P^ and Pp are the regions of definition of the quantities x and 

^, and H and H are their entropies. 

The property of the entropies of the independent distributions 

which leads to the fomatlon of their sum when these distributions are 

combined into one is termed the entropy additlvlty property. 

For the automata operating using the simple question-response 

cycle (without evaluation of the quality of the response), we can ap- 

proach the definition of the extent of the self-organization with the 

aid of the consideration of two entropy characteristics - the learning 

entropy and the examination entropy of the automaton. In the following 

discussion we shall follow basically the work [25]. 

Let ta, Pp, ...,  p ) = P be the sequence of questions (input 

words) supplied to the automaton in its learning period. We will term 

this sequence the learning sequence. Let us assume that in a particular 

fixed series of experiments with the automaton, for each learning se- 

quence P there Is given the probability p(P) of the appearance of this 

sequence in the experiments of the series under consideration (it Is 
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assumed that within the limits of the given series this probability 

does not vary from experiment to experiment). This specifies some dis- 

tribution R of the probabilities p(P) of the learning sequences. The 

entropy of this distribution, which we shall term the learning entropy 

with the given learning distribution law. Is calculated from the famlx- 

lar equation 

HR (learn)--Sc(P)logc(P). (65) 

For definlteness we agree to use natural logarithms for the com- 

putation of the entropies. 

In the case when the automaton A and Its Initial state a0 are 

fixed, every distribution of the probabilities p(P) of the learning 

sequences uniquely determines some distribution of the probabilities 

a(a) on the set of all states of this automaton. Here a(a) denotes the 

probability that after termination of the automaton learning process It 

will be in the state a. If we use S to denote an event at the input 

of the automaton, representable by the state a (set of Input words 

transferring the automaton from the Initial state into the state a), 

then we obtain 

o(a)= SöCK 
PtSfl 

(66) 

n; where the summation extends to all words of the form P = p1 Pp ... 

contained in SQ (for brevity of writing, the sequence of words P = 

s(Pv Pp* *' * * pn^ is lden*tlf led here with the word p, p2 ... p , com- 

posed from the elements of this sequence). 

Now let us fix some probability distribution ^(p) of the questions 

£ applied to the automaton after termination of its learning process. 

The distributions a (a) and y(v)  together with the switching and output 

functions of the considered automaton A uniquely define the probability 

distribution ß(p, q) for the pair "question (p) - answer (q)". We term 
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the entropy of the latter expression the examination entropy and denote 

It by Hy(exajn). We use Q to denote the so-called law of experimentation 

with the automaton, which Is the combination of the two distribution 

laws — the distribution of the learning sequences and the distribution 

of the examination questions. 

The quantity H^(exam) Is determined from the equation 

HQ (exam)=-SP(p.'7)logP(P.'/).       (6?) 

Using If necessary the operation of cyclic reduction of the autom- 

ata, we can, without losing generality, consider only sequences of 

single-letter questions and responses. Here the learning sequences P 

are converted Into words consisting of the Individual components of 

their question-letters arranged In the order In which they were applied 

to the automaton In the learning process. 

For the further construction of the theory It Is necessary to spec- 

ify some class of laws of experimentation with the automaton and as- 

sign to each law Q occurring In this class some probability, or, In 

the case of the continuous distribution laws, some probability density 

<p(Q). 

The simplest case Is the scheme of Independent trials, when at 

each step, both In the learning regime and In the examination regime, 

the probability 7(P) of the appearance of any given question Is con- 

stant and depends only on this question. In view of the limitation to 

only 1-cycled automata, the specification of the law Q for experimenta- 

tion with the automaton Is equivalent In this case to the assignment 

of certain probabilities v. = v(x.) of the appearance at the input of 

the automaton of each of the letters x. of its input alphabet. The sum 

of all the v., of course, must be equal to unity In this case. 

In the case of the scheme of Independent trials the law of experl- 
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mentation with the automaton Is naturally Identified with the vector 

v = (vv ^ •••)* consisting of the prohahllltles of the appearance 

of the different Input letters (it Is assumed that the input alphabet 

Is ordered In some fashion). The class of laws Is naturally Identified 

with the set of all vectors v ■ (v,, v2, ...)* satisfying the natural 

limitations 0 ^ v. ^ 1 and Zv^^ = 1 (l = 1, 2, ...),  with a unlfom dis- 

tribution law given on this set. We agree to call the scheme of Inde- 

pendent trials with this selection of class of distribution law the 

uniform scheme of Independent trials. Here we limit ourselves to the 

case when the length of the learning sequence Is fixed, or in case of 

necessity we shall assume that these lengths are described by some dis- 

tribution law (most frequently Polssonlan). 

If there Is given some law of experimentation Q, then It, as noted 

above. Includes In Itself two distribution laws - the law of distribu- 

tion of the learning sequences and the law of distribution of the ex- 

amination questions. The corresponding random quantities are to be con- 

sidered Independent In the case of the usual organization of the ex- 

periments on the self-improving automata. Therefore the entropy of the 

joint distribution of these two quantities, which we shall agree to 

tenn the entropy of the corresponding law of experimentation Q and de- 

signate by H , will be equal to the sum of two entropies — the learn- 

ing entropy IT*(learn) and the entropy of the examination questions 

H^(quest). The latter entropy must not be confused with the examina- 

tion entropy H^(exam) which relates not to the distribution of the ex- 

amination questions, but to the distribution of the question-response 

pairs. The examination entropy depends not only on the distribution of 

the questions and the distribution of the learning sequences, but also 

on the automaton itself, while the entropy of the law of experimenta- 

tion with the automaton does not depend on the automaton. 

- 236 - 

' 



Let us assume that in the class K of laws of experimentation with 

the automaton there Is fixed some law Q0 which has the maximal possible 

entropy H Ö. Introducing increments of the entropies of experiment and 

examination by the equations 

AHQ = HQ - HQo(exajn) = HQ (exam) - HQo(exam). 

we obtain the possibility for any automaton A and class K of laws of 

experimentation with the automaton (with the probability density cp(Q)) 

to introduce the two averaged characteristics 

S(A/0=.-fA//<? (exam) 9{Q)^. (^9) 

.. „      fA/^iexam) /vn\ 

The integrals in these equations are taken over the region con- 

sisting of all the laws of the considered class K. The larger the val- 

ue of these integrals, the greater the average capacity of the consid- 

ered automaton A for self-organization. The zero value corresponds to 

the absence of capability for self-organization, and negative values 

indicate that with improvement of the organization of the learning, 

the organization of the responses of the automaton on the average de- 

teriorates. In other words, the automaton behaves as a "self-disorgan- 

izing" bystem rather than as a "self-organizing" system. 

Since equation (70) leads to considerably more complex computa- 

tions than equation (69), we shall select as the bacic quantitative 

criterion for the evaluation of the capability of an automaton for 

self-organization the criterion _s (A, K) rather than the criteria 

z (A, K). 

Let us consider as an example the two automata A and B whose 

switching and output functions are given by the tables: 
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for automaton A   -7.—,-      -^ 
x 11 1 ; 

y 2   2 
x 

y \u   V 

for automaton B x 

y 

1 2 
FT 
2 2 

x 

V 

u p 

u 0 

In these tables the numbers 1 and 2 denote the states of the au- 

tomata, the letters x, ^ denote the input signals (questions), and 

letters u, v denote the output signals (responses). 

As the class K of distribution laws we select that class In which 

the probabilities of the occurrence of the examination questions x and 

^ are equal, and the distribution laws of the learning sequences result 

from the scheme of independent trials with the probabilities of the 

independent trials with the probabilities of the occurrence of the 

questions x and ^ equal to £ and 1 - p respectively (jo runs through all 

the values from 0 to 1 in the limits of the class K with equal proba- 

bilities). In addition, we fix the length n of the learning sequences, 

and we denote the criterion s(A, K) corresponding to the selected val- 

ue of n by 3n(A, K). 

The automaton A will be in the state 1 if the last question given 

to it during learning was x, and in the state 2 if the last question 

given it was ^. This Implies that the probabilities of the question- 

response pairs will be equal: for the pair (x, u) - 1/2 p, for the 

pair (y,u)-l/2 p, for the pair (x, v) - 1/2 (l - p) and for the pair 

(y, v) - also 1/2 (l — p). Consequently, the examination entropy 

HQ  (exam) =, _ ^.pini-p-ipln^-p-1(1 - p)ln-i(l-p)- 

--2-(l-p)In-i(l-p)=»-plnp-(l-p)ln(l-p)-In-^ 
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The maximal entropy of the experimentation will obviously be with 

p = 1 — p = 1/2. In this case the examination entropy Is detemlned by 

the expression 

HQ. (exam) =--g-In-j--j In-2-In-j --21n-2- 

The increment of the examination entropy 

AW0(exam) - — plnp-U-p)In(l-p)4-In-j. 

The probability density of the laws Q In the selected class Is 

clearly equal to unity. Application of equation (69) gives 

Sn 

1 

{A.K)~ f (plnp f.(l-p)ln(l -p)-lnyW-!n2- 

The automaton B will be In the state 1 only when the learning se- 

quence consists of only x's. The probability of this Is obviously pn. 

Hence the probabilities of the examination pairs (x, u) and (y, u) are 

equal to 1/2 pn, and the probabilities of the pairs (x, v) and (y, v) 

are equal to 1/2 (l - pn). Just as In the case of finding sn(A, K), we 

find AK* (exam), as a result of which we obtain the sequence of equa- 

tions 

s«(fl. K) - f [p"In Ap" + (1 - P-) Inl (I - p") - Jp In ^.Vi 

>=ln(l-^) + ((I-^)ln(l-p.)dp=.!^±I-(B-T
n
1). 

n|n2-H n 

0 

1 1 

""(i-a-a* + 2.3-2*' +*'"j 
i i     .    \ 

Using this last relation we obtain the estimate 
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Prom this estljnate we easily learn that with n ^ 5 the ivantlty 

s  (B, K) IS negative. In other words, with learning using scqa .xces 

of length greater than 4, In the selected class of laws of experir.u sta- 

tion the automaton B Is on the average "self-dlsorganlzlng", while the 

automaton A under the same conditions discloses capability for self- 

organization. 

We note that the conclusion on the capability or the Incapability 

of the automton for self-organization depends on the selection of the 

class of laws of experimentation with this automaton. If, for example. 

In the example considered we select as K the class of laws of experi- 

mentation which results from the uniform scheme of Independent trials, 

then as Is easily verified, the automaton B would also become self-or- 

ganizing on the average, although the magnitude of this self-organiza- 

tion would remain less than that of the automaton A. 

With transition from the concept of self-organization to the con- 

cept of self-learning we can no longer be satisfied with the purely 

probabilistic-theoretic concepts. It Is necessary to Introduce the con- 

cepts which characterize the particular directionality of the self-or- 

ganization process. To do this It Is most natural to Introduce the real 

function f(p, q) defined on the set of all possible question (q) - re- 

sponse (q) pairs, whose value characterizes the quality of any response 

to any given question JD- 

As we noted above, for any given automaton A with fixed Initial 

state a0 the specification of the law Q of the probability distribu- 

tion p(P) on the learning sequences P uniquely determines the proba- 

bility distribution a(a) on the set of the automaton states. Let us 

further denote by q - X(a, p) the response of the automaton A, which 
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has been first reduced to the state a, to the question JD. The quantity 

fo — L/(p, X(a. p)) Y(P) o(fl)    Is the averaged criterion of the quality 

of the responses of the automaton to the "examInatIon" when It has been 

taught by the sequences distributed according to the law Q (7 (p) Is 

the probability of the appearance of the question £ In the examination). 

It Is natural to use the term self-learning content of the autom- 

aton A to denote the difference r* - r*D where Q0 Is the a priori prob- 

ability distribution law of the learning sequences, known to the de- 

signer at the time of construction of the automaton, and Q is the a 

posteriori distribution law which actually exists for some class of 

learning experiments. As a rule, the entropy of the distribution Q0 is 

greater than the entropy of the distribution Q. 

If now there is given the class K of a posteriori distribution 

laws Q, with the probability density (p(Q), then the integral b (A, K) = 

«j (f —/o-) q)(Q) dQ is the averaged quantitative characteristic for the 

capability of the considered automaton for self-learning (for the se- 

lected class K, the automaton A and the real function f). 

§4. AUTOMATA WITH RANDOM TRANSITIONS 

In addition to the deterrninate automata, in the theory of self- 

organizing systems we must consider autanata which have random tran- 

sitions. As is known (see Chapter 3)* In the detemlnate automaton the 

specification of the preceding state a(t - l) and the current input 

signal x(t) uniquely detemlnes the next following state a(t) into 

which the automaton transfers under the influence of this input signal 

from the state a(t - l). In the automaton with random transitions the 

specification of the pair a(t - l), x(t) detennines only the proba- 

bility p. .(x) of the transition of the automaton from the state a(t - l), 

which we denote by a1, into any other state a. under the influence of 

the Input signal x(t) = x. 
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It Is easy to see that the detenninate automaton can be consid- 

ered as a particular case of the automaton with random transitions In 

which for each x with any given _1 only precisely one of the probabil- 

ities PJ-JCX) IS equal to unity, and all the remaining probabilities 

are equal to zero. 

It Is natural to specify every automaton with random transitions 

with the aid of the system of matrices ||p1. (x)||,.where x runs sequen- 

tially through all the Input signals of the automaton. Of course, In 

addition to such matrices there must also be given the output functions 

and the initial state of the automaton. 

The matrices Hp.-fr)!! have the property that the sum of the ele- 

ments of any of their rows Is equal to unity. We shall assume also that 

there are no states in the automaton for which the probabilities of 

the transition from all the other states are equal to zero, This means, 

obviously, that the matrices ||p. ..(x)|| do not have columns composed only 

of zeros. In addition, all the elements of each of the matrices 

HPJ^X)!! are nonnegative real numbers which do not exceed unity. 

Matrices satisfying the three listed properties are customarily 

termed stochastic matrices. Thus, in the case --f automata with random 

transitions the role of the switching function Is played by the func- 

tion Up.. (x)||, which uniquely maps the set of all input signals of the 

automaton into the set of stochastic matrices. 

Of particular interset are the automata with random transitions 

which have one single (constant) input signal. Such automata are stud- 

ied in classical probability theory under the name of uniform (dis- 

crete) Markov chains. The output signals in such automata are Ignored 

(or identified with the states), which permits specifying these autom- 

ata with the aid of a single stochastic matrix. For definiteness, it Is 

customarily considered that the first row (and the first column as 
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well) of this matrix corresponds to the initial state of the automaton 

(Markov chain). 

The Markov chains also have another (non-automaton) interpreta- 

tion — in the tenns customarily used in probability theory. This inter- 

pretation is based on the concept of trials, considered in the preced- 

ing section. However, here we must consider not independent trials, 

but the trials in which the probabilities of particular outcomes of 

each successive trial depend on the outcome of the directly preceding 

trial and do not depend directly on the outcomes of all the remaining 

trials (the set itself of possible outcomes does not change from trial 

to trial). The there arises the matrix WV^AW  of the so-called transi- 

tion possibilities. Any element p. . of this matrix is the probability 

of the Jth outcome in each successive trial under the condition that 

the outcome of the trial directly preceding it was 1. 

It is easy to see that such treatment is completely equivalent to 

the automaton treatment: the trial outcome is, essentially, simply an- 

other name for the state of the automaton (having a single input sig- 

nal) with random transitions. There is, it is true, one difference: in 

the automaton with random transitions there was fixed a completely de- 

termined Initial state, in the Markov chains it is customary to spec- 

ify the probabilities of the various outcomes of the initial trial 

PT» Po* •••* Pn* which corresponds to the random selection of the ini- 

tial state of the automaton, so that the ith state can be selected as 

the Initial state with the probability p1 (i = 1, 2, ..., n). 

necessary to consider not the simple automata with random transitions 

(having a single input signal) but the so-called random automata in 

which not only the transition function but also the selection of the 

Initial state is random, and If, in addition, the output signals are 
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taken Into consideration, then the output function must, generally 

speaking, be random. In other words, the output function must specify- 

not simply the output signal, but some probability distribution on the 

set of all possible output signals. 

The Markov chains (or, correspondingly, the random automata) are 

termed finite or infinite depending on whether the possible set of out- 

comes (or, correspondingly, the set of states of the automaton) is fi- 

nite. We shall require for the random finite automata of general fom 

also flnlteness of the set of their input and output signals. We shall 

limit ourselves to the study of only the uniform Markov chains, i.e., 

those chains in which the matrix of the probability transition proba- 

bilities is constant. We will not encounter nonunifoim Markov chains 

(with matrix of the transition probabilities which depends on time) in 

the future. Therefore for brevity we shall speak only of Markov chains, 

meaning each time, if not otherwise stipulated, that we mean uniform 

chains. 

Let us consider the automaton A with random transitions (Markov 

chain) whose transition probability matrix is P = || P-jJI» As mentioned 

above, the arbitrary element p. 1 of this matrix is the probability of 

the transition of the automaton A from the ith state into the .Jth. It 

is important to emphasize that here we are speaking of the transition 

in one cycle (i.e., the interval between two neighboring moments of 

discrete automaton time). It is easy to see that the product PjuPirl 

is the probability of the transition of the automaton A from the ith 

state into the Jth in two cycles with the condition that the automaton 

passes through the kth state. 

The sum 2plk. p. ., extended over all the states, obviously gives 

the total probability of the transition of the automaton A from the 

ith state into the Jth in two cycles. Moreover this sum is clearly the 
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element of the matrix P»P = P standing at the intersection of the ith 

row and the Jth column. We obtain similarly: the probability of the 

transition of the automaton A from the ith state into the Jth after 

three cycles of operation is equal to the (i, ^th element of the ma- 

2    ^ trix P »P = P . Continuing similarly, we come to the following proposi- 

tion. 

Theorem 1. For there random automaton A with a single input sig- 

nal (uniform Markov chain) whose transition probability matrix is P, 

the probability of transition from the ith state into the Jth after 

exactly n cycles is equal to the clement of the matrix Pn standing at 

the intersection of the ith row and the Jth column (n = 1, 2, 3, ...)• 

It is natural to tern the elements of the matrix Pn the transi- 

tion probabilities after n steps. For the determination of these prob- 

abilities in the case of the finite Markov chains we make use usually 

of the so-called Perron equation which is derived in matrix theory. 

Let us first recall certain definitions and concepts of this theory. 

Let there be given the matrix P = ||PjJ| of nth order. The de- 

terminant 

/>(*) = 

^ — Pn       — Pii ... — Pn, 
— Pai X — Pn .   •   . — P»n 

— Pm        —        Pn» ...    X— Pm 

Is a polynomial of nth degree in X, termed the characteristic polyno- 

mial of the matrix P. The roots of this polynomial are termed the 

eigenvalues of the matrix P. 

Let us denote by E the unit matrix of nth order. Then the element 

of the matrix XE — P)  , located at the intersectioA of the ith rovv 

and the Jth column will be equal to 1/P(X) .P^(X) where ^A^M  IS the 

algebraic complement of the element of the determinant P(X) located at 

the Intersection of its Jth row and ith column. 
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Now let the matrix P ■ HP^JI have the eigenvalues \,, X2, ..., X . 

We denote by m, the multiplicity of the 1th number \^,  I.e., In other 

words, the maximal number Si such that the characteristic polynomial 

P(X) Is divided by (X - X. )s,and we define the polynomial ^(X) by the 

equation 

Then the element p;^' of the matrix ?' ', located at the Intersection 

of the 1th row and the Jth column can be determined from the equation 

** mv-1 Equation (71) Is the Perron equation. In It D^   denotes the 

derivative with respect to X of order m -1. Substitution of the value X 

■ X must be performed after the differentiation. The derivation of the 

Perron equation can be found In any monograph on the theory of finite 

Markov chains (see, for example, Romanovskly [68]). 

The Perron equation takes a particularly simple form In the case 

when all the eigenvalues of the matrix P have a multiplicity equal to 

unity. I.e., when nu = Mp = ... <= m = 1. It Is clear that In this case 

r = n. Since the factorial of zero Is unity, and the derivative of zero 

order denotes the absence of any differentiation, then for this par- 

ticular case we obtain the simple equation 

<-S-:w-(i•/-1'2•••••n,• (72) 

We shall term equation (71) the general, and equation (72) the 

special Perron equation. Equations (71) and (72) pemit the solution 

of one very Important problem of the theory of finite Markov chains — 

the problem of finding the so-called limit distribution. If there ex- 

ists the limit  UmP» - P- then it is natural to tern the elements of 
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the matrix P* - IlP^^H the limit transition probabilities. Having the 

Initial distribution, I.e., the probabilities p^ P2, ..., Pn of the 

various outcomes of the Initial trial, we can obtain the probabilities 

p" of the various states in the limit distribution from the equations 

pr-lP/Ptr ('-1-2 n)- (73) 

It appears natural to assume that after a sufficiently large num- 

ber of transitions of the random automaton characterizing the Markov 

chain, the effect of the initial distribution of the state probabil- 

ities on the distribution of the states obtained as the result of these 

transitions can be made arbitrarily small. In other words, the limit 

distribution obtained using equation (73) must not defend on the ini- 

tial distribution (p^ P2, ..., Pn). If the limit distribution has this 

property, then the corresponding Markov chain is termed ergodic. The 

ergodiclty property will obviously hold if and only if for any given 1 

all the elements p0^ (j = 1, 2, ..., n) are identical, i.e., in other 

words, when all the rows of the matrix of the limit transition prob- 

abilities are identical. 

It can be shown that the moduli of the eigenvalues of the stochas- 

tic matrices cannot exceed unity. It is also not difficult to see that 

the eigenvalue for any stochastic matrix is unity. If all the remain- 

ing (non-unity) eigenvalues of the stochastic matrix M are strictly 

less than unity in modulus, then the matrix M and the corresponding 

Markov chain are temed proper. If in the proper stochastic matrix P 

unity is a simple root of the characteristic polynomial, then the ma- 

trix P and the corresponding Markov chain are temed regular. 

The following proposition is valid [14]. 

Theorem 2. The Markov chain C with a finite number of states has 

a limit distribution if and only if it is proper. In order that the 
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chain C satisfy the property of ergodlclty It Is necessary and suffi- 

cient that It be a regular chain. 

For the case of the regular finite Markov chain the limit transi- 

tion probabilities are determined by the equations 

These equations are obtained fron the special Perron equation (72) 

as the result of the limit transition as k -♦ ». 

The results described above pemlt constructing the theory of the 

behavior of autcmata (random and deteimlnlstlc) In random media. We 

shall limit ourselves to the consideration of only the Moore automata, 

since in the case of the Mealy automata there arises the necessity for 

certain complications of the theory which make it less easily visual- 

ized. We also agree to consider the detenninlstic automata as a par- 

ticular case of the random automata, which, as mentioned above, is al- 

ways possible. 

With these assumptions every automaton A can be specified by the 

matrix L =||X .|| of the output probabilities and by the family of ma- 

trices D^ - || 6^11 of the transition probabilities. Any element Xj, 

of the first matrix is equal to the probability of the appearance of 

the Jth output signal in the case when the automaton A is in the ith 

state. The quantity 6)?' is the probability of the transition of the 

autcmaton from the 1th state into the kth under the influence of the 

mth input signal. 

The medium is specified for some class of automata having iden- 

tical sets of input signals (x1, x2, ..., xn) and identical sets of 

output signals (v^,  Vg, ..., vs). Specification of the medium for the 

considered class K means the specification of the dependence of the in- 

put signal x(t) of any automaton A from the class K at the arbitrary 
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moment of discrete automaton time t on the value of v(t — l) of its 

output signal at the moment of time directly preceding the considered 

moment of time t. It is assumed that this dependence is the sane for 

all the automata from the given K. In other words, the behavior of the 

medium is determined only by the operations (output signals) of the au- 

tomata and does not depend directly on the internal arrangement of the 

automata. 

Let us consider the random media in which there are dcflr d the 

so-called reaction probabilities r. which are combined inbo the ( rec- 

tangular) reaction probability matrix R = 11^.. ||. The value of r.  is 

taken to be equal to the probability of the appearance of the mth In- 

put signal at the input of the autor.aton A (from the class K) operat- 

ing in the considered medium if in the directly preceding moment of 

time there was delivered by the automaton A the Jth output signal. 

If the medium reaction probabilities are constant, the correspond- 

ing medium is tenned a stationary random medium. In the nonstationary 

random media the reaction probabilities can change with time. Just as 

in the case of the automata, the deterministic media (with a rigor- 

ously defined functional relationship x(t) = f(v(t - 1)) can be consid- 

ered as a particular case of the random media. 

It is easy to see that the study of the behavior of the Moore au- 

tomata (both determinate and random) in stationary random media reduces 

to the study of uniform Markov chains whose states can be identified 

with the states of the considered automata. Actually, the state a(t) 

of the automaton A at any moment of time uniquely defines the probabil- 

ities of the output signals v(t) and, consequently, in view of the de- 

finition of the stationary random medium, also the probabilities of 

the input signals of the automaton in the directly following moment of 

time t + 1. The latter probabilities uniquely determine the probabil- 
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Ities of the transitions of the automaton A from the state a(t) Into 

any of the following states. 

With the notations assumed above, the transition probabilities 

p.. of the corresponding Markov chain are detennined by the equations 

ptt-SEwr (75) 
/   m 

We shall describe,  following Tsetlln [82],   several very simple 

problems on the behavior of automata In random media. To do this we 

consider the class K of determinate Moore automata having the two In- 

put signals x0 « 0 and x1 = 1   .nd the two output signals v0 » 0 and 

v1 = 1.  We specify the stationary random medium C by the matrix R of 

the reaction probabilities 

Rim   l^P« Po 
I —Pi Pi 

Let us teim the input s^cjnal x, penalty and the input signal x0 - 

no-penalty.  Then we can say that with the output of the signal v0 the 

medium penalizes the automaton with the probability p0,  and with out- 

put of the signal v^ — with the probability p^ 

Let us  consider first the Moore automaton A with the two states 

a1 = 1 and a« ■ 2,  given by the matrix of the output probabilities 

L - iJUII  and the matrices of the transition probabilities 

D'0* — O. ^'-pl*   ^n 0^iier words* A is a deteminate automaton which 

delivers  in the first state the output signal v0 = 0,  in the second 

state - the output signal v^^ = 1, retaining its  state under the influ- 

ence of the input signal x0 ■ 0, and changing to the opposite state 

under the Influence of the Input signal x, = 1. 

In accordance with what we have said above,  the functioning of 

the automaton A in the medium C is described by the unifom Markov 

chain M with the two states a,  = 1 and a2 = 2.   From equation (75) we 
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easily find the matrix P of tne transition probabilities of this chain 

P  '»-Pi -P.; 
I     — Pi   l - Pi 

The characteristic polynomial  pm = ^~1+P<» — ^  I  of the matrix 
-Pi   ^—1+Pil 

is equal to X — X  (2 - p0 — p,) + 1 — p - p, and its elcenvalues are 

respectively X = 1 and Xg ■ 1 — p0 — p.. If both probabilities the 

modulus of the second eigen value X2 Is less than unity and, by theo- 

rem 2, the chain M will be ergodic in this case. 

The polynomial VsC*-) will obviously be equal to X - 1 + p0 + p., 

and after application of equations (74) we easily find the limit tran- 

sition probabilities of the considered chain 

„._„. ^IV *_    P> 
PH   r*   ^,(1) - p0 + pl -po + p, 

and ii« •  1 — l + Po _  Po 
p* • p» " - J^fp,  ~ p,+p, ■ 

Thus, with sufficiently long functioning in the medium C the au- 

tomaton A, regardless of the choice of the initial state will with 

the probability PT/PQ + Pi he in the first state, and with the proba- 

bility PQ/PQ + P-. — in the second state. Since the penalty probability 

in the first state of the automaton is equal to p0, and in the second 

state is equal to p,, then the mathematical expectation S of penalty 

of the automaton A at each step (after sufficiently long preliminary 

functioning) is expressed by the equation 

5=%FP. ^'P^P.     Po+P.* 

With p0 ^ p-,  the quantity S  Is  strictly less than the mean pen- 

alty probability S0 = 1/2  (p0 + p^. Actually, 

s _s =. (PQ-f Pi)' - ^PQPI      (Po-Pi^ ^ ft 
1 '     2(Pf+Pi) '*{p* + Pi)*  * 

where equality Is obviously achieved only when p0 = p-^.  Thus,  the con- 
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sldered automaton A possesses purposeful behavior in the sense that 

when It Is placed In any stationary random medium which differentiates 

its two possible reactions It tends to that behavior for which the pen- 

alty value Is on the average less than for an automaton delivering 

with equal probabilities both of the output signals (reactions) which 

are possible for the automaton A. 

Let us now select In place of the considered automaton A the au- 

tomaton A with 2n states 1, 2, ..., n, n + 1, ..., 2n - 1, 2n. We as- 

sume that In the states 1, 2, ..., n It delivers the output signal 

v0 = 0, and In all the remaining states It delivers the output signal 

v, = 1. Assume, further, that the transition table of the automaton 

A. Is written as 

v 

1 

i 

123.. .n—J  n  n+1 n+2 n+3 . . .2/»- 1 2« 

112..   .n—2   n—1   n+1 n+l n+2 .  . .2n-2 2n-^l 
2 3 4 ... n 2n      n+2 n+3 n+4 .  . . 2n        n 

To this table there corresponds the transition graph shown In 

Pig.   12. 

»•o Qjy-Qy^-^-®*^)     ®-®-—•—®-*€0 

Fig. 12 

Prom the form of Its graph It Is natural to term It an automaton 

with linear tactic. The automaton A analyzed above is obviously a par- 

tlcular case of the automaton A with linear tactic, for which the val- 

ue of n Is equal to unity. The behavior of the automaton A with linear 
- 

tactic In the general case Is studied exactly as in the considered par- 

ticular case, although, of course, the corresponding operations are 

considerably more complex. These analyses lead to the conclusion that 
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the value, calculated by analogy with the preceding case of the mathe- 

matical expectation S of penalty of the automaton A after one step 

of Its operation (after a sufficiently long period of adaptation) with 

unlimited increase of the number n tends toward a natural minimal value 

S . , equal to the smaller of the two numbers p0, p,. It is easy to see 

that the quantity S .  is the absolute minimum of the mathematical ex- 

pectation of penalty for all automata operating in the considered ran- 

dom medium. 

It is found that in many cases the apparatus of the uniform Markov 

chains can be used with success for the study of the behavior of au- 

tomata not only in stationary, but also in certain nonstationary random 

media. Let us assume, for example, that there are several stationary 

ransom media C,, Cp, ..., C, similar to the medium C described above, 

but having different probability pairs p0, p.,. From these media we can 

construct the nonstationary random medium N by introducing the matrix 

B = Hb^JI of the transition probabilities of some Markov chain with k 

states. At any given moment t of discrete time the medium N acts like 

one of the media C,, C«, ..., C. . If the model for its actions is the 

medium C,, then we say that the medium N is in the ith state. The quan- 

tity b.. is the probability of the transition of the medium N from the 

ith state into the Jth (i, J = 1, 2, ..., k). The probability bj. is 

assumed to be constant and unchanging in the course of time. 

If now some automaton A functions in the medium N, then the pairs 

(C., a.), consisting of the L,tate C. of the medium N and the state a. 

of the automaton A can be selected as the states of some unlfonn Markov 

chain. The matrix of the transition probabilities of this chain can be 

easily constructed from the matrices of the reaction probabilities of 

the media C,, Cp, ..., C,, the matrix B of the switching function and 

output function of the automaton A. 
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It can be shown [82] that in the class K of automata A with lin- 

ear tactic operating In the described nonstatlonary medium N there Is 

(depending on the choice of the medium N) an optimal automaton A , 
n0 

having a minimal (in the class K) mathematical expectation of the lim- 

iting value of the penalty at each step of Its operation. Thus, in con- 

trast with the stationary melda, for automata with linear tactic ope- 

rating In nonstatlonary media. It Is advisable to Increase the volume 

of the automaton memory (number of states) only to a certain limit, 

after which further Increase of the memory leads to deterioration ra- 

ther than Improvement of the quality of the operation of the automaton. 

§5. THE PROBLEM OF PATTERN RECOGNITION TRAINING 

One of the most significant fields of application of the theory 

of the self-organizing systems Is that of the problem of the recogni- 

tion of visual patterns. The recognition of visual patterns and the 

training for such recognition Is a brilliant example of the adaptive 

properties of the human brain. The meaning of pattern recognition Is 

that the human observer combines certain sets of objects or phenomena 

which he observes Into a single class, termed the pattern. The patterns 

with which the human being operates are not random combinations of ob- 

jects, but rather those combinations which are related by some common 

properties. Considering basically the visual patterns, we shall In the 

future tem the Individual objects which compose this pattern Images. 

Examples of visual patterns might be the set of all the Images of 

a particular letter or digit, the set of the Images of all possible 

buildings, etc. By  analogy with the visual patterns we can consider 

also the sound patterns (for example, the set of all the pronouncla- 

tlons of a particular phonem, the set of all waltzes, etc. ) and pat- 

terns of any other nature. In the future we shall limit ovrselves to 

the consideration of only the visual patterns, as examples however, all 
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our theoretical constructions will be applicable not only for the vis- 

ual, but also for any other patterns. 

For the following constructions we need first of all the defini- 

tions of the abstract images and patterns. We will assume that the im- 

ages are perceived by some set of sensitive elements — receptors. By 

analogy with the case of the visual patterns perceived by the human 

eye, we term this set the retina. In the case of abstract Images and 

patterns we do not need to be more specific on the question of the spa- 

tial arrangement of the receptors. However, in the case of specific 

visual patterns this refinement is useful. In this case we will usu- 

ally assume that the receptors constituting the retina are arranged on 

a plane at points forming a regular grid, i.e., in other words, at the 

points with the coordinates (a + ic, b + Jc), where c ^ 0, _i runs 

through the set of values 0, 1, ..., m — 1 and J runs through the set 

of values 0, 1, ..., n — 1. In the future we shall such a retina a reg- 

ular rectangular (n x m)-retlna. 

The task of the retina is to convert the image projected onto it 

into some ensemble of signals of a standard form which are put out by 

the receptors composing retina. In the future we shall differentiate 

two forms of receptors: the so-called continuous receptors whose out- 

put signals can be any real numbers on some fixed segment of the num- 

ber line, and the so-called discrete receptors which can deliver only 

two different output signals. Without losing generality we can fix as 

the domain of the values of the output signals of the continuous re- 

ceptors the number segment [0, 1], and as the possible values of th3 

output signals of the discrete receptors we can fix the ends of this 

segment. I.e., the numbers 0 and 1. 

In the case of the visual patterns we will always assume that the 

output signal of the continuous receptor is equal to the brlghteness 

- 255 - 

• 



of the Image point projected on the given receptor, expressed In rel- 

ative units: zero corresponds to absolutely black points, and unity to 

absolutely white (reflecting 100$  of the light Incident on them) points 

of the Image. For the discrete receptors we establish some brightness 

threshold. The points whose brightness does not exceed the value of 

this threshold will correspond to a zero output signal. More specifi- 

cally, however. In the case of the discrete receptors we shall consid- 

er only two-tone Images consisting either of points of zero brightness 

(background) or of points of unit brightness (the Image Itself). In the 

future we shall use precisely this latter point of view. 

Absrtact image Is the term we shall give to any fixed ensemble of 

output signals of the receptors constituting the retina. If the total 

number of receptors In the retina Is N, then. In view of the assump- 

tions made above, the abstract Image can be naturally Identified with 

some point of an N-dlmenslonal unit cube. In the case of continuous 

receptors all the points of this cube correspond to the Images, while 

In the case of the discrete Images only the cube vertices correspond 

to the Images. In connection with this, we shall call the N-dlmenslonal 

unit cube (in the case of the continuous receptors) or the set of Its 

vertices (in the case of the discrete receptors) the Image space. In 

the first case this space Is continuous. In the second case It Is dls- 

crete (consisting of 2 different points). 

It Is natural to Introduce the following "metric" in the image 

space: the distance between two points of this space (i.e., between 

two Images) is the square root of the sum of the squares of the differ- 

ences of the corresponding coordinates of these points 

The R-nelghborhood of any point M of the Image space is the ensemble 
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of all points of this space removed from the point M by a distance less 

than or equal to R. 

We note that the definitions introduced are applicable for both 

the continuous and the discrete image spaces. In the second case the 

distance between any two points is the square root of the total number 

n of the noncoincidences of the coordinates of these points. However, 

it is more convenient for us to consider that in the case of the dis- 

crete spaces the distance is this number JJ itself. Then all the dis- 

tances will be expressed by whole numbers. After the introduction of 

the distance in the image space, we can talk of the closeness of par- 

ticular points to one another. Fran the intuitive considerations asso- 

ciated with the concept of the pattern, it follows that the images ly- 

ing sufficiently close to a particular Image from sane pattern must be- 

long to this pattern itself. This circumstance must be somehow taken 

into account in the definition of the concept of the abstract pattern. 

In the case of the continuous image space, the pattern can be only 

that set of points of this space which together with any point M also 

wholly contains some e-neighborhood of the point M (the magnitude of 

e depends on the choice of the point M). Sets having this property 

are tenned open sets. Thus, in the case of the continuous receptors we 

shall term any open set of the image space an abstract pattern. 

An example of an open set might be the internal portion of a 

sphere having the same dimension as the considered (continuous) image 

space. It is Important to once again emphasize that the degree of 

smallness of the changes which can be introduced in an image without 

changing its membership in a given pattern depends on the choice of the 

image itself. The permissible variations for the images located closer 

to the boundary of the pattern (in the example in question the surface 

of the sphere serves as the boundary) are reduced, while they are in- 
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creased for the Images sufficiently removed from the boundary. 

In the case of the discrete Image space all Its subsets will ob- 

viously be open sets and can consequently be considered as abstract 

patterns. For reducing the classes of patterns In the discrete space 

we can make use of the concept of the boundary index of the set. Let M 

be any subset of the discrete image space R which we introduced, and m 

the number of elements of this set. If the set M does not coincide with 

the entire space R, then among its elements there will be those for 

which at a distance from them equal to unity there lie elements not be- 

longing to the set M. Let us term such elements boundary elements and 

denote by m, the number of all the boundary elements of the set M. We 

call the ratio nu/^n the boundary index of the considered set M. 

It is easy to see that the smaller the boundary index of a set the 

greater the degree to which it resembles in its properties the open 

sets of the continuous spaces: an ever larger portion of the points of 

the set with their 1-neighborhoods are contained in it. Therefore it is 

natural to state the proposition which Braveman [11] has termed the 

compactness hypothesis; only those sets whose boundary indices are suf- 

ficiently small can serve as patterns in the discrete image space. 

With a more detailed study it is found that this proposition must 

be refined by means of certain additional probability-theoretic con- 

structions. Let R be a discrete Image space in which some subset has 

been fixed. Let, further, for each element x. of the space R there be 

given the probability f(x1) of the appearance of this element (of the 

image) in some series of experiments of the type of independent trials; 

let f (x.) be the conditional probability of the appearance of the ele- 

ment x*  with the condition that it belongs to the pattern S. If the 

element x^^ belongs to the pattern S, then for any natural number k 

^k(xi) ls "the set o^ a11 points not contained in the pattern S and re- 
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moved from the element v ' r a.  distance less than or equal to k. The 

quantity g-(k( = 2 /S(A.   »t,) is the probability or wrong assignment in 

a following trial of an element of the pattern S which does not belong 

to it as a result of the inclusion in S of all elements lying in the k- 

nelghborhood of the element xi in the preceding trial in which some 

element x. from the pattern S was randomly selected. 

We tern the operation of the inclusion in a particular pattern S 

of all elements of the k-neighborhood of some element x from this pat- 

tern the operation of k-extrapolation with respect to the element x« 

The quantity found above g,, (k) is the probability of the occurrence of s 
an error as the result of the operation of k-extrapolation with respect 

to the randomly selected element of the pattern S. A refinement of the 

compactness hypothesis, mentioned above, consist! in the assumption 

that for every discrete image space R there exists such a number N = 

= N(R) that N > 1, and for all values of k < N the probability gQ(k) 

of the occurrence of an error in the result of the k-extrapolation 

does not exceed the negligibly small constant nonnegative quantity e 

for any pattems S. We term this the hypothesis of the N-extrapolata- 

bility of the patterns with accuracy to E. 

The operation of k-extrapolatlon can obviously also be defined for 

pattems In continuous image spaces. Replacing the summing by integra- 

tion, we can obtain by analogy with the expression for gfk) an expres- s 
slon for the probability of the appearance of an error as the result 

of extrapolation in the continuous case. In exactly the same way as for 

the discrete spaces, we can formulate the hypothesis of the N-extrapo- 

latablllty of the patterns in the continuous image spaces. 

The pattern recognition problem leads to the need for a precise 

description of the features characterizing this pattern. However, this 

sort of description cannot be given in all cases by any means without 
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overcoming very serious difficulties. Therefore, In practice we usually 

follow the path of constructing algorithms which make It possible to 

accomplish the so-called training for pattern recognition. The essence 

of this training Is obtaining the approxlrate descrlpton (or, as cus- 

tomarily phrased, the approximation) of the pattern as the result of 

the showing of some set (generally speaking, not all.') of Images com- 

posing this pattern. 

Based on the hypothesis on the N-extrapolatabllity of the pat- 

terns, we can construct the so-called general approximation algorithm 

which makes it possible to accomplish pattern recognition training. 

Just as every algorithm of the self-improving type, the general approx- 

imation algorithm A has two operation periods — the learning period and 

the examination period. 

In the learning period various representations of the patterns 

R,, iU, ,.., R , which are to be recognized are applied to the input 

of the algorithm A. In this case the corresponding representations 

(images) are chosen at random (most frequently by the nethod of inde- 

pendent trials) and are accompanied by the indication: to which of the 

patterns R,, Rg, ..., R^ each of the selected Images belongs. All the 

Images shown in the learning period are stored and are used in the ex- 

amination regime for the deteimlnation of whether the next (also se- 

lected randomly) image r belongs to a particular one of the pattern 

R-, ,  Rg*  • • • »  Rjj« 

To do this detenninations are made of the distances in the Image 

space from the image r, first to the representations of the pattern R, 

selected in the learning period, and then to the representations of the 

pattern Rp, etc., until the succeeding distance determined to some re- 

presentative of some pattern Ri(l =1, 2, ..., n) is found to be less 

than or equal to the extrapolatability coefficient N. In this case the 
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image r Is associated with the pattern R . If, however, all the dis- 

tances are larger than N, the image r remains unrecognized, I.e., it 

will not be associated with any of the patterns FL, R2, ..., PL. 

It is easy to see that if all the patterns R-., fU, ..., P. are 

extrapolatable with an accuracy to e and can be covered with the aid 

of a number of N-neighborhoods (spheres of radius N) which is signifi- 

cantly less than 1/e, then the described algorithm gives a good approx- 

imation of the chosen patterns (with small probability of error on ex- 

amination). 

In practice the different patterns in the image space are not usu- 

ally in direct contact with one another. If we take as the coefficient 

N the minimal distance between patterns, then in the discrete space 

the absence of contact of the patterns means that N > 2. If we also as- 

sume that the probability of the appearance of images not belonging to 

any one of tne selected patterns R,, Ro. ...* FL, is equal to zero, 

then all these patterns are obviously (N — l)-extrapolatable with an 

accuracy to e = 0. With these assumptions the general algorithm for 

approximation with the aid of (N — 1-neighborhoods obviously leads, as 

a result of a sufficiently long duration of the learning period, to 

an arbitrarily good approximation (with an arbitrarily small error 

probability). 

This general approximation algorithm admits several further im- 

provements in several different directions. First, in addition to the 

examination regime described above we can introduce a second type of 

examination regime. In this case the image appearing in the examina- 

tion regime relates to that one of the patterns R^, Rp, ..., R , which 

contains the representative (memorized in the learning period) located 

closest of all to the Image r. For deflnlteness we assume that if there 

are several such patterns preference is given to that one of them which 
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has the smallest number. 

The second Improvement consists in economy of the memory: if the 

N-neighborhood of any image S, appearing in the learning period, is 

completely covered by the N-neighborhoods of the other Images, also 

shown in the training period, then the image S can Immediately be elim- 

inated from the memory and not used during the examination. In practice 

it is advisable to make use of this improvement in a somewhat differ- 

ent modification in which the maximal number of represen ations of 

each pattern which can be remembered in the learning period is limited 

ahead of time. For each remembered representation account is taken of 

its relative usefulness. As the criterion of the relative usefulness of 

any image r we can use, for example, the ration of the number of cases 

when this image was used for the correct recognition of the following 

Images to the total number of Images which appeared after memorization 

of the Image r. Only those Images are subject to memorization which can- 

not be correctly recognized with the aid of the images already avail- 

able in the memory. If, in addition, the memory set aside for the stor- 

age of the representations of a particular pattern is found to be com- 

pletely full, then the representation being memorized forces out of 

the memory the representation of the given pattern which has the low- 

est relative usefulness. 

The third Improvement involves, along with the "natural" retina 

(onto which the images being recognized are projected directly), the 

use of a new retina whose output signals are suitably selected func- 

tions of the output signals of the first retina. The image space in 

which the patterns are defined is constructed from the output signals 

of the second retina (incidentally, it is more natural to call this 

the feature space rather than the Image space). With the aid of a Ju- 

diciously chosen transfomation of the original space we can consid- 
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erably simplify the problem of pattern recognition training. Commonly 

used, in particular, are those transformatIons which generate features 

which are not dependent on parallel shift or variation of the size of 

the Images. 

Sinally, we will indicate still another modification of the gen- 

eral approximation algorithm A. The regime in which this algorithm re- 

ceives during the period of its self-improvement certain images with 

an indication of the pattern to which they belong is temed the train- 

ing regime. In many cases, in addition to this regime it is advisable 

to consider the flc*-called self-training regime. 

In the self-training regime planned for the fomatlon of n dif- 

ferent patterns, there are first given the n randomly selected Images 

rl* ^ •••' rn* eac^ 0^ which is taken to be the representation of 

some pattern. The Image s, being reshown is associated to that pattern 

whose representation is located closest to the image s, and the number 

of representatives of this pattern is increased. In the following step 

the reappearing Image s2 is compared with the augmented number of re- 

presentations and is again associated with that pattern whose presenta- 

tion (any) is located closer to Sg than the representatives of all the 

other patterns. Thereafter the storage proceeds either according to the 

usual scheme or by the scheme described above with replacement (with 

limited memory). The recognition of the images in the examination re- 

gime can t'2 performed by the two methods described above: either by N- 

extrapolatlon of the patterns, or by the method based on the determi- 

nation of the shortest distance. 

This algorithm can be used in the case of both the discrete and 

continuous image spaces. The approximation method used in it is unique, 

of course. Thus, rather than approximation by the spherical neighbor- 

hoods we could use neighborhoods of any other shape for the approxlma- 
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tlon. Successful results have been obtained with approximation of the 

patterns by regions bounded by hyperplanes (see, for example, Braveman 

[11]). Various modifications of the metric described above are also 

possible In the Image space, which obviously leads to alteration of 

the concept of the spherical neighborhoods: neighborhoods which are 

spherical In one metric may not be so In another metric, and vice versa. 

Ml shall describe several other, more specialized algorithms for 

pattern recognition training which have been used successfully by var- 

ious authors. One of the simplest, although not extremely effective, 

algorithms of this sort Is the so-called perceptron of Rosenblatt [69]. 

Just as every device for the recognition of patterns, the percept ron 

contains a set of receptors - the retina. In the future, without spe- 

cially stipulating this each time, we shall consider only regular rec- 

tangular retinas. Depending on the nature of the receptors, the per- 

ceptrons are divided Into the continuous perceptrons (with continuous 

receptors) and the discrete perceptrons (with discrete binary recep- 

tor's). 

In addition to the receptors, each perceptron contains two other 

foims of element, termed A-elements and R-elements. 

The A-elements are simplified models of the neurons. In this con- 

nection we shall hereafter term them simply neurons. In accordance with 

the nature of the receptors used In the perceptron we differentiate 

the continuous and discrete neurons. Both types of neurons have two 

forms of Inputs, termed stimulating and Inhibiting. Each neuron has a 

finite number of Inputs and a single output; In addition, with It there 

Is associated some real number, termed the weight of the given neuron. 

As the domain of the values of the neuron weights we take the set of 

all real numbers, regardless of which neurons we are considering - con- 

tlnuous of discrete. 
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In addition to the weight, the number of stimulating and the num- 

ber of Inhibiting Inputs, the neuron Is also characterized by Its func- 

tioning law, which determines the output signal of the neuron as a 

function of Its Input signals and weight. We must keep in mind that the 

Inputs of all the neurons In the perceptron are connected to the recep- 

tors, so that the signals generated by the receptors serve as the Input 

signals for the neurons. 

The continuous neurons, first considered by Rosenblatt [69], had 

a functioning law of the fom z ■ v(Zx - 2y), where z Is the output 

signal, v Is the neuron weight, 2x Is the sum of the signals applied 

to the neuron through the stimulating Inputs, and 2y Is the sum of the 

signals applied to the neuron through the Inhibiting Inputs (x, y, v 

and z are arbitrary numbers). 

The functioning law of the discrete neurons Is normally specified 

by the Indication of some whole rational number £ termed the neuron 

triggering threshold, or simply threshold. If the algebraic sum 2x - Zy 

of the stimulating and Inhibiting Input signals Is less than the 

threshold, then the neuron Is considered unstlmulated and delivers an 

output signal equal to zero. When the sum Zx - Zy reaches and exceeds 

the threshold, the neuron Is stimulated and delivers an output signal 

equal to Its weight v (regardless of the magnitude of the amount by 

which the sum of the Input signals exceeds the threshold). 

It Is convenient to characterize the discrete neurons with the 

described functioning law by ir Bans of three whole numbers (k, i, p), 

the first being equal to the number of stimulating inputs, the second 

to the number of Inhibiting Inputs, and the third to the threshold lev- 

el. In the following considerations the neuron weight will always be 

a variable quantity and therefore we shall not Introduce it into the 

neuron characteristic. Discrete neurons of the indicated type, having 
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the same characteristic three numbers (k, £,  p) will be associated with 

the same type, regardless of possible differences of their weights. 

Hereafter It Is assumed that all the neurons of any given percep- 

tron designed for the differentiation of k different patterns, the set 

of all the neurons Is partitioned Into k disjoint groups (subsets) lo- 

cated In one-to-one c-'rrespondence to the pattern being distinguished. 

For brevity we shall term the neurons belonging to the group correspond- 

ing to tho 1th pattern the neurons of the 1th pattern (l ■ 1, 2, ..., 

• • • J  K^ • 

The Inputs of each neuron In the perceptron are connected to the 

receptors of the retina. Here It Is assumed that the different Inputs 

of the same neuron are connected to different receptors. The outputs of 

the neurons are connected to special summators temed R-elements, with 

the outputs of the neurons of the same pattern connected to the same 

summator, termed the summator of this pattern. 

The output signal of the summator of any given pattern Is equal to 

the sum of the weights of all the stimulated neurons of this pattern. 

If none of the neurons of the pattern being considered Is stimulated, 

then the output signal of the corresponding summator Is taken equal to 

zero. The final output signal of the entire perceptron Is considered 

to be that pattern whose summator has the highest output signal. In the 

case when the maximal value of the output signal Is attained simulta- 

neously by the summators of several patterns, the output signal of the 

perceptron is considered to be undefined. 

Taking as the Input signal of the entire perceptron the Image 

being projected on its retina, we obtain as the reaction of the per- 

ceptron to this signal that pattern to which the perceptron relates 

the given Image. It does not follow at all, of course, that the consid- 

ered perceptron accomplishes the proper classification of the Images 
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In accordance with an a priori specified division of the set of Images 

Into different patterns. This Initial division Is specified by the ope- 

rator. We shall tenn It the original (or a priori) classification of 

the Images In contrast with the actual classification accomplished by 

the chosen perceptron. 

Therefore It Is necessary also to specify some process of varia- 

tion of the perceptron characteristics which pemlts approach of the 

actual classification performed by the perceptron to the original 

classification as we show the perceptron various Images. This process 

Is specified with the aid of the Indication of the so-called encourage- 

ment law. 

As the basic encouragement law for the discrete perceptrons we 

shall choose the somewhat generalized encouragement law in the so- 

called q-systems which were considered by Joseph [3^]- This law, which 

we shall tenn the (generalized) q-law. Is completely characterized by 

the specification of two nonnegative constants a and b., not simulta- 

neously equal to zero. The meaning of this encouragement law consists 

In the weights of some neurons being Increased by an amount equal to a 

and the weights of the others being decreased by an amount equal to b 

after each showing of a succeeding Image to the perceptron (the en- 

couragement law In the Joseph q-systems Is obtained from the general- 

ized q-law In the case when a = 1, b = 0). 

We differentiate two regimes of functioning of the perceptron with 

generalized q-law encouragement. The first regime, temed the training 

regime, consists In the encouragement (increase of weight by the amount 

a) of all the stimulated neurons of that pattern to which the image be- 

ing considered In the given step belongs, and in the penalizing (re- 

duction of the weight by the amount b) of all the stimulated neurons 

of the remaining patterns. It is clear that the correct pattern to which 
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the given image belongs must be indicated by the human teacher, since 

only he knows the original a priori classification of the Images. 

The? second regime, teimed the self-training regime, differs from 

the training regime only in that the determination of the patteren to 

which the image being considered belongs is accomplished by the per- 

ceptron Itself — this pattern is taken to be that pattern which actu- 

ally was delivered by the perceptron in response to the showing of the 

given Image. Of course, here there Is no guarantee that the response 

delivered by the perceptron will be correct (in the sense of the orig- 

inal classification of the Images). However, with observation of cer- 

tain conditions. In the case of unlimited ncrease of the number of 

steps in the self-training process the process can sometimes reproduce 

the original classification of the Images. 

In addition to the (generalized) a-law encouragement in several 

cases it is advisable to consider two other laws, which we shall term 

respectively the (generalized) ß-law and the (generalized) 7-law. Both 

of these laws retain the priciple of encouragement and penalizing which 

is used in the (generalized) a-law. In addition to this,  in the ß- 

law at each step (in both the training and self-training regimes) there 

is a reduction of the weight cf all the neurons (both stimulated) by 

an amount which Is directly proportional to their weights, with a pro- 

portionality coefficient ß which is the same for all the neurons. In 

the v-law there is performed an additional (to the operations of the 

a-law) variation of the weights of all the neurons (both stimulated and 

unstlmulated) by the same amount, selected at each step so that the 

sum of the weights of all the neurons is always equal to zero. 

In the case of the continuous neurons the generalized a-law of 

encouragement consists in that any neuron of the correct (a priori or 

from the point of view of the perceptron) pattern increases its weight 
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by the value of the product ^ of the constant a by the combined Input 

signal of the neuron: q « a(Zx - Zy). Similarly, the weights of the 

neurons of all the remaining patterns are reduced h:r  the amount b(Zx - 

— Zy) (individually for each Individual neuron). The additions which 

differentiate the ß- and 7-laws remain the same as In the discrete case. 

In the construction of the theory of perceptron trail Ing and self- 

training It Is frequently advisable to consider not the Individual per- 

ceptrons, but certain classes of perceptrons. A perceptron class Is a 

set of perceptrons which can differ from one another only In the meth- 

od of connection of the neurons with the receptors and the Initial 

weights of the neurons. All the remaining characteristics of the per- 

ceptrons belonging to a particular class are assumed to be the same. 

These characteristics Include the form of the receptors and neurons, 

the total number of receptors and the structure of the retina, the set 

of Images and the set of patterns, the original classification of the 

images (their distribution over the patterns), the number of neurons 

of each pattern, and, finally, the encouragement law. 

The method of connecting the neurons with the receptors and the 

Initial weights of the neurons are considered random and are charac- 

terized (within the limits of the selected class) by certain distribu- 

tion laws. In other words, the class of perceptrons is considered not 

as an abstract set of perceptrons, but as a set with specified proba- 

bility field which determines the probability of the selection of a 

particular concrete representation of the class being considered. We 

can thus consider that the specification of the class defines some 

random perceptron. 

The Initial weights of the neurons are usually considered to be 

Independent random quantities having the same distribution law. In the 

same way the method of connection of each neuron with the retina is as- 
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Burned to be independent of the connections of the remaining neurons. 

To each possible method of connection of an individual neuron with the 

retina there is associated the probability of this method, common for 

all the neurons. Here the connection of all the neurons of the percep- 

tron (from the perceptron class being considered) to the retina is 

treated as a series of independent trials, characterized by the indi- 

cated probabilities. 

Combining the probability characteristic for the method of con- 

necting the neurons with the retina with the distribution law for the 

initial weights of the neurons, we arrive at the desired distribution 

law in the class of perceptrons. One of the most frequently encountered 

distribution laws is obtained when all the initial weights are deter- 

mined and are equal to the same number (most frequently zero), and the 

connection of all the inputs of any given neuron is accomplished inde- 

pendently of one another on the basis of a particular distribution law 

(most frequently unifom) specified directly on the retina. 

In the construction of the perceptron training theory we must con- 

sider the so-called training sequences and the classes of training se- 

quences. The training sequence is simply a finite sequence of Images, 

shown to the perceptron one after another in the process of its train- 

ing or self-training. The total number of Images shown (including rep- 

etitions) is termed the length of the training sequence. A class of 

traning sequences is the set of all sequences of the same length in 

which there is given the distribution law which defines the probability 

of the selection of any given sequence of the considered class. 

Most frequently this distribution law is obtained with the assign- 

ment of a definite value of the probability o^ the appearanct of any 

image from the considered set of Images at each step of the training, 

where we usually consider the case when these probabilities are iden- 
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tlcal in all the steps, i.e., when the training sequence is a series 

of independent experiments on the selection of the images with constant 

probabilities assigned to each image. Hereafter we shall limit ourselves 

to this case. 

The effectiveness of the training in a given class A of percep- 

trons with the aid of the given class B of training sequences is defined 

aa the probability of correct recognition of the next image £ applied 

to a perceptron randomly selected from the class A after the prelimi- 

nary application to it of a training sequence randomly selected from 

the class B. We differentiate two forms of effectiveness. The so-called 

total effectiveness of training is obtained when the image JD is se- 

lected at random (with the a priori fixed probabilities of the appear- 

ance of the various images used in the establishment of the distribu- 

tion law in the class of training sequences). The training effective- 

ness with respect to the single image ^ is obtained when the next Image 

presented to the perceptron to recognize is precisely the image c^ . If 

the probabilities of recognition errors are the same for all the Images 

then the total training effectiveness will obviously coincide with the 

inidvidual effectiveness of training with respect to any Image. 

In the following section we shall undertake the theoretical study 

of the training effectiveness for discrete perceptrons with a-law en- 

couragement. For the moment, we note that experiments have shown that 

the training effectiveness in all the types of perceptrons described 

above is relatively low. Therefore in the algorithms for pattern rec- 

ognition training which are used in practice there are normally intro- 

duced several additional improvements in comparison with the perceptron 

scheme. For example, in the scheme of the Roberts1 adapt [67], on the 

whole quite similar to the scheme of the perceptron with a-law encour- 

agement, a considerable Improvement of training effectiveness is 
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achelved by preliminary normalization of the Image (i.e..   In other 

words, by automatic shift of the Image to the center öf the retina and 

its reduction to a standard size). Methods are also used for the pre- 

liminary processing of features,  schemes of multi-stage perceptrons, 

etc. 

The deficiencies of the perceptron and the ways of removing them 

will be clearer after acquaintance with the following two sections  In 

which we consider some questions associated with Its behavior In the 

training and self-training regimes. 

§6.   THEORY OF TRAINING OP DISCRETE a-PERECPTRONS 

In the present section we shall note the basic outlines of the 

theory of perceptron training.  Here we shall limit ourselves to the 

consideration of only the discrete perceptrons with generalized a-law 

encouragement operating In the training regime  (and not self-training.1), 

without special stipulation of this circumstance  In each  case.  In this 

case the training theory Is more simple and transparent,   since It  Is 

possible to follow not the functioning of each Individual neuron,  but 

to limit ourselves to the ccnslderatlon of only certain Integral char^ 

acterlstlcs. 

In the variant of the theory which we assume,  this  Integral char- 

acteristic  Is the so-called characteristic tensor of the perceptron. 

We Immediately emphasize that the use of the term "tensor"  In this  case 

Is not related with any patterns of transformation of Its  component 

with variation of the coordinate system,  but serves only as the name 

for a certain Integral table with three Inputs.  For the description of 

this table we Introduce a definite numeration of all the Images which 

are being presented to the considered perceptron by the numbers from 

1 to m and the numeration of all the patterns into which these images 

are subdivided by the numbers from 1 to JJ.  Then the characteristic 
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tensor of the perceptron will be the ensemble of components T. ., where 

the indices i and J run through the values from 1 to m and the index 

k runs through the values from 1 to jj. T, . denotes the number of neu- 

rons of the kth pattern which are stimulated by both the ith and the 

Jth images. 

The characteristic tensor of a class of perceptrons is defined 

essentially the same way. The only difference is that its components 

Tj. will in this case be not determinate, but random quantities whose 

distribution laws are determined in an obvious fashion by the distri- 

bution law which characterizes the method of connection of the neurons 

to the retina. 

These definitions imply the validity of the relation 

rj-T» (U=1.2 m; *«1.2 g). (76) 

It is also clear that any "diagonal" element of the tensor, T-.. 

for example, is the number of neurons of a particular (the kth in the 

present case) pattern which are stimulated under the action of the ith 

image. This Implies the validity of the inequaltiy 

r*/>r» 0./-1.2 m; *» 1.2.... ^).        (77) 
We shall term a perceptron or class of perceptrons symmetrical if 

the components of the characteristic tensor do not depend on the upper 

index, i.e., if the following relation is valid 

T,;-?-?; (*,.*,-1.2 <r. U* 1.2.... m).      (78) 

In this case the upper index is redundant so that it is natural 

to characterize the symmetrical perceptrons and the classes of percep- 

trons not by the three-input (T,.) but by the two-input table (T. .) 

where T^ . ■ T}. = T?. « ... = T?., which we shall term the character- 

istic matrix of the perceptron (or class of perceptrons). 

Let us introduce still another notation. For any (finite) se- 
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quence of Images i we use U? (i) to denote the output signal of the 

summator of the kth pattern wnlch Is Induced In the considered per- 

ceptron by the 1th Image shown after training of the perceptron with 
lr 

the training sequence £.   We use U. to denote the corresponding signal 

prior to the beginning of the training process, i.e., in other words, 

the signal U.(i) for the case when the training sequence £  is empty 

(has a length equal to zero). 

The quantities U?(i) will obviously be detemlnate in the case of 

the selection of a particular perceptron and random in the case of the 

consideration of a class of perceptrons. Sometimes it is advisable also 

to consider the sequence i as a random sequence, running through the 

class of training sequences. 

A distinctive feature of the a-law for perceptron training is the 

unique property of commutatlvlty of the training process expressed by 

the following proposition. 

Theorem 1. In the perceptron (or in a class of perceptrons) with 

a-law encouragement the output signal U1(^) of the summator of the kth 

pattern does not change under the action of the 1th Image after train- 

ing with any sequence i  if in the sequence £ there is performed an ar- 

bitrary permutation of the images composing it. This is valid for any 

image _! and any pattern k. 

Actually, the input signals of the neurons of the kth pattern 

which are induced by the 1th image will obviously not be altered in 

the training process, so that they remain the same after showing of 

the training sequence i and any other sequence £}.  Thus, the variation 

of the output signal of the summator in the training process is due 

only to the change of the weights of the neurons. As a result of the 

definition of generalized a-law encouragement, the variations of the 

weights of the neurons with the showing of any image in the training 
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process (but, generally speaking, not in the self-training process) do 

not depend on the place which the given image occupies in the training 

sequence. Since the overall increment of the weight of any neuron in 

the training process is equal simply to the sum of the increments at 

each step of the process, the validity of theorem 1 is thereby com- 

pletely proved. 

Biy the use of theorem 1 we can characterize any training sequence 

i  by the Integral vector v = (v,, v0, ..., v) whose 1th component 

(for any i = 1, 2, ...,. m) is equal to the number of occurrences of the 

ith image in the sequence i.  Let us call this vector the characteristic 

vector of the sequence i. The class of training sequences can also be 

specified with the aid of the characteristic vector. However, the com- 

ponents of the vector in this case will be, generally speaking, not de- 

terminate, but random quantities. 

For the description of the perceptron training process with (gen- 

eralized) a-law encouragement it is sufficient to specify the original 

perceptron (or class of perceptrons) by only its characteristic tensor 

(T?.) and the matrix of the initial signals of the pattern summators 

(U?) (l, J = 1, 2, ..., m; k = 1, 2, ..., m). The training sequence | 

(or class of training sequences) is specified by its characteristic 
k vector (v1, v2, ..., v ). In the general case all the quantities T. ., 

Ü?, v^ will be random. However, most frequently we consider various 

particular cases when certain of the indicated quantities are deter- 

minate. We note that we will usually include an indication on the se- 

leactlon of the Image set and the training sequences in the definition 

of the perceptron. 

In order to avoid confusion of the Images and the patterns, we 

shall designate the patterns by Latin letters and the images as before 

by their numbers. Let us consider the question of the determination of 
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p 
the output signals of the pattern summators Uj(i)t It is easy to see 

that with the use of (generalized) a-law encouragement the quantity 
P P VAt)  Is represented In the form of the initial signal l^ and the In- 

crements of the weights of all the neurons of the Pth pattern which 

are stimulated by the 1th Image all the steps of the training process. 

Characterizing the class of the training sequences by the charac- 

teristic vector (v,, Vp* ...# v ), it is not difficult to find the ex- 
p 

press Ion for the overall Increment of the quantity VAl)  obtained as 

the result of v1 showings of the Jth Image. It follows from the defini- 

tion of (generalized) a-law encouragement with the constants a and b 

that with each showing of the Jth image any neuron of the Pth pattern 

which stimulates this image will increase its weight by the amount a 

If J € P, and will reduce its weight by the amount b if J € P. The total 

number of neurons of the Pth pattern which participate in the forma- 

tlon of the output signal Ui(i) and which stimulate the Jth image is 

clearly equal to T?^ Thus, the total Increment of the magnitude as the 

result of v.. showings of the Jth image is expressed by the formula 

aT11v1' lf -«i € ^ and by the fonnula bTiivi If J e P. Therefore the 

following proposition is valid. 

Theorem 2. Let there be given the discrete perceptron (or class 

of discrete perceptrons) with the characteristic tensor T^ and the 

matrix of initial output signals of the pattern summators U^ (i, J = 1, 

2, ..., m; P e R). If in the considered perceptron (class of percep- 

trons) there operates the (generalized) a-law encouragement with the 

constants a, b, then after training with the sequence (or class of se- 

quences) i with the characteristic vector (v,, v«, ..., v ) for any 
p 

pattern P and any image JL the output signal Uf (i) of the summator of 

the Pth pattern under the action of the 1th image is expressed by the 

equat ion 
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UP«) « Uf + aZTfo-bZTfo. (79 ) 

For any Image 1 we shall use P. to denote that pattern to which 

the Image jL belongs In the original classification of the Images. Using 

this notation, it Is not difficult to write out the necessary and suf- 

ficient condition for the perceptron to correctly classify the 1th 

Image after training. This condition will obviously be the satisfac- 

tion of the Inequality 

UF®>VT{R for all p + p, (Bo) 

Using relations (79) and (80) It Is not difficult to calculate 

the perceptron training effectiveness In any specific case. These re- 

lations take a particularly simple fom In the case of the symmetrical 
Pi   P 

perceptrons. Actually, since In this case Ti. ■ T* --- T. ., relations 

(79) and (80) can be written In the fonn of the system of Inequalities 

t^' + oSr^-bS r^x/f + aSr^-frSv/.        (8i) 

In inequality  (8l) terms of the form bZT. . v.,   for which J  is not 

contained in either P.  nor P,  appear In both the left and right sides 

and therefore cancel one another.   After their exclusion we obtain the 

simpler relations equivalent to relation (8l): 

üf'-Mfl+WS r^^l/f+ (o+6)S T^ Ann BCCX P*P,. (82) 

Inequalities   (82) give the necessary and sufficient conditions  for 

the correct  classification of the  1th image by a symmetric perceptron 

with the characteristic matrix  HT-JI and the initial signals  of the 
p 

pattern summators Ui after training with the sequence having the char- 

acteristic vector  (v..,  v«,   ...,   v  ).   These  inequalities can be simpli- 

fied still more for the perceptrons with symmetrical initial condi- 

tions,   i.e.,  those percpetrons  (or classes of perceptrons) for which 
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the conditions 

V'-Uf     for all ^1,2 m (83) 

are satisfied for all P and Q. 

Using relations (83) and recalling that as the result of the de- 

finition of the generalized a-law a + b ^ 0, we come to the following 

result. 

Theorem 3. Let there be given any discrete symmetric perceptrons) 

with the characteristic matrix HT^JI and with symmetric Initial condi- 

tions In which there operates (generalized) a-law encouragement. Then 

the necessary and sufficient conditions for the correct recognition by 

the perception (class of perceptrons) of any 1th Image after training 

with the sequence (class of sequences) with the characteristic vector 

vl' v2' ••'* vm^ ls exPres8ed ^y the relations 

E V/>£^</t,/  for all P ^ P,. 

Corollary; training effectiveness In symmetrical discrete percep- 

trons with symmetric Initial conditions with perfomance In them of 

(generalized) a-law encouragement does not depend on the selection of 

the (nonnegative) constants a and b which characterize the law. 

Thus, In the study of the symmetric discrete perceptrons with 

symmetric Initial conditions we can without losing generality use con- 

ventional a-law encouragement with the constants (1, 0) rather than 

the generalized a-law with the constants (a, b). 

In specific calculations of training effectiveness In classes of 

perceptrons It Is usually assumed that all the neurons are connected to 

the retina Independently from one another, and the probability a^. of 

such a connection of the neuron that It will be stimulated by both the 

1th and the Jth Image Is the same for all the neurons with any fixed 

values of 1 and J. 
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If we use T to denote the total number of neurons of the Pth pat- 

P 
tern, then the component T. . of the characteristic tensor of the class 

of perceptrons being considered can be treated as the number of occur- 
P 

rences of some event having the probability a,, with T Independent 

trials. As a result of theorem 2 from §2 of the present chapter, the 

om p P \ mathematical expectation E(Tf.) and the variance ^(TjJ of the rand 
P quantity T.. are expressed by the equations 

£(7?,) - 7X; DiTf,) - T%(l -^ 
(U- 1.2 m; PtR)- 

P P With sufficiently large values of T the quantity T1, itself can 

be considered normally distributed. We note also that In the case of 
P 

the symmetrical perceptrons the quantities T will be equal to one an- 

other for different patterns P. Therefore we shall denote them simply 

by the letter T, dropping the index P. We shall term the matrix Hotj. Jj 

the basic probability matrix of the class of perceptrons being consid- 

ered.   * 

Similarly, the class of training sequences K which are fjrmed with 

the aid of the random selection of an Image at each training step, re- 

gardless of the images selected In the remaining steps, can be char- 

acterized by the probability vector (ß,, ßg* •••» ^m^ of the class be~ 

ing considered. For any 1-1, 2, ..., m the 1th component ß1 of this 

vector is equal to the probability of the selection of the 1th vector 

as the image being shown at any given step of the training. In this 

case the 1th component v1 of the characteristic vector of the class K 

Is the number of occurrences of the event having the probability ß. 

with N Independent trials, where N is the length of the training se- 

quence of the claps K (according to the definition of the class of 

training sequences, all the sequences occurring in the class have the 

same length). 
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With euffIclently large values of N, for any Image _1 the quantity 

v* can be considered normally distributed and Its mathematical expecta- 

tion and variance are given by the equations 

£(u,)-/Vp,; Dd»,)-W,(l-P,) U-1.2 m).        (86) 

We note that the randan quantities v^ and also the random quan- 

tities T?., are not, generally speaking. Independent for various val- 

ues of _1 and _J, which creates additional difficulties In the calcula- 

tion of the probability of correct operation of the perceptron using 

equations (81) and (84). However, In many cases we can avoid these 

difficulties by the Introduction of certain additional propositions. 

We shall demonstrate this situation using several examples. 

Example 1. We consider the discrete perceptron A with neurons of 

the (l, 1, 1,) type, having a regular square (n x n)-retlna and 2n 

Images, which are chosen to be n horizontal lines of length n combined 

Into the pattern P, and n vertical lines of length n combined Into the 

pattern Q. All the Images have the same probability (equal to l/2n) of 

appearing In the training sequence. We assume that the perceptron A is 

complete. This means that In both the neuron set of the Pth pattern and 

In the neuron set of the Qth pattern for any method of connection of 

the neuron to the retina there Is precisely one neuron having exactly 

the same connection with the retina. In the perceptron A there operates 

a-law encouragement with the constants a and b and the initial weights 

of the neurons are equal to zero. 

We are required to find the training effectiveness of the percep- 

tron A In the class of random training sequences of length 2N contain- 

ing precisely N showings of the Images of the first image pattern and 

N showings of the Images of the second pattern. 

Solution. The perceptron will obviously be summetrlcal and will 

therefore be completely characterized by Its characteristic matrix 
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IITjJI. It la easy to see that the neuron Is stimulated by the 1th 

Image Tvertleal or horizontal line) If and only if Its stimulating In- 

put Is connected to the receptor lying on the corresponding line and 

its Inhibiting Input is connected to the receptor lying away from this 

line. For any given ^1 there are In all n(n - n) » n (n - l) differ- 

ent connections of this sort. In view of the completeness of the per- 

ceptron A, the following equation Is valid [formula (87)] 

Tu~rHn-\) (/- 1.2 2n). (87) 

Let us assume that the numbers from 1 to n designate the horizon- 

tal lines (images of the pattern P) and the numbers from n + 1 to 2n 

designate the vertical lines (images of the pattern Q). By analogy with 

the way the expression for T.^ was found, we find two more expressions 

r,,-* (88) 

If _1 and J are images of the same pattern; 

r«-(«-i)>. (89) 
If 1 and J are Images of different patters. 

Using E to denote a unit matrix of nth order and D to denote a 

square matrix of order n, all the elements of which are equal to unity, 

we represent the characteristic matrix M of the perceptron being con- 

sidered In the form 

M n«(n—1)£ (n-l)»DI 
(n-I)«© n«(n—l)£ (90) 

Let (v,, v«* ...* von) ^
e the characteristic vector of the class 

of training sequences being considered. As a result of the assumed con- 

dition, the components of this vector satisfy the condition 

Ol + 0| + . . . + 0, »* üa+f -f Vn+t -h . . . + Wfti - AT. (91 ) 

As the result of theorem 3,  we write the necessary and sufficient 

condition for correct recognition of any given image 1 

S V/ > 2 'V( 
/•*, '•>< (92) 
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or, taking account of relation»  (87)-(89) and  (91)» 

«•(n-lKX/i-iyW (93) 

We write relation (93) In the equivalent forro 

The probability of the appearance of the 1th Image In each of the 

N showings of the representations of the pattern P^ Is equal to 1/n. 

Therefore for the mathematical expectation and the variance of the 

quantity v1 we obtain the expressions 

£,„,,_ IW;  OW-W-; ('-S)- (95) 

In view of theorem 3 from $3 of the present chapter, with suffi- 

ciently large N the probability q^ of satisfaction of Inequality (94) 

can be calculated from the equation 

^«0,5-f-pgr-j** "'d*  a-1.2 2n).        (95) 
I 

11 
1 

where k Is the value of the ration of the modulus of the difference of 

the right side of Inequality (94) and the mathematical expectation 

E(vj) to the mean square deviation of the quantity v., equal to the 

square root of the variance. In other words. 

«/•"TRl-ZS-/ 
Since the value of q^ does not depend on 1, It coincides with 

the probability 5 of correct recognition by the perceptron A of any 

randomly selected Image after the preliminary showing of the randomly 

selected training sequence of length 2N from the class of sequences be- 

ing considered. 

The value of the probability ^ Is Just the value of the overall 
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N «• In« 9/1» 

k 1 2 3   { 

9 0.8410.977 0.9991 

effectiveness of the training of the perceptron A In the given condi- 

tions. We present the table of the values of the probability £ for 

several values of k: 

Thus, in order to reduce the probability of 

error of the perceptron being considered to 0.1^ 

with random selection of the training sequence it 

is necessary to make use of sequences of very great 

length, equal to 18 n . At the same time, we see 

Immediately from inequality (92) that we can re- 

duce this probability to zero (obtaining absolutely accurate recogni- 

tion) as the result of showing each Image exactly one time, i.e., with 

the use of a sequence having a length of only 2n. This example gives a 

striking demonstration of the inadvlsability of the use of random train- 

ing sequences. At the same time it indicates the serious differences of 

the learning mechanism described from the learning mechanism realized 

In the human brain. 

Actually, the latter mechanism has a marked capability for ex- 

trapolation of experience, i.e., for correct recognition of images 

which never appeared in the training process. At the same time the per- 

ceptron described In the example considered does not give a final guar- 

antee of correct image recognition (with randan organization of the 

training process) even when the average number of displays if each 

image reaches a very large number (of the order of n3). 

This conclusion is associated, or course, to a certain degree with 

the specific nature of the example. However, it is not difficult to 

note that with purely random connection of the (1, 1, l)-neurons to 

the retina (excluding the connection of both inputs of the neuron to 

the same receptro) the mathematical expectation of the components of 

the characteristic matrix will differ from the components of the char- 
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acteristlc matrix of the complete perceptron only by a constant factor 

which Is not significant from the point of view of the calculation of 

the training effectiveness. Therefore, with the random connection of 

the neurons to the retina the most probable behavior of the resulting 

perceptrons will be precisely that of the complete perceptron described 

above. 

Thus, the random organization of the connections of the neurons 

with the retina cannot, generally speaking, provide a high quality of 

perceptron functioning. Prom theorem 3 It follows that the capability 

of the perceptron for extrapolation of experience Is Increased with In- 

crease of those components of the characteristic matrix whose Indices 

belong to the same pattern, and with reduction of those components 

whose Indices belong to different patterns. 

We shall say that a perceptron has absolute capability for extra- 

prlation If for any pattern P and any Image 1 from this pattern train- 

ing by any sequence containing the Image 1  not less than one time will 

lead to a correct recognition of all the Images of this pattern. We 

obtain the following result. 

Theorem 4. In order that a discrete symmetric perceptron with sym- 

metric initial conditions in which (generalized) a-law encouragement 

operates ha"e absolute capability for extrapolation It is necessary 

and sufficient that all the components T... of the characteristic matrix 

of the perceptron whose Indices belong to the same pattern be nonzero, 

and that all the components T^. whose indices belong to different pat- 

terns be equal to zero. 

Actually, let us assume that the condition of the theorem is sat- 

isfied. Then inequality (84) will be valid, if for any one of the image 

J from P. the value of v1 is nonzero. As the result of theorem 3, this 

means that the perceptron being considered has absolute capability for 
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extrapolation. 

Let us assume that the condition of the theorem Is not satisfied. 

This leads to the consideration of two cases: 1) for some pattern Q 

there Is a pair of images 1, J belonging to It such that T. . = 0; 2) 

there is a pair of images k, r belonging to different patterns and such 

that Tkr 7* 0. In the first case, as a result of theorem 3 the learn- 

ing sequence compose exclusively from the Images J does not lead to 

correct recognition of the image 1. In the second case, let us consid- 

er the learning sequence composed of one Image k and any number v 

larger than Tj./I^  of Images r, Then, in application to the recogni- 

tion of the Image k the substitution of the indicated values in in- 

quality (84) leads to the Inequality Tkk > T.  v . In view of the se- 

lection of v this inequality is not valid, which as a result of the- 

oreiii 3 means the impossibility of correct recognition of the Image k. 

Consequently, in both cases the perceptron will not have absolute capa- 

bility for extrapolation, q.e.d. 

Usually the Images belonging to the same pattern are numbered us- 

ing sequential whole numbers. In this case it is natural to partition 

the characteristic matrices of the symmetric perceptrons into cells 

corresponding to the different patterns. Absolute capability for ex- 

trapolation is achieved in this case when these matrices are cellulary 

diagonal and the diagonal cells do not contain zero elements. This 

form the cahracteristic matrices is not always completely achievable, 

however any good approximation to it will require, as a rule, avoid- 

ance of the completely randan connection of the neurons with the re- 

tina. The effect obtained as a result of this deviation from random 

connection is best demonstrated using an example. 

Example 2. Find the training effectiveness of the perceptron B, 

differing from the perceptron A of example 1 only in that it retains 

- 285 - 



only those neurons, both ends of which are connected to the receptors 

lying either on one horizontal or on one vertical line. The training 

conditions are the same as In example 1. 

Solution. The perceptron B, Just as the perceptron A, will obvi- 

ously be symmetelcal. It Is not difficult to find that the elements of 

Its characteristic matrix are given by the relations T^ ■ n(n - l); 

TJJ ■ 0 (l, J - 1, 2, ..., 2n; 1 ^ j). The condition of correct recog- 

nition of the 1th image Is expressed by the condition T^^v^ > 0 or, 

what Is the same, v* > 0. In other words, for the correct recognition 

of the 1th Image it is necessary and sufficient that it was shown at 

least once to the perceptron in the process of Its training. 

With N random displays of the Images of one pattern, the probabll- 

lity of the nonappearance in the training sequence of the 1th image is 

obviously equal to (i^LY^g"^  and the overall effectiveness of the 

training is expressed by tne number  1—«—? . In order to reduce the 

probability of incorrect operation of the perceptron to O.IJ^, as was 

done in example 1, it is sufficient to set N = 7n, or, in other words, 

to use a training sequence of length l4n. We recall that in the first 

esample the same training effectiveness was obtained only by using a 

training sequence of length l8n^. 

It is curious that such a sharp increase of the training effective- 

ness is obtained not as a result of more complication, but as a result 

of the simpllcatlon of the perceptron, since the perceptron B is ob- 

tained from perceptron A by discarding a large number of neurons poorly 

connected to the retina. It is easy to find that the total number of 
2 2 

neurons in the perceptron A is 2n (n - 1) while that in perceptron B 

is only 4n(n — l). This situation once again indicates the Imperfection 

of the perceptron learning mechanism and its significant difference 

fron the learning process which take place in the human brain. 
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Let us consider another exajnpoe of the computation of the learn- 

ing effectiveness In a class of perceptrons. 

Example 3. Determine the training effectiveness of the class C of 

discrete symmetric perceptrons with symmetric Initial conditions sub- 

ject to generalized a-law encouragement. The retina, patterns and Images 

are the same as In example 1. The number of neurons of each of the two 

existing patterns Is equal to N. The Inputs of all the neurons are con- 

nected Independently of one another with equal probability to any re- 

ceptor of the retina, excluding only the case of simultaneous connec- 

tion of both Inputs of a neuron to the same receptor. The training se- 

quence contains each of the 2n Images exactly once each. 

Solution. It Is easy to see that the components T.. of the char- 

acteristic matrix of the class C, In which the indices _1 and _J are dif- 

ferent Images of the same pattern, are equal to zero. The condition 

for correct recognition of the 1th Image, given by theorem 3, is writ- 

ten In our case 

7'i/>S^ (98) 

It is easy to see that the set M, . of neurons of the same pattern which 

are stimulated by both the 1th and the Jth Image with different J, dif- 

fering from _i, are disjoint. All these sets are contained, of course. 

In the set M11. Since Tl1 is Just the number of elements of the set 

IVL., for the satisfaction of inequality (98) It Is necessary and suf- 

ficient that among the neurons of the pattern P. there be at least one 

neuron which Is stimulated by the 1th image but is not stimulated by 

any Image of the opposite (different fron P^ pattern. 

Prom the geometry of the images It follows directly that this con- 

dition Is satisfied by the neurons both of whose Inputs are connected 

to the same vertical (if ^ Is a horizontal line) or to the same horl- 
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zontal (if ,1 is a vertical line). For any fixed 1 from the total num- 

ber of diffe:?<3nt connections this condition is satisfied only by 

n (n —l) connections. The probability of the desired connection is 
P p 

therefore equal to n(n - l)/n (n - l) = l/n(n + l) and the probability 

that such a connection will not take place for any of the N neurons N 

neurons is equal to (i L_ ] ^e'ttRi  . Consequently, the overall 
L n(n+l)'   ' 

training effectiveness is expressed by the equation 

If the number of neurons of each pattern is equal to 7n(n + 1), 

i.e., exceeds by approximately a factor of 7 the total number of re- 

ceptors, then the probability of incorrect operation of a perceptron 

randomly selected from the class C after training by display of all 

the Images one time each will be equal to e ', which is equal to about 

0.001. 

As mentioned above, the construction of the theory of perceptron 

learning indicates the basic differences of the learning process real- 

ized by it from the actual learning process of the human brain. Chang- 

ing from the discrete neurons to the continuous, or replacing the a- 

law encouragement by ß- or 7-law does not significantly alter this sit- 

uation. The situation may be rectified partially by the addition to 

the processes realized in the perceptron of reconnection of the neurons 

which interfere with or do not significantly aid the learning process. 

We can provide for, for example, peroidic verification of the 

weights of the neurons and random connections of the neurons with 

smaller weight. Mechanisms of this sort are realized in Roberts* adapt 

[67] and the Self ridge pandemonium [72]. They Increase the equipment 

utilization coefficient and reduce the number of neurons, which in the 

perceptron schemes with purely random connections reach tremendously 
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large values. 

However, this is completely Inadequate for clarification of such 

a feature of the adaptive functions of the brain as the use of partic- 

ular features distinguished on patterns already studied for the accele- 

ration of the process of learning to recognize new patterns containing 

all or part of these features. It is easy to see that such a process 

can be realized in the multi-stage perceptrons, i.e., in those circuits 

in which the pattern summators of the perceptron of the lower stage 

are used as the repectors for the perceptron of the following stage. 

Here the perceptrons of the lower stages are taught to recognize indi- 

vidual properties of the patterns and the perceptrons of the higher 

stages are trained to recognize the ensembles of thes properties. Cor- 

responding alterations and complications of the laws of encouragement 

can be accomplished in many different ways. We note that the scheme 

which essentially Includes the idea of the two-stage perceptron is used 

in the algorithm for teaching the rr 'ognition of geometric figures de- 

scribed in the work of Glushkov, Kovalevskiy and Rybak [29]. 

Introduction of these Improvements still does not permit approach- 

ing the simulation of another important characteristic of the brain, 

that is, the establishment of the invarlance of all the patterns with 

respect to their movement and to change of dimensions on the basis of 

a limited experience, using only a small part of all the patterns. To 

achieve any success in this direction we must alter not only the con- 

struction of the perceptron but also the very methodology of the learn- 

ing process. To do this we introduce the possibility of the recogniz- 

ing device itself participating in the organization of the learning 

sequence. 

If, for example, the recognizing device A is shown as represent- 

atives of a particular pattern several different Images, then the de- 
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vice A must have the possibility of repeating the demonstration of 

these Images as many times as necessary to ensure their correct recog- 

nition in the future. Moreover, the device must have the possibility 

of repeating the display of those same images subjected to those vari- 

ations which the image of an object on the retina of the eye is usually 

subject to with changes of the relative position of the eye and the ob- 

ject being considered. 

We can, of coarse do things other than Introduce the described 

feedback which pennlts the recognizing device to alter the learning se- 

quence. In place of this, the recognizing devices themeselves can be 

constructed so that after the display of a particular image there is 

an increase of the probability of the display at the following step of 

the same Image, viewed, perhaps, at a different angle, or at least 

images belonging to the same pattern. In other words, in the training 

of the recognizing devices we must avoid the construction of the learn- 

ing process using the scheme of independent trials and go to the more 

complex schemes described by the Markov chains. 

The suggested variations of the methods of construction of the 

learning sequences considerably Improve the functioning of the recog- 

nition devices in the simple learning regime. However, it is in the 

self-learning regime that these variations are of principal importance, 

since it is only in this direction that we can hope that the classifi- 

cation of Images performed by the self-training devices will correspond 

to the original classification performed by a human. It is clear that 

the description of processes of this sort requires far more complex 

mathematical apparatus than that which has been used in the present 

section. 
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§7. OPERATION OF THE DISCRETE ct-PERCEPTRONS IN THE SELF-LEARNING RE- 
GIME 

In the preceding section we studied the behavior of the discrete 

a-perceptrons In the learning regime. The characteristic feature of the 

learning regime is the presence of the teacher, who knows the correct 

classification of the Images. In the present section we shall study- 

some questions associated with the behavior of the discrete a-percep- 

trons In the self-learning regime. In this case the teacher is missing, 

and the processes of self-organization which lead to the alteration of 

the Image classification performed by the perceptron are determined by 

the positive feedback Introduced into the perceptron circuit. 

It is well known that the analysis of the behavior of the percep- 

trons In the self-learning regime which was made by Rosenblatt [69] is 

very far from being mathematically rigorous. The absence of rigoro sly 

proved propositions in this field leads sane authors to ascribe to per- 

ceptron self-learning (particularly in publications of a popular sci- 

ence nature) many properties which in actuality it does not possess 

and cannot possess. On the basis of the considerations of the present 

section. It Is not difficult to draw several conclusions which outline 

the boundaries of the actual possibilities Inherent in the self-learn- 

ing of the perceptrons. 

Let us consider the discrete a-perceptron designed for the recog- 

nition of the two patterns P and Q. As the single output signal of the 

perceptron we shall consider the difference of the signals of the sum- 

mators of the Pth and Qth patterns 

MO-t/fW-W (99) 
Here, Just as in the equations of the preceding section, the in- 

dex _! runs through all the images of the (both Pth and Qth) patterns, 

£  Is any sequence of Images shown to the perceptron in the process of 
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Its self-training. 

Just as In the case of training. It Is not difficult to show that 

the functioning of the symmetric perceptron In the self-training regime 

Is detemlned by the sum a + b of the encouragement and penalty con- 

stants, and not by these constants considered separately. Having In 

view also the possibility of arbitrarily varying the scales. It Is per- 

missible, without losing generality, to assume that a = 1, and b = 0. 

In the future we shall always make this assumption. 

Using IITjJI to denote the characteristic matrix of the perceptron 

and recalling the definition of a-law encouragement, we easily obtain 

the equation 

W-V^O + VignV^/). (100) 

Here the symbols ij denote the Image sequence £  to which there Is 

appended the Image J. 

Equation (100) Is valid for any palf* of Images _1, J and for any 

Image sequence i. The function sign x, as usual. Is taken equal to 

plus 1 for positive values of x and equal to minus 1 for negative val- 

ues of x. It Is clear that In the case of a zero value of the quantity 

V..(,g), from the exact meaning of the encouragement law (positive feed- 

back) the quantity sign V.(i) In equation (100) must be undefined. In 

order to avoid Indeflnlteness, In the future we shall, by definition, 

consider zero to be a positive quantity, so that sign 0 « + 1. 

Keeping In mind the Indicated modification In the definition of 

the function sign x, we shall consider equation (100) as a method of 

recurrent specification of the vector V(i) = (7,(1), V2(i), ..., V 

(/)), which defines the output signals of the perceptron under the ac- 

tion of any image J = 1, 2, ..., m after the application to the per- 

ceptron Input of the Image sequence i. The Initial value of this vector 

V(0) = (V^o), Vp(0), ..., Vm) (0)) Is assumed given. The Image Is as- 
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soclated by the perceptron with the P pattern or the Q pattern in ac- 

cordance with whether or not the corresponding component V.(^) of the 

vector being considered is positive or negative (we recall that zero, 

according to the accepted agreement, is considered to be a positive 

number). 

Since all the quantities T. . are integral (and also nonegative) 

numbers, the problem of the design of the perceptron in the self- 

training regime reduces in essence to the problem of a random walk over 

a discrete lattice in space with the number of measurements < m. As- 

suming that the display of the images in the self-learning process is 

performed following the scheme of independent trials, it is easy to 

note that the probabilities of the transitions from any point of such 

a lattice are determined only by the ensemble of signs of the coordi- 

nates of this point. 

It is not difficult to see that the set of signs of the corrdl- 

naten of any point of the lattice also defines the image classifica- 

tion performed by the perceptron which has as the vector of its output 

signals the radius-vector of this point. From the point of view of per- 

ceptron theory, of prime interest is the limit distribution of the 

signs of the coordinates of the vector V(^) with unlimited increase of 

the length of the training sequence ^. The analysis made above shows 

that the required distribution is obtained fron the limit distribution 

for the Markov chain corresponding to the walk over the discrete lat- 

tice described above. 

Since this chain has an infinite number of states, finding the 

distribution limit in the general case is quite complex. We can, how- 

ever, note several cases when finding the limit Jlstrlbution Is easily 

reduced to the study of the Markov chain with a finite number of states 

Let us consider as an example the discrete symmetric a-perceptron 
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A designed for the recognition of 2n Images, the first n of which be- 

long to the pattern P, and the last n to the pattern Q. Assume further 

that for the elements of the characteristic matrix of the perception 

A the relation Tj, = a > 0, holds If ^1 and J belong to the same pat- 

tern and Tl1 ■ 0, holds If _1 and _J belong to different patterns. In 

view of theorem 4 from §6 of the present chapter, the perceptron being 

considered has absolute capacity for extrapolation and, consequently, 

behaves Itself best In the learning regime (learns the correct recog- 

nition as a result of showing at least one Image of each pattern). Let 

us assume that the Initial conditions will be the conditions V.(o) = 

= b (b > 0) for 1 « 1, 2, ..., m (m ^ n) and Vj(0) - -b for J = m + 1, 

m + 2, ..., n, .., 2n. 

Prom equation (100) it follows directly that V (^) < 0 for any se- 
j 

quence I with J « n + 1, n + 2, ..., 2n. The remaining components will 

be expressed by the equations VAi)  = b + k a for 1 = 1, 2, ..., m and 

by V^i) = - b + ka for 1 « m + 1, m + 2, ..., n, where k is the dif- 

ference between the number of appearances of the Images corresponding 

to the positive components V.(i') and the number of Images correspond- 

ing to the negative components V1(|
l) (^ is the corresponding subse- 

quence of the sequence i). 

Let us assume that the self-training process is accomplished us- 

ing the scheme of independent trials with different probabilities of 

the appearance of all the images. Since the display of the Images of 

one pattern in the case considered has no effect on the recognition of 

the Images of the second pattern, we can without losing generality as- 

sume that in the self-training process there participate only the 

Images of the pattern P (the images of the pattern Q always correspond 

to a negative output signal regardless of whether they are Included in 

the self-training process or not). 
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Let us assume that b does not contain a,  and use t to denote the 

whole number [a/b] +1.   It  is not difficult to see that for the study 

of the functioning of the perceptron A only those values of the para- 

meter k are of Interset which are Included In the closed  interval 

[-t,   t].   Actually,   If In the self-training process the quantity k 

reaches the value t even one time,  then In the future,  as a result of 

equation  (100),   It can only Increase,  and the perceptron,  beginning 

with that moment, will deliver a posltve output signal for all images 

of the pattern  (which corresponds to correct classification).  Similarly, 

if the parameter k takes the value -t,  the perception will deliver a 

negative output signal for all images  (which actually means the absence 

of any i»aage classification, since all the images are associated by the 

perceptron to the same pattern). 

Now,  as is easily seen, the limit behavior of the perceptron A Is 

determined by the Markov chain with 2t + 1 states k = —t, —t + 1,   ..., 

..., - 1,  0,  1,   ...,   t—1,  t.  Inview of the assumption made on th^  DPO- 

babilitles of the appearance of the images  in the process  of the self- 

training,  for any k differing from t or —t the probability of transi- 

tion into the state k + 1 is equal to m/n,  and the probability of tran- 

sition into the state k — 1 is equal to n — m/n.  Prom the state t  (just 

as from the state —t) transition is possible only into the same state, 

since from the point of view of the functioning of the perceptron all 

states with k > t  (correspondingly — with k <-t) do not differ from 

the state k = t   (correspondingly - from the state k«t). 

Introducing the notations p = m/n and q = n - m/n,   we obtain for 

the considered Markov chain the matrix of the transition probabilities 
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11 00 0. .,.0 00 
.o 0 o 0 . . .000 
0 p 0 q .  .  .0 0 0 

M 

0000. .,0^0 
0 0 0 0. . .p 0 Q 
,0000. .  .001 

This matrix has unity as Its double characteristic root.  The proba- 

bilities of the transition of the chain Into the states t and -t are 

equal to the limit tranlstlon probabilities p^.1 ,  and P^.n  pt+i*  For 

the probability P?+i   <  we obtain from the Perron equation 

«•       um d H****! 
x-i (101) 

It Is easy to see that M. t+1 (X) for _1 differing from 1 and from 

2t + 1 contains (X — l) and therefore for all values of _1 pj.- . = 0. 

For 1 - 1 M1 t+1 (X) = (X - 1) MjCx) and for i = 2t + 1 ^t+l  t+1 ^ = 

= (X - 1) M2(X), where M1(X) = p
tQ(X), M2(X) = q

tR(X). 

From equation (101) we easily obtain P*., 4- = cp , P?+1 pt+l 
= cq " 

Since all the remaining limit transition probabilities in the 

(t + l)th row are equal to zero, from the conditions of stochastlclty 

of the matelx of the limit transition probabilities we find the value 

of c:  c = 1/p +q . Thereby we have proved the following proposition. 

With unlimited continuation of the self-training process the per- 

t t t ceptron A described above with the probability p /p +q establishes 

the correct classification of the images and with the probability 
4-4-4- 

q /P +q    relates all the Images to the same pattern. 

The considered example, as the attentive reader can easily note, 

strictly speaking cannot be performed  in a real perceptron,  except for 

the trivial cases m=n,  p=l,  q=0 and m = 0,  p = 0,  q = 1.  The 

reason is that with the assumptions made relative    o the characteristic 

matrix all the images of the same pattern stimulate the same set of 
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neurons. Therefore, the output signals induced by the Images of the 

same pattern always must be eq il to one another, Including at the ini- 

tial moment. 

It is not difficult, however, to note that by setting T.. = a+ö 

for all 1 = 1, 2, ..., 2n (6 > 0), we obtain the poGslbllity of sat- 

isfying the initial conditions introduced in the example. Moreover, if 

6 is significantly smaller than a, and t is relatively large, then the 

perceptron behavior described in the example can serve as a good ap- 

proximation for its real behavior. 

Let us consider the complete discrete a-perceptron B with (l, 1, l) 

-neurons, with a square (n x n)-retlna, designed for the recognition 

of the two patterns P and Q. The pattern P consists of n horizontal 

lines, and the pattern Q and n vertical lines. Each of these lines con- 

stitutes an Individual image. In the preceding section it was noted 

that the perceptron B Ljuld be considered as the most characteristic 

representative of the class of perceptrons with random connections of 

the neurons with the retina. According to theorem 1 and the corollary 

following it from the work of Rosenblatt [69]» such perceptrons con- 

structed using continuous neurons with self-learning must tend to a 

state In which all the Images are related to the same pattern with a 

probability arbitrarily close to unity. Let us show that this state- 

ment is not valid for the perceptron B. 

It is easy to see that we can select any initial conditions for 

the perceptron B. We shall tern the smallest of the numbers |V (0) | 

(1=1, 2, ..., 2n) the lower boundary of the moduli of the initial 

conditions. With the assumptions made, the following theorem is valid. 

Theorem 1. For any arbitrarily small positive number e there is a 

number S such that in the case when the lower boundary of the moduli 

of the Initial conditions exceeds S the perceptron B in the self-train- 
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the Inequalities 
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v'  1 2,,.     (103) 

ing regime (with equiprobabillty of appearance of all the images) re- 

tains the intial classification of the images with the probability 

P > 1 - e. 

Proof. We use N to denote the length of the training sequence ^ 

and v, to denote the number of appearances of the ith image (i = 1, 

2, ..., 2n) in this sequence. Let V^Co) = x1 (i = 1, 2, ..., 2n); k. 

is the set of all indices j (images) relating to the pattern opposite 

in comparison with _1 and such that the sign of x. coincides with the 

sign of x.; z. Is the set of all indices J relating to the pattern 

which is opposite to _! and such that the sign of x. is opposite to the 

sign of x^ (as before, zero is here considered to be a positive num- 

ber). 

As was shown In the preceding section, the arbitrary element T... 

of the characteristic matrix of the perceptoon B is equal to n (n - l), 

0 or (n — l) depending on whether the indices _1 and _J coincide or do 

not coincide but relate to the same pattern, or do not coincide and 

relate to different patterns. Using this circumstance, with the aid of 

equation (lOO) we easily learn that the original classification of the 

Images is retained in the self-training process if for all N = 1, 2, ... 

the following Inequalities are satisfied 

/«•(rt-Dv. + Ci-IffEv^Ev/j + lxJX) (<-1.2 2n). 
/«»,   ft, 

and even more so if 

nt^-i^-fn-I)«  E^+JOO   (<.1.2 2n). (102) 
'•*/"«/   .   

where x is the minimal of the numbers   Ix.^l = 1,  2,   ...,  2n).   In turn 

it is not difficult to verify that inequalities  (102) are satisfied if 



are satisfied. 

With designation of the quantity l/4n by the letter 6 It Is evi- 

dent that the Inequalities (103) will be obviously satisfied If the 

Inequalities 

■ff"~"5r <6      C-U 2n). (104) 

are satisfied. 

As the result of theorem 4 of §3 of the present chapter, there 

exist the positive constants a and b, not depending on N, such that 

the probability PN of nonsatlsfactlon of at least one of the inequal- 

ities (104) with any fixed value of N has the estimate /?(M)^ _?_ .-iT^, 

The probability of nonsatlsfactlon of at least one of Inequalities 

(104) for values of N from M to » does not exceed the sum of the series 

> "TTT • , , and this sum is clearly less than  PN< r-«   . With 

M -♦ co the quantity R(M) vanishes. Let us take M so that R(iyi) < e. 

Now taking S - 2(M - l)n2(n - l) we find that with x > S the in- 

equalities (103) are satisfied foe all values of N = 1, 2, ..., M - 1. 

As a result of the choice of M, for all the remaining values of N the 

Inequalities (103) are satisfied with a probability greater than 1 - e. 

Since satisfaction of the inequalities (104) for all values of N from 

1 to < « means retention of the original classification of the images, 

the theorem Is proved. 

Theorem 1 shows that with sufficiently large initial values of 

the output signals for all the Images the considered perceptron actu- 

ally is practically devoid of capability not only for self-training, 

but even to simply change the Image classification initially specified 

to It. Prom the proof of the theorem it is easy to see that the remain- 

ing weak capability for self-alteration has its maximal value in the 

case of the correct Initial classification. In other words, the per- 
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ceptron has the least tendency to retain the correct method of func- 

tioning. 

Let us consider ß-law encouragement. To do this let us fix the ar- 

bitrary number ß Included between zero and unity, and let us consider 

the arbitrary symmetric perceptron C with ß-law encouragement whose 

characteristic matrix Is diagonal, I.e., In other words, has nonzero 

elements only on the principal diagonal. As shown In the preceding 

section, this property Is possessed by the summetrlc perceptron C. with 

(l, 1, l)-neurons which Is designed for the recognition of horizontal 

and vertical lines and In which the Inputs of each neuron are connected 

to the elements of the retina located on one horizontal or on one ver- 

tical. 

In the case of ß-law encouragement the basic recurrent relation 

for the determination of the output signals Is written 

v, (/y) - (i - P) (v/(/) + resign v^/».       (105) 

The notations here are exactly the same as In equation (100) and 

this relation Is also valid for any discrete symmetric perceptrons. In 

the case of perceptrons with diagonal characteristic matrix both tenns 

In the right side of equations (100) and (105) always have the same 

sign (the case when the second term Is equal to zero Is excluded from 

consideration). Whence follows directly the validity of the following 

proposition. 

Theorem 2. The discrete symmetric perceptron C with diagonal char- 

acterlstlc matrix Is completely devoid of capability for self-learn- 

ing (i.e., retains unchanged any given original Image classification) 

(both In the case of a-law encouragement, and In the case of ß-law en- 

couragement. 

It Is also easy to see the validity of the following proposition. 
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Theorem 3. No discrete symmetric perceptron (with either a- or ß- 

law encouragement) operating in the self-training regime can alter the 

original image classification if this classification relates all the 

images to the same pattern. 

Our results can be considered as counterexamples to the results 

of Rosenblatt [69],  to the degree that his discussions relate not only 

to the continuous but also to the discrete neurons. In any case these 

results indicate that the asymptotic behavior of the perceptrons in the 

self-training regime is far more complex and requires considerably 

more precise techniques for its study in comparison with the techniques 

of purely qualitative nature used by Rosenblatt [69]. 

For a visual representation picture of the peculiarities of the 

behavior of the perceptrons in the self-learning regime In comparison 

with the learning regime, let us consider the case when the number of 

Images is equal to two (each pattern consists of one single image). 

This case peimits simple graphical Interpretation. 

First we note that in the case of the presence of two patterns 

(but with an arbitrary number of images) the functioning of the per- 

ceptron in both the learning and the self-learning regimes is conven- 

iently characterized by a vector with the components V.(i) (see above). 

The basic recurrence relation for these components will obviously have 

the fom 

V,('/)-Vi(0±7V (106) 

This relation Is valid for any pair of Images i,J and for any 

training sequence i. The second tern in the right side is taken with 

the plus sign if the image J in the correct classification relates to 

the positive output signal, and with the minus sign if the correspond- 

ing output signal must be negative. 
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Flg. 13 

Let us consider the discrete symmetric 

perceptron with ot-law encouragement whose 

characteristic matrix Is the matrix r=J|j b    , 

where a > b > 0. Let us assume that with cor- 

rect classification the firs Image must In- 

duce a positive output signal, and the sec- 

ond Image — a negative output signal. Plotting the coordinate V1(i) 

along the horizontal axis, and the coordinate V2(i) along the vertical 

axis, we associate with each vector (V^i), V2(i)) some point of the 

plane. Selecting one point In each quadrant, 

we obtain a visual Impression of the action 

of equation (106) (Fig. 13). 

In Pig. 13 the letter ü^ denotes the vec- 

tor (a, b) and the letter Tp denotes the vec- 

tor (b, a); the characteristic feature of the 

training regime Is that the directions of the 

vectors (defining the random walks of the point on the lattice) do not 

depend on the position of the points on the plane. The resultant of 

these vectors Is always directed In the direction of that quadrant In 

which the signs of the coordinates (output signals of the perceptron) 

coincide with the correct classification (in the present case this 

quadrant Is the hatched — fourth quadrant). 

For the case of the self-training regime the Interpretation of the 

corresponding equation (lOO) Is shown In Pig. 14. In contrast with the 

previous case, the directions of the vectors which define the random 

walks are different In the different quadrants. The designations of the 

vectors are the same as In Pig. 13. 

It Is not difficult to note the qualitative differences of the 

situation shown In Pig. 14 from the situation shown In Pig. 13. First 
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of all, the first and third quadrants (shown shaded in Fig. 14) now 

possess a trapping property: a point which falls into one of these 

quadrants In the process of the random walk can never excape from it. 

Entrance into these quadrants means actually the absence of any 

classification (both images are assigned to the same pattern). More- 

over, from the quadrant corresponding to correct classification with 

accuracy to the sign of the output signal (third quadrant) there is al- 

ways a zero probability of exit into the neighboring quadrants. 

Considering the resulting situation in the purely qualitative as- 

pect, similar to the approach of Rosenblatt [69], we would have to come 

to the conclusion that the perceptron which we are studying tends as- 

ymptotically to a state in which output signals of the same sign (ab- 

sence of any classification) are generated for all images. A more 

thorough consideration (repeating the analysis made in the proof of 

theorem l) leads, however, to a completely different conclusion: Just 

as in the case of theorem 1, with sufficient removal of the initial 

point from the boundaries of the quadrant the probability of contin- 

uation of the random walk without leaving this quadrant in all the suc- 

ceeding instants of time (clear up to infinity) can be made arbitrarily 

close to unity. 

This once again underscores the danger arising in the case when 

general conclusions on the asymptotic behavior of the perceptrons are 

based on arguments of purely qualitative character, without confiming 

them by exact computations and estimations. 

§8. LOGICAL CLASSIFICATION SYSTEMS AND CONDITIONAL PROBABILITY MACHINES 

The systems for pattern recognition considered in the preceding 

sections are devices for the classification of certain subsets in the 

image space. Directing ourselves to the visual, audible and other pat- 

terns which are continuous in nature, we to a certain degree trans- 
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ferred the property of continuity to the corresponding classification 

systems. Actually, even In the case of clearly discrete receptors the 

hypothesis of the N-extrapolatablllty of the patterns, which presumes 

continuity of the patterns, permitted selection for classification only 

of those sets which were in the corresponding sense "well arranged." 

This same Implicit use of the property of the continuity of the patterns 

is also present In the perceptrons (including the discrete) and also 

in all the other algorithms and devices for the recognition of patterns 

mentioned in the preceding sections. 

The limitation of the number of image space subsets which are sub- 

ject to consideration and clasaificatlon in the case of the visual, 

audible and other patterns which are of a continuous nature is of prime 

importance, since without such limitation the recognition problem would 

be practically unsolvable for these patterns. 

Actually, in the case when the retina consists of n binary recep- 

tors the Image space consists of I(n) = 2n different images and con- 

tains Q(n) = 2  different subsets - possible discrete patterns. With 

n = 5 the second of these quantities already exceeds four billion, and 

with a relatively small number of receptors such as 100 the first quan- 

tity is expressed by one with thirty zeros. 

In view of these discussions it becomes evident that the problem 

of the construction of devices which store (or generate) the features 

of all possible patterns for any large values of n is practically un- 

solvable. However, in the case when the number of (binary) receptors 

does not exceed ten or fifteen it is in practice quite possible to con- 

struct a machine capable of remembering and performing various opera- 

tions with all the images (but not with all the patterns) which can be 

reproduced with the aid of the corresponding retina. 

The machines which classify all the possible Images which can be 
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obtained from binary receptors will be tenned logical classification 

machines. We shall describe one of the possible schemes of such ma- 

chines proposed by Attlee [2]. 

For each property of the Image the Attleo classification machine 

contains the so-called discriminative element which Is stimulated un- 

der the action of this property. Here and hereafter, by Image property 

we shall mean the presence In some set M of receptors (depending on 

the choice of the corresponding property) of a definite combination 

of output signals (zeros and ones). Here the receptors which do not ap- 

pear In the set M can have any output signals. The property that the 

receptors with the numbers 11, i2, ..., 1 have unity output signal 

and the receptors with the numbers J,, J2, ..., J have a zero output 

signal will be designated by (l^ lg, ..., 3^; J,, J2, ..., Jn). 

Prom these definitions it becomes clear that the specification of 

a property Is equivalent to the assignment to the retina receptor out- 

put signal of one of three values: one, zero, indifferent. If we de- 

note the total number of receptors composing the retina by N, then it 

is easy to see that with a total number of Images equal to 2 , the 

N number of their different properties will be equal to 3 . All the prop- 

erties of any given Image can be obtained with the aid of replacement 

of some number of the signals (zeros and ones) composing this image by 

the Indifferent signals. The number of such replacements (and this 

means the number of properties of each image) will clearly be equal to 

the sum CN + CN + ... + CN = 2 . Thus, each Image causes the stimula- 

N tion of 2 elements of the classification machine. 

Let us term theproperty of the image to stimulate the ith recep- 

tor the 1th elementary property, and any combination of elementary 

properties we shall tenn a positive property. With N binary receptors 

there are In all only N elementary properties. It is also clear that 
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the Bpeclflcatlon of any positive property Is equivalent to the spec- 

ification of some subset of receptors which Induce unit output signals. 

The total number of positive properties is thus equal to the number of 

subsets of the set of N elements, i.e., 2^. 

Attlee terms the classification machine Just described which is 

able to differentiate any image properties, the binary classif icat ion 

machine, in contrast with the so-called unitary classification machine, 

which is capable of differentiating only positive properties. It is 

easy to see that for every binary machine there exists its equivalent 

with respect to the classification being performed) unitary machine 

containing twice the number of receptors. We need only add to each re- 

ceptor which reacts to a particular elementary property another recep- 

tor which reacts to the absence of this property. Although at first 

i N glance it appears that after this we need 4 discriminative elements, 

in actuality many of them are redundant since they will never be stim- 

ulated. After removal of the redundant elements the number of remain- 

ing elements will be exactly the same as in the case of the binary ma- 
N chine, i.e., 3 • The simplicity of the reduction of the binary machines 

to unitary machine makes it possible for us to limit ourselves in the 

future to the consideration of only the unitary machines. 

It is convenient to picture the discriminative elements of the 

unitary classification machine with N receptors in the form of neurons 

having from one to N input channels and capable of being stimulated 

only in the case of simultaneous stimulation of all their input chan- 

nels. Each of the neuron input channels is connected to the output 

channel of some receptor. Neurons with inputs connected to the recep- 

tors with the numbers i,, io* ...j IJ-I will correspond to the positive 

property (l,, i2, ..., 1^) and will be stimulated only with the pre- 

sence of this property in the image being recognized. In order that 
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N the total number of neurons be equal to exactly 2 It is necessary to 

assume the presence of still another neuron without input channels 

which is stimulated constantly regardless of the ima^e being recocnized. 

This neuron corresponds to the property which is the combination of the 

empty set of the elementary properties. 

Let us consider the arbitrary receptor _i and all the positive 

properties containing the elementary property _i. Among these properties 

there Is exactly one property containing one elementary property (in 

the present case this will be the property ^1 itself), exactly CjJ J = 

= N — 1 properties containing two elementary properties each (all prop- 

ertles of the form (l, j), where J j^ i), exactly CN , properties con- 

taining three elementary properties each, etc. In the unitary machine 

one neuron corresponds to each of the positive properties. The total 

number of neurons connected to the receptor i is expressed by the GUM 

1 + CN-1 + CN-1 + • • • + CNII = 2N~1' which amounts to exactly half or 

all the neurons in the unitary machine. 

Making a random selection of the neurons with the condition that 

all the neurons are considered equiprobable, we come to the conclusion: 

the probability that the neuron thus selected will be connected to 

any given receptor _1 is equal to 1/2. Thus, a connection scheme which 

is to a certain degree close to the scheme of the unitary class iflea- 

tion machine can be obtained as the result of the random connectign of 

the neurons to the receptor with equal probability of connection or 

nonconnection of the input channels of a given neuron to a given re- 

ceptor. 

In the described scheme of the classification machine (either bl- 

anry or unitary) there is complete absence of any elements of self- 

organization or self-improvement. Therefore, following Attlee, we In- 

troduce changes and additions into the scheme of the unitary machine, 
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after which this machine is converted Into the so-called conditional 

probability machine. 

For slmpllflcatlor of the notations we shall denote any positive 

properties of the Images by capital Latin letters. If I and J are pos- 

itive properties, then we use / y'j to denote the union of these prop- 

erties, i.e., the positive property consisting of all the elementary 

properties occurring either in the property I or in the property J, or 

in both of these properties at the same time. We use /n/ to denote 

the intersection of the properties I and J, i.e., in other words, the 

positive property consisting of all those and only those elementary 

properties which occur simultaneously in both the property I and in 

the property J. 

Let us now assume that to the input of some unitary machine there 

is applied some training sequence, i.e., simply speaking, some sequence 

of images. Generally speaking, not all the terns of this sequence pos- 

sess the fixed property I. Therefore the neuron corresponding to the 

property I is stimulated by some terms of the training sequence and 

not by other terns. The ratio of the number of terms of the training 

sequence possessing the property I and, consequently, stimulating the 

indicated neuron, to the total number of terms of this sequence is nat- 

urally termed the property frequency for the given training sequence 

(which we shall also term the training history). For clearer differ- 

entiation from the conditioned frequency which is Introduced later, we 

customarily term thefrequency Just defined the unconditioned frequency. 

We designate the unconditioned frequency of the property I by 

p(l); here the training history is assumed to be fixed. 

Let us Impose on the neurons of the unitary classification ma- 

chine the additional function of computing the unconditioned frequency 

of the appearance of the properties corresponding to them. If the image 

- 308 - 



being applied to the machine input possesses some property I, then the 

neuron corresponding to this property, after calculating and menorlz- 

ing the unconditioned frequency of the property I, delivers at the 

given moment the output signal equal to one. If, however, this neuron 

is not stimulated (i.e., if the current image does not possess the 

property I), then its output signal will be the value of the uncondi- 

tioned frequency of the property I which is stored in the neuron. 

With the indicated additions and alterarions the unitary machine 

now takes on certain features which are characteristic, if not of the 

self-organizing automata, in any case, of the self-adaptive automata. 

Further improvement involves the computation of the so-called condi- 

tioned frequencies of the properties being classified by the unitary 

machine. 

The conditioned frequency p(l/J) of the property I with relcttlon 

to the property J is the ratio of the number of cases of Joint appear- 

ance of the properties I and J (i.e., in other words, the appearance 

of the property l\jj) to the total number of cases of appearance of the 

property J 

P(W)-^- (107) 

We shall as before consider that the neurons of the unitary ma- 

chine compute and remember the unconditioned frequencies of the prop- 

erties corresponding to them. Just as before, in the case of direct 

stimulation of a neuron (i.e., in the case of the presence in the cur- 

rent image of the property corresponding to this neuron) the neuron 

will deliver a signal equal to one. However, all the neurons which are 

not subjected to direct stimulation must now deliver not the uncondi- 

tioned, but theconditioned frequencies of the properties corresponding 

to them. The only question is: relative to what property are the indi- 
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cated conditioned frequencies xo be calculated. It is easy to see that 

as the property J it is most nr^v.ral to select the maximal positive 

property of the image being consi^eied, which is the union of all the 

elementary properties which the given image possesses. Actually, only 

the very maximal property completely determines the image corresponding 

to It, so that the conditioned frequencies will be actually referred to 

the frequency of the appearance of this image. 

Let us introduce the concept of subordination for the neurons of 

the unitary machine. We say that the neuron A is subordinate to the 

neuron B if the property J corresponding to the neuron B includes in 

itself all the elementary properties from the property I corresponding 

to the neuron A. 

The neuron Q, corresponding to the maximal positive property of 

some fixed image, is obviously characterized by the subordination to 

it of all the neurons which are directly stimulated by this Image, and 

it is not subordinate to any of these neurons, except, or course, it- 

self. All the neurons to which the neuron, Q Is subordinate constitute 

the so-called superset M(Q) of this neuron. In the case being consid- 

ered none of the neurons P from the set M(Q), except Q itself, is di- 

rectly stimulated and therefore must deliver a signal equal to the con- 

ditioned frequency p(l/j) of the property I, corresponding to the neu- 

ron P, relative to the property J, corresponding to the neuron Q. Prom 

the definition of the superset it follows directly that /yy -/, 

Therefore, as the result of equation (107), 

P(/) pm JUT' 
(108) 

Thus, for all the neurons from the superset M(Q) of the neuron Q 

the output signals can be dfetermined from the equation (108): to ob- 

tain the output signal of the neuron P from M(Q) the value stored in 

it of the unconditioned frequency of the property corresponding to it 
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must be dlveded by the value fo the unconditioned frequency stored in 

the neuron Q. Attlee terms this operation for obtaining the output sig- 

nals of the neurons from the superset iyi(Q) the supercontrol operation. 

The superconteol operation does not lead to contradiction even for the 

neuron Q Itself, since in this case the output signal computed using 

equation (108) will obviously be equal to unity, which agrees with the 

known value of the output signal of the neuron Q obtained from the con- 

dition of the direct stimulation of this neuron. 

The set of all the neurons subordinate to any given neuron P will 

be temed the subset of this neuron and will be denoted by L(P). Us- 

ing the concept of the subset, it is not difficult to determine the 

method of obtaining the output signals for all the neurons which are 

not subjected at the given moment to direct stimulation and do not en- 

ter into the superset of the neuron Q corresponding to the maximal pos- 

itive property of the image being considered in the given step. 

Let us denote the set of all such neurons by K, and let R be any 

neuron from K. If as before J denotes the property corresponding to the 

neuron Q, I the property corresponding to the neuron R, then the neu- 

ron P which corresponds to the property /u^. will obviously belong to 

the superset M(Q). 

As the result of equations (107) and (108), the output signal of 

the neuron R is equal to the output signal of the neuron P. Moreover, 

it is clear that the neuron R occurs in the subset L(P) of the neuron 

P. This suggests the conclusion that all the output signals not so far 

detemined (for the neurons of the set K) can be obtained as the re- 

sult of simple transfer of the output signals of the neurons from the 

superset M(Q) to the neurons of the subsets corresponding to them. It 

is natural to tenn this transfer of the output signals to the subsets, 

by analogy with supercontrol, the subcontrol operation. 
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However, the subcontro.1 operation defined In this way does not 

lead to a unique detenu Irs, cIon of the output signals, since neuron R 

from K appears In not one, but, generally speaking, several subsets of 

the various neurons from M(Q). For the elimination of the resulting am- 

biguity we note that among the subsets H of all the neurons from M(Q), 

to which the neuron Is subordinate, the neuron P of Interset to us 

(corresponding to the union of the properties I and J, as they were 

defined above) will be subordinate to all the remaining neurons of this 

subset. It Is easy to see that the property l{jj  will In this case have 

the highest unconditioned frequency among the properties correspond- 

ing to all the neurons from H. As a result of equation (108) this means 

that the output signal of the neuron P Is the highest among the output 

signals of all the neurons fron the subset H. 

Thus, to ensure error-free functioning of the machine the subcon- 

trol operation must be supplemented by still another rule: If as the 

result of the subcontrol operation several different output signals are 

transferred to some neuron, the largest of them must be selected. 

Let us emphasize once again that the subcontrol operation Is not 

applied to the neurons whose output signals are determined from the con- 

dition of direct srlmulatlon or on the basis of the use of the super- 

control operation. 

The unitary machine with all the described additions and altera- 

tions In the neuron functioning laws Is termed a conditional probabil- 

ity machine. This name emphasizes the fact that the conditioned fre- 

quencies computed by the machine with sufficiently long training his- 

tories, which we will assume are usually perfonned using the Indepen- 

dent trials scheme, tend with arbitrarily high confidence level to the 

corresponding conditional probabilities of some properties with respect 

to the others. The conditional probability machine is uaed for the sim- 
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ulation of the processes of the development and decay of the s o- called 

conditioned reflexes. Let us assume that throughout the entir•e trai n­

ing histor,v of the machine the property J appeared almost always t o­

gether with the other property I. In that case the conditioned frequenc. 

p(J/I) of the property J with respect to the property I wlll be cl1) f;{= 
I 

to unity. It now property I appears witho~t property J, then the lr-
action (output signal) of the neuron Q, corresponding to the prope~y 

J, will differ little in its· intensity from the reaction of the nt­
ron P, which corresponds to the property I, and consequently is sUb-

' 
Ject to the direct stimulation from the direction of this property . viE: 

will say 1n this case that 1n the machine the·re was developed a condi­

tioned reflex for the property J with relation to the property I. 

If after the development of the indicated reflex it is not r ei n­

forced over the course of a sufficiently large number of steps l n the 

succeeding training histor.y (i.e., the property I appears wi t hout the 

property J) then the conditioned frequency p(J/I) will diminlsh and 

can 1n the course of time becc:ine a negligibly small quantity. With tltc 

next appearance of the property I without the property J the reactlon 

of the neuron Q will be ver,v slight. In this case we shall ape.::.!'~ c.r 
i the deca,y of the corresponding reflex.. J 

These processes of the developme~ and. <decay of the conditlOlied 

reflexes, at least fran the purely superficial view, are quite i,.i..la1· 

to the analogous processes taking place in the living organisms, ~~ 

particular in the human nervous system. At the same time ther e are sev­

eral differences. One of the essential differences is that i n th~ 

scheme we have described the rate of development and decay of the con­

ditioned reflexes 1n the very beginning of the training process is t qo 
·~ 

high and at the end of the training process this rate is too l ow. Thl~ 

situation can be rectified by replacement of the unconditionec and 
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conditioned frequencies by the so-called pseudo.frequencleg. 

The unconditioned pseudofrequency of any given property I is the 

quantity r, included between zero and one, which increases with the 

appearance of Images with the property I and decreases with appearance 

of Images not having the property I. The quantity r must tend to one 

if, beginning with some moment, all the tems of the training sequence 

have the property I, and must tend to zero if all the terms of the 

training sequence, beginning with some moment, do not possess the 

property I (we assume here that the training sequence can be comple- 

mented with new terms in the course of an arbitrarily long period of 

time). 

This definition is satisfied, in particular, by the unconditioned 

frequency, which can therefore be considered as one of the possible 

methods for the specification of the unconditioned pseudofrequency. 

However, it is simpler and more convenient to consider as the uncondi- 

tioned pseudofrequency some property of the quantity r = r (I), given 

by the recurrence relations 

V.-IM10"0  0 = 0.1.2....). (109) 

where the quantities a and ß are positive constants which are strictly 

less than unity. If at the (n + l)th step of the training there appears 

the property I, then we use the upper line of the indicated relations, 

otherwise we use the lower line. The initial value r0 of the quantity 

r can.be! selected arbitrarily on the interval (0, l). 

If now in the conditional probability machine described above we 

replace the unconditioned frequency of the properties by the pseudofre- 

quencies calculated with the aid of equation (109) and leave the neu- 

ron functioning method as before, then by selecting suitably the quan- 

tities a and ß, we can approach much closer to the imitation of the bi- 
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ologlcal  processes of the development and decay  of the conditioned   re- 

flexes than we can In the case of the original conditional probability 

machine.   The conditioned frequencies of the  prop, .cies will as  before 

be computed using equation   (107),   however,   in place  of theunconditloncd 

frequencies   in the right  side  of this equation there will appear the 
1 

unconditioned pseudofrequencles. Therefore equation (10?) will now 

give not the conditioned frequency, but some quantity which It is nat- 

ural to term the conditioned pseudofrequency of one property with re- 

lation to another. 

We can, moreover, by defining in a somewhat different way the con- 

cept of the conditioned pseudofrequency improve the conditional pr< ba- 

bility machine so that it will immediately determine the conditioned 

the conditioned pseudofrequencles of the properties without preliminarv 

calculation and memorizing of their unconditioned frequenciec or pseu- 

dofrequencles. To do this we Introduce into the unitary classification 

machine paired directed connections between the neurons. Each such con- 

nection Is assigned some weight, which can take any real values on th< 

Interval (0, l). These weights can vary at every step of the tralninr. 

We shall denote the weight of the connection between the neurons r and 

Q in the nth training step by *-n(P* Q)« We note that the weights 

\,(P> Q) and ^n(Q* P) are not necessarily equal to one another. 

The law of variation of the connection weight is specified by the 

following relations, defined for all values of n = 0, 1, 2,... : 

if at the (n + l)th training step the neuron P 

is not stimulated: 

K+i iP'Q) - K (p'Q) + «0 -Kip' Q))' 
(110) 

if at the (n + l)th training step both neurons P and 

Q are stimulated; 
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If at the (n + l)th training step neuron P Is     UlO) 

stimulated and neuron Q Is not stimulated. 

Here, Just as In equation (109), ot and 0 are positive constants 

which are strictly smaller than unity and the initial weight X0(P, Q; 

can be chosen arbitrarily on the Interval (0, 1). 

In the purely qualitative aspect the weight ^n(P> Q) behaves ex- 

actly like the conditioned frequency pn(J/l) of the property J, cor- 

responding to the neuron Q, with respect to the propert I, correspond- 

ing to the neuron P. Actually, with simultaneous appearance of the 

properties I and J there is an Increase of both the quantity >-n(P* Q) 

and of the quantity p (J/I), Both these quantities diminish with the 

appearance of the property I without the simultaneous appearance of 

the property J. If the first situation (simultaneous appearance of the 

properties I and J) repeats itself several times in a row, then the 

quantities ^n(P* Q) and p (J/I) tend to unity. With numerous repeti- 

tions of the second situation (the appearance of I without J) both 

these quantities tend toward zero. Therefore it is natural to term the 

quantity r (J/I) = ^n(P* Q) the conditioned pseudofrequency of the 

property J with respect to the property I. 

If we say that in the conditional probability machine the neurons 

which are not directly stimulated must deliver as their output signals 

not the conditioned frequencies, but the conditioned pseudofrequencles 

of the properties corresponding to them with respect to the maximal 

positive property I of the image being considered at the given step, 

then for the accomplishement of this it is sufficient to transfer 

from the neuron P, corresponding to the property I, the output signals 

^n(
p* R) to all the neurons R which are not directly stimulated. Here 

it is convenient to consider that the neuron P sends along all the 
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connections of the form (P, R) Its unit output signal, which is atten- 

uated along the corresponding connection as the result of multiplica- 

tion by the quantity ^n(P* R), which by the condition is always lens 

than unity. 

It is not difficult to see that this mechanism for the formation 

of the conditioned reflexes has still another essential deficiency. 

This is that, as the result of the assumptions we have made, the condi- 

tioned reflexes are fomed only with respect to the entire images and 

not to their individual properties. As is known, in the case of the 

biological systems the situation is different. Moreover, the reflexes 

are most frequently formed precisely with respect to the partial (not 

maximal) properties of the images. 

We can, it is true, in the conditional probability machine of ei- 

ther of the types described above fix once and for all the property I 

with relation to which the conditioned frequencies and pseudofrequen- 

cies are computed. In this case the property may not be the maximal 

positive property, and the conditioned reflex will be developed pre- 

cisely with respect to the property of the images and not to the Imacc 

itself. All the definitions made above of the laws of the functioning 

of the conditional probability machine are aslo applicable to this car.e, 

only in this case there is no need to make a special search for the 

neuron corresponding to the maximal positive property of the image be- 

ing considered: in the case of the appearance of the property I the 

role of this neuron will always be played by the neuron corresponding 

to the property I. However, in the case of nonappearance of the prop- 

etry I all the neurons (with the exception of the neurons which are 

directly stimulated) must, by definition, deliver not the conditioned, 

but the unconditioned frequencies (or pseudofrequencles) of the prop- 

erties corresponding to them. 
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In his original definition Attlee considered precisely this meth- 

od of functioning of the conditional probability machine. However, In 

avoiding one deficiency we come upon another, and again obtain a sys- 

tem which is significantly different from the biological systems, which 

are capable of developing conditioned reflexes with respect to several 

properties, and not Just to one of them. 

In order to avoid these last deficiencies, it is sufficient to re- 

move the limitation in the last of the schemes which we have described 

which permits foimation of the output signals of the neurons which are 

not directly stimulated only from the output signal of the single neu- 

ron P. In place of this we make the following assumption. 

To every neuron Q which is not directly excited we transfer the 

signals ^(Pj* Q) from all the directly stimulated neurons P. (i = 1, 

2, ...). The output signal of the neuron Q will be the signal from the 

number of signals ^(P** Q) (i = 1» 2, ...) whioh has the largest mag- 

nitude. 

The device which realizes this mechanism for the generation of 

the neuron output signals and for the alteration of the weights of the 

connections in accordance with equation (110) is termed a conditioned 

reflex machine. We can hope that it reflects many Important properties 

of the real neural networks which constitute the neural systems of the 

animals and even the human neural system.. 

In the real neuron networks, of course, there are not all the con- 

nections required by the complete circuit of the conditional reflex 

machine. Further improvement of the laws of the variation of the weights 

of theconnections is also possible. In particular, the first of equa- 

tions (110) should apparently be replaced by the equation ^n+1(Pi Q) = 

= (1 - 'Y)^n(
p* Q) where 7 Is a very small positive constant. After this 

refinement the law of the variation of the weights of the connections 
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will reflect the property of the connections to diminish In the course 

of time even in the absence of cases of direct nonreinforcement of the 

reflex which is reflected by this connection. 

If in the conditioned reflex machine we drop the requirement for 

completeness, i.e., the presence of neurons for all positive proper- 

ties without exception, for all possible Images without exception, 

then such incomplete conditioned reflex machines can be used Tor ope- 

ration with a large number of receptors. On this basis we can possibly 

use the conditioned reflex machines for the solution of the problems 

of the recognition of visual patterns which we have been considering 

in the preceding sections. To obtain effective results in this direc- 

tion it is necessary to make a purposeful selection of those properties 

to which- the neurons in the indicated incomplete machine will corre- 

spond. 

Still another problem associated with the classification systems 

is of interest. In the classification systems described so far all the 

images are perceived simultaneously with the Images themselves. In 

many cases, however, we must deal with images whose properties are 

manifested gradually, in the course of the training. Moreover, in these 

cases the images, as a rule, are so remote from their visual proto- 

types that we shall term them concepts rather than images. 

Such a situation arises in the design of self-improving systems 

for the recognition of the meaning of phrases (see Glushkov, Trlsh- 

chenko and Stogniy [30]). In the simplest case, when we consider 

phrases consisting of only a subject and predicate, the concepts being 

recognized may be considered to be the nouns selected as the subjects, 

and their properties may be the possibility or impossibility of their 

meaningful combination with the various verbs appearing as predicates. 

If the verb list is fixed and includes n different verbs, then 
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each concept   (noun)  can be characterized by a line of compatablllty 

with these verbs,  having the length n.   At the 1th location on this  line 

there will be  one  or zero in accordance with whether the  combination of 

the  considered noun with the 1th verb of the given list   (1=1,?,   ..., 

...,  n) is meaningful or not. 

We shall call these lines the verb lines.  The problem of the self- 

improving system in this case will include the prediction of the 

largest possible number of properties of the considered concepts on 

the basis of a limited experiment.  If the experience  (training history) 

cunslsts in communicating to the mentioned system,  one after another, 

meaningful combinations of rand only selected nouns and verbs from the 

given lists,  then in the course of the arrival of such infonnatlon cer- 

tain places of the verb lines  of the concepts  (nouns) which we have se- 

lected will gradually be filled with ones.  In this  case the training 

problem can be treated as a problem of the reconstruction of the struc- 

ture of the unitary machine for the classification of the properties 

of the selected concepts.  For the solution of this problem it is nat- 

ural to organize the process of the combination of concepts which are 

compatible with the same verbs into classes which correspond to new 

generalized concepts which may not be present in the original list.  For 

example, as the result of combining several concepts  (say,   "father," 

"son," "student," and "professor" and so on) with respect to the cri- 

teria of compatablllty with the verbs  "live1' and "think"  there arises 

the concept of "human." If after the formation of a particular class 

it  is seen that certain of its representatives have some new elementary 

property (for example,  the possibility of combining with the verb "go") 

then this property can be extended to the entire class   (i.e., to all 

the concepts occurring in this class).   Of course,  errors may occur in 

this extension of the properties.  To eliminate the resulting errors 
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VK   introduce the process of Independent composition by the machine of 

new phrases as the result  of combination of other (randomly selected) 

concepts from the considered class with the  verb whose compatibility 

was  extended over the entire class.   The sense   (or nonsense)  of these 

combinations must be communicated to the machine by the human teacher. 

Thanks to the existence in language of connections  similar to the 

connection which is described by the statement of the type "almost all 

those who think can also speak," the described process v:ith J     iciously 

chosen methods of fomatlon of the classes,   extrapolation of the prop- 

erties,  and composition of new phrases makes  it possible for the ma- 

chine to perform the correct separation of phrases into meaningful and 

meaningless with high probability.   Here is  is of essence that  this sep- 

aration be performed for all phrases which can be constructed  from the 

given sets of nouns and  verbs.   In particular,   they may  include phrases 

which have not been constructed by the machine as questions  for the 

teacher and those which were not communicated by the teacher to the ma- 

chine in the training process. 

Experiments  on the training of a machine to recognize the meaning 

of phrases,  not only of the simplest construction Just described,  but 

also phrases having a more complex structure,   have been conducted suc- 

cessfully in the Institute  of Cybernetics  of the Academy of Sciences of 

the Ukrainian SSR [30].   With various assumptions relative to the struc- 

ture of the language  (in the present case — the sets of verb lines) we 

can make estimates for the learning rate  in the realized algorithms 

similarly to the way this was done for the a-perceptrons  in the pre- 

ceding section.   However,  the corresponding arguments are quite cumber- 

some and considerably less graphic than in the case of the perceptrons. 
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§9. SELF-ORGANIZATION AND SELF-ADAPTATION. METHODS OF SOLUTION OF COM- 
PLEX VARIATIONAL PROBLEMS 

In §1 of the present chapter we Introduced the concept of the 

algorithm system as the natural form In which the properties of self- 

organization and self-improvement are combined. Let us consider L 

concept In more detail. For most of the problems encountered in prac- 

tice it is advisable to differentiate self-organization itself and the 

so-called self-adaptation, which is the simplest case of self-improve- 

ment. More precisely, we shall differentiate the simplest type of self- 

improvement on the basis of self-adaptation and the higher type of 

self-improvement on the basis of self-organization. 

The difference which is involved here is that self-improvement 

on the basis of self-adaptation assumes the variation of only certain 

numerical parameters in the operational algorithm, while self-organi- 

zation is associated with the variation of the structure of the algo- 

rithm Itself, Of course, this difference is to a considerable degree 

artificial since with suitable writing of the algorithms the varia- 

tions in the algorithm structure can be reduced to variations of the 

numerical parameters. If, for example, a numeration of all the algo- 

rithms of the considered class is accomplished, then any alteration 

of the algorithm reduces to a change cf the corresponding number, which 

can be considered as a numerical parameter. However, in spite of the 

relativity of the difference between the use of some fixed form of 

writing of the algorithms (algorithmic language) this difference can 

be drawn quite sharply. 

We shall present some examples of self-adaptation and self-im- 

provement of the structure of algorithm schemes. As the first example 

let us consider the case frequently encountered in practice of self- 

adaptation which carries the special name of extremal regulation. The 
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essence of the problem of extremal regulation consists in the delivery 

to the regulation system of those values of certain parameters x-,, 

Xp* •••> x such that the specified function f = f(x , Xp, ..., x ) 

of these parameters takes on an extremal (maximal or minimal) value. 

Here the function ffa^, Xp, ..., x ) also depends on certain other 

parameters y,, yp, ..., ym which vary regardless of our desires and 

over which direct control is not possible. As the result of their 

change, the values of the parameters x^, Xp, ..., x , which provide 

the desired extremum of the function f cannot be selected once and for 

all — they must be altered along with the change of the parameters y,, 

Yp* •••* y^« 

In practice we most frequently encounter the case when finding 

the extrema by the conventional methods (with the aid of equating the 

partial derivatives of the function f to zero and the solution of the 

resulting system of equations) is impossible or inexpedient. The rea- 

son for this may be, for example, the absence of an analytic expres- 

sion for the function f. The question arises of what methods can be 

used for the solution of the problem of self-adaptation in this sit- 

uation. One of the universal methods for the solution of this problem 

in this case is the so-called method of steepest descent (or steepest 

ascent). 

The method of steepest descent (ascent) serves for finding the 

minimum (maximum) points of a function of many variables with the aid 

of thu development of a special process for sequential approxima Ion 

to these points. Let f(x1, Xp, ..., xn) be any differential function 

of n variables. In the space of these variables we select the arbi- 

trary point M(a1, ap, ..., a ) and find the approximate values of the 

partial derivatives f1  = ^'xi^i* a2' •••« an^ at the Point M from the 

equations 
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ft^-r-lttßuat fl'-i'fl' + A,a/+i,...,a,,) — 

— /(fli.fl«. • •.Ot-i,fl'ifl'f a«))  ('"■*. 2 n). 

giving all the variables in turn the same increment A. Let us find out 

what increments must be given simultaneously to all the argument" ^n 

order to approach the extremum point to the maximal possible degree 

using only the values of the function f and its derivatives at the 

point M, 

This latter condition is quite essential, since without it the 

question would be solved trivially; the increments of the variables 

could be such that they would lead us directly to the extremum point. 

However, we do not know the extremum point and we are required to re- 

sulve the question on the approach to it on the basis of the informa- 

tion and the behavior of the considered function in the neighborhood 

of the selected arbitrary point Mia.*,  ap, ..., a ). Denoting the de- 

sired increments of the variables x^, x2, ..., x at the poing M by 

A,, Ap, ,.., A respectively and using the equation for the total dif- 

ferential, we obtain for the increment Af of the function f at the 

point M the approximate equation 

If we agree to take a step in the direction of the extremum point 

(in the x1, x2, ..., xn variable space) only of some one constant 

length r, then still another equation is added to the equation for the 

equation for the for the increment of the function f 

A?-fA» + ... + A«-r«. (Ill) 

We must choose the quantities A^, Ap, ..., A so that with sat- 

isfaction of equation (ill) the function Af will reach a maximal (with 

account for the sign) value. Using the method of undetermined Lagrange 

multipliers, the question reduces to finding the extremum of the function 
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of the variables A.,, A0, ..., A^. Differentiating with respect to A. 

•L  c      n i 

and equating the resulting partial derivatives to zero, we obtain the 

system of equations 

/<-2XA1=0  (1-1.2 n). (112) 

which must be supplemented, of course, by equation (ill). From equation 

(112) we find that 

A, =»*/,. (113) 

where k is the coefficient of proportionality, common for all 1=1, 

Depending on the choice of the sign and the coefficient of pro- 

portionality k, equations (113) determine two opposite directions 

along which movement from the point M will lead to the (in the vicin- 

ity of point M) most rapid increase (with k: < 0) of the function f. 

These directions are tenned respectively the directions of steepest 

ascent and steepest descent at the considered point M. The magnitude 

of the advance r in either of the Indicated directions is tenned re- 

spectively the ascent or descent gradient step at the point M. 

Depending on whether we are required to find the maximum or mini- 

mum point of the considered function f, we select one of these direc- 

tions (sign of the parameter k in equations (113)) and perform the 

movement in the selected direction (determined by the choice of the 

magnitude of the parameter k) until the function f changes the nature 

of its growth in this direction, i.e., switches from Increase to de- 

crease, or, vice versa, from decrease to increase. In other words, the 

maximal advance is made in the selected direction which provides for 

variation of the function f in the desired direction (in the direction 

of decrease with search for the minimum point of the function f and in 

the increasing direction with search for the point of its maximum). 

Denoting by the letter N the point obtained as the result of this 
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movement, we perform the same operations with it that were described 

for the point M. As a result we obtain the new point P, and so on. If 

the function f is sufficiently smooth, then as the result of the pro- 

cess described, continuing it sufficiently long, we arrive at an arbi- 

trarily small neighborhood of some stationary point of the given func- 

tion, i.e., that point at which all the partial derivatives of the 

function are equal to zero (of course, this will be true only in the 

case when the given function has stationary points) or at the neigh- 

borhood of a point of the boundary of the domain of definition of the 

function f corresponding to some local extremal (in the given domain) 

value of the function f. 

The desired point of the (absolute) extremum of the function f 

with the assumptions made is among the indicated points. However, there 

is no guarantee that the application of the methodology described above 

will lead the first time to the point of absolute extremum of the given 

function. Therefore, we must by varying the inlcial point M find (by 

the method described above) new stationary points of the function, so 

that as a result of subsequent comparison of the values of the func- 

tion at these points we can select fron among them the desired extre- 

mum point. 

In practice a different route is generally preferred: we select 

a random series of points M^ M2, ,.., M^ in the domain of definition 

of the function f, and from them we vary that one at which the func- 

tion has the maximal (in the case of the problem of finding maximum 

points) or minimal (in the case of finding minimum points) value. 

Starting from the point thus chosen^ we perfom the steepest descent 

or steepest ascent using the methodology described above. With suffi- 

ciently large k (depending on the selection of the function f) with a 

probability arbitrarily close to unity there can thus be found the 
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point of absolute (and not some local) extremujn. 

One of the possible variants of the search for the absolute max- 

imum of the function of two variables is shown in Fig. 15. In this 

figure the function is specified by its contour lines (lines of equal 

level), M,, Mp* M^ denote the randomly selected initial points (the 

point Mp is the highest of them), and N, P, Q denote the sequential 

series of points obtained from the point Mp using the steepest ascent 

method. In this example, after only three steps of the steepest ascent 

we arrive at the point of absolute maximum of the considered function. 

The algorithm system which resolves the problem of self-adapta- 

tion consists of the operational algorithm A which, receiving the in- 

put word (value of the function f(x1, x2, ..., x )) defining the cri- 

teria of the regulation quality and, possibly, the values of some other 

quantities, delivers an output word consisting of the coordinates of 

some point M(a1, a2, ..., a ) which coincides in the case of the sta- 

tionary regime (invariance of the function f) with the point of abso- 

lute extremum of this function. In the case of the nonstationary re- 

gime (variation of the function f) there comes into play the algorithm 

B which performs the search for the point of the absolute extremum of 

the altered function f by some method (the method of steepest descent 

or ascent, for example) and replaces by the coordinates of this point 

the parameters a,, a«, ..., a , put out by the operational algorithm 

A. 

The described system, consisting of the algorithms A and B, can 

be considered as a self-adaptive system of algorithms. 

Let us now consider an example of self-improvement with variation 

of the structure of the operational algorithm. Let us assume that the 

operational algorithm must, from the various numerical values of the 

p 
coefficients £ and ^ of the reduced quadratic equation x + px + q = 0 
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deliver the roots of this equation, al- 

though in the beginning of the operation 

this algorithm Is not yet known. Since 

the reduced quadratic equation is re- 
Flg. 15 

solved using the known equation x, 2 = 

= __£ii/£_^, the desired algorithm can be sought in the class of 

equations constructed with the aid of the operations of addition, sub- 

traction, multiplication, division and extraction of the square root, 

using the letters £ and g  and whole numbers. All such equations can be 

numbered, after first arranging them in order of Increasing complexity: 

with increase of the number of the equation there is an increase, gen- 

erally speaking, of the number of operations used in the equation and 

an Increase of the maximal magnitude of the Integral parameters con- 

tained in it. 

Initially, one of the simplest equations is selected as the ope- 

rational algorithm, say the equation p + q. Taking successive values 

of the coefficients £ and c^ (p = 3> q = 2, for example) the operational 

algorithm delivers the corresponding values of the root or roots (in 

the present case x = p + q = 5). The training algorithm makes a veri- 

fication of thesolutlon obtained by substituting the value of the root 

found in theoriglnal equation. If these values of the roots satisfy 

the equation, then the operational algorithm is retained unchanged. If 

however, the solution is found to be incorrect (as in the case Just 

considered) then thenext equation in order is selected as the opera- 

tional algorithm. 

It is easy to see that with the described organization of the ope- 

rational and training algorithms, after a finite number of unsuccess- 

ful attempts there will be established the correct equation for the 

solution of the quadratic equation. Since in the process of the search 
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there is a change, generally speaking, of the structure of the algo- 

r    vform of the equation) and not simply of thenuuierical parameters, 

then according to the terminology which we have adopted the constructed 

algorithm system is self-improving on tne basis of self-organization, 

i.e., it is a higher type of self-improvement in comparison with self- 

adaptation. 

In the example considered the search for the required working al- 

gorithm is performed by simple sorting of all the algorithms of the a 

priori given class. We can, of course, not make use of preliminary de- 

termination of some special class of algorithms, but rather perform 

the sequential sorting in the class of all algorithms written In a par- 

ticular fixed algorithmic language (for example, in the language of 

the normal algorithms), however in this case the search time as a rule, 

is considerably longer. 

Nomally the systems for such a search are realized on high-speed 

electronic computers which perform several thousand operations per 

second. With this speed the solution of the problem described (find- 

ing the equation fjr the solution of the reduced quadratic equations) 

takes little time. However, with further complication of the sought 

operational algorithms the search time, based on the sorting of all 

the variants, increases so rapidly that the realization of such a 

search in a reasonable time, even using the high-speed computer's, be- 

comes impossible. 

In this case we resort to multistage search: we first look for 

some sufficiently simple component parts (blocks) of the desired ope- 

rational algorithm, and then use various combinations of the con- 

structed blocks. The blocks themselves can be built up from still 

smaller blocks, so that the process of further division of the search 

into individual steps can be continued even further. The multistep 
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search sys-cems permit the construction of very complex self-organiz- 

ing systems which are analogous to the creative search systems used by 

man. 

Without going Into further detail concerning self-Improvement on 

the basis of self-organization, we shall concentrate our attention on 

the problems associated with self-adaptation. 

The method of steepest descent (or ascent) described above Is al- 

so a certain sort of search. In this search we use a definite strategy 

(or tactic) for the reduction of the sorting of the various variants 

leading to the problem solution. In the case considered the search 

strategy reduced to the use of the Information on the local properties 

of thecorrespondlng function f, which we term the estimating function 

(the values of this function can be considered as an estimate of the 

quality of theapproxlmatlon to the required solution which Is found 

at a particular step of the search). 

If the number of parameters (arguments of the estimating func- 

tion) Is very large, various difficulties arise In the use of the 

method of steepest descent (ascent) In the simplest form described 

above (cycling on secondary minima or maxima, excessively slow rate of 

advance toward the absolute extremum, etc.). In order to eliminate 

these difficulties we Introduce various alterations and improvements 

In the local search strategy described above. 

The simplest changes are associated with the selection of the par- 

ticular descent (ascent) gradient step. In particular. It Is desirable 

to perform the advance In a given direction, not until the Increment 

Af of the estimating function changes sign, but only until the rel- 

ative magnitude of this Increment Af/f Is less (in modulus) than some 

(in modulus) then some a prior fixed quantity termed the gradient test. 

In many cases we can divide the extlmatlng function f Into two 
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classes, so that variations of the variables of the first class lead 

to relatively large variation of the value of the function f, while 

the variations of the variables in the second class alter this value 

to a considerably lesser degree. The methods described above provide 

too low a rate of advance toward the extremum in the directions corre- 

sponding to the variations of the variables of the second clasc. Fig- 

uratively speaking, we can perform a rapid descent (in the direction 

corresponding to the variations of the variables of the first class) 

to the bottom of some "gully" and then wander more or less randomly 

about Its bottom without getting any closer in practice to the extre- 

mum point. 

To eliminate this deficiency Gel'fand and Tsetlin [18] proposed 

a special method which they termed the gully method. The essence of 

the method Is that on the "slopes of the gully" there are selected two 

points (X0 and X,) rather than one. From these points there is t er- 

formed a steepest descent to the "bottom of the gully" as a result of 

which there arise two new points A0 and A,. Connecting the points A0 

and A, with a straight line, they perform in the direction of thid 

line (in the direction of reduction of reduction of the estimating 

function) the so-called gully step whose magnitude is usually consid- 

erably larger than the magnitude of the descent gradient step. This 

step leads to a new point Xp, from which we again perform a steepest 

descent to the point A2, located on the "bottom" of the gully. In the 

direction defined by the points A, and Ap we again make a gully step 

leading to the new point X-. From it we again perform a steepest de- 

scent to the "bottom of the gully" and so on. 

We have described the method for the descent (i.e., for finding 

the minimum of the estimating function f). Of course the correspond- 

ing constructions are applicable to the ascent (finding the rraxlmum of 
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the function f). In this case In place of the descent Into the "gully" 

we perform an ascent to the "ridge" and the further advance, not along 

the "bottom of the gully" but along the "crest of the ridge." 

All the described descent (ascent) methods relate to the class of 

methods for finding extrema of functions or functlonals which we com- 

bine under the name of variational methods. In the majority of the 

cases of Interest for cybernetics, particular limitations of the pos- 

sible values of the arguments of the estimating function J take on 

considerable Importance. In this case the sought extrema may be reached 

on the boundaries of the domain of definition of the function f rather 

than within the domain. The descent (ascent) methods considered above 

are in principle also suitable for finding such "boundary" extrema. 

However, in several particular cases certain special variational meth- 

ods are far more effective. 

Among this sort of methods are the so-called linear programming 

(or linear planning) methods. These methods are used in the case when 

the estimating function f is a linear function (polynomial of first 

degree): f = a-jX., + a^Xg + ... + ax + a0 and the boundaries of the 

domain of definition of the variables are composed of hyperplanes, 

i.e., surfaces specified by equations of the first degree. In this case 

the domain of definition is a multidimensional polyhedron (not neces- 

sarily finite), all points of which polyhedron satisfy the system of 

lenear inequalities of the fom b. x, + b. x0 + ... + b. x^ + b.  > i-L i   i2 a in n   i0 - 
^ 0 (1=1, 2, ..., m). The signs of the inequalities can, of course, 

reverse with a change of the signs of the coefficients b... 

It is not difficult to see that the estimating function f takes 

extremal value in one or several vertices the extremal value is taken 

to be the function f on the face (generally speaking, multidimensional) 

passing through all these vertices. Therefore we can find the desired 
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extremal value by sorting one-by-one all the vertices of the polyhe- 

dron, however with a large number of variables this method is extreme- 

ly cumbersome and not suitable in practice. Par more effective meth- 

ods for the solution of linear programming problem have already been 

developed. These methods provide for the use not of the linear in- 

equalities, but rather the linear equations to which any inequalities 

can be reduced by the Introduction of new unknowns. With this intro- 

duction the Inequalities Z^xz + fti,>0 are replaced by the equation 

Z fr/X/ + fr{t<-ty. where y. are the new unknowns which can take only the 

nonnegative values (i = 1, 2, ..., m). 

In practice we most frequently encounter the following statement 

of the linear programming problem, which we shall tem the canonical 

fom. 

Given the system of m linear algebraic equations with the un- 

knowns  ia*/*/«M* =■ 1. 2 m) • Required to find that nonegative (all 

x. ^ 0) solution of this system for which some fixed linear form (es- 

timating function) f ='ickxk   takes the smallest possible value. 

We shall describe one of thepossible effective methods for the 

solution of this problem which is usually termed the simplex method. 

In the use of the simplex methods we perform sequential transforma- 

tions of the given system of equations i a,*,-6,(1 - 1, 2, ... m) until it 

is reduced to some special foim. The system is first transformed all 

the free terns b. are made nonnegative ( if b1 < 0, it is sufficient 

to change the signs of both sides of the 1th equation); then the equa- 

tions are rewritten in the fonn  0 = 6,—Za,/*, (1 » 1, 2, ... m) • If in the re- 

suiting system there is the variable x. appearing only in one equa- 

tion, say the pth, and having the positive coefficient a., , then that 

variable takes the name basic, and the corresponding equation is 

solved relative to this variable. Identifying all the basic variables, 
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designated by the letters Xm$ Xg,  ..., x^ ,  we reduce our system to 

the form 

.   *** (114) 
0-6, —£     «,/JCy     (/-*o+l. *o+2 m). 

y-VM 

The equations of the second group (not solved relative to x. ) are 

termed the O-equatlons (it Is not Impossible that all the equations 

of the systems will be In this group). The purpose of the further 

transfomatlons consists In finding some nonegatlve solution of the 

system (114). These transformations reduce to the sequential (multi- 

ple, generally speaking) repetition of the cycle consisting of the 

following steps (see [6]): 

1. We find the O-equatlon for which the free term is strictly 

greater than zero (if there Is no such 0-equatlon, then the problem Is 

solved, since, setting x^» b^ (k ■ 1, 2, ..., k0) and x. = 0 (i = 

* k0 + 1, kQ + 2, ..., n) we obviously find the nonnegative solution 

of the system (5)). I^et this be the ith equation. 

2. In the found (ith) equation we Identify some positive coeffi- 

cient a. .  (if all the coefficients a., *  in the ith equation are non- 

positive, then the system (ll4) obviously cannot ha/e positive solu- 

tions and, consequently, the posed linear programming problem is un-r 

solvable). 

3. In the same column with the identified coefficient a. .  (i.e., 
1J1 

in the J1th column) we find the so-called resolving coefficient a. «K, 

which is characterized by the fact that of all the relations b./a. . 
i i j-^ 

with positive a., (i = 1, 2, ..., n) the ratio b. /a^ J, has the min- 
ij1 i-L i1 l 

imal possible value. 

4. The equation in which the resolving coefficient appears (i.w., 
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the 1-th equation) Is solved relative to the variable x. , which after 
i— 31 

this Is related to the class of basic variables, and the found expres- 

sion for x. Is substituted Into all the remaining equations (if the 
Jl 

Ijth equation does not belong to the number of O-equatlons, the vari- 

able x., standing In Its left side Is excepted from the number of 
11 

basic variables). 

5. After the solution of the l,th equation (relative to x. ) we 

again find the O-equatlon with a positive free term and the entire 

operation described above Is performed with It. 

The described process of sequential solution Is continued until 

all the O-equatlons disappear. The desired nonnegative solution Is ob- 

tained as the result of equating all the basic variables x. to the 

corresponding free terms hAl  = 1, 2, ..., n) and all the nonbaslc 

variables to zero. There are cases when the described process cycles 

and continues Infinitely long without leading to any solution. In 

these cases we resort to variation of the selection of the O-equatlon 

and the resolving coefficient In the 2nd and 3rd steps of the sequen- 

tial solution process, which usually helps prevent cycling. 

After termination of the sequential solution process, the found 

expressions for the basic variables are substituted Into the estimat- 

ing function  /=lc4xA , as the result of which It takes the form 

f =*d — ldix'i  . In the latter expression the summation extends only to 

the nonbaslc variables, which (after corresponding numeration) are as- 

signed numbers from r + 1 to n. 

Then the solution process described above Is applied to the sys- 

tem of equations for the basic variables obtained as the result of the 

first application of this process, which Is written as 

l-r+l M 
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and to the new O-equatlon  0^4— 2 d^J. As the resolving coefficients 

we select only the coefficients a^,. The process terminates after all 

the coefficients cK In the O-equatlon become negative. Setting after 

this all the nonbaslc variables equal to zero, and all the basic vari- 

ables equal to the corresponding free terms, we obtain the required 

solution of the original linear programming problem. We note that In 

both the first and second applications of the sequential solutulon pro- 

cess all the free terms (with the exception of theterm d) remain non- 

negative all the time. 

Linear programming Is widely used In problems for the optimal 

planning of transport shipments. Such applications of linear program- 

ming were first developed by Kantorovlch [38]. Detailed substantia- 

tions of theslmplex method which we have described can be found In spe- 

cial nomographs devoted to linear programming. 

We shall describe still another general scheme of the varlatlonal 

problems to which many problems of so-called dynamic programming (or 

dynamic planning) are reduced [7]. The essence of this scheme reduces 

to the following: In some (generally speaking, multidimensional) 

Euclidean space with the aid of certain limitations we Identify a cer- 

tain class of curves which we shall term trajectories. On the set of 

all possible trafectorles there Is given some estimating function (or, 

as we usually say, functional). The problem consists In finding the 

trajectory on which the value of this functional Is greatest or least. 

Let us consider one of the quite general numerical (approximate) 

methods of solution of the Indicated problem developed by Mikhalevlch 

and Shor the method of sequential analysis of variants. We shall dis- 

cuss this method with application to one of the simplest cases when 

the basic space is two-dimensional, the class K of trajectories con- 

sists of all the plecewise-smooth curves connecting the two fixed 
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points A and B of the space and contained wholly In some fixed finite 

region Q, and the estimating functional P has the property of addltlv- 

Ity, The additlvlty property consists In the functional P being consid- 

ered defined not only on the integral trajectories but also on any of 

their pieces (open subsets and their closures) and with combination of 

two disjoint pieces into one, the corresponding values of the estimat- 

ing functional are added 

The formulated conditions correspond to the dynamic programming 

problem in the Bellman formulation. 

The first step In the method of sequential analysis of variants 

Is the limitation of the class K: of all the trajectories connecting 

the points A and B we identify only certain broken lines. This is done 

by means of passing several sections (straight lines In the present 

case) perpendicular to the segment AB and intersecting It. The ver- 

tices of the broken lines considered can be located only on the se- 

lected sections. Further, each section (in the limits of the region Q) 

Is approximated by a finite set of points (possible vertices of the 

broken lines). The density of the positioning of the points of the ap- 

proximating set, and the density of the sections, is defined on the 

basis of the required accuracy of the problem solution. A graphic Im- 

pression of therequired constructions is given by Flg. 16. 

In Pig. 16 the boundary of the region Q Is shown by the dashed 

curve, the sections are denoted by the Roman numerals, and the points 

of the sets which approximate the sections are denoted by Arabic nu- 

merals. If the number of points in the 1th section Is denoted by n. 

and the total number of sections by m, then the total number of broken 

lines (N) corresponding to the postulated conditions will be deter- 

mined, as is easily seen, by the product of the numbers ^ :Ar = ^n,... nm. 
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This quantity Increases very rapidly with Increase of the number of 

points and sections, the result being that the sorting of all the var- 

iants Is practically Impossible. 

However, we can abbreviate the sort- 

ing by using the following technique. Let 

us connect point A by segments of straight 

lines with all the points of the first 

section and calculate the value of the 
Pig. 16 

estimating functional P for all these segments. To each point J of the 

first section we assign the value P.. of the functional P on the seg- 

ment connecting this point with the point A. Per each point k of the 

second section we find the point J. of the first section such that the 

value of theestlmatlng functionary P on the broken line A. k will be 
Jk 

smallest In comparison with Its values on all 

the other pemlsslble broken lines connecting 

the point A with the point k. Since the func- 

tional P Is additive, the question reduces to 

the minimization of the sum P. + P(ji,, k), 
Jk     K 

where P(Jk* k) is the value of the functional 

P on thesegment [J. , k]. The corresponding (min- 

imal among all possible values) value of the functional F on the 
p 

broken line A. k Is denoted by P^. To find it we make use of the al- 

1 
ready found values of the functional P. at the points of the preced- 

ing (first) section, which of necessity will be minimal here, and the 

sorting is limited to only all possible segments connecting the points 

of the first and second sections. 

Let us assume that for all the points £ of the ith section there 

have already been found the minimal values Pj: of the functional F on 

- 338 - 

Pig. 17 



all the peJTnlBDlble broken lines connecting these points with the 

point A. Let us consider the portion between the ith and the ( 1 + 

+ l)th sections (Fig. 17). For each point 2  of the (l + l)th section 

we find the point p of the 1th section such that the sum F  + F(p , 
" Pq    4 

q) Is minimal. It is evident that the found minimal value of the in- 

dicated sum will be the minimal possible value of the estimating func- 

tional F on all the permissible broken lines connecting the point A 

i+1 
with the point c[. Recording this value F   and forcing thepolnt ^ to 

run through all the points of the (l + l)_th section, we find it pos- 

sible to come to the consideration (on thebasis of completely analo- 

gous constructions) of the portion between the (i + l)th and the 

(i + 2)th sections. However, for the consideration of the portion be- 

tween the ith and the (i + l)th sections we need to remember only the 

function '?x(q), assigning to each point ^ of the (i + l)th section 

the point Pa •= cp (q) of the ith section with which it connects most 

favorably. In the case shown in Fig. 17, 

^(l)-2; q>'-(2) = 3; 9'(3)-4; 9'(4)= 5; 9'(5) = 3. 

As as result of repetition of the indicated process we come, fi- 

nally, to the consideration of the portion between the last section 

(mth) and the final point B. Finding for the point B the point r ■ 
.m we = cp (B) of the mth section with which it connects most favorably, 

can from the functions cp (x) (i= 1, 2, ..., m) which we recorded find 

the best trajectory (admissible broken line) Ak^kg... k. ^.]••• kB 

connecting points A and B: the points of this broken line are deter- 

mined sequentially (from right to left) with the aid of the relations 

k = q)1(k-+1)(l = m, m — 1, ..., l) where as the point km+-| we select 

the point B. It is easy to see that the found broken line actually 

minimizes the estimating functional P. Here the sorting used in find- 

ing the broken line is obviously limited to only n,n,-i-n2n, 4-...+nm_1 n,,,+nn 
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variants In place of n^g • • • ^ variants with complete sorting (n^ Is 

the number of points In the 1th section). 

The described method Is generalized directly to the case of multi- 

dimensional spaces. The requirement for the addltlvlty of the estimat- 

ing functional P Is also not strictly necessary. It Is obviously suf- 

ficient to assume that for any Initial piece APQ of the trajectory the 

value P(APQ) of thefunctlonal can be represented in the form  P(APQ) = 

« f(P(A, P), P(P, Q))t where f (x, y) Is a real function which does not 

decrease with respect to x for any value of ^. 

We note further that In the majority of the cases the sorting of 

the different variants of connection of the points of two neighboring 

sections can be considerably reduced as the result of various sort^ of 

limitations (for example, the limitations on the maxima] slope of the 

segments of the broken line with relation to the x axis in the two-di- 

mensional case). In several cases the sorting can be reduced by the 

use of the property of the continuity of the estimating functional. 

More complex constructions In the method of sequential analysis of var- 

ictnts are associated with special systematization of the limitations 

and functlonals which permits construction of algorithms for the 

search for the optimal trajectory by sequential detection and discard- 

ing of "unpromising" segments of the trajectories. 

1 
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Chapter 5 

ELECTRONIC DIGITAL MACHINES AND PROGRAMMING 

§1. THE UNIVERSAL PROGRAM AUTOMATON 

One of the most significant technical achievements of our time 

has been the creation of the universal program automata, i.e., the au- 

tomatic infomation processors which make it possible to realize any 

algorithms. The modern universal electronic (digital) computers are 

such automata. It is interesting to note, as indicated by the name it- 

self, that these machines were created for the purpose of automating 

computations, more exactely - for the automating of the performance of 

any computational algorithms. The teim "universal" with application to 

these machine was understood by the creators of the first universal 

computers (and is still understood by many today) in the sense of uni- 

versality with relation specifically to the computational algorithms. 

However, since any algorithm can be reduced, as we noted In Chap- 

ter 1, to thecalculation of some partially recursive (arithmetic) 

function, the universality with respect to the computational algorithms 

turns out to be universality in general. This circumstance is of great 

practical and theoretical Importance, since actually the basis of any 

field of human activity is the processing of infomation in accordance 

with particular, frequently very complex sets of algorithms. 

The availability to us of the universal automatic Infomation pro- 

cessors such as the modern universal electronic computers makes it pos- 

sible, at least in principle, to automate any field of human activity 

which is based on the processing of infomation. This may be the solu- 
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tlon of complex problems of a design nature, planning,  production con- 

trol, translation from one language to another,  composition of music, 

playing chess, many others.  It Is curious that the tremendous possi- 

bilities Inherent  In the universal electronic machines not only wore 

not recognized by their first designers,  but were even disputed by 

some of them. 

In this connection we must note still another error which Is  com- 

mon among Individuals who are not familiar with the theory of algo- 

rithms. The idea is prevalent that the amazing properties of the mod- 

ern electronic digital machines are based on some specific character- 

istics of the elements used In these machines - the electron tubes, 

transistors,   etc.   In actuality,  electronics In Itself has no relation 

with their theoretical  (qualitative)  capabilities. 

These essence of the matter lies  In the specific control prin- 

ciple and  in the set of operations which these machines  can perfom, 

while the elements from which they are constructed can be of quite 

varied physical nature and can,   in particular,  be purely mechanical. 

The electronic elements are used for the purpose of significantly  In- 

creasing the operating speed of the computers,  and also to improve 

their reliability  (on the basis of some fixed number of operations 

performed by the machine).  We note that the first universal digital 

computer (Mark-l) was built using electromechanical elements  (electro- 

magnetic relays)  rather than electronic elements. 

The control principle,  which provides for algorithmic universal 

Ity  (capability of realizing any algorithm) of the modern universal 

digital machines  is a development and generalization of the principle 

which Is the basis  of the algorithmic scheme of Post described In 

Chapter 1.   Just as   in the Post scheme,  the Infomatlon in the univer- 

sal digital machine  is stored  in a memory which is divided Into indi- 
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vldual cells (memory cells). However, In contrast with the Post scheme, 

in each cell there may be stored not a single binary digit (0 or l), 

but an entire word, composed of a considerable (usually 30-40) number 

of binary digits. We can, if convenient, consider these words as 

letters in some finite alphabet, however this alphabet will contain, 

•50   kO 
as a rule, a very large number of letters 2J — 2 . 

Therefore we usually prefer to consider the contents of each mem- 

ory cell not as an individual letter, but as a word in a binary alpha- 

bet. The binary digits (0 and l) composing this word are usually 

termed (binary) places, and the word itself is termed a binary code, 

sometimes simply a (binary) number. We can, of course, consider the 

letters to be not the contents of the individual binary places, but 

some combination of thes places. For example, any binary code of 

length equal to three can be considered as a number in the octal nota- 

tion system, designating by traids of binary digits the octal digits: 

000-0, 001-1, 010-2, 011-3, 100-4, 101-5, 110-6, 111-7. Using not all, 

but only some four of the binary digits for the designation of the de- 

cimal digits, we can represent the binary codes conslting of such tet- 

rads by numbers in the decimal notation system. 

In addition to be replacement of the binary digits by the multi- 

place binary codes, there is a second essential difference in the or- 

ganization of the memory (or the storage device) of the universal dig- 

ital machine and the memory for the algorithms in the Post scheme. Be- 

ing an abstract algorithmic scheme, the Post scheme assumed the exis- 

tence of an infinite number of cells, or the existence of a memory of 

unlimited volume. At the same time, in the real technical devices, 

which the universal digital machines are the size of the memory is of 

necessity limited. 

In the modern large universal digital machines the size of the 
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high-speed memory does not exceed 100,000 cells (usually no more than 

4-8000). This situation must be kept in mind, since it is closely re- 

lated with the concept of the machine universality. Strictly speaking, 

for the possibility of the realization of any algorithm the universal 

digital machine must accomodate the writing (representation) of this 

algorithm in its memory. Since the representation of the algorithms 

can be arbitrarily long, for the actual capability of realization of 

any algorithms the machine memory must be infinite. 

Keeping in mind, however, that an infinite memory cannot be real- 

ized in any technical device, it is customary to term a machine uni- 

versal If the organization of its control and the set of operations 

are such that they would provide the possibility of the realization of 

any algorithm with the condition of unlimited size of the memory. 

In practice the universality of the modern machines is provided 

by the fact that in addition to the high-speed (the so-called opera- 

tional) memory device, it is also equipped with a relatively slow (the 

so-called external) memory devices which are capable of exchanging in- 

formation with the operational memory device. The capacity of the ex- 

ternal memory (usually composed of magnetic tapes) can be considered 

practically unlimited, which then determines (with the possibility of 

exchanging codes with the operational memory) the practical possibil- 

1th of the performance of any algorithm on the machine. 

The sequence of operations performed by the universal digital ma- 

chine is determined by the program established in its memory, which is 

an ordered finite set of instructions which can be considered as a 

natural generalization of the orders used in the construction of the 

Post algorithmic scheme. In contrast with the Post scheme in which the 

active cell is displaced with the performance of each succeeding or- 

der by no more than one step to the right or left, in the universal 
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digital machine provision is made for the possibility of arbitrary- 

variations of the position of the active cell from order to order. To 

do this, in each order there is introduced the number of one or sev- 

eral memory cells which are active with the performance of the given 

order. 

The number of the memory cells in the universal digital machines 

are customarily termed addresses. The number of addresses in the or- 

ders of the modern universal digital machines (the number of memory 

cells which are active in the performance of any these orders) usually 

varies in the range from 1 to 4. Corresponding to this we differenti- 

ate single-address, dual-address, triple-address and quadrup]e-address 

orders. 

Let us first consider machines with a quadruple-addre'ss systen of 

orders, i.e. , those machines in which the maximal address level of the 

orders equals four. Different types of orders correspond to different 

operations which can be performed by the machine. The orders are usu- 

ally recorded in the machine in the fonn of binary codes which can be 

stored in the machine memory (both operational and external). 

We will assume that in each memory cell there jan be contained 

either one order, also termed command or command word, or one informa- 

tion word. Just as was done above in the case of the information words, 

each command word (order code) can if desired be considered as a word 

in any finite (not necessarily binary) alphabet. 

Any command word is divided into operational and address parts. 

In the operational part there is the code of the operation which is 

perfomed during the time of action of the order which is represented 

by this command word. All the orders of the same type have identical 

operational parts. In the address part of the order there are located 

the addresses of the cells which are active at the time of action of 
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the order. 

The operations perfoiroed by the universal digital machines are 

usually divided into several classes. The first class Includes the 

arithmetic operations - addition, subtraction, multiplication and di- 

vision. The four-address orders for the performance of the arithmetic 

operations usually have the following structure: in the operational part 

of the order there stands a code number designating the particular ope- 

ration (for example, one - addition, two - subtraction, three - multi- 

plication, four- division). The first two addresses in the order are 

used to indicate the addresses of the memory cells which store the num- 

bers with which the operation is to be performed, i.e., the addresses 

of the. addends in the case of addition, the addresses of the minuend and 

subtrahend in the case of subtraction, etc. The third address of the or- 

der shows the transfer of the result of the performance of the opera- 

tion (sum, difference, product or dividend). Finally, the fourth ad- 

dress of the order is used to indicate the memory cell which stores 

the order to be performed following the given order. 

The orders for the performance of the logical operations are con- 

structed Just as in the case of the arithmetic operations. The logical 

operations are as a rule two-place operations, performed place-by- 

place, i.e.« separately for each pair of corresponding binary places 

which participate in the code operation. These Include, for example, 

placewise conjuction (logical multiplication) and placewise disjunc- 

tion (logical addition). There are also single-place logical opera- 

tions on the codes. Such operations incluse right and left (logical) 

shifts which transform the binary code x,, x2, • • • x Into the codes 

Ox^Xg ... xn-1 and XgX^ ... xn0 respectively. 

A special role is played by the so-called control transfer opera- 

tions, which serve for the variation of the order of performance of 
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the program orders as a functions of the results obtained In the real- 

ization of the program. A typical control transfer operation (also 

termed the conditional transfer operation) Is the so-called operation 

of conditional transfer on exact coincidence of words. The first two 

addresses of the order which realizes this operation are used for the 

Indication of the memory cells from which the two words being compared 

with c4iw another are Lu.kcn, In the case ux ^oluuiüeaue (q.udliL,y) ux 

these words the next order Is taken from the memory cell Indicated by 

the third address, and In the case of noncolncldence It is taken from 

the fourth conditional transfer order address. Conditional transfers 

of other forms are also possible, for example, conditional transfer on 

the basis of the sign of the difference of two words or on the basla 

of the sign of some one word (in the latter case, of course, It is suf- 

ficient to have three rather than four addresses in the conditional 

transfer order). 

The memory of the universal digital machines is usually arranged 

to that with the selection (reading) of a word from any cell for the 

performance of a particular operation there takes place a sort of bi- 

furcation of this word. One of its exemplars goes to the correspond- 

ing device for the perfomance of the operation, while the other re- 

mains in the cell from which the selection was made. With the writing 

of a new word into a particular memory cell the Information previously 

contained in this cell is automatically destroyed (erased). 

Taking account of the Indicated properties of the memory of the 

universal digital machines, it is not difficult to note that for the 

performance of any Post algorithm it is sufficient to make use of only 

the operation of (algebraic) addition, one of the condltlonald trans- 

fer operations, for example the operation of conditional transfer on 

exact coincidence of words, and the operation of machine stop. 
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Actually, we shall agree to operate with only some two informa- 

tion words p0 and p,, the first being identified with zero and the sec- 

ond with unity of the binary alphabet of any given Post algorithm A. 

Let us divide the memory of the considered universal digital machine 

into three parts. The first part consists in all of five cells: a,, 

aQ, a,, bQ, b, in which there are placed the words — 1, 0, 1, p0, p.; 

In the cells of the second part there will be placed the program which 

simulates the program (scheme) of thealgorithm A; finally, the third 

portion of the machine memory M simulates the information tape of the 

algorithm A. 

With operation of the algorithm A on a specific input word JD on 

which this algorithm is defined, the original, intemedlate and final 

infomatlon occupies only some limited (finite) part of the informa- 

tion tape, since the algorithm operates only a finite number of steps 

and at each step writes information in no more than one new cell. 

Therefore, if the machine memory M is sufficiently large we can place 

in its third part identified above the required portion of the infor- 

mation tape. The difficulties with the possible insufficiency of the 

memory size, in view of the assumption made above, should not be taken 

into account in the resolution of the question on the theoretical re- 

presentability on the machine of particular algorithms. 

Let us turn to the direct simulation of the orders of the Post 

algorithm A by the orders of the machine M. 

As noted in §4 of Chapter 1, in the Post algorithms six differ- 

ent types of orders may be encountered. The order of the sixth type 

(stop) is simulated directly by the corresponding order of the machine 

M. The orders of the first two types (writing zero and unity in the 

cell being considered) are simulated by the orders of the machine M 

which accomplish the transfer of information from the cells b0 or b 
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Into the active cell indicated, for example, by the third address of 

the machine order. It is clear that this transfer can be accomplished 

by an addition order, in the first two addresses of which there is the 

pair of addresses of the cells ZQ  and b0 or of the cells a0 and b1, 

while in the third address theree is the address of the active cell 

(the fourth address. Just as in the Post algorithm, is used for the 

indication of the address of the order which must be performed follow- 

ing the present order). 

The Post order of fifth type is simulated, as it is not diffi- 

cult to see, by the machine order for conditional transfer on the 

basis of exact word coincidence. It is sufficient to compare the word 

in the cell b, with the word in the active cell and transfer to one of 

the two orders on the basis of the results of this comparison. 

Finally, each Post order q' of third or fourth type is simulated 

with the aid of a group of machine orders whose number is equal to the 

number of orders of first, second and fifth types in the considered 

Post algorithm A. Actua-ly, let r1 be any order of first, second or 

fifth type of the algorithm A. In view of what was said above, it is 

simulated by a single machine order, which we denote by r. Let the Post 

order q' displace the active cell one unit to the right. In the case 

of the machine program this displacement can be accomplished only by 

means of variation by plus 1 of the addresses of all the active cells. 

There are such cells, however, only in the machine orders which 

simulate the Post orders of first, second and fifth types. As a result 

of suitable numeration of the addresses we can, without losing gener- 

ality, assume that the addresses of the active Post cells are written 

in some definite, let us say the last, address of the order. Consider- 

ing the codes to be whole binary numbers, we come to the conclusion 

that for the alteration of the address of the active cell in the order 
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r by +1 it Is sufficient to add the code of the command r with the 

code plus 1, located in the cell a«. The shift of the active cell to 

the left is accomplished analogously. 

From what we have said it is clear that algorithmic universality 

of any program controlled digital automaton will be provided if with 

the aid of the operations perfomed by it we can accomplish the four 

operations: 

1) the operation of the transfer of the contents of any memory 

cell to any other memory cell; 

2) the operation of the addition of the code of an order located 

in any memory cell with constants which alter the value of the given 

(first, second, third or fourth) address of the order by plus 1 or 

minus 1; 

3) the operation of conditional transfer on exact word coinci- 

dence; 

4) the operation of (unconditional) machine stop. 

In the case considered above, operations l) and 2) are provided 

by the same machine operation - the operation of algebraic addition. 

Usually, however, in the universal digital machines these operations 

are separated, the second being termed the readdressing operation or 

command addition. 

Of course, in addition to the indicated operations, in the set of 

operations of every universal digital machine there must be the opera- 

tions of the entry and exit of the infonnation from the machine, and 

aldo (in the case of the use of an external memory) the operations 

which provide for two-way exchange of information between the opera- 

tional and external memory devices. 

Let us consider the question on the ways of reducing the number 

of addresses of the orders. First of all it is not difficult to see 
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that the fourth address, used for the indication of the succeed'.ng or- 

der, can be eliminated by positioning the orders in the machine memory 

so that the address of the order to be perfonned following any given 

order £ is always larger by unity than the address of the order £  it- 

self. In other words, the use of the fourth address becomes unneces- 

sary under the condition that the order of arrangement of the instruc- 

tions in the memory cells corresponds to the order of their perform- 

ance by the machine. 

Violation of the usual (natural) order of succession of instruc- 

tions can occur only in the case when the instruction being performed 

is the conditional transfer command. As we noted above, in the four- 

adress system of instructions one address Is used for the indication 

of the following Instruction with nonsatisfaction of the condition on 

which the conditional transfer is based, and a second address is used 

for the Indication of the following instruction with satisfaction of 

this condition. With replacement of the four-address system of instruc- 

tions by a three-address system it is usually assumed that in the first 

case (nonfulfillment of the condition) after the instruction for con- 

ditional transfer there is performed the instruction written in the 

next memory cell in order, and only in the second case with fulfill- 

ment of the condition is one of the addresses used for the indication 

of the address of the instruction which must be performed next. 

From this it follows that the fourth address can be made redun- 

dant not only in the ordinary instructions which do not alter the sub- 

sequent order of performance of the instructions, but also in the in- 

structions for the conditional transfer. The resulting three-address 

instruction system is usually termed a system with natural succession 

of instructions, in contrast with the previously described four-ad- 

dress system with forced succession of instructions. The advantage of 
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the latter system lies In the greater freedom which it offers In the 

question of the arrangement of the sequence of commands in the memory- 

device which are used to control the operation of the machine. The ad- 

vantage of the three-address system is the simplification of the 

A        structure of the instruction. 

Further reduction of the number of addresses in the instructions 

can be achieved as a result of fixing some supplementary memory cell, 

usually structurally separated from the other memory cells of the ma- 

chine. After the fixing of this cell a simple way is opened to the re- 

duction of the number of addresses in the instruction to the natural 

minimum, i.e., to a single address. Let us clarify this method using 

as an example the addition operation, which requires the use of three 

addresses: the address of the addend a*, the address of the augend ag 

and the address a^ to which the sum is to be sent. With the aid of the 

fixing of the supplementary cell bQ this three-address operation can 

be performed by means of the sequential performance of three single- 

adress operations - the operation of the transfer of the number from 

the cell a, into the (fixed) cell b0, the operation of addition of the 

number contained in cell a« with the number in cell b with subsequent 

writing of the result in cell bQ and, finally, the operation of trans- 

fer of the number from cell bQ into cell a~. Since in this case only 

the addresses a,, a2, a~ can change while the address bQ is fixed once 

and for all, all three indicated operations are actually realized with 

the aid of single-address Instructions. 

The described method leads to the single-address system of in- 

structions which is used in many of the modern universal electronic 

digital machines. Having the single-address system, it is not diffi- 

cult to construct also the two-address system of instructions. In this 

case the second address can be used either for the indication of the 
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address of the following instruction (two-rddress system with forced 

succession of Instructions) or for the indication of the addresses of 

the number codes (information words) with which the operations are per- 

formed (two-address system with natural succession of commands). 

Every device having a discrete memory which is divided into in- 

dividual cells and whose operation can be controlled with the aid of 

a sequence of command words - Instructions — which are arranged in 

certain of these cells is termed a program automaton and the indi- 

cated sequence of instructions Itself is termed the program for the 

automaton operation. 

If the set of operations (types of instructions) performed by the 

program automaton makes it possible to compose from them the opera- 

tion of the transfer of the Information words from any memory cell In- 

to any other memory cell, the operation of readdressing (alterations 

of the addresses in the instructions) by ±1, the operation of condi- 

tional transfer and machine stop, and if as the program of the autom- 

ation there can be specified any finite sequence of operations from 

this set, then such an automaton is termed a universal program autom- 

ation. 

With an accuracy to the limitations introduced by the fixed mem- 

ory size, the universal program automaton is capable of reproduclnc 

any algorithm with the condition of suitable coding of its input and 

output alphabets. This conclusion relates not only to the conventional 

algorithms, but also the random and self-altering algorithms (see §5 

of the present chapter). 

§2. STURCTURE OF THE MODERN UNIVERSAL PROGRAM AUTOMATA 

The modern universal program automata consist of five different 

basic devices — the memory unit (MU), the arithmetic unit (AU), the 

control unit (CU), the input unit and the output unit (output). As we 

- 353 - 



noted in the preceding section, the memory device (memory) serves for 

the memorizing and storing of the program for the automaton operation, 

and also of the Initial, final and Intermediate information. The input 

device serves for the input of the program and the Initial infonnatiori 

(conditions of the problem) into the automaton memory, the output de- 

vice serves for the output from the memory of the final infonnation 

(response to the problem posed to the automaton). 

The arithmetic device, as its name indicates, serves for the per- 

formance of arithmetic operations. However the arithmetic unit is usu- 

ally also used for the performance of other operations, logical for 

example. In this connection it would be more accurate to term the 

arithmetic device an operational device. However we shall not deviate 

from established tradition in the terminology of the AU. 

Finally, the control unit combines and coordinates the operation 

of the all remaining devices of the universal program automaton, ac- 

complishes the selection, decoding and organization of the instruc- 

tions composing the program. In the modern universal program automata 

the control unit is constructed on the cyclic principle. The essence 

of this principle is that the operation of the automaton in time le 

broken down into natural intervals, termed the operating cycles, in 

the course of which there is repeated approximately the same sequence 

of elementary operations. 

The determination of the beginning and end of the operating cy- 

cle is to a certain degree arbitrary, since their simultaneous shift 

in either direction is possible. We will assume that the operating cy- 

cle begins when in the control unit the command (instruction) subject 

to performance has already been transmitted. In the course of the cy- 

cle this command is performed: its operational part is used for the 

readying for performance of certain operations of both the control 
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unit itself and of the arithmetic unit. The a/iress portion of the com- 

mand is used for the excitation of the corresponding cells of the MU 

for the purpose of extracting from them or entering in them of certain 

information. In the multi-address systems the command for the decod- 

ing of the various addresses is accomplished sequentially. The operat- 

ing cycle terminates with the extraction from the MU and the transmis- 

sion to the CU of the code of the following instruction subject to per- 

fonnance. 

We note that the CU not only transmits information to other units 

but also receives information irom them: the command code from the MU, 

the result of the verification of the conditions defining the transfet 

to one or another of the two commands following after the conditional 

transfer command from the AU, and certain other signals from the AIJ. 

As we mentioned in the preceding section, in addition to the opera- 

tional memory unit (OMU) the modern universal program automata are al- 

so equipped with an external memory unit (MU) which is slower acting 

than, but at the same time of larger capacity in comparison with the 

OMU. The block diagram of a universal program automaton which defines 

the interaction (information exchange) between its basic units is 

shown in Pig. 18. 

For the detailing of the block diagram let us consider in more 

detail the structure of the individual units composing It, and pri- 

marily the structure of the OMU, AU and CU. Essential component parts 

of all three devices mentioned are the so-called registers. A register 

is a memory cell which is Intended for the storage of one information 

or command word. However, in contrast with the usual memory cells to 

which access is possible only after the accomplishment of quite com- 

plex preliminary commutation (switching), the registers are particu- 

larly accessible memory cells whose Inputs and outputs are dlreclty 
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connected to the circuits which transmit the Information. 

Depending on the method of functioning of these circuits In uni- 

versal program automata (universal digital machines) are divided into 

two major classes: the series and parallel machines. In the parallel 

machines (automata) with the transmission of the code from register to 

register all the digits of this code are transmitted simultaneously, 

while In the series machines they are transferred sequentially, one 

after the other. It Is clear that the parallel machines, other condi- 

tions being the same, will be faster acting then the series machines, 

although they require a larger number (equal to the number of digits 

In the machine codes of the words) of parallel channels for the trans- 

mission of the Information between the registers, while In the series 

machines we can limit ourselves to one such channel. 
l   _2 3 
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Pig. 18. 1) External memory unit; 
2) operational memory unit; 
3) Input; 4) output; 5) arithmetic 
unit; 6) control unit. 

The arithmetic unit of the modern universal electronic digital 

machines usually consists of three registers, one of which has the 

capability of summing the numerical codes transmitted to it and is 

therefore temed a summator. The numerical codes with which the arith- 

metic unit operates are numbers of differing signs, and the summation 

which we are discussing is understood as algebraic addition (with ac- 

count for the signs). In the parallel machines the summation operation 

Is usually perfonned in two elementary cycles of the machine. Here by 

elementary cycle we mean the interval of time between two sequential 

- 356 - 



clock pulses applied in the AU. Most frequently the source of the 

clock pulses Is the synchronizing generator which is common to the en- 

tire machine and is a part of its control unit. There are also other 

methods of organization of the elementary cycles which are used in the 

so-called asynchronous machines. These methods are described in detail 

in the handbooks on the electronic digital machines. 

The operations performed in the various portions of the universal 

program automaton in the course of a single elementary cycle are cus- 

tomarily termed microoperations. More complex operations which are 

performed over several elementary cycles are realized with the aid of 

a set of microoperations, termed the microprogram of the given opera- 

tion. The microprogram of the summation operation in the arithmetic 

units of the parallel machines usually consists of two microopera- 

tions: the microoperation of bit-organized addition and the micropro- 

gram with which there are realized the carries from some places to 

others which arise as a result of the place-by-place addition. In this 

case it is assumed that one of the addends was established on the sum- 

mat or ahead of time and the other on one of the AU registers. 

We can, moreover, also construct the AU so that after the setting 

of the addends on the register and the summator the addition will be 

accomplished as a result of only a single microoperation - the trans- 

fer of the augend from the register into the summator. In the future 

we shall consider that the AU which we are discussing is constructed 

in Just this way. Summators of such AU are custimarily termed accumu- 

lators, since they have the capability of accumulating the sum of any 

number of tenns as the result of the sequential transmission to the 

summator of all the terms one after another. 

Making use of the circumstance that the summator performs alge- 

braic addition (with account for the signs of the addends) it is not 
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difficult to organize on such a summator the operation of subtraction 

as well, by perfonnlng the transfer (from register to summator) or the 

code of the subtrahend as an ordinary addend but with the sign re- 

versed. In the set of mlcrooperatlons of the universal digital ma- 

chines we therefore Introduce the mlcrooperatlons not only of conven- 

tional (direct) transfer of the number codes, but also the transfer of 

the code with Its sign changed. We must also provide for the mlcroope- 

ratlons of register clearing, as a result of which on the cleared reg- 

isters there must be established the number codes which are the re- 

presentation of the number 0, 

For the performance of the operations of multiplication and di- 

vision with the natural method of coding the numbers, the described 

mlcrooperatlons are not sufficient. Therefore, along with the micro- 

operations already described In the set of the mlcrooperatlons of the 

universal digital machines we also Introduce the mlcrooperatlons of 

left and right shift on the registers. With performance of the micro- 

operation of left shift the number code x, Xp ... x set In the reg- 

ister Is replaced by the code Xp x- ... x 0, and with perfomance of 

the right shift mlcrooperatlon — by the code 0 x^Xp ... x ,. The code 

sign (not specially designated here) retains Its value. Here the code 

digits on the right usually represent the lower digits of the number 

and the digits on the left represent Its higher digits. Therefore we 

also say the with a right shift the number code Is shifted In the di- 

rection of the lower digits, and with a left shift - In the direction 

oi' the higher digits. 

As the feedback signals transmitted from the AU to the CU we usu- 

ally select the signals on the sign of the number code which Is In 

the summator and on the digit of the lowest place of the number code 

which Is In one of the AU registers, which we denote by the letter Pp. 
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This register is also termed the multiplier register. The second reg- 

ister of the AU does not have feedback connection with the CU. It is 

usually tenned the multiplicand register and is denoted by the letter 

As a rule, in the MU there are only two registers, one of which 

is termed the number register, and the other the address register. On 

the address register there is stored the address of the cell of the MU 

with which operation is to be performed (writing or reading of the 

code) and on the number register there is the number code being se- 

lected from the MU or being sent there for stroage. In addition, there 

are usually two other channels for the receipt of signals from the CU 

on the nature of the coming operation (writing or reading). The trans- 

mission of a pulse along one of these channels (write channel) leads 

to the code set in the address register being memorized (written) In 

the MU cell whose address coincides with the code set in the address 

register. The transmission of a pul'-e along the other channel (read 

channel) leads to the code from the MU cell whose address is set in 

the address register being transferred to the (previously cleared) 

number register. 

The two described MU microoperations are termed respectively the 

microoperations of MU read-in and read-out. In addition to these mi- 

crooperations, in the MU provision is made for the MU register clear 

microoperatlon and also the microoperaticn of the transfer of codes 

from the AU and MU registers into the number and address registers and 

the reverse transfers from the MU into the AU and CU. Speaking of the 

transfer of a code from register to register, we must always under- 

stand, if not stipulated otherwise, ordinary transfer, i.e., transfer 

of the code without change of its sign. 

Let us analyze the structure of the CU, following the scheme of 
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microprogramming control, first described by Wilkes and Stringer [75]. 

The microprogram control unit has in its composition two registers, 

termed respectively the command register and the microoperatlon reg- 

ister. The command register serves for the storage of the command (in- 

struction) currently being perfoimed. In accordance with the accepted 

structure of the instructions, the command register is subdivided into 

several registers — the operation register, the first address register, 

the second address register, etc. In the description of the micropro- 

grams It Is sometimes convenient to work with the command register as 

a whole, and sometimes to break it up into the component parts. 

The microoperatlon register, sometimes also termed the microoom- 

mand register, serves for the storage of the code of the microprogram 

(microcommand) instruction which is being performed at the given mo- 

ment, i.e., the code denoting the ensemble of the mlcrooperations be- 

ing perfoimed at a given moment. 

In addition to the command and microoperatlon registers, in the 

universal program automata with the natural order of succession of In- 

structions (see §1 of the present chapter) there is still another reg- 

ister, temed the command counter. With the application of a pulse to 

a special input of this register, there takes place an Increase by 

unity of the number code set in it prior to this time. If the command 

counter were cleared ahead of time, then it will obviously perform a 

count of the pulses arriving at its input. This is where the register 

derives its name. The command counter serves for the storage of the 

command addresses. In the process of the perfomance of an instruc- 

tion, not an instruction for conditional transfer, there is an in- 

crease of the command counter contents by one and the selection of a 

new instruction from the MU in accordance with the address thus ob- 

tained . 
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The Increase of the contents of the command counter by unity is 

one of the microoperations of the CU. Among the other mlcrooperations 

provided for In the CU we note the clearing of the registers, the 

transfer of codes from the MU number register Into the command reg- 

ister, the transfer of codes from the CU address registers (first, 

second, etc.) into the MU address register, the transfer of a code 

from the command register Into the summator (for accomplishment of the 

readdressing operation) and the transfer of the code from one of the 

CU address registers (usually from the third) into the command counter 

(with perfomance of the conditional transfer operation). For the per- 

fomance of the logical operations which were mentioned In the preced- 

ing section, several new mlcrooperations are added to the number of 

mlcrooperations of the arithmetic unit. 

As for the microprogram control unit Itself, In the Wllkes and 

stringer scheme It Includes, In addition to the mlcrooperatlon regis- 

ter mentioned above, the so-called mlcrooperatlon decoder and two 

diode matrices,* temed the A-matrlx and the B-matrlx. A simplified 

symbolic circuit of the microprogram control unit Is shown In Fig. 19. 

On this figure the letters POn denote the operation register (a com- 

ponent part of the CU command register) and PMO denotes the mlcroope- 

ratlon register. The dots designate the points of connection of the 

diodes which connect the horizontal buses of the matrix with the ver- 

tical buses. The purpose of the dioaes is to pass the pulses in the 

forward direction (from the horizontal buses to the vertical) and to 

prevent their passage in the reverse direction. With this condition 

the pulse applied to any horizontal hus  D goes to those and only those 

vertical buses with which the given bus D is connected by the diodes. 

If the connection of the buses is accomplished indirectly, false paths 

for the passage of the pulses are possible which were not Intended by 
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Fig. 19, 1) Operation regis- 
ter; 2)  mlcrooperatlon reg- 
ister; 3) synchronizing pulse; 
4) decoder; 5) Ar-matrlx; 6) B- 
matrlx. 

the designer. For example, with 

pulse application to the second- 

from-the-top horizontal bus of the 

A-matrlx the pulse would appear 

not only on the first left verti- 

cal bus but also on the third from 

the left, passing to It through 

the second-from-the-botton hori- 

zontal bus. The use of the diodes 

eliminates the possibility of the formation of such false paths, since 

the reverse transfer of pulses from the vertical buses to the horizon- 

tal Is not possible. 

The purpose of the decoder shown In Fig. 19 Is the transmission 

of the successive pulse SI of the synchronizing generator applied to 

its input to precisely the one of the horizontal buses of the A-matrlx 

which is uniquely determined by the codes set at the considered moment 

of time in the operation and mlcrooperatlon registers. Some of the 

horizontal bus of the B-matrix and some go into two such buses. In the 

latter case the transfer of the pulse from the horizontal buses of the 

B-matrix is determined by the feedback signal (by the signal £ or ^ In 

Fig. 19) coming from the AU. 

Transferring to the vertical buses of the B-matrix (determined by 

the method of connection of the diodes) the pulses enter the micro- 

operation register, altering the code previously set there. Therefore 

the following pusle of the SI, passing through the decoder, will go to 

a new horizontal bus. Bßr connecting the vertical buses of the A-matrlx 

to the corresponding units of the machine so that the transmission of 

a pulse along each of the vertical buses leads to the performance of 

precisely one mlcrooperatlon, we obtain the possibility by using this 
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process of accomplishing any finite sequence of microoperations (mi- 

croprogram), in this case combining several of the microoperations in- 

to one mlcrocommand. 

By writing the microprograms for the various operations which the 

machine must perform, we detennlne the method of connection of the 

diodes in the A-matrlx and in the B-matrlx and consequently the struc- 

ture of the entire microprogram control unit. With the performance of 

the microprogram of any machine operation the contents of the opera- 

tion register remains unchanged, while the contents of the microope- 

ratlon register varies with every new elementary cycle. Only at the 

very end of the perfonnance of the operation, after the selection of 

the new instruction from the memory, does the contents of the opera- 

tion register change, after which there begins the perfonnance of the 

microprogram of the succeeding operational cycle of the machine. 

Since the structure of the control unit and even of the entire 

machine Is to a considerable degree detemlned by the selection of the 

operations and the microprograms for them, let us consider concrete 

examples of microprograms for the most common machine operations. Here 

for deflnlteness we shall consider that the machine under discussion 

is a three-address parallel universal digital machine with natural or- 

der of succession of the commands. We use the letter £ to denote the 

number sign function (±1) of the number located in the summator, and 

£ to denote the value of the lowest place of the number in the multi- 

plier register P2 (it Is assumed that the machine operates with n- 

place proper fractions in the binary notation system). 

Addition Microprogram 

1. Clear AU and MU registers. 

2. Transfer of the code from the CU first address register into 

the MU address register. 
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3. MU read-In. 

4. Transfer code from MU number register Into AU summator. 

5. Clear MU registers. 

6. Transfer code from CU second address register Into MU address 

register. 

7. MU read-in. 

8. Transfer of code from MU number register Into AU summator (most 

frequently via the AU register P2). 

9. Clearing of MU registers. 

10. Transfer of code from AU summator Into MU number register. 

11. Transfer of code from CU third address register Into MU ad- 

dress register. 

12. MU read-In. 

13. Clearing of MU registers. 

14. Increase of command counter content by one. 

15. Transfer of code from command counter Into MU address register. 

16. MU read-out. 

17. Clearing of command register. 

18. Transfer code from MU number register Into command register. 

Certain of the mlcrooperatlons making up the described micropro- 

gram can be combined in time, as a result of which the time for the 

operating cycle can be reduced and the speed of the machine can be in- 

creased. Examples of such combined mlcrooperatlons might be the micro- 

operations 16 and 17 or mlcrooperatlons 10 and 11. 

Microprogram for Multiplication by Positive Number 

1. Clear AU and MU registers. 

2. Transfer code from CU first address register into the MU ad- 

dress register. 

3. MU read-in. 
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4. Transfer code from MU number register Into AU register P,. 

5. Clear MU registers. 

6. Transfer code from CU second address register Into MU address 

register. 

7. MU read-In. 

8. Transfer code fron MU number register Into AU register   Pp. 

9. (l) Transfer code from P,   register Into summator If q = 1,  and 

go to the following mlcrooperatlon without number transfer If q = 0. 

10. (l) Right shift on summator. 

11. (l) Right shift on ?2 register. 

9.   (2) Same as 9(l). 

10. (2) Same as 10(l). 

11. (2) Same as ll(l). 

9.   (n) Same as 9(l). 

10. (n) Same as 10(l). 

11. (n) Same as ll(l). 

12. Clear MU register. 

13. Transfer code from CU third address register Into MU address 

register. 

14. Transfer code from summator Into MU number register. 

15. MU write-in. 

16. Clear MU registers. 

17. Add one  of content of command counter. 

18. Transfer code from command counter Into MU address register. 

19. MU read-In,   clear ccmmand register. 

20. Transfer code from MU number register Into command register'. 

In the multiplication microprogram,   in contrast with the addition 
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microprogram, considerable use is made of the possibility of branching 

In the order of succession of the mlcrooperations as a function of the 

feedback signal ^ coming from the AU. It is not difficult to see that 

the sequential performance of mlcrooperations 9,   10, 11 is equivalent 

to the performance of the usual, well known multiplication algorithm 

with roundoff for the binary notation system. 

Actually, In the described technique the AU summator serves for 

the storage of the sums of the partial products of the multiplicand 

by the Individual digits of the multiplier. This storage is accom- 

plished with an accuracy to the lower digits which are dropped in the 

right shift of the summator contents. Each time the multiplicand is 

added or not added to the partial sum stored in the summator, depend- 

ing on whether the lowest digit of the right-shifted multiplier is 

equal to one or zero. It is clear that this procedure together with 

the preliminary shifts on the summator and the Pp register denotes 

the addition of the product of the multiplicand by the next (right) 

digit of the multiplier in the previous sum of the analogous (partial) 

products, as Is required In the conventional multiplication algorithm. 

Roundoff to the number of significant digits contained in the cofac- 

tors is accomplished as a result of the shifts on the summator which 

lead to the elimination of the lowest digits of the product. In the 

case of multiplication not only by positive, but also by negative num- 

bers an additional mlcrooperatlon for the fomatlon of the sign of the 

product is introduced into the microprogram. 

Mxcroprogroiri for Conditional Transfer on Inequality 

1. Clear AU and MU argisters. 

2. Transfer code from CU first address register into MU address 

register. 

3. MU read-in. 
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4. Transfer code from MU number register into AU summator. 

5. Clear MU registers. 

6. Transfer code from CU second address register into MU address 

register. 

7. MU read-in. 

8. Transfer code from MU number register into AU register. 

9. Transfer code with sign change from register into summator. 

10. If the summator content s > 0, then add one to content of com- 

mand counter, if s < 0 then transfer code from CU third address reg- 

ister into command counter. 

11. Clear MU registers. 

12. Transfer code from command counter into MU address register. 

13. MU read-in. 

14. Clear command register. 

15. Transfer code x/.-om MU number register into conmand register. 

This microprogram accomplishes the comparison of the number A1 

written from the first address of the command with the number A2 writ- 

ten from its second address. If it is found that A, > Ap control is 

transferred to the next command in order. If, however. A, < A2 the 

following command is taken from the third address of the current com- 

mand. It is not difficult to see that from the two operations of con- 

ditional transfer with resprct to inequality, by switching the places 

of the numbers A, and A^ we can form the operation of conditional 

transfer with respect to the exact coincidence of the words described 

in the preceding section. 

The described basic principles of the organization of the algor- 

ithmic process in the universal electronic digital machines gives a 

general idea of the so-called block structure of such machines. In the 

real design of the electric programming automata the stage of the 
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block synthesis Is only the starting point for the development of 

particular circuit solutions. The selection of these solutions Is made 

on the basis of the theory of automata and the theory of combination 

circuits presented In Chapters 1 and 3« 

§3. THE CONCEPT OF PROGRAMMING 

Programming Is the writing of a particular algorithm In the form 

of a finite sequence of Instructions (commands) for the universal pro- 

gram automaton. Such a sequence Is termed the operating program of the 

given automaton. Entered Into the automaton together with the Initial 

data (input word of the algorithm), it forces the automaton to perfonn 

the operation of the algorithm In question. I.e. to transform the 

given Input word (input Information) Into the corresponding output 

word (output Information). The universality of the set of operations 

of the modem program automata provides the possibility of program- 

ming any algorithm with the condition that we neglect the limitations 

Imposed by the flnlteness of the volume of the automaton memory. 

In order to understand the essence of the problems posed In pro- 

gramming, let us consider first some simple particular example. Let us 

assume that we are required to calculate a sum of the form J]*1-. 

where m Is seme fixed natural number. We shall compile the program for 

the solution of this problem for a three-address universal digital ma- 

chine with natural order of succession of commands, whose set of ope- 

rations Includes all four arithmetic operations (addition, subtraction 

multiplication and division), the operation of conditional transfer 

with respect to exact word coincidence and the operation of machine 

stop. 

Let us assume for simplicity that there Is no need for input and 

output of information in the machine MU. In other words, the initial 

Information and the program which will be compiled are assumed to 
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have been entered in the proper memory cells and the problem solution 

is obtained in the MU cells (in a single cell In the considered case) 

assigned for this purpose after stopping the machine. 

For the solution of the posed problem we introduce the following 

notations: 

xk = *: 

S» = 2, + Zl + . • . + «» =» S»-l "^ ** 

We shall assume that for the storage of the quantities x^, y, , z. and 

s, there are assigned some four memory cells teimed the working cells. 

It is natural to break the process of the computation of the desired 

sum s. down into m completely identical steps, in each of which we 

compute the corresponding value of the partial sum s, (k= 1, 2, ..., 

..., m). The computations are initiated with the value k = 1 and s0  C 

and can be written in the form of the following scheme: 

3) sk = si»-, + «*; 
4) ^+i=x»+i; 

5) if x,   ,  = m + 1 then go to the following instruction;   If 
xk+l ^ m + ! then return to Instruction 1; 

6) stop. 

This scheme is actually already the desired program, in whose in- 

structions the actual addresses of the working cells are replaced by 

the symbolic designations xk, y^, z^, sk temed symbolic addresses. By 

fixing the actual addresses of these cells, and also of the cells con- 

taining the constants 1 and m + 1 which figure in the program In ques- 

tion, it Is not difficult to go from the program with symbolic ad- 

dresses to the actual program in the three-address instructions. In 
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this case we shall assume that the conditional transfer Instruction 

provides for natural succession of Instructions with coincidence of 

the compared words (located In the first and second addresses of the 

conditional transfer Instruction) and transfers control to the third 

address with noncolncldence of the compared words. 

Let the addresses of the working cells x^, y^, z^ and s. be re- 

spectively 1, 2, 3 and 4; let the addresses of the cells containing 

the constants 1 and m + 1 be 5 and 6; and let the address of the cell 

containing the first program instruction be 7. In this case the de- 

sired program (in actural addresses) is written in the form of the 

follwoing sequence of Instructions: 

1) multiplication 1, 1, 2; 

2) division 5, 2, 3 

3) addition 4, 3, 4. 

4) addition 1, 5, 1 

5) conditional transfer 1, 6, 7; 

6) stop. 

In the cell with the address 1 there must initially be placed a 

number equal to one, and in the cell with the address 4 there must be 

a number equal to zero. The initial filling of the working cells with 

the addresses 2 and 3 Is evidently unimportant, since the required 

filling of these cells is perfomed by the first and second instruc- 

tions of the program. We recall that the machine memory Is presumed 

to be constructed so that with the writing or any word In any cell the 

previous content of this cell is erased. After stopping of the machine 

(performed by the sixth instruction) the sought value of the sum s  is 

obtained in the fourth memory cell. 

It is not difficult to see that in this program the cell with the 

address 2 can be used not only for storing the quantity y  but also 
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for the storage of the quantity z, . Actually, the quantity y. Is used 

exclusively only for the calculation of the value of the quantity z, , 

therefore after calculating z. the value found can be sent to the cell 

where the quantity y. was previously stored without danger of Interfer- 

ing with the correctness of the following calculations. There exist 

general techniques which permit automating such a process of econo- 

mizing of the working cells. 

As the second example let us consider the programming of the pro- 

blem of the calculation of the scalar product of two n-dimensional 

vectors A = (a,, a2, ..., a ) and B = (b,, bp, ..., b ) i.e., the com- 

putation of the sum _s of the paired products of their corresponding 

components: s = a-,b, + a2bp + ... + anb . Let us assiune that the com- 

ponents of the vector A are arranged in the cells with the addressee 

a + 1, a + 2, ..., a + n, and the components of the vector B are in 

the cells with the addresses b+ 1, b+2, ..., b+n, where a and b 

are certain fixed natural numbers, chosen so that the arrays of the 

cells assigned for the storage of the components of the vectors A and 

B are disjoint. 

For the sake of variety let us compile the program for the cal- 

culation of the scalar product with application to a single-address 

machine with natural order of succession of commands. In this case the 

instructions which realize the arithmetic operations are understood so 

that the corresponding operation is performed with a pair of numbers, 

the first of which is in the AU summator, and the second is in the cell 

whose address is indicated in the Instruction. The result of the ope- 

ration remains in the summator. For the performance of the arithmetic 

operations with such Instructions it is also necessary to have instruc- 

tions which accomplish the exchange of commands between the AU sum- 

mator and the MU cell whose address is indicated in the corresponding 
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Instruction. 

The conditional transfer command can be performed In various ways. 

Let us assume that there takes place a conditional transfer for ^ero 

in the summator: if in the AU summator with the performance of a com- 

mand for conditional transfer there appears written the number 0, then 

control is transferred to the next command in order, otherwise the se- 

lection of the following command is made from the address indicated in 

the conditional transfer command. It is assumed for simplicity that 

the ith command of the program will be stored in the cell with the ad- 

dress _1 (i = 1, 2, ...). Assigning for the storage of the readdress 

constant (number equal to one) the cell with the address c,  for the 

storage of the number n (dimension of the vectors A and B — the cell 

with the address a, and for the storage of the partial sum s, = a1b1 + 

+ aobp + ... + ^ ^V — the  cell with the address s,  we arrive at the 

following program: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

transfer to summator from MU, a + 1; 

multiply, b + 1; 

add, B; 

transfer from summator to MU, _sj 

transfer to summator, 1; 

add, CJ 

transfer from summator to MU, 1; 

transfer to summator, 2; 

add, _CJ 

transfer from summator to MU,  2; 

transfer to summator,  t; 

add, £j 

transfer from summator to MU, t; 

transfer to summator, a; 
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15) subtract,  tj 

16) conditional zero transfer to summator,   1; 

17) stop. 

The cell with the address t which appears in the constructed pro- 

gram is the so-called program counter of the number of cycles. In- 

structions 11, 12 and 13 perfonn the Increase of the content of this 

cell by one. If in the beginning of the computation there was a number 

equal to zero in the cell t,  after the perfonnance of n cycles (repe- 

titions of the group of instructions 1-13) there will be a number 

stored in this cell equal to n. Then as a result of the subtraction 

performed by instructions 14 and 15, zero will be obtained in the sum- 

mator and the subsequent conditional transfer command will transfer 

control to command 17,  which stops the machine. 

Up to this moment the conditional transfer command will transfer 

control to the first command, as a result of which the computation cy- 

cle will be repeated. However, this will not be a literal repetition, 

since with the aid of commands 5* 6, 7 and 8, 9»  10 there is accom- 

plished an increase of the address of the first and second commands of 

the program by unity. Therefore commands 1 and 2 will lead to the for- 

mation of the product of a new pair of components a^b, of the vectors 

A and B, commands 3 and 4 will lead to the computation and the stor- 

age in the cell Q  of the new value of the partial sum s^ = Sj- + a^b. . 

For a proper understanding of the described program it is neces- 

sary to note that the operation of transfer into the summator of any 

code assumes the preliminary clearing of the summator and after the 

transfer of the code from the summator to the MU the summator is also 

automatically cleared. In addition, it is necessary that in the begin- 

ning of the operation there be a number equal to zero written in the 

cell t. 
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The described method for perfomlng the address substitution 

(change of the command addresses) is not convenient when the codes of 

the commands themselves are subject to change. First, it leads to ex- 

tension of the program (particularly noticeable in the case of the s 

single-address machines), and second, and this is most important, as 

a result of its use the initially given program is altered and is not 

suitable for further use without preliminary restoration of the orig- 

inal values of the address portions of the commands. This restoration 

introduces further complications in the program and requires additional 

MU cells for the storage of the original addresses. Therefore for the 

majority of the modem universal digital machines we prefer another 

method of readdressing, associated with the use of the so-called ad- 

dress modification registers, or index-registers. 

The index registers are a part of the control unit of the uni- 

versal program automaton and have the property that in the process of 

the performance of any command the contents of a particular one of 

them is automatically added to those command addresses which are 

equipped with a special label corresponding to this index register. 

With the use of a single index register I in the three-address 

command system, the program for the computation of the scalar product 

of the vectors can be written with only five commands in all (designa- 

tions of the cell addresses are the same as in the preceding program): 

1) add 1 to the content of the index register 1; 

2) multiply, a(l), b(l), jgj 

3) add, 2 s s', 

4) conditional transfer, I, a, 1; 

5) stop. 

In this program use is made of conditional transfer on exact co- 

incidence of codes in the index register I and in the cell a (where 
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the dimension n of the vectors A and B is written). In the cace of co- 

incidence of these codes control Is transferred to the sequentially 

following (fifth) command, and in the case of noncolncidence control 

is transferred to the first command of the program. 

In the course of the entire time of operation the program retains 

its initial form, only the content of the index register I changes. In 

case of necessity, there may be included in the program a special com- 

mand for the clearing of the index register, setting it to zero. 

In the programming of more complex algorithms, for example the 

algorithm for the multiplication of a vector by a matrix, the need 

arises to use several index registers for the storage of the readdress- 

ing constants which are changed by the various steps. Let us consider 

as an example the multiplication of the n-dlmensional vector B = (b , 

b2, ...> b ) by the matrix A of nth order with the elements a., (1 < 

< i < n, 1 < k < n). 

Let us assume that the sequential components of the vector B are 

located in the memory cells with the addresses b+1, b+2, ..., b+n 

and the elements a., of the matrix A are in the memory cells with the 

addresses a + (k — l) n + i(i, k = 1, 2, ..., n). The components of the 

vector C = BA are located in the cells with the addresses c + 1, c + 2, 

..., c + n (there were initially numbers equal to zero in these cells). 

We use the cell with the address t as the working cell for storage of 

the intermediate results (its initial content is not important to us). 

Finally, the cells with the addresses 1, 2, ... are used for the stor- 

age of the sequential instructions which constitute the sought program. 

Let us introduce the three index registers I,, lo, I-,, which must 

be cleared prior to initiation of operation, and let us place in the 

cell with the address d the number n, equal to the dimension of the 

vector B and the order of the matrix A. With the aid of the introduced 
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notations the desired program for the multiplication of the vector by 

the matrix is written In the following foiro: 

add 1 to the content of the Index register 1^; 

add 1 to the content of the Index register I1J 

add 1 to the content of the Index register Igj 

multiply, b(l1), a(l2), t; 

add, c (I3), t, c(I3); 

conditional transfer, I-, d, 2; 

clear index register, I,; 

conditional transfer, L~, d, 1; 

stop. 

With further complication of the algorithms the difficulties of 

the programming Increase more and more. In this connection there nat- 

urally arises the thought of looking for more economical methods of 

writing the Information on the algorithm and the application of the 

most universal program automaton for the automatic translation of such 

forms Into the actual operational programs. This Idea constitutes the 

basis for automatic programming with the aid of the so-called univer- 

sal programming programs (translators). 

The universal programming program Is an algorithm programmed for 

a particular universal digital machine for the translation of the 

statement of any algorithm In a particular fomal algorithmic language 

Into the Instruction language of the given machine. As the formal al- 

gorithmic language In question here we can, of course, select any of 

the languages described In Chapter 1, for example the language of the 

nomal algorithm schemes. However such a choice would not facilitate, 

but rather would complicate the solution of the programming program, 

since the statement of the algorithm In any of the abstract algorith- 

mic schemes of the first chapter Is, as a rule, a considerably more 
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difficult problem than programming in the language of the instructions 

of the modern universal digital machines. To convince ourselves of 

this it is sufficient to consider the case of the addition operation, 

which is performed in the universal digital machines with the aid of 

one instruction while, for example, with the use of the normal algo- 

rithms it is realized with the aid of the quite complexly written 

scheme which contains many elementary substitutions. 

Therefore attempts have been made to develop those universal al- 

gorithmic languages which would retain the basic properties of the 

language of the modern universal digital machines but which would per- 

mit a simpler and more easily read statement of the algorithms en- 

countered in practice in comparison with the direct programming in 

the "machine" languages. Among the languages of this sort we note, for 

example, the Fortran language (U.S.), the Polish algorithmic language 

SAKO, the address language (Kiev, USSR), and others. 

The creation of practical algorithmic languages is important not 

only because ^uch languages facilitate programming, but also because a 

sufficiently well developed practical algorithmic language can become 

a generally accepted and generally understood language for the writ- 

ing of various algorithms. Thus, the ALGOL-60 language which was de- 

veloped by a group of European and American scientists has at the pre- 

sent received wide international acceptance. A detailed description of 

this language is given in the following chapter, here we shall consid- 

er certain techniques which facilitate direct programming in machine 

languages. 

The first technique, already considered above, is the use in the 

initial stage of the programming of symbolic addresses in place of the 

actual (numerical) addresses. The later assignment of the actual val- 

ues to the introduced symbolic addresses and the economy of the work- 
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ing cells are a purely technlsal operation and are easily subjected to 

automaton. In spite of its simplicity, the method of symbolic addresses 

permits significant simplification of the programming of complex pro- 

blems and, what is most Important, considerably reduces the number of 

errors. 

A second method which can be used to significantly simplify di- 

■■.- i — ■ 

rect programming is the inclusion of previously constructed simpler 

programs in the more complex programs. The programs specially adapted 

for inclusion In the more complex programs are usually termed subpro- 

grams. By  accumulating a library of subprograms, the programmer can In 

many cases reduce the direct programming to a combination of a small 

number of avialable subprograms. To facilitate the combining of sev- 

eral subprograms into a single program, there have been worked out 

special techniques which make it possible to avoid introducing changes 

In the subprograms when including them in quite diverse programs. The 

difficulty lies in the fact that the last instruction of the subpro- 

gram must transfer control to some inatruction of the basic program, 

which changes from program to program and is not known to the compiler 

of the subprogram. 

We can overcome this difficulty by sending at the moment of trans- 

fer to the subprogram the address of the instruction to which the ma- 

chine must go after completion of the subprogram into a special mem- 

ory cell which is termed the return register. In this case the subpro- 

gram must be terminated by a special Instruction "transfer on the re- 

turn register," which extracts the next command fron the cell whose 

address is stored in this register. We note that for the use of any 

given cell of the machine operational memory as the return register it 

is advisable to introduce referral to the memory using the so-called 

second rank address. With this referral the selection from the memory 
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or the writing into the memory are accomplished not by the addresses 

indicated in the command being executed, but by the addresses which 

are stored In the memory cells whose addresses are indicated in this 

command. With the use of subprograms which are included in other sub- 

programs (and not in the basic program) we must make use of several 

return registers or second rank address transfers. 

Such use of some subprograms within others creates the basis for 

the multistage organization of systems of standard programs. The ra- 

tionality of such organization is determined by the degree of economy 

of the arrangement of the library of standard programs in the partic- 

ular memory devices. This question becomes particularly important with 

the scheme of realization of various sorts of standard subprograms 

which enrich the set of operations perfonned by the machine. In this 

case there is achieved a major economy of the work of the programmers, 

who find It possible to use a large subprograms, assigning to each of 

them only a single machine instruction. Such multistage organization 

of the control is realized in the "Promin'" computer of the Institute 

of Cybernetics of the Academy of Sciences of the Ukrainian SSR (Kiev). 

Moreover, even in the absence of the schematic realization a suf- 

ficiently extensive library of standard subprograms significantly fa- 

cilitates the programming, since a considerable portion of the new 

programs being compiled will, as a rule, be made up of previously pro- 

grammed standard portions available in the library. 

We note that in compiling a library of standard subprograms an 

attempt is made to provide a quite high degree of generality of the 

problems being solved. For example, the standard subprogram for the 

multiplication of matrices is compiled for the multiplication of ma- 

trices of any order rather tlv.n for only some one order. Other subpro- 

grams are constructed similarly. 
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Also of significant assl:. • »nee In direct programming Is the pre- 

liminary writing of the prograr  .r simplified form,  usually termed the 

program block diagram, with subso^wnt programming of each Individual 

block.   A convenient method for writing program block diagrams  Is the 
■ 

operator method oT writing program diagrams proposed by I^yapunov. 

In the use of this method groups of program commands of a single 

type which follow one another (for example, commands which realize the 

arithmetic operations) are combined Into the so-called operators. The 

most widely used are the arithmetic operators and the readdressing 

operators (which change the content of the Index registers). We label 

the arithmetic operators with the letter A, the logical operators with 

the letter P, the readdressing operators with the letter I, and the 

stop operator with the letter F. In addition, the operators are num- 

bered with the use of special Indices In the order In which they occur 

In the program. 

Combining a group of arithmetic operations, every arithmetic ope- 

rator Is a coded designation for the operation of computation using a 

particular, frequently quite complex, formula. The logical operator 

makes a verification of the logical conditions on the basis of which 

particular conditional transfers are perfoimed (control transfers In 

the program which violate the natural order of succession of commands). 

A vertical bar Is placed after the logical operator; above and below 

this bar there are Indicated the numbers of the operators to which 

control Is transferred In the case when the logical condition Is sat- 

isfied, and correspondingly In the case when It Is not satisfied. Ab- 

sence of a number below or above the bar Indicates that In the corre- 

sponding case conteol Is transferred to the operator standing directly 

to the right of the bar.. 

With the aid of the described symbolism the operator diagram of 
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the last of the programs which we considered can be written as 

Here the readdress operator I, corresponds to the first instruction of 

the program, and the operator I2 corresponds to the two following in- 

structions. The arithmetic operator iU combines the fourth and fifth 

instructions, and the remaining operators include one instruction each. 

To facilitate reading of the operator diagrams the bars which des- 

ign ate the conditional transfers can be supplied with horizontal 

lines above and below, directed to the left. In this case there is 

also placed ahead of the operator to which control is transferred a 

bar with a line directed to the right and labelled with the same num- 

ber as the corresponding bar of the conditional transfer operator. 

Then a group of operators which composes a cycle which is repeated 

several times as a result of the conditional transfers is framed on 

both sides by sort of "brackets" which facilitate the search for such 

cycles. 

Using these notations, the operator diagram described above can 

be rewritten 

lli L l*AJ>tJ /iP.jf,. 
12      9     1 

By supplying the operator diagram of the program with the de- 

scription of each of the operators occurring in it (other than the 

stop operator) we can after the compilation of such a diagram turn to 

the individual, sequential programming of these operators with subse- 

quent combining of the individual pices of the program thus compiled 

into a single whole, These operations are to a considerable degree 

routine work and can be relatively easily automated with the aid of 

any universal program automaton. 

We note that for the description of the arithmetic and logical 
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operators we can make use of the conventional arithmetic or logical 

fomulas. Having available the special programs for the automatic 

translation of such foimulas Into the machine Instruction language and 

combining them with standard library subprograms, we find the possi- 

bility of preseating to the machine (universal program automaton) the 

task in the same from in which it is presented to the skilled human 

computer. This method actually combines the method of the standard sub- 

programs with the method using (to a certain extent) the universal pro- 

gramming programs. Therefore It is natural to tern it the specialized 

programming program method or the programming program library method 

[24]. Here the specialization consists in the fact that the corre- 

sponding library is oriented to a certain class of typical problems, 

permitting actually the complete elimination of programming and limit- 

ing oneself to communicating to the machine only the conditions of the 

problem which must be solved. 

§4. THE UNIVERSAL ALGORITHMIC LANQUAQE ALQOL-60 

The international algorithmic language ALGOL-60, which for brevity 

we shall term simply ALGOL, is a means for the quite simple, precise 

and clear writing of computational algorithms. Being a universal algo- 

rithmic language, it Is suitable, of course, for the writing of any 

(not necessarily computational) algorithms, however in the case of the 

processing of literal rather than numerical information the simplicity 

and the clarity of the corresponding "algol" writing is to a consider- 

able degree lost. While the programming of the computational algorithms 

b;r ALGOL Is a far simpler problem than the direct programming for the 

modern universal electronic digital machines, the programming of pro- 

blems on the processing of literal information by ALGOL is only slight- 

ly simpler than using the "machine" languages. 

The basic symbols used in the construction of the ALGOL language 
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are the Latin letters (26 capital and 26 lower case letters), the Ar- 

abic numerals (from zero to nine inclusive), the logical values "true" 

and "false," and also the operation symbols, separator symbols and 

brackets (the last three types of symbols are termed limiters). There 

are also a certain number of service words, for which words of the 

English language are usually used. It is customary to write these words 

in bold face type. 

For the notations of the numbers use is made of the decimal nota- 

tion system, with the whole part being separated from the fractional 

part by a point (and not by a comma). The plus sign ahead of positive 

numbers and the zero symbol in the designation of the whole part of a 

proper fraction can be dropped. For the designation of a decimal ex- 

ponent (number of tens in an integral power) we make use of a special 

symbol — a ten dropped below the basic line (it is usually printed In 

bold face type). The numbers used in ALGOL are divided into two types: 

integer and real. The integer type includes only the whole numbers 

(with or without sign) which do not contain in their writing a symbol 

of a decimal exponent or a decimal point; all the remaining numbers be- 

long to the real type (here the number 3.0 is real but not an Integer). 

Examples of the integer type numbers are: 0, + 275* — 0634, + 0, 

— 2. Examples of the real type numbers are: + 5-3^0-10^ (i-6-* "the 
o 

number 5.34-10 ), - .063 (the number- O.O63), - -37^-  32 (the num- 

ber-0.37» 10"^2), + 105 (the number 10^), etc. 

The introduction of particular quantities in ALGOL (in writing of 

specific programs) is accompanied by their preliminary description. The 

subsequent concrete representations of these quantities must be inter- 

preted in accordance with the indicated descriptions. If, for example, 

some quantity x was described by the term integer, and then its value 

was introduced equal, say to 23.4, then this value must be mentally 
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rounded off to the nearest Integer (23 In this case). The value of a 

quantity of the Integer type, equal to 23.5, is rounded off to 24, and 

not to 23 (to the nearest larger Integer).* We note also that if the 

quantity x described as real, nothing prevents it taking also Integral 

values, however In subsequent operations with the quantity x we pro- 

ceed Just as with any real quantity without performing rounding off 

to the nearest Integer. 

For the designation of various kinds of quantities (constants and 

variables) in ALOOL use is made of the so-called identifiers. Any fi- 

nite sequence of letters (Latin) and decimal digits, of necessity be- 

ginning with a letter (and not with a digit), can serve as an identi- 

fier. Examples of identifiers might be a7L0, x, ga, aPg, TOWW etc. At 

the same time the expressions 7x, bab or ab + x cannot serve as iden- 

tifiers. The use for designation of quantities not only of the letters, 

but also of words, i.e., sequences of letters (possibly, meaningless) 

makes the supply of identifiers potentially unlimited, which is quite 

important from the point of view of the possibility of the representa- 

tion of any algorithms, no matter how complex. The possibility of the 

designation of a quantity by its natural name also presents obvious 

conveniences, for example: force, current, etc. At the same time there 

is one inconvenience with which we must contend in the future: in the 

construction of arithmetic expressions from the identifiers the multi- 

plication sign cannot be dropped (as is usually done in algebra), 

since the expression ab + xy will be understood in ALGOL as the sum of 

two quantities designated by ab and xy and not as the sum of the paired 

products of the quantities a, b and x, ^. 

In addition to the quantities which take numerical values (of the 

Integer and real type) in ALGOL use is made of Loolean quantities, 

taking only two values — "true" and "false." The Boolean quantities 
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are designated by Identifiers in Just the same way as the numerical 

quantities; in the descriptions they are assign „a to the Boolean type. 

Similar quantities, for example the components of any vector or 

the elements of a particular matrix, are usually denoted by identi- 

fiers with one or several indices. The indices are written after the 

identifier and are enclosed in square brackets. Different indices are 

separated from one another by commas. Whole numbers (not Just positive 

ones), variables and any arithmetic expressions which are always of 

the integer type, can be used as indices. 

Examples of writing of variables with indices are: A[l, — 2], ps 

[i] bA8[i, J, 1]. 

Variables with indices which vary within certain limits consti- 

tute the so-called arrays. The array description in ALGOL is preceded 

by the English word array, before which there is placed the name of 

the type (integer, real. Boolean) of the variables composing the array 

(if the name of the type of variables in the array is not indicated, 

it is considered that they are of the real type). In the description 

of the array, after the array identifier in index (square) brackets 

there is written the so—called list of bound pairs. Each bound pair 

consists of two arithmetic expressions (or numbers) separated by a 

colon. The first of these expressions is the lower bound (smallest 

possible value) of the corresponding index, and the second is its up- 

per bound (highest possible value of the index). It is assumed that 

the index can run through all the integral values included between the 

lower and upper bounds, and in the case when the upper bound is less 

than the lower, the corresponding array is considered indeterminate. 

Examples of the description of arrays: real array ^1:». 0:ml, Boolean 

array gUO.S],  integer array N\ — 7:1. /:/. 3:31. 

The number of different Indices characterizLjlng an array is termed 
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the dimension of this array. In the examples Just presented the array 

x has a dimension of 2, the array g has a dimension of 1. As for the 

array N, formally Its dimension Is equal to 3* however, since the last 

Index can take only one single value (equal to 3) actually the value of 

the dimension of this array reduces to 2. 

We note that In the descriptions of the variables or arrays of 

the same type the name of the type can be written only once, and the 

corresponding Indetlflers are separated from one another by commas. In 

the case of arrays with the same bounds the index brackets with the 

corresponding list of bound pairs can be written out only once - after 

the last identifier of an array with these bounds. For example, real 

a, bx? or Integer   trray^.Ä^Ddl^, I:*I • The flrst description describes 

three variables which take real values, and the second describes three 

two-dimensional arrays with the same bounds which are composed of in- 

tegral quantities. 

For the separation of the described variables or arrays of dif- 

ferent types use is made of a semicolon. For example, real x,y; Boolean 

A,B,C',  array pxll:2,  f:*|; integer array ^(—1:0. 5:101, 012:41 • 

Arbitrary arithmetic expressions, which play a large role in the 

construction of the ALGOL language, can serve as the index bounds in 

the arrays. The arithmetic expressions are constructed from numerals 

and variables with the aid of the six arithmetic operations - addition 

(denoted by the + sign), subtraction (denoted by the sign -), multi- 

plication (denoted by th: sign x), division (denoted by the slant line 

sjrabol /), Integral division (denoted by the sign —) and raising to a 

power (denoted by the symbol t). 

The integral quotient a-b is the whole part (rounded off in the 

direction of reducing the modulus to the nearest integer) of the con- 

ventional quotient a/b. This operation is applied only to quantities 
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of the Integer type, so that the expression 3%0~5»0  Is to be consid- 

ered indetemlnate, (while the expression 3-5 Is determinate and 

equal to zero). The operation of raising to a power a t b (a to the 

power b) with positive a Is determinate for all quantities b of the 

real and Integer types, while for negative a it is defined only for 

the cases when the quantity b is of the integer type. 

Other conditions being the same, in the arithmetic expression 

there must first be performed the operation of raising to a power, 

then the operations of multiplication and division (conventional and 

Integral), then the operations of addition and subtraction. Like ope- 

rations (multiplication and division or addition and subtraction) are 

performed in the conventional order — from left to right. When it is 

necessary to perfom operations in a different order use is made of 

round brackets. With raising to a power a t b, the expressions a and b 

must as a rule be enclosed in brackets. Exceptions are pennitted only 

in the case when the corresponding (not enclosed in brackets) quantity 

is an unsigned number, a variable (with or without indices), or a 

function (see below). 

Examples of the arithmetic expressions are the expressions x ^ 2 

(equal to x2), 3 t n f k (equal to (3n)k), rtx^B+r t (_<,). {xl +A9)U~2) 

etc. 

Along with the variables represented by the usual identifiers or 

by array identifiers, in the construction of the arithmetic expres- 

sions use is also made of the so-called functions. Every function in 

ALGOL is designated by the assignment to the function of an identifier 

after which there is placed in round brackets the so-called list of 

actual parameters, i.e., in other words, the arguments of this func- 

tion. The actual parameters can be any expressions (arithmetic or Boo- 

lean) and also the array Identifiers and certain other forms of iden- 
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tlflers which are defined below. The parameters are spearated from one 

another either by commas or by a line of the form:) any commentary: 

(. A commentary Is the name given to a clarification of the meaning 

of the actual parameters, which we shall usually give In the Russian 

language. In the translation from the ALGOL language to the language 

of a particular computer this commentary Is simply discarded. 

Examples of the functions might be /(*), f7{x,y+a)  ^B<Äti.5)  force: 

(p) acceleration: (a). The first of these functions Is a single-place 

function (i.e., it depends on one actual parameter), the second func- 

tion Is two-place, and the third Is three-place (it depends on the 

actual parameters k t 1.5» £ and a). 

In the descriptions the functions are usually termed procedures 

with an Indication of the type of quantity It defines (integer, real 

or Boolean). For such functions as sine, logarithm and others, we re- 

tain the commonly accepted Identifiers sin. In, etc. We establish the 

Identifier sqrt for the designation of the square root, and the Iden- 

tifier abs for the designation of the absolute magnitude. 

The descriptions of the functions Include in themselves headings 

of the form real procedure sin (x), integer procedure absin);  Boolean procedure A(a,b).    In 

the descriptions use is made of the  so-called formal parameters as 

the function arguments. I.e., certain identifiers which in the subse- 

quent use of the function can be replaced by any actual parameters. 

I.e., variables, expressions (arithmetic. Boolean, designational), 

identifiers of arrays of procedures or swlthces, and also the so- 

cilled lines. 

The expressions constructed from numbers, variables of the real 

and integer (with or without indices) and functions (integral or real) 

with the aid of the arithmetic operations are termed simple arithmetic 

expressions. In order to construct more complex arithmetic expressions 
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It is necessary to become acquainted with the so-called Boolean ex- 

pressions. 

Boolean expressions are constructed from the logical values 

("true" and "false"), variables and functions (procedures) of the Boo- 

lean type and the so-called relations, which are two arithmetic ex- 

pressions A and B connected with one another by the equality or in- 

equality signs: A = B, A ^ B, A > B, A > B, A < B, A < B. As the ope- 

rations for the construction of the Boolean expressions use is made 

of the logical operations described in Chapter 2: equivalence (^), 

implication (3)* disjunction (v), conjunction (A) and negation (~\ ). 

The proirity of the logical operations with respect to one another 

and the method of use of the brackets (only the round in the present 

case) are retained the s*yne as in Chapter 2. We only need add that 

the arithmetic operations (expressions) are considered to take pre- 

cedence over all the relation operations, and the latter have preced- 

ence over all the logical operations, so that the expression a+b>cx 

xd3xAvV« mus,t be understood as {{a+b)>{cxd))3({xA y)\/z)-     • The quan- 

tities a, b, c, d in this expression are of the real or integer type, 

and the quantities x, y, z are Boolean. 

All the Boolean expressions defined so far are termed simple. 

From the Boolean expressions A, B, C of which the first expression A 
•    •    • • 

is simple, we can compose a more complex Boolean expression by use of 

the service words if, then, and else. The corresponding construction 

looks like: 

if S then « else iB. 

It is assumed that the complex Boolean expression thus defined 

is A if the condition C Is satisfied (i.e., if the Boolean expression 

C takes the value "true"), and is B otherwise. Since of the three ex- 

press ions A B, C only the expression A must be simple, the expres- 
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slons B and C can in turn be canposed with the aid of uome condition. 

Finally,  In the construction of the simple Boolean expressions, along 

with the logical values,  the variables,  relations and functions it  is 

permissible to use any Boolean expressions  (both simple and complex) 

which are enclosed  in round brackets. 

Thus,  recursive constructions of any depth are possible in the 

determination of the Boolean expressions.  For example,  the list of 

Boolean expressions might include the expression If a >ft then (ifa-6+c 
tlv  B die C) else If D 

then £ \%tFAGlKL)   wllere the. lower case letters denote vari- 

ables of real type, and the capital letters denote variables of the 

Boolean type, where 0(K, L) is a function (Boolean procedure) of the 

actual parameters K and L. If all this expression is enclosed in 

round brackets it becomes a simple Boolean expression and as such can 

o^  used In further constructions. 

The situation is completely analogous in the case of the arith- 

metic expressions: from the two arithmetic expressions A and B, of 

which the first is necessarily simple, and the Boolean expression C 

we can construct a complex arithmetic expression 

IfCthefftteheft 

The value of this expression is taken equal to A if condition C 
• ■ 

Is satisfied,  and equal to B otherwise.   Just as in the case of the 

Boolean expressions,   in the construction of the simple arithmetic ex- 

pressions it  is permissible to use not only numbers,  variables, and 

functions,  but also any arithmetic expressions  (simple or complex) 

which are enclosed in round brackets.  So,  for example,  the expressions 

(If a > ft then a f 2 else a f 3)    or    (If a — ft then a — ft else o + ft) t (a — ft 12) must be con- 

sidered simple arithmetic expressions. 

All the descriptions presented so far are in essence auxiliary. 

The basic means for the construction of the algorithms in ALGOL are 
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the so-called operators. ALGOL-60 contains six different types of ope- 

rators ; the assignment operator, the transfer operator, the empty 

operator, the cycle operator, the procedure operator and the condi- 

tional operator. The first five types of operators. In contrast with 

the last one, the conditional operator, are usually termed uncondi- 

tional operators. 

The assignment operator assigns to particular variables definite 

values specified by some arithmetic or Boolean expression A. The var- 

lables to which the value detemlned by the expression A us assigned 

are separated from one another and from this expression by a special 

separator: =(assignment symbol). All these variables constitute the 

left part and the expression A constitutes the right part of the as- 

slgnment operator. 

Examples of the assignment operators are: ^4: =ftlI01: =t>: = n-f 

+ 1 +p; m: - m + 1; B : = a>b\ r[i,zk]:=&~3 xv\2. 

In the realization of the assignment operator there must be ob- 

served a strictly defined order of performance of the operations. 

First In order (from left to right) there are calculated the values 

of the Indices (spelcflced by the arithmetic expressions, which in 

this case are temed the subscript expressions) of all the variables 

of the left part. Then there is computed the value of the arithmetic 

expression In the right part and the value obtained Is assigned to all 

the variables of the left part (with the already compute subscripts). 

Thus, for example, the operator: A: = B: = p + q must be performed 

as z: = p + q; B: = 2j A: = z, and not as B: = p + q; A: = p + q. The 

difference lies In the fact that the value of the arithmetic expres- 

sion p + q can change with each new calculation (for example, if it 

contains some function whose values are determined by a procedure 

which changes in the process of its performance). Therefore in the 
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perfomance of theasslgnment the value of the arithmetic expression 

must be compute only one time, and not with application to each in- 

dividual assignment. 

The operators in ALGOL can be provided with labels, for which 

use is made of any identifiers or unsigned integers (in the latter case 

prefixing of zero before the number does not alter the value of the 

label). However, in order to facilitate the construction of transla- 

tors (programs for translation from the ALGOL language to machine lan- 

guages) use of numbers as labels is frequently avoided. The label is 

separated from the operator by a colon. The operators (labeled or un- 

labeled) are arranged sequentially one after the other, separated from 

one another by a semicolon, for example: p: A; B; kl: C where A, B, C 
•    • • •    •    • 

are operators, and £ and kl are labels (the operator B is an unlabeled 

operator). The same operator can have not Just a single, but as many 

labels as desired (separated from one another by colons), for example 

p:A:r7: A (here the operator A has three labels: p, A and rj). 

Usually the operators in ALGOL are performed sequentially, one 

after the other, in the order of their writing. Variation in the or- 

der of performance of the operators is accomplished by an operator 

termed the transfer operator. In the simplest form the transfer ope- 

rator consists of the serivce words go to and some label L. The mean- 

ing of the action of this operator consists in that on coming to it 

a transfer (jump) is made to the operator having L as its label. 

In the general case in the transfer operator after the words go 

to there is placed some designational expression. The label is only 

one of the simplest examples of the designational expressions. A more 

complex example of the designational expression is the expression 

composed of two labels, say L and M, and some Boolean expression 

C • If C then L else Af . The value of this designational expression is 
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equal to L If the condition C is satisfied, and to M otherwise. In 

place of the label M (but not in place of the label L) in this expres- 

sion there can be substituted any complex designational expression, and 

the similar substitution process can be continued. 

As a result there can arise complex recursive constructions for 

the transfer operator, for example ^o to if i =. l then L else if » =2 then M else P   • 

For  simplification of this construction use is made of the so-called 

switch transfer. The switch consists of some identifi3r and a follow- 

ing so-called index expression enclosed in index (i.e., square) brack- 

ets. The index expression is any arithmetic expression which in the 

computation must every time be rounded off to the nearest integral 

value. 

If, for example, the switch identifier is _s and the index expres- 

sion is the variable (expression) 1,  then the switch transfer operator 

s[l] is written go to s[l]. In itself such an expression does not yet 

have any meaning. In order to give it meaning it is necessary, in ad- 

dition to the expression s[i], which we shall term the switch indica- 

tor and consider as a simple designation expression, to also intro- 

duce the so-called switch description, usually placed together with 

the description of the types of variables, arrays and procedures 

(functions). The switch description begins with the service word 

switch, after which goes the switch identifier, then the assignment 

symbol : = and, finally, the so-called switch list, i.e., the list of 

designational expressions separated from one another by commas. For 

example: switch s: =L,M,P (where L, M, P are labels). 

On encountering the switch transfer operator, for example go to s[i], 

we compute the corresponding index expression, substituting in it the 

current values of the variables (say, i = 2). After this we turn to 

the description of the switch with the same identifier _s and accom- 
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pllsh the transfer with respect to that deslgnatlonal expression in 

this description whose sequential number in the list coincides with 

the found value of the index expression. In the case considered there 

will be performed a transfer with respect to the label M, i.e., with 

respect to the second element of the switch list. 

If the value of the index expression in the switch indicator can- 

not be calculated (as a result of the fact that values have not yet 

been assigned to certain variables) or if this calculation leads to a 

number which is not a number of any element of the switch list, then 

the transfer operator is not performed and there is immediately per- 

fornied the operator following it. In the example considered above the 

\alues of the index expressions equal to 4.0 or —1 do not lead to the 

objective. However, the values of the index expressions equal to 2.2 

or 2.7 lead (after their roundoff) to transfers with respect to the 

second or, correspondingly, with respect to the third element of the 

switch list (i.e., with respect to the labels M or P). 

A label, switch indicator or any designational expression en- 

closed in round brackets is a simple designational expression. From 

the two designational expressions A and B (of which the first is nee- 

essarily simple) and the Boolean expression C we can compose the com- 

plex designational expression n g then W else 8. which coincides with the 

expression A in the case of satisfaction of the condition C and with 

the expression B otherwise. Thus, for the designational expressions 

exactly the same recursive constructions are found to be possible as 

for the arithmetic (or Boolean) expressions. 

The third type of operator used in ALGOL is the so-called empty 

operator, which does not perform any operation and designated an empty 

set of symbols. Usually the empty operator is provided with a label 

and serves for the return using this label (as a result of the appli- 
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cation of the transfer operator) to the required segment of the pro- 

grajn. The use of the empty operator with a label is absolutely neces- 

sary, for example, in the case when it is necessary to perform a 

transition from the middle of a program to its end (not to the follow- 

ing nonempty program operator but precisely to the end of the pro- 

gram). Just as in the other operators, there must be a colon placed 

after the label in the empty operator. 

Of very great value in the construction of programs in the ALGOL 

language are the so-called cycle operators, whose meaning is that some 

operator (or group of operators) is performed some number of times in 

sequence. The cycle operator consists of the 3ycle heading and the 

operator itself (which can be any operator), which is performed mul- 

tiply in the cycling process. 

The cycle heading begins with the service word for and terminates 

with the service word do. After the word for there stands the identi- 

fier of that variable which changes in the process of the performance 

of the cycle. This variable is termed the cycle paramter. Following 

it, after the assignment symbol : =, there is the so-called cycle list, 

the listing of those values which the variable must take during the 

cycle operating time. The cycle list consists of one or several ele- 

ments of the cycle list, separated from one another by commas. In the 

simplest case the arithmetic expressions (in particular, simply num- 

bers) are used as the elements of the cycle list. For example, the cy- 

cle operator for /: =1.2,3 do aiih =/t2 performs the sequential assignments 

all):»!; a[2l:=»4; af31: =^9 . The length of the cycle in this case is equal 

to 3. 

If the cycle parameter must take not three, but, say, a thousand 

different values, then the listing of all these values in the cycle 

list would be excessively cumbersome. In this case we use as the cy- 
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cle elements special constructions, each of which iives Immediately 

some set of values of the cycle parameter. 

In ALGOL use Is made of two types of such construction. The first 

type Is constructed with the use of the service words step and until 

and has the form  A step B until C, where A, B and C are arithmetic 
«     •     .      «  •    • 

expressions. An element of the cycle list of this type gives the val- 

ues of the cycle parameter as follows: In the first step the cycle 

parameter Is assigned the value of the arithmetic expression A, In 

the second step — the value of the arithmetic expression A, » A + B, 

in the third - the value Ag = A, + B etc., until the next value An = 

= A^i + B exceeds the value of the arithmetic expression C* This 

value is not assigned to the cycle parameter and the cycle for it is 

not performed. The cycle list is considered to be exhausted and, con- 

sequently, there must be performed a transfer to the operator directly 

following the cycle operator. 

As an example of the construction descrloed let us consider the 

cycle operator having the fom for f:=»12,4 step—I unniO,—5 do aUl:=f+10 . This 

operator performs the sequential assignment: a[12]: = 22; a[4] : = 14; 

a[3J: = 13; a[2] : = 12; a[l].: = 11; a[0]: - 10; a[-5]: = 5. We note 

that in the first example the cycle list element 4 step—I until 0 de- 

scribes an arithmetic progression (with a difference equal to minus l), 

however in the general case the step represented by the arithmetic ex- 

pression B (standing after the word step) can be a variable, varying 

with every new repetition of the cycle. 

The second type of cycle list element is given with the aid of 

the arithmetic expression A, the Boolean expression B and the service 

word while, written in the sequence: A while B. This element provides 

the sequential assignment to the cycle parameter t of the values taken 

by the arithmetic expression A until the condition B is satisfied 
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(i.e., until the expression B has the value "true"). If with a sue- 

ceedlng performance of the cycle the condition B ceases to be satis- 

fled, then the cycle operator is not performed and there Is accom- 

plished a transfer to the operator directly following it. We note that 

in the construction described it is forbidden to use the word step, 

so that the expression of the type ^ step 89 while S is not encountered in 

ALGOL. 

With the method described above for the construction of the cy- 

cle operator, we can accomplish the repetition of only one single 

operator which follows immediately after the word do. If it is re- 

quired to repeat in a particular cycle not one single operator, but 

some sequence of operators A,; Apj :..; A., then this sequence is en- 

closed in special operator brackets, considering it after this as a 

single complex operator. 

As the operator brackets we make use of the pair of service words 

begin and end, so that the complex operator is written begin ^4,; At\ 

...; Ak end .  The complex operators. Just as the conventional, can be 

provided with labels (one or several). 

Along with the complex operators, in ALGOL use is made of the so- 

called blocks, differing from the complex operators in that ahead of 

the operators appearing in the block, directly after the word begin, 

there is placed a description of the types of certain quantities 

(identifiers) which are encountered in this block. In this case the 

quantities described in the block are localized only in the given 

block and, generally speaking, they lost their value (become indeter- 

mlnate) with departure from the block. If we wish to retain the value 

of certain of the quantities described in the block after departure 

from the block for purpose of using them on repeated reference to the 

block, then to the description of their types there is added the word 
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own. An example of the block: begin own real x; Integer n; n: -$-M; jr.-otn end • 

We note that both the complex operators and the blocks can in- 

clude In themselves other blocks and complex operators, permitting any- 

recursive depth of such constructions. The identifiers used within the 

block for the designation of the improper quantities can be used out- 

side the block for the designation of any other quantities which are 

not accessible for this block (i.e., which do not figure in the given 

block and are not subjected to any transformation in it). Identifiers 

which are not described in a block cannot be localized in it and, con- 

sequently, represent the same objects both inside the block and out- 

side of ir. 

The labels are always assumed to be localized within the block in 

which they are encountered, so that entry into the block can be ac- 

complished only through its origin. No transfer oprrator located outr» 

side the block can accomplish transfer to any operator within this 

block. 

In exactly the same way it is not possible to accomplish a trans- 

fer with respect to a label located within a cycle operator with the 

aid of a transfer operator acting from outside the cycle. We note also 

that with exit from the cycle operator as a result of exhaustion of 

the cycle list the value of the cycle parameter is considered inde- 

terminate. If, however, the exit from the cycle is accomplished as a 

result of the transfer operator contained in the composition of the 

operator (or block) which is repeated in the given cycle (i.e., stand- 

ing after the word do) then the value of the cycle parameter is re- 

tained Just as it was immediately before the performance of the trans- 

fer operator. 

All the simple operators described above and also the procedure 

operator described below, and all the complex operators and blocks to 
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. system of so-called unconditional operators. In ALGOL there are 

introduced two other types of conditional operators, using the condi- 

tion if IB then (where B is a Boolean expression) which is analogous to 

the condition used in the construction of the complex arithmetic. 

Boolean and designational expressions. 

The operator "if" is constructed from the described condition 

and the following unconditional operator which is performed in the 

case when the condition is satisfied, and is bypassed (not performed) 

otherwise, Example:  if a> vthen begin >!: =»n; goto /.end • The complex ope- 

rator begin/4: =/i go tobend is performed if and only if the condition 

a > b is satisfied. 

The conditional operator proper is obtained by the addition to 

the operator "if" the service word else and the following arbitrary 

operator (possibly also conditional). This operator must be performed 

in the case when the condition in the "if" operator is not satisfied. 

The general structure of the conditional operator thus has the form 

if SB then^4, else ^ 

where B is any loolean expression. A, is an unconditional operator, 

Ao is any operator. 

The so-called procedure operators are of essential importance in 

the construction of ALGOL. Procedure is the term given to some en- 

semble of operators designated by some identifier, termed the proce- 

dure identifier. In ALGOL the procedures play the same role as the 

subroutines in conventional programming, permitting the acceleration 

of compilation of complex programs by means of the use of precompiled 

standard programs. Decoding of the procedure (actual writing of the 

operators composing it) can be performed either in the ALGOL language 

or directly in the language of the corresponding universal digital 

machine. 
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The procedure operator (if we are not considering the familiar 

standard procedures) must be described In advance. This description 

Is accomplished with the aid of the service word procedure, after 

which there follows the so-called procedure heading, l.e , the proce- 

dure Identifier, and after It (in round brackets) a list of the so- 

called formal parameters of the procedure. I.e., the Identifiers sep- 

arated from one another by special llmlters, specifically commas, or 

by llmlters of the form) letter line: (. For example, procedure sin 

(x) or procedure A (x, y) pressure: (p). The first procedure has one 

formal parameter (x), and the second has three formal parameters x, y, 

JD. Procedures without parameters are also possible. Their heading con- 

sist only or procedure Identifiers, not accompanied by following 

brackets. The procedure Itself (the so-called body of the procedure) 

Is written out after the procedure heading In the form of some opera- 

tor. 

The procedure operator Itself, or, more exactly, the procedure 

derivation operator. Is written In the same form as In the procedure 

description, but now without the word procedure ahead of It and under 

the condition that the formal parameters of the procedure are replaced 

by Its so-called actual parameters. The brackets and llmlters are the 

same as In the sescrlptlon of the corresponding procedure. The per- 

formance of the procedure operator consists In the assignment of all 

the formal parameters of the values of the corresponding actual para- 

meters, or replacement of the formal parameters by actual and subse- 

quent performance of the procedure. 

As the actual parameters use can be made of any expressions 

(arithmetic. Boolean or deslgnatlonal), array Identifiers and switch 

Identifiers, Identifiers of any procedures and, finally, the so-called 

lines. 
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The lines are any sequences of symbols enclosed In special "line" 

brackets . . . These brackets can also be used within a line. Example: 

•10 4-—[Ut t^'AV^'»^'  • The lines can be used as the actual para- 

meters only of those procedures which are written In machine codes, 

and not In the ALGOL language. Most frequently their use Is limited 

to the special procedure puncn (x) which performs the printInc or per- 

forating of the actual parameters, which are represented in place of 

the formal parameter x.   If, in particular, in place x there is sub- 

stituted some line, then the procedure punch performs the extraction 

of all the symbols of this line from the machine for printing or per- 

forating. Therefore the line can contain not only the "analog" but any 

other symbols which the considered printing or perforating device is 

capable of realizing. 

In the procedure description there is also indicated the type of 

its formal parameters. With the substitution of the actual parameters 

their types must coincide with the types of the corresponding formal 

parameters. In order to avoid ambiguity in such a substitution, it is 

usually necessary to perform a replacement of those identifiers local- 

ized within the procedure which coincide with the identifiers occur- 

ring in the actual parameters being substituted. 

We note that among the procedure parameters there appear, gener- 

ally speaking, both the input and output (obtained as a result of the 

performance of the procedure) quantitites of this procedure. If as a 

result of the perfonnance of the procedure there is obtained only one 

quantity (number or logical value) then it is natural to denote this 

quantity by the identifier of its procedure (together with the line 

of actual parameters). In this case the corresponding procedure is 

termed a function (see above) and in its description there is placed 

ahead of the word procedure the word designating the type of output 
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quantity of this procedure. Example: real procedure sin (x). It happens 

frequently that In the procedure some formal parameter x participates 

In several transformations. For example, the parameter x In the proce- 

dure sln(x) with the calculation of the ilne using a series Is raised 

sequentially to the powers 3, 5, 7 etc. If In the substitution this 

parameter Is replaced by a quite complex expression (actual parameter), 

say, x:«(a + b)x(a— b), then In the development of the procedure 

we can encounter the necessity for the repeated computation of this 

expression in every case when a particular operation Is perfonned with 

the parameter x. Naturally It Is simpler to compute the value of x 

ahead of time (prior to entry Into the procedure) and substitute this 

value In place of It. 

In the automatic translation of a program from the ALGOL language 

to machine language. It Is necessary every time to communicate to the 

translator (programming program) which parameter values must of neces- 

sity be computed prior to substitution Into the procedure. All such 

parameters In the description are labeled with the special service 

word value and are placed after the ensemble of fomal parameters of 

the procedure heading before the description of their types (the so- 

called specifications). For example. In place of the description real 

x; Integer n there may appear the description value n; renl«; integern. 

We shall usually supplement ALGOL with two procedures which are 

not defined In the descriptions for the entry and output of Informa- 

tion from the machine. The first procedure Is always assigned the same 

identifier read, and the second Is assigned the Identifier punch; the 

actual parameters of each of these procedures will be considered ei- 

ther some quantities of the type real. Integer or Boolean, or the ar- 

ray Identifier of any of these types. 

We shall make some other remarks. Normally every program Is ALGOL 

- 402 - 

-■ 



'«T*m M' 

Is represented In the form of a block, I.e., Is enclosed In the state- 

ment brackets begin - end. To facilitate the reading of the "analog" 

programs there can be introduced into them the so-called commentaries, 

i.e., clarifications for the programmer, which have no Intrinsic 

meaning in the ALQOL language and which are therefore not accepted by 

the translator in automatic programming. 

The commentary is considered to be every sequence of symbols (not 

necessarily "analog") beginning with the service word comment after 

a semicolon or the word begin, terminating with a semicolon and not 

containing within itself other occurrences of a semicolon. Any se- 

quence of symbols following after the word end to a semicolon or to 

the end of the program is also considered a commentary If It does not 

contain the words end and else, or a semicolon. For example, in the 

expressions comment text; begin comment text; end text; the word "text" 

is a commentary. Prom the point of view of the "analog" programs the 

first expression is equivalent to an empty place, the second - to the 

word begin, and the third — to the word end. 

For the electronic digital machines with small and medium capac- 

ity the ALQOL-60 language is excessively complex to permit organizing 

effective translation from it to the machine language. Therefore there 

has been proposed the simplified variant of ALGOL which has been 

termed SM0La0L-6l.* 

The simplification amounts to the following. First, the alphabet 

is limited to either only lower-case or only capital letters of the 

Latin alphabet. Second, we exclude from consideration the logical 

operations of implication and equivalence, and also the service words 

while. Boolean, true and false. Thus, the use of the logical values 

"true" and "false" is not pemitted. The use of the identifiers for 

the designation of the logical quantities is also prohibited. The Boo- 
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lean variables can be Introduced by the programmer indirectly, with 

the aid of the replacement of the logical values "true" and "false" 

by the whole numbers 1 and 0. The use of Boolean expressions is per- 

mitted only in conditions. If in ALGOL the value of seme Boolean ex- 

pression E was assigned some identifier P - P : « B, then in SMOLOOL 

there must correspond to it the assignment uf the fonn p-. -</©thenl eiseO. 

where in the right side there now stands an arithmetic expression 

rather than a Boolean expression. 

Further, the length of the identifiers is llmeted to five letters. 

More exactly, identifiers in which the first five letters coincide are 

considered identical in SMOLOOL. In the arithmetic expression a f b 

negative values for the exponent b are not permitted in the integer 

type quantities a and b. Whole numbers are not used as labels. The 

step in the cycle operator must either remain positive at all times, 

and in the latter case the symbol "minus" must be placed explicitly 

ahead of the expression which specifies the step. In cycle list there 

must be only one step-until element. 

In all the procedures, except the input and output procedures, 

use cannot be made of lines as actual parameters. No procedure can be 

called on before it has been described. The possibility of using one 

procedure within another is excluded if they were described in the 

same block. A second callup of the same procedure is forbidden until 

its first call has been completely terminated. For example, use can- 

not be made of recursive calls of the procedure P(u, v) of the form 

F(x, F(X, y)). But repeated use of a procedure after its termination 

is not prohibited, so that the expression In (in x) is completely ac- 

ceptable in SMOLOOL. If the procedure P is an actual parameter of an- 

other procedure, then all the parameters of the procedure P must be 

described as value. 

- 404 - 

■"•■ ■ 



k* 

Standard procedures for the finding of the sign and absolute 

value of a number cannot be used as actual parameters In any proce- 

dures. If It Is necessary to use them In this fashion, then they must 

first be described as functions, I.e., write out the expression ml procedure 

aftsU); value jf;' fHrt^feegln ads: -aftsU) end (and similarly for Integer proce- 

dure sign (x)). Neither procedures nor their formal parameters can be 

of the Boolean type. 

The variables themselves cannot relate to portions of the pro- 

gram outside of the block in which they are defined. The boundaries of 

arrays must be constant. The elements of the switch lists In the 

switch descriptions can be only labels and not any deslgnatlonal ex- 

pressions. 

The descriptions of the procedures which are called in any block 

must be accomplished after the description of the types, switches and 

arrays of the corresponding block. The procedure Identifiers can ap- 

pear within a procedure only In the case when they are the left parts 

of the corresponding assignment operators. Some other limitations also 

exist. 

We note that any program written In SMOLGOL can also be consid- 

ered as an "algol" program. Generally speaking, the reverse Is not 

true. 

§5. EXAMPLES OF PROGRAMMINQ USING ALGOL-60 

Let us consider first a very simple example which has already 

been used In §3 of the present chapter as an Illustration of the prin- 

ciples of programming In machine languages. This Is the calculation 
m   1 

of the value of the sum  Sn- • The corresponding "algol" program can 

be written In the form 
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begin real s; integer m. A; 
r#ad (m); «: M 0; 
for *:~ Utep I until m do 
»: - » + I/At2: 

puncA (s) 

The procedures read(m) and punch(B) respectively provide for the 

entry of the required Information (upper limit of the summation) and 

the output of the result« i.e., the value of the desired sum. It Is 

easy to see that the program written In ALGOL Is far more visible and 

understandable than the machine program written In §3 which solves 

the same problem. 

Programs for the other examples considered In §3 can also be 

written quite lucidly and clearly. The computation of the scalar pro- 

duct of two (real) vectors (al, a2,..., an) and (bl, b2, ..., bn) Is 

represented In the form 

begin integer n; read (/»); 
begin real r, integer i', real array a{\:n\, b [l:nil 

read (a); read (b); s: m 0: 
for »: = 1 step 1 until n do 
r-»-f-a {t]xb fffc 
punch («) 

end end. 

Multiplication of the vector (bl, b2,  ..., bn) by the matrix 

||Alk|| cam be represented in ALQOL by the program 
begin Integer K rtad (n); 
begin Integer /, *: real array s(l:n]. 6[l:nJ, j4ll:n, \:n$ 

read (ft): read M); 
for *: - 1 step 1 until n do 
begin «W-O: 
for i: — 1 step 1 until n do 
m-*[*)+bit] xA{Ukt 
end 

punch («); 
end end. 

In this program one cycle operator occurs In another.  Internal 

operator brackets are Introduced,  since In the first  (outer) cycle it 
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is necessary to perfoim a sequence consisting of two operators. 

The two phrases written at the end of the program are a commen- 

tary which does not actually enter Into the program and Is not ac- 

cepted by the translator (programming program). 

We note that the ALGOL language Is a universal algorithmic lan- 

guage and Is therefore suitable for the writing of any algorithms. In 

addition, as was noted above, all the programs written in ALGOL can be 

realized (under the condition of the use of a sufficiently large mem- 

ory volume) by any universal electronic digital machine. 

We shall make use of the last circumstance to illustrate that 

the universal elecrtonic digital machines can perform not only the 

conventional algorithms, but also algorithms with random transfers 

and any self-organizing systems of algorithms. 

In order to have the possibility of constructing in ALGOL any 

desired random algorithms it is sufficient to Introduce into it a 

special procedure which we shall designate as random (a, b). With each 

referral to this procedure it generates some random number belonging 

to the segment [a, b]. Here it is assumed that the selection Is made 

on the basis of a unifom distribution law according to which all the 

numbers of the indicated segment are considered equally probable. The 

random numbers themselves are assumed to be of the integer or real 

type depending on what type is assigned to the formal parameters (seg- 

ment bounds) a, b. Of course both these parameters must be of the same 

type. 

The method of construction of the procedure Itself can vary over 

quite wide limits. We can, for example, simply write into the machine 

memory a table of random numbers and construct the procedure for their 

sequential selection. In many cases a special random number unit Is 

appended to the electronic digital machine. In this case the procedure 
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conalBts In the selection of the numbers generated by the Indicated 

unit and their subsequent transfomatlon for the purpose of reduction 

to the given Interval [a, b]. 

Wide use Is also made of the various procedures which generate 

sequences of the so-called pseudorandom numbers. For the formation o± 

such a sequence we can make use, for example, of the following tech- 

nique: some positive number a1 Is selected and squared. In resulting 

number a2 * af there Is selected some group of digits (usually not the 

highest or lowest). The number bp fomed by these digits Is taken as 

the first pseudorandom number. Squaring the number b2, we obtain the 
o 

new number a- « b| which we treat Just as we did the number a2. Con- 

tinuing this process we obtain the required sequence of pseudorandom 

numbers. 

The sequence constructed In this fashion. If Its length Is not 

too great, can be considered practically random. However, with a long 

sequence there occur various sorts of cyclings (cyclic repetitions of 

previously encountered pieces of the sequence; which Is what differ- 

entiates the pseudorandom sequences from the purely random. However, 

for each concrete case there can be selected that procedure for the 

generation of the pseudorandom sequence which form the purely random 

sequences. 

With the aid of the Indicated procedures the problem Is complete- 

ly resolved of the realization on the universal electronic digital 

machines of any random algorithms. The problem of the realization of 

the self-organizing systems of algorithms on the machines Is actually 

even simpler, since In this case, as a rule, we do not have to resort 

to any special procedures. Such a realization Is accomplished by the 

usual methods, with the aid of programs written In the ALGOL language. 

We shall present examples of the sort of self-organizing systems de- 
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scribed in the preceding chapter. 

As the first example let us consider the self-adaptive control 

algorithm based on the method of steepest descent. The task of this 

algorithm is the generation of those arrays A[l: n] of numbers (con- 

trol actions) such that the criterion f will have the smallest possible 

value. The criterion f is a known function of certain parameters (in- 

dications) of instruments which monitor the process whose values in 

the form of the corresponding array B[l: m] are periodically intro- 

duced into the algorithm. 

The parameters composing the array B (control results) vary as 

a result of the variation of the controlling actions (array A) and al- 

so as a result of other factors relating to the controlled process and 

which do not depend on the control algorithm. The factors in question 

here reduce to the variation of certain uncontrolled parameters, where 

the nature of this variation is not known ahead of time to the control- 

ling algorithm. It is easy to see that the described control algorithm 

accomplishes extremal regulation (with respect to the criterion f) 

whose quality will be better the smaller the ratio of the time for 

the algorithm to determine the optimal controlling actions (array A) 

to the average time in the course of which there occurs a sensible 

variation of the uncontrollable parameters. It is not difficult to 

verify that the control algorithm in question can be described in the 

ALGOL language by the following program: 
■ 

begin Integer *. /. fc real y, r, 

fl(I:ml. P[\xn\t 

L.read (B)\ y:-/(Ä); s: - 0; 
(or i: - 1 step 1 until n do 
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begin MIO:-^W +A 
punch (A)', nod (Ä); 

»:-«+/,im2; 
A[iY~A{i\-d 
end; 
r: - dlsqrt («); 

for /:- 1 step 1 until n do 

MWr-rxPI/l+^Ifl; 
/XMC/I M): read (£); 

if aÄ5 {y — fm > / then go to L cite 

for 4e:-lstep 1 until n do 

M|fl:-i4W-rxPffl; 
/««* M); 
go to L 

In the construction of the program the quantity d Is the steepest 

descent step and the quantity i Is the accuracy of achieving the min- 

imal value of the criterion f. The function sqrt(s) Is equal to the 

square root of B  taken with a plus sign. The array P[l: n] gives the 

relative magnitudes of the optimal Increments of the values of the 

control actions A[l: n] at each step of the steepest descent process. 

It is assumed that the quantities d, i,  the real procedures f (B) and 

sqrt(s) and the Initial values of the components of the array A[l: n] 

were Introduced Into the algorithm previously (prior to the Instruc- 

tion with the label L). 

Now let us consider the algorithm with performs the operation of 

a discrete a-perceptron P. Let us assume that the perceptron P has a 

retina consisting of N receptors and Is designed for the recognition 

of two patterns. The A-elements are (l, 1, l)-neurons, the reward con- 

stant Is equal to unity, and the penalty constant Is erual to zero. 

The linage projected onto the retina Is the Boolean array r[l: N]* 

which Is read externally with the showing to the perceptron of each 

new Image. Also sensed extrenally Is the Boolean quantity a which Is 
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the applied signal on the correctness (truth) or Incorrectness (falsi- 

ty) of the response 2  given by the perceptron. The response jg is slmply 

the number of the pattern to which the perceptron assigns each Image 

shown to It. We use sf and ss to designate the output signals of the 

summators of the first and second patterns. 

Let us assume further that the number of neurons of both the first 

and second image is equal to n. We use xf [1] and yf [1] to denote the 

numbers of the retina receptors to which there are connected respec- 

tively the exciting and inhibiting inputs of the the 1th neuron of the 

first pattern, we use xs[l] and ys[i] to denote the corresponding num- 

bers of the receptors for the 1th neuron of the second pattern, and 

vf[l] and vs[l] to denote the weights of the ith neurons of the first 

and second patterns (i = 1, 2, ..., n). With these assumptions, the 

algorithm which performs the work of the perceptron P (in the learning 

regime) can be written in the form 
tagin integer p. /, /, 6; real sf, ss; Boolean a; 

Boolean array rfl:A^]; 

L: read (r); 5/: m 0; ss: — 0; 

for (': = 1 step 1 until n do 

begin ifMxmilA-irly/Iill then 

8f.~sf+vf[i]: 

if ^aWlA"~'MysIill then 
«:'»ss + «sf/| 
end; 

if s/>ss then p: — 1: '        . 
if sf < ss then p: - 2; 

il tfm* then go to U 

punch (p); read (a); 

H a A (P - 1) then for /: - I step 1 until n do 

I f [xf (/IlA"i r [yf l/ll then vf [j\:-vfW+U 
if a/\{p**2) then lor ft: = 1 step 1 until n do 

If M*»1*11A ~^slftll then «sl*l: - «slftj -t-1; 

go to L 

end, 

It is assumed that the arrays xf{\:n],yfl\:n]txs{\:n], ysl\:nlvf[\:nlm*Vs[\:n] 
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are Introduced Into the program ahead of time and that the last two 

arrays (weights of the neurons of the first and second patterns) do 

nto consists of only zeros. Otherwise the pattern summators would gen- 

erate continuously signals (sf and ss) which are equal to zero and, 

since it is assumed in the program that with equal signals of the sum- 

mators the perceptron will not generate any signal ja, the learning 

process (and, in general, any variation of the weights) would not 

exist. 

This last limitation can be avoided if uhe teacher does not sim- 

ply supply a reward signal but communicates \,o  the perceptron the true 

number of the pattern to which the Image being shown to the perceptron 

belongs. This is precisely the method of functioning of the perceptron 

in the learning regime which was considered in the preceding chapter. 

Let us indicate the changes in the program described above which must 

be made with application to the new type of signal a. 

In the description the quantity a must be declared as a quantity 

of the integer type and not Boolean. The program changes can be re- 

duced to the following. After the operator if a/< ss then p: • 2 in place of 

the operator  ifj^-ss then go to L It is necessary to use the operator 

H 4/¥• ss then poncMp)  • Then in the conditional operators following after 

the operator read (a), the conditions Ha A (p—1). if a A (p-2) must be re- 

placed by the conditions if a « 1 and if a = 2 respectively. 

It is also not difficult to describe the changes in the original 

perceptron program which must be made in order to simulate the per- 

ceptron self-learning regime rather than the learning regime. To do 

this the quantity a Is completely excluded from the program together 

with the corresponding operator read (a). In the following conditional 

operators there must be added to the conditions standing after the 

service words do the terms A (^ > ») and A(s/<ss) respectively. 
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Thus, in both the learning and self-learning regimes the a-per- 

ceptrons can be easily simulated in the ALGOL language and consequent- 

ly can be simulated on the universal electronic digital machines. It 

is easy to see that the same holds for any modifications and generali- 

zations of the perceptron circuit. 

Let us now describe using the ALGOL language still another self- 

organizing algorithmic system which simulates the process of biologi- 

cal evolution and the formation of new species. The modeling of such 

a system (although somewhat different) on the universal electronic dig- 

ital machine has been accomplished by Letichevskly [49]. 

Let us consider a discrete space consisting of a finite set of 

points with the numbers from 1 to n Inclusive. Let us assume for sim- 

plicity that this set is cyclically ordered. In other words, for each 

point _1 we define the two points neighboring with it - the point di- 

rectly preceding it bl and the point directly following it fi. If i ^ 

1, then bl = 1 — 1; for 1 = 1 we set bl = n. Similarly, if 1 ^ n, then 

fi = 1 + 1, and for 1 = n we set fl = 1. 

To every point JL of the space we assign some state s[i] which can 

take any Integral value from 0 to k inclusive. If s[i] = 0 the corre- 

sponding point is considered "lifeless." If, however, s[i] ^ 0, then 

we assume that at the point _i there is some "living being" in the 

state s[ij. As the such "living beings" in the considered model we se- 

lect abstract automata with the same number of states (equal to k) 

but, generally speaking, with different transfer and output tables. 

In addition, for each point 1 of our space there is given the 

number F[l], equal to 1 or 0 in accordance with whether or not ther is 

"food" at the 1th point. In the case of the existence of "food" at a 

particular point Its supply is assumed so large (or self-replenishing) 

that the automaton located at this same point will practically not al- 
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ter the supply in the course of Its "feeding." The array P Is altered 

at each successive cycle of operation of the algorithm In accordance 

with some "law of nature" which we shall assume to be located outside 

of our algorithm. 

In addition to the state s[l] Itself of the automaton occupying 

the point 1,  with this automaton we associate also two other numbers, 

namely the Indications of Its "life" counter L[l] and the so-called 

"hunger" counter H[l]. The quantity L[l] Increases by unity at each 

cycle of operation of the algorithm, and after Its value exceeds some 

prespeclfled threshold £,  the corresponding automaton transfers Into 

the zero state. I.e., simply speaking, it Is destroyed (simulating 

thereby natural death). 

The quantity H[l] Increases by unity If P[l] - 0 (i.e.. In the 

case when the automaton Is located at a point of the space without 

"food") and decreases by unity in the opposite case, without, however, 

taking negative values (in the case when H[l] = 0 we set H[l] — 1 = 0. 

When the quantity H[l] exceeds seme level h which Is fixed In advance, 

the corresponding automaton transitions Into the zero state (thereby 

simulating death from hunger). 

The Input signals of the automaton located at the point 1  are the 

states s[bl] and s[fl] of the neighboring points, and also the signals 

P[bl], P[l], P[fl] on the presence or absence of food, both at the 

point _1 Itself and at the neighboring points. The output signal m Is 

the so-called motion of the automaton. I.e., in other words, the In- 

crement of the number of the spatial point occupied by the automaton 

In the given automaton operating cycle. We shall consider that the 

quantity m can take only three different values: 0, 1 and -1. 

In view of the presence of five input channels, the switching and 

output tables of each automaton can be specified in the forro of six- 
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dimensional arrays. For the specifIcatlon of th switching and output 

tables of all the automata at the same time we make use of the seven- 

dimensional arrays SP[1: n, l:k; 0:k, 0:k, 0:1, 0:1, 0:1] and M[l:n, 

l:k, 0:k, 0:k, 0:1, 0:1, 0:1] respectively. The first index in each of 

these arrays Indicates the number of the cell 1  occupied by the autom- 

aton, the second indicates the state s[i] of this automaton, the third 

and fourth indicate the states of the neighboring points s[bi] and 

s[fi], the fifth, sixth and seventh indices are the signals F[l], 

P[bi] and F[fi] on the presence or absence of "food" at the point it- 

self and at the neighboring points. For the motion, given by the out- 

■put table M, we shall not introduce any limitations in the table it- 

self, however the performance of the corresponding motion will be ac- 

complished only in the case when the point to which the automaton Is 

shifted is not occupied by any other automaton. 

The variation of the indications of the "life" and "hunger" 

counters is accomplished after the performance of the motion and the 

transfer of the automaton into the new state. If in this case there 

does not occur "death" of the automaton, and its motion is nontrivial 

(i.e., the automaton does not remain at the previous location), then 

with fulfillment of certain additional conditions there takes place 

"reproduction" of the automaton by means of fission. In this case the 

shifted automaton A completely retains its structure with the excep- 

tion of the fact that on its "life" counter there is established a 

value equal to zero. And at the place occupied by the automaton A prior 

to this there appears its "double," differing from A only in that in 

each of the two arrays which specify the transitions and outputs of 

the automaton A, one number (respectively the new state or the motion 

of the automaton) is replaced by a randan number. The "life" counter 

of the new automaton is also set to zero. 
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Additional conditions for the possibility of reproduction, which we 

discussed above, are that the indications of the "life" counter be 

Included between two a priori fixed numbers IJ and iu, while the in- 

dication of the "hunger" counter does not exceed some number hu, also 

fixed ahead of time. 

For the formation of the random numbers we fix the special inte- 

gral procedure random (a, ft), which delivers at each call some Integral 

number located on the closed segment [a, b]. In this case all the 

whole numbers of the indicated segment are considered equally probable. 

The methods of construction of such procedures were described above. 

The algorithm which we have described in one operating cycle must 

perform a scan of all the points of our space, perfoming at these 

points the changes listed above. After finishing each cycle the algo- 

rithm must read through all the new values of all the components of 

the array P[l:n] and begin the performance of the following cycle. We 

shall accomplish the count of the number of cycles with the aid of 

the special quantity t. When this quantity reaches the value £ which 

is fixed in advance the algorithm must teiminate its operation. 

To facilitate the programming of the described algorithm in the 

ALGOL language, we Introduce three blocks which describe the process 

of the movement of the automaton located at the ith point, the process 

of its "death" and the process of its "reproduction." For brevity let 

us denote these blocks by B** B2 and B- respectively, and we write 

for each of them the corresponding program in ALGOL. 

The block B,: 

begin integer m, /, bs, fs, f, bf, ft, 

m: »Mli.slfl. sl«l. sift], FU], Flbt\F\fl]\; 
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pi: =* \t t+m> n then I else i + m; 

if s|p/l ¥= 0 then pi: = i comment pi is the number of 

the point to which the considered automaton is displaced; 
L[pi]:~L[i]+U 

H[pi]: =» If f [pfl = 0 then H[i] + 1 else 11 H[i] + 0 

then ÄW—I else 0; 
If pt-^ / then 

for /; =« 1 step 1 until k do 

for bs: a 0 step 1 until k do. 

for fs: *> 0 step 1 until k do 

for f: m 0.1 do for 6/ « 0.1 do for //:- 0.1 do 

begin SP [pi, j, bs, fs, f, bf, ff]: - SP [i. j. bs, fs, f, bf, //I; 

M [pi, j. bs, fs, f, bf, ff]: - M [i, j, bs, fs, f, bf, ff\ 

end; 

s{pi\:~SP[i,s\i\, s[bi\, sl/i], F[i\, F{bi\, f l/fl) 

end* 

The block B^, accomplishes the displacement of the automaton from 

the point _1 to the point pi, its translation into the new state (de- 

fined by the situation at the moment the automaton is located at the 

point l), the change of the indications of the "life" and "hunger" 

counters and the rewriting of the arrays which specify the switching 

and output functions of the automata, with the objective of bringing 

them into correspondence with the new location of the considered au- 

tomaton. The values of 1 and pi are retained with departure from the 

block. 

The block B2 is very simple: begin slp/l: =0end. • 

We note that the program will be constructed so that the values 

of L[pi] and H[pi] at the point pi which are retained after death of 

the automaton, and the values of the corresponding components of the 

arrays SP and M cannot lead to errors in the furture. This is achieved 

as the result of the fact that with repetition of the program the 

listed quantities, before being used, are defined anew, since they 
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of necessity will occur first In the left parts of the corresponding 

assignment operators. 

The "reproduction" block IL: 

begin integer rf, rbs, rfs, rf, rbf, rff, j, bs, fs, f, bf. //; 
Boolean B; 
r/i -random (1, k); 
rbs: — random (0. *); 
rfs: =• random (0. *); 
rf: m random (0, 1); 
rbf: - random (0,1); 
rff .^m random (0,1); 
for /: - 1 step I until * do 
for 6s: - 0 step 1 until * do 
for fs: - 0 step I until k do 
for /: - 0.1 do for bf: - 0.1 do for //: - 0.1 do 

begin Ä: - / - rjAbs -rbsAfs~rfsAf~rfAbf - rbfAff-rff; 
SPli,j,bs,fs,f,bf,ff]: - if fi then random {l,k) 

t\*SP[pi,l,b$,fs,f,bf,ff]', 
M[i, /.bs, fs, f. bf, ff\: - if fl'then random (- 1,1) 
else M[pi,i.bs.fs,f,bftff\ 

end 
end. 

The entire program for the modeling of the evolution process Is 

now represented as follows: 

begin integer t, t. bi. ft. p, q. pi; 
integer array f (l:n]. 5(1:n]. 1(1:n], lf|l:il|. 
SP[\:n,l:k,0:k,O:k, 0:1. 0:1. 0:1]. M[l:n. l.k, Oik, 
0:k, 0:1. 0:1. 0:1]; 

for </ — I step 1 until n do 
LW-Hm-Oi 
t =0; f: - 1; read (5); read (SP); read (Al); 
Q read (f); /i: = if » ¥• n then i-j-1 else 1; 
if 5(0 - 0 then begin fc -//; go to P 
W: =- If i ■* 1 then < — 1 else n; 

|   block 01 I'I 

if L[pil>/V//[p'l>Ä then 

; 
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end. 

if pi*iAH [pi] < huAL[pi]<luAL [pi] > 0 then 

{ block   0a |; 

if pi * fi then i: = fi eise i: = if ft * n then // +1 eise 1; 
P:if / = 1 V/rf = I then ft — 1+ I; if / ^ p thengo to Q 

We note that the program which we have constructed is not eco- 

nomical from the point of view of the use of the memory and the ne- 

cessity for rewriting of the multl-dlmenslonal arrays. We can achieve 

a far more economical program construction If we Introduce numeration 

of the auromata and use In the arrays L, H, SP and M the number of 

the corresponding automaton In place of the number of the spatial 

point. 

In the real modeling of the evolutionary process on a universal 

electronic digital machine In [43], use was made of a program with 

more limited capabilities, nevertheless, the experiments conducted 

showed that even with these conditions the quality of the simulation 

was quite satisfactory. For relatively simple "laws of nature" the 

process of adaptation of the automc.^a to the surrounding medium and 

the fomatlon of stable "species" were observed after several tens of 

thousand of cycles of operation of the algorithm and the replacement 

of the corresponding number of "generations." Initially the transition 

and output tables of the automata (arrays M and SP In our case) were 

specified arbitrarily. In the evolution process there took place a 

"dying out" of the poorly arranged automata and the appearance of 

fonns which were better adapted for "life" under the given conditions. 

< 

Manu- 
script 
Page 
No.: .. 

361 

[Footnotes] 

The diode matrices are two systems of conductors, usually 
termed buses, a part of which Is interconnected by diodes, 
I.e., elements which pass current In only one direction. 
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384 

396 

403 

An attempt is usually made to avoid such roundoffs in ALGOL, 
since natural roundoff of the quantity 23.5 in some machines 
leads to 23, and In others to 24. 

If the step B Is negative, then the value of the expression 
C — A^is takfen with reversed sign. 

For a description of the SM0LG0L-61 language see: Communlcp-- 
tlons of the Assoc. for Comp. Mach., 1961, Vol. 4, No. 11, 
pages 499-502. 

♦ 
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Chapter 6 

PREDICATE CALCULUS AND THE PROBLEW OF AUTOMATION OF 

THE SCIENTIFIC CREATIVE PROCESSES 

§1. BASIC CONCEPTS OP PREDICATE CALCULUS 

As we mentioned In Chapter 2, the simples component part of 

mathematical logic — proposltlonal calculus — does not really pene- 

trate into the structure of the elementary propositions, thereby 

limiting its capabilities in the fomalization of the more complex 

thought processes. The next higher stage of mathematical logic with 

regard to complexity, tenned restricted predicate calculus or first 

degree predicate calculus, posseses far stronger expressive capabil- 

ities. 

One characteristic feature of predicate calculus is, first of 

all, that along with the variable propositions which can take only 

two possible values ("true" and "false") there are introduced into 

consideration the so-called object variables which run through some, 

generally speaking, infinite region of values, which is customarily 

tenned the object region. The values composing this region are usually 

tenned objects. 

Fixing a particular object region, we obtain the possibility of 

constructing the prepositional functions of the object variables, usu- 

ally termed predicates; the n-place predicate Pfc^ x2, ..., xn) Is a 

variable proposition whose truth or falsity is detemined by sets of 

values of the object variables x,, x2, ..., xn. If the predicate P is 

not identically true or identically false, then on some sets of val- 
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I 
ues of the object variables It takes the value "true" and on others - 

the value "false." 

In the classical theory of predicates only the single-place pred- 

icates were called predicates (or properties). For the multiplace 

predicates the special tem "relation" was used: the two-place pred- 

icates were termed binary relations the three-place were termed ter- 

nary relations, etc. For our purposes there is no need for special 

emphasis of this difference, therefore we shall term predicates any 

functions of any (greater than zero) number of object variables. 

The use of predicates permits the construction of a formal lan- 

guage analogous to prepositional calculus but, in contrast with it, 

penetrating into the structure of the elementary propositions. For ex- 

ample, the proposition "four is larger than two" is indecomposable in 

propositlonal calculus. However, if we introduce the predicate P(x, y) 

with the set of whole nonnegative numbers as the object region, true 

if and only if the inequality x > y is satisfied, then this proposi- 

tion is written in the form P(4, 2), which now gives an idea of the 

internal structure of the proposition. 

The internal structure of the proposition "oxygen is a gas" can 

be revealed in exactly the same way. To do this it is sufficient to 

introduce the predicate "is a gas" which takes the value "true if and 

only if there is substituted in it an object of the object region 

which actually is a gas. If we designate this predicate by Q(x), then 

the phrase which we presented can be written in the form Q(oxygen). 

In the formal construction of predicate calculus we are not usu- 

ally Interested In the exact objects from which a particular object 

region is constituted, it is sufficient to know only the number of all 

these objects or, expressing it more precisely, the power of the set 

of all the objects composing the object region. If the object region 
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is finite or countable the objects composing It can be replaced by 

their numbers. Thereby the object regions are reduced to number sets, 

which facilitates the problem of concrete expression of the correspond- 

ing predicates. Since the predicates are variable propositions, all 

the operations used in the second chapter in the construction of the 

prepositional calculus can be used with them. At the same time the use 

of the object variables peimlts the introduction of several new ope- 

rations which are specific for the predicate calculus. The construc- 

tion of these operations is accomplished with the aid of the so-called 

quantifiers. Usually we limit ourselves to only two fonns of quantifi- 

ers, termed existenslonal quantifiers and .generality quantifiers. For 

their designation we shall use the symbols 3x   and Vx    respectively, 

where x Indicates the variable on which the quantifier acts. 

The expression 3xP{x)  is the conventional designation for the 

proposition "three exists that object x for which the predicate P is 

true." Similarly the expression vxP(x)  designates the proposition "for 

all objects x the predicate P is true." Here it is understood that 

the objects under discussion belong to the particular fixed object 

region M. If the region M consists of the finite number of objects 

x,, Xp, ,,., x. , the expression 3xP{x)  reduces to the disjunction 

/*(*!) V ^te) V ..• V ^W.  and the expression VXP{K\  reduces to the conjunc- 

tion Pi.xx) A PW A — A P(x*)     . In the case of an infinite obflect region 

this reduction is not possible, since the constructive nature of our 

constructions excludes the possibility of the use of infinite disjunc- 

tions and conjunctions. 

In the nonconstructlve (the so-called set-theoretic) approach to 

the construction of predicate calculus, we can always picture the ex- 

pressions 3xP(x)  and VxP(x)  as disjunction and conjunction extended to 

all the objects x composing the given object region M. In the con- 
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structlve approach this representation can be used only for the 

heuristic (inductive) reasonings and constructions, but not at all as 

a method of strict formal proof. 

In the expressions 3xP(x)  and « YxPix) the variable x Is bound by the 

corresponding quantifier. In contrast with the free (unbound) vari- 

ables, for example the variables x and ^ In the expression Q(x, y), 

the bound variables do not have Independent (individual) value, since 

the proposition containing the bound variables actually does not de- 

pend on these variables. The role of the bound variables In the pred- 

icate calculus In this sense Is completely analogous to the role 

played by the variable Index _1 In the calculation of the sum  J «A or 
M 

the Integration variable x In the calculation of the definite Inte- 

gral    fy{x)dx   ,  We can.  In particular, replace the bound variable with 
I 

any other variable without altering the sense or value of the corre- 

sponding expression In so doing. 

Any fcimula of restricted predicate calculus is constructed with 

the aid of the four operations of prepositional calculus (negation, 

disjunction, conjunction and implication) and two coupling operations 

with the aid of the object quantifiers (generality and exlstenslonal) 

from elementary propositions, which are usually the familiar variable 

propositions (prepositional letters) and the proposltional functions 

(predicates) defined above. Here the object region is assumed fixed, 

and the total number of symbols composing any formula must of necessity 

be finite. For unity of temlnology the elementary variable proposi- 

tions which do not depend on the object variables (i.e., the preposi- 

tional letters) are conveniently considered as zero-place predicates 

(prepositional functions of an empty set of object variables). 

Just as in proposltional calculus, in the predicate calculus we 

can make use of round brackets for the designation of the order of 
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operations In the formulas. These brackets are also used to establish 

the action region of the quantifiers which appear In the formula. For 

example, In the expression 3x(P(x,y) "D Q{x)) o R{x)    the action region of 

the exlstenslonal quantifier .3* Includes only the expression P(jt,i/) D Q(jt). 

The variable x appearing In thlt expression Is bound by the Indicated 

quantifier, while the variable x In the predicate R(x) must be consid- 

ered as a free variable. 

In order to avoid confusion during the various sorts of trans- 

formations of formulas In predicate calculus, we usually prefer to re- 

deslgnate the bound variables so that their notations differ both 

from one another and from the notations of all the free variables ap- 

pearing In the same formula. In this case we can consider that the ac- 

tlon region of each quantifier extends from the place of Its occur- 

rence right to the very end of the formula. Thereby the use of brack- 

ets for the designation of action regions can be made superfluous. 

Hereafter we shall adhere, as a rule, to precisely this Interpreta- 

tion of the action regions of the quantifiers. 

We note that In restricted predicate calculus only the object 

varlbles are pemltted to be bound using the quantifiers. Here the 

predicates appearing In a formula are assumed to be unchanging. Such 

a limitation naturally restricts the region of applications of the 

logical calculus which we are constructing, which explains the Inclu- 

sion In Its name of the term "restricted." In the so-called extended 

predicate calculus use Is made of variable predicates and predicate 

quantifiers. In other words, there are permitted expressions of the 

form "P(x) Is valid for every predicate P" or "there exists the pred- 

icate Q for which the proposition Q(x) Is true" etc. With unlimited 

use of predicate quantifiers there arises the possibility of con- 

struction of Internally contradictory fomulas and the appearance of 
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paradoxes. All this leads to the necessity for further complication 

of the corresponding calculi. However, we shall not concern ourselves 

with a detailed study of the extended predicate calculus, but shall 

concentrate our attention on the restricted predicate calculus. There- 

fore hereafter when we use the term predicate calculus (unless othei- 

wlse stipulated we shall always mean the restricted predicate calculus. 

We also shall not consider other possible generalizations of the pred- 

icate calculus, for example predicate calculus with several object re- 

gions rather than only one, etc. 

Just as in the case of prepositional calculus, in the construc- 

tion of predicate calculus it is not sufficient to indicate only the 

method of writing the formulas. It is necessary also to give the rules 

for the transformation of the formulas, expressed by axioms. The axi- 

oms of predicate calculus 'include all 11 axioms of prepositional cal- 

culus which were given In §5 of Chapter 2. In addition to them, there 

are introcuced four postulates which are specific for predicate calcu- 

lus and to which we assign the numbers from 12 to 15 inclusive: 

,„ CDP(x) .  14. P(t)3 3xP(x). 
"' CDVxPix)' i5   P(X)DC 

13. VxP(x)DP{t). '    3xP(x)DC ' 

With the aid of these postulates (axioms) we can perform the for- 

mal deduction of new formulas by exactly the same method as in the 

case of prepositional calculus. We note only that the expressions P(x) 

and P(t) in axioms 12-15 must be understood not only as elementary 

one-place predicates, but also as any formulas of predicate calculus 

containing the letters x and t as free variables. Here it is not ex- 

cluded that other free variables can appear in the corresponding form- 

ulas. In the formal axiomatic construction of predicate calculus we 

do not usually use the symbols of the Individual objects or individual 
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predicates, so that the predicates appearing In the formulas are taken 

to be any, and not fixed, predicates. In place of the prepositional 

letters A, B, C In the axioms 1-15 there can be substituted any form- 

ulas of predicate calculsu. Including those which contain free vari- 

ables. 

In all the substitutions which we are discussing here it Is un- 

derstood that the free and bound variables, and also the various bound 

variables in the fomulas obtained as a result of the substitutions, 

must be designated with different letters. This condition permits 

avoiding the so-called collision of variables, which leads to unfor- 

seen binding of variables which must be left free. Actually, If, say, 

in the formula gxP(x) D C  in place of C we substitute the formila Q(x), 

then the existensional quantifier 3x would bind not only the variable 

in the predicate P, but also the variable in the predicate Q. Colli- 

sion of variables can always be avoided by means of renaming of the 

bound variables. Hereafter in the case of the necessity of such re- 

naming we shall always assume that it has been accomplished. 

Under the condition that the necessary precuationary measures 

are taken to avoid collision of the variables, all the results on the 

deducibility of some fomulas from others obtained previously in pro- 

positional calculus (see the formulas 1-7 in §5 of Chapter 2) are 

transferred over to predicate calculus. The deduction theorem (with 

corresponding stipulations) also remains valid in predicate calculus. 

In particular, if the formula B is deducible (in predicate calculus) 

from the formula A, then the formula A jB (under the condition of use 

of measures to prevent occurrence of collision of variables) will be 

deducible in predicate calculus. 

The following rules of deducibility are easily derived from axi- 

oms 12-15: 
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Insertion of generality quantifier ( V -Insertion) 

A{x)\-VxA{x)\ ^115) 

Insertion of exlstenslonal quantifier ( 5 -Insertion) 

A(()*-3xA(x)i (iig) 

removal of generality quantifier (y -removal) 

VxA{x)*-*i& (117) 

so-called 3 -removal: If  r. i4U)i-C * then  (see Kleene [42]) 

r. 3xA[x)£c. (ll8) 

The symbol of the variable x written above the deducibility sym- 

bol |- means that the corresponding variable Is altered (converted 

from a free variable to an apparent variable) In the process of the 

deduction In accordance with the axioms (deduction rules) 12 and 15. 

The free variables which are not altered In the deduction process are 

customarily tenned fixed variables. This last concept can be used for 

the refinement of the foimulatlon of the deduction theorem. 

If there obtains the deducibility of r,A i- B,  and in the deduction 

process the free variables occurring In the formula A remain fixed, 

then there obtains the deducibility of t\- A'D B    . 

Using the equivalency symbol - in the same sense as in preposi- 

tional calculus, and using A to denote any fomula not containing the 

free variable x, we can easily establish the following relations: 

t~Y*A~A    h3xA~~A, (119) 

[~VxVyP{x.y)~VyVxP{x,y); (120) 
\-3x3yP{x,y)~3y3xP{x,yy. (121) 

^VxP(x)^3xP(xy, ^22) 
\-3xVyP{x.y)OVy3xP(x,y). ^123) 

Rules (120) and (121) show the possibility of variation of the 

order of application of like quantifiers. For the unlike quantifiers 

this situation does not obtain, since the relation \-Vx3yP{x,y)ii 3yVxP{x,y), 
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dual to the relation (123), In the general case does not obtain in 

predicate calculus. To convince ourselves of this it is sufficient to 

consider as the object region the set of all natural numbers, and as 

the predicate P(x, y) the predicate which is true if and only if x < y. 

Then the fonnula Vx3yP(x,y)  expresses the proposition "for every natural 

number there exists the natural number ^ which Is larger than x." At 

the same time the fomula 3yVxP(x,y)   is the proposition "there exists 

a natural number which is larger than all the natural numbers." The 

first prorposition Is true and the second is false. Therefore the pro- 

position Vx3yP{x,g)3  D 3yVxP(x,y)    with the considered interpretation is 

false and must not be deduclble in a (contenslvely) consistent calcu- 

lus. 

We take the contenslve consistency of predicate calculus (and 

propositlonal calculus as well) in the sense that only identically 

true formulas can be deduclble in this calculus, i.e., those fomulas 

which remain true for any object region and for any concrete inter- 

pretation of the predicates occurring in them. Without binding our- 

selves to the requirements of constructivity of arguments (i.e., re- 

maining in the framework of the set-theoretic approach to predicate 

calculus), it is easy to see that the formulas expressed by axioms 13 

and 14, Just as the fonnulas expressed by axioms 1-10 of prepositional 

calculus, are Identically true fonnulas. 

The deduction rules (11, 12 and 15) also lead to identically true 

fonnulas under the condition of identical truth of their premises. As 

an example let us consider the deduction rule 12. The identical truth 

of the premise C 2) P(x) can obtain only in two cases: either when the 

proposition C is false, or when the proposition P(x) is always true. 

It is evident that in both of these cases the truth of the proposition 

CÖVxP(x).     aldo obtains. 
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By similar arguments the contenslve consistency of predicate 

calculus Is proved (although not completely constructively). The non- 

structlvlty which Is considered here Is associated with the Implicitly 

assumed possibility of the sorting of all the values of the object 

variables In the detemlnatlon of the Identical truth, which In the 

case of an Infinite object region requires an Infinite number of steps, 

which is not In agreement with the requirement of flniteness, manda-      ^ 

tory for the strictly constructive constructions. 

Limiting ourselves to only the finite object regions. It Is easy 

to give a completely constructive nature to the proof of the consis- 

tency of predicate calculus. With this limitation the predicate cal- 

culus essentially reduces to prepositional calculus, since the quan- 

tifier binding in this case Is simply a short fonn of writing of the 

conjunctions and disjunctions extendec to all the objects of the ob- 

ject region, and the relations expressed by axioms 12-15 are deduclble 

from axioms 1-11. Thanks to the possibility of such an Interpretation, 

the question on the consistency of predicate calculus reduces to the 

corresponding question for prepositional calculus, which was resolved 

earlier. 

A similar method Is used to establish the fomal consistency (al- 

so termed simple consistency) of predicate calculus. I.e., the Im- 

possibility of deduction In this calculus of any formula together with 

Its negation. 

The problem of contenslve completeness of predicate calculus, 

i.e., the possibility of formal deduction in this calculus of any 

Identically true formula, was resolved in the positive sense by Godel 

[16]. It is obvious that in the case of infinite object regions the 

establishment of the contenslve completeness of predicate calculus re- 

quires the use of material which goes beyond the limits of finite 
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mathematics. In the case of finite object regions the question on the 

contensive completeness of predicate calculus reduces to the corre- 

sponding question for predicate calculus and therefore is resolved 

constructively. 

In contrast with contensive completeness, also termed complete- 

ness in the broad sense, completeness in the narrow sense does not ob- 

tain in predicate calculus. Actually, to the list of axioms of pred- 

icate calculus there can be adjoined the fomula 3xP(x) D VXP(X),    which 

is not deducible in this calculus and does not lead to the occurence 

of a contradiction. The consistency of the axiom system arising as 

the result of this adjunction becomes clear with consideration of the 

object region consisting of a single object. In this case the newly 

adjoined axiom becomes an identically true formula. At the sai::e time, 

for the object region which now consists of the two objects x and y, 

this axiom is converted into the f omula p(x) v P(y) 3 W A P{y),  which is 

not Identically true and therefore is not deducible from the remain- 

ing axioms. 

With the set-theoretic approach to the construction of predicate 

calculus the following interesting theorem due to Mal'tsev [52] can 

be proved. 

Theorem 1. If an Infinite disjunction of (finite) formulas of re- 

stricted predicate calculus is an Identically true formula, then the 

finite disjunction of these formulas is identically true. 

This theorem can be used successfully for the proof of the so- 

called local theorems, which in several cases make it possible to 

transfer to the infinite sets the properties which are valid for all 

their finite subsets. 

Along with the identically true formulas, in predicate calculus 

it is useful to consider the so-called satisflable formulas. Satlsfl- 
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able Is the term  given to a foiroula which can be made true with the 

selection of a suitable object region and a proper definition of the 

predicates given on It. It Is understood that the formulas In question 

here do not contain symbols of the Individual objects or Individual 

predicates. 

Every Identically true formula Is moreover satlsflable, but the 

reverse Is of course not true In the general case. An example of a 

satlsflable but not Identically true formula might be the formula 

§*/>(*) D VxPit),   which was considered above. This formula Is Identically 

true only on those object regions which consist of one single object. 

It Is clear that a formula which Is not satlsflable on some ob- 

ject region Is Identically false on this region. Negations of the 

Identically true formulas. Thereby there Is established the connection 

between the concepts of satisfiability and Identical truth of the 

formulas of predicate calculus. 

We can construct examples of formulas which are not satlsflable 

on any finite object regions, but which are satlsflable on Infinite 

object regions. Moreover the theorem due to Levengeym [Lowenheim] Is 

valid. 

Theorem 2. If a formula of predicate calculus Is satlsflable on 

sane any infinite object region, then it is also satlsflable on an en- 

numerable object region. 

The solvability problem for predicate calculus consists in the 

indication of a single effective technique (algorithm) for the deter- 

mination of the satisfiability or nonsatlsflability of any given form- 

ula of predicate calculus (on seme object region). In contrast with 

prepositional calculus, where the similar algorithm was constructed 

without any difficulty, the problem of solvability in the general case 

for predicate calculus, as shown by Church and Turing, in general has 
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no öolution. In other words, there does not exist a single construc- 

tive technique for the establishment of the satisfiability or the non- 

satisfiability of any formula of predicate calculus. 

Quite frequently the problem of solvability for predicate calcu- 

lus is formulated in a somewhat different form: find the algorithm for 

the detennlnatlon of the truth (i.e., the identical truth) of any 

given formula in this calculus. 

In view of the contensive completeness of predicate calculus, the 

algorithm which differentiates the true formulas of -the calculus from 

the false simultaneously solves the problem of the differentiation of 

the provable and unprovable formulas of this calculas. We note also 

that from the truth of any formula there follows the ncnsatisflability 

of its negation. Therefore, if we could decide the question on the sat- 

isfiability or nonsatisflability of all the formulas of predicate cal- 

culus we would have the possibility of also resolving the question on 

the truth of any formula. Unfortunately, in the general case neither 

the first nor second questions have solutions. 

Thus, with respect to the problem of solvability the predicate 

calculus differs basically from propositional calculus. However, if we 

limit ourselves to certain particular forms of the formulas the deci- 

sion algorithm can be constructed in the case of predicate calculus as 

well. 

Such an algorithm can, for example, be constructed for the form- 

ulas of predicate calculus which contain only single-place predicates. 

This situation is the simple result of the fact that for the establish- 

ment of the satisfiability or nonsatisflability of a formula contain- 

ing n single-place predicates it is sufficient to limit ourselves to 

the consideration of the object regions consisting of no more than 2n 

objects. As a result the verification of the satisfiability (or Iden- 
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tlcal truth) of the predicate fonnula reduces (after replacement of the 

quantifiers by disjunctions and conjunctions) to the verification of 

the satisfiability (or, correspondingly, the Identical truth) of the 

corresponding fonnula of prepositional calculus. 

In the general case. In the resolution of the question on the 

satisfiability or nonsatIsflability of any specific fonnula It may be 

of considerable assistance to perform a preliminary reduction of this 

fonnula to the so-called nomal fom. We shall differentiate two forms 

of normal forms: the so-called prenex form and the Skolem normal form. 

The prenex form is characterized by the fact that all the quantifiers 

(if there are any must be located at the very beginning of the fonnula 

and the action region of each of them must extend to the end of the 

fonnula. In the Skolem normal form it is additionally required that all 

the extensional quantifiers precede all the generality quantifiers. 

If the formula is written in the prenex form, then the portion 

standing after the quantifier (the quantifier-free portion of the . 

formula) can be considered as a fonnula of proposltlonal calculus 

(each predicate is considered here simply as a variable proposition). 

But then we can exclude all the implication signs in this formula 

(replacing A 3 B by -,^ v B\   and then reduce it to the disjunctive 

normal form. A similar transformation reduces the original predicate 

formula to sane predicate formula equivalent to it. In many cases the 

concept of the normal form of the predicate formula Includes not only 

the condition of prenexing of the quantifiers, but also the mandatory 

reduction of its quantiflre-free portion to the ideal disjunctive nor- 

mal form. 

The following theorem is valid. 

Theorem 3» For every formula A of (restricted) predicate calculus 

there exists its equivalent fonnula B written prenex form. There ex- 
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Ists a single constructive technique (algorithm) for reducing any 

(predicate) formula to the prenex form. 

The validity of the formulated theorem follows from the easily 

verifiable relations 

\--iVxP(x)~~3x-,P{x)\ (124) 

\-~y3xP(x)~Vx~,P{x); (125) 

VQAVxP{x)^Vx{Q A P(x)); (126) 

h QA3xP(x)~3x\QAP{x))', {127) 
\- QW xP{x) ~V xiQW P{x))\ (128) 
hQV3xP(x)^3x{QvP{x)). (129) 

Since Implication can be replaced by the operations of disjunction 

and negation, with the aid of the aid of the above formulas with ob- 

servation of the conditions which exclude the posRibility of the oc- 

currence of collision of the variables, we can perform the sequential 

permutation of the quantifiers with all the symbols   (different from 

the quantifiers) which make up the formula until all the quantifiers 

appear in the left part of the formula.  For example,  the fomula 

P{x)\/-~\VyQ{x,y)   can be first transformed to its equivalent formula 

P(x)\/3y,-\ Q{x,y),   and then to the    (also equivalent) formula     3y (P (x)\/ 

v-iQ(x,y)), which then Is the required prenex form of the original form- 

ula. 

A direct analogy of theorem 3 does not exist for the Skolem nor- 

mal form: not every formula of predicate calculus has an equivalent 

formula having the Skolem normal form. 

However the concept of equivalence can be generalized so that any 

formula of predicate calculus can be reduced to the Skolem normal 

form.  This generalization os given by the concept of the so-called de- 

ductive equivalence  [61]. 

The formula A is termed deductively equivalent to the formula B 

if by adjoining formula A to the axiom set of the calculus we obtain 
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the possibility of deducing the formula B from the thus expanded sys- 

tem of axioms, and, on the other hand, by adjoining formula B to the 

axiom set we obtain the possibility of deducing formula A 

This definition is applicabel not only to predicate calculus, but 

also to any other logical calculus, in particular to prepositional 

calculus. Since in propositlonal calculus the adjoining of any nonde- 

duclble formula to the axiom set makes all the formulas deducible, 

then any two nondeducible formulas of predicate calculus are deduc- 

tively equivalent. It Is also clear that any deducible formulas (in 

any calculus) are deductively equivalent. At the same time, deductive 

equivalence of the deducible and nondeducible formulas is impossible, 

since the adjoining of the firs formula to the axiom system does not 

make the second formula deducible. 

Thus, in propositlonal calculus both all deducible and all non- 

deducible formulas are deductively equivalent. It is also easy to see 

that in predicate calculus (as, moreover, in prepositional calculus) 

conventional equivalence of fromulas implies their deductive equiva- 

lence. However, the reverse is not true in general, since, for example 

two elementary prepositional variables (arbitrary letters) P and Q, 

which are not equivalent to one another, are however deductively 

equivalent. 

The following theorem due to Skelem is valid. 

Theorem 4. For every formula of (restricted) predicate calculus 

there exists its deductively equivalent formula written in the Skolem 

normal form. There exists a single constructive technique (algorithm) 

which permits performing the reduction of any predicate formula to its 

deductively equivalent Skolem form. 

It can be shown that if two formulas are deductively equivalent, 

then the Identical truth of one of them implies the identical truth of 
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the other. Since there exists a technique for the reduction of any 

formula of restricted predicate calculus to its deductively equiva- 

lent fomula in the Skolem nomal form, then with the resolution 

of the problem on the establishment of theidentical truth of partic- 

ular formulas we can replace these formulas by their corresponding 

Skolem normal forms. This situation can also be used for the proof of 

the contensive completeness of predicate calculus, since for that 

proof it is sufficient, in view of what has been said above, to estab- 

lish the deducibility of all the identically true formulas written In 

the Skolem normal form. Actually, by establlehing the deducibility of 

all the indicated formulas we thereby establish the deducibility of 

all their deductively equivalent formulas, i.e., all the identically 

true formulas of predicate calculus. 

If a formula of predicate calculus contains free variables, it is 

termed an open formula. Formulas hich do not contain free variables 

are customarily termed closed formulas. If x,, x2, ..., x are all 

the free variables of the open formula A, then the closed formula 

y*,?*,...yx«« is termed the closure of formula A. Any formula B is de- 

ductively equivalent to its closure B1 and therefore these two form- 

ulas are either simultaneously identically true, or are simultaneously 

not identically true. 

If the problem of solvability is taken in the sense of finding 

the algorithm which differentiates the true formulas of predicate cal- 

culus from the false, then the procedure of closure of the fo;:mulas. 

Just as the procedure of reducing the formulas to the normal form 

(prenex or Skolem) performs the reduction of the general problem of 

solvability to the corresponding problem for the formulas of some 

special form. Of course, this reduction does not aid the solution of 

the problem of the solvability for all formulas of restricted predi- 
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cate calculus. We can, however, Identify several quite broad classes 

of formulas for which decision procedures exist. One class of this 

kind (formulas containing only single-place predicates) was considered 

above. 

The decidability problem has a positive solution for the case of 

closed formulas written in the prenex form with either only generality 

quantifiers (A-fomulas) or with only existensional quantifiers (E- 

formulas). If we denote the number of these quantifiers by m, then 

the following theorem is valid [1]. 

Theorem 5. For the close A-fomulas with m quantifiers truth need 

be established only for the object regions which contain no more than 

m objects. If such of formula is true in the region consisting of m 

objects then it is an identically true formula. 

Theorem 6. A close E-foimula is identically true if it is true in 

the object region containing only one single object. If it is ture in 

some region, then it is true also in any other region with a larger 

number of objects. 

The decision procedures for the closed A-formulas and E-formulas 

result directly from these theorems: Just as in the case of formulas 

with single-place quantifiers, the finiteness of the object region 

pennits reduction of the question on the truth of the predicate form- 

ulas to the question on the truth of the corresponding formulas of 

prepositional calculus. 

The decision problem has a positive solution also for all AE-fonn- 

ulas, i.e., for those closed formulas of restricted predicate calculus 

in whose prenex normal form all the generality quantifiers precede all 

the existensional quantifiers (in the Skolem normal form the order of 

the quantifiers is reversed). All close AEA-formulas are decidable in 

which the number of existensional quantifiers does not exceed two. 
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We note that In all cases which we have considered here the de- 

cidability was understood in the sense of establishing the truth or 

falsity of the formulas. With transition to the concept of decidabil- 

ity in the sense of establishing the satisfiability or nonsatisflabil- 

ity of the formulas, decidable classes of formulas are obtained from 

the classes (decidable in the first sense) of fonnulas listed above by 

the replacement of all the existensional quantifiers by generality 

quantifiers and vice versa. Thus, for example, the class of all EA- 

formulas and the class of all EAE-formulas containing no more than two 

generality quantifiers will be decidable (in the sense of establishing 

the satisfiability or nonsatisflability). 

A large number of classes of formulas for which the decision pro- 

blem is resolved positively has now been established. The limitations 

used to identify the indicated classes concern not only the nature, 

number and order of arrangement of the quantifiers, but also the forr. 

of the quantifier-free parts of the formulas (written in the prenex 

normal form). 

The possibilities have also been investigated of the construction 

of decision procedures beyond the limits of the restricted predicate 

calculus, in particular the procedure for the resolution of certain 

formulas of second degree predicate calculus. In the second degree 

predicate calculus use is made not only of object quantifiers, but al- 

so of predicate quantifiers ("for any predicate P," "there exists the 

predicate P"), however the predicates can depend only on the object 

variables and cannot be included in the system of objects composing 

the object region. 

Second degree predicate calculus in the general form not only Is 

not decidable, but also (as shown by Godel) cannot have any complete 

axiom system. Nevertheless, even in this calculus there exist quite 
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broad decldable parts. Such a part, for example, Is the so-called AND- 

calculus. In this calculus the object region is the set of all natural 

numbers, and all the predicates are single-place. A corresponding re- 

sult was announced by Byukh, who somewhat earlier constructed a deci- 

sion algorithm for a weakened variant of the AND-calculus which has 

found application in the theory of finite automata. 

§2. FORMAL ARITHMETIC AND THE OODEL THEOREM 

A fomal arithemtic can be constructed on the base of the (re- 

stricted) predicate calculus. The objects used for the construction 

of the formal arithmetic are the whole nonnegative numbers 0,1,2,3,... . 

On the set of all such numbers there are detennlned the conventional 

arithmetic operations of addition and multiplication, and also the 

operation of direct succession a1 = a + 1 (a = 0,1,2,.,.). This opera- 

tion gives a method for unique representation of all the natural num- 

bers: 1 »0', 2 «I' —O*. 3 »2' »0" etc. 

Arithmetic expressions which are customarily termed measures are 

composed with the aid of these operations from the whole nonnegative 

numbers and variables which run through the whole nonnegative values. 

Examples of such terms are the expressions x, 0', x^y1 + a'^z. We note 

that in the case of absence of brackets to determine a particular or- 

der of operations, the direct succession operation has the right of 

priority. After it follows the multiplication operation and then addi- 

tion. Thus, for example, the expression x^y' + z' must be understood 

as ((x)»(y1)) + (z'), and not as anything else. 

?y combining two terms with an equality sing, we obtain a propo- 

sition which is true or false depending on whether the indicated equal- 

ity is true or false. All such propositions constitute the set of so- 

called elementary formulas of formal arithmetic. If in the terms com- 

posing the proposition there are variables, then it (this proposition) 
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will be a predicate which is naturally termed an elementary arithmetic 

predicate. From such elementary predicates with the aid of the opera- 

tions of (restricted) predicate calculus (including the operation of 

quantifier binding) there are constructed more complex arithmetic 

predicates. All the predicates which can be consteucted in this way 

are termed Qodel arithtmetic predicates. 

The fomulas of the fomal arithmeitc system which we have con- 

structed are limited to the formulas which can be constructed from the 

elementary formulas with the aid of the operations of (restricted) 

predicate calculus. The axiom system of the formal arithmetic Is ob- 

tained by supplementing the axiom system of (restricted) predicate cal- 

culsu (axioms 1-15) by the specific arithmetic axioms: 

16. P{0) AVx({P{x)^P(x'))'DPix))   (axiom of mathematical induction). 
*     « 

17. a'-6'Da-6. 
18. -ia'-O. 
19. a = 6 D(a « c Dfe = c). 
20.. a - 6 D(a' =b'). 
21. a + 0 »a. 
22. a + fr' =- (a -J- b)'. 
23. a0«0. 
24. ab' ~ab + a. 

For the proper understanding of these relations it is necessary 

to note that in order to economize brackets a definite order of prior- 

ity of operations is established in the formulas of the formal arith- 

metic system which we have constructed: all arithmetic operations (di- 

rect succession, multiplication and addition) have priority over 

equality, and the latter has priority over all the logical operations. 

Having the system of axioms (including the deduction rules 11, 12 

and 15) we can transfer to the formal arithmetic the concept of (foi>- 

mal) demonstrablllty (deducibility) and nondeducibility) of the form- 

ulas, and also the concepts of formal deduction. Identically true and 

identically false rormulas, etc. 
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With the aid of these axioms we can In a rigorously formal manner 

establish also the laws of the arithmetic, such as the commutative and 

associative laws for addition and multiplication, the distributive law 

for multiplication with respect to addition, etc. We can prove the 

validity of the relations H« + l =- «'. l-fl-0' =a. y-a+b =0 3 a ~0 A b . 

= 0. f-a ö^O Da=OV 6 =-oand others. 

Using axiom 16 we can derive the following general rule for proof 

by the method of Induction. 

Let r be a set of fomulas of (fomal) arithmetic which do not 

contain the variables x as a free variable, and let P(x) be a foiroula 

in which the variable x occurs f^ee. Then, if r h-TO and r,P(x) [-P(x'y 

(without alteration of the free variables in P(x)), then r\-P(x)   . 

Continuing the arguments in this fashion, we can in a rigorously 

formal fashion prove all the basic theormes and Justify all the basic 

proof techniques used in the elementary arithmetic constructed by the 

contenslve method. v 

The resolution of such basic questions as the consistency and c 

completeness of the axiom system in the case of the formal arithmetic 

is much more complex than in restricted predicate calculus. Thus, for 

the proof of the consistency it is necessary to go beyond the frame- 

work of the strictly finite methods. In general, completeness does not 

obtain for the fomal arithmetic system which we have constructed. 

Moreover, incompleteness is retained for any consistent extension of 

this system obtained as a result of supplementing the axiom system we 

have written out with any finite number of compatible (i.e., not lead- 

ing to a contradlccion) new axioms. This is the sense of the celer- 

brated Qodel theorem on the incompleteness of the arithmetic, which 

forced a new look at the entire problem of the substantiation of math- 

ematics and automatization (on the base of complete fomallzation) of 
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the process of the deduction of new theorems In deductively constructed 

theories. 

In order to clarify the basic Idea of the proof of the theorem on 

the Incompleteness of the arithmetic, It Is necessary to make a pre- 

liminary acquaintance with several concepts and auxiliary results. 

First of all we must formally define the very concept of completeness. 

To establish the class of deducible (demonstrable) fomulas of 

the arithmetic it is sufficient to limit ourselves to the considera- 

tion of only the closed formulas. Actually, as a result of the easily 

verifiable relations P{xuxt  jg \-VxiVxt...VxnP{xvx  *„),*% KJ^... 

... VxnP{xuxt xJ^-Pix^Xt x„)  of predicate calculus, from the demonstra- 

bility of some formula there follows the demonstrabllity of its clo- 

sure and vice versa. 

A formal arithmetic system is termed (simply) complete if every 

closed formula A is formally decldable, i.e., if one of the formulas 

A or ~| A is a decldable formula. 

If for the formula A its negation "l A is demonstrable, then the 

formula A itself is termed (formally) refutable. Formal decidability 

of a closed formula thus means that this formula is either demonstra- 

ble or refutable. Since from the naive contensional point of view the 

closed form must be either true or false, the condition of its formal 

decidability is a very natural criterion for the resolution of the 

question on the completeness of the corresponding formal system. The 

basic idea of the proof of the theorem on the completeness of the 

arithmetic consists precisely in the actual construction of the for- 

mally undecidable closed form, for this construction we need several 

auxiliary results, which we shall now consider. 

In the contensive sense an arithmetic predicate is any (not 

necessarily constructively defined) predicate on the set of all whole 
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nonnegative numbers. The fomal arithmetic system which we have con- 

structed gives a method for the constructive specification of some 

arithmetic predicates. To establish this method let us introduce the 

following definition. 

The arithmetic predicate P(x1,x2,... ,xn) is termed numerically 

expressible if there exists the fonnula P^x-jXg,... ,xn) of the formal 

arithmetic system which we are considering, not containing any free 

variables other than x1,Xp,...,x ) and such that for any concrete set 

of n whole nonnegative numbers a«, a2,...,a there are satisfied the 

following conditions: 

1) If the proposition P(a1,a2,...,a ) is true, then h Pifaat cB); 

2) if the proposition P(a1,a2,... ,an) is false, then ^-— p^.a,,..., ...,o„). 

In this case we say that the fonnula P1(x1,x2,... ,x ) numerically 

expresses the predicate P(x1,x2,...,xn). 

It is easy to show that the arithmetic predicates x = y and x < y 

are numerically expressed by the formulas x = y and aW + x—y)    re- 

spectively. 

The formula P1(x1,x2,...,x ) which we considered in the example 

Just presented is decidable for any concrete set of values of its free 

variables x1,x2,...,x . The formulas having this property are custom- 

arily termed numerically decidable formulas. The verification of the 

truth of the predicate numerically expressible by such a formula, with 

any set of values of the object variables, can be carried out, in 

light of what has been said, by the constructive method. In the foimal 

arithmetic system which we have constructed each formula without var- 

iables Is decidable, and each formula without quantifiers is a numer- 

ically decidable formula. 

The concept of numerical expresslbllity can be established not 

only for the arithmetic predicates, but also for the (contensively de- 
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fined) arithmetic functions (whose values are the whole nonnegative 

numbers). We say that the formula Pfc^Xp,... ,x ,y) of a fonnal arith- 

metic system numerically represents the arithmetic function /(*,.*, xn). 

if for any set of n whole nonnegative numbers the following conditions 

are satisfied: 

1) "      f{aia, fln)=s&,th.n |—P(a,.aI an,b)\ 

2) h-^y(/,(ai.a« an, y) AV ziPia^at an,z)?2 =* y)). 

The second of these conditions is the conditions is the condition, 

expressed in predicate calculus language, of the uniqueness of the 

specification of the function f with the aid of the predicate P. 

We note that the possibility of effective specification of the 

predicates is not necessarily associated with the use of the apparatus 

of fonnal arithmetic. Any n-place arithmetic predicate P(x1,x2,. .. x ) 

can be specified with the aid of the n-place arithmetic function 

cp(x1,Xp,...,x ) which takes the value 0 on all sets of valuer of the 

variables x1,Xp,...,x on which the predicate 0[sic] is true, and the 

value 1 on all those sets on which the predicate P is false. This func- 

tion is termed the representative function of the considered predicate 

P. A predicate whose representative function is primitive recursive 

or general revursive is termed respectively a primitive recursive or 

general recursive predicate. 

Godel has established the following result. 

Theorem 1. If the arithmetic function (p(x1,Xp,... ,x ) is primi- 

tive recursive, then the (n + l)-place predicate ^(x^Xg,... ,xn) = y 

is Godel arithmetic, i.e., expressible by means of formal arithmetic. 

From this theorem it follows. In particular, that all primitive 

recursive predicates are Godel arithmetic predicates. 

With the aid of theorem 1 we can easily establish the validity of 

the following proposition. 
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Theorem 2. Every primitive recursive predicate Is numerically ex- 

pressible In fomal arithmetic. 

The following result has been established relative to the general 

recursive predicates of Kleene [42] and Post. 

Theorem 3. With any n > 0 every general recursive predicate 

P(x1,x2,...,x ) can be represented both in the fom ^flu,,«, Xn.y) 

and In the forro KitfU,.*, xH,y],  where the predicates R and S are primi- 

tive recursive. And, on the other hand, every predicate which Is re- 

presentable In each of these two foms Is general recursive, and It 

remains general recursive also In the case when the predicates R and S 

are not primitive recursive, but only general recursive. 

The following theorem due to Kleene [42] Is also valid. 

Theorem 4. All general recursive predicates are Ooldel arithmetic. 

For various sorts of complex constructions and proofs In fomal 

arithmetic It Is advisable to Introduce a special numbering for all 

Its formulas and proofs of these formulas (apparatus of the formal 

arithmetic system which we have constructtd). Such a numeration was 

proposed by Oodel and therefore Is termed Godel numeration. There are 

many different ways of accomplishing this. Let us consider one of them. 

Before defining the numbering of the formulas it Is advisable to 

someqhat alter the method of their writing, considering not only the 

formulas themselves, but also their Individual parts as formal objects, 

termed entitles. Among the elementary entitles there are, first, all 

the logical symbols (D. A. V.-'• *• 3) , the equality symbol (=), the 

symbols for the arithmetic operations (+, •, '), the zero symbol (0) 

and the two symbols for the designation of the different object vari- 

ables (x, |). To the different object variables x,y,x,... there are 

associated the entitles x, (|,x), (|,(|,x)), etc. To the terms and 

formulas of the form r+i,r',r=s,AvB, AAB,~~\A,VUA{U),3UA{,U)    there are as- 
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soclated the respective entitles (-f ./-.s). c.r), («.r.s), {\/,A.ii), i/\.A,B).  ( A), 

{V,u,A(u)),   O.uMu))  . For simplicity of notations the symbols r.s.A,B.u,A{u) 

and the entitles corresponding ot them are not differentiated here. 

Using these definitions, we can sequentially, step by step, construct 

the entitles corresponding to the various formulas and their com- 

ponent parts. For example, the formula Vx{0' +x =sy)  corresponding to 

the entity iV.x(=*,(+(',0),x),{\,x))) t  the term  0' + x corresponds to the 

entity {+,{*,0),x),  the formula x = y corresponds to the entity (-=.x,(|,Jt)) 

etc. 

Now let us assign to the elementary entitles various odd numbers 

(the Qodel numbers of these entitles) 

D A V ~V 3 ~ + -   'Ox 
3 5 7 9 11 1315 171921232527 

Designating by PQ^P-pPg* • • • the sequence of all prime numbers 

(p0 = 2, Pn = 3* Po = 5*... and otc.) and assuming that the entitles 

a0,a1,... ,8^ are already associated with the Godel numbers n,,/!,,...,««,. 

let us associate the entity (ao'ai'•••>avn) 
wlth the Godel number 

Po'P"'•••Pmn- . Associating with each formula of the formal arithmetic 

system which we are considering the Godel number of its corresponding 

entity, we obtain the sought Godel numeration for all these formula 

x = y, to which there corresponds the entity (=, x, (|,x)), has the 

Godel number 2 •'•3 »5     , to the term 0' + x with its correspond- 

ing entity (+,(',0)>x) there must be assigned the Godel number 

217.3.22i.3
23.525) etc> 

It Is easy to see that the Godel number of every nonelementary 

entity is necessarily even. Keeping this fact in mind, and also the 

uniqueness of the expansion of every natural number into prime factors, 

it is not difficult to see that from the Godel number we can uniquely 

recover its corresponding formula. This means that the correspondence 
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between the fonnulas of the fomial arithmetic system which we are con- 

sidering and their Qodel numbers Is one-to-one. Thus, In the case of 

necessity we can make use of only their Godel numbers rather than the 

formulas of this system. 

By analogy with the Qodel numeration of the fomuias of the 

arithmetic, we can Introduce the Qodel numeration for all possible fi- 

nite sequences of such fonnulas, among which there we will be. In 

particular, theproofs of all the demonstrable arithmetic formulas. 

For any whole nonnegative number a, understood contenslvely, we 

shall use S to designate the representation of this number In the for- 

mal arithmetic (S represents the symbol 0 with a primes). Fixing some 

Qodel numeration of the arithmetic formulas, we shall for any Qodel 

number n use P to denote that formula which has the number n In our 

numeration. We Identify In the formula P the variable x (on which the 

fomula actually may not depend), writing the formula Pn(x). 

Let us now define the two arithmetic predlcate'j A (a, b) and 

B(a, b), considering the first predicate to be true if and only if the 

number a is a Qodel number of the formula Pa(x) such that the formula 

PQ(S) is demonstrable, and the number b is the Qodel number of some a ■" 

proof of it. 

Similarly the predicate B(a,b) is considered true if and only if 

the number a is a Qodel number of the formula P_(x) for which the 
■" a 

fromula P_(S) is refutable, and the number b is a Godel number of the a ^ 

proof of the formula "1 Pa(S). 

Using the theorems formulated above, we can prove the validity of 

the following important lemma. 

Lemma. The arithmetic predicates A(a, b) and B(a, b) which we 

have defined in the case of the Qodel numeration fixed above are nu- 

merically expressible in the formal arithmetic system with the axioms 
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1-24. 

Let us construct the formulaD A^a, b) and B, (a, b) which numer- 

ically express the predicates A(a, b) and B(a,b) respectively, and let 

us consider the formula Vy~Ai{x,y). .   This fomulas has the Godel num- 

ber 2  an^ therefore coincides with the fomula which we agreed to de- 

note by P_(x). Now let us consider the formula P (^) which does not 

have free variables. This fonnula, in explicit fom represented as 

VulAxfatik     *  can be  considered as a proposition expressing its intrin- 

sic nondemonstrabllity. Actually, this proposition is the statement 

that no number can be a Godel number of the proof of the fonnula which 

is obtained from formula PD(x) as a result of the replacement of x by 

jo» But this replacement is Just what transforms the formula P^W in- 

to the fomula Vy^Aiifry)    which we have constructed. 

It is found that with sane additional assumptions these proper- 

ties of the formula Vy~Ai{ß,y)  imply its undecidability, which then 

proves the Incompleteness of the fomal arithmetic system which we 

have consteucted. The additional assumptions involved here amount to 

the fact that the formal arithmetic is assumed to be co-consistent. 

B&r co-cons latency of the formal arithmetic system we mean the 

following property: for no formula P(x) for which the formula —tfxPix) 

is demonstrable can it be shown that all formulas of the form P(o), 

P(l), P(2),... . are demonstrable. 

From the co-consistency of the formal arithmetic there results its 

simple consistency. Actually, let P be any demonstrable formula not 

containing free variables (for example, the formula 0=0). Introduc- 

ing into this fonnula the dummy variable x, on which P actually does 

not depend, we write it in the form P(x). Then all the formulas P(0), 

P(l),... coincide with F and, consequently, are demonstrable. As a re- 

sult of the co-consistency of the system this means that the formula 
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~\VxP{x)t     actually coinciding with the f< -Tnula "^ P, is nondemonstrable. 

However, with the existence of contradiction in the sys em, thanks to 

the property of weak -| -removal (see fomu?a (7)  of §5 Chapter 2) all 

the formulas of this system would be demonstrat'e. Since, however, the 

formula -| P is nondemonstrable, our system is (simply) consistent. 

Now we can prove the Qodel theorem on the incompleteness of the 

arlthnetio in the primitive (weak) fcm. 

Theorem 5. If the fomal arithmetic is a>-conBistent then fomula 

VylAifay),   constructed above is an example of a nondecidable fomula. 

Proof. Let us assume first that the formula Vy~\Ai{P, y)    is demon- 

strable. We use k to denote the Qodel number of the proof of this 

formula. Then the proposition A(p, k) is true and, consequently, the 

formula A1(ß, Ä) is deducible. Using the operation of $ -insertion 

(see §1 of present chapter) we obtain \-3yAi(ß>y) ,  or, using formula 

(125)* we obtain h-^Vy^Afay)   . But then, as a result of the assump- 

tion made above, the formal arithmetic system which we are considering 

will be (simply) inconsistent, which is excluded in view of the condi- 

tion of its 03-consistency. 

Let us now assume that the formula ^yy^AiiP, y)   is demonstrable. 

As has been proved, the formula Vy^Atf^)   is nondemonstrable. There- 

fore none of the numbers 0,1,2,... is the Godel number of the proof of 

the latter formula. This means that all the propositions A(p, 0), 

a(p, l), A(p, 2),... are false, and consequently, in view of the nu- 

merical expressibility of the predicate A, all the formulas of the 

form "[AtipA   are deducible for i - 0,1,2,... . But then, on the 

strength on the assumption of the co-consistency of the system, the 

formula "Vy—iAAP, y)   is nondemonstrable, which contradicts the assump- 

tion we made on its demonstrability. 

Thus, the fomula Vy~Vi{j),y)    cannot be either a demonstrable or 
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a nondemonstrable foimula and, consequently, is an example of the non- 

decldable formula. Thereby the theorem Is proved. 

As we see from this proof, for the establishing of the nondemon- 

strability of the formula which we have constructed the assumption on 

the simple consistency of the formal arithmetic system is sufficient, 

and the assumption on the a>-consistency of the system is used only for 

the proof of the nonrefutability of this formula. 

Rosser has shown [71] that we can construct an example of a form- 

ula whose nondecidability is established without the assumption on the 

co-consistency of the formal arithmetic. Its simple consistency is suf- 

ficient for this. The formula involved here is constructed as follows. 

First from the predicates A(a, b) and B(a, b) defined above we con- 

struct the formula Vy{~Ai(x,y)\/     3*U<J/AßiU, *)))(where the formulas A1 and 

B^, numerically express the predicates A and B respectively). If we 

designate this formula by Pa(x) (g is its Godel number) then the form- 

ula P-tö) is the desired example of a formula whose nondecidability 

is established with the aid of the assumption on the simple consis- 

tency of the formal arithmetic. The validity of this last assumption 

has been established by Ackerman, Neyman with a certain limitation, 

and by Gentzen in the general case. 

Novlkov [59] has shown not only the simple consistency but even 

the co-consistency of the arithmetic, although to do this required re- 

sort to methods going beyond the framework of the formal arithmetic 

itself. From this result and theorem 5 there follows the Godel theorem 

on the Incompleteness of the arithmetic: 

Theorem 6. The formal arithmetic system with the axioms 1-24 is 

incomplete in the sense that in it there are constant propositions 

(formulas which do not contain free variables) which cannot be proved 

or refuted using the apparatus of this system. 
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We might think that the Qodel result uncovers only the Insuffi- 

cient completeness of our selected axiom system for the formal arith- 

metic, and that with suitable supplementing of this system of axioms 

by new axioms the incompleteness of the arithmetic (while retaining 

its consistency) would no longer obtain. In actuality the matter is 

far from geing this simple. As shown by the detailed analysis carried 

out by Qodel, with any consistent extension of the axiom system the 

foxmal arithmetic continues to remain Incomplete, and Just as before 

there will be in it nondecidable closed fomulas. Moreover, every for- 

mal system which satisfies certain quite general conditions (the ex- 

istence of a sufficiently extensive set of formulas and objects), in 

case of its consistency will of necessity be Incomplete. 

As mentioned above, the proof of the consistency of the formal 

arithmetic system S which we have constructed required resort to appa^- 

ratus which goes beyond the framework of this system. It is found that 

this fact is not chance: it can be shown that the proof of the consis- 

tency of the system S by the apparatus formalized in this very system 

is not possible. 

Actually, in the system S it is found to be Impossible to prove 

the formula 1=0. In the case of the inconsistency of this system, 

all its formulas and, in particular the formula 1 = 0, become demon- 

strable. The reverse is also true: from the demonstrability of the 

formula 1=0 there follows as a corollary the inconsistency of the 

system S. Let r be the Godel number of the formula 1 = 0, Then the 

formula —tf^r.y)  , which for brevity we denote by A, as a result of 

the definition presented above of the predicate A(x, y) with the nu- 

merical expression A1(x, y), is the formal expression of the consis- 

tency of the system S. 

It can be shown that the formalization (in the system S) of the 
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proof of theorem 5 can be reduced to the deduction (in S) of the form- 

ula »DVy "i/MP.y) >  and the fomalizatlon (in S) of the proof of the 

consistency of the system S can be re uced to the deduction (in S) of 

the formula A. But In the case of the existence of both of the Indl- 

cated deductions, according to the deduction rule expressed by axiom 

11 of prepositional calculus (see Chapter 2 §5), the formula yy-i^,(^, j/) 

must also be deduclble (demonstrable). Since this contradicts theorem 

5, then formula A cannot be demonstrable In the system S, which then 

shows the Impossibility of the proof of the consistency of the formal 

arithmetic system using the apparatus of this system Itself. 

§3. CONCEPT OF AUTOMATION OF PROOFS AND CONSTRUCTION OF DEDUCTIGE 
THEORIES 

The formal arithmetic system constructed In the preceding chapter 

Is an example of the formallzatlon of the mathematical theory on the 

basis of the predicate calculus. Such formallzatlon makes It possible 

to expand Into exactly defined elementary component parts the process 

of the proof of all the propositions which are demonstrable In the 

framework of the given theory. By placing In the program of a univer- 

sal electronic digital machine all the axioms and derivation rules of 

the considered theory, and also the formula expressing the proposi- 

tion which Is to be proved, we can organize a system of random search 

for the proof of this formula. 

If the number of elementary steps which permit accomplishing the 

proof of the required formula Is relatively small, then the high speed 

of operation of the electronic digital machine permits finding the 

proof by the method of simple sorting of all the rarlants. However, 

for any complex propositions such a method of search for the proof be- 

comes unsuitable In practice Invlew of the fact that the number of 

variants to be sorted becomes tremendously large, so that their com- 
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plete sorting In a reasonable time Is not possible even on the modern 

high-speed electronic digital machines. In these conditions we must 

make use of various sorts of techniques which pemlt a sharp reduction 

of the number of variants to bo sorted. Such techniques Include the 

enlarging of the deduction rules, thanks to which the proof Is con- 

structed from larger blocks and as a result becomes considerably 

shorter. Another technique for the shortening of the sorting consists 

In the development of various heuristic methods which make It possible 

to set Intermediate goals and thereby break the proof search process 

down Into Individual stages. Such stages must be small enough so that 

complete sorting within them Is possible. 

Usually in the automation of proofs we prefer to make use of a 

fonnallzatlon system of the predicate calculus which Is somewhat dif- 

ferent from that which was developed In the first section of the pre- 

sent chapter. Qentzen proposed such a system of fonnallzatlon In [15]. 

It pennlts the nomallzatlon In some sense of the process of the proof, 

using the formal apparatus of the predicate calculus. We shall present 

certain basic these of the Qentzen system of fonnallzatlon of predi- 

cate calculus, which. In contrast with the previously considered so- 

called Hllbert system H, we shall designate by Q or, more precisely, 

by 01. 

One of the significant concepts In the Gentzen system Is the con- 

cept of the so-called sequence. A sequence Is a fomal expression of 

the form A,, Ap,..., \ "^ B^, Bp*...> B , where A^ and B. are fomulas, 

and the arrow denotes a new formal symbol. The sequence tf„ik ...,•« "-* 

.*»,. c, 8, has the same Interpretation as the formula Vi Atft A...AV.3 

3»IVSIV .-.V©« ln the Hllbert system, where the conjunction of an 

empty set of formulas Is considered true, and the dlsjSnctlon of an 

empty set of formulas Is considered false. 
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The part of the sequence standing ot the left of the symbol -♦ Is 

temed the antecedent,  and the part standing to the right of this 

symbol Is termed the succeedent of the considered sequence.   For brev- 

ity of writing,  the finite sequences of formulas are denoted by the 

capital Greek letters   (   r. 6, A, A^ etc.) and the individual formulas are 

denoted by the capital Latin lettci-s. 

In the Gentzen system Gl there is the natural axiom  (axiom scheme) 

C-C. (130) 

and also a whole series of deduction rules which are divided into 

rules of deduction for prepositional calculus and additional rules for 

deduction for predicate calculus. 

The deduction rules for prepositional calculus: 

W-**'*      O-insertion in succeedent) (131) 

A-^AM fl.r-^e  Q-insertion in antecedent) (132) 

r^e,t  -frr»- (A -insetion in succeedent) (133) 

A AB~r^e A AB~r-*e( ^ -insertion in antecedent) (13^0 

r"^e<<4  r-»9.fl yv -insertion in succeedent) (135) 

*LI^*P'
r^e ( v -insertion in antecedent) (136) 

r^e —A ( 1 -insertion in succedent) (137) 

^/Tr-^e (""' -lnsertlon ln antecedent)      (138) 

Additional rules of deduction for predicate calculus : 

fZ^syxAix) ( *  -Insertion in succeedent) (139) 

^iAlx) r-^e (V -insertion in antecedent) (l4o) 

r^Te 3xAlx) (3   -insertion in succeedent ( (l4l) 

Ajb),T-»6 (_ -insertion in antecedent) (142) 
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In rules (139) and (142) there must be observed a definite limita- 

tion which amounts to the following: the variable b must not occur 

free in the conclusions (i.e., in the expressions under the bar) or 

(139) and (142). 

We note that when fomula A(x) does not actually contain the free 

variable x, then A(b) coincides with A(x). In this case the variable 

b can be arbitrary so that as b we can always select a variable which 

does not occur in the conclusion and can thereby observe the required 

limitation. 

In addition to the rules above, in the Qentzen system there are 

seven more so-called structural rules of deduction: 

' -n  (refinement in succeedent) (1^3) 

rC—Q   (refinement in antecedent) (144) 

[^^(abbreviation in succeedent) (1^5) 

^Äi^ (abbreviation in antecedent) (146) 

p  A C /I ft 

t~^AD zfv (Pei,nuta"tlon ln succeedent) (147) 

AXOT-e^ (permutation in antecedent) (148) 
A, D, c, r -»• o 

A-«»A.C C.r-^e (section) (149) 
A, r -* A, 6 

For the designation of the demonstrability of the sequence '6  in 

the system 01 use is made of the abbreviated notation |- S, similar 

to the corresponding notation in the Hilbert system H. 

The Qentzen system Gl is in a certain sense of the word equiva- 

lent to the Hilbert system H, since, as shown by Gentezen, the follow- 

ing theorem is valid: 

Theorem 1. If the formula A is deducible from the finite set of 

formulas r in the Hilbert system H and all the variables remain fixed, 

then in the Gentzen system Ql the sequence r -•• A is deducible. And, on 
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the other hand, if in the system Gl the sequence r -► A is deduclble, 

then the formula A is deducible from the set of fonnulas r and in this 

case all the variables remain fixed. 

The similarity between the Hilbert and the Gentzen systems is so 

great that if in the deduction performed in one system use is made of 

the rules (axioms) only for a part of the logical operations c,~,V.A.V.3, 

then in the corresponding deduction in the other system v;e could be 

limited to only the rules with the same symbols, with the possible 

exception of the implication symbol 3♦ 

Gentzen established a result which makes it possible to eliminate 

from the proofs in the system Gl the use of the sections (deduction 

rule (l49)). This is the so-called Gentzen theorem on the normal form, 

or the elimination theorem. 

Theorem 2. Let in the system 01 there be given the proof of some 

sequence in which no variable occurs free and bound simultaneously. 

Then in Gl there is a proof of the same sequence which does not use 

the sections (rule (149)) and uses only the logical rules which were 

used in the orginal proof. 

Along with the system Gl, Gentzen has also constructed other for- 

mal systems (the systems G2, G3). 

Hao-Wang [77] has used the Gentzen system Gl for the automation 

(with the aid of a universal electronic digital machine) of the pro- 

cess of the proof of a large number of theorems not only from preposi- 

tional calculus, but also from the (restricted) predicate calculus. 

The experiments made by Hao-Wang showed that in spite of the absence 

of a universal decision procedure for the predicate calculus, we can 

construct a partial decision procedure which pennits proof of all the 

theorems usually included in a handbook on mathematical logic. 

In the case of prepositional calculus, for the proof of a partlc- 
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ular sequence the deduction rules (131)-(138) of the Qentzen system 

(supplemented by the rules for the Insertion of the equivalence sym- 

bol into the succeedent and the antecedent) are used by Hao-Wang in 

the reverse direction (the conclusion is replaced by the premise). In 

this case there is performed a sequential (beginning with the left end 

of the sequence) exclusion of the logical connections. As a result of 

the application of this procedure, after a finite number of steps we 

obtain the sequence of the form A,, A«,...* \ "^ Bv B2,,,*, Bn, where 

A. and B. are the so-called atomic fomulas, i.e., simply speaking, 

the proposltional letters. Similar sequences, which are naturally 

termed elementary, are demonsteable if and only if in their left and 

right parts there is encountered the same atomic formula. 

If all the elementary sequences obtained as a result of this pro- 

cedure are demonstrable, then the original sequence is obviously de- 

monstrable. For its proof it is sufficient to repeat all the steps 

which led to the appearance of the indicated elementary sequences, in 

the reverse order. 

If the theorem to be proved is written in the form of a formula 

in the Hilbert system H, then for converting it to a sequence it is 

sufficient to place an arrow in front of it. If the last operation 

performed in the original formula is Implication, the formula can be 

converted to a sequence by replacing the corresponding symbol 2)^y an 

arrow. This method of converting the formula to a sequence usually 

leads to a shorter proof than with the writing of the arrow in front 

of the formula. As a result of the definition of the meaning of the 

symbol -* in the sequence and theorem 1 of the present section, the 

proof of the sequence obtained by either of the two indicated methods 

Is also the proof of the original formula. 

Let us consider as an exampoe the formula ~\{A 'B)D~\A    of propo- 
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sitlonal calculus. Replacing the Implication symbol by the arrow, we 

convert it to the sequence ~ (>lvß)-*~^ . The extreme left logical 

connective is the negation symbol —1 . Reversal of the rule for "I -in- 

sertion into the antecedent (rule (138)) brings our sequence to the 

form ,*1A,A\tB   .   Elimination of the following logical connective 

(which is again negation) leads (with the aid of the reversal of rules 

(14?) and (137)) to the sequence A -* AvB . Finally, reversal of rule 

(135) brings our sequence to the form A -•' A,B, which is an elementary 

sequence. Since the letter A occurs in both the left and right partc 

of the last sequence the sequence is demonstrable. Writing out in the 

reverse order all the steps which led us to the sequence A "♦ A,B, we 

come to the proof of the original sequence —{A\/B) — ~\A   . 

For the proper understanding of the last step in the described 

example of sequential elimination of the logical connectives, we note 

that the deduction rule (135) can (as Hao-Wang does) be written 

r^r too) 
Similarly in rule (13^) for /\ -insertion into the antecedent 

the two premises can be replaced by one premise of the form T,A,B,-*Q 

The legitimacy of these changes of the rules (134) and (135) is easily 

Justified with the aid of the rules for refinement in the succeedent 

and antecedent (rules (l43) and (144)). 

Of course, for the prepositional calculus we can construct more 

effective proof procedures, however the described proof is good in 

that it pemlts generalization to the case of predicate calculus. In 

this generalization use is made of the technique of elimination of the 

quantifiers with the aid of the reversal of the deduction rules (139)- 

(l42), completely analogous to the technique described above for the 

elimination of the logical connectives with the aid of the reversal 
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of the reversal of deduction rules (I3l)-(138). 

The decision procedure constructed by Hao-Wang encompasses, nat- 

urally, only a part of the formulas of predicate calculus (since a 

decision procedure does not exist for predicate calculus as a whole). 

However, it is sufficient to cover almost all the theorems of predi- 

cate calculus included in such a major monograph as Whitehead and 

Russell's Principia Mathematica. 

Improvement of the effectiveness of the decision procedure is 

achieved by IT ans of the use of several additional technique. Among 

these ichnlques an Important place is occupied by the reduction of 

the formulas to the so-called minisphere foim. In contrast with the 

prenex form in which the region of action of the quantifiers is the 

maximurr possible, the minisphere form of the formulas provides for 

the gre^te^t possible reduction of the region of action of the quan- 

fifiers. In the case of the r( duct ion of the formulas to the mini- 

sphere form, the operations of implication and equivalence are usually 

first expressed by means of the operations of disjunction, conjunction 

and negation. In this case the concept of the minisphere form can be 

refined by means of the following operations. 

First, the individual prepositional letters and elementary pred- 

icates are minisphere formulas. Second, if the formulas A and B have 

the minisphere form, then the formulas/»yß. .4AB and ~~\A  also are minis- 

pheric. Third, if P(x) is a disjunction (or, respectively, a conjunction) 

or minispherlo formulas, then the formula VxP{x)     (or, correspondingly, 

the formula 3xP(x) )  will also have the minisphere form. Fourth, if the 

formula P(x) in VxPix)  (or Q(x) in 33Q(x\ )  begins with an existen- 

sional quantifier (or, respectively, with a generality quantifier) and 

the formula P(x) (and Q(x)) is minispheric, then the formula VxP(x) 

(and  3xQ(x)     )  will also be minispheric. Finally, fifth, a formula 
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which begi ib with a chain of like quantifiers has the minlspheric form 

if every formula obtained from it by permutations of these quantifiers 

and dropping the first of them has the minlspheric form. 

The procedure for reduction of the formulas of predicate calculus 

to the minisphere form is frequently quite simple. In this case it is 

advisable to begin the decision procedure with the reduction of both 

parts of the given sequence to the minisphere form and with simulta- 

neous elimination (wherever this is possible) of all the logical con- 

nectives with the aid of the reversion of the deduction rules (131)- 

(138). 

For the elimination of the quantifiers, in place of the applica- 

tion of the (reversed) deduction rules (l39)-(l42) which requires cer- 

tain limitations, it .is frequently advisable to use a simpler method 

based on the concept on the signs of the quantifiers occurring in the 

particular sequence. In the definition of this concept we first con- 

sider the question on the assignment of signs to the various parts of 

the formulas of predicate calculus. First of all, each formula, con- 

sidered as an occurrence in itself, is regarded as positive. If P is 

a positive (negative) part of the formula Q or the formula R, then P 

will be a positive (or, correspondingly, negative) part in the form- 

ulas  QA/?. QyR, VXQ.3XQ    • If D is a positive (negative) part  in the 

formula S, then D will be a negative (positive, respectively) part of 

the formulas "1 S and S 2) Q, while D will be a positive (negative, re- 

spectively) part of the formula Q 3 s« 

If a part of any formula fron the set of formulas composing a se- 

quence is considered a part of the sequence, then any part in the se- 

quence will have the same sign as in the corresponding formula if this 

formula occurs in the succeedent, and the opposite sign if this formula 

occurs in the antecedent of the considered sequence. Every generality 
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quantifier In the sequence Is assigned that sign which Its action re- 

gion has in this sequence (considering the action region as a part of 

the sequence). The signs of the existenslonal quantifiers are consid- 

ered to be opposite to the signa of their action regions. For example, 

in the sequence Vx3yP{x,y), ~\VvQ(v) -*VzR{z)A   3uS{u)   the quantifiers Vz, Vv 

and 39   are positive, while the quantifiers Vx  and 3u   are negative. 

In establishing the signs of the quantifiers it is necessary that all 

the variables bound by the quantifiers be pairwise different. Their 

notations must also differ from the notations of all the free varl- 

ables. With satisfaction of these conditions, the following decision 

procedure can be constructed for the sequences which are in the AE- 

fonn. I.e.i consist of formulas in which no existenslonal quantifier 

can include in its action region generality quantifiers. 

First, all the fomulas occurring in the sequence are reduced to 

the minlsphere fom. Then with the aid of the revaision of rules (131) 

-(138) we eliminate all the logical (prepositional) connectives which 

pennit such elimination. Vhe resulting sequences must be in the AE- 

fom (since otherwise the original sequence would not be an AE-se- 

quence). In all these sequences all the quantifiers are omitted, the 

variables bound by the negative quantifiers are replaced by pairwise 

different numbers, and the valrables bound by the positive quantifiers 

are retained without change. 

Again applying the reversion of the rules (131)-(138), we reduce 

the resulting sequences to the elementary form, i.e., to the fonn not 

containing either quantifiers or prepositional logical connectives. 

The true elementary sequences (i.e., those sequences in which there is 

at least formula common to the antecedent and the succeedent) are 

thrown out. Perfonning all possible (not necessarily one-to-one) sub- 

stitutions of variables in place of the numbers in the remaining se- 
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quence, we attempt to make all of them true. If this can be done, then 

the original sequence was true, if not, then It was false. 

Let us consider as an example the two sequences: VxP(x) -* 3yP(y) 

and ExP(x) -*VyP(y)   • In the first sequence both quantifiers are negative. 

Therefore the described procedure for the removal of the quantifiers 

reduces it to the form P(l) -»■ P(2). Perfonning the substitution of the 

variable x in place of the numbers 1 and 2, we transform the latter se- 

quence to P(x) -♦ P(x). Consequently, the first of the initially given 

sequences is true. Both quantifiers of the second sequence are posi- 

tive. The procedure for the elimination of quantifiers reduces it to 

the fom P(x) -♦ P(y), which in the general case (for any predicate P 

and a nontrivial object region) is a false sequence. Consequently, the 

second of theoriginal sequences is false. 

These results coincide with the results of the direct verifica- 

tion of the given sequences, which is not difficult to accomplish in 

this case. We note that if, in spite of the condition stipulated above 

in the second sequence both bound variables were designated with the 

same letter, we would come to an Incorrect conclusion, taking the se- 

quence to be true. It is also useful to note that the described pro- 

cedure, even without the preliminary reduction of the formulas to the 

mlnisphere fom, is suitable for the resolution of all AE-sequences 

containing no more than one positive quantifier. 

Along with the decision procedure described above for the prepo- 

sitional calculus (procedure I), the procedure Just described without 

the reduction of the fomulas to the mlnisphere form (procedure II) 

was programmed by Hao-Wang for the IHyi-704 universal electronic dig- 

ital machine. 

Using program I, the machine required about three minutes to 

prove all 220 theorems of prepositional calculus composing the first 
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five chapters of the monograph Prlnclpla Mathematica. The total ma- 

chine operating time (with account for the time for entry of data and 

removal of results) amounted to about 37 minutes. Using program II, 

after about an hour of operation the machine had proved about 130 the- 

orems of predicate calculus from the 158 theorems constituting the 

following five chapters of the same monograph. In all, program II was 

able to prove 139 theorems, although the decision time increased con- 

siderably tc do this. 

If we supplement procedure II with the technique for the elimina- 

tion of quantifiers on the basis of the reversion of rules (139)- 

(142) and introduce Into it certain preliminary transfoimatlons of the 

fomulas whic consltitute the original sequence, then all 158 of the 

theorems indicated above become demonstrable. The preliminary trans- 

formations involved here amount to the application (as long as pos- 

sible) of the following replacement rules to the fomulas which make 

up the original sequence: 

Vx{P{x)/\Q(x)) is replaced by VxP(x) AVxQ{x);   (151) 

3x(P(x)\/Qix)) is replaced by 3xP{x)\/3xQ{xy,    (152) 

K* (/>(*) D(Q(JC) A/?(*))) is replaced by KX(P(JC)DQ(X)) A 

/\Vx(P{x)OR{x)). (153) 

These rules to a certain degree replace the procedure for reduc- 

tion of the formulas to the minisphere fonn, which in the general case 

is quite complex. If after the application of these rules and the 

ellminatlcn of the logical connectives with the aid of reversion of 

rules (133)-(138) all "the resulting sequences are AE-sequences and in 

addition are either minispheric or contain no more than one positive 

quantifier, then solution of the sequence can, as a rule, be carried 

out by procedure II. 

Hao-Wang also proposed further Improvements of the described pro- 
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cedures which make it possible to go beyond the limits of Just the 

AE-fomulas. We note that with the aid of one of these improved pro- 

cedures the IHyi-704 machine carried out the proof of 350 theorems from 

the first nine chapters of Princlpia Mathematica in 8.5 minutes. The 

procedures constructed by Hao-Wang can apparently be easily trans- 

formed into quasi-deeision procedures for the entire restricted pred- 

icate calculus In the sense that they can (after suitable complement- 

ing) prove any demonstrable formula of this calculus and can refute 

"almost all" the nondemonstrable formulas. The expression "almost all" 

is understood here in the quite practical sense and cannot, of course, 

be understood as "all, except for a finite number." 

We should underscore the difference between the purely theoretical 

and practical approaches to the solution of the problem of decidabil- 

ity. In the theoretical aspect the prime importance lies in the very 

fact of the existence or nonexistence of the decision procedure for a 

particular class of formulas. The decision procedures which are con- 

structed for this purpose are in the majority of cases completely un- 

suitable for the automation of the proofs of the theorems, since they 

lead to excessively cumbersome and lengthy constructions. 

On the other hand, in the practical approach to the construction 

of the decision procedures particular attention is devoted to the 

questions of the speed and ease of performance of these procedures. 

At the same time we frequently reconcile ourselves to the fact that 

the constructed decision procedure does not encompass absolutely all 

the formulas of the given class, if with its practical application the 

cases when it does not give an answer (after some predetermined time) 

are relatively infrequent. Thus, the practical decision procedures may 

not be in the exact sense of the word decision procedures, but only 

quasl-decislon procedures. 
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Therefore It is not surprising that In practice effective deci- 

sion procedures can be constructed not only In decldable theories, 

but also In undecldable theories. We shouldnot forget that the human 

being working In a region of some undecldable theory (for example. In 

the arithmetic of the natural ncunbers) makes use of a finite (and, 

frequently not even very large) number of techniques for the perform-» 

ance of the proofs and the construction of counter-examples. The task 

of the practical decision procedures Is then to formalize these tech- 

niques. 

Of course, the solution of this problem Is simplified if the re- 

gion of application of the decision procedure is limited ahead of time 

to sane sufficiently narrow region. At the same time the preliminary 

establishing of the theoretical possibility of the solution of the 

problem of decidability in the corresponding region, generally speak- 

ing, does not simplify the problem of the construction of the practical 

decision algorithm. 

Several decision procedures have been constructed for the rel- 

atively simple branches of mathematics (algebra of real polynomials , 

elementary geometry, theory of Abelian groups with a finite number of 

generatrices, etc.). However, these procedures were constructed, as a 

rule, in the purely theoretical aspect, and a considerable amount of 

effort will be required to transfonn them into practical decision al- 

gorithms. 

Of great Interest is the problem of the construction of algorithms 

which would not simply prove or disprove the propositions specified 

by the human but would themselves search out new interesting theorems 

in a particular field. For the construction of this sort of algorithm 

it is necessary to develop sufficiently good criteria for the evalua- 

tion of the degree of nontrlviality of a theorem. 
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One of the first attempts in this direction was made by Hao-Wang 

[77], who constructed a program for the screening (with subsequent 

proof) of theorems in propositional calculus. This attempt, however, 

was not completely successful, in view of the paucity of the nontriv- 

iality criteria included in the program: the machine printed out too 

large a number of theorems without performing adequate screening of the 

uninteresting (trivial) theorems. 

The first nontriviality criterion which usually comes to mind Is 

that the nontrlvlal theorem must be relatively well formulated (be ex- 

pressed by a short fomula) and still not have short proofs. The es- 

tablishment of still more natural criteria (in agreement with the con- 

ventional ideas on the nontriviality of theorems) becomes possible If 

the process of the screening of new theorems and their proofs Is con 

structe on the principles of self-organization. This can be achieved 

by means of supplementing the original axiom system by nontrlvlal the- 

orems selected by the program. It is natural to evaluate the complex- 

ity of a theorem on the basis of the minimal number of steps with which 

Its proof can be accomplished. We term the original axioms and all the 

theorems whose complexity exceeds some threshold which is selected in 

advance nontrlvlal propositions. Each newly proved nontrlvlal propo- 

sition Is adjoined to the axiom system, with the result that a re- 

evaluatlon is made of the complexity of all the previously obtained 

theorems. Excluding from the axiom system the theorems which have be- 

come trivial, we look for a new nontrlvlal theorem, adjoin it to the 

axiom system, again exclude theorems which have become trivial, etc. 

This self-organizing system for the construction of formal de- 

ductive theories resembles to a considerable degree the process of the 

construction of such theories by the human. We should note that the 

transition to the processes of the construction of the deductive the- 
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orles on the self-organization principles forces a new approach to the 

problem of their decidability. Of course, if the indicated process 

goes on isolated fron the outside world, then it is in the final anal- 

ysis equivalent to some "rigid" (non-self-organizing) algorithm, so 

that in the fomulation of the decidability problem actually nothing 

is changed. The same will obviously be true in the case when the pro- 

cess is influenced by some algorithm which is external to it (the case 

of the "constructive external world"). 

In the case of the "nonconstructive external world" when the ex- 

ternal actions on the process which we are considering cannot be re- 

duced to an algorithm, the situation is altered in principle. Actually, 

let us assume that the process in question can accumulate information 

coming from the outside and can perform the comparison of it with the 

formulas of the restricted predicate calculus which it has been given. 

Let us assume further that the information arriving from the outside 

consists of two sequences of formulas of restricted predicate calcu- 

lus, arranged in the order of increasing complexity (evaluated by the 

number of symbols making up the formula). If the first sequence con- 

tains all true, and the second contains all false formulas of predi- 

cate calculsu (which is not impossble in the case of the "nonconstruc- 

tive medium") then it is not difficult to construct a completely con- 

structive decision procedure for the (restricted) predicate calculus, 

based on the accumulation of an ever greater and greater quantity of 

external information and comparison of it with the formulas which are 

to be resolved. 

It is obvious that the "nonconstructive medium" is not at all ob- 

ligated to completely take upon itself the decision task, as was act- 

ually the case In the example presented. The nonconstructive sequences 

which it generates may not even be direct sequences of the formulas. 
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They must pr        3  only one characteristic — the possibility of their 

constructi\       .ansfomation (within the framework of the  considered 

self-organizing decision procedure)   into suitably ordered  sequences of 

demonstrable  (true)  and nondemonstrable   (false)  formulas  of restricted 

predicate calculus. 

It is possible that these considerations may serve  in the future 

as the basis for systems for far-reaching automation of the processes 

of scientific creativity,  principally the automation of the process of 

the construction of complex deductive theories. 
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