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ABSTRACT 

The hydromagnetic model of the evolution of a plasma puff in a 

B   field described by Waelbroeck has been used to analyze the character- 

istics of the plasma produced by the APL conical pinch gun.    The analy- 

sis is based on fitting the signals induced in single turn magnetic pick- 

up loops by the passing plasma.    In the cases studied good fits to the 

signals have been achieved and the characteristic parameters of the 

plasma found.    This analysis applied to plasma generated by the APL 

theta-pinch gun has not been successful.    In the two cases studied,  the 

lack of good fits is attributed to the presence of a sizeable amount of 

trapped field in the puff which is present along the entire flight path 

through the B    field. 
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I.    INTRODUCTION 

This report is an elaboration of the work conducted by the fusion re- 

search group (Ref.   1) at Fontenay-aux-Roses during the period 1960-1964 

concerning the analysis of plasma flow through a longitudinal magnetic 

field.    This report includes a more comprehensive discussion of the model 

which was presented by the French scientists as well as the analysis of 

plasma flow made by the Plasma Dynamics Group at the Applied Physics 

Laboratory.    The computer analysis,   developed at the Laboratory,   is 

also discussed in some detail. 

The model describes the plasma by means of hydromagnetic equations 

with some simplifying assumptions.    It is shown that the model is able to 

extract the gross features of the plasma (such as temperature,  density, 

center of mass and local velocity) from magnetic loop signals induced by 

the plasma while passing along the field.    The hydromagnetic description 

makes it immediately obvious that this analysis is applicable to a rather 

restricted class of plasmoids.    Nevertheless,  in the original work (Ref. 

1) it was found that whenever the model could be made to fit the experi- 

mental data,  the theoretical model predictions and those of more direct 

diagnostic techniques were in excellent agreement.    Therefore,   this theory 

is considered very useful,  albeit to a restricted family of plasmas. 

Both the French workers and those at APL analyzed plasmas which 

were produced by a conical pinch gun.    The gun coils used in both cases 

were,   in most respects,   identical.    However,  whereas the French gun was 

powered by a 10 ^xf capacitor bank,  the APL gun used three 14-pif capaci- 

tors and had a nominal frequency of 80 kc.    The maximum allowable 

charging voltage was limited to 14-kv by the current capacity of the ignl- 

tron switches. 
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It is hoped that this analysis can be extended to the diagnosis of a 

plasma puff in a multipole magnetic field.    The work discussed here and the 

investigation of this more complicated magnetic configuration are being sup- 

ported by the National Aeronautics and Space Administration,  Physics of 

Fluids Branch. 
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II.     THEORY 

The evolution of a plasma puff as it passes through a longitudinal mag- 

netic field has been described by Waelbroeck et al in Ref.  1.    The hydro- 

magnetic equations have been used with the following assumptions: 

1. The longitudinal guide field does not impede axial motion of the plasma, 

but it does eliminate radial diffusion.    The density is sufficiently low that 

diffusion across the magnetic field is not appreciable during the time of in- 

terest. 

2. At any time,  t,  and for a given axial position,  the plasma characteris- 

tics are independent of the radial coordinate,  r, up to the boundary of the 

plasma,  r . 
P 

3. The collision frequency is sufficiently high that the perpendicular and 

parallel temperatures (with respect to the direction of the guide field) are 

equal at every point,  i.e.,  T n   = T   .>  T  n   = T    .. 

4. The plasma is electrically neutral (n . ^ =  n ) and each fluid element, 

either electron and ion gas, has the same average velocity (V   = V.), where 

n^ , n   and ^   are the ion density,   electron density and ionic charge,  respec- 

tively.    This assumption eliminates any longitudinal current. 

5. The magnetic pressure and plasma pressure are in equilibrium at 

every instant. 

6. At every instant,  the linear density of the ions in the plasma with 

respect to the center of mass of the puff is Gaussian,  i. e. , 

-i   2 

(1) 
N. 

N.      =         exp - 
vfi  Mt) X(t) 

where N. is the total number of ions ir, the puff,  z   is the coordinate rela- 

tive to the center of mass of the puff and   X(t) is the characteristic width 

of the Gaussian distribution. 
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The momentum       nsfer equation with scalar pressure (see Ref.  2) 

can be written in the , 'ilowing form: 

p ^7 - VV • (p \fy + V (n.m.V.V.) + V (n m V V ) = rat ^ iiii eeee 

a E + (J x B) - V p - p Vcp , 

(2) 

where V. and V    = the ion and electron velocities with respect to the center 
i e 

of mass, 

m. and m   are the corresponding masses of these particles. 

CJ    =   (nr - n ) e 
r"        e 

(charge density) (3a) 

p    =   n.m. + n m r i   i       e    e 
(mass density) (3b) 

V   =   — (n.m. V. + n m V  )       (macroscopic velocity) (3c) piiieee r J 

J    =   (n.^ V. - n V  ) e (current density) 
i^    i       e   e 

(3d) 

p   =   the total scalar pressure (electron plus ion pressure) 

B  =   the applied magnetic field, and 

<p   =   the gravitational potential. 

Neglecting the gravitational term and the electron mass compared to 

the ion mass,  Eq.  2 becomes: 

9V; 

n.m.   —r  - V.V-  (n.m.V.) + V-  (n.m.V.V.) 
i   i    at i ill iiii 

cr E  + (Jx B) - Vp 

(4) 

But, 

V(n.m. V.V.) = n.m.V. • v V. + V.V(n.m.V.) 
iiii iii i       iiii 

(5) 

• i;""' S 
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Using Eq.   5 and assumption 4,   Eq.  4 becomes 

ö V. 
m. T—-1   + m.V. •  " V.    =    -   —    v' p + (? x B). (6) 

i o t i  i i n . 
i 

This is the equation of motion which will be used to describe the plasma. 

In a one-dimensional flow problem,  Eq.   6 reduce? to 

ÖV. ÖV. 
n.m.   —^   +n.m.V. r-^   +   |£ =0 (7) 
iiot iiidz oz 

It is interesting to note that this equation describes the flow of a simple 

fluid with the thermal energy density,  3/2 n.k (T   + T.),  under the force 
1    ~* 

-   —   v p   (where k is the Boltzmann constant), 
n. 

i 

The basic parameters are defined as follows: 

1. X     and X(t) are the characteristic widths of the puff along the axis 

at  t = o and at any time  t, respectively.    It should be noted that  X{t) is a 

function of time only.    Time zero is defined as the time at which the puff 

begins to expand axially and is not necessarily the time of ejection from the 

gun. 

2. v   is the velocity of the center of mass of the puff.    v(Z, t) is the 

velocity of any element of the fluid at a distance, Z centimeters,  from the 

initial position of the center of  mass and at a time,  t   seconds,  after the 

expansion begins. 

3. B     is the guide-field intensity. 

4. r„   is the radius of the flux conserver on which the solenoid is wound. 

5. r     is the radius of the flux tube in which the plasma travels and will 
P 

vary with position and time,    r     is the radius of this flux tube when the 

plasma is not present.    The total magnetic flux inside the flux conserver 

is constant. 

- 5 
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The volume density of the ions,  expressed in a form similar to Eq.  1, 

is given by 

2 
N, 

n.   = 
i Jf  X(t) 

exp (8) 

where N     is the number of ions in an infinitely long cylinder of unit cross- 

sectional area.   Using this expression in the equation of continuity. 

on. . 

-^T  +  fz   (n-V-) Ot d.Z        i   i 
0 , (9) 

one obtains 

ön. 
 i 

3t 
= n. 

2z_ 

X3 

1_ 
'x X ; 

dX 
dt (10a) 

and 

n.V.   = 
i   i 

X 
2.z2n. n. 

i 
dz (10b) 

It can be shown (see Appendix I) that the solution for this velocity relative 

to the center of mass which is anti-symmetric for ±   z   is 

V    =   -^ 
i X (11) 

The equation of motion,   Eq.  7, now becomes 

- n.m.zX 

öz x 
=   0 , (12) 
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W hich has the solution (see Appendix U) expressed by 

p   =   ^   n.m. X X" (13) 

Since it has been assumed that   Tit = Ti    for each component gaSj 

the ideal gas law is applicablej  i. e. , 

p = n.k T. + n k T     = n.k (T. + T  ) , (14) iiee lie 

and thus 

k (T   + T.)   =   ^  m. XX" . (15) 
e        i 2       i 

From this it may be seen that the temperature is a function of time only and 

therefore is uniform in space. This implies, for a Gaussian density distri- 

bution and a plasma-field equilibrium at each instant,  that the plasma radius, 

r ,  varies with z. 
P 

The total energy of the plasma puff will be considered to exclude the 

effect of external forces.    This total energy is composed of the thermal  en- 

ergy of the ions and the electrons plus the kinetic energy of the ions' axial 

motion.    The kinetic energy of the axial motion of electrons is negligible 

since   V. = V     and  m. » m    .      The energy,   W,  is defined as 
i e i e 

r 
W =   -I   f00   f P n.k (T    + T.) 2 Tir drdz       + 

2  J-» «JQ       i        e        i 
(16) 

rP 
i   r00   f      n.m.V2 2 Trr drds 
2 J-oo Jo       ill 
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The ideal solution would be to integrate Eq.  16 over the radius of the plasma 

and thus calculate the energy per unit area.    Equating the pressure,  Eq.  14, 

to the energy density would then give a useful relationship.    Unfortunately,   r 

is not known as a function of   z   and thus the integral cannot be evaluated 

exactly.    However,  if only an undefined low ß plasma is considered,  the 

plasma radius can be said to vary slowly with   z.    Equation 16 may now be 

written as 

W 3 
Z        "-CD 

3    n      n.k (T   + T.) dz +  -    P     n.m.V. 
2    L„      l e 1 2     J-=o    !     !    ! 

.V.   dz (17) 

Combining Eqs.   11,  15,  and 17 and integrating the result yields 

W 

irr 

=   JL   m   N    XX" +   i   m. NA X 
A i    A 

(18) 

Within the limits of the restricted ß,  this expression is equal to a 

constant which can be evaluated at time zero,  i. e. , 

at   t = o, X = X     and   X' = o , 
o 

and hence 

-^—   =   4    N.   k(T    + T.)0 . 
P 2       A e        i o 

ffr2 

The approximation of low ß must be examined more carefully.    The 

ß of the plasma is defined in the usual way as 

1 
ß=     p(B2/2Mo)       =1 B 

B 
1 

o 
(19) 
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where   B   is the field inside the plasma boundary and B'   is the field on the 

vacuum side of this boundary.    The external field,  B',    is approximately 

equal to the unperturbed field,  B  .  as long as the plasma radius is small 

compared with the radius of the solenoid (this is usually the case).    Then, 

from the conservation of flux. 

trr2   B   = trr2   B    , p o      o 

and Eq.   19 takes the form 

-1 ■* 

o 
r 

L PJ 

or 

(1 - ß) (20) 

When ß = 0. 6,  the ratio of the flux tube radius to the plasma radius is about 

0. 8.    Thus even for relatively high   ß   plasma,  the plasma radius changes 

slowly with z   and the approximation used in Eq.   17 is a fairly good one. 

The following reduced variables are now defined: 

Mt) (21a) 

and 

where 
m.X2 

i o 
1   * 

6k (Te + Ti)0 
(21b) 

- 9 
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Differentiating Eq.   21a yields 

X.       äX       N     dA    dT   _    o    dA 
dt    "     o   dT     dt       £     dr   ' 

and 

X"   = 
dt3 

3
 a 4        dT3 

Equation 18 can now be written in terms of these variables as 

3    T.T .     o      d3A + 1   M NAm. A —=-   —~ +
T  N.m. 

X3    r-       ^ 
o 

4      A   i C     dT a      4      A    i   ^3 
dA 
d T 

-   NAk(T   + T.)     . 
2      A        e        i o 

which reduces to 

3 A 
d3A 
dT3 

dA 
dT 

(22) 

This differential equation expresses the conservation of energy.     The solu- 

tion of this non-linear differential equation,  as given in Appendix III,  is 

T =   (A^+ 2) (A^ - 1)*, (23) 

and 

dA 
dT 

(1 -  A"^) (24) 

These equations combine with Eq.   15 to yield 

k (T   + T.)   =   3k (T   + T.)     A daA 
dT3 

and thus 

(T   + T.) 
e        i 

(T    + T.) 
o 

1 
X(t) 

2 
s 

(25) 

10 
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The information which has been gathered thus far about the plasma is 

not in a useful form. These equations must be expressed in the laboratory 

coordinate system rather than in the center-of-mass system and they must 

be related to experimentally measurable quantities. 

Beginning with the coordinate transformation,  it can be seen that the 

laboratory axial position (measured from the center of the gun coil to any 

location,    z,    relative to the center of mass of the puff,  see Fig.   1) is 

given by 

Z    = z + v0t0 + vot   =    z + Z0 + v0t , (26) 

where Z0 = v0t0   is the laboratory position at which the puff begins to expand. 

Thus. 

z    -   Z - Z      - v   t     • (27) o o 

The fact that expansion does not take place immediately can probably 

be accounted for as follows: 

1. Ions formed downstream are ejected earlier than other ions but with 

a lower velocity.    Thus,   the ions tend to bunch initially. 

2. Since the model doesjiot include the possibility of a trapped field which 

inhibits expansions,   the analysis is applicable only after this field has been 

dissipated. 

Some of the expressions derived earlier may now be rewritten as 

Z-Z vt Z-Z vT£ 
o o o o   ^ 

_z_   _ 0      o      _       AO' Ao Ao Ao   . (28) 
Mt)   ' Mt) A A 

- 11 
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Defining 

a 
X 

o 

2 m.v 
i  © 

6k(T  +T.) 
e     i oJ 

t 

(29) 

and 
Z  - Z 

Z1    = 
o 

X 
o 

(30) 

Eqs.   1 and 8 become,   respectively, 

N. 
N 

^rX0A 
exp 

Z1 - ar 
(31) 

and 
N 

n A 

vrr X0 A 
exp 

Z' - ar 
(32) 

The transverse energy per unit length of the plasma,   W        is 

N.k (T    + T.) 
W.=N   k(T    + T.) =     l  /•   * ^^    exp 

Al      4 e        i Sir X„A o 

-I    2 

Z'   -   c^T 
(33) 

But from Eq.   25 we have 

(T    + T.) 
(T    + T.) - e     ^ 0 

e        i 

and thus 

N. m. v 
W,    = -—1—9—     f   (A-, ^ Z') , 

-L     6 Vff a 4 
(34) 

where 

f (A, a,Z )   = A exp 
Z   - ar 

(35) 

13 



Th» Johni Hopkint Unlvanily 
APP'.IIO PHVaieS LAIORATORV 

Sllvtr Spring, Mtryland 

ß   may now be expressed in terms of the linear transverse energy 

density.    Since 

2ü_p 27rr2 /J  p 
o    - 0 .- P    O 

B' 77 r2   B2 

P     o 

and 

P TT r^    =   W IL  • 

then 

3 = Trr2 B2 

P    o 
2A 

o 
r 

L   PJ 
= 2 A 

B 
B o 

(36) 

where A is defined as 

A 'o      IJ. 
Trr2 B2 

o    o 

a  N.m.v 

6 TT 
3/2 a i r2 B2 

'   o    o 

f (A,Q,Z ) (37) 

But   ß   has been defined by 

ß   =   1 - _B 
B o 

(38) 

and 

2A 
B 

="i - 
B 
B 

(39) 

From this it follows immediately that 

2 

B_ 
B 

o 

o     L pJ 
^/A2 +1     - A (40) 

14 - 
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From Eq.  (32) the ion density may now be written as 

or 

N. 
i 

N. 

1 Tir2        ir*l2X r^A 
P op 

exp Z'-ar 

N 
n,(Z.T)   =  — 

1 ff^Xr3 

o o 

L   A 

(v/A3+l -A) exp - 

-i      -i  a 

Z  -QT 

,  A  >■  (41) 

The local plasma velocity,  v(Z ,T) may also be obtained.    It is the 

sunn of the center-of-mass velocity and the ion velocity (with respect to the 
1 zX' center of mass),  i. e. ,   v(Z ,T) = V   + V. = V   + —-— , which becomes 

o o       X 

or 

v(Z ,r) = 

v(Z ,r) =-~ 

'^{HrYi 

-l^1)!1-^'3) 

(42a) 

^ 
(42b) 

It can be seen from the above discussion that the evolution of the plas- 

ma puff can be described by six parameters:   v ,  (T +T.)  ,  Z  ,  X ,  N. and r * oeioooi 
A 

r   or,   equivalently,  bya, i,  Z . X  , 7777 and r  .    The remainder of this 
o ""'oo    f(A/ o 

report will discuss means of finding these parameters from an analysis of 

magnetic loop signals. 

- 15 - 
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III.    MAGNETIC LOOP SIGNALS INDUCED BY THE PLASMA 

The work of Waelbroeck et al (Ref.  1) differs slightly from the APL 

work in that the French investigators used a special type of magnetic probe, 

called a compensated magnetic loop,  while simple single-turn pick-up loops 

have been used at APL.    The compensated loops are discussed in Appendix 

IV and, as can be seen,  have some definite advantages over the system used 

here.    However,   since one of the primary purposes of the present work is 

to extend this analysis to the multipole magnetic configuration where only 

simple loops can be used,  the convenience of the compensated loops is 

sacrificed. 

Figure 2 is a schematic representation of the drift field and a simple 

magnetic loop.    The period of the field is very long compared to the transit 

time of the plasma,  and the field is spatially uniform inside the flux con- 

server.    The plasma effectively excludes part of the field from the volume 

which it otherwise occupies.    In the presence of the flux conserver,  this ex- 

cluded flux is distributed over the volume between r   and the conserver 
P 

radius,   r  .    For a plasma whose length is long compared to r ,  this dis- 

tribution can be ponsidered uniform. 

Assume B     is the drift field strength in the absence of plasma, o 

-B      is the field generated by currents internal to the plasma, 

and 

B     is the increase in the field strength external to the plasma 

caused by the presence of the plasma. 

With the previous assumption that the plasma puff contains no trapped field, 

the increase in flux between r   and r    may be equated to the decrease in 

flux inside the plasma.    If Ap    represents this flux change,   then 

... 

I 
I 

I 

I 

I 

I 

16 
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^p   =  2ff J PBprdr= 2ir r       Berdr  . (43) 

Since   Be   is assumed to be uniform between  r     and rfl ,   Eq. 43 becomes 

Acp 
B, 

ir(r|- rp 
(44) 

The flux,   <p(t), at any time   t   encircled by our magnetic loop (shown 

in Fig.  2) may be expressed as 

<p(t)   =    irr^(B0-B ) + irirl - rt) (B0 + Be) 
I      p Hl    I p  
flux inside 

plasma 
flux outside plasma 
encircled by magnetic 

loop 

A«p   +   trd4!2- r!)   Be+   nrl B0 

- A ^P 1 - 

P 

4   -a 
p J 

+   »rrj B, (45) 

The emf generated is then given by 

€ - 5(P 
at 

3 2-1 

P J 
at irrj 

ÖB . 
a  o 

at (46) 

If the signal is now integrated with a passive network,  the detected voltage 

has the form 

1 
RC 

rl   -   rp 
^—ra- 
r3 " rP J 

Ato 
frrjB( 

RC~ (47a) 

In fact,  the last term of this equation can be eliminated quite adequately 

by using a second loop far down the field,  and subtracting its signal from 

Eq. 47a, i. e., 
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1 
RC 

r^ - r. 
1 - 

r| pJ 

A (pr (47b) 

Now it is necessary to relate the probe signal (Eq.   47b) to the theory 

of Section II.    This will be done by using A cp . 

For a straight magnetic field and hydromagnetic equilibrium (see 

Ref.   2) 

+ B' 

^o 
constant (48) 

In the present case,   this becomes 

2 

+ 
(B    - B  ) 
_o p_ 

(B    + B   )' 
o e (49) 

2K b 2 Mo 

at the plasma-field boundary.    Assuming B    « B0,   Eq.   49 shows that 

B 

B 
1   -VI   -  ß 

O i +V1 - ß 
(50) 

and from Eq.   43 

A^   =    J Bp   dS Bo    J 
ß 

1 + V^ 
dS , (51) 

where   Sn =   the plasma cross-sectional area. 

But   p   =  W| the transverse energy per unit volume,   and thus 

Eq.   51 yields 

2J±o WlvdS 2^o      W*l 
p     B^   J      1 + VT 

Acp 
■ß BO     l + v/Tß" 

(52) 
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or,   by using Eq.   40, 

Acp Bo   J     (1  -yrß)ds^r2
p  B0(l 

sp 

1-/3) 

^p Bo 
_B_ 
B o 

trr2   B,,   (1 + A - V'A2 + 1)    . 
P      0 (53) 

The following .expression then links the voltage (Eq.   47b) to the theory: 

(1 + A -  A2+ I) 
ffr2 B^ 
 P    0 

RC 

^Boro 

3 2 

3       ^2 
P-l 

r3 - r 

RC((N/^+T-A) 

2 2 

o 
r3 "(^A^+l "A) 

(1+A - A/A
2
+1).   (54) 

This expression gives the time behavior of the diamagnetic signal induced 

by the plasma at any location in space. 
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IV.      DETERMINATION OF PARAMETERS FROM MAGNETIC SIGNALS 

Since six parameters (X ,   r  ,   Z   ,  (Te + T^)  ,   N-,   v    or their equiva- 

lents must be determined,  six relatable experimental quantities are needed. 

As in the French work,   four magnetic loop signals are used to obtain five 

pieces of information: 

1. Each of three loop signals gives the maximum value of the voltage, 

Vi ,    V2,    V4   . 

2. The difference in the time when the maxima of loop 1 and loop 4 sig- 

nals occur,   i. e. ,  t4   - tx  ,   is used 

3. The full width at half-maximum of the loop 3 signals,   plotted as 
A * 

A3   vs   t,   which is denoted   At 

where        denotes maximum of quantity and t    denotes time at which maxi- 

mum occurs. 

The flux tube radius,   r  ,   is determined independently,   giving a 

total of six experimental quantities.    It should be pointed out that these 

are in no way unique,   nor is there any reason to believe at present that 

they are the best choice (in terms of being most sensitive in fitting the 

data). 

Determination of r    --   There are several ways of determining   r0, 

such as electric probe measurements far down the flight path,   time-inte- 

grated photography,  and the ratio of magnetic signals from loops with 

different radii at the same axial position.    These are well outlined in the 

reports listed above (see ReL  1). 

The last method has been used in the present work.    An axial probe 

of radius r2   was inserted into the vacuum system so that the probe and 

one of the magnetic loops (usually number 3 or 4) were coplanar.    This is 
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shown schematically in Fig.   2.    A comparison of the signals induced by the 

plasma in these probes makes it possible to deduce the flux tube radius, 

r    ,   as well as the plasma radius   r  .    This method is described below: 
o . P 

Equation 47b gives the voltage recorded by a single-turn magnetic- 

loop surrounding the vacuum system.     When the axial probe is used,   two 

cases are to be considered:    r? > rD   and   r^ < r   .    Clearly,   case 1 is 

covered by Eq.   47b where ri   is replaced by r? .    It is equally clear that 

the ratio of the recorded voltages yields no information about r     (and thus 

about r0). 

For case 2,   however,  the flux through the axial probe as a function 

of time is given by 

(pit) 

from which it follows that 

ffrl   (B0 - Rp) , 

v 
axial 

1 
RC 

r      -|2 

LrP. 

ffrf B 
A(p, 

o 
RC 

(55) 

This expression is dependent on   r    .    From the ratio, p ,    of the loop 

voltage,    v,       ,  to the probe voltage,   v     .   .,  measured at the same time, 6 loop ^ &        axial 
it is found that 

P 

a     a pr3 r3 

(r3
3- r? +pri) ' 

(56) 

and that 

v, RC 
loop 
ffB o 

^ 

(57) 
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The question arises whether the axial probe disturbs the plasma mark- 

edly in this measurement.    This was investigated both in the French wo~k 

and in the present work.    In the former investigation,   .r0   as measured by 

the above techniques was approximately 10% smaller than that found by 

other methods.    In the present case,  the magnetic loop signals were es- 

sentially unchanged by the presence of the probe; nevertheless,   the four 

loop signals used in this analysis were recorded with this   probe withdrawn 

and a separate run was made for the purpose of measuring r  .    (see Fig. 

3). 

, Extraction of Data from Magnetic Loop Signals--Five quantities re- 

main to be obtained from the magnetic loop signal:   the maximum voltages 

from loops 1,   2,  and 4 (vi ,   v2 ,   V4   ),  t*   - ti ,   and the full width at half- 

maximum of loop 3 signal plotted A3 vs   t. 

The first four of these items may be read directly from oscilloscope 

tracings.    The last quantity is slightly more cumbersome  to obtain; the 

oscilloscope trace (v3   vs t) must be converted into a plot of A3  vs   t. 

Using Eqs.  40 and 54,   it can be shown that 

A 1 
2 

1 - K' 
K 

(58) 

where 

K 
(?J0 + 

v3   RC 

irr" B 
o     o   -J 

v„RC 

K-rrirK^) -(%) 
(59) 
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These equations permit the data (in the form of V3   vs t) to be plotted as 

A3  vs   t   from which At [y-J   can be determined graphically.    A{:.  A2 , 

and A4' (which correspond to Vj,'",   v2"   and v4'  ) can also be calculated. 

The correspondence is due to the fact that   v   is a monotonic increasing 

function of A. 

The information necessary to carry out the analysis has now been 

obtained.    It should be mentioned that the calculations described in this 

section (Eqs.   56,   57,   58,   and 59) were done on a computer as was a 

large fraction of the work to be discussed in the following section.   These 

computer programs are described in the appendices. 
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V.     ANALYSIS 

The analysis is carried out essentially by graphical methods,   in 

which successive approximations are used to give the best fit to the data. 

The analysis procedure will be outlined first and is based on the 

assumption that the necessary graphs are available.    Then the means of 

obtaining these curves will be discussed.    The required graphs are as 

follows: 

1. The family of curves f (ü^Z') = constant wnere f" {a.Z ) is the 

maximum of the function (Eq.   35) with respect to T. 

2. The family of curves r ''" = constant as a function of {a, Z ) where 

T'" is the reduced time at which the maximum of f (A) #) Z1) occurs, in- 

dependent of the value of f' for the particular   {a.Z , A). 

3. The family of curves A Ti =   constant as a function of a, Z   ,  where 

A Ti   is the full width at half-maximum of the function   f (a',  Z , A ),  plotted 

as a function of T. 

The following ratios are constructed next: 

Zg  _ Z^ Zig _ ZJ 

Qi2   =   ■^_I 7T    ^   7        7        • (60a) 
/L/4-Zji ZJ^-ZJ^ 

Z3   -    Zl       _      Z3     -    Zi 

Q13   =   -Z —        — —   > (60b) 

Zg - z^ Z '2   Zi 

Z4 " Zi Z 4 - Z^ 

Z3 - Zx    _ Z 3 - Zi 

Z4 " Zi Z 4 - Z! 

f* {0, zl) 
- 
A2 

t*(a.,zl) A^ ' 

f;;- {a, Z4) 
= 

A;' 

f* ia, Zi) A," 

K2    =   TTTT-TK    =   T^  ; (60c) 
and 

Ki   "   f* (.-, zl)   - Tc (60d) 

The equality of the ratios can be seen from Eqs.   30 and 37. 
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It is noteworthy that the first terms to the right of the equal signs are 

constructed of  /ariables from the theory while the second terms are made 

up of experimental determinable quantities,    (The values   A-    are calculated 

from the values of   v- ;   Z^   is the distance from the center of the gun coil 

to the loop positions).    These are experimental values for the ratios in 
i 

Eq.   60 for which a best fit in the (Q-, Z ) plane must be found. 

A starting set (q, Zx) is chosen arbitrarily.    The corresponding 

f" (.>, Zi ) is found from the graphs of f" =  constant.    Then a value of 

r io.zl) -- K4
exp r (*, zl) 

is calculated.    (Superscript    exp    indicates experimentally determined 

values. )   With this value of f   (a-, Z4 )   the coordinate Z4   which corresponds 

to the value [o--, f" [a-, Z4 ) ]  is located on the graph.    Since from Eq.   60a 
I I II. ;;: I 

Z2   - ZY    +   Qia (Z4 - Zi  ),  it is possible to find f' (Q, Z2 ) at the coordi- 

nates [a, Zg )   and construct 

f:;t {a-, Zl ) 

^ = WT^zl ) 
based on an estimate of (o-, Z-y  )   and compare it to K2 derived from the 

data.    This procedure is repeated and the choice of {a-.Z-^ )   is adjusted 

until good agreement is achieved between K2   and K2       .    In this manner 

the range of (os Z-^  ) is limited. 

These values of {a-, Z-   ) are used with the second set of graphs,   r"" = 

constant as a function of (0, Z1 ).    The experimental information to be used 

is the difference in the times at which the maxima   v4    and   vj.'    occur,   i. e. 

t-T - C .    From Eq.   21b 

K   -   ^r—rr   ■ (61) 
T4'   -   Ti 
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Locating   T4     at (a, Z4 )   and Tl   at   (a,  Zi ),    ^   may be evaluated. 

It is now possible to limit further the allowable values of {a,  Z^) by 

using the full width at half-maximum of the signal from loop 3.     A T-,    at 

{a,  Zo ) maybe found from the curves   A Ti =    constant,  where Eq.   60b 

becomes 

Zi   +   Q13   (Z4 - Zi  ) 

For the proper values of   (o-, Z^   ) 

AT, 
_1_ 

At 
A 

(62) 

Generally it is necessary to repeat these three steps several times 

in order to achieve the best fit to the data.    This sequential processing per- 

mits one to limit to a fairly narrow domain the allowable range into which 

the characterizing parameters fall.    (Waelbroeck et al,  Ref.  1,   find ac- 

ceptable fits with   X ± 8%,   N; ± 6% ,  Z0   ±1.5 cm,   (T   + Tj    ±   15% , 
0 

VQ   ± 5%). 

As a final step these parameters are used to calculate the voltages 

from Eq.   54 and compare them to the traces recorded by the oscilloscope . 
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VI.      COMPUTER ANALYSIS 

The computer analysis to be described below was carried out on the 

IBM 7094 compuLer at APL/JHU.    It is by no means the most sophisticated 

means of conducting the analysis but is designed to eliminate some of the 

mathematical drudgery which the method described in Section V requires. 

The programming is divided into five parts: 

1. The calculations of r ,  r ,  A3   vs t, A^, A2',  A4'   and the ratios 

Ks,   K4,  Qis, Qra.  (Subsec.   V). 

2. The calculation of the family of curves   f   {a,Z )   -   constant. 

3. The calculation of the family of curves   T * (os Z )   =   constant. 

4. The calculation of the family of curves   ATi (0 , Z )   =    constant. 

5. The calculation of the voltages using the parameters from the anal- 

ysis, the local velocity and the volume density  n.. 

Each of these calculations will be treated in turn. 

The Fortran listings of these programs are given in Appendix V. 
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Reduction of Magnetic Loop Data-- This program is the most straight- 

forward of the five.    The mathematics is outlined in Subsec. .IV   and needs 

little further explanation.    In this program,  the Mks system of units is used 

and the indicated times are in microseconds. 

The input data necessary to this program are: 

1. V        ; VOUT (the peak voltage from the magnetic loop for measure- 

of  r0) 

2. V ; VIN \t,he peak voltage from the axial probe for measurements 
cLXlcll 

of ro) 

3. ro ; Rn   (radius of the axial probe; vn   r^   is used for more than one 

turn) 

4. R,   R ; R,  RPR (the resistance in integrator from the loop and the 

axial probe,  respectively) 

5. C,   C ; C,  CPR (the capacitance in integrator from the loop and the 

axial probe,  respectively) 

6. r3; R3   (flux conserver radius) 

7. Ti'j Rl   (magnetic loop radius) 

8. v1
¥

J  Vg ,  v3''\  v4'"; VMAX 1 (voltage maxima from loops) 

9. t]*,  t2"",  t3 , t^'; TMAX 1 (time at which the voltage maxima occur) 

10. Zj,  Zs,  Z3,  Z4 ; Zl (location of loops from the center of the gun 

coil) 

11. Bo ; BO (magnetic field intensity of drift field) 

12. V3 vs   t   (loop 3 voltage and the corresponding times) 

The output data are shown in the appendix for a typical case.    They are: 

(1) ro,  (2) rD,  (3) Ai*,  A2
>;:, A/, A/, (4) A3   vs   t,  (5) K2.  K4,  Q12,   Q P 13 
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Calculation of Curves   f''; (a,Z ) =  Constant-- The equal-value curves 

of  f;'c (o, Z  ) are obtained in the following way: 

i -5/3 

f ( A,  o, Z  )   =   A exp   - 
Z - aT 

(Eq.   35). 

df 
In order to find the maximum of   f   with respect to   r.  —   is set equal to 

dr 
zero yielding 

Z - aT 2 dA       n      fz' - aT 

Solving Eq.   63 as a quadratic in L      A     . 

5     dA 
3     dr 

= 0    . (63) 

, and requiring that this argument 

remain finite as   £*-=>,  i. e. ,  [(T    + T.)0 - o] gives 

. - Q + V^   (l-A*"S'J) aT j     \ / 

A:;: 

where dA 
dr 

2  [l -A 

-2/3 2 

1 -A 1 

, -2/3^ 

—2/31 1         (at maximum) , 

(Eq.   24) 

(64) 

Eq.   35 may be written in the form 

aT 
=   In   f  +   -   In   A . (65) 

Equations 64 and 65,   at the maximum,   are combined to give 
,   -2/3 

a 
I +ln  r + |  lnA! 

1 - A' 

S In f - —   In A'" 
(66) 

The curves   f;;: ia.Z  )   - constant may be found using this expression. 
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First the constant,  which may range between 0 and 1 is chosen; then 

a set of values of   a   are generated   (using Eq.   66) for a series of values 

A* greater than 1.    The corresponding   Z   is then calculated from Eq.   64 

and the expression   T( A) is given by 

2/3 

A'''      + 2 
, 2/3 

A;'c      - 1 (Eq.   23) . 

The restrictions on the allowable values for the pairs (f",  A )   are 

readily found from Eq.   66 to be 

- s/e   5/3 
e <;   f* A'"        <   1 (67) 

This domain is shown graphically in Fig. 4. 

Since the equal-value curves,    f   (a, Z   )   =   constant and   T'" (o) Z ) = 

constant,  were computed in the same program,  discussion of this program's 

input-output data will be deferred until the end of the next subsection. 

Calculation of the Curves   T ' (0, Z  )   =   Constant-- This calculation 

is conducted in a manner similar to that of the preceding section.    First, 

a value   A    = constant is chosen and this implies a value for   r ' = constant 

(Eq.   23); a series of values of  a   are then introduced into Eq.   64 to find 

Z .    Thus the sets (o-, Z ) for which   T    = constant are generated and this 

process is repeated for successive values of A'. 

There are two parts to the input data to this program:   input data for 

f' (a, Z ) = constant and input data for   T "" (Q-, Z   ) = constant. 
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Fig. 4      Typical Magnetic Loop Signals 
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A. The input data for   f   {a,   Z ) are: 

1. Initial value of   f   : FMAX 

2. Initial value of   A* : XLAM 

3. Incremental change in   f* (Af*) : DELFMX 

4. Incremental change in   A* (AA) : DELAM 

5. M,  the number of values of f='c to be used. 

6. N, the number of values of   Av to be used. 

B. The input data for T   (a*  Z1 ) = constant are: 

1. Initial value of a : XALPA 

2. Initial values of  A *: YLAM 

3. Incremental change in   a,(Ao) : DELALP 

4. Incremental change in A, (AA'") : DE YLAM 

5. L, the number of values of  A   to be used. 

6. K, the number of values of  a  to be used. 

Similarly,  the output data are divided into two parts. 

A. The output data for f   {a, Z) are: 

1. The value of   f* 

2. A listing of a,  Z ,  T , A     corresponding to this value of   f 

B. The output data for   T* (Q, Z ) = constant are: 

1. The value of   T* 

2. A listing of a and Z1 corresponding to this value of r* 

For the purposes of the analysis these data were graphed.    Typical 

curves are shown in Figs.   3 and 5. 
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Calculation of the Curves A7i  = Constant-- This is by far the most 

complicated calculations and probably the most interesting from the pro- 

grammer's point of view. 

The full width at half-maximum,  ATi ,  is given by 

ATi (68) 

where T2   and Tj   are the reduced times at which the function   f ( A ,   a, Z ) 

achieves half-maximum values,  ^f".    The widths are found in the following 

way:   A value of   A" (and thus T"'),   and a value of   a are chosen; Z   is cal- 

culated from Eq.   64.    Next   f (A"",  Q;Z )   = f'    is computed.    Finally the 

roots of the following equations are found: 

with 

and 

-5/3 

I f'"   =   A1        exp - 

1 < Ax   ^   A"~  . 

-5/3 

^r   =   A2        exp - 

(69a) 

(69b) 

with A" ^   A2   <:   MA'' , 

where   M   is some sufficiently large multiplier.    Having found   A-^  and   As, 

Tx, TS)  and ATi   are found directly.    In the present case,  a bisectional 

method was used to find the roots   Ai   and   Az of Eqs.   69a and 69b to an 

accuracy of 0. 001.    (For this purpose,   T1  and T2 were expressed in terms 

of A-L  and A2 according to Eq.   24. 
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For each value of A " ,   a list of o, Z     and A Ti is calculated.    The 
2 

values of   a   used in this program were the same for each A '    (A     ranged 

from 1 to 10). 

i 

The graphs   A Ti (o , Z )   =    constant are obtained by first plotting the 

family of curves   a - constant as a function of  A Ti   and   Z ,   and then 

interpolating to find the curves desired.    These curves are presented in 

Fig.   6. 

The input data for this program consist of: 

1. The accuracy to which the roots hx   and Aa are to be found:   EPS 

2. The initial value of  a :   XALFA 

3. Initial values of A* : XLAM 

4. Incremental change in   a, (Ao-) :    DEALF 

5. Incremental change in A",(A A "") :   DEXLM 

6. M,  the number of values of   A '   to be used. 

7. N,   the number of values of   o-   to be used. 

The output data for this program consist of: 

1. A* : LAMAX 

2. a   :   ALPHA 

3. Z' :   ZPRME 

4. ATi :    WIDTH 

5. Calculated value of   ^f     at root h-x : Fl 

6. Calculated value of   |f"'   at root As : F2 

7. Ai   near root found by the program:   XLAM1 

8. A3   for root found by the program:   XLAM2 

9. r :    FMAX 
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Reconstruction of Magnetic Signals--When the curves described abov 

are available,   the analysis of Section V can be carried out to find the five 

remaining unknown parameters which describe the plasma.    The final step 

is to reconstruct the four magnetic-loop signals based on the theory and 

using the extracted parameters. 

The parameters which are found from the analysis are A.0 , a,  ^, 

r0 ,   N.,   and Z0 .    The loop signals are reconstructed by substituting the 

above data in Eq.   37 to find   A   as a function of t,   by first calculating A(A) 

and then converting A to the time domain.    Using these results,    v as a 

function of time is then calculated from Eq.   54. 

In the program used here,   the volume density,   n.(Z, t) and the local 

velocity,  v(Z, t),  were also calculated. 

The input data for this program consist of: 

1. Value of a : ALPHA 

2. Initial value of A : XLAM 

3. Incremental steps in A : DX 

4. Value  of X0  :    XLAMO 

5. Value  of Z0   :  ZO 

6. N,   the  number of steps   in A to be made 

7. Value  of r0 :   RO 

8. Value of ^ :    Rl 

9. Val ue or vz :    R3 

10. Value  of BQ   :    BO 

11. Integrator  time  constant,    RC:   RC 

12. Cent er-of-mass velocity,  v1 :    VO 

13. Ion mass,   m.:    XM 
i 
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14. Total number of ions,   N^   XN 

15. Value of   ^ :   XI 

16. Loop location,  Z,  and the last loop location:   Z,   ZLAST. 

The output data are: 

1. The characteristic parameters 

2. The voltage   V,  the time t.  A,   T,   A,   density n-,   and velocity   v. 

A separate listing is given for each loop location,   Z. 

This now makes the calculated signals available to be compared to 

the oscilloscope traces. 

40 - 



Th» Johnt Hopkini Unlv«fiiiy 
APPLIID'PHVtICt LABORATODY 

Silver Spring, Maryland 

VII.     RESULTS 

The analyses of two plasma puffs are presented here.    The initial 

conditions in the two cases were significantly different, these differences 

being reflected in the final plasma characteristics. 

Figure 4 shows a typical set of magnetic loop signals to which the 

foregoing analysis was applied.    The positions of the loops relative to the 

gun face are indicated. 

Figure 5 shows the fit obtained for one case.    The solid curves rep- 

resent the loop signals while the points indicate the values computed by 

the theoretical method.    This plasma can be characterized as dense and 

cool.    As can be seen from the figure,  the fit improves as the plasma ad- 

vances through the drift field.    The plasma characteristics arrived at 

are: 

(Tp + T;)     =   6 x 103 0K e        1 o 

v0   =   3.45 xlO6   cm/sec 

^ =   2.7 x 1019   ions 

XQ   =   2.16 cm 

and 

ZQ =   17.1   cm 

Of some concern is the fact that the computed curve decays more 

rapidly than the signal itself.    No satisfactory explanation for this has been 

found.    A possible explanation may be that the field from the gun influences 

the magnitude of the first loop signal significantly,  in which case the value 

of Aj    is different from the value whicn wuiud be obtained otherwise.    The 

resulting "best" set of parameters to fit the data,   especially for a low- 

temperature plasma,  are adversely affected. 
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The low temperature and high density calculated for this case sug- 

gest the possibility that the assumptions for the computation may not be 

fulfilled.    Initial trapped field,   recombination,  or diffusion may be play- 

ing a role.    Further experimental measurements are expected to clarify 

this picture. 

Figure 6 shows the fit to the second plasma puff.    The fit to these 

data clearly is considerably better.    This plasma has the following char- 

acteristics: 

(T   + T.)      =   2.2 x 104 0K 

7. 5 x 106 cm/sec 

e        lo 

N.     =   1. 07 x ID19  ions 
i 

Xo     =4.45 cm 

Z0    =   0. 64 cm 

The fit to all four signals is quite good, with a marked improvement 

in the fit to the trailing edge of the pulses.    In support of the previous dis- 

cussion,   it can be seen that better overall fits were obtained by sacrificing 

the fit to the magnitude of the first signal. 

It should be noted that the ß calculated for this case comes out to 

0. 86, which though physically reasonable and not in disagreement with 

the observed puff size,  does cast some doubt on the numbers above. 
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VIII.      DISCUSSION 

Further analysis of the plasmas derived from the gun is planned, 

both with the longitudinal field and the magnetic octupole field using this 

model. 

The shifting of the pick-up loops downstream will be attempted to 

estr blish whether the gun influences the signal from the first loop suffi- 

ciently to affect the final results. 

It is noteworthy that although the gun and the drift field used here 

were quite similar to the arrangement used by the French investigators, 

the plasmas produced here are typically denser and of lower temperature 

than those produced by the prototype gun.    It is quite likely that these dis- 

crepancies are due to the difference in gun frequency (the present gun 

has a ring frequency of 80 kc while the French gun's frequency was a 

factor of two higher. 
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APPENDIX   I 

Solution of Equation 10b 

The following relationship was found: 

n.V   =   - X' J 2Z3 "i"     n.    -   -r- 
3 1 X IX 

dZ , (10b) 

or 

n. V 
i 

X'N 
22/ 

X4 
exp (fj X2 

exp 
(*)' 

dZ 

Let 
Z2   = x,     then   dz   =  

2^ 

Thus, 

n. V   = 
i 

X N 
 i 

I x4 exp - 
(*) 2XZ 

exp - 
(*) 

dx (10c) 

Integrating the first term on the right yields 

J  -^T" exp 
x 
X3 dx   - 

vT 
exp x 

X2 + 
2T"2 J ^r exp - 

X 
dx + c , 

where   C   is the constant of integration. 
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Equation 10c now becomes 

X'N 
n. V   =   — 

i . ' 

A 

x Vff 
Z exp 

,-_z•, 

X 
(lOd) 

Since   V   is the velocity relative to the center of mass of the plasma 

puff,  the velocity of the particles at a distance   +z must be equal to the 

velocity of particles at   -z.    Thus,   the constant   C   must be identically 

zero. 

V 
zx 

Q. E. D. (11) 
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APPENDIX II 

Solution of Equation 12 

n.m. ZX 
lE.    +   -L.J:  
ÖZ X 

r> n.m. ZX 
J-i-i  dZ 

NA X 
A 

/fr i J 

z_ 
X2 

exp - 
r    S2 

_Z 
X 

dZ 

It should be noted that taking N    outside the integral sign is again invoking 

the assumption that r    is a slowly varying function   z. 

Again letting   Z2   = x, 

V 1 
2X2 —         m. 

m.NA 
i   A    v 'i 

X      exp - Z 

exp 
x 

X2 
dx , 

-\ 2 

-r      +   c, 

as Z    -•    ± co j p    -•   o 

nus, 
m.NA 

i   A 

2^ 
X      exp 

r-        -i 2 

X 

Using Eq.  8,   we have 

1 " 
p   =    ~    n.m. XX 

Ci LI 
Q, E. D. 
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APPENDIX III 

Solution of Equation 22 

9  A     d2 A     , 3 A        + 
dr2 

-.  2 

dA 
dr 

= 1 (22) 

Let P = 
dA 
dr   J 

Then dp    _   d2A    =    d^      dA_ 
di'dr2 dA       dr    ' 

d2A 

dr2 P   P 

where 
d£. 
dA 

Equation 22 now may be rewritten as follows: 

3 p p   A   +   p2    =1 (22a) 

ri     1 

Multiplying both sides of Eq,   22a by   A yields 

„.n     t      ,     o .n-1 AU-I 
3  A      p   p + p   A =   A (22b) 

But d      (ep2An)   =   2  Cpp'An+nGp2An"1 

dA 

where   C   is some constant.    This expression is exactly equal to the left 

side of Eq.   22b if 
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2C = 3 and nC = 1  ; 

C = 3/2 n = 2/3  • 

Equation 22b may be written as 

1/3 

-~    (3/2p2Aa/3)   =   A 
d A 

Integration of this equation gives 

3/2 p2 A2/3   -    3/2  A2/3   +    L     , 

or 

p2   =    1 + M A-2/3   , 

where   M   is the constant of the integration. 

p   =   4^   =   U +M A-2/3)^ 
d T 

d A 
d r    =       

(1+ MA"2/3)^ 

Let ,. y3    =   A. 

Then d A  =    3y2   dy , 

and dT  =     3y-dy =       Sy^dy 

(1+My-2)* (y2+M)^ 

r2  _   Ti\/r\   /,,2   j_ I\/T\2 T =    (y^ - 2M) (y2 + M) 

r  =   (A2/3 - 2M) (A2/3+ M)^ , (22c) 
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at     t = r = 0 A =   1 

. ' .    M   =   -1 or 1/2 . 

Using Eq.   22c,    Eq.   25 of the text becomes 

(Te + V . M 
(T    + T.) "   TaT"3    ' 

e        i /v 

o 

and since ratio must be positive, M = -1. 

Thus we '\nd 

T =   (Aa/3 + 2) (A2/3  - D*   , (23) 

dA   =   ( ! _ A-a/3)i Q. E. D. (24) 
dr 
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APPENDIX   IV 

The Compensated Magnetic Loops 

The compensated loops used by the French investigators effectively 

consisted of two loops of equal areas in opposition.    One of these loops en- 

circles the plasma while the other encloses an area outside the plasma but 

inside the flux conserver.    (see sketch below) 

Sch matic of Compensated Magnetic Loop Arrangement 

The flux passing through the loop may be calculated by means of 

(pit)   =    ffr2 (B    -  B  ) + TT( ri   - r2) (B    +B)-7Tri{B    +B) 
pop poe eo 

where 

and 

B 
o 

B 

B 

field intensity from solenoid 

field generated internal to plasma 

field due to flux excluded by plasma 

The first term  above represents the flux through the plasma cross 

section.    The second term is the flux in the region between the plasma and 
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the loop which encircles the plasma,   while the last teim is the flux encircled 

by the compensating element whose effective area is  equal   TT rf . 

(p (t)   = ir r2   B    - n r2   B 
P      P P      c 

But 

and thus 

irr2   B     =   A <p     ^   n ir2   - r2 )   B 
P      P P p e 

(p (t)   =    - Acp 
ra    - r P    J 

The   e. m. f., C   ,  is given by 

5(p 
3 t 

1 + 
2 2 

r3    "   rp 

3A^ 

3t 

and the integrated signal 

RC 
1   + 2 2 

^3  - r n    -J 

A cp 

This type of magnetic loop has the obvious advantage of eliminating the 

effect of the B     field. 
o 
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APPENDIX V 

Computer Listings 
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Pl-DLCTKIN   OF    SINGLF   LOOP   DATA'RO   CALCULATION 

5f30 
5t30 
5,30 

DI n MS I ON VK 56) »n( 
OXXM S, T ,U, X ,Y ) = I 

1/T )*«2.)-( (U/T)«*2.) 
AXXt- (X ) = I I.-I X««2. ) 

55 RfcAD INPUT TAPE 5,^0 
Rf-AO INPUT TAPe5,3üO 
RcAL) INPUT TAPE 
RFAD INPUT TAPE 
KtAl)   INPUT    TAPE 
PI =   3. 1415927 
RATIO=VOUT/VIN 
RPS(0=(R3**2. ) MR2<£*2 

IR2«*2. ) <M (RATIU«CR*C) 
RO=SORTF(RPSQ-(((R«C 
1**2.) ) ) ) ) 
RP=SORTF{RPSQ) 
BETA=l.O-({R0/RP)**4 
WRITE OUTPUT TAPE 6, 
XK = (PI«IR0««2. )*R0 )/ 
DMX1= DXXFCR-iiRO.Rl , 
DMX2= ÜXXF(R3tR0,Rl, 
ÜMX3= DXXF(R3,R0,Rl, 
DMXA= DXXF(R3,R0 ,Rli 
AMAXl= AXXF(DMX1 ) 
AMAX2= AXXF{ÜMX2) 
AMAX3= AXXF(0MX3) 
AMAX4= AXXF(DMX4) 
WRITE OUTPUT TAPE 6, 
lVMAX4,TMAXl,TMAX2tTM 
READ INPUT TAPE 5,30 
READ INPUT TAPE 5,30 
READ INPUT TAPE 5,30 
WRITE OUTPUT TAPE 6, 
DO 5 1=1,N 
D3X(I)=OXXF(R3,R0,R1 

5 A3X(I)=AXXF(D3X{ I ) ) 
WRITE OUTPUT TAPE 6, 
012 =(Z2-Z1)/(Z4-ZI) 
013 =(Z3-Zl)/(Z4-Zl) 
YK2 = {AMAX2)/(AMAX1 
YK4 = (AMAX4)/(AMAX1 
WRITE OUTPUT TAPE 6, 
GO TO 55 

300 FORMAT    (5F10.6) 
301 FORMAT (7X,6HAMA 

1MAXA=F7.3/(7X,6HVMAX 
2AX4=F7.3)/(7X,6HTMAX 
3ÄX4=F7.3)) 

302 FORMAT   (5X, 12) 
303 FURMAT(7F10.6) 
304 FORMAT    I2X , 1HI ,7X,2H 

305   FORMAT    (4F10«6) 
306      FORMAT    (1X,I2,3X,F8, 

307 FORMAT   i7X,4H012=F7, 
308 FORMAT(IH1,6X,3HR0=F 

56),A3X(56),Ü3X(56) 
((S/T)*<=?.)-((U/T)»*2.)*(X/Y))/((l. + (X/Y))*((3 
) 
)/(2.*X) 
n,VOUT,VIN,R2 ,RPR,CPR 
,R3,Rl»DO.R.C 
5,VMAXl,VMAX2,VMAX3,VMAX4 
5,TMAXl,TMAX?,TMAX3,TMAX4 
5,Zl,Z2,Z3,M 

,)*(RAT1Ü*R*C)/I (RPR*CPR)« 
/(RPR«CPR) ) ) ) 
*VOUT)*((R3**2.)-(RPSQ)))/ 

308,RO,RP,BO,HETA 
(R*C) 
VMAXUXK) 
VMAX2,XK) 
VMAX3,XK) 
VMAX4,XK » 

( (R3**2. )-(Rl**2.)+i 

(PI*BO*((R3**2.)-(R1 

301,AMAXl,AMAX2fAMAX3,AMAX4,VMAXl,VMAX2,VMAX3, 
AX3,TMAX4 
2,N 
3,(V3(I),I=l,N) 
3,(T3(I),1=1,N) 
304 

,V3(I),XK) 

306,(1,A3X(I),T3(I),V3(I ),I=1,N) 

307,012,013,YK2,YK4 

Xl=F7.3,3X,6HAMAX2=F7.3,3X 
1=F7.3,3X,6HVMAX2=F7.3,3X, 
1=F7.3,3X,6HTMAX2=F7.3,3X, 

,6HAMAX3=F7.3f3X,6HA 
6HVMAX3=F7.3,3X,6HVM 
6HTMAX3=F7.3,3X,6HTM 

A3TBX,2HT3,8X,2HV3,//I 

3,2X,F8.3,2X,F8.3I 
3,3X,4HQ13=F7.3/(7X,3HK2=F 
10.6,6HMETERS,3X,3HRP=FIO. 

7.3v 3X,3HK4=F7.31) 
6,6HMETcRS,3X,3HB0=F 
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REOUCTIÜN OF SINGLE LOOP DATA'RO CALCULATION 

ll0.6tAHW/M2,3Xt5HBETA=Fl0.6) 
END(l,l*0»OfOfOtItltOtOfOtOtOfOfO) 
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CALCULATION OF T* = CONSTANT 

MUSS 

i     XCQ    ' 
DIMLNSIÜN XLAMX(51),TAUMXMI 50)»ALPHA(50t50),ZPRME(50150),FMAXM(51) 
l,YLAMX(5l JtrAUX(5l),ALPAI 51),ZPRMX(50150) 
ALFAF(XtY)-(((5./6.)+(LU{iFJX)+(5./3.)»LUGF(Y)))»SQRTF(l.-Y»»(-2-/3 

I.) ) )/{SOKFF(~|LOr,FU J )-(5./3.)*L0GF(Y) ) ) 
TAU.MXrm=  (X*»{2,/3.)f2. )*S0RTF(X»»J2./3. )-l. ) 
ZP«MI-(X,Y,Z)=X»Z-(X»Y-YeSQRrF(X»»2.+(10./3.)•U.-Y»»<-2./3.))))/(2 

1.»S0IUF( l.-Y»»(-2./3. ) ) ) 
11  READ INPUT TAPE 5f100,FMAX,XLAMfDELFMX,DELAMtM,N . 

rMAXM( l )=FMAX ' 

XLAMX( n = XLAM 
DO ?0 1=1,M 
WRITE LllTPUT TAPE 6, 101 , I , FMAXMI I ) , DELFMX.DELAK 
DU 50 J=l,.\ 
TAUMXM(J ) = TAUMXF{XL4MX(J)) 
ALPHA! I,J)=ALFAF(FMAXM( I ),XLAMX(J)) 
ZPRMtl I,J)=ZPRMF(ALPHA(I,J),XLAMX(J),TAUMXM(J)) 
XLAMX(J4-1)=XLAMX( J)+DELAM 

30 CUIMTIIMUH 
WRITE UUTPUT TAPE 6,102,(J,ALPHA(I,J),ZPRME(I,J),TAUMXM(J),XLAMX(J 
l),J=l,N) 
FMAXMCI+l)=FMAXM(I)+DELFMX 

20 CONTINUE 
READ liMPUT TAPE 5, 100, XALPA, YLAM ,DELALP ,DEYLAM,L,K 
ALPA( l)=XALPA 
YLAHXI l)=YLAM 
DO 50 1=1,L 
TAUX( I )=TAUMXF(YLAMX(I )) 
WRITE OUTPUT TAPE 6,203 
WRITE OUTPUT TAPE 6,201,I,TAUX{I),YLAMX(I),DELALP,DEYLAM 
DO 60 J=1,K 
ZPRMX(I,J)=ZPRMF{ALPA(J),YLAMX(I),TAUX(I)) 
ALPM.! + 1) = ALPAIJ)+DELALP 

60 CONTINUE 
WRITE OUTPUT TAPE 6,202,(J,ALPA(J),ZPRMX(I,J),J=l,K) 

, YLAMXl I + 1)=YLAMX(I)+DEYLAM 
50 CONTINUE 

GO TO 11     ' 
100 FORMAT (^F10,6,2r6) 
101 FORMAT (IH1,5X,2HI=I3,5X,6HFMAXM=F7.3,5X,7HDELFMX=F7.3,5X,6HDELAM= 

1F7.3//(2X,IHJ,5X,5HALPHA,9X,5HZPRME,9X,6HTAUMXM,8X,5HLÄMAX)) 
102 F0RMAT(lX,I2,3XfF9.5,5X,F10.5,5X,F9.^,5X,F9-'t) 
201 FORMAT     (5X,2HI=13,5X,7HTAUMAX=F7.3,5X,6HLAMAXsF7l3,5X,9HDELÄLP 

1HA=F7.3,5X,6HDELAM=F7.3//(2X,1HJ,5X,5HALPHA,9X,5HZPRME)) 
202 FORMAT I IX , 12,3X,F9.5,5X,F10.5) 

203  FORMAT!lHlf25X,30HCALCULATI0N OF TAUMAX-CONSTANT/(26X,29HAS A FUNG 
ITION OF ALPHA,ZPRIME)) 
ENO(I,1,0,0,0^0,1,1,0,0,0,0,0,0,0) 
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Ä.r._c T* = CONSTANT WITH CHECK AND TEST nuss 

DIMENSION   ALPA{51)»YLAMX«5l)tTAUX(5l)f2PRME(50f50)fCHECK(51,5UtFM 
lAX(5lfblJtM(51,i»l) 

ZPRtF(X,YtZ5=X»Z-(X»Y-Y»SQRTFtX«»2.+UO./3.)»(l--Y»»«-2./3.))))/(2 
l.»S(JRrF( l.-Y#»(-2./3.n) 
TAU.IXF(X)=(X»*(2./3.)*2,)»S0RTF(X»»J2./3.)-l.) 
FCrH(W,XfY,Z)«(W»»(-5./3.))*EXPF(-((Z-X«Yl/W)»»2.) 

II REAJ INPUT TAPE 5,lOOfXALPA,YLAM»DELALPiDEYLAMtLtK 
Y=eXPF(-5,/6.) 
ALr*A( 1) = XAU*A 
YLA:iX(l)=YLAM 
DO bO I=UL 
TAUX1I)=TAUMXFtYLAMX(I}) 
WRITE OUTPUT TAPE 6,203 
WRITE OUTPUT TAPE 6,201,I,TAUX(DtYLAMX(I)»DELALPjDEYLAH 
DO r.o .i = l,K 
ZPRMH(I,J)=ZPRMF{ALPA(J),YLAMX(I ),TAUXm) 
FMAX(I,J) = FCTF(YLAMX(I),ALPA(J),TAUX(I),ZPRHE(I» J M 
CHuCKtltJ)* FMAXi I,J)»(YLAMX(I)»»(5./3.)) 
IF(CHECK(ItJ)-l.) 51,51,52 

51 IF(CHECK(I,J)-Y) 52,53,53 
52 MU,J)=0 

r,o ro 60 
53 M{I,J)=l 
60 ALPA(J+l)=ALPA(J)+DELALP 

WRITE OUTPUT TAPE 6,202, < J, ALPA ( J ) ,ZPRME( I , J ) ,FMAX ( I , J) •CHECKUt J 
1 ),M( I,J),J = I,K) 

50 YLAMXn + l) = YLAMX(I )<-DEYLAM 
GO 10 11 

100  F0RMAT(4F10-6,2I6) 
203 F0RMAr{lHl,25X,30HCALCULATI0N OF TAUMAX-CONSTANT/(26X,29HAS A FUNC 

1TI0N OF ALPHA,ZPRIME)) 
201 F0RMAT(t)X,2HI=I3,5X,7HTAUMAX=F7.3,5X,6HLAMAXxF7.3,5X,9HDELALPHA=F7 

1.3,5X,6HDELAM=F7.3//(2X,lHJ,5X,5HALPHA,l0X,5HZPRMEf8X,4HFMAX,8X,5H 
2CHECK,8X,4HT£ST) ) 

202 FORMAT(IX,12,3X,F9.5,5X,F10.5,5X,F9.5,3X,F9.5,6X,II) 
ENDd,1,0,0,0,0,1,1,0,0,0,0,0,0,0} 
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CALCULATION OF AT 

DIMENSION ZPRMi:(5,5),ALPHA(5),XLAMX(5) , XLAMU 5 , 5) ,XLAM2 ( 5f 5) t TAUX ( 
ii>),Tl(5,5),r2(t),5),FMAX(5,5),WIDTH(5,5),RESULT(5),FX2(5f5)fFXl(5f5 
2) 
COMMON ZPRME.ALPHA,F12f I,J 
FXXF(W,X,Y,Z)=vX»»{-5./3.n«EXPFC-(((Z-W»Y)/X)#•2.)) 
ZPi<MF{X,Y,Z) = X»Z-{X»y-Y»S0RTF(X»»2.>(l0./3.)»(l.-Y«»«-2./3.n M/C2 
l.»SQRTF(l.-Y»»(-2./3.))) 
TAUF(X)=(X«»(2./3.)*2.)»S0RTF(X»»(2./3.)-l.l 

2!>  READ INPUI TAPE StbOZtEPS 
READ   INPUT TAPE 5f600,XALFAtXLAM,DEALF,DEXLMfMtN 
ALPHA(I )=XALFA 
XLAMX(1)=XLAM 
DO 90 1=1,M 
WRITE OUTPUT TAPE 6,601,I»XLAMX(I) 
TAUX( I)=TAUF(XLAMX(I)\ 
DO 91 J=l,N 
ZPKME(I,J)= ZP^MF(ALPHA( J),XLAHX(n .TAUXd) ) 
FMAX(I,J) = FXXF(ALPHA( J)VXLAHX(I) «TAUXCDfZPRHEdtJ)) 
F12=0.5»FMAX(I,J) 
DUMMY 
XLI=1.0Ü0Ü1 
XLM=XLAMX(I) 
XL2 =(5.0)»XLA^X{I) 
CALL öRüür(XLM,XL2,RESULT,EPS,DUMMY) 
IF(RESULrm-XLM) 50,51,50 

51  IF(RESULT(3)-XL2) 50,52,50 
5^ WRITE OUTPUT IAPE 6,60^ 

GO TO 91 
5ä XLAM2(I,J)=RESJLT(1) 

CALL BROüT(XLl,XLM,RESULT,EPS,DUMMY) 
IF{RESULT(2)-XL1) ^0,41,^0 

41  IF(RESULT(3)-XLM) <iO,42,40 
4^ WRITE OUTPUT IAPE 6,604 

GO TO  91 
40 XLAHKr,J)=RESULT(l) 

Tl( I,J)=TAUF(XLAMU I,J) ) 
T2( I,J) = TAUF{XLAM2(I,J) ) 
WIDTH(IfJ)= T2( I,J)-Tm,J) 
CHECK= FMAXd ,J)»{XLAMX{I )«»(5./3. ) ) 
Y=EXPF(-5./6.) 
IF (Y-CHECK) 20,20,21 

21 WRITE OUTPUT TAPE 6,603,CHECK 
CO TO 91 

20 IF (CHECK-I.) 30,30,21 
30  FXK I,J)=FXXF(ALPHA( J),XLAMl(I,J),TUI,J)tZPRMEn,J)i 

FX2( I,J)=FXXF(ALPHA(J),XLAM2((,J),r2(I,J)tZPRHE(Ivjn 
WRITE OUTPUT TAPE 6,605,J ,ALPHA1J),ZPRME(I,J),WIDTHiI»J),FX1(I,J), 
1FX2(I,J),XLAMUI,J),XLAM2(I,J),FMAX{IVJ) 

91 ALPHA( J-H)=ALPHA( J)«-DEALF 
90 XLAMX(I+I)=XLAMX(I)*DEXLM 

GO TO 25 
600 FORMAT (4F10.6,2I5) 

601  FÜRMAT{lHl,5X,2HI=I2,5X,6HLAMAX=F10.6,/,/(2X,lHJ,5X,5HALPHAf10X,5H 
lZPRME,9X,5HWIDTH,10X,2HFl,10X,2HF2,9X,5HXLAMlt9X,5HXLÄM2,9X,4HFMAX 
2)) 

602 FORMAT (F10.6) 
60 3  FORMAT!IX,46HCHECK DOES NOT MEET PHYSICAL CRITERION  CHECK=F10.6) 
604 FORMAT (31HN0 ROUT OR EVEN NUMBER OF ROOTS) 

£05  FORMATIIX, I2,4X,F10.6,5X,F10.6,4X,F10.6,5X,F9.6,3X,F9.6,3XW.F10.6,4 
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lXfF10.6,4X,FlÜ.6) 
END 
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B1SECTI0NAL ROOT FINDER FOR AT PROGRAM 

SUBROUriME QÄCL1T (XI,X2fRESULT,CPS.DUMMY) 
DIMENSION ZPÄMC(b,5)tALPHA(5),XLAMX(5» »XLAMl(5,5),XLAM2(5,5),TAUX( 
l^),Tl(5,5),T2(t),5),FMÄX(5,5),HIDTH(5,5),RESULT(5),FX2<5,5),FKi<5,5 
2) 
TXl=Xl 
rX2=X2 
Fl=üUMMY{TXli 
F2=nUMKY(1X2) 
0=2.»EPS 
1F(FII1,2,2 
IF<F2)9f3,3 
IF(F2)3,9,9 
U=.5»(TXUTX2) 
F3=DUMMY(U) 
IF(F3)4,5,5 
IF(F1)7,6,6 
IF(FL)6,7,7 
F2=F3 
TX2=U 
GQ   TO   8 

7   F1=F3 
TX1=U 

6   IF(ABSF(TX2-TXl)-Q)9,3t3 
9   RESULTll)=.5»(TXl+rX2) 

RESULT{2)=rXl 
RESULT(3)=TX2 
RESULT(4)=F1 
RESULr(5)=F2 
RETURN 
END 
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FUNCTION STATEMENT FOR AT PROGRAM 

KCSS 

FUNCTICN DUMMY(X) 
CI.V ENS ION 2PRMt(5,5),ALPHA(5),XLÄMX(5)fXLAMl(5f5JfXLAM2(5t5)fTAUX( 
l5),Tl(5,5),T2(5f 5),FMAX{5,5),WlDTH(5,5),RESUL,T(5),FX2(5,5)fFXH5»5 
2) 
COr'MCN ZPRME,ALPHA,Fl2f If J 
DUMMY=F12«(X»»(5./3.})-EXPF(-(((ZPRME(I♦J)-ALPHA(J)•<(X»«(2./3,)M 

12.)»SGRTF(J(X»»(2./3.))-!.)))/X)••2.») 
RETURN 
EN0( 1,1,0,0,0,0,1,1,0,0,0,0,0,0,0) 
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RECONSTRUCTION OF VOLTAGE TRACES 

MOSS 

I 

92 

DIMENSION A(SO),Y(50)tXLAX(51)tF(50),TAUX(5 0)tV(50),T(50),DENS(50) 
,VEL<5C) 
FCTF(WfX,Y 
TAUF(X)=I( 
READ INPUT 
REAi3 INPUT 
READ INPUT 
PI = 3.1^159 

C= (XMU»XN 
91 READ INPUT 

2PRME =(Z- 
XLAX( 1)=XL 
DO 90 I=L, 
TAUX( I )-TA 
Fl I ) = FCTF{ 
A(I)=C»F( I 
YlI}= SORT 
V( I )= ((PI 

1 ((R3»*2. )- 
DENS{I)= ( 
ILPHA»TAUX( 
VEL( I ) = (XL 
1(XLAX(I)•• 

T(I)=XI»TA 
90 XLAX( I + l) = 

WRITE UUTP 
WRITE UUTP 
WRITE OUTP 
1VEL( I ), 1 = 1 
IF(/.-ZLÄST 

900 FORMAT (5F 
901 FURMAT (AF 
902 FORMAT {AE 
903 FORMAT (2F 

90A-  FORMAT! IHl 
1H KGRMS»3X 
2/SEC,3Xf6H 
34H SEC,//) 
FüRMAT(2Xf 
1E10.3) 
FORMATOX, 
1S,9X,3HVEL 
EN0(1,I,0» 

905 

906 

♦Z)=(W» 
X»»(2./ 
TAPE 5 
TAPE 5 
TAPE 5 

27 

•XM»VO) 
TAPE 5 

ZO)/(XL 
AM 
N 
UF(XLAX 
XLAXI I ) 
) 
F((A( 1) 
*BO)/RC 
({R0»»2 
(XN/((P 
I ) )/XLA 
AMO/XI) 
(-2./3. 
UX( I ) 
XLAX{I) 
UT TAPE 
UT TAPE 
UT TAPE 
,N) 
) 91,92 
10,6,15 
10.6,El 
10.4) 
10.6) 
,5X,2HZ 
,5HIÜNS 
XLAMO=F 
) 
I2,3X,F 

•(-5./3.))»EXPF 
3.) )+2.)»SQRTF( 
i900,ALPHA,XLAM 
♦901,R0,R1,R3,B 
,902,V0,XMtXN,X 

(-1(Z-X»Y)/W)»«2.) 
{X»»(2./3.))-l.) 
,DX,XLAMO,ZO,N 
OfRC 
I 

/(6.0»IPI»»(3./2.))»ALPHA«XI»(R0»»2.)»(B0o*2.) ) 
,903,Z,ZLAST 
AMO) 

(!) ) 
,ALPHA,T.UX(I),ZPRME) 

• •2.) + l. )~A(I ) 
)•(l.-Y(I))•((R0»»2.)/Y(I))»(((R3»»2.)-(ftl*»2.))/ 
.)/Y(I ) ) ) ) 
I»»(3./2.))«XLAI 
XI I))*»2.))/XLA: 

»(ALPHA+I(ZPRME- 
) )) ) 

M0»(R0*»2.)))»Y(I)»EXPF(-I(ZPRME-A 
Xd) 
;-ALPHA»TAUX(I))/XLAX(I))»SORTF(l.- 

♦ DX 
6,904,Z,ALPHA, 
6,906 
6,905,1I,V(I), 

»92 
) 
0.4) 

=F5.3,7H METERS 
=E10.3/(6X,3HZ0 
5.3,7H METERS,3 

XM,XNfZ0,V0fXLAM0fB0,Xl 

T(I),A(I),TAUX(I),XLAX(I),DENS(I), 

,3X,6HALPHA=F6.3,3X,5HMASS=E10.3,6 
=F5.3,7H METERS,3X,3HV0=E10.2,6H M 
X,3HB0=F7.4,5H W/M2,3X,3HXI=E10.3, 

6.3,3X,E10.3,4X,F7.3,4X,F7.3,4X,F7.4,3X,EI0.3,4X, 

1HI,6X,1HV,11X,1HT,11X,IHA,9X,3HTAU,5X,6HLAMBDA^7X,4HDEN 
) 
0,0,0,1,1,0,0,0,0,0,0,0) 
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