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ABSTRACT 

An experimental study of a portable intensity and uniformity monitor 
for solar simulators is presented.   The monitor is a modified integrating 
sphere coated with MgO and utilizes a thermopile as the detector.   The 
radiation wavelengths used in evaluating the monitor were generated by a 
carbon arc solar simulator.    These data were obtained as a function of 
time, intensity, temperature, and uniformity.    The theory and operation 
of the monitor employed in these experiments are discussed.    A modifica- 
tion of this monitor for use as a reflectometer is also presented. 
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SECTION   I 
INTRODUCTION 

Precise data on the thermal performance of a vehicle cannot be 
obtained in ground test facilities without accurate simulation of the major 
energy sources encountered in space.   Since the sun is the main energy 
source in space, its simulation in space chambers is of prime interest 
(Refs.   1 through 4).    The four major parameters which describe the 
performance of any solar simulator are (1) radiation intensity,  (2) flux 
uniformity,  (3) collimation angle,  and (4) spectral distribution.    The 
collimation angle is primarily a mechanical parameter in that it remains 
essentially constant after system installation is completed.    However, 
the other three parameters are subject to change because of contamination 
or degradation of the optical characteristics of the system.    For example, 
a lens or mirror system may become contaminated by the backstreaming 
from an oil diffusion pump or by outgassing from a surface.    This could 
change the optical characteristics of the transfer system and introduce 
uncertainties in the spectral and intensity parameters.    Therefore, these 
parameters should be monitored to ensure the validity of the test results. 

The intensity of the radiation is normally measured with a calibrated 
thermopile.    This system has several advantages over other measuring 
devices in that it is relatively portable, rugged, and requires only a sim- 
ple readout system.   The main disadvantages of this device are the potential 
sources of error that arise from the difference between conditions that may 
exist during calibration and actual tests such as:   (1) temperature stability 
of the heat sink during irradiation,  (2) "tare"* resulting from the unavoidable 
excess field of view and tare stability, and (3) energy losses caused by pro- 
tective window (low-level calibration and high-intensity use). 

Calorimetric techniques have also been used for measuring the total 
incident energy.   These systems suffer from the same general problems 
associated with thermopiles.    They also require precise metering of 
coolant flow during operation, and this results in another source of error. 

The uniformity of the flux density may be measured with thermopiles 
or calorimeters.    However, several difficulties also arise with these meas- 
urements.    The coolant system required for these instruments complicates 
the scanning operation,  and because of their slow response time, 20 to 30 
min is required to survey a 6-ft line of a system.    Solar cells or photo- 
voltaic cells have rapid and linear response.    These devices are used for 

*"tare" is the stray radiation striking the detector. 
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flux uniformity measurements.    The main disadvantage is that they are 
normally quite small and the time required to map the uniformity of 
large solar simulators is much too great. 

This report describes an intensity and uniformity monitor which 
eliminates or minimizes the potential sources of error previously 
described.   The system does not require a coolant and will monitor a 
large area.   The monitor is based on the principle of the integrating 
sphere in that the detector is irradiated by multiple reflections from the 
sphere wall.   A discussion is given on the modification of the integrating 
sphere theory to correct for the large aperture.    The effects of variable 
aperture, sphere size,  and wall temperature variations are also discussed. 
The use of this system as a portable reflectometer for monitoring changes 
in vehicle surface reflectance and a discussion of tare stability are 
presented. 

SECTION II 
INTENSITY AND UNIFORMITY MONITOR 

2.1  THEORY 

The classical integrating sphere (Refs.  5 and 6) can be modified and 
used as an intensity monitor for a solar simulator (Ref.  7).    Classical 
theory assumes that the interior wall of the sphere is uniformly irradiated 
by reflected radiation and that the wall is a perfectly diffuse reflector. 

Consider a sphere (Fig.  1) of interior surface area As which has an 
aperture of radius r.    The aperture cuts off an area Ae such that 

As = At + Ae (1) 

where A^ is the interior surface area of the truncated sphere.   Then the 
detector response can be formulated as follows. 

Let collimated radiation of intensity I0 enter the aperture and illumi- 
nate the sphere.    Then the area illuminated by the direct radiation is Ae, 
and the total energy is IoAe.    The radiation reflected from a unit area 
would be pwIo and the total radiation reflected would be AepwI0.   Since 
this radiation is reflected diffusely, the irradiance on any unit area of 
sphere wall would be (AepwI0)/As, and the detector response from the 
first reflection,  Vi,  is 

Vl =  UAdPwIoAeVAs (2) 

where k is the detector response constant, A^ the detector area, and pw 
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the wall reflectance.   This assumes that the detector is not irradiated 
directly but only from reflected radiation. 

Since (AepwI0)/Aa radiation strikes each unit area of the sphere 
from the first reflection, the radiation reflected by each unit area would 
be (Aep$I0)/As.    Thus, from second reflections, the detector response 
is 

V, = (kAdAtAepw*I0)/A,a 
{3) 

where A^ is the number of unit areas reflecting to the detector,  assuming 
that Ad is smaller than At.    Similarly, the detector response for the third 
reflection is 

Va = (kAdAt'Aepv/loVAs1 

and the fourth reflection is 

V4 = UAdAiSAep,/lo)/As* 

Then the detector response for all reflections would be 

<4) 

(5) 

VT  =      2      Vi = 
i= 1 

or in closed form 

a a 
1   +     PwAt /PwAt\ /PwAt\ 

AB \   As   f \    A.   ) 

VT   =      kAdAepwI0 

A. (■-V) 
which upon rearrangement becomes 

VT = kAdPwI,  (Aa_
A:wA7) 

Thus 

VT = alo 

(6) 

(7) 

(8) 

(9) 

for any given system and a plot of V"x versus I0 would give a straight line 
through the origin with a slope of a.    This implies that a single calibra- 
tion point will define the calibration curve for the system. 

2.2   PROTOTYPE MONITORS 

A monitor based on the integrating sphere technique was fabricated 
from a 3. 5-in. -diam stainless steel sphere (Fig.   1).    The entrance aper- 
ture was 1 in.  in diameter and was equipped with a 6-in. -long,  1-in. -diam 
collimating tube.    The interior of the collimating tube was coated with 
acetylene black, and the interior of the sphere was smoked with magnesium 
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oxide (MgO).    The MgO surface meets the requirement for a diffuse 
reflecting wall (Ref.  8).    Using the sun as a source of parallel light, 
the wall irradiance was measured as a function of position as deter- 
mined by the angle <f> (Fig.  1).   This was accomplished by attaching 
calibrated solar cells to a rotating arm of appropriate curvature for 
mapping the wall irradiance.   These experiments were repeated with 
MgO-coated spheres of 4,  6, and 8-in. diameters, all with a 1-in. - 
diam aperture.   No change in wall irradiance was observed for any of 
the spheres.   This indicates that the requirement (±2 percent) for uni- 
form wall irradiance is met by such systems for As/Ae ratios from 50 
to 256. 

The rotating arm was replaced by a calibrated solar cell detector 
and a measurement of the wall irradiance was determined from the 
detector output.    The energy source used in these experiments was a 
tungsten-iodine lamp, and the same detector was used for the different 
size spheres.    These data (Fig. 2) were also obtained for the -spheres with 
2- and 3-in. -diam apertures.   The solid line represents the detector out- 
put as calculated from Eq.  (8).    The data for the different diameter 
spheres and aperture sizes are represented by the designated symbols. 
These experiments show very good agreement between the theory and 
experimental data. 

Based on the results obtained with the prototypes,  an 8-in. -diam 
monitor with a 0. l-ft2 aperture was fabricated (Fig.   3).    Because of the 
temperature variations between the detector and its surroundings caused 
by radiation absorption, the exterior sphere surface was shielded by a 
reflector (Fig.  4).    The aperture in the sphere was covered by a quartz 
plate to minimize convection losses.    This system was calibrated using 
two sources, the sun and a carbon arc.    The sensitivity of the system 
was 0. 060 and 0. 0585 mv/mw when the sun and the carbon arc,  respec- 
tively, were employed.   The carbon arc data are shown in Fig.  5 as a 
function of irradiance.   Data are shown by symbols, and the solid line 
was calculated from Eq.  (8).    The constants in Eq.  (8) were obtained 
from the data point corresponding to the detector output of 7 mv.    The 
data for this sphere also agree very closely with theory.    Figure 6 shows 
the variation of detector output with time.   The dotted line represents the 
average output over a 12-min period.    The 4-sec rotation of the carbon 
rod in the arc source can be observed in the detector output. 

Three thermocouples, the locations of which are shown in Fig.  4, 
were used to monitor the temperature variations on the sphere during 
irradiation.   These data are shown in Fig.  7.   The slow steady rise in the 
thermopile base temperature as indicated in the figure would cause uncer- 
tainties in the detector output.    The thermopile used here was not 
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temperature controlled; however,  the uncertainties could have been mini- 
mized by using the coolant system.*   If a thermopile detector such as 
described by Frazine (Ref. 9) were used, no coolant lines would be required, 
and the system would be more readily portable. 

A monitor with a small aperture,  i. e.,   1/2-in.  diameter,  could be 
equipped with a filter wheel,  and spectral distribution measurements could 
be obtained.   The equations previously derived would not be altered, but 
care would have to be taken to incorporate the appropriate transmittance 
and sensitivity factors of the filters and detector to ensure accuracy. 

2.3  MONITOR WITH VARIABLE APERTURE 

A monitor with a variable entrance aperture would be more versatile 
than one with a large fixed aperture.    It could not only obtain an integrated 
intensity over a large area but could also measure the distribution of 
intensity over this large area.    If the system were a truncated sphere with 
a flat plate, which contained the variable aperture (Fig.  8), the irradiance 
within the sphere would not be uniform (Ref.   10).    This is because the dif- 
fuse reflections from the flat plate, A (Fig. 8), would not uniformly irradiate 
the sphere walls.    The intensity distributions for 1-,  2-,  and 3-in. -diam 
apertures in a 5-in. -radius sphere, truncated with a 4-in.  plate are shown 
in Fig.  9.    The data points for values of 0 less than 57 deg represent the 
intensity on the flat plate; those for i> larger than 57 deg show the intensity 
distribution on the walls of the truncated sphere.    Similar calculations 
have also been obtained for 1.5-,   3-,  4-,  6-, and 7-in.  radii.    Equation 
(8), previously derived,  cannot be applied to this type of system because 
the flat plate voids the assumption of uniform irradiance.    However,   any 
particular system could be calibrated. 

SECTION   III 
PORTABLE REFLECTOMETER 

If the reflectance characteristics of the surface of a test vehicle 
change because of contamination during a thermal balance test, test data 
may be lost unless the reflectance change could be monitored.    The uni- 
formity monitor previously described could be used for this purpose with 
a few minor changes.    The changes would consist of placing another aper- 
ture opposite the source aperture such as shown in Fig.   10.    The sample 

*No data were taken with the cooling system operating (Fig.  3). 
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at A would be irradiated by the solar simulator through aperture B and 
the reflectance of the vehicle surface could be monitored.    This would 
not be an absolute measurement since a standard would not be used, but 
relative changes in reflectance could be obtained by using a calibration 
curve.   The reflectometer data would allow appropriate corrections to 
be made to the thermal balance data.    However, large changes in the 
specular component of the reflectance of the vehicle surface could give 
misleading results.   This would result from the reflectance becoming 
more diffuse, and the detector output would indicate an erroneous in- 
crease in reflectance.    With proper calibration and experimental 
technique, the system could yield useful data on surface conditions and 
changes.    This method could be made to yield absolute reflectance meas- 
urements by placing a known light source at B such as shown as an alter- 
nate source in Fig.  10.   Then, following the standard integrating sphere 
procedures for reflectance measurements (Refs.  5 and 6),  absolute values 
of total reflectance can be obtained. 

Equation (8) may be modified to correct for the change in reflectance 
of the sample area.    That is, 

vT =  k.AdI°P'Av ,_ (10) 
A8 - lpv I A, - Av) + pvAvJ 

where pv is the reflectance of the vehicle surface of area Av. 

SECTION  IV 
CONCLUDING REMARKS 

It has been shown that a simple and accurate radiation intensity and 
uniformity monitor for large areas can be built and operated. The cost 
is considerably less than present models in use. 

The system requires a minimum of hard line connections and no 
coolant, which simplifies installation.    Calibration of the device can 
be made in situ, thus, minimizing the errors arising from remote cali- 
bration and transfer. 

The monitor, with minor modifications,  could be used as a portable 
reflectometer which could supply important data in heat balance and 
thermal testing. 
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