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ABSTRACT 

The morion of a projectile In a gun barrel la prescribed so that 

the motion of the gas in the part of the barrel adjacent to the pro- 

jectile is given by a simple analytic function.  Analytic methods in- 

volving the hodograph transformation are employed to determine the 

motion of the gas in the remaining portion of the barrel.  The pro- 

cedures are carried out explicitly in the case Y " T • 

11 
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FOREWORD 

The   investigations  of  this  report were  performed  In the Applied 

Mathematics  Section  of   the Mathematics  Research Group  as  a  project 

supported under WEPTASK No,  WR-4-0046.     The   investigations were  under- 

taken  in connection with  a  problem proposed by Dr.  Arnold E.  Selgel   of 

the  U.   S. Naval  Ordnance Laboratory.    The date  of  completion was 

1   July  1964. 

ill 



I.     INTRODUCTION r In the problem to be considered,  R > 

a projectile P moves through a gun 

barrel with a prescribed motion, 

describing the path OPQ  In the 

position vs. time plane.  The motion 

of the gas Is prescribed behind the 

projectile and at the base of the 

barrel such that the gas equations 

have a simple analytic solution, as long as the gas velocity remains below 

the local sound speed at the base of the barrel (segment OM In the diagram) 

At point M, the gas velocity equals the local sound speed; It Is prescribed 

that thereafter they remain equal (but not constant) at the base of the 

barrel (segment MR).  The Initial analytic solution is regarded as holding 

throughout the region QOMN bounded by the projectile path and by the C - 

characteristic MN through M. 

The problem then is to determine the motion of the gas in the remaining 

region NMR.  An attempt is made in the following to obtain an analytic so- 

lution in this region; the details are carried out in the particular case 

Y -  5/3.  It remains to be seen whether this solution is of unrestricted 

or of limited validity in this region, due to the occurrence of shocks 

or other discontinuities. 

II.  DESCRIPTION OF PROBLEM 

The motion of the projectile, in normalized form. Is 



(1)      *~ jf*-*   , 

(2)        ~ -  ^^ 

for position and velocity respectively.     (The original unnormallzed problem, 

together with conversion factors,   Is stated  In the appendix.)    A polytroplc 

gas  lies  behind the projectile;  along  the projectile  path  Its pressure and 

sound speed remain at  their  Initial values: 

(3)       ^   = ^ - / . 

(4) *.   *.   ~  £^      , 

in normalized form. 

At the base of the barrel, x • 0, the gas velocity is again 

(5) u-J*       , 

as long as this remains less than the local sound speed. 

At time L ■ t-. (point M), the velocity equals the sound speed; specifically 

we then have 

(6)    ^ ^ ^ ^ ^ ^ J^* ~ -4r~ //>-^-". 
For t > tL^, the condition 

(7) ^ =r ä 

is specified at x ■ 0 (along MR).  (Note that this problem is meaningful for 

a polytroplc gas for 1 < y < 3 only; this assumption is made throughout.) 

The continuity and Euler gas equations are respectively 

(8) <?}f    +    * *!<     *-  -^~y ^"A     - * 

and 

(9) ^ y- ^ ^^ v- Z^— *''r* * * ' 



Here,   for   a  polytropic  gas, 

(io)     ^-   ^7  Ä 

is   the  Rlenvann  quantity,   such   that 

(11) K *- <r- = *z r 

and 

(12) u ~ <r~ = ~ -* 7 

are   Invariant   along C+   and C"-characteristics  respectively. 

With our   assumptions,  we may  take 

(13) U -   ^Z- 

throughout the region QOMN,  The gas equations then reduce to 

(14) (T-j?   -y ^ ^>    ~ * 

and 

as)   / -  *~ ^-^> - *y 
these have  the   general  solutions 

(16) f - /A — 

and 

(17) *-* -*«- ■»—s 
* =  > 

(f(z)  and g(z)   arbitrary  functions)   respectively.    The resulting solution 

in QOMN  is 

(18)        ^- r*.*y~ //- ^r^-lpy. 
(At  the  projectile,  x ■    -^— , we have   ^~ »  -.^  a~   ^    S    ,    Hence   by   (17), 

y-S*?/ =   / +■ ^p f^//     '    T*** by <17) a8aln' 

,// r      **   SJ*
M
J__£—   *    , which  agrees with   (16).) 



The C"-characteristic MN through M must satisfy 

(19)    u- <*-   - *>f-^  — /V - r^S^* y 

this  yields 

as   the  equatlor   for MN. 

The  problem now becomes   that of  determining u(x,t)  and  ^(x^)   In  the 

region NMR,   such  that  they satisfy  the  gas equations   (8)   and   (9) within 

the region, and  such that  the  Initial  conditions 

(21) /^  =r ^c   *    £~   <r- 

hold along x ■  0 and   (the consistent  conditions) 

r*~       tr- ^r + l/^Tr (22) U  — ^V     <r- «-  ^^  V-  ^-3— 

hold along      X~     l=*f^_   J^/Ilirj* 

III.     METHOD OF  SOLUTION 

The  solution of  the problem described above will  be  attempted by 

means  of   the hodograph  transformation.    From  (11)   and   (12), we obtain 

(23) // «• JT- 7    , 

(24) <r~T+7    . 

In  terras  of  the  characteristic  coordinates   (JT, 7),  where JT is a constant 

along  any C+-characteristic  and  ^  Is  a constant  along any C~-characterlstlc 

In  these  coordinates,   the  gas  equations  become  equivalent  to  the equa- 

tions 

and 



(26) -?- ?Mr. 
Let 

(27) 

upon differentiation  of   the  above  equations with  respect   to   y   and   JT 

respectively,   and  elimination of   Xf^ ,   a  linear  equation for   ^f-K* ?/? 

alone  results: 

r^T/Vr-^/ (28)    ^r-    V-      _ •'^ Try 
In   the   (y,^)-plane,   the C~   and 

C+-characteristics  are horizontal 

and vertical  lines  respectively, 

while  the region NMR now  Is 

bounded by  the  straight  lines I      /"b-T 

2 v"?- 

^, 

MN:     7-//S jr-r and MR: 

The 
4     V 3-r 

initial conditions to be satisfied by the solutions of (25) and (26) are 

(29) X =*   0 

along line MR,   and   (the  consistent  conditions) 

(30) *- r-  -j-A s ^r-^^?=J' 
along  the C  -characteristic MN. 

Equation   (28)   for jfUTy?)   Is  one  for which  the Riemann  function  is 

known   (Reference  [2]  pp.449-4Cl),   thus  enabling  the solutions  of  normal 

initial-value  problems   to be written  in explicit  form.    The  Riemann  function 



may be wrlttön in cither of the forms 

(31 > /f. r*.y;*r; - f^/rf/-^ A, /„• - &%£%] 

where   F(afb;c;z)   is   the Gaussian  hyperßeometrlc   function.     (Note   that 

(32)    /V^ 4/^' */  =   f/- ^y'/^fcr-^  4;  c;   - 7~r/ 
from which   the  equivalence  of   the   two  fonii«   follows.)       When   ^   is   an 

integer,   and  thus   in particular   for  the   important  cases   ^ ^  j    f J ^'*</ 

and   ^ «c     ■—* ~  /. y*   f 4 ^ ~%S  t  the  Riemann  function is rational 

In Its   four variables.     Specifically,  for ^ » -j~ we  find that 

When  A   is an  integer,  we  may also write  the general  solution of   (28) 

expllcitely  in the   form   (Reference  [1],   p,  90) 

(34)        '  "*" " " ^      '     ~~ 
'S 

v/here   the   constant >T   and   the  functions   f(z)   and  g(z)   are arbitrary.     This 

furnishes   an alternate method of   solution  for  these  cases. 

Our   initial-value   problem   io   abnormal   in   that   it   is  partly  characteristic 

and  partly  non-characteristic,   and   in  that only  X {£*,?)   is known  along  the 

non-characteristic   part   of   the   boundary.     Ihis  complicates   the  method  ot 

Bolution   if   the  general   Riemann  method   is   to  be  used   to  solve   (28)   directly. 



IV.     THE  SOLUTION FOR THE CASE   y -   5/3 

The  solution has been carried  out  expllcltely  tor   the  case 

f   m jf      ('*me'^y %   the  simplest  non-trlvlal  case.     The  methods  used 

here  could  be  extended   Immediately   to   the other  cases  with   Integral  A . 

The  Rlemann  function method   In   principle Is extendable   to   the case with A 

arbitrary,  but  some other method  for  solving the     integro-dlfferentlal 

equation   (75)   for T(7),   I.e.   t(i*, ^)   along MR,  would   jppear   to b^re- 

qulred   then. 

The  solution obtained here  is   in   the hodograph  plane  and   is valid 

throughout  all   of NMR there.     However   the range of   its  validity  in the 

original   plane  remains  to be  determined;   this  depends  on  the mapping  into 

the original   plane remaining one-to-one,   i.e.  on the characteristics  of   the 

same  family not   intersecting within NMR  in the   (x>t)-plane.     This can readily 

be  investigated  numerically by using  the solutions  derived here;  a short 

computer  program for this  purpose   is  now being written.        (The line MR  in 

the original   plane  is known  to be  singular, however.) 

The  solution was  first obtained by using  the  general   solution   (34). 

As   this  method   is  limited  to   integral    A   ,  an attempt was   then made   to use 

the Rlemann  function method.     With   the  latter method,   the  problem separated 

into  two steps;   the  first  step  led   to  an  integro-differentlal  equation 

essentially  for   the missing  initial   value  t(jr,jr)   along MR.     The second 

step  is   then  the  ordinary non-characteristic Rlemann solution, with  the 

above   initial   value;  this   is  straightforward and  is not carried out here 

in detail   (see Reference  [2],   pp.  449-453). 



For   ?* ~  "jf      i equation!   (25),   (26) and  (28)  bacoi 

OS)    ^> - &/'r~'*yyj*'ry 

oe)   *f - f r-*r-?y*,s 
and 

(37)    *rr9  +   -^ 

The Initial conditions become 

(38)      X   ~   * 

along line MR:      ^ x' -3? y 

and 

(39) j*- r-^y *- >V>- &' 

ST along NM:      y  **   ~2— ^^ point M has coordinate« 

(40)   r - -?-^ ? ~ ir s 

here the Initial values are 

(41) * =  0 y    ^zr  ~    f 

From (34), the general solution for t(jr, ^) Is 

the constant jl of (34) turns out to be superfluous. 

Using (35) and (36), we find for x(jr, ^) the expressions 

(43) x -Sxf+Sr -r f-yfr-^z/^rSr 

8 



and 

(44)     X ~ S*7J7  **    £/('*r~?S^f<Sy 

(Here c'  .-•ad C"  arr  arbitrary  functions  of   *f  and J^* respectively.) 

The   two expressions must  be   the  same,  hence  C'   =C'   =C,   a  constant. 

Working  out  the details, we  obtain finally 

(45) Jr/J> ^/ - syijp fcff ?; J+ r-Sr^lfr-sr/f 'srS 

(The constant C will later turn out to be superfluous.) 

On MR: ./* ---<'^f, we have from (38) the result 

(46) ^ = «m w-s^pfcV+fW' rt/-J?£*-'rU*s?;Jjy 

and  so   the  differential   equation  for g(7): 

(47) ^ V?/ - j~r fr/ ~ ~ 1*7 + jy ^r/- 

The  general  solution of  this   equation Is 

vT. 
On NM:        7 ~    "^ »  we 'iave 

(49) ^^^/- r--f - ^^äjjfrr- &£?*', Y&J 

- ifrsr/ + s-r&jj 



This  pair of  linear  algebraic  equations   for  fCJT)  and  f'C JT)  may be 

solved  Co give 

(so fW-jf^f/'fjc+jr'- &rJ+fr*-f/rYg/-sr&, 
and 

(52 

this solution may be verified by differentiating (51). 

The constants ^ ^^Z and ^'/^^X prove to be superfluous, and we 

may set 

(53) rr&'s-'f^"' 
Then,  substituting   (51) with .f ^^^ Into  (48) gives 

(54) ffr/- /(-> '-*- ^ <=&?'- >*-?+£/+ f? r- T- r'-Jfr^ 

and differentiating gives 

(55)^-^/^ ^?-**-^rSsr-sr/+&?'~^?-0. 

Setting      ^ »    pr-     and  using   (53)   In either of  the  above  yields 

(56)    /T-j^-^-y 

10 



C   proves   to be  superfluous   and  may be  set  equal   to  zero 

Thus  we  obtain: 

(58) //oy - XJT'- ^r- sis 

(59) ,/?/ ~  ^r'/r 7'/'+t-7''- ^ ?'- Ä 7 
-2^0 >^ 

and 

(60) r^y 

From  (42)  and   (45)  we now  obtain  the  solutions  within NMR: 

(61) ^/J^/ 
/ 

^ 
and _, 

B.  Rlemann Function Method 

Rlemann's solution for 

the noncharacterlstlc Initial- 

value problem gives the solu- 

tion tiJftt?)  at a point N In 

terms of the values of t and 

its derivatives along MR,  Our 

problem Is an inverse one. In 

that the value of tiJf,?)  at 
U^Z1? 

N  Is  known while  that  along MR  is partly unknown.     The result   is   that   the 

solution  formula will   constitute an Integro-dlfferential  equation  for     the 

function   t  along MR, 
11 



Once   t has  thus been determined,   the Rlenvmn solution may again be 

employed,   this  time directly,   to obtain the solution   for arbitrary  points 

Inside NKR. 

The  symmetric  form of   the  Rlemann solution  for  our  problem  Is 

(63, ^^ &- //>. ^ ^-^ ^^rfr & 

where 1(7) i8 ^e line Integral along MR: 

(64) -r/>y -^/^^^A^/^^ - **.J^*./J^ 

where R2   Is   the Rlemann  function 

(65)     **   *     AifHy^y*?,  ^/ 

and     A*    ^     fAjtS* y       'fjr-   *"    (^*y^- for   short. 

(See Reference   [2],  page 453,  equation   (4),  where however  the   term   4*. Xy 

should be  just  A A ,) 

The  line   Integral  may be  evaluated by setting 

(66)    u =? ^r-,  ^ * r y -^- * r- * ?, 

This  gives 

(67) JTfr/ ~^C ft* A^ ^ ^ fSfa ^ r-y- rf^s** rsj 

+[/*: ttfr r^z, fj- **pW9s FATtrfrr, r^^ #0*/*^/?/^ 

12 



The  function   t(29-'tT')  along MR  Is   essentially  a  function  of  one 

variable;  hence  set 

(68)       7~fr/   =    ^/>^> ^/, 

Along MR we  ; re  given  that   (38) 

(69) x fJTy r-y ~  0 y 

hence  also 

(70) ^^ X f-JT-s r/^ 'Z ** fcr> rS *~ X^fjiTsTy m 0 . 

From the   gas  equations,   (35)   glvej 

(71) X« fcr,  r/ m 0, 

and   (36)   anc1   (70)   together  then give 

(72) x^ f* ry r-y * JZ r-^^ /^^ ^/ ^ *, 

Thus,   since   7"   Is  not  Identically zero, 

(73) ^^  />r> r/ m 0, 

Therefore, 

(74) TV^S ~ ^^fc^r/^^^fcryZ-y+^r-lrsr-y ^^^tt^rS, 

Thus   the  knowledge  of x(2^',7')  enables  us   to replace  the derivatives  of 

t  along MR by  the  single  derivative T/(7');   (63)   then becomes   finally 

(75) .*V^ ^-^/^^^ &Tf&+*,fr,9,*7,f;rfr/J 

This is the desired Integro-dlfferentlal equation for T(^f). 

13 



The Rletnann function  and   Its  derivatives   for  A   m 2  are  given ex- 

pllcltely by  (33): 

(76) *, A-. ^ ^ -f/- r^wpfV'P?- fSr+f-'Z 
(■*r+7-/ ' 

(77) *m&r,r;Jt, P/- ^gpfrr*+*&?- g/r+f/r?^ 
and 

(78) A^r, r;*?, jZj.^j^gpfrr'- ^r- "F/ri-f^rf 

Also,  we have  from  (39)   the  values 

(79) ^-(^r, ^ ~ -*?- ^r 
and _ 

(so) -rr-f/-*r£&'JF. 
Equation   (75)  can then be written in the  form 

The  term in T/(7')  can be  eliminated under   the  integral  sign by  an 

integration by parts;   this  yields 

(82)   /^ Itr-'+pr-jf-) T'+STfrjlTVr/Sr-frf'+frrryrS?/ 
t 

14 



Substituting   Into   (81)  gives   the   Integral  equation 

7. 
(83)   //^ r-t + f/* ?~ SryrJ-T/'r/J'r' - f/r? '+ /^/TTV 

'-c-*9+rrr*?-F/. 
As   the  coefficient of TC^)  under   the  Integral   sign  Is  a  polynomial 

In 7»   (83)   can  be  reduced  to a  differential  equation  for T(^f)  by 

successive  differentiations with respect  to ^,    Here   two differentiations 

are required,  which yield  the  Euler  equation 

(84)   7- 'Y?/ + jfr Y?; + jf-, 7-/,/ - f^r . 

As  Initial  conditions, we have   (80),  and  from  (83)  once  differentiated, 

also 

ess)   TV-f/'*- 
The solution of (84) satisfying (80) and (85) is 

(86)   T/?/ - Jf-S-tty ?/-  #-?-■£*"- 77T 7_ f 

This  is   the  required value of  t  along MR;   it can be readily  verified  that 

it  is  identical  with  (61) with If   substituted  for  /*. 

The Riemann  solution, with   (86),   03)  and  (74),  may  now be used  in  the 

usual  manner   to obtain t(jr, ^r)  at  arbitrary points   (Jr, ^) within NMR. 

In  the  general  case, where  the  Riemann function does  not  reduce  to  a 

rational   function,   the principal  requirement for a  solution by  this method 

would appear   to be  a practical  method  for solving  the  integral  equation 

corresponding  to   (83). 

15 



V.     SOME NUMERICAL  RESULTS 

A short  computer program has  been written  to evaluate and plot  the 

formulas  for x and  t obtained In  the preceding section.    A plot where 

the data has been run out  to Jr - 2»^and    J ■ r*    follows, with steps 

of -rfx  "t^- and    ^17   "   j/y"     •    No singularities aside  from the singular 

line x  • 0  appear  In the  plot;   the C~-characteristlcb  are  all   tangent  to 

the  line  at x  • 0.     (In reading  the plot,   It  should be noticed  that an 

additional   vertical   line of  points   falls  almost  on  top  of   the  line x  = 0, 

so  that  the   parabola-shaped C~-characteristics  actually  end one  point 

below on x  ■ 0 from their apparent  end  points.) 

A plot with the data run out  to     T ~ Xfr*,    ? ** "2F~ 

is  very similar  in appearance,  with no singularities  aside  from x  ■= 0 

apparent.    However,  because of  the non-linearity of  the  problem,  it 

cannot be assumed from this  alone   that singularities   Inside  the region 

of  interest will not eventually appear.    Additional  runs with data run 

out  to  increasingly greater distances are planned. 

16 
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APPENDIX A 

The Unnormalized Problem 

The problem as stated In the body of the report Is In fully normalized 

form.  The original form of the problem is stated below, following which is 

given a set of conversion ratios between the unnormalized and the normalized 

quantities. 

The motion of the projectile is given as 

(Ai)  ^r ^ ;r ^^ s 

(A2)   iS    - oS^ y 

with 

(A3)  ^ ^ ^±   . 

Here ^^0 is   the initial gas pressure, A the cross-section area of the 

barrel, and M the mass of the projectile, in consistent units. 

Let a0 be the initial sound speed; at the base of the barrel the 

gas motion is given by 

(A4)   *<  =" <*'*s 

(A5)  **   ~    **** +   -Zjf^ '**'**' 

as long as t< <i  *■    , the local sound speed.  At time 

(A6) ^   -  ^r  «• ~r- /<3 
the condition 

(A7)       U *= <* 

is  attained;   this condition holds  at   the base of  the barrel   for  t > tM. 



Tha C~•characteristic NM bounding the prescribed solution ia given by 

the equation 

-7^ ^-^_ /7 ' (A8)   A -   ^^r/ is^s* -Or - O y 

along thia characteriatic the conditions 

(A9)  #/ -r ^^V 

(A10) r.   J^*    -    **+   ^p^ -. 
hold. 

If f represents a given unnormalized quantity, let f denote its 

nonnclized counterpart (the quantity used elsewhere in the report), and 

f the conversion factor connecting the two, so that 

(AID  / - /^y/. 
Define 

(A12)  ^ —  ^€7 ^* ^ 

The conversion factors are now the following: 

(A13)  ;Zf ^ —   -^f- y 

(A14)   JT ** »   -^7— y 

(A15)   U *  ~    * * ~   er *  ~ tr-*   , 


