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ABSTRACT

The radar echo from a moving, non-scintillating point
target is assumed to be received in the piesence of noise and
clutter interference. Fcr best detection of the echo, the
radar receiver will include a data processor which maximizes

the signal-to-interference power ratio at its output.

This report presents thc integral equation which deter-
mines the weighting function of the optimum data processor.
Several general forms of solu*ion are also presented, along
with specialized forms of solution which are applicable for
appropriately simplified sources of clutter, These solu-
tions show that th= optimum processor has no simple relation
to either the transmitted waveform or to the clutter disper-
sion function but, rather is markedly influenced by the rela-
tive power levels of the noise and clutter components of the
interference. Ultimately, the extent to which clutter can
be rejected by a suitably designed signal processor will be
limited by the (often neglected) noise level which accompa-

nies the clutter.

An upper bound is derived for the decibel difference
between signal-to-interference r tios which may exist at the
outputs of an optimum processor and conventional "matched"
processor, respectively, when identical signal and interfer-
ence waveforms enter each processor. The bound is generally
applicable and depends only upon a parameter related to clut-
ter-to-noise ratio. It indicates that the greatest potenti-
alities for performance improvement, through use of an opti-

mum processor, exist only for large clutter-to-noise ratios.

-iii-
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Optimum processcrs and their per formance are derived or
computed for a number of particular cases involving different
echo waveforms and sources of clatter. These results high-
light many aspects of the problem of detecting radar echoes
in noise and clutter interference,

-1V
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I. INTRODUCTION

The proplem of devising radar systems which will oper-
ate effectively in an interference environment which includes
both noise and clutter interference is a problem of consid-
erable theoretical and practical interest, This dissertation

considers one possible approcach to the problem,

This dissertation presents the results of a theoretical
inquiry into che properties of a class of signal processorrs
which are optimum for detecting the presence of radar echoes
in a mixture of noise and clutter interference., The reasons
for considering this particular formulation of the problem

will emerge from the following discussion,

A common gcal of many radar systems which are either
conjectured or actually constructed is to determine one or
more components of the position or velocity, or both, of all
targets within some field of view, Means for achieving this
goal when noise is the only interference to be combatted arc
quite well understood at the present time. For brevity, the
problem of dctermining only rad.al components of target po-

sition and velocity may be conidered as a simple example, t

In principle, radial distance is determined by measur-
ing the time which elapses between transmission of a radar
signal and reception of 1ts echo, The radial velocity com-
ponent may be determined ir two ways. One might measure the
rate of change of the time delay which is already beina used

¢ J3ee references 2,5,35, and 39 for ror-ideration of anguiar
conpunents of target motion,
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i

to provide range information, Or one might measure the fre-
gquency of the received echo and thereby deduce the Doppler
frequenry shift which the signal experienced upon reflection
from the target,

It is known that the accuracy with which both target
distance and velncity may be determined by these methods is
prirarily a function of the detailed shape of the transmitted
radar waveform, Unless the received echo is overwhelmingly
strony with respect to the noise, the accuracy of position
and velocity measurement is only secondarily affected by re-

ceived signal strength.

This discussion has, however, assumed an echo of suffi-
cient energy to be detected. 1In fact, for white-noise inter-
ference of given power spectral density, the detectability
of a radar echo does depend only upon its total energy, and
not at all upon its pa-ticular waveform.t For a target of
given reflectivity (or radar cross-section), therefore, de-
tectability ultimately depends only upcn the energy of the
transmitted signal.

The significant point for the present discussion is -
that the detectability of a target and the accuracy with
whiéh its radial position and velocity may be measured depend
upon different and non-conflicting attributes of the trans-
mitted signal. Thus it is possible to conceive of design-
ing a signal with the requisite complexity for achieving ac-
ceptable measurement accuracy, and then transmitting it with

sufficient energy for the echo to be detected,

t Tbhis performance is true in theory and is rather closely
approiched in practice,
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For observing isolated targets in white-noise interfer-
ence, therefore, system performance depends upon three things,
They are: first, the transmitter power; second, the trans-
mitted waveform; and finalliy, the manner in which the re-
ceived echo is filtered or otherwise processed. In fact, for
isolated echoes in white-noise interference, system perfor-
mance tends to be limited only by the degree of system com-
plexity which can be made to function with existing technol-

ogy.

However, when clutter is admitted as one of the compo-
nents of unwanted interference, then the situation changes

complecely.

"Clutter" is the term giver, in radar, to the unwanted
interfering echo which arises when tne transmitted signal is
reflected from (usually) extended objects in the radar field
of view, The earliest examples of clutter arose by reflec-
tion of the signal frem the nearby terrain, or ocean surface,
upon which the radar was situated. Cliutter returns are also
received from the clouds of "chaff" (lightweight reflecting
dipoles, or tinsel) which are dispersed by an offender to
nullify a defender's radar effectiveness, Finally, one might
consider an echo from the turbulent, ionized wake region be-
hind a high-velocity object which is entering the earth's at-
mosphere, to be a form of clutter which might interfere with

observation of the object itself.

In all cases the clutter return arises by reflection
from a region which is extended throughout some region of
space and which may have some sort of internal velocity struc-
ture., These detailed aspects cf the clutter source will be

censidered in later sections,
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There is one attribute of the clutter return, however,
which has far-reaching significance and which ultimately pro-
vides the motivatioi: for the present research, That attri-
bute is the readily apparent fact that, for a given source
of clutter, the power of the clutter return is directly pro-
portional to the transmitter power. Therefore both received
signal power and received clutter power increase, and de-

~rease, in exact step with any changes of transmitter power.

Consequently, when clutter interference predominates,
it is imposcible to cause the signal echo to stana out from
the interference simply by transmitting a larger signal.
This means that one adjustable parameter in system design,
viz,, transmitter power, has lost its effectiveness in con-
trolling signal detectability. In fact one expects that, for
any given signal waveform, the ratio of received echo power
to received clutter power will be independent of transmitter
power and will depend, instead, upon the ratio of the reflec-

tivities of the target and the clutter source,

For any particular source of clutter interference, there-
fore, one can expect overall system performance to depend
upon, and be influenced by, only two things, viz,, (i) the
shape of the transmitted waveform, and (ii) the manner in

which the received weves .~ is filtered or processed.

This represents a coinsiderable restriction from the pre-
ceding case of detection in white noise. Indeed, because of
the restricted control over system performance, it is no
longer clear whether one can simultaneously achieve good sig-
nal detectability together with specified range and velocity
measurement accuracies. One might believe, with some justi-
fication from the existiig literature which will soon be dis-

cussed, that clutter source reflectivity, for example, will

e *-@&
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set a limit to the signal detectability which can be achieved
if specified measurement accuracies are also to be attained,
The question however is essentially unresolved and provides

one of the basir motivations for this research.

With the possibility of conflicting requirements being
imposed upon system performance in clutter, it is also to be

expected that selection of a transmitter waveform, and design

of a signal processor for the receiver, will be influenced by

the priority accorded various requirements.,

In the present research greatest interest centers ahout
signal detection, with less interest attached to range and
velocity measurement accuracy. The reverse order of these
priorities has more often been considered. However, the or-
der adopted for this research agrees with the fact that an
echo must at least be detectable before its parameters can
be measured with any confidence, In severe ciutter environ-
ments, moreover, it is exactly the lack of signal detecta-
bility which provides the greatest practical problems.

The purpose of this research is therefore to investigate
the properties of signal processors which yield optimum de-

tection of radar echoes in noise and clutter interference.

One area of particular interest is the comparison be-
tween performance of processors which are optimum for noise
and clutter interference, and processors which are optimum
for noise alone but which are also experiencing clutter inter-
ference. The general question to be answered is whether the
improved detection performance which can be achieved by proc-

essors suitably optimized for clutter and noise, is worth

the additional processor complexity, cr possible degradation
of other aspects of performance, which can be expected. Ex-
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amples which illustrate the conflicting considerationgs that

are 1nvolved will be seen.

It is appropriate at this point, before considering the
substance of the dissertation, to indicate briefly i he organ-
ization of the material to be presented.

This chapter has given a ¢aalitative description of the
problem, together with the motivation for its study. Chapter
two, to follow, provides a discussion of work already reported
by other authers,on topics related in some manner to the pres-
ent problem,

Against thi: background, Chapter IIl presents a summary of
the major results and contributions which have arisen from
this research. The remainirg chapters provide the detailed
substantiation of the results described in Chapter III,

Chapters IV and V together present a careful formulation
of the analytical framework for this reseuarch, It 1s Chrapter IV
which defines the class of "optimum" signal processors being
investigated in the research, In Chapter IV, also, will be
found the basic integral equation which must be solved for
the optimum processor weighting function. Chapter V gives
efpressions for the general ambiguity functions which are

appropriate for describing optimum system performance,

Chapters VI through VIII comprise a group which takes
up the problem of solving the basic integral eguation., Gen-
eral forms of solution are presented in Chapter VI, while
approximate solutions for large and small clutter are given
in Chapter ViI, For clutter from a strictly stationary
source, Chapter VIII provides a method for replacing the
basic integral equation by ai. equivalent difference-differen-
tial equation. This replacement may, or may not , represent
a simplification of the problen,
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Chapter IX stands by itself in presenting an upper bound

to detection performance which is achievable by the optimum
processor,

The final group of chapters, X through XIII, contains
specific examples of optimum processors, and their perform-
ance, for a variety of specific cases which have different

signal waveforms and clutter source models,
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II, HISTORICAL BACKGROUND

Three significant components of the problem considered

in this research have already been mentioned, namely

(i) a radiailly extended, possibly turbulent, reflect-
ing medium which gives rise to clutter interfer-

ence:
(ii) the waveform which is transmitted; and

(iii) the data prccessor, or filter, which character-

izes thz radar receiver.

One ccnclusion of this research is that, in addition, one
must also consider

(iv) the presence of noise,

These fcur factors have already been considered in vari-
ous combinations, and for different purposes %y numerous
investigators. The present section is a lLrief discussion of
this previous research., The purpose is to identify points
of similarity and difference with the contents of this dis-
sertation, in order that the research reported here may be
placad into proper context. One conclusion which will also
emerge is that relatively little of tho research reported to
date is directly antecedert to the research described in this
aissertation,

The literature wiuich has arisen concerning radar systems
required to operate with inputs iacluding clutter-type wave-

forms may be divided into five categories, according to the
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emphasis given various parts of the problem.t There have

been investigations primarilyv concerned with:

1. aetection of time- and frequency-dispersed signals
in noise;

2. performance of matched filter receivers in clutter;

3. design or discovery of 'gcod" waveforms for use

with matched filter receivers;

L, design of svstems for moving-target-indication; and

= -

Do performance ~I optimum receivers, ‘n the sense used

to describe .... present research,

The remainder of this chapter is 1 consideration of sach cof

these categories,

A, DETECTION OF TIME- AND FREQUENCY-DISPERSED SIGNALS

Typical of research in this category are papers by Price, >2
Price and Green, " and Kailath,!® where the problem is to de-
tect a signal after it has been reflected frcm a spatial dis-
tribution of (assumed) randomly moving scatterers. Such
signals have been assumed, for example, to arise because of

2

tropospheric scattering of radio signals, ° or reflection of

radio signals from large areas of a rough planetary surface. "

The assumption of 'independently moving scatterers'" is
the characteristic assumption for describing the source of a
time- and freguency-dispersed echo. The same assumption

is used for the clutter source for this dissertation.

+ Attention is restricted to papers having to do primarily
with problems of signal detection. Literature concerned with
other problems, such as that by Krinitz®® on system design
for mapping the clutter source, is entirely beyond the pur-
view of the present discussion.
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Note, however, that in this first category the basic
gozal is to detect the time- and frequency-dispersed echo,
because it represents the signal component cf the received
waveform; the interference is a2ssumed to bc noise alone. One
major concern of the three authors .mentioned is the investi-
gation ©of optimum processors for signal detection in the cir-

cumstances described,

The problem, however, is rather opposite to the problem
considered in the present research. Here the aim has been to
reject the time- and frequency-dispersed echo, as well as

possible, because it represents an interference component of

the total received waveform. This qualitative difference in
viewpoint has as its direct consequence the fact that the
two types of problem lead to integral equations for their
solution which have essentially different structures. The
solutions to the two problems are, therefore, not readily
exchanged. Consequently, the results of research in this

first category seem not to be directly applicable to the p.es-
ent problem,

B. PERFORMANCE OF MATCHED FILTER RECEIVERS IN CLUTTER

A "matchcd filter" receiver is the optimum receiver for
detecting signals which are received in whitte-noise inter-
ference.t When clutter, however, 1s present as part of the
interfering waveform, the matched filter receiver is no longer
optimum for signal detection, ts performance in a clutter
environment is, nevertheless, well understood and has been
described by Westerfield, Prager, and Stewart,*® and Fowle,

13
Kelly, and Sheehan, for examples.

+ See Turin®*® or North. ®°

-10-




COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

The matched filter approach to receiver design yields a
receiver whcse detection performance, and range and velocity
measurcement accuracy as well, can be related simply and di-
rectly to system and clutter parameters. The restriction to
a matched filter, lLiowever, permits no indication of possible
performance improvement which might be obtained by a receiver
which is truly, or even partially, optimized against the

clutter environment.

This second category of previously reported research is,
therefore, of interest for the present research mainly as a
source of reference performance data for comparison purposes.
Data from Westerfield, et al.,*® app:ars in Chapter X of this

dissertation.

C. DESIGN OR DISCOVERY F '"GOOD' WAVEFORMS

The attempt to design matched filter receivers to work
well in a clutter environment has led to much research <n the
design of waveforms which will provide specified distance
and/cr velocity measurement accuricies, while simultaneously
permitting detection performance which won't be too seriously

degraded ky clutter interference.

Rihaczek provides a summary of the interrelated "prob-
lems of measurement precision, target resolution, and wave-
f-rm design."”7 Price and Hofstetter®% more recently have
contributed new information on the subject of achievable

waveform properties,

All effort in this area, however, seems to be confined
to waveforms for use with matched filter receivers. The
present author is unaware of research into the problem of de-
signing or discovering "good" waveforms for use in clutter

environments with optimum receiver systems.

-11-
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D. DESIGN OF SYSTEMS FOR MOVING TARGET INDICATION (MTI)

In this category is research such as that reported by
White and Ruvin,*”7 having to do with designing radar systems
which will indicate the presence only of moving targets,
Stationary targets, and this includes clutter sources, will
hopefully not appear.t

The basic design premise here is that the radar receiver
will be designed to reject those portions of the received
spectrum where a significant fraction of the clutter energy
lies, Signal energy in this region will likewise be rejected.
However, the signals which are caused by moving targets will
he slifted in frequercy and will have the bulk of their en-
ergy _Jatside of the rejection region., This energy will be

accepted by the -eceiver and the moving target detected.

Such receivers represent a midway point in design phi-
losophy between the simple matched filter receiver described
above and the optimum processor of the present research., The
improvement in clutter rejection, over that achieved by the
simple matched filter, is obtained in a relatively simple and
natural manner. However, the ad hoc nature of the solution,
together with the lack of a comprehensive and analytical
problem formulation, prevents a general determination of, or
insightv into, just how well clutter might possibly be re-
jected and at what cost,

E. PERFORMANCE OF OPTIMUM RECEIVERS IN CLUTTER

The single forerunner to the present research which is
known to this auchor is the original paper by Urkowitz,*3

It is, likewise, the sole member of this fifth category.

t References 10 and 14 consider rome practical restraints
upon MTI performance,

-12-
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Urkowicz found the optimum filter for detccting a sig-
nal, actually a rectangular pulse, in the presence of clut-
ter from a uniformly extended spatial distribution of motion-
less reflecting particles, in the complete absence of noise.
He found that under these circumstances the optimum filter
for detecting the rectangular pulse is a waveform differen-
tiator followed by a unity-gain . ecirculating-delay-line fil-

ter,

He then compared the performance of a receiver using
band-limited approximations to each of th~ce compoaients to
the performance of a receiver with a band-limited "flat'" in-
termediate frequency filter. He found that the detection
performance of the band-limited approximation to the optimum
receiver increased linearly with receiver bandwidth, The per-
formance cf the band-limited, mcre conventional receiver,
however, only increased until the signal bandwidth itself was
approached. Above that point the performance remained con-
stant as bandwidth was increased. These results, particularly
the unboundedly good performance of the optimum processor,
may now in rgtrospect be attributed entirely to the as:inmed

lack of noise in Urkowitz! problem,

He concluded, from qualitative considerations, that al-
though, in the presznce of noise, the recirculating-delay-
line portion of the processor "increases the signal-to-clutter
ratio by another three decibels,... it has a disastrous effect
on the signal-to-noise ratio., The use of such a filter makes

the problem of noise at least as severe as that of clutter."

Thus, Urkowitz' research*® 1is the first particular so-
lution for an optimum processor in a clutter environment.

The problem formulation, however, is quite restricted, being

~13-
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almost entirel limited to the case already described., It
does not have generality enough tc include either

(i) spatial variation of the mean radar cross-section

of the clutter source;

(ii) doppler dispersicn introduced by localized motions

within the clutter source;

(iii) effects of noise in determining, and actually

controlling, the optimum solution; or

(iv) effects of target velocity upon signali echo de-
tectability.

There is, in consequence, almost no consideration of optimum

solutions for these more general circumstancest

The conclusicn, therefore, is justified that pre-iocusly
reported research includes only scant mention of optimum
processors for detecting radar echoes in a mixture of noise

and clutter interference,

t+ The exception to this demurrer is Urkowitz' brief commen-
tary on noise, part of which has already been quoted.

14~
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IIT, RESUME OF RESULTS AND CONCLUSIONS

This research has heen motivated by the need to discover
the extent to which radar system performance might be improved
by employing an optimum receiver in the presence of noise-
plus-clutter, instead of the simpler "matched filter" re-
ceiver,t and to discover the costs of such an approach in
either increased system complexity, or degradation of other

aspects of system performance,

The coniributions of this research to the existing state

of knowledge in this area occur in four major categories:

1, The problem formulation itself, which leads to an
essentially new integral equation in the realm of

signal detection theory.
2. General forms of solution : © the integral equation,
3. A bound upon possible performance improvement,

L, A variety of solutions for particular cases which
involve different transmitter waveforms and clutter

sources,

These four categories correspond also to the order of presen-
tation of the research in chapters IV through XIII of this
dissertation. The remainder of this chapter is a presenta-
tion and discussion of the major results and conclusions
which have arisen out of the present research. References to
subsequent chapters will indicate the origins within the

present researcn of the conclusions being discussed,

t the optimum receiver in the presenze of noise alone,

-15-
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A,  PROBLEM FGRM.~“™TON

In the present research, the signal echo to be detected
is assumed to arise by reflection of the transmitted wave-
form £from a moving, ncn-scintillating, essentially point-_ike
target. The clutter component of interference, on the cther
handk, is assumed to arise by reflection from a spatial dis-
tribution of independent scattering centers, possibly in ran-

dom motion, The fc.mulation is sufficiently general to ac-

commodate
i) a transwmitted waveform with abitrary amplitude and
phase modulations;
ii) an arbitrary level of white-noise interference;

iii) a clutter oource which may have different mean re-
flectivities at different locations, and which may
yield an echo witn Doppler frequency dispersion

because of local source motions,

A formulation of this generality is a necessity because all
the factors mentioned can and uo affect system performance,

sometimes quite markedly.

The combined noise and clutter interference which arises
from this formulation is a Gaussian process, One appropriate
measure of signal de“-ectability is consequently the signal-
to-interference ratio, irrespective of the source of the in-
ter ference, The "optimum" processors of this research act
to maximize the signal-to-interference ratio (and, hence, the
signal detectability) at their output. The irtegral equation
which determines the optimum processor is derived ¢né pre-

sented in chapter four,

-16-~
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The problem fo.mulation, in the generality described,
and the integral equation which arises from it are essen-

tially new to the literature in signal detection theory.

The integral equation which determines the optimum

processor weighting function w(t;po,fo) is given byt

& o]
N w(t LiPor £ 0 + {MXE(tl,tz)w(tg;pD,fo)dt = m(tl:p ,ro)

S

(3.1)
where K,C(tl,t2) =2 ? }0 é(p,f)m(tl; f)m *(t :p, £)dpd£
- (3.2)

m(t;:p, £) modulation function for an echo received

after a range delay of p seconds, with

a Doppler frequency shift of £ cycles

per second,

é}(p,f) = energy dispersion function for the clut-
ter nource

NO = white~-ncise power spectral density

The essential novelty of this equation resides, first, in the
particular structure of the kernel 5£ (t t ) and, second,
in the fact that the modulation functloﬂ mfg,p,f, appears
not only on the right-hand side in the conventional role of
a "forcing funrtion", but also within the defining equation
for the kernel X bt t ).

(A S

3

In consequence of the second fact, one cannot expect
that the "forcing" function m(t;po,fo) and the integral
eqaatioa solution, or ''response' function, w(t;po,fo) will

be linearly related. Because the methods of linear system

+ Chapter IV
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analysis are, therefore, not applicabkle in relating these
functions, optimum system performance is not easily r=lared

to attributes cf the transmitter mocdulating function,

Di rect inspection of the preceding integral equation
also reveals that the two terms on the left which involve the
unknown function w(t;po,fo) are proportional to the noisc
level, N_, and the clutter level, &(p,f), respectively,
One therefcre expects that the form of the optimum solution
w(t;po,fo) wil. depend upon the ratio of the clutter and
noise levels. This conclusion will be amplified later in
this chapter. For the present it suffices to opbserve that,
in general, one can expect the means chosen to combat clutter
in any particular circumstance to depend, notc only upon the
detaiied nature of the clutter, but also upon the (always

present) noise level which is accompanying the clutter,

The most elementary conclusion has, thus far, not been
explicitly mentioned. It is simply that the processor which
is optimal for detection in noise alone is sub-opti..al when
clutter interference is added tc the noise, Worded differ-
ently, the optimum processor for detection in clutter-olas-
noice interference is not, in general, the "matched" filter
whose impulse response duplicates (with time reversal) the

signal to be detected.

B, INTEGRAL EQUATION SOLUTIONS

The sclution to the preceding inf:egral equation ~an be
written in many different forms, Ii. this dissertation three
forms of sclution are presentedt which are valid for all

reasonable and "non-pathological" N &(e,£), and m{t;p, ).

t Chapter VI
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Two othe.s forms of solution are presentedt for situations
where noise is either the dominaant interference component,

or is neglected entirely, Finally, a method is presentedtt
whereby, if the modulation function m(t:p,f) has certain
properties, and if the clutter source is motionless, one can
convert the preceding integral equation to an equivalent dif-
ference-differential equation with, generally, variable co-

efficients.

The three general forms of so’ tion which are presentedttt
arise by application of the well known theory c¢f linear in-
tegral equations to the present case. They may be character-

ized, briefly, as:

1, 2, solution, according tc Hilbert-Schmidt theory, in

terms of eigenfunctions and eigenvalues of the
ke.nel 3Qh(tl,t2).

2. A solution, according to Fredholm's theory, which
depenas upon iterated kernels and which, at any
time instant, is a raticnal function of the clutter-

to-noise ratio,

3. A solution, possible orly because of the particular

structure of the kernel ﬁ%c(tl,tf), which gives

w(t;po,fp) as a superposition of delayed and Dop-
pler-shifted echoes m(t;pi,fj).

The pra-stical application of any of these solutions to a par-
ticular case, however, stilil recquires the solution of formi-

dable problems,

In the eigenfunction solution the first problem is; of

course, to discover eigenfunctions and eigenvalues for the

t Chaptevr VII
tt Chapter VIII
ttt Chaonter VI
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kernel ﬁEc(tl,rg). Even assuming this to be possible one
cannot, in view of equation (3.2) for ﬁQb(tl,tE), expect that
either the eigenfunctions or eigenvalues will bear any simple
relation to either the signal, represented by m(t;po,fo),

or to the clut. r scurce, represented by 45(p,f).

The rfollowing bounds for the eigenvalues hj have, how-

ever, been derived

0, <2. max &(p,£). (3.3)
) (ps £)

These bcunds make possible the direct evaluation of the per-
fornance improvement bound which will _oon be considered by

itself,

The Fredholm soluticun, which was second in the preceding
list of the three general solutions, is at least given di-
rectly in tecrms of operations upon the basic kernel }<C(t1’t2)'
If the functions m(t;p,f) amd &(p,f) are such tha*,
throuch direct integration, the iterated kernels which depend
upon ﬁ%c(tl,tg) can be found, then the means for a solution
are at hand, This mode of solution was not attempted for any
particular case in this research, simply because of the dif-
‘.culties of iterated integration of functions which, for

pracrtical cases, are not racessarily simple,

This solution, however, i3 onc¢ which exhibits explicit

dependence upon the clutter-to-noise-ratio parameter G%
defined in thlis research by
28
&, = 55, (3.4)

O

-20-




COLUMBIA UNIVERSITY—ELECTRONICS RESE4ARCH LABORATORIES

”~

where C}C = (maz) &(p, £) (3.5)
P

The parameter &b appears in a natural fashion in other
places in this research, also, but most notably in the per-
formance improvement bourd. It seems to be a noteworthy

parameter for describing mixed clutter and noise interf{erence.

The thirl general form cf solution presented in this dis-
sertation gives w(t;po,fo) as the weighted (doukle) sum of
delayed and doppler shifted echos m(t;pi,fj). The form is
appealing but determination of the appropriate weiqguts for
the individual summands rests upon solution of an auxiliary
(double) integral equation., Only in the case where noise is
neglected did this third form of solution, therefore, yield

results,

When noise 1s totalily neglect :d, the optimum processor
acquires very simple characteristics.t In the suggestive
terminology of vector aralysis, the optimum weight function
may be described as being "orthogonal" to essentially all
clutter zomponents, while having non-zero, or unit, "projec-
ticn" upon the desired echo. The weight function may also be

described as being '"reciprocal" to che desired echo,

It is pcinted out in chapter seven, however, that the
zero-noise optimum processor achieves these properties only
by having a certain "super-resolution" capability with re-
spect to the desired echo. The zero-noise optimum prccessor
is theretore characterized by bandwidths much larger than the
signal bandwidth and, at 1 ast in one case, by durations which

include the total clutter return,

t Chapter VI1I B,
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Because these properties can profitably be exploited
only in the complete absence of noise, onc concludes that noise
is never a negligible factor 1n considering systems for clut-
ter suppression, This conclusion is strengthened by the var-
ious results for special cases which invariably show that the
presence of even "small" noise levels (when compared to
"large" clutter levels) greatly modify the form of the zero-
noise optimum processor and reduce its performance,

One further concludes that the optimum weight function
for small noise levels is not, in general, merely a small
perturbation of the optimum processor for zero noise, Un-
fortunately, while the case o. large clutter and small noise
is the most interesting one from a practical pecint of view,
it is the case of zero noise which is mosi. often easier to
solve, The inability to approximate one solution by the other,
because one is not a small perturbation of the other, is a
far-reaching technical fact which directly adds to the dif-

ficulties of solving the present problem,

The converse case of detection .n interference when noise
i1s dominant and clutter interference is relatively s..all pro-

vides a much simpler solution.t

The important fact, however, which emerges from compari-
son of the small-noise and large-noise sclutions, is the
great dependence of the form of the optimum processor upon

the relative levels of clutter and nolse interference.

The final approachtt to solving the basic integral equa-
tion (3.1) which was tried in this research was based upon a

method due to Miller and Zadeh #® for solving integral equa-

t Chapter VII A,
+t+ Chapter VIII
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ticns with kernels somewhat similar to }Cc(tl,te) ..ven by

equation (3.2). With appropriate modifications, to accommo-
date the somewhat more general radar waveforms which appear

in the present context, tbesir method was adjusted to be ap-

plicable to equations (3.1) and (3.2). The end result is a

nrocedure for deriving an equivalent difference-differential
equation for tl.e unknowa weight function w(t;po,f ). Al-

o
though it is difficult to characterizz this transformation

of the problem as a "simplification," the method was applied

in one of the particular cases considered,

C. PERFORMANCE IMPROVEMENT BOUND

It will be recalled that one major question motivating
this research was the extent to which optimum system perform-
ance might exceed the performance of a matched filter receiver
in a clutter-plus-noise interference environment, O.ie answer

to this question is provided by the following inegualityt
<) - BR) \
opt » ‘I'mf c (3.6)

where the scalar factor B(mb) is given by
. 1 -1 2
B(B) = & [(14R)7 + (1872 (3.7)

and mb is the clutter-to-noise-ratic parameter given earlier
in equations (3.4) and (3.5).

B(Gb) is therefore an upper bound to the improvement in
signal-to-interference ratio which may be achieved by depart-

ing Zrom a matched processor and choosing a processOr suit-

+ Chapter 1IX
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ably optimized against the presence o0f clutter. Equations
(3.6) and (3.7) are derived in chapter IX and have the full

generality implied by their appearance, That is, the in-
equality (3.6) is valid irrespective of the sigral modulation
function m(t;po,fn) or the detailed form of the clutter
dispersion function & (p,f). The performance improvenent
bound B(mb) depends exactly and only upon the parameter

@b and is valid over the entire scope of this research.

It is interesting to note that as a% approaches in-
finity, say for example because the noise level NO is ap-
proaching zero, then

B((RC) > % - (Rc . (3.8)

In effect this bears cut previous rewmarks that the presence
of noise is an inescapable consideration in clutter rejection
systems. Were N_  actually zero, then W(@b) would be in-
finite and perfect clutter rejection might be achievable,

In fact N is never zero, with the result that B(@b) is
always finite and the previously mentioned "reciprocal' wave-
forms are seldom appropriate weighting functions for practi-
cal processors,

As mb approaches zero, on the other hand, one finds
that

R L. R

B( c) > 1+ 3§ - (3.9)
which indicates that for small clutter levels there ig little
advantage to departing from the matched filter receiver, Any

advontage can only be proportional to the square of the al-
ready small mb’

-4
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Conditions for which equality in (3.6) is actually
achieved are given in the text,t but can be expected to be

only rarely satisfied in practice,

D, PARTICULAR CASES

Optimum y.cocessors have been derived for & variety of
particular cases involving different modulation functions
m(t;po,foj and dispersion functions &(p,f). The cases
considered are:

1, Gaussian pulse echo in uniformly extended Gaussian

clutter plus noise,

2. Gauscian pulse echo in clutter with Gaussian delay

and Doppler profiles.

3. Rectangular pulse echo in uniformly extended clut-
ter from a stationary source, witn various noise

levels,

L, Rectangular pulse echo in clutter from a stationary

source of finite extent,

The solutions for these cases illustrate well the general
remarks which have already been made. In the remainder of
this chapter it will suffice to note various aspects of these
particular solutions which might not otherwise be deduced

from general considerations.

In the first case,ttof a Gaussian pulse in uniformly
extended Gaussian clutter, the basic integral equation is
readily solved by means cf Fourier transforms, 1In the fre-
quency domain one can see that, in the absence of noise, the

optimum processor emphasizes only those portions of the spec-

t Chapter IX,
tt Chapter X.
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trum where the signal energy is relatively large compared to
the clutter enerqgy, somewhat in the manner of a system for
moving-target-indication., One can also see the great changes
in the solution which occur as the result of even small noise
levels, Empirical performance improvements calculated from
numerical data for this case indicate clearly the extent
(about 30 db) to which the performance improvement bound

B(mb) can exceed actual performance differences.

The second case consideredt includes clutter interference
with a mean intersitiy which varies with time because of the
spatial variation of mean reflectivity of the clutter source,.
Because of the particular waveforms chosen, an analytical
solution is possible. The optimum processor is found to be
a time-variable filter, composed of a time-varying zero-memory
amplifier fecllowed by a stationary linear filter. That a
time~-variable processor is optimum for detecting echoes in
statistically non-stationary interference is to be expected.
It is not to be expected that the processor structure will

be so simply defined.

The third case is solvedttstarting from the equivalent
difference-differential equation, The resulting zero-noise
processor is a train of impulse doublets which provide an
example of a reciprocal waveform for the rectangular puise
echo, In effect, detection is accomplished by sensing only
the leading and trailing edges of the echo, Numerical re-
sults are given, showing the radically different processors
which arise when small and then large noisc levels are in-

troduced.

t Chapter XI
+t+ Chapter XII

e




4

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATOFIES

When clutter from a stationary source of finite extent
is considered, the fou-th and final case,t it is shown that
the known properties c¢f the reciprocal waveform from the pre-
ceding simpler case may be used to advantage in providing a

sclution to the final case.

The several particular solutions together illustrate one
other ceneral aspect of the basic integral equation, It has
already been noted that the kernel 3@b(tl,t2) depends upon
whatever functions are chosen for the modulation function
m(t;p, f) and the dispersion function &(p,f). This leads to
the situation, well illustrated in this research, that the
particular means used to solve the integral equation will

depend largely upon the particular case being considered.

t Chapter XIII
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1V, PROBLEM FORMULATION

A, DESCRIPTION OF A RADAK SYSTEM

The major components of the system to be studied are a
transmitter, a receiver, and a linear data processor, They
are shown in the functional tlock diagram of Fig. 1 together

with designations for the essential system waveforms,

1, Transmitter

The single characteristic of the transmitter which
is of interest in this study is the transmitted waveform re-
presented by S(t). This complex function of time has the

form
s(t) = m(t)exp(jznfct} (4.1)

where fC is the unmodulated transmitter carrier frequency

in cycles per second., The complex modulation function m(t)

has the form

m(t) = a(t)exp { jo(t)) (4.2)
where a(t) = & real, carrier amplitude modulating functiorn,
and ¢(t) = a real, carrier phase modulating functior.

This waveform representation is sufficiently general for the
purposes of this study and permits consideration of trans-
mitted signals having simultaneous phase and amplitude modu-

lation.

The re2l waveform which would actually be trans-
mitted is taken to be the real part of the complex S(t). 1In

the presert instance the real component of S(t) i: simply

.
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G’se(S(t)} = a(t)cos(21rfct + ¢(t)} . (i4.3)

The waveform at the receiver input, which is the
sum of signal and interference, likewise may be represented
as a complex envelope function modulating a carrier. If this
carrier is taken to be identical to the transmitter carrier
then the received waveform representation is

V(t) = v(t)exp{j.?nfct} . (4.4)

c. Receiver

The primary function of the receiver for the pur-
pose3 of this study is the extraction of the complex envelope
function v(t). Mathematically this is accomplished by sup-
posing the existence of a signal exp (-j?nfct} , in order
that a simple product may yield

v(t) = v(t)-exp(-jzvrfct) . (4.5)

In actuality, this demodulation process may be accomplished
by heterodyning the received waveform separately against

cos {2nfct} and sin {2nfct} and then filtering out double~
frequency components, The remaining signals will be quadra-
ture components of v(t).

3. Data Processor

It will be assumed,however it may be accomplished,
that the receiver output is the complex function of time
v(t). It is in the data processor that whatever information
may be present apbout radar targets is extracted from v(t)
and made available for use as a system output,
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It will further be assumed that the processor is
designed to detect a radar echo which is received p, Sec-
onds after transmission of S(t) and with a possible doppler
shift of fo cycles per second. The processor will ke char-
acterized by a weight function which is designated w(t:po;fol
The scalar processor cutput u 1is assumed to be a linear
functional of possibly the entire record v(t) available to
the processor input., The processor is therefore defined by
the equation

©o
= (3.4 .
u .[mv»(t,po,f

O)v(t)dt . (4.6)

This is a sufficiently general definition of a lin-
ear data processor for the present analysis, wherzin atten-
tion can be confined to well-behaved functions. The com-
pletely general representation of a bounded linear functional
as a Stieltjes integral which has appeared in the literature, *®
and which arises out of RiesZ representation theorem,®®is not
necessary here,

The notation for the processor weight function in-
cludes rather prominently the parameter set (pO ,fo) for
the echo to be detected. This is to show that the form of
the weight function may well depend upon (po, fo) in u non-
trivial fashion when clutter interference is present. This
is suggested in Fig. 2, where received clutter interfe: :nce
is shown following transmission of a hypothetical s(t). The
usual situation where the mean clutter energy is a function
of time delay after transmission 1is also suggested. The er-
sential point is that the clutter interference can have a
distinctly non-stationary character as a function of time
delay. The result is that the desired weight function

wit;p fo) for an echo with range delay Pos will not

oz’
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necessarily be sinply a time translation of w(t; Py fo)

for an echo with delay p01° The echo parameters (pO ,fo)
are therefcre a necessary part of the characterization of

the data processor,

B. THE NATURE OF CLUTTER

Clutter interference (or "reverberation' in SONAR) com-
monly arises by reflecvion of the transmitted waveform from
a spatial distribution of reflecting, or scattering, points
or regions, These scattering centers almost always have some
relative moti>n with respect to one another, as well as with
respect to the observer, The result is that the individual
echoes comprising the clutter return alsoc have some distribu-
tion of Coppler freguency shifts, .ecause the locations of
individual scattering centers are changing, the clutter re-
turns corresponding to successive transmissions will in gen-
eral be different, The result is that received clutter wave-

forms are most conveniently characterized statistically.

In this section a common model for clutter will be de-

scribed, the model which underlies this research,

Figure 3 shows two successive narrow transmitted pulses
and the clutter waveforms resulting from each pulse, The
transmissions occur at *l and 72 seconds while the com-
plex envelopes of the corresponding clutter returns are de-
signated c(t ;71) and c(t ;Te). These returns are the
superposition of numerous delayed and frequency shifted rep-

licas of the transmitted pulses,

The first major feature of the model is the assumption
thact clutter components due to reflection of the same trans-
mitted pulse from spatially separated points are uncorrelated.

In terms of Fig., 3 this means, for exawmple, that c(tl: Tl)
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and c(ti ;Tl) are uncorrelated, because the amplitudes re-
cieved at the different times tl and t; correspond to

reflections from different slant ranges,

The second major feature has to do with the reflection
of different transmitted pulses from the same region of space
at different times.t Here correlation between such returrs
is to be expected, unless the physical structure of the re-
flecting region has completely changed between interroga-
tions. Ir Fig, 3, for example, correlation is expected be-
tween the clutter ampiitudes c(tl; Tl) and c(t2 :12) when-
ever the respective time delays (tl- TL)and (t2-T2) are
equal,

The rate at which the structure of a collection of scat-~
teringy centers changes is determined by the relative veloci-
ties of the individual npcints., The second assumption for
the clutter model will be that refiections from scatterers

having different velocities are uncorrelated, tt

The major features of the assumed clutter interference
bave been discussed here in terans of the returns from suc-
cessive interrogations by brief pulses. The later analysis,
however, requires an expression for the correlation between
received clutter amplitudes at any pair of times for an ar-
bitrary illumination., That result is given in the following
section, At the same time a precise description is given of

the statistical structure of the clutter source,

+ A large-scale translatory motion of the physical clutter
source through space is here ignored as it can be comoensated
for in the receiver,

tt Wwhen averaged over the ensemble of possible scatterer lo-
cations,
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1. The Clutter Covariance Function

Let the arbitrary transmitted waveform be denoted
by S(t). It will be assumed that the echo of this waveform
which is received after reflection from points with time de-
lays between p and p + dp, and which induce Doppler fre-
quency shifts between f and f + df may be represented by
the term

a(p,f) - s(t-p)exp <j2nf(t—p)) . (4.7)

Here the change in amplitude and phase which §(t) experi-
ences upon reflectiorn is incorporated in the complex random
coefficient a(p,f).

The total clutter return C(t) may then be written
in the form

c(e) = 1 Talpy . £,)8(t-py)Jexp (32nf, (t-py))  (4.8)

representing the sum of echoes from all ranges with all fre-
quency shifts, If increments dpk and df& are defined to
satisfy

P + dpk = P4 (4.9a)

and

Hh
+
o,
h
]

v L= S (4.9b)

then Eq. (4.8) presents C{t) as the sum of contributions
from a set of disjoint cells covering the (p,f) plane, For
brevity the cell determined by the intervals (p, ,py + dp; )

and (f& y £, 4+ de) will be designated [dp, , df,].

The covariance function of interest is defined by

Kote,re) = (ele)er(e,) (4.10)

1 2 1 2
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where c¢(t), the complex envelope of C(t), is given by
c(t) = C(t) - exp {—j?nfct> [L,11)

and where the angle brackets indicate the expectation with
respect to the ensemble of admissikle clutter sources, When
Egqs, (4.1), (4.8), and (!.11) are used with (4,10), the re-
sult 1is

Kot b)) =2 }; }; § <«'=1(pk,f£)a*(pr,fs)> - m(t —py)m*(t -p)

exp <j2nf&(t1'pk)+ j27rfc(t1—pk)—j27rfctl

-j2nfs(t2—pr)—j2nfc(tz—pr)+j27rfct2} .

(4.12)

It i1s assumed for the source that if the cells
[dpy , df,] and [dp_ , df_] are disjoint, then

<a<pk, £)arle,, £)) = 0. (4.13)

On the other hand, if the cells [dpk, df£] and [dpk, dfs]
coincide it is assumed that the ensemble expectaticn may be
written

<—=1<pk,f@a*<pk,f&>> =260, . £)dpdf, T (4.14)

where E(pk ,fﬁ) represents the average energy returned from
the cell [dp, , df,] at (pk :f£> for incident signals of

unit energy.

t+ Extended reflecting regions with these assumed character-
istics have been considered in References 33 and 46,
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It is worth noting that the refiected energy is pro-
portional to the c21ll dimensicns, an assumption consistent
with the notion ¢f returns from adjacent points being uncor-
related, As a cell dimension is increased one would expect
the additional signal components to add incoherently to the
previous components, In this situation one expects signal
energies, rather than amplitudes, to add linearly.

When Egs. (4.13) and (4.14) are introduced into
(4,12) only a double sum remains for }(C(t1 ,t2), namely

Keltpe,)= X Teloy,£y) mle - )me(t -py) .2 - (4.15)
+ exp {j?nf&(tl-t2)> - dp, df, .

In th2 limit, as dpk and de approach zero, the double
sum is assumed to approach a limit which defines the cor-

responding Riemann integral. Therefore, in the limit

](C(tl,t2)=2j' J.m(tl—p)m*(tz-p)g(p,f)exp|(j2ﬂf(t1-t2)> dpdx.

-0 =00

(4.16)

This is the result which will be used, It describes the rele-
vant statistical properties of the clutter interference at

the input to the data processor.

To accord with notation previously introduced for
the processor weight function, and to simplify expressions

which will appear, it is convenient tc define m(t;p,f) by

m(t:p,f) = m(t-p)exp {j2ﬁf(t—p)) . (4.17)

It may be verified that the preceding zquation for }(C(t ,t )
1’ 2
is equivalent to

-38-
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Kc(tl,t2)=2f fE(p.f)m(tl;p,f)m*(tg;p,f)dpdf. (4.18)

-0 =-w

C. THE OUTPUT SIGNAL-TO-INTERFERENCE RATIO

The signal-to-interference ratio at the data processor

output is the quantity of major interest in this study.

It will be supposed that the ul:imate task of the sys-
tem is to detect point targets of unvarying reflectivity
(i.e., not "scintillating'") with unknown range and velocity.
The interference is the sum of clutter previously described
and noise with uniform power spectral density over the re-
ceiver bandwidth. The sigrial-to-interference ratio at the
data processor output, designated % , will be derived for

these circumstances.

Let the complex representation of the waveform at the

receiver input be designated V(t) and have the form

V() = R(tipg,£q) + I(t) (4.19)

where R(t;po,fo)

deterministic signal component
from point reflector at range

delay Pq with doppler shift fo.
I(t) = stochastic inturfering waveform,

The received signal component is assumed to be the usual de-

layed and Doppler shifted replica of the transmitted wave-

form, that is

R(t:Po,fo)-: A-S(t-po).exp {j2nfo(t-po)> . (4 .20)

It is assumed that m(t) is normalized to yield
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o
[ m*(t)m(t)at = 1 (4.21)
-
so that for the received echo R(t;po,fo)
. £ . = A2
:fm R*(t1p £ )R(tsp,, £ )dt = A (4.22)
Thus it follows that
A% = 2¢ (4.23)

S

where £ _  is the total energy of the received signal echo.
The data processor acts upon the complex envelope of R(t;po,fo)
to yield a scalar, designated r(po,fo). The signal comporent
of the processor output is therefore given by (see Eq. 4.6)

[s ]

r(po,fo)= j'wﬁ(t;po,fo)R(t:po,fo)exp {—j2nfct)»dt (4.24)

or, when Egs. (4 1) and (4. 17) are employed,

o0

r(pO’fO)= A Iw*(t7poyfo)m(tFPOJfo)dt'exp {'jzﬁfcpo} .

- 0
(4.25)
The intensity of this component is given by

[o¢]

| 2(pg. £,) 1% = A% | fuwrlespsf Im(tipg,£5)de |2 (4.26)

The received interference component has complex envelope

i(t), derived in the established manner:
i(t)=1(t)-exp (-jenf _t}) . (4.27)

For interference of arbitrary nature the intexference com-

ponent in the processor output will be designated i(po,fo)

~40-
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and written

i(py,£ )= [we(tsp £ )i(t)at . (4.28)

Its mean intensity is given by

(1P f,) i*(po) Ep)) = [ RIS LR S

(4.29)
. 3 u* d
<1(t1)1 (t2)> tldt2
where the expectation on the right has been brought inside
the integral, If one defines the covariance function }((tl,te)
by \
Kee) = (ile)ire) (4.30)

1l

then the following formula is cbtained:

<i(po,fo>i*(po,fo)> R IE RCRT IS

-0 =00

(4.31)
X (tl,te)dtldtz

The signal-to-interference ratio is the ratio of output

signal intensity to mean output interference intensity,

, £ )
P AL | s

(i(pgr£,) i*(pgr%,))

which in the present instance has the appearance
2

o]

' 4 L] L] I
] 26 !m wr(tipg, £ )m(tip,, £ )dt |
7= (4. 33)
f I W*(_t :P-;f-)K(t e )W(t 7p.-’f,.)dt dt
o S 170’70 1’ 2 2’70’70 1 2

-41-




COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

D, THE OPTIMUM LINEAR PROCESSOR

The processors of major interest in this research are
those which lead to a maximum signal-to-interference ratio
at their output., These processors are called "optimum,"
More specifically, the optimum processor is characterized
by the weighting function wopt(t;po,fo) which, amogg all
weighting functions, yields the greatest value for I de~
fined by « -ation (4.33).

Obse *hat the optimum weight function depends, of
necessity, upon both the form of the echo to be detected
m(t;po,fo), and the covariance function ]((tl,ta) for the
total received interference, since toth of these terms ap-
pear explicity in equation (4.33). Equations which determine
the optimum processor will be presented shortly.

On occasion, however, reference will also be made in
this research to another kind of linear processor, i.,e. the
processor wiiich is optimum only if the received interference
consists of white noise alone, without any clutter. The
processor which is optimal under these restricted circum-
stances (but which is sub-optimal for the general problem
being considered in this research) is c2lled a "matched fil-

ter" or "simple matched filter" (or processor),

This terminology, chosen for its brevity and consistency
with at least part of the literaturet is adhered to through-
out this dissertation.

t The word "optimum" is almost universal in referring to a
problem soluticn which maximizes =~me well defined criterion
nf merit, The phase "matched filt r'" often enough has ex-
actly the meaning given in the text, even though the inter-
ference is non-white. Reference 4§ is an exact illustration

of this latter usage,

-4o.
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1. Formal Solution for the General Case

It may be show::, 2as in Appendix A, that the pro-
‘ cessdr weight function w(t;po,fo) which maximizes % of

equation (4.33) must satisfy

o,fo)dt2 = m(tl;po,f

) (4.34)

_}: Kt ot )w(t_sp °

for all ¢t .,
1

A bacic aralytical problem in this research is,
therefore, the solution of the preceding integral eqguation
for w(tz;po,fo), once m(tl;po,fo) and }((tl,ta) have been
cpecified, Means of generating such solutions will be dis-

cussed later, in chapters six, seven, and eight.

Here it will only be noted that a formal solution

to the preceding integral equation may be written in the form
[« ]
{ q K- ! . ’
wie 1pgafy) = [ Lit, e )mle sp,f )at ,  (4.35)

which represents w(t;po,fo) as some linear transformation

L of the modulation function m(t:po,fo). As shown in

Appendix A, the kernel J:(tz,t ) introduced here must satisfy
3

the equation
(- ]
r { 2 \ =
S Kle ) Lt )de, = ol ,t ) (4.36)

where o(tl,t ) is a kernel with the "sifting property" for
3
L d \
m(t,po,foj, That is

{n ot ,t Imt ip,f )dt = m(t sp ,f ) (4.37)

for all tl
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Although this solution provides no indication of
how to discover those kernels c(tl,ta} and °C‘(t1’ta)
which are appropriate for any particular case, it has the
merit of providing general expressions for optimum system
performance, Thus, in Appendix A it is shown that if

opt(t 1P £y } satisfies equation (4.34), then the corre-
sponding (maximum) value of % is

s . e : '
=2 58_{,, Wopk(t 1Pos £ Im(t 1p £ )at,  (4.38)

Once an expression for the optimum weight function is avail-
able, this equation provides a convenient calculation for
the resulting optimum system performance, It, or its equi-
valent, is used in later chapters for this purpose.

One particular expression, ecuivalent to equation
(4,38), has a certain suggestiveness for establishing the the-
oretical result of Chapter IX, It is obtained by noting that,
since o(t ot ) defined by equation (4.,37) has the role of
an identity transfornation, the solution of eguation (4.36)
for J:(t t ) amounts to the discoverv of a kernel which is
inverse to ZRKt t ) If one introduces the notation which
is suggestive of this viewpoint by defining

-1 _ -
Kot ) = Llt,t) (4.33)
then equation (4,38) becomes

* -1 .
(tz,p £) = .L}L (tz,ta)m(ts,po,fo)dta (4.40)

op*

4l
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. , o . *+
and equation (4,38) becomes

o

4%
- 5 , i~ :
= 2 W Y ) [t ,t Jmit :p £ )d:t Jt .
é‘s J /] m ‘tz Py fy ‘tz’ Q) \ta,po, o) s FE

o,

{0

- O e D

(4.41)

It is this last equation which has relevance for the bouad
to be derived in Chapter IX,

2. Soluation for Uniformly Extended Clutter

The clutter problem most fregquently analvzed arises
out of the assumption, made either explicitly or implicitly,t
that the clutter dispersion function &€ {p,f) may be written

E (p:8) = E. . ls) (4.42)
where [ o(f)af = 1, (4 .43}

This corresponds to clutter interference extending over all
range delays with a uniform mean power, The parameter ‘5c is
essentially a measure of the spatial density of the distributed
radar cross-section of the clutter source, It has the dimen-

sione of energy per unit range delay,.

When Eqs, (4.4%2) and (4,18) are combined the clutter

covariance function simplifies to

o

{ = o [ - { -y o 7 § =
}<c‘t1’t )= B2 | [ m(t P)m*‘tz p)-Q(f)exp {Jzﬂf(tl tz)}dpdf.

2 ¢ - o = o 1

(4.4%)

+ See Appendix A ior the derivation,

$+ Tuis assumption under%ies the analyses reported by George,14
and Westerfield, et al.,*® for examples,
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The important fact is that now J(b(tl,ta) depends only upon
the time difference t'-tz’ so it 1is possible to write

K (et ) = K (1)=2 € M(7)-Q(7) (4.45)

where M(x) = S m(tl—p)m*(ta-p)dp (4.46)
Q(7) = f a(f)exp (somer) ae (4.47)

Under these circumstances the signal-to-interference
ratio becomes
o
- ) 2
L w*(tsp £ )m(tsp,, £ )at |

2117]

2& \
© (4.48)
_{n_!“ w*(tl:po,fo)}((tl-ta)w(ta;po,fo,atldt2
where the total interference covariance function kﬁ(tluta) is

the sum of clutter and noise covariance functions,

Kt-t) = K (t-t) +H(t -t ). (4.49)

Because the function }C(tl-tz) depends only upon time difference,
the problem of maximizing % given by (4,48) 1is formally
identical to the problem of optimal receiver design for colored
noise interference. 1In this latter context of noise alone an
expression of the same outward form as (4.48) appeared as long

ago as 1947.%7

The interpretation of the several functions
appearing in equation (4.,48) is, however, quite different for
the present case and leads to substantial problems in the anal-

ysis. These problems will be discussed as they occur,
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The solution for this case is conveniently carried
out in the frequency dcwiain, As shown in Appendix 3 the re-

sults are

M*(ffpo:fo) (
W*(ffpo:fo) = k(%) = H\ftpo»fo) (4.50)
+oo | M(£;p £ ) |2
and %- = 25; f M(£rpor o) dy (4.51)
-® K(£)
where w(f:po,fo) = }f{w(t;po,fo)} (4.52)
M(£ip,£) = F {mltspy,£,)] (4.53)
) = F{Km} . (.54)

The frequency response function H (f:pcfo) is given in terms
of the voltage spectrum of the desired echo M*(f;po,fo) divided
by the power spectrua K(f) of the interference,

In the present case, however, K(f) is given by
K(£) = K_(£) + K (f) (4.55)
where K, (f)= }'{}(c('r)} (4.56)

Kn(f)= noise power spectral density
function,

It is the fact that thz interference spectrum K(f) depends
upon the transmitted waveform (through Eqs, 4.45, 4,56, and
4.55) that distinguishes the present case fcom the case of
colored noise, The interpretation of equatiuns (4.50) and
(4,.51), for example, is made more difficult because K(f) and

47~
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M(f;po,fo) are related. In the present case it is not as if

a signal were being received throuch colored noise of fixed
spectrum, Rather the signal is being recelived in interference
with a spectrum depending upon the sisnal., The el{fects, for
example, of a change in the transmitted spectrum upon the
signal-to-interference ratio cannot, therefore, be easily
assessad in the present case, The very practical problem of
choos:ng a "good" waveform for tranamission is, therefore,
rendered much more difficult,

This solution for uniformly extended clutter has
been discussed first because of the prevalence of its basic
assumption, equation (4,42), and the ease with which the
solution is obtained., The simplicity, however, is achieved
at the expense of possible variation of the clutter source
with range delay, o©. The assumed lack of clutter variation
with range delay is never strictly true in a practical envi-
ronment and possibly can be expicited for clutter rejection,

The prcblem of solving equation (4.3%) in circum-
stances of more general clutter source distributions will be
taken up again in Chapter VI. PFirst, however, Chapter V will
contain a description of the appropriate ambiguity functicn
for describing delay and doppler performance of an optimum
system,

~48-
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V. AMBIGUITY FUNCTIONS

The viewpoint of the preceding chapter was strictly con-
fined to the problem of decigning a system for detecting an
echo with some definite range delay, Py » and some speci-
fied fregquency shift, fo . In the usual radar situation one
is almost alvays also interested in an allied question., As-
suming that a system has been designed to detect a specific
signal, what is its response to other signals which might ap-
pear at its input? As was first observed by Woodward, *? the
answer to this question is contained in an appropriately de-

fined "ambiguity function."

A, A GENERAL AMBIGUITY FUNCTION

Let it be supposed, at first quite generally, that the
system under consideration has been designed to detect the
echo r(t;po,fo) by means of the weight function w(t;po,fo).
Let u(Tt,$) denote the response to the echo r(t;po+T,fo+¢).
Then Eq. {4.6) gives u(t,¢) as

u(t,0) = [ wr(tip £ )r(tip +7,f_ +d)dt . (5.1)

This may be simplified somewhat by recalling that r(t;pdwnf6+¢)
is the complex envelope of R(t;po+1 s fo+¢) defined at Eq. (4.20).

One can therefore write

T(trp +7, £ +b)=A-S(t-p_-1)exp (2T (£ +6) (t-p_-1)} -exp{-j2nf_t}

A-m(t-p_~ 'exp{j2rfc(t-pc-1)}

. exp (j?n( fo+¢) (t-po-1)> -exp{-j?nfct}
A-m(t-po-f)exp{§2n(fo+®)(t-po-r)>

' eXp {-j2nfc(po+1)} . (5.2)
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In consequence one may rewrite Eq. (5.1) as

u(t,9) = At (1,9)- exp {-j27rfc(po+'r))

where E(T,9)= j' w*(t;po,fo)m(t;po+1,fo+¢)dt
-0

(5.3)

(5.4)

It will be shown that the function ¢(t,¢) is, in appro-
priate circumstances, essentially equivalent to Woodward'g+4?®
ambiguity function ¥(7,¢) and its gene-alizations.33*!In the
form given above however, £(71,¢) is defined for an arbitrary,
neither necessarily "optimal" nor "matched," weight function,

It tnerefore describes the response of an arbitrary linear

system to a class of input signals. Depending upon the st

it may also be a function ~f P, and ;o as 2lil as T

The general ambiguity function £(1,#) may be ur
re-express Eq. (4.31) irn a morc suggestive form., Equa
(4.18) is introduced into (4.31) to yield

(ot 1) = f [ f f we €10 EW(E 1, , )

=00 =00 =00 =00

and ¢,

ed to

tion

(55)

. ¢ » * .
25(,,f)m(tl,p,f)m (ta,p,f)dtldtedpdf.

When the definition (5.4) is employed, the result for the mean

Square output clutter interference is

<|c Porfo) | > f feé' (po*T, £ +8)1£(1,0) | “drd o

-00 =00
(5.6)
wherein the fcllowing changes of variable have been made
P=pPg*+T (5.7a)
and
f=f +¢ (5.7b)

-50-
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The signal-to-interference ratio itself may be expressed
in terms of the general ambiquity function, although this seems
more useful for interpretation than for optimization of system
performance in clutter, If the processcr weight function is
assumed to be normalized so thatt

j. w*(t;po,fo)w(t;po,fo)dt =1 (5.8)

and the noise interference is assumed "white," then one can
rewrite Eq. (4.33) to yield

2€_ 1£(0,0) |
e : (5.9)
J f280p 47,2 40) £(x,0) |2arag+ N

=00 =00

1%

With both the clutter dispersion function §£(p,£f) and
the general ambiguity function £(1,¢) in full view in

Eq. (5.9) it is tempting to conclude that one might

i) find a £(1,%) such that £/0,0) is relatively
large; and

ii) find a £(t,¢) which minimizes the contribution

of the double integral in the denominator,

A great difficulty in attempting this intuitively appealing
appiyoach to maximizing % is the lack of a sufficient char-
acterization for an ambiguity function, Thus while one might
choose, or derive, a £(t,¢) satisfying the preceding two
conditions, there will not necessarily exist an m(t;p,f)

and w*(t;po,fo) from which the desired £(t,¢) can be de-
rived by Eq. (5.4).

t This is not necessarily the same normalization used to

write (4,38).
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Because of this difficulty, attention in this research
has been restricted to maximization of % in the analyti-
cally more tractable form civen at (4.33). The drawback to
the latter approach, however, is that the ambiguity fuinction
which results after the optimal weight function is found is
not easily or directly controllable,

B. UNIT TOTAL AMBIGUITY
One particular -roperty of the general ambiguity

function which has proven useful in this research, however,
is the property of having "unit total ambiguity." Suppose
that both w(t;po,fo) and m(t;po,fo) are normalized, square-
integrable rfunctions; that is

J lw(t;po,fo) | 23t = 1 (5.10)

for any (po,fo), and

it
-

(5.11)

an
. .
fm Im(tip_,£ ) | 2at

for any (po,fo)° Then it may be shown' that the general

ambiguity function ¢£(7,¢), already defined by

g(T:¢) = f W*(t7po:fo)m(t7po + T:fo + ¢)dt: (5012)

has the property that

[ ] le(,) 12 arap =1 (5.13)

t See equativns ( 5 ), ( 8 ), and ( 9 ) of reference 41,
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Two particular aspects of this useful result should be
noticed, 1In the first place, £(T,¢) is defined bv equation
(5.12) in terms of a single, fixed w(t;po,fo) which need
only exist for thc parameter set (po,fo)o This can be a
convenience in situations where properties for other param-

eter sets might bhe uncertain,

In the second place, the function w(t;po,fo) appearing
in equation (5.12) is, evcept for eguation (5,10), essentially
unconstrained, Thus, despite the suggestiveness of the
notation, it need be neither an optimum weight function nor
a matched weight function, tor example, An arbitrary,
square-integrable function of t will therefore¢ serve for
w(tip,£ ) in equations (5.10) and (5.12),

C. AMBIGUITY FUNCTIONS FOR STATIONARY SYSTEMS

When the interfering process is statistically stationary,
it 1s a simple matter to show thLat the optimal processor is
likewise stationary. That is, optimal processors for two
signals which differ only by a time translation will them-
selves only differ by the corresponding time translation,
Thus, if w(t;po,fo) satisfies

-~

«<

[0 o]
_j:f( (t =t dw(t_sp,£o)at_ = m(t ip,£.) (5.14)
then it should be clear that w(tz-r;po,fo) satisfies

=m(t -Tip ,£) . (5.15)

J:K (tl-tz)w(tz-rgpo,fo)dtz

Morec.er, since m:t;po,fo) as defined at Eq. (4.,17)
has the property that
m(trpo,f

)= m(t=-p 0, ) (5.1
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it follows that the optimal processor satisfying (5.14) will
likswise have the property that

w(t;po,fo)a w(t-po;O,fo) . (5.17)

“ 23

Using now Egs, (5.2} and (5.17), it is possible to sim-
plify the general ambiquity function of Eq. (5.%) for the
orisent case, From (5.4)

>}

E(T,%) = J. w*(t;po,fo)m(t;po+T,fo+¢)dt
-
__fm W*(1=po 10, £ )m(t=p_-T;0,£_+b)dt

o0

f w*(t;O,fo)m(t—‘r;O,fo+¢)dt s (5. 18)

-0

wherein it is noted that the p.ssible dependence of E(t,0)
upon  p_ has been removed. When the explicit definition
(4.17) of m(t;p,f) iz introduced into (5,15) the result for
E(t,p) is

t(1,0)= J w(£:C, £ Im(t-7)exp(jen(£ _+o)(t-7)} at .  (5.19)

Parseval's theo:em inturn yields the alternative expression

@x©

t(t,0) = f W*(£:0, £ )M(£-£ -0 )exp(jener) af (5.20)
where W(£:0,£ ) -—.T{w(t;o,fo)} (5.21a)
M(£) = F (m(t)) . (5.21r)

Finally Eq. (4,50) for the optimal processor in the fre-
quency domain, together with (5,20}, vields
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M*(f-f )M/ f-f ~-¢)
e(1,0) = [ S ©

exp {j21rf1') af .  i5.22)
-0 K(£f)
This is the expression for the ambiguity function of the lin-
ear processor which is optimal for detection in colored, sta-
tistically stationay interference, Note first, that £{7,?)
is not independent of fo in general; and second, that for

interference which includes clutter, K(f) depends upon M(f).

In the case of stationary "white" interference, when
K(f) is constant, the ambiguity function for the optimal
processor (now a "matched filter") becomes

E(t,0)= I M*(£)M(£f-¢) exp {j21rf1'}df-exp {—j21rfo'r} (5.23)

agreeing essentially with Woodward's original definition.*®
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VI. GENERAL FOFMS OF SOLUTION

This and the next two chapters will be concerned with
the problem of solving the basic integral equation presented
in Chapter III, In certain respects the integral equation resem-
bles a conventional Fedholm integral equation of the second
kind and existing theory can be used in its solution. In other
respects, however, the integral equation has a structure es-
sentia.ly different from the conventional Fredholm equation
anu its solution poses problems not heretofore considered in
the engineering literature,

Following a discussion of the integral equation itself,
this chapter concludes with the >resentation of three different
forms for the general soiution.

A. DISCUSSION OF THE INTEGRAL EQUATINN

This research ‘s limited to the consideration of inter-
ference consisting of clutter plus white noise. The interterence
covariance function is therefore given by

1l

‘5{,(1;1,1;2) = %c(tl,tz) +N_ - 6(t2-t ) (6.1)

where H%(tl,tz) is the clutter covariance function already
given at Eq. (4.18), and N is the noise power spectral den-
sity in watts per cycle per sec., The introduction of this
form of interference kernel into Eq. (4.34) yields, for the

integral equation which must be solved,

o0
‘t ,t t ;p ,f J)dt + - wit 3p ,f ) = ;
{ms(oc\tl, Jult ip L€ )dt + N - owit 5p ,f ) =m(t sp £ )
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where

.
o0

3(, t t 2//m(tl;p,f)m*(tztp,f)@(p,f)dpdf .
(6.3)

If one's attention is for the moment confined to just

.., (6.2), then one sees an equation having the form of the
Fredholm linear .ntegral eguation of the second kind. For
nch an equation general forms of solution do exist and will

;ecently be exhibited, The utility and interpretation of
these forms, however, often depends upon the lin¢ ity of
the relation which exists between the given (or ‘orcing")
function m(t:po,fo) and the solution (.r "wesponse')
function w(t;po,fo), for any fixed kernel ﬁQE(tl’tz)'

When one's view is broadened, as it must for the present
problem, to include the kernel EQ%(tl,ta) defined by Eq. (6.3),
then a considerably different situation arises. 1In the first
place. the kernel %%é(tl,tz) may not be regarded as a fixed
function specified independently of m(t:po,fo).f This cer-
tainly introduces technical difficulties into the analysis.

Ot possibly greater significance, however, is the fact
that linearity no longer exists between m(t:po,fo) and the
solution w(t:po,fo}. Thus one cannot in general expect %o
write the solution as a superposition of the separate responses

to elemental functions which constitute m(t;po,fo).

One can indeed see, virtually by inspection, that ix
w(t:po,f ) is the solution for m(t;po,fo), then the solution
0 .
for a . m(t;po,fo) is certainly not a - w(t;po,fo), for any

t One consequence of this fact has already been noted in con-
nection with the solution for uniformly extended clutter,
Sec III.D.Z2.
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AY

1" " 1
/
o

non-zere scalar "a," Likewise, if wl(t;pc,fo) and w2(t7p , £
‘ o
are the respective solutions for some ml(t:p »£ ) and
o' o
m2(txpo,fo), then the solution for

m(t:po,fo) - ml(t7po’fo) * ma(t;po,fo) (6.4)

is not
W(t:po,fo) = wl(t:po’fo) + wz(tTPOJfO) (6.5)

The techniques of linear analysis therefore have only a restricted

applicability in the present research.

It will be seent that, as a further consequence of the
particular structure of Eqs. (6.2) and (6.3), the situation
tends not to be one where a 3ingle solution is applicable to
a collection of cases of interest. Rather, different cases
tend to present essentially different problems which are sus-
ceptible to different modes of soiution, if they are solvable
at all.

Similar comments apply with respect to the lack of any
linear influence of the clutter energy dispersion function
&(p,£) upon the problem solution. It will in fact be sean
that one parameter which greatly influences the form of the
solution is the clutter-to-noise power ratio. This, however,
is not entirely unexpected. since this ratio directly determines

the relative importance of the two terms on the left of Eq. (6.2).

In physical terms appropriate to the present research,
these considerations imply that the optimum data processor

depends in an unobvious manner upon not only the detalled

+ 1In Chepters X through XIII, for example,
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functional forms of the transmitter modulation and the assumed
clutter source, but also upon the relative levels of clutter
and noise interference. 1In particular, since only the clutter
comphonent of interference depends upon the transmitter power,

the optimum data processor also depends upon transmitter power.
All these considerations lead to the conclusion that the

integral equation defined by both Egs. (6.7) and (6.3) is es-

sentially new to the literature and possesses solutions with

characteristics only imperfectly understood.

B. SOLUTION IN TERMS OF EIGENFUNCTIONS

In this section the Schmidt-Hilbert method is applied to
Eq. (6.2) to y‘21d a general form for the solution. The method
is applicable because the kern:1l Sﬁb(t ,t2) is Hermitian and,
1

in a practical situation, square-integrable over the plane. t

That the kernel is Hermitian is verified by direct in-
spection of Eq. (6.3). Since &(p,f) is a real-valued function

one can see that, as required,
= *
%c(tl,te)_ ﬁ&gc(ta,tl) (6.6)

Tne second requirement, that the kernel be square in-
tegrable, is

0 o0

P i 2

F T e (st ) [ %at dt (= (6.7)

=00 =
As will now be seen, this integral will bhe hounded for suitably
bounded dispersion functions &(p,f). Using the definition (6.3)

one can write directly

t+ See p. 242, Riesz and Nagy,?®®
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® o

2
] ! iﬁ%g(tl,ta) | 2at at

-0 =0

1101 26t ne 0, Om (s, 1apat |

-0 =D -0 =0

o0 o]
'{f / Qé(pl;f')m*(tl;pt,ﬂ)m(te;pl,f')dpdf} dtldto

—Cg werp

(6.8}

This is condensed considerably by introducing the function

[oe]

[om(e s, £)me{e spt, £}t , (6,9)

-0

glp,£';p, £)

and introducing it into Eq. (6.8), after changing the order

of integration. The result is

oo oo

[ ’ 23t at =
] ¥ (e ,t)) | %de at

—ng =00

o0 [22] o0 oC
Y P07 T &, )& (p,E) alet, £ 5p,£) | Bdpdfdpr af!

=0 00 TR =

(6.10)

It has been assumed, however, that for any (p,f)

f im(t :p,f) | 2 dt =1 (6.11)

=0

Since Eg. (6.9) therefore has the same form as Eq. (5.12), one
concludes from Eq. (5.13) that, for any \(p,f),
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[e0) 00
[ ] lalp',£ip,8) | 2 afr =1 . (6.12)
-0 =00
Integrating first with respect to the primed variables in
Eq. (6.10) therefore yields

[ 1 1 M (e st) | Bae at (UG [ [ &(p,f)dpat

o opw =00 =0

(6.13)

where & (p,f) has been assumed to be a continuous (everywhere)

function of p and £, and where

é;c = max Sp,£) . (6.14)
\pP> f)

The inequality (6.13) stems frcm the "allotment" by
Eq. (6.12) of unit "volume" unler the surface |g(p',f':p,£f) | 2.
The maximum value for the integral in Eq. (6.10) is therefore
achieved if | g(p',f';p,f) | is such that its content is
concentrated at the value of (p',f') where &(p,f) has its

maximum value G Distribution of the fixed volume in any

other manner leads to lesser values for the integral.

A further practical matter, which acts only to strengthen
the inequality (6.13), should be noted in passing. The function
g(p',f':p,f) 1is essentially the auto-ambiguity function for
the waveform m(t). As such it cannot be specified arbitrarily,t
and strict equality in (€.13) is not necessarily to be expected
for any particular m(t). From the ineguality (6.13), cne
therefore concludes that, if

0

E. [ [ &(p,5)dpat { o (6.15)

=00 =00

+ Constraints upon the auto-ambiguity function are given by
Price and Hofstetter, ®>* and Westerfield, et al.,*®
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then

T Hgle e [ R ae o (6.16)

as required.

The condition (6.15) is unrestrictive in practical cases.
Boundedness of the double integral, for example, simply re-
quires that the totsl energy returned from the clutter source

~

be finite. A finite value for é}c is likewise readily as-
sumed. t

Assuming that the Hermitian kernel.ﬁ@c(tl,tz) does satisfy

the inequality (A.13), it then has a finite or countable set
of eigenfunctions.®®These eigenfunctions, denoted ¢j(t), and
their corresponding eigenvalues “j may ke characterized,

with no loss generality, as having the following properties

1,2,3,... (h.17a)

i) yﬁc¢j = . * o. J

1
=

ii) (¢j,¢j) j = L2,3... (6.17b)
iii) (bi,fk) = 0  for all different j and k # 0 (6.17c)
J

where the following conventional notations for linear trans-

formations and scalar products have been introduced for brevity:

2 2

So£= S Mot .t )E(t )at (6.174)

t+ Cases where éb(p,f) is impulsive in one variable or the
cther, as for stationary clutter, can be handled separately
and shown to yield a similar result.
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and
(f,g9) = [ £ (t)g(t)at . (6.17e)

The possibility of having zero for amn eigenvalue of‘Kbc(tl,ta)
1s, however, not yet excluded. Until and unless it is, for

the particular functions m(t:p,f) and &(p,S) appearing in
the case of interest, the analysis must include the possibility
of square-integrable functions, not identically zero, with the

properties
iv) 3(9c¢o= 0 (6.18a)
v) (¢j,¢0) =0 3 =1,2,... (6.18b)

for a typical such function ¢O(t).

1. The Schmidt-Hilbert Solution

With these preliminary observations concluded, the
solution of Eq. (0.2) becomes a straightforward matter. For
the desired echo to be detected, namely m(t;po,Io), form

the coefficients aj defined by

aj = (d)j)m) (6'19)

and taen consider the function mo(t) defined by

n ™3

m(t) = m(t:po,fo) -

o aj¢j(t) . (6.20)

j=1

Using Eqs. (6.17),(6.19), and (6.27), one may verify that

(¢om) =0 3 =1,2,... (6.21)
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Moreover, t for mo(t) defined as in Eq. (6.20),

Yo, m =0 (6.22)
The desired echo is, in this manner, representesd by

m(t;po,fo) ~ mo(t) + asd,(t) (6.

1 J 3

Y}

3)

M3

J
Let it be assumed that the solution of Eg. (6.2) has
the sinalar representation
t:p ,E ) = t) + 5 B.o.(t 6. 24
W(eipg ) = w (6) + 2 Byy(® (6.24)

where the aj and w (t) =are to be determined, and
o

y@cw5= 0 . (6.25)

Combination of Egs. (6.17), (6.23), (6.24), and (6.25) with
Eq. (6.2) then yields

™3

.. (t) + N t) + Ao (t)y = (t) + ; G ()
RO AT )} = mgie RN

(6.26)

3

Upon forming the scalar product of each side of this equation
with ®y(t), and then using the properties (6.17b), (6.17¢),
and (€.1Ca), one finds the requirement that, for k = 1,2,...,

B * up * N =8 = a (6.27)

+ c¢f. Theorem on p. 242, Riesz-Nagy.
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or
o}
k
B, = (6.28)
k uk+No
Moreover, one concludes tuat
1
t) = =+ m (t 6.2
AORS ARG (6.29)

Incorporation of these results into Eq. (6.24) finally yields,
for the optimum processor weight furict.on,
%

1 ,
+, £ = == ¢ ) + — t
wopt( po: O) NO mo( ) ki]_ uk ¥ No ¢k( )

(6.30)

The performance of the optimum processor is derived
using the basic Eq. (4.38) together with (6.20) and (6.23).

After simplification the result is

(m_,m_) o |, | ®
§) = 2& {——O——-9—+ P (6.31)
(I opt S N k=1 Mg * N \

o)

If the kernel ﬁch(tl,tz) has no eigenvalues equal to zero,
then the set of eigenfunctions ¢k(t) form a complete,
orthonormal set in the space of functions f(t) square in-
tegrable on the line -~ { t( ©.T Under these circumstances
the functions m (t) and w (t) have zero norm. The pre-
ceding results mgy then be rgduced to

no O_k

wopt(t:po,fo) = kil E;-;“ﬁg ¢ (£) (6.32)

t cf. theorem on p. 234 of Riesz-Nagy. 36
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and
. 2
( s) = o |
= =26 3 —_— . (6.33)
\ T/ opt S o1 M t R

The siwplicity of these results is somewhat decentive
because the fact has not been explicity indicated that both
the eigenfunctions as well as their eigenvalues depend upon
the modulation function m(t) and the clutter dispersion
function & (p,f). Moreover there is no simple relationship
between the various quantities, other than that provided by
the defining equation (from 6.17)

o0 00 oo
r{r £ié(p,f)m(tl;p,f)nr*(tz;p,f)dpdf} bl )t = p o (t )
i (6.34)
The first difficulty with this form of solution is
therefore “he discovery of the y, and ¢k(t) and their
relation to m(t) ard &(p,f). The second difficulty is re-
lating changes in either m(t) or &(p,f) to resulting
changes in wopt(t:po,fo} and, ultimately, in (%)opt' It
is simply not clear what happens to the value of the sum in
Eq. (6.33), for example, as all the b, and o change in

response to a single change in, say, m(t).

The solution for uniferrmly extended clutter which
was presented in Egs. (%4.39) through {(4,52) provides a direct
illustration of these remarks because it is, after all, an
eigenfunction solution. In fact, for a stationairy covariance

kernel'@bc(tl-tg) the eigenfunctions are always known, since

{m SQc(tl—tz) * exp {—j?ﬂft%} th = Kc(f) 5 exp{:—jQﬁft;}
(6.35)

[OA
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where K_(f) = y{’){)c(’f)} ;

In the case of uniformlv extended clutter one there-
fore always has the identification

¢f(t) = exp {-jewfg} (6.36)

and
ue = K (f) (6.37)

Because the kernel ﬁ&k(tl_tz) is not bounded, in the sense

of Eq. (6.7), the discrete index set k =1,2,... goes

over into the continuous variable f, and the .ums in Egs. (€.30)
through (6.33) are replaced by integrations 'vith respect to f.
Thus the analogue of Eq. {6.33) becomes

S 0 :M(fTP 3 ) [2
) =26 J KCTfSJ +ONO

opt -00

df , (6.38)

exactly as seen earlier at Eq. (4.48),

The dAifficulty of relating system performance to
waveform parameters, even for the very easily interpreted
Eq. (6.2%), has already been remarked at the conclusion of

Chapter IV, One additional example here will suffice.

If‘ﬁhk(tl-tz) were a fixed function independent of
m(t), as it is not, there would be a direct answer to the
question: "What should be the waveform m(t), in order to
maximize (%)?” The general answer would be: "Let m(t) be
exactly that eigenfunction which has the least eigenvalue,"
for then the sum in Eq. (6.33) would reduce to a single term

with the greatest numerator (unity) and the least denominator.
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In the present case it should be clear by now that
no such direct answer is so easily available to that most im-
portant question of waveform design. The difficulty dis-
cussed at the endof Chapter IV reappears here in somewhat more
general form. Because the kernel ybc(tl,te) in general de-
pends upon m(t), any alteration of m(t) leads to changes
of not only the q,  appearing in Egs. (6.30) and (6.31),
but also the basic eigenvectors ®k(t) and their eigenvalues
e s Assessment >f the influcnce of any change in m(t) upon
either the processor weight function or system performance is
therefore not to be had directly by inspection of this solu-
tion, Egs. (6.30) or (6.31), for the general case.

2. Bounds for Eigenvalues

The eigenvalues u,, defined by Eq. (6.17a) and
appeariig promninently in the preceding sonlution, may be bounded
directly in terms of &(p,f).

Equation (6.17a), written in full, asserts that

=00 =00 =

i {Jr Ji m(tl:p,f)nr*(tz:p,f)Eé(p,f)dpdf}¢k(t2)dt2=uk¢k(tl)

(6.39)

If one defines the function

oc

e lpsf) = [ m (e _sp, ) (t )dt (6.40)

-0

then, after changi‘ng the order of integration, Eq. (6.39) may
be written

- 0

[ ] mt s, 8)26(p, £)E, (p, £)dpdf = ¢y (t )

-0 =~

(6.41)
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Multiplying both sides by ¢i(tl) and then integrating over
the line - ¢ t ¢ =, vyields
1

[o.o] 20 e}

[T e, 01280, 018, (p, £)dpaf =y [ [yt )| e,
(6.42)
or
[ ] 2808 16, (p,6) [%dpaf =y (6.43)
But now, Eq. (5.13) may be usei to conclude that
o €, (p,£) [ 2dpaf =1 (6.44)
since both
fm m* (tip,£) | Bdt =1 (6.45)
and
fm | ¢, (£) | 2at = 1 (6.46)

as required by Egs. (5.10) and (5.11),

One then concludes, by inspection of Eq. (6.432) that,
since both & (p,f) and |gk(p,f)’ 2

tive,

are everywhere non-nega-

One further concludes that, for a fixed choice of function
&(p,£), one can by no means cause the unit-volume allotted
to !&k(p,x) "2 by Eq. (6.44) to be disposed over the {p,f)
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plane in such a fashion as to cause the integral on the left
of Eq. (6.43) to exceed the maximum value of 2&(p,f). Thus,
if 2&(p,f) 1is taken to be a continucus function of p and
f, one may write

0 w, < 2+« max &S(p,f) . (6.48)
~ k= (p,f)

The utility of these bounds in limiting achievable
system performance will be seen in Chapter IX, once other form
of problem solution have been considered.

C. SOLUTION AS A RATIONAL FUNCTION OF CLUTTER-TO-NOISE RATIO

In general, the ratio of clutter power to noise power
depends upon many things, such as the transmitted waveform,
the detailed structure of the dispersion function &(p,f),
and whether one is speaking of the interference ahead of, or
following, the data processor. It will alsc be a time-variable
ratio, in general. A single, simple parameter which indicated
the general levels of clutter and noise interference might

therefore he a convenience,

One such parameter has appeared in this research and is
defined by

28
C
® = — (6.49)
0
wiere
E = max S(p,f) . (6.50)
S (p,£)

Although @% does not specify the actual ratio of clutter
and noise powers at any given time for any given location in
the system as the result of any given waveform and dispersion

function, it is nevertheless true that the actual ratios are
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prcportional to G% once the shapes, but not the amplitudes,
have been chosen for the nodulation function m(t) and the

dispersion function &(p,f).

The parameter G% appears naturally in the following

analysis.

1, The Fredholm Solution

The method due to Fredholm (see Riesz-Nagy, ®° pp.

172 £f.) may also be applied to the solution of Eq. (6.2),

after a preliminary adjustment of notation,

Let the dispersion function &(p,f) by factored -3

follows
&(p,8) = &, -Elp, ) (6.51)
with the result that ﬁﬁb(t-’tg) becomes
~ oc "13
Moot st)) = zéc . {w j_m m(t ,p,E)m(t_ip, £VE(p, £)dpdf
which may be written
Noo(t st ) =25 - Kk {t ,t) (6.53)
Assuming that N # O , one may now rewrite Eq. (6.2) in the
o
form
. R [ \ . = =
w(Ll,po,fo) + & {m Kc\fl,tz w(t2 po,fo,dt2 Nn m(tl po,fo)
{n,54)
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Fredholm's method of solution first requires the
n(tl,tz), n= 1)2)-~~) in

the foliowing manner.? The process begins with

recursive generation of kexnels D

= t 5
D (e ,t ) =K. (t ,t) (6.55)
and then, for n = 1,2,..., generates Dn(tl’tz) according
to
- Yo - -
Dn(tl,tz) = Kc(tl'tz' D - n {m Kc(tl,T)Dn_l(.,tz)dT
(6.56)

where the coefficient Dn is always available from the pre-

ceding kernel, according to

p,=/J D _ (1,7)dr . (6.57)
-0
After defini“ion of
o8]
- _1 .
D(®) = 2z Db & (6.58)
n=0
and
_ D S
D(t ,t :®) = K (t ,t ) + I D (t ,t ) Gg

(6.59)

the optimal processor may then be written

(b + @) ,

1
. =
tip £ ) N m(t

(6.60)
t+ TlLe notations and presentations of Korn and Korn, #% p, 436,

and Margenau and Murphy,2® pp. 526-7, form the basis for the
description which is given.
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with optimum performance given by

2@ Qé o ™ D(t t ;R )
S) g S.R T M 1’ ! J 5 )
= = - . t:p,£f tp,,f
(I o ND NO c {mn‘( v P o) DZG%5 m( 2'Fo? o)dtldtz

(6.61)
Subject only to the requirement? that

[e ¢} [e 0}

N 2
I J IKC(t1,t2) ! dt_dt_

-y -y -

exist and be non-zero (cf. inequality 6.7), the power series
for both D(GE) and D(tl’t276%) converge for all finite G%.
The series for D(tl,t2;6%) moreover converges uniformly for
all (tl,tg) in the plane. The Eq. (6.60) for wopt(t;po,fo)
satisfies Eq. (6.54) almost everywhere'? and for all @&,
provided )

D(R) # 0 (6.62)

C

This last condition is alweays satisfied in the present
problem because D(y) = O if and only (-u) 1is an eigenvaluettt
of the kernel Kc(tl’tg)’ In the present case, for G% > 0,

-G% can never be an eigenvalue (see the inequality 6.48) and
condition (6.¢2) must be satisfied. If GE = 0, Eq. (6.2
its own solution and there is no problem. The case G% {0

has no physical meaning for the present research.

The Fredholm solution contained in Egs. (6.60 and

(6.61) has a different set of attractions and difficulties,

t cf. p. 436, Korn and Korn,
++ cf. pp. 176, Riesz-Nagy.
+++ cf. p. 527, Margenau and Murphy.
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when compared to the Schmidt-Hilbert solution, for prospective

application in the present research.

The major difference is that the Fredholm solution
is given directly in terms of the known functions m(t) and
E(p,f), without the intermediate problem of discovering eigen-
function representations, Exploitation of this desirable fea-
t'ire, however, rests upon the ability to evaluate the necessary
iterated kernels Dn<t1’t2) defined by Eq. (6.56). This may
or may not be a light task, depending upon particular choices
for m(t) and E(p,f) which define K_(

functions, chosen without regard to the problems of integration,

t .t2). For "realistic"
1

generation of the iterated kernels could be impossible in

closed form.

The second potential advantage of the Fredholm solu-
tion is its validity for all G% of physical interest in the
present research, If une can generate the iterated kernels,
then the solution can be examined as a function of G%. How-
ever, examination of the solution in one region of great in-
terest, namely for larger values of @E, might we'l require
the use of many terms from the series for D(tl,tz;G%) in
order to achieve acceptable accuracy in a finite sum, The
necessity for being able  generate high-order iterated

kernels is therefore dcubly stressed.

D. SOLUTION IN TERMS OF ECHO WAVEFORMS

The third, and final, general form cf solution which will
be developed capitalizes directly upon the particular form of
the kernel S{DC(tl,tQ), Eq. (6.3). The kernel has a structure
analogous to that of a kernel of finite rank, i,e., a kernel

which may be written in the form

I
MR
©
'-—a
b
F
]

K(x,y) (6.63)

|




COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

with suitably chosen square-integrable functions ¢i(x) and
v, (y).

The following development of a general form of solution
for the present ¢ se follows the line of reasoning presented
by Lovitt (see Ref. 26, pp. 68-70).

The kernel v c(tl’tz) of Eq. (6.2) is first approxi-
mated by the following double sum:

— d b
¢ - . *(t :0.,f. £,
y@c(tl,tz) Qiio jio m(tl,pi,fj)m*\tz.pl fj)&(p1 J)ApAf
(6.04)

where

£, = £, +of i=0,1,2,... (6.65a)
and

pj+l = pj + Ap j = 0,1,2,..- (6.65b)

If now the approximate kernel EGE(tl,tz) is introduced into

Eq. {6.2) there results, after transposition,

. _ 1 r
W(tllpo,f ) = N m(tl,po,Lo

1
0 ) - N
o o

d b
N jzo m(t 1p;0£5)2 Glpy, Ey)opaf + Cy
(6.66)
where
R B ; Jwit Yat . 6.67
iy f m*(t2 pi,fJ)W\tz po,fo, , -t (6.67)

-

+ That the desired echo parameters are here identified with
(p.,f,) detracts in no way from the generality of the treat-
ment. It is, however, a notational convenience.
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1f the complex scalars Cij can be determined, then Eq. (6.66)
gives w(tl:po,fo) in the form of a weighted sum of delayed
and Doppler shifted replicas of the modulation function n.(t).
Apart from the Cij’ all other quantities on the ri~ht of

Eq. {5.66) are known for any particular case of interest.

I1f Eq. (6.66)for w(tl;po,ff) is substituted into Eq. (6.67),

a constraint upon the cij may be derived, namely

d b
1 _k& 1 ket

C,, =50 " -=. 5 3 I'7 . 2&(p,,f.)hptsL * C..

k4 NO oo NO i=0 j=O 1] b J 1]
(6.68)

where

rk£ = fm m(t ; f,)m(t ; £.)dt (6.69)
ij ! 2 Pty 2 Pi*ty 2 0

-
Since Eqg. (6.68) must be true for each possible pair of indices
(k,4), it implies the following set of (b+l){d+l) 1linear

algebraic equations for the Cij:

r oo 00 00 arL. 71 [-
+ .. . P99 ... 00 e
(Nb rooeoo) r01e01 roeeoe F1oe10 deebd Coo ! o0
ro: o1 o1 L. 01 .. o1 o1
ooeoo (N6+F01e01) I-‘ozeoa F10e10 I-‘bdebd C01 I-‘c\o
02 02 ‘N +7°2 . 024 02 ~ 02
rooecao I-‘03.(301 \No rﬁzeoa) * e I-'10910 T deebd L02 roo
10 rio rio 10 . 10 n 10
I-‘ooeoo o1 01 ozeoa vt 4No+r10313 v deebd Clo )
bd ~bd bd ... pbd . d bd
i Fooeoo 101e01 ozeoz r1oe10 (Ngﬂihgbd) de I~oo
N | IR B

(6.70)
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where

= ) 7
e zé(pi,fj,ApAf . (6.71)
A unique solution will exist for tu-» C. . if the determinant
of their coefficients on tha left of Eq. (6.70) is different
from zero. Once the C. have been determined, Eg. (©.66)

then gives a solution for the optimum weight function,

A possibly more suggestive continuous form of this solution
cun also be derived. To that end consider the situation as
the subdivision of the (p,f) plane which is used in writing
the approximate kernel Qaé(tl,tz), Eq. (6.6%), is made finer.
If Eq. (6.70) continues to have a unigue sclutinn for the C.
during this limiting process, and if a limit function C(p,f¥
exists for the Cij’ then Eq. (6.66) converges towaré its
continuous counterpart

l o0 o0

_1 1 . . .
w(tl,po,fo) "N m(tl,po,fo) = 0 Cé(p,f)c(p,r)m(tl,p,f\dpdf

o —o =0

(6.72)

and Eq. (6.63) becomes an equation for C(p,f), namely

[ ] 6lp,£ir,¢)2&(x,0)c(x,?)drds + N_-C(p,£) = Glp,fp ,£ )

-0 =
(6.73)
where Eq. (£.€9) is replaced by
G(p,f;po,f ) = [ m*(t27p,f)m(t2:po,fo\dt2

0

=0

(6.74)
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Thus, by making use of the particular structure of the
cc “iance kernel, Eq. (£.3), the problem of solving the
orig.iral Eq. (6.2) is transferred to the problem of solving
either the double-integral Eg. (6.,73) or its discrete counter-
part, Eq. (6.€3). While one might envision the solution of
Eq. (6.7%) by application of suitable generalizations of the
tc<hniques applicable to the one-dimensional Fredholm integral
equation, 1t is not clear that such efforts at solutions in
tw: d_mensions represent a simplification of efforts directed
to svlutions in one dimension. This attempt to capitalize
upcn the structure of the original covariance kernel seems,
therefore, only to have replaced the original problem by a
more cGifficult one in the geneval case. When noise is
(assumed) absent, however, this method does lead to a certain
insight into the nature of the optimum processor. This zero-

noise solution will be discussed in Sec. B in the next chapter.
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VI, ASYMPTOTIC FORMS OF SOLUTION

In the preceding chapter, several forms of solution were
presented whicu are valid for arbitrary levels cf clutter and
noise interference, 1In this chapter the two extreme situa-
tions are considered. Solutions are given Sor cases where
the noise interference is either much greater than the clut-

ter, or negligible with respect to it.

A, SOLUTION WHEN NOISE INTERFERENCE 1S DOMINANT

If the clutter interference is sufficiently small with
resvect to the noise, then the integral term on the left of
Eq. {6.2) will be small with respect to No-w(tl;pofo). If
the integral term is transposed, and the clutter-to-noise
ratio GE introduced, then Eq. (6.2), or (£.54), bhecomes

T - .1 .- e [ ! .
wit ipg,f)) = N_ m(t spgsfy) = Ot {ch\tl,tg)w(te,po,fo)dtz
(7.1)
, eé;c
where 0% = (7.2)
o
& = max &(p,f) (7.3)
(p,f)
l (¢ +] x
Kc(tl’t2)=-2é -xc(tl,tz)’: f J{ E(F’f m.tl'.*r.’f)m*(tz;i,’f\dfdf.
- =w
c
(7.4

When the right-hand side of Eq. (7.1) is successively substi-
tuted for witc ;po,fo) under the integral sign on the right of
2

Eq. (7.1), the following series solution results,
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1 ) I n ®
wit ipg,f,)= N, m(t ipg,fo)*+ N, m=l( o) {mfg(tl,te)m(tz;po,ngtz
(7.5)
1 - ,
Kc(tl’tz) N KC(Ll’tg) (76)
and Kg(tl,tz) = | K- 1(tl,T)Kc(1,t2)dT . (7.7)

*

It is known' that this Neumann series regresentation,

Eq. (7.5), converges (at least in the mean) to the solution,
if the kernel Kc(tl’tg) is Hermitian anA

- &
= ] | | <1 (7.8)
where 2 .. is the greatest eigenvalue of the kernel Kc(tl’tg)'

In the present case it has already been shown that the greatest
eigenvalue of fy{,c(tl,tz) does not exceed 25c (cf. Eq. 6.48,.
In view of the definitions (7.3) and (7.4) it should be clear

that the greatest eigenvalue of Kc(tl,tz), namely A does

max’
not exceed unity. For the present problem, therefore, the

Neumann series solution is valid for G% such that

%] <5 (7.9)

where the bound is never less than unity,

)‘max

The virtue of the Neumann solution is that with Eq., (7.5)
one can directly generate successively higher order approxima-

tions tc wopt(t;po,fo) in terms of operations with the known

t+ cf. p. 435, Kornand Korn ®%, bearing in mind that their eigen-
values are the reciprocals of the eigenvalues defined in this re-
search,
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functions Kc(tl,th) and m(t:po,fo}. The first two terms of

Eq. (7.5) may be w;itten, using Eq. (7.4) for Kc(tl’tg)’ as

w o (t sp £ )é-é;M(tlua £ »—%r-~ﬁg [ [ mleip,£)e(p, £)g(p, £)dpaf
O O

opt* "1'"o’ o o’ o oo 0
(7.10)
where E(p,£) =6(p,£)/& (7.11)
Y = ¢ . f .
and glp,£) = [ m*(t :p,E)m(t_ip,, £ )de . (7.12)

Tne performance of this processor is given by

26 o
(%)o c N {} - & al

oo 2
J E(p,f)! g(p,f)l dpdf+'"}. (7.13)
pt o =

The optimal processor is seen, in Eq. (7.10), to be writ-
ten as a matched processor corrected by a term depending upon
both the clutter source, E(p,f), and the auto-ambiquity func-

tion, g(p,f), of the modulation waveform,

The optimum performance, Eq. (7.13), is seen to fall short
of the best performance in the absence of clutter, namely 2£ys/No,
by an amount depending, again, upon the clutter source and the
waveform auto~ambiquity function. Equation (7.13) confirms a
goal of contemporary waveform design for maximizing (%), namely
to cause | g(p,f) | to be small where E{p,£) ir large.

Note finally that Egs. (7.10) and (7.13) are only first order
approximations, They and the conclusions drawn from them are

therefore only valid for relatively small ® |
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1, Comprriscn with Matched Filter

The matched filter weight functi-n is given by
1
wit ipg.£,) = X, m(t ipgs£y) . (7.14)

It is obtained directly from Eq, (6.2), for example, by setting
JCc(tl,tz) equal to zero. Using Eq. (4.33), which is valid for
arbitrary interference and weight function, onc¢ may compute the
signal-to-interference ratio at the matched filter output. It
is given by

2és

S
() =
I
mf * 5 . \
N_+ fm fm? (tl,po,fo)}Qc(tl,tz)m(tz,po,fo,dtldtz
(7.15)
or when Eq. (7.4) is introduced for 3GC(tl,t2)
2
S " : > (7.16)
mf 00 oo
No+2&6_ [ | E(p,f)lg(p,f) dpdf

whare &,C,E(p,f), and g(p,f) have already been defined by
Egs. (7.3), (7.11), and (7.12), respectively.

For surficiently small é;c: one may now use Eq. (7.16)
to write

> ]

o . 25»9 o
(3) = {1 -® - [ I Ep,f) lg(p,f)

mf fo) -00 =00

2

dpdf+"'}. (7.17)

Comparicon of 2q. (7.10) wich (7.14), and (7.13) wita (7.17),
leads to the conclusion that although, for small G% , the dif-
ference between matched and optimum processors is of the first

order in G% , the difference irn performance is only of the
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second order in G% . To first order in 6% the periormances

of matched .und optimum processors are, surprisingly, the same.

The practical conclusion is that when clutter in-
terference is small with respect to the noise, in the sense
that 0% {{1l. there is little advantage to be gained by de-
narting from a matched processor If there is to be a regime
where marked performance differences do occur, then it must
be for 5% > 1, or 6% >> 1.

Lespite these, possibly pessimistic, conclusions
one should not lose sight of the fact that Eg., (7.5) presents
a general solution to the problem for arbitrary functions
& (p,f) and m(t;p,f), subject only to the constraint (7.9).
This is possibly the only solution in this research which is
given so simply in terms of known functions and which simul-

-
taneously has such broad generality.

B, SOLUTION WHEN NOISE INTERFERENCE IS NEGLIGIBLE

Although it will eventually be seen that the effects of
seemingly negligible ncise are nct necessarily negligible,
first consideration will be of the case when noise is ignored

and only clutter is assumed to be present,

A convenient starting poinc is the finite rank solution
(6.66), wherein the delay and doppler variables have been
quantized with increments of Ay and Af respectively, When
N, = 0, Eq. {(6.70) for the Cij becomes

reo e roo e rec e .o F°§ e, . [ oo
00 00 01 o1 oz G2 b ba Q0 oY
rot e rot e . . C rot
00 0O 01 o1 01 00
— cep
¥ - .’--1-8\
ro2.e 1o . c e |
00 00 o1 o1 . o 20
bd bd bd bd
I e r e . . . '~ e c !
GO 0O 01 ba bkd bd NG
L. — e — -
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Let it be supposed, at first, that no ejj is zerc. 7hen

note that the separate eij enter the coefficient macrix of
Eq, (7.18) only as multipliers of separate columns of elements,
But the effect of multiplying a column of a matrix hy a fixed
scalar is to multiply the determinant of the matrix by that
scalar, Therefore one concludes that the determinant of the
coefficient matrix in Eg., (7.18) will be zero, or not, accord-

ing to whether the determinant

POO I-vOO FOO . . . I-vOO
(e]e] o1l o2 bd

r\Ol r\Ol .
0 o (7.19)
bd bd bd

r‘co F01 o F*d

1s zero, or not.

This matter is finally resolved by noting that each entry
in the determinant (7.19) is

| S A . ‘
Oi5 =7 m(t spagmle spg,£y)ae, . (7.20)

-

That is to say, P?. is the scalar product of the functions

m(tﬁ;pk,fL) and m(to;pi,fj). The determinant (7.19;, con-
taining all pair-wise scalar products for the set of functions
{rn(t:pi,fj): i=20,1,...,d, 3= O,l,...,h) is, therefore,

exactly Gram's determinant’ for that set of functions, It is

known* that Gram's determinant is zero if the set of functions

+ See p. 424, Korn and Korn, 22
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corntains linearly dependent members; it is non-zero if all the

functions are linearly independent,

Retracing this arqument, one can conclude that if the
functions m(t;pi,fj) constitvte a linearly independent collec-
tion, and all eij # (O, then the determinant of coefficients
irn Eg. {7.18) is non-z=roc and a unique solution does exist for
the cij'
It may be verified? <that this unique solution is

(7.21a)
ano o= 0, {(i,1) # (0,0) . (7.21b)

The optimum weight function w(t‘:po;f cannot be determined

)
o
from Bg. (€,66) in this case, because N, = 0, but Egs, (7.20)

o~

and (7,21} nevertheless vield a suffinient characterization;

namely
T me(t 1o £ dw(t £dt = i = e
L VtaiPortor Wit iR te/TE, T g 2& (p,, £, )ApAE
(7.22a)
and fmm*(tz;pi,fj)w(tz;po,fo)dt2 =0, (1,3)#(0,0) . (7,22b)

The performance for this case is also given quite simply.
From Egs. (4.38) and (7.22a) one deduces

S &s 1 T
(¥ .. = = - : (7.23]
opt &ip ,£.) Apnt :

q . . . , s . - '
t Visual application of (remervts ruie suffices, since the raight-
hand membexr of Eg. (7.18) is proporticnal to the first column of
coefficients.
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Equations (; ®?) and (7.23) provide the basis for under-
standing optimum detection in clutter for the ideal circum-
stance when No = 0, They also indicate why :in any realistic

case noise can probably not be so completely ignored,

In the first place, note that Egq. (7.23) asserts that
really the only contribution tc clutter in the optimum processor
output is from the clutter components origirally received with
delay and doppler s™ift identical 1o the delay and doppler
shift (namely p, and fo) of the echo to be detected. Dis-
crimination against these echo-like components of clutter
¢ nnot be accomplished by a linear processor,

The implied Ziscrimination by the optimum piocessor
against the other ¢l ter components i.e., those for which,
p # Py OF f # fo, however, is the exact consequence of property
(7.22b) of the optimum processor. The optimum weight function
is simply orthogonal to the "other" clutter components,

By virtue of the properties (7.22), the optimum processor
is, apart from a scale factor, identical to one membear of the
j)' To be pre-
cise, let the reciprocal set of functions be denoted by
(u)(t;pi,fj); i=0,1,...,d, j=0,1,...,b) and defined im~
plicitly by

set of functions '"reciprocal' to the m(t:pi,f

(o}
i) [ m*{t;p £ w(tsp,,£20de = 1, for all (i,3)  (7.2h4a)

ii) f m*(t;pi,f.)w(t;pk,fp)dt==O, for 11 («,2)#(1i,3). (7.24Db)

Then comparison of (7.22) and (7.24) yields

1 .
26(;O,fo)/§pﬁf

Wopt (EiPgr £5)= w(tspg,£o) . (7.25)
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A particular example of a processor which is reciprocal
to the set of signal echoes will be seen in Chapter XII. In
fact, the notion that the processor must be reciprocal to the
set of signal echoes (for No = 0) proves valuable in extend-
ing the results of Chapter XII to the cases considered in
Chapter XIII,

The situation for No O 1is thus adequately described,
The suspicion that one can probably not ignore noise so com-
pletely, stems from “wo considerations. Equation (7.23) as-
serts that % must diverge to infinity if either ‘5(po,f
goes to zero, or if the product ApAf approaches zero,

o)

On the first count, if the clutter oatput from the pro-
cessor output does decrease linearly to zero with é(po,fo) ,
then surely a point will be reached where the predominant out-
put interference is not clutter, bu* noise, and Eq. (7.23)

becomes invalid,

The second cause for reservation, however, is the more
interesting, as it affords some insight into the nature of an

optimum processcr fcr a low noise situation,

According to Egs, (7.22), the optimum {reciprocal) processor
has the capability of responding to a particular desired signal,
while being completely insensitive to the same signal if it is
displaced in delay by conly so much as Ap seconds, or dis-
placed in Doppler by only Af cycles per second,

In matched filter theorv one is accustomed to observing
that if a delay discrimination capability of Ap seconds is
to be achieved, then a system bandwidth on the order of (Ap)—1
cycles-per-second must be contemplated, Likewise, discrimina-
tion between signals separa‘-ed by only Af cycles per second
in Doppler, implies signals and weight functicas with durations
on the =2rder of (./Q\f)—l seconds., As ApAf approaches zero,

therefore, one would not be surprised if the (duration) X(band-
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width) product of the optimum processor became large without
bound, ©Nor would one be surprised if as (Ap)—l, and there-
fore processor bandwidth, became large, the optimum system
was ilcreasingly dominated by considerations of noise, no
matter how small, rather than by clutter,

Cases will be seen in succeeding sections where the op-
timum processor achieves its performance either through large
bandwidth or through long duration, or through both. The
effects of even small noise levels will also be seen.

Finally, the conclusion that noise can ..2ver be neglected
has far-reaching implications for the analysis. The immediate

consequence 1is, of course, that ouc must sonlve the exact
equation

i}(, c(tl,tz)w(tz;po,fo)dt2+ No'w(tl:po,fo)= m(tl:po,to)
(7.26)
rather than the approximate equation
o
{mj(,c(tl,tz)w(tz;po,fo)dt2 =m(t_ip,, ) . (7.27)

Unfortunately 1t is not generally true that the solution
to Eq. (7.26), for small N,. closely resembles the solution
to Eq, (7.27). Cases will, in fact, be seen where there is a
marked divergence between the small-ncise and no-noise solu-
tions. Thus there seems to be no Teneral way of writing the
small-noise solution tu Eq. (7.26) as a small perturbation
of the no-noise solution to Eq. (7.27) The no-noise solution
cannot, therefor:, properly be called a first approximation
to the true solution,

This stands in marked contrast to the situation of dominant
noi e described in Egs. (7.1 ) through (7.13). 1In that situation,

-§8-
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Eq. (7.10) explicitly gives the smal)-clutter solution as a small
perturbation of the no-clutter solutic. (i.e,, the matched
processor) .

C. A HYPOTHETICAL SOLUTION

Let it finally be observed in this connection that if a
signal could be designed which would be orthogonal to delayed
and Doppler shifted versions of itself over some range of in-
terest, then the reciprocal waveforr space would be identical
tc the signal space itself, For such a signal Eq. (7.25) then
indicales that the optimum processor would be exactly a matched
processor, just as in the case cf no clutter whatever,

It may not be surprising, therefore,that if amodulation wave-~-

form m(t) could exist which gave riseto echoes m(t;pi,fj) such that

(oo}

f m*(t7pi:f')m(t7pi,f

3 .ydt = 1, for all (i,j) (7.28a)

J

while
[o ]

f m*(t;pi,f

- 00

J)m(t;pk,ft)dt = 0, for all (k,&)#(i,3) (7.28b)

then the solution to Eq. (6.2), with the finite rank kernel of
Eq. (6.64), would be

1
2é(p°,fo)c,pAf + N

Wopt (t7Ps o) = - m(tsp,£,) (7.29)

for arbitrary levels of clutter and noise, i,e., for arbitrary
&(p,f) and N . The resulting performance would be, from

Eq. (4.38),
25

& = 5 (7.30)
TTOPE  2& (p ,£,)0pAE + N
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which from its form would seem to be about as well as one
might expect to do with a system characterized by range reso-
lution Ap and Doppler resolution Af,

Note finally that the ratio % is insensitive to the
scale factor ap lied to the weight function w(t;po,fo).

Equation (7.29) can therefore equally well be written ast
wbpt(t:po,fo\ =m(t;p,.f) . (7.31)

One therefore has the conclusion that if a "self-reci-
procal" waveformr existed, in the sense of Eqgs. (7.28), the
optimum detector would be a fixed matched filter under all
circumstances of clutter and white no.se. This would re-
present an opposite extreme to the type of solution which

has, so far, seemed to crise for other types of waveforms,

* When the :cale factor which causes w__ (t:po,f5) to be a
solution of 2q. (6.2) is dropped, howeve??tE .(%.38) is no
longer valid for computing S/I, Equa*ion (#4.33) must be used
instead.
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VIII. A MODE OF SCLUTION FOR STATICNARY CLUTTER

The solutinns presented in the prer~eding chapter have
been either general solutions of the basic integral equztion,
applicable for arbitrary kernels, or solutions reflecting the
particular structure of the kernel of interest in this resea.ch.
In this chapter a method of solution is presented which is
applicable if the functions ¢ (p,f) and m(t;p,f) which defin-

the kernel have suitable properties.,

The method is a variation of the method reported by Miller
and Zadeh ©° for solving integral equations with kernels similar
to the present ﬁﬁc(tl,tz). The variation is necessary in or-
der that the method be more applicable to the sorts of waveforms

which appear in the present radar ~ontext.

A, PRKELIMINARY DISCUSSION

Pecall tl.-t the equation to be solved is

(s o]
‘. . = . . .
{mYLC\L ,tz)w(tQ,po,fo)dt2+ N w(tl,p ,f )= m(tl,po,fo).(B.l)

1 o’ o

The method to be described hinges upon the ability to discover
a linear operator P such that, after applying it to the func-
tions of t in Eq. (8.1) to obtain

[e 4]
{m(p c‘\tl,t2)>w(t2;po,fo)dt2+ No'{Pw(tl;po,fo)}= Pm(tl;po,fo),
(8.2)
the :-.licated integration may be performed to obtain
: = . \
{m {PSﬂ,c(tl,t2)>w(t2,po,fo)dt2 = Qu(t spg, £ ) (8.3}
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vhere Q is some other linear operator acting with respect
to tl upon w(tl:po,fo). The preceding two equations imply
the following formal result

Qw(t ;po,fo)+ N - Pw(tl;po,f )= Pm(t :po,fo) (8.4)

o 1

where the integral origirally appearing in Eq. (8.1) is now

no longer present.

Whether the solution of Eq. (8.4) for w(tl:po,fo) pre-
sents ain easier problem than solution of the original Eq. (8.1)
depends entirely upon the operators P and Q. Whether such
operators can be discovered depends, in turn, directly upon
the kernel }Cc(tl,tg).

In 1950, Zadeh and Ragazzini °°® applied essentially this

technique tc¢ covariance kernels of the form

K(tl,tﬁ) = K(t -t ) {8.5)

having rational functions of frequency for their Fourier trans-
forms (or power spectral densities). In their case, Eq. (8.4%)

is a linear differential equation with constant coeiricients,

The extension of the method, in 1956, by Miller and
zadeh?®? was to more general kernels of the form
(24}
K(t ,t ) = [ F(tl,x)r(t2,x)d% (8.6)

2
-

where T (t,2») was such that linear differential operators L

and M, with var:able coefficients, existed with the property

LT(t,n) = M(t-2) . (8.7)

In their case, Eq. (8.4) is a linear differential equation with

variable coefficients,

0P
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In the present case, L and M will be taken tc have
constant coefficients, Nevertheless, the kernel ‘?Lc(tl,t2§
remains a function of each of ics arguments separately (not
only of their difference), and Eq. (8.4} will be seen to be a
linear difference-differential equation with, in general, vari-

able coefficients.

B. LINEAR DIFtERENTIAL AND DIFFERENCE OPERATORS

Let the differential operators L and M, acting upon a
function f(t), be defined by

_( d at
Lf = iao+ al-d—t+ + a{’gt—'z f(t) (8.8)
and
- hY
= Jl 20 o Jii \ t
Mf = {bo +b 3¢+t + b o f(t) (8.9)

where, for the present, the a, and bi are constant coeffi-
cients. In addition, consider the delay-superposition operator
D which, for an arbitrary function f(t), is defined by

Df=c_- fit-t '+ c_ * fit-t )+ =* +

. o L X . Cdfit-t

g (8.10)

These operators will be observed to all yield functions
of t as results of their application, Furthermore, it is

readily shown that they commute. for just as

i 7 )
a,-—d—-,—{ -~—ft1 = b ——-—{a -g-;-f:t\f *8.11)
i m o4 ' £

“oae’ ™ at™ dat” J

+8
'm
“n
.
*h
-
|
ot
o)
N
i
)
oY
rj;“ﬂ
e )
£
T
th
rr
A
.
P
N
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These equalities leiad to the respective conclusions that

LMf = MLf (8.13)

and

LDf DLf i (8.14)

One may also verify, by repeated integration by parts,

and the repeateda assumption that

t=+ow
[b(v-l){t_to)f(m-wl)(t)] =0 v=1,2,...,n, (8.15)
+ ( \) ( )
that [ &'™ (t-t V£(t)at = (-1" £V (¢ ) (8.16)
where é(v)(t) = 5£% 5(t) (8.17)
dt
and f(n)(t) = 52% f(t) . (8.18)
dt

The change of variable T = t_ - t in Eq. {8.17) leads ulti-
mately to the complementary conclusion

? é(n)(to-t)f(t)dt = f(n)(t ). (8.19)

- Q0

From Egs. '8.8), (8.16), and (8.19) one can deduce that,
for the differential operators,

x y ~

[ OE(t) %Lta<t-r>£ dt = L_£(1) (8.20a)
-
and ; flt) SLtégt-t) sdt = LTf(T, , (8.20b)
g d da° : at X
= - — ——— - e e - b e ) ~ A
where Lf = {a a g ta, Y +{~1) 50 £ft).(8.20c)
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These results will be used presently for their clear utility

in removing indicated integrations, Also to be used is the
fact that, in terms of L and ﬁ, the respective adjoint opera-
tors to L and M, the adjcint of the composition of L and M is

given by

(LM) £ = ML £ (8.21)

The reverse order on the right is used here, although not
necessary, in order to facilitate later comparison with the

h29

results of Miller and Zade , where L and M have variable

coefficients and the reverse order is the only correct order,

The symbolic inverse L ! to the operator L may be de-
fined by

UYE=/ LTt ,t )f(t )at (8.22a)

where L’l(t ,t ) satisfies the differential equation

L, L 't ,t) =238t -t) . (8. 22b)
t, 17 2 1 2

The consistency of the definition is verified by using these
equations with Eq. (8.16) to deduce

o0 [o ¢]
-1 -1,
T = Y =| { - ) =)
Ly Ly f(tl) f L, L (tl,tz)f(t?,dta f 6\tl te)f(te,dt f(tl).

1 1 - 1 -

(8.22¢)

A useful operator Dﬁ related to the operator D defined

by Eg. (8.10), is given by

+

D'f = cof(t+to)+cl-f(t+tl)+ ce- 4 ¢ -t\t+td) . (8.23a)

d

The particular property of interest for the sequel is

+ .
-t ) = - ({
Dtgf(tz t) Dtlf(t2 tl) i (8.23b)

_95_




COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

Finally, let it be noted that complex conjugation, in-
dicated by an asterisk, has the following notational conse-

quences, For the differential operators

(LO* = L*E* = {a; + a 3‘3{ + oo+ a} -c%} £*(t)  (8.2hka)

while for the delay operator
% = DEFH = *, F¥{ .. N R 5 oo XER(f_
(Df) D*f cX- £¥(t t0)+(_1 £*(t t1)+ +olf*(t tl).
(8.24b)
The meanings to be attached to L*f and D*f are readily ae-

termined by consideration of (Lf¥)* and (Df*)* respectively.
Thus

d d
* = e P ¥ ——
L*f = {%g tar gt +ay 3% £(t) (8.25a)
and
= . - S - . *, - 8.2
D*f = ¢ ft to)+ c: f(t tl)+ + ¢ f(t td) . {8.25b)

With the necessary basic rslations for the operators now
naving been described, a‘ttention may once again be directed :o
the problem of solving Eq. (8.1).

C. THE EQUIVALENT DIFFERENCE-DIFFERENTIAL EQUATION

Let it be supposed that the ciutter source is essentially
stationary and that the dispersion function & (p,f) mav there-
fore be represented in the form

A

é;(psf) = G . E 03\ . 6(f) (8.26)

c " B

where, as pefore, éc = max EC(P) 5 (8.27)
P
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For this dispersion function, the ciutter covariance function

3$c(tl,t2) is given by

= . 3 {o03m!( en)m? +nVdn {
3ﬁc(tl,t2) QCSC {mgckp;m\tl,p)m*(tz,g,dp (8,28)

where Eqs. (6.3) and (8,16) have been used, and notation has

been shortened by defining
m(t;p) = m(t;p,0) = m(t-p} . (8.29)
Let it further be supposed that for the modulation en-

velope m(t), linear operators L,M, and D with constant coeffi-

cients exist such that

s{t) . (8,30
The subscripts attache’ to the operators indicate explicitly
the independent argument being acted upon.

Using Egs. (8.28) and /8.30) one may therefors write

n
N
N\

! \ -\. c’
e Kelee) = 2B T (a0 s e @

1

20
=26, ] {MtlDtﬁé(tl—pﬂEc(p)m*ite:mdp{&:se)
- o0 s g J

where the fact that L, M, and D have constant coefficients
enables orn: to write from Eq. (8.30),

Lm(t-p) = M. D 8(t-p) . (8.23)

The integration indicated in Eq. (8.32) may now be performed
to obtain, with the aid of Eq. (8.19),

Ltl 3‘(’C(tl’tz) = 2&(: Mt I}t {Ec(tl)m*(tz:tl)}' (8.34)

td
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Having now come to this partial result, one can use it
to write

L, \7

l-m

b ’ - _.:_‘5-’\‘
,% }w(tﬁ,po,fOSdtz ¢¢9C

Vo m* ot .
M D E(t) [/ m (tz,tl)w(tz,pc,fo)dte . (8.35)

1 1 1 -0

The lnteogration on the gight, with respect to t o will be

cemoved by writing symbolically, from Egs. (8. 29) (8.33) and
(8.23)
i et i e 1 / - A
mit st o= Ly ‘Mg D 5(t -t )
= 1M, DY o \ §.36)
= L M Dy s{t -t (8,36

Using Egs., (8.20) and (8.36) one may now wirite, for the right

hand side of Eg. (8.35
e
._1. *23* . .‘) / ; \d M!. o»_,‘l'_.*.* ) )(8 \
M it ~t Hywlit g ) =M* L~ wit :p 7
1, y,ug tl f SR tz ‘tlbt, ﬁt, \ti,ko,fﬁﬂ\ .3
hadi & &} o~ H A
This result, together with Egq. (8.35), viels
w0 _ ’2‘ o~ oy K L ¥
L, [ AL (e ,t Ywlt ;p ,f 14t 226G M D E £ YM* L. ° D, wi{tip_,f
£, 1 et Rt R iR b L e e e e Pe WE,

to serve as a replacement for the first term of Eg, (B.1) after
L has been applied to it,

=
i
?us, by applying L, to each side of BEq. (£,1) #nd using
. . L :
Fq (8.38 for the first term, cne arrives at
26 M.DE (AT D " witsp E V48 Lowitio L imLomit;n £ (8,30
eorret M ey Py WIS B TR T Wk R i it a5 80390

as the eguation to be solved for wit:p )
, 135‘-’)) o'
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D. DISCUSSIJON OF THE SOLUTION

The first thing to consider with respect tc Eq. (8.39)
is the set of circumstances for which it reduces to an equa-
tion consistent with the work of Miller and Zadeh.,2® To

this end, suppose that

i) 2&C-Ec(t) =1, (8.40a)
ii) th(t) = f(t), (8.40b)
iii) N_ =0 . (8.40c)

Then Eq. (8.39) becomes

-1%
MtMELt w(t’po’fo) = Ltm(t:po’fo) * (8.41)
If, on the other hand, one uses their Eq. (5), which for the

present case becomes

w(t;p

orfo) = [ Kog (E,8)m(E1p,,8 )d (8.42)

together with their Egq. (24), which is

m mml,p =1
MM L Y. (t,6) = L.6(t-£) (8.43)

in the present case, then upon multiplying both sides of

Eq. (8.43) by m(i:po,fo) and integrating with respect to £,

-ne again arrives at (essentially) Eq. (8.41) above.t 1In the

process of transcribing Egs. (8.42) and (8.43), those terms

which arose in Miller and Zadeh®?® because the solution w(t:gyﬁo)

t+ Miller and Zadeh®? analyze an equaticn with real waveforms,
The complex notation of Eq. (5.41) is, therefore, not reproduced
by the process described,
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was to be restricted to a finite interval (a,b), are neglected

for the present case of the dcubly infinite interval (-w, =),

Thus, by restricting the present analysis in one fashion
and restricting the analysis of Miller and Zadeh2® in another
fashion, both analyses may be shown to include as a special
case, the common simpler problem defined by Eq. (8.41).

The solution of Eq, (8.41) can be written formally in
terms of the individual operators L and M, This cannot be
done for the more general Eq. (8.39), however, because of the
presence of the term proportional to No' The problem of
solving Eq. (8.39) can however be described in somewhat more
precise, though not explicit, terms. The discussion parallels
that given by Miller and Zzadeh, 2°

Let there be introduced an auxiliary function w(t;po,fo)
defined symbolically by

V(tsp ,£,) = Ly "w(tspy,£,), (8.44)

and from which w(t;po,fo) can be recovered by the inverse
relation

£
ﬁ
el
o
h
o\/
"

Ly (tipg,£)) . (8.45)

In terms of this auxiliary function, Eq. (8.39) can be re-
expressed as

A . ~ ot o~ _
{2& M D E (£)MED] +N0-LtL€}1//(t;po,fo)- Lem(tip , £,) (8.46)

where the commutativity of D, and L has been used (cf, Eq. 8.14).

t t

The operator appearing in braces in the preceding equation
is seen to be a difference-differential operator with variable
coefficients supplied by the function Ec(t). If that equation
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can be solved for w(t;po,f ) , then th~ solution w(t;po,fo)

for the original problem ig directly available from Eq. (8.45).
Indeed, if wo(t;po,fo) represents the "particular solution"

to Eq. (8.46) and wj(t;po,fo) are linearly independent solu-
tions to the homogeneous equation

|

é ~* ° ~* l . =
QE thDtEc(t)MtDt + N LtLt‘ w(t,po,fo) 0

(8.,47)

then the optimal processor weight function is given symbolically
by

Wopt (E7PgrEg) = I¥Y (trp ,£) + Z ey L4y, (tipg,£,)
(8.48)

The undetermined coefficients Cj are to be chosen such that when
wopt(t;po,fo) given by equation (8.48) is suhstituted into

the original equation (8.1), the resulting expression is an
identity, This is a procedure also followed in so2lving pro-

blems of stationary interferencet

1t is seen, therefore, that the proolem of solving the
original integral equation (8,1) has by this procedure been
converted to the problem of solving a linear difference-
differential equation with variable coefficients, namely
equation (8,39), Chapters XII and XIII contain examples of
this mode of solution,

Note particularly that the equation which must be so"ved
in an individual case depends entirely upon the underlying

t cf. zadeh and@ Ragazzini®®, or Helstrom,'® . 109-114,
PP
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modulation function m(t) through the linear operators L
Mt’ and Dt'
the right side ‘f equation (8.46), but also changes at least
the coefficients, and possibly also the terms, which appear

on the left side.

t)
A change of m(t), therefore, changes not only
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IX. A GENERAL PERFORMANCE IMPROVEMENT BOUND

This chapter presents an upper bound to the amount by
vhich the performance of an optimum processor may exceed the
performance of the matchel processor for the same situation.
This bound results from the fact that .n Chapter VI upper and
lower bounds could be derivec for the eigenvalues of the

clutter covariance kernel.
A. DERIVATION

It has already been shown in Chapter VI that the optimum

performance for a linear prucessor may be written in the form

2
% a
s | oy |
= = 26 D .1
(I)opt 5 k-0 ™Mo 91

where the liberty has been taken of introducing the new

quantities

m

‘a2z (m,m) (g.2a)
and

(9.2p)

O

UO =
If these definitions are used in Eg. (3.1) and the first
term (k = 7) of the sum indicated separately, then it is
clear that Egs. (9.1) and(6.31) are identical.

Matched filter performance can also be derived in terms

of eiagenvalues and the coefficients after a few

u a
! k k b
preliminary calculations. The matched filter is defined by
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: 1
“melt3p 1 €)= g mleip g ) (9.3)
where, it will be recalled,
o0
f im(t;po,f ) 12 de = 1 (9.4)

These two equations therefore imply that, for the numerator

of Eq. (4.33),

e o]
j’v%f(t;po,f)nﬁt;po,f )dt - L (9.5)

F4 -0 o 0 I N2
o
Using next Egs. (£.23), (6,°7), and (6.18), one finds that

5 \ _a g | .
/ 3(Jc(tl,t2)wmf(t io ,f )dt = L I T ,‘k(t )
Q

- k=1 ' 1
(3.6)
which in turn leads to
o 00 1 o
[owr (8 op LE)M(t st )w (¢ f )dt dt - — N 2
Im;_m mf(lpo3 0)3{2:(} g.nf(zpo’ O) ; 1 N2 k§1 Lk Clk
o)
(9.7)
Finally,
o0 o0 1
[ owe (¢, £ )5(t -t Iw (t :p ,f )dt at . L
{m‘l_m mf 1p0,0)<l 2 mfpr kg o) 1 2 N2
0
(9.8)

Since the covariance kernel for the total interference

¥t ,t ) is given by

D P4
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one may use Egs. (9.5) and (9.7) through (9.9), together with
Eq. (4.33) to find

S 2& S
(=) = : (9.10)
mf 0 2
N + !
o T2y Mk lay |
However, since
[+ o] o0
f . v o2 = | | 2 —
I | m{tsp £ ) | %at = géo | oy | 1, (9.11)
one may write
26
(%) = 2 (9.12)
mf o 00
N 2 la |2+ = o la, | 2
© k=0 KX k=1 K k
This may finally be written, using Eq. (9.2b), as
o2&
r & -
(3) = — > : (9.13)
mt 2
2 (N +uy) * lag |
N (N +uy k

Equations (9.1) and (9.13) now yield the intermediate

result

(3) K
__O_REz{; 71—0-‘5- W{g (N +u ) |« iz} (9.14)
(2) o T J Lo o™ %

mf

i

H|tn

to which Kantorovich!s inequality may be applied directly.

Kantorovich showedt that

9

t See either p. 142 of Kantorovich's article,!® or Appendix C

of this dissertation.
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(9.16)

provided Y

The bounds for the eigenvalues by o given by the inequalities

(6.48), are now used to establish the necessary bounds for

the (N +u,), namely
o "k
0 < NO<_N0 + p,k<_No + 2GC , k=0,1,2,...
(9.17)

Therefore, Eq. (G.1l4) used with the inequality (9.14) yields
q

S ~\ % G)F

(—I-)o t 1 AIO+26C No d
=) |—= » (9.18)
() 0 &

T . N 42

which, except for rearrangement, is the final result. If one

introduces the clutter-to-noise ratio parameter d{c defined
by
2&
Re = & (9.19)
o)

then the bound on the right of the inequality (5.18) is seen

to be a function only of Glc. Thus one may write the inequality

in the form

-106-




1

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

where

RS

{ i
N
—
\O
N
ot

B (R, = nl-[(u R+ (1 ®)

B. DISCUSSION

From tne ineguality (39.20) one sees that the extent to
which signal-to-interference ratio may be improved by de-
parting from a matched processor is strictly limited by the
bound B ( ab) given by Eq. (9.21).

As the notatior indicates, the bound depends only upon
the clutter-to-noise-ratio parameter G{C. Figure 4 shows the
variation of the bound as a function of Rb. By appropriately
expanding the right side of Eq. (9.1) cne may verify the
asymptotic behavior shown in Fig. 4; namely

(¥e)
Ny
Ny

) 1l
i) for Gb >0, B { @%) > 1 + ﬂ'@é s (G.
while

ii) for R _>=, B(R)~>1+ TR . (9.23)

The asymptotic behavior of B ( &t) for small ], given
by Eq. (9.22), suppcrts the conclusion deduced earlier from
Egs. (7.13) and (7.17). For small clutter-to-noise ratios
the performances of optimum and matched processors can differ
only by an amount proportional to the square of (RC. As
shown explicitly by Egs. (7.13) and (7.17), and implied by
Eq. (9.22), (%0 and (%) as functions of (Rc must be

opt mf _

identical up to and including terms proportional to G&c,

for ch near zero.

For ﬁlc ufficiently large, however,; one can write
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4 Ec=mox Eclp. 1)
(p.1)
60 -
50 -
a0l
A 6dbd
— 2E¢
a No } /
°
= 30~
w
[ 4
®
10 = /
c " [ 'y i L L i -
-10 10 20 30 40 50 60
28
Rez =€
¢ -ﬁo—(db)

FIG. 4 VARIATION OF PERFCRMANCE iMPROVEMENT BOUND WITH

CLUTTER-TO-NOISE-RATIO PARAMETER
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10 log () - 10 1og () < 10 log R _ - 10 log 4
X I - c
opt mt
(9.2%a)
or
8) (- () (< R (ad)- 6 ab  (5.24p)
opt mf -

where Eq. (9.23) and the inequality (9.20) have been combined.
For large clutter-tc-noise ratios, therefore, the potential
improvement open to ar. optimum processor is, except for

6 decibels, exactly the clutter-to-ncise ratio parameter (RC.

Whether the maximum performance improvenent can be
achieved or not is an entirely different guestion. Two con-~
ditions can be shown to be necessary.t Strict equality will

be achieved in Eq. ($.20) only if

i) the echo to be detected, m<t;po’fo)’ is exactly
given by
1 / 1 . ~
mi{t;po f ) == ) t 4+ t) : ‘Ab
(bipgrfy) = o Ble) + ==, (9.25)
and ii) the least and greatest eigenvaluss are My and

My respectively, with values
i = 0 (9.26a)
and

A .
b, = 2&C . (9.26b)
It is to be expected that these conditions will only
rarely, if ever, be achieved in a practical situation. 1In
tke first place, there is little to guarantee that the upper

and lower limits of Egs. (9.2%) will indeed correspond to

eigenvalues of the clutter covariance kernel Sbc(t ’ta)' In
1

t+ See Appendix C.
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the second place, even if Eq. (9.2%) were satisfied for some
particular parameter pair (po,fo), there is little reason

to expect a similar representation of m{t;p.f) for another
pair of echo parameters. These considerations stem in large
part from the generality of the bound.

That the bound is generally applicable over the =2ntire
scope of this research problem, should be noted. It is ap-
plicable for arbitrary modulation functions m(t), arbitrary
clutter dispersion functions @.(p,f), and arbitrary white-
noisc levels N . It is inde=d independent of any detailed
characteristicsoof the modulaticn and dispersion functions.
These virtues have as their consequence the likelihood that
the bound will be conservative (i.e., too great! in indivicual

cases,

Finally, from the fact that the bound is a functicn only
of the parameter GLC, one may once again deduce the importance
of noise in limiting optimun system performance. It 1is only,
but indeed, the presence of noise wh.ch causes both GLC and
the bound itself to be finite. 1In consequence, no matter how

great the clutter, system performance will be limited by

B (R.).

S~
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X, CAUSSIAN ECHOES IN UNIFCRMLY
EXTENDED GAUSSIAN CLUTTER

This chapter describes the optimal processor for detect-
ing a doppler shifted radar echo, with an envelope the shape
of the Gaussian function, in uniformly extended clutter which
has a Gaussian frequency dispersion function, The signal-to-
clutter ratio, optimal processor frequency response function,
and the optimal cross-ambiguity function are found and dis-
cussed,

These results are compared with the results already de-
rived by Westerfield, et al,*® for a matched filter receiver
designed for the identical detection problem,

Because the functions which characterize this problem
have been assumed Gaussian, the results for both optimal and
matched processors can be found analytically and in closed
form when noise is neglected.

A, ANALYTIC RESULTS

The pulse modulating function m(t) is assumed to be
given by

i
L

m(t) = 2 W° * exp {-nwzte}, (10.1)

where the amplitude has been chosen to satisfy the energy con-
straint
oc

f a*(tm(t)ce = 1 (10, 2)

- o

for aill values of the bandwidth parameter W, The Fourier

trensform of m(t) is given by
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im
i B o

f2
M(f = * exp {;H ;3‘} . (10.3)
W

From this one concludes that the power spectrum of the modu-
lation is given by

1
| M(£) | =55 - exp {-n~2 w2} (10.4)
and that required autocorrelation function m(t) is
- 2
m(t) =F T {Ime) ") (10, 5)
or
2 W2 \
m(t) = exp{-nm® . 5 . (10.6)
The dispersion function for the clutter source is given
by
§.(p.f) = & - af) (10.7)
where
1 £2
Q( £) = 7~ exp {";{é} . (10.8)
<! q

The received clutter is therefore assumed to arise from an
extensive distribution of scattering centers which have a
Gaussian distribution of radial velocities,

It may be verified for this clutter model that

:f G(f)df = 1 (10.9)

and that the associated correlatio:. function Q (T

LS AL

), given
in general by

-1l12-
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0
Y
il

F! {a(£)) (10,10)

is

&
Y
L]

exp {-n-ﬁwé . (10.11)

The correlation function J(C(T) for the received clut-
ter process is found using Egs. (4.45),(10,6), and (10,11).

The result is

K(1)=2 £, - exp(-mtzwi} (10.12)
2 - w2 1 w2 10
where we Wq +5 W (10,13)

The received clutter power spectral density, defined at Eq.

(4.56) as
K (£) = FK (D)) (10, 14)

is given by -

Kc(f)=2€c-w—lkexp {-n%} . (10.15)
k
It may be observed in passing that, since Kc(f) is the

Fourier transform of the product of M(t) and Q (), Kc(f)
might alternatively be computed as the convolution of | M(f) |*
and Q(f). 1In the present case the calculation outlined abo. :
seems simpler, The general fact remains, however, that the clut-
ter power spectrum is the convolution of the signal power spectrum

with the clutter dispersion function in uniformly extended clutter.

The final result needed for computation of system per-
formance is an expression for the Fourier transform of the
echo to be detected. 1In the present case, for M(f) giver by
(10.3), tre result is

M(E:p,£ )= *

r\)l—-l &l

w2

=

(£-£f )7
exp {-rr~ Q 1 ' exp{-j?nfpo} .(10. 16)
J
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One can now compute the output signal-to-interference

ratio for this case. When noise is ignored, Eq. (4,51) be-
comes

00

AT st smpmmng et seemametys:

| M(£;p_£_) | ®
S . o~ o’
? =28 !; R (2) as . (10.17)

il

ol

Together with Egs. (10,15) and(10.16) it yields

fot (o) ().

This result may be compared directly to the corresponding

result for a matched filter processor which was given by
Westerfield, et al,*® Their result,

‘.,,mum;mw,um,munﬁlImlg|§ﬁ[]{}!|l!lll?lﬂ|!h.q'

in an altered form, is

M e

1
> 2

£
s & w2 [ o \
= == W_ |1+ exp(m - 1C. 19,
(I)mf q w2 "1 Wa+W? (10.19)

c q

The discussion and comparison of these and subsequent

results ir this section will be deferred to the next section
of this chapter.

E The frequency response function for the optimal processor
' is shown in Appendix B to be given in general by

M*(£:p,£,)
Hopt(£iPgs£o) = WX (£1p,,£,) = —¢7s (10, 20)

where

M(£:py,£,) = F {m(tsp_,£))

= M(f-fo)exp 6j2nfpo)

1 ~114-
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Using Egs. (10.3),(10.15), and (10,21) the right hand side of
10,20) can be evaluated. The result, for Ww? < 2w§ , is
(£-£,-8)%)

H (f;pofo)= G+ exp(-n 2

-exp(+jenfp ) (10,22)
opt w2 f { o}
h
where o
w—
W2 +
B = a —é- (10.233)
we - W
g 2
W2=W .8 for B> O (10.23pb)
! 2\ % 2
i %) f
G = e % + ——g exp(+ 7w —_—
o Ee W Wt w2
q 2

In the event that W? = 2W(2Z , Eq.(10,22) becomes

of
Hopt(f:Po,fo) =G, - exp{r-f- —ﬁ-g} . exp£+j21rfpo> (10.24)
1

N o\ ° £2

2 : ‘

—_— . — - — l
= £ <2+ exP{nwz} . (10.25)

c

The transition from the form of (10,22) to that of (10, 24) will
be discussed in the next section,

where G

[
Foha®

The frequency response function of the matched filter for
the echo m(t;po,fo) is given directly by

g(Eipg )= M*(£5p ) (10, 26)

2% (f“fo)z .
= 51 exp(- 7 —— ). exp{+32nfpo} .

L J
(10.27)

(I
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As a preliminary step toward determining the ambiguity
function £(7,¢), Eqs, (10,3) and (10,15) yield

2
M*(f»fo)M(f-fo-¢) -27TW

P~
- . —3 . ) w2
K_(£) R S e (f°+ 2) (}+ oW2
k q
: ' w2
~2 A A 1 ~2 g
exp(m f°+f°d>+E ¢ (— W2>
(10,28)
1
eawk
where Gs - Eow (1.0.29a)
f =31 ¢ (10.29b)
o w o
q
oy 1
¢ =50 (10.29¢)
q

According to Eq. (5.22), the ambiguity function is the in-

verse Fourier transform of the preceding expression., Using

the expression for the required transform from Appendix D,
one can show that

=G . 2 W2 [, W2
&(T,cb)opt = G‘1 exp {-m 5 (+ 2w2>}

2
where G = CI(1+ —L) 3
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The ambiguity function for the matched processor is found
somewhat more simply. From Egs. (10.3) and (5.23) one concludes
that

[ @2

. we
(1, = exp {(-mt2 —=— ). exp | -1 —
( )mf P k 2 } P L 2w2}
exp {j2n(fo+ %)T}. (10.32)
One can verify that lﬁ(r,¢)mf | £ is in accord with the result

given by Woodward*® for the Gaussian pulse with W = 1,

B. DISCUSSION OF ANALYTIC RESULTS

The major results of the analysis outlined in the pre-
ceding section will be discussed below, together with indi-
cations of their range of validity.

1. Signal-to-Cluttcer Ratio

Equation (10.18) for output signal-to-interference
ratio % forms the basis for Fig. 5. 1In terms of decibels
(10.18) reads

10 log(§) = 10 log(€swq + 10 log (u ) (10.33)
i EC N o) )

where 10 1og(uo) is the ordinate in Fig. 5. Along the ab-
scissa are values of the ratio %i . Thus, for any fixed set

of parameters 65, ec’ and WQ ,qug. 5 essentially shows the
variation of output szignal-to-interference ratio as a function
?f signal bandwidth for various normalized <oppler frequencies
=

q

The dashed curves reflect values of He for a
matched filter system and are due to Westerfield, *® The solid
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e OPTIMAL SYSTEM PERFORMANCE

seemesmse MATCHED FILTER PERFORMANCE

() 8w s

W _ SIGNAL BANDWIDTH PARAMETER

Wa ~ CLUTTER DISPERSION PARAMETER

A-194-5-0071

FIG. 5 Ko AS A FUNCTION OF SIGNAL BANDWIDTH FOR VARIOUS DOPPLER
FREQUENCY SHIFTS.
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curves are for h, as determined in the present research for
the cptimal processor. For any fixed fo it can be seen that,

for all W
q

D2 (%)mf (10.34)

iln

as one indeed expects,

Equality of performance between the optimal and
matched processors occurs only for negligibly small values
ot %L at the left in Fig. 5. These correspond to signals
of esgentially zerc bandwidth or, in the time domain, of re-
latively long duration, It will be seen that as the signal
duration (proportional to '% ) increases, the optimal proc-
essox approaches a matched proccessor and, consequently, the

difference in performance vanishes,

As the bandwidth ox the transmitted signal increases,
the performance of the optimal processor improves monotonically
from its zero-bandwidth value, This is in marked contrast to
the rapid deterioration of matched filter performance as W
becomes comparable to Wq . For W= Wq and fo = 2Wq,
Fig. 5 indicates that optimal system performance exceeds
matched filter performance by about 30 db., Moreover, as W
increases above Wé, the disparity in indicated performance

becomes greater still.

As already noted by Westerfield®® the relatively
poor performance of the matched filter is due to the relativly
large overlap of the filter pass-band and the frequencies
with much clutter enc .y. The gcod performance of the optimal
processor on the other hand presumably stems from the effective
fashion in which it tends to reject the clutter spectrum,
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The mechanism for improved performance through op-
timal processing becomes clear upcn consideration of the op-

timal processor frequency résponse function. Also clarified

is the crucial role of noise in limiting system performance,
particularly for values of W near and exceeding Wé .

2. Frequency Response Function

The frequency response function for the nptimal

pProcessor is given at Eq. (10.25). 1Its magnitude is propor-
ional to the Gaussian functiol. with

center frequency = £ . B (190.35)
and 1 3
bandwidth = W, = W . pZ (0 36)
w2 + &
where B = —g—v?ﬁ (10.37)
Wé -z

The magnitudes of the frequency respo..se funciions
for optimal and matched processors are compared in *ig, 6
for three values of relative bandwidth

W~ @ °on the assump-
tion that an echo with no doppler siift is to be detected,

A similar comparison appcars in Fig. 7 where the echo to be
detected has a doppler shift fo equal to 2W_., 1In all cases

the center frequency and bandwidth of the matched processor
are fo and W respectively.

Two conclusions may be drawn immediately, either
from Egs. (10.36) and (10.37) or from Figs, 6 and 7.

i) The center frequencies for matched and op-
timal processor are different, in general:

unless the echo to be detected has zero
doppler frequency shift,

=120~
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to= O
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4 6 8 1
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o wq
'y
Z"'opc
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Wq
v /—"
T /T T T T T Y T T Y —b
-2 0 2 4 6 8 ot
Wq
LEGEND:

Hm¢ —MATCHED FILTER FREQUENCY RESPONSE FUNCTION
Hopt —OPTIMAL PROCESSOR FREQUENCY RESPONSE FUNCTION

K —CLUTTER INTERFERENCE POWER SPECTRAL DENSITY FUNCTION
A-194-S-0072

FIG 6 FREQUENCY RESPONSE FUNCTIONS FOR DETECTING GAUSSIAN
PULSES WITH NO DOPPLER SHIFT.
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FIG 7 FREQUENCY RESPONSE FUNCTIONS FOR DETECTING GAUSSIAN
PULSES WITH DOPPLER S3SHIFT OF 2Wgq cps.
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ii) 1The bandwidth of the optimal processor
is greater than the bandwidath cf the
matched processor, in general; unless

both are 2zero.

Both of these effects, in fact, become extreme as the signal
bandwidth parameter W increases from zero and approaches

V2 Wy Bs shown by Eq. (1.37), the factor B will correspond-
ingly increase from 1 to =, with the striking consequences

apparent in Figs, 6 and T.

This behavior of the optimal processor is best un-
derstood by considerinag the formula for its frequency re-

sponse function,

H(f;p ,£) = Mifipg, £o) (10.38)
.lp°) O = Kc(f) . . )

In the present case, when noise is ignored, both numeratoer
and dencminator are Gaussian functions, with the result that
the quotient is also Gaussian, For small signal bandwidths,
however, the bandwidth of the numerator is less than the
bandwidth of the denominator., Therefore as f becomes large
the quotient goes to zero.

However, for W® = 2W§, th2 numerator and denominator
attain equal bandwidths. For this case, if fo = 7, the re-~
sult is that numerator and denominatcr are identical Gaussian
functions, and the quotient is independent of frequency. In-
deed, if W? exceeds 2W§ the numerator of (10.38) does not fall
off with increasing frequency as rapidly as the denominator.
The rcsult is that the quotient, i.e., H(f;po,O), diverges

to infinity with increasing f.
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The results given in Figs. 5,6, and 7 were derived
on the assumption that noise was negligible and clutter was
the only interference, Examination of Figs. 6 and 7, however,
suggests that the efrfects of noise cannot be so easily ignored,

In the fi.st place, let it be noted that the mean-
square noise interference at the output of any of the optimal
pProcessors discussed will be greater than for the correspond-
ing matched proce-sors, because of the difference in optimalt
and matched bandwidths. In fact one expects that for any
noise level, no matter how small, the output noise will at
some point exceed the output clutter as the bandwidth Wh
approaches infinity,

One concludes that the optimal processor performance
implied by Fig. 5 for value of %L exceeding VZ will be
fundamentally unattainable becausg of the unavoidable presence
of noise at tlhe processor input,

This is not to say that a processor which is ap-
propriately optimized for the clutter-plus-noise interference
now being dicrussed cannot be significantly better in per-
formance than a matched filter, Rather, the possible effects
of noise must ke realistically assessed,

A rase in point is the seeming performance adventage
of 30 db which has already been mentioned for the optimal
processor when W = W_ and f = 2W_ . 1In this case the kind-
width factor VB is onlyJF. so that the optimal processor band-
width is not markedly greater than the matched processor band-
width. One does not therefore, at first, expect t'iat noise
will be a significant factor in system perfoimance. This ca.s=
nevertheless indicates a second aspect of the problem,

* The optimal processors for clutter alone ar=, of cLurse,
no longer optimal :or the mixeld ci.tter. -plus-noise 1nterfer—
ence bzing discussed.
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The processor yielding the results of Fig, 5 was
taken to be
M*(fi:p,,£,)
s o’’o
Hl(flpo)fo) - Kc(f‘) (10-39)

whereas in the presenc: of noise the optimal frequency response
function is really

M*(£5p,£,)
1<c(f)+7z.o

H (£ip,,£,) = (10.40)
where no is the white ncise power spectral density. The
question is whether Hl(f:po,fo) is an adequ~ate approximation
to Ha(f:po,fo). The answer will be a qualified "yes," if

K. (£) >> n (10.41)

for those frequencies f where Hl(f;po,fo) has significant
values,

It has already beer learned however that the fre-
quencies in question are not necessarily the same as the echo
center frequency fo . Rather, the processor center frequency
has already been identified as £, -+ B, so that (10.41) might
be replaced by

K (£ - 8) > n, . (10.42)

The significant point is that fo- g and the nearby larger
frequencies can lie relatively far away from the frequencies
where most of the clutter energy is concentrated. When fo=2w

q
and W==W§, for example, the value of B8 is 3 and

fo. B = 6Wq . (10.1‘3)

As can be seen in Fig, 7, Kc(6Wé) is indeed small relative
to K_(0). The figure has no general significance, but for
the Gaussian function in the present case

xc(6wq)

®(0) - 300 db (10.44)
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One concludes that for an optimal processor to have
characteristics determined essentially by the clutter inter-
ference, without consideration of noise, the noise energy
must be negligible with respect to the clutter energy, even

at those frequencies where a possibly minor part of the
clutter energy lies,.

In the present case it so happens that the signal
energy is also small at f = 6W§. The result is that the
performance implied by Fig. 5 for fo = 2Wq and W = Wé will
not be achieved by the processor of Fig. Tb unless the noise
spectral density is negligible with respect to both the re-

latively small signal and clutter energies in the vicinity
f £ =6W_.
° q

3. Ambiguity Function

The mujor features of the ambiquity function for the
optimal processor may be surmised after careful study of Figs.
6 and 7. They are readily extracted, however, from Eq. (10.30).
If a%tention is c~nfined to the doppler resolution profile for

zero delay mis-alignment, i.e., T = 0, then one can find with
little algebra that

: (8-5_)2
2 (0,0) |Opt x exp -NT (1045)
¢
where
‘ N 2wfi
&10 =f /2 oE 1 (10. 46a)
and
. 2/ 22 1\%
¢ we
I\ /

In the transition case, when

w2 = 2w§ , one concludes directly
from (10.30) that

5(0,¢)| opts exp'{nwfo.a ) . (10.47)

~126-




COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

Equations (10.45) and (10.47) may therefore be plotted
as in Figs. 8 and 9 for the same sets of parameters appearing
in Figs, 6 and 7. The well-known doppler profile of the matched
processor ambiguity functior. for a Gaussian pulse is simply
(from 10,32)

. WY
. £{(0,9) ’mf x exp {-T@ . —é—!;l? (10.48)

where the normalized @ has been introduced,

The matched filter ambiguity function 1is independent
of the doppler frequency fo of the echo t:: be detected. 1It
i_ characteristically symmetrical, ‘n the T = 0 plane, about
¢ = 0. The optimal processor ambiguity function, on the other
hand, depends upon fo as well as ¢ and is distinctly un-
symmetri al about ¢ = 0,

The asymmetry of the optimal ambiguity function
arises directly out of the asymmetry of the optimal frequency
response function with respect to the echo spectrum, The re-

lative maximum of

£(0,¢) lopt occurring at ¢ = qu in

Fig. 9b, for example, directly reflects the fact that the pass-
band for prt(f) lies qu cps above the signal spectrun
located at 2Wq cps, as shown in Fig, 7b, Signals with a
doppler shift of (?W§ + 4W§)cps therefore yield a greater
processor output than the "design" signal of doppler shift

ow 8,
q P

Because of the indicated asymmetry, the ambiguity
function which is "optimal" from the view-point of clutter
suppression is not necessarily even ''desirable" from other
possible viewpoints, An ambiguity function such as that of
Fig. gb would be eminently undesirable in a system which was
required to provide an indication of echo doppler shift fo’
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FIG. 9 DOPPLER PROFILES OF AMBIGUITY FUNCTIONS FOR DETECTING
GAUSSIAN PULSES WITH DOPPLER SHIFT OF 2Wq cps.
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in addition to simply detecting the presence of the echo, The
presence of a weak signal with doppler shift 6W_ for example
would aot be distinguishable from, and could be mistaken for,
the presence of a signal with the'design" doppler shift EWé.

For applications requiring doppler frequency estima-
tion the symmetric armbiquity functions associated with matched
filter receivers are attractive and provide, not unreasonably,
the basis for system design. To attempt to maintain an ap-
proximate symmetry, while simultaneously attempting to reduce
clutter interference through appropriate choice of a processor
weight function, is to strive for '"good" system performance
according to two possibly contradictory criteria. As an
analytic problem, it was not attempted in this research. As
an intuitive problem it retains the difficulties originally
discussed in connection with, and following, equation (5.9).

Figures 7b and gb illustrate, as well as any figures,
the possible difficulty of an intuitive problem approach, The
task might be undertaken of modifying the known matched filter
transfer function of Fig. 7b, or the matched ambiguity func-
tion of gb, in order to reduce clutter, To reduce the trans-
mission of frequency components between £ = 0 and, say f = f
would be a natural endeavor, It would hardly be natural or
intuitive, however, to expect that the "best” modification of
the matched filter would be, essentially, to translate it up-

ward in freguency by MW§ cps ana to increase its bandwidth
somewhat.

(o]

Twe other attributes of the optimal solutions pre-
sented in Figs, 6 through 9 also deserve ccmment. First of
all, the particular functional forms (in this example, all
Gaussian) depend strictly upon *he assumed modulation function
and clutter aispersion function., Alteration of either of these
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functions can lead to solutions greatly different in detail
from . he present onest, In a very real sense, tnerefore, any
optimal processor is optimal only for a particular set of
signal, noise, and clutter circumstances, A processor with
performance not greatly dependent upon the particular in-
terfeirence at its input would be desirable, even if not

strictly optimal for most input conditions,

The second attribute of the Gaussian optimal proce
essors is a certain general similarity to the clutter rejec-
tion systems yielding "moving target indication," (MTI). 1In
MTI systems,tt echo components with small doppler shifts lie
in the region cf strong clutter energy and are suppressed.
Eche components of larger doppler shift are more or less uni-
formly amplified to give the system output, Moreover, the
purpose of an MTI system is meirely to indicate those targets
which are moving, without giving an indication of their vel-

ocity.

The transitional solutions of Figs. 7c and 9¢ have
these general characteristics of an MTI system., Signals of
small doppler shift are suppressed by the exponential fre-
quency characteristic while signals of larger doppler shift
are amplified, This optimal processor would also give only
an output indication, with no estimate of velocity, for sig-
nals of large encugh doppler shift.just as an MTI system.

The similarities between optimal and MTI systems
have a common origin, in that both systems act to suppress
frequency components containing relatively great clutter energy
while emphasizing the remainder of the received spectrum,

t A frequency response function with poles located periodi-
; cally along the freque.acy axis, for example, appears in an
early paper*® on clutter reduction,

t+ Sez, for example, References 39 and 47,
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C. NUMERICAL RESULTS (FOR_CLUTTER PLUS NOISE)

The analytic results of section A of this chapter are,
in principle, quite readily modified to include the effect
of "white" noise added to the Gaussian clutter interference.
Thus Eq (10,17) for the optimal signal-to-interfererce
ratio becomes

- 2
| M(£:p ,£) |
KJ f)+N°

%= 26 _ -_;): as (10.49)

(8ee eqs. 4.49 and 4.51), while eq. (10.20) for the optimum
frequency response function becomes

M"‘(f;po, fo)
Hopt(f’po.’ fO) = W*(f7p°:fo) = Kc(f)+No (10.50)

where EC is the noise power spectral density in watts per
cycle per second., The additional presence of No in each
of these denominators, however, prevents the realization of
simpler analytic expressions than Egs. (10.49) or {10.50)
for either %'or Hopt(f;po,fo). For actgal values of either
of these quantities, therefore, and for T especially, nu-

merical calculations are necessary.

1, Siygynal-tu-Interference Ratio

'Fortunately the integration indicated in Eq. (10.49)
for % can be approximated quite well, and with comparatively
little effort, by the Hermite - Gauss quadrature formula,t
This numerical method has therefore been used in this re-
search to compute %'for various values of signal bandwidth W,

;_ Seetﬂiidebrand16 s PP. 319 to 330, or Appendix E of this
issertation.
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echo doppler frequency fo’ and noise level No’ for fixed

signal and clutter levels. The resulting data then yields
the graphs presented as Figs. 10b through 10h.

It will be recalled that the clutter-to-noise
ratio parameter O was defined as (see Eq. 9.19)

-

28
c
‘RC = -'—N—(; (10.51)
where é% = (maﬁ)é:(p,f) (10.52)
Ps

In the present circumstances one may verify, using Egs.
(10.7) and (10.8), that

&, = &c
. (10.53)
and that conseguently
mé _ 2§9c
(
quo (10.54)

It may also be verified, using Rgs. (10.13) and
(10,15), that

K (0) = v = (10.55)

Since Kc(f) reaches its maximum value at £ equal ‘o
zero, one seeS that ge’c corresponds to the maximum clut-
w

23, S e e T SO il - I =
R . e o v I
= - ——
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ter power spectral density achieved for any transmitted
(Gaussian) waveform, Thus, 6% is a measure of the clutter-
to-~,ise power ratio for the largest clutter components near
zero frequency. Unless WZ ) qu, a value of R_ egual

to zero decibels therefore means that, in the vicinity of

f = 0, clutter and noise powers are comparable, If W = 0O,
“hen G% is exactly the clutter-to-noise ratio at £ = 0,

The value of GE equal to 60 db, indicates a
clutter-to-noise ratio of about 60 db for £ = 0. The
corresponding noise level is therefore reasonably described
as "small" compared to the clutter level.

Figure 10a is a repetition of Fig. 5§ for conven-
ient comparison in the present context., It presents a com-
parison of the ratios %-achieved by optimum and matched
processors for several doppler shifts fo’ 2s a function
of echo bandwidth W in the absence of noise. Figures 10b
through 10h present similar data for increasing noise levels

i 171
N (or decreasing ®_).

The most striking aspect of this collection of
performance data is the great difference between Fig, 1l0a
and the other Figs. 10b through 10Oh., The very great differ-
S S ! .

T) opt and (I)mf which would exist for large

bandwidths W in the absence of noise, in Fig. 1l0a, are seen

ences between (

to be almost entirely eliminated by the presence of even
the very small noise level for Fig. 1l0b,

This result is not unexpected in view of the dis-
cussion in he preceding section, Its cause, in torms of
the effects cf noise upon the optimum frejuency response
function, will be discussed presently., At the moment it
suffices to observe that the presence of even a small noise
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level has greatly modified optimum system performance, It
may also be verified incidentally that matched processo:
per formance does not differ greatly between Figs. 10a and
10b.

When any noise is present the performances of Luth
optimum and matched processors are seen to have many similar
features. In the first place the increasing noise level
represented by the progression of figures from 10b to 10h
is seen to cause a (totally expected) c¢eneral lowering of
the plotted curves, corresponding to decreasing signal-tco-
interference ratios,

In the Figs. 7b through 7h a horizontal dashed
line has been drawn to indicate the level for Mo which

corresponds to

%= 26 (10.5€)

This performance would not be exceelded by any linear pro-
cessor acting in the presence of noise alone. As shown in
Figs. 10k through 10h, it is certainly not exceeded when the

additional clutter interference is present.

Subject to the limit imposed by equation (10.56),
performance is seen to improve as fo’ the doppler frequen-
cy difference between the echo and the clutter mean doppler

frequency, increases,

In all cases three bandwidth regions can be seen
for both optimum and matched processors, For narrow echo
bandwidths (;—:L { 1), both processors have essentially the
same performaﬂce at all noise levels., The performance in-
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deed is limited only by the noise level, as most of the
clutter doppler spectrum is rejected by the processor,

For handwidths W approximately equal to the clut-
ter dispersion bandwidth Wq, tlie performances of both pro-
cessors enter a transition region of generally declining
% ratios with increasing bandwidth. It is in this transi-
tion region that the greatest differences between optimum
and matched performances are to be seen,

Beyond the transition region, for %L > 10 say,
q &

both processors exhibit a gradually increasing %-ratio,
attributable to the increasing range resolution associated
with increasing bandwidth. In this asymptotic region, the
clutter power level at the processor input is decreasing
linearly with increasing signal bandwidth. This results in
the linearly increasing output %-ratios shown in Figs, 10b
through 10h. The upward trend of the % ratio with bandwidth
is, of course, ultimately checked by the constraint of

Eq. (10.56). This leveling off of L, for large Xois

W
evident in Ficg, 10g for fo = 1. Wq, say, and W egual to
100 Nq.

2. Fregquency Response Functions

Iypical f. :gquency response functions for the op-
timum processors leading to the graphed performance data of
Figs, 10 have been computed from Eq. (10.50) for various
noise levels, A number of these frequency response func-
tions are shown in Figs, 11 and 12, for echo doppler fre-
quency shifts of zero and 2Wq respectively. These two
figures, fcr non-zero noise, correspond to Figs. 6 and 7
respectively for the zero-noise case, Where clarity permits,

the zero-noise optimum frequency response functions are also
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PULSES WITH NO DOPPLER SHIFT

IN VARIOUS CLUTTER LEVELS

~145~

fo
Hopt
R.®0,30,60,®do
W
O)W-.s
 E— T T T T T T »
-2 0 2 4 6 Wfi
4 Hopt
¢ = 30,60,00 db
b)wlq.%i c -'Odb
1] ] ] 1 ¥ J "
-2 0 4 6 Waq
4 "opf
o Re: 0
We V2
Odb \30db soabslnc
LB 0 | 5 L T T L >
4 6
Wa
FIG. Il FREQUENCY RESPONSE FUNCTIONS FOR DETECTING GAUSSIAN




fo = 2Wq

4 Hopt
+ [09)
60 db
W 0 db
el :3
Wq
% T T T T T T T T T ,’
0db £30db 60db @©: R,
)W
Wq L
e T T T T T ™ "
(o] 2 4 8 Tq
4 Hope ;
1 Rc0db —30db  €0db—>
/ ’ RC =
(No=0)
W,
c)wq—\/'c:
——f Y | —  — T >
(0] 2 4 6 8 _wf_
q

FIG 12 FREQUENCY RESPONSE FUNCTIONS FOR DETECTING GAUSSIAN
PULSES WITH DOPPLER SHIFT OF 2Wq cps

IN VARIOUS NOISE LEVELS
-146-




k

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

The matched frequency rasponse
and the clutter power spectral den-

shown in Figs. 1ll and 12.
functions Mmf(f;po,fo)
sity functions K(f), however, do not depend upon “he noise
level and are available from Figs. 6 and 7.
The curves of Figs. 1l and 12 correspond to noise
levels in egs. (10.49) and {10.5C) which yield
(10.57)

ﬂt = o, 60 db, 30 db, and 0O db,

Apart from the no-noise case this spans a range of
trom noise relatively small compared to the clutter
to noise of a level comparabl=: to the clutter

60 db,
the cptimum frequency

(RC = 60 db)
= 0 db.).

level (R,c
For small echo bandwidths,
response function is essentially unaffectea by the noise
As in the no-noise case

level (see Figs, llaand 12a),
Hopt(f;po,fo) and HmF<f7po’fo) are essentially identical
This is consistent with the similarity of

W= Wq which

performance in this range which has already been noted,
widths that the effects of noise are strikingly evident,
and

for W <0.1 wW_,
- q
It is for the intermediate and larger echo band-

f0 = EWq

Recall the case for
was shown in Fig. 6b, where detection of an echo with dop-
pler shift 2Wq required an optimum frequency response
with pass-band centered about 6wq. From Fig.lZb however
one sees that even the small noise level correspe~ding to
R. = 60 db leads to a large displacement of the >ptimum

C
puss-band down to about 2.7Wq cps.
els the optimum frequency response function very rapidly
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approaches the matched frequency response function (essen-
‘ally identical to the curves for @% = 0 db in Figs, 11
and 12),

The cases depicted in Figs. llc and 12c show simi-
larly great differences for GE = © and G% = 60 db, 1In
all cases the primary effect is the reduction to (essential-
ly) zero of the large values of the frequency resporse func-
tion which can exist for large values of f/wq when N_ = O,
These reductions have their common origin in the fact that
for such values of £ the numerator of Eq. (10,50) is small
compared to the No = 0,0001 which constitutes essentially

the entire denomir.ator value at the same frequencies.t

Thus the marked uifferences in per formance orig-
inally noted in Figs. 10a and 10b are seen to be rooted in
cerrespondingly great differences in the optimum frequency
response functions for zero-..oise and small-noise situations,
Figures 11 and 12 therefore reinforce the primary conclusion
that the small-noise solution cannot necessarily be regarded

as a small devistion from the no-noise s .tion,

D, PERFORMANCE IMPROVEMENT OVER THE SIMPLE MATCHED FILTER

The per formance differences which have been seen to
exist between the optimum and matched processors considered
in this chapter may be compared to the general performance
improvement bound derivea in chapter nine,

t ig convenient to continue to use of decibel

S
measure for T

1 and to define the performance difference
a(®, £ ,W) by

S S
A(G%’fo’w) = 10 Lo (f)opt = 10 Leg (f)mf (10.58)

t See Appendix E for other parameter values,
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where the fact that A depends upon each of (i' clutter-
to-noisec ratio mb’ (ii) echo doppler frequency £, and
(iii) echo bandwidth W, has been explicitly indicated in

the notation, Actually A also depends upon the <luttecr
bandwidth Wq. Since the dependence, however, is only
through the ratios fo/wq and W/W,, the simplified nota-
tion adopted in eq, (10,.,58) is adequate for the present dis-
cussion, t

The difference A(mb’fo’w)’ a function of three vari-
ables, is now to be compared to the bound B(@E), which is
a function of only one variable., Since, however, the pres-
ent discussion is primarily concerned with the maximum val-
ue which A(mé,fo,w) might achieve, the task of comparison
is simplifiec by considering the function Aw defined by

A“Kme,fo) = m;x A(GE,fO,W) (10.59)

Values of the function Aw(ﬁb,fo) can ke determincd
from the data already graphed in Figs, 10Ob through 1Ch,
The procedure is suggested by Fig. 13, where the curves

S S
for (I)opt and (I)mf
fo = 2Wq have been reproduced from Fig, 10b, For these

(R .
values of @b and £, the value of Aw( c,fo) is then

corresponding to G% = 00 db and

given by the greatest vertical separation of the two per-
forn nce curves, As shown, the value of 4,(60 db,EWq} is
about 24 db.

By using other pairs of curves from Fig, 10, one may

determine other values of Avxﬁg,fo). Figure 14 contains

t One may consider Wq to be fixed throughout the discus-
sion.
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NOTES :

1) DATA IS FOR GAUSSIAN PULSE IN UNIFORMLY
EXTENDED GAUSSIAN CLUTTER.

2) ECHO DOPPLER t, *2Wq
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FIG. 14 EMPIRICAL PERFORMANCE IMPROVEMENT DATA AS A
FUNCTION OF CLUTTER-TO-NOISE RATIO
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the seven values for

GE = 0, 10, 20, 30, 40, 50, 60 db (10.6%a)

and

f = 2W_, {10.60Db)

From the data of Fig. 1% one notices that

(i) the indicated function values for Aw(mg,fo) lie
below B(ab)’ as required;

(ii) the function Aw(@b,fo) is an increasing func-
tion of mb’ at least for fo = EWq, just as
the bound B(ﬂb) itself is;

(iii) the difference between B(G%) and AVKG%,2Wq)
increases with mb until, at G% = 60 db,

A,(mE,EWq) falls short of B(G%) by about 30 db.

These data clearly indicate tha*, at least for the present

case with echo dcppler equal to 2W the potentially large

q)
per formance improvements "permitted" by large values of the
bound B(ﬁ;) may exceed by many decibels the actual per-

formance improvements which may be achieved.

The natural question arises concerning how much the
actual performance improvements shown in Fig. 14, for one
particular echo doppler frequency, might be increased for

echoes with other wvalues of fo.

An indication of the dependence of performance imgprove-
ment upon doppler frequency may be had by consideration of
Figs. 15 and 16,
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NOTES:

1) DATA 1S FOR GAUSSIAN FULSE IN UNIFORMLY EXTENDED
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In Fig. 15, optimum and matched processor performance
data are plotted as a functior of echo bandwidth W, fo:
several values 5f echo doppler frequency fo and the single
value of ab equal to 90 db. The greatest difference bhe-
tween each pair of curves yields, in the manner of Fig. 13,
a single point shown in Fig. 16. By this procedure one de-
velops a profile of values of AVK@%,EO) considered as a
function of fo with ab fixed.

One sees in Fig. 15 the very pronounced tendency, al-
ready noted, of system performance for both optimum and
matched processors to improve with increasing doppler fre-
quency separation between the echo and the bulk of the clut-
ter energy. Also quite evident is the termination of this
general increase of signal-to-interference ratio when the
maximum value of 2& /N is attained (see eq. 10.56).

In Fig., 16 one sees that the actual performance differ-
ence Aw(aé’fo) between optimu : and matched processors
tends at first to increase with increasing doppler frequency
shift fo. For some fo in the vicinity of about 5W_,
however, the data suggests that Av$mz,fo) reaches a maxi-
mum and then begins to decline for lacger fo.

Thus Fig., 16 suggests an improvement of perhaps 5 db
over the data of Fig. 14 for GE equal to 60 db. More spe-
cifically, Fig., 16 indicates that, for <Rc = 6C db, the
greatest performance difference which can exist between op-
timum and matched processors is about 30 db., This difference
oczurs (at one particular echo bandwidth) for an echo doppler
frequency in the vicinity of 5Wq cps., It is about 25 db
below the performance improvement bound B(ME)'
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XI. DETECTION Or' GAUSSIAN PULSES IN CLUTTER
WITH GAUSSIAN DELAY AND DOPPLER PROFILES

In the example of the preceding chapter, the clutter en-
ergy was assumed to be uniformly distributed over all values
of range delay. In practice, however, a clutter source will
certainly not have the infinite physical dimension implied by
such an assumption. Rather, the clutter socurce might be re-
stricted to conly certain range delays of interest, with the
result that some signal echoes might be received in noise only,
while other echoes were heavily masked by clutter. The effect
upon the optimum ocessor of such spatial (or range delayed)
variations of clutter energy is a question of some interest.
In this chapter a clutter dispersion function is considered
which has significant variation over both range delay and dop-

pler frequency shift.
A, ANALYTIC RESULTS

The clutter dispersion function to be studied is given by

&(p,£) = &, - &(p) - Q(£) (11.1)

2
where &(p) = exp {- m g—z-} (11.2)
and Q(f) =X . exp (-7 £i‘} (11.3]
n (e) =5 - =P WwE %)

The doppler profile, Q(£f), is that of the preceding rection
(see Eq. 10.8), while the delay profile is chosen to yield
maximum energy at delay p equal to zero. This is a conven-
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ient choice for the origin relative to which echo delays will
be specified.

The transmitter modulation is again taken to be
11
m(t) = 2%w?. exp {- ™Zt2 (11.4)

as in tne preceding chapter.

Under these circumstances it may be verified that Eq.
(4.18) for the clutter covariance function yields

¥t ot)) =& - glt )glt ) - k(v -t )dlt -t) (11.5)
I

2 W'D wat2

where g(t) = - exp {} ™ -——“g"-“—{} (11.6)
(2WZD2 + 1)+ 2R 2 L
wiD(t - t))®
k(tl - t2) = exp {- T 2w2DéL 4+ 1 (11.7\
= - — - 5 2\ l

an’ @(tl ta) exp { ﬂwg(t1 tz) I (11.8)

It will be noted that as D » e« in Eq. (11.2), the function
&(p) » 1 for all p, and the results of this chapter should
approach those in the precediny chapter for uniformly extended
clutter. This indeed happens for, as D > «,

g(t) > 1 for all t (11.9)
and k(t -t ) > ex -w‘ﬁ(t-t)"’ (11.10)
n 1 o P > N 2 VLl L0

When Egs. (11.5), (11.9), and (11.10) are compared to Eq. (10.6)
it is seen that M%(tl,tz) for the present case does approach
3%:(t ,t ) for the case of uniformly extended clutter.

1’ T2
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The fact that bbc(t_l,tz) in the present case is not a
function of the difference (tl = tz)’ however, nec~ssitates

a different approach to the solution,

If the explicit form for N%(tl,ta) given by Eq. (11.5)
is inserted into the general expression (4,33) for signal-to-

interference ratio, the result is

2
26, | [= 3 (£1p £ )m(tsp, £ )at ]|

S
i- o0 (- <] % \ _ R \ . c
I_w‘[ww (tl,po,fo,g(tl) 6ck(tl t_“)(Q(tl ta) g(tz_lw(ta,po,‘o)dtldte
(11,11)
where % is to be maximized bv appropriate choice of w(t;po,fo).
Equation (11.11), however, suggests the substitution

Yltipg,£,) = a(e)W(tip,£,) (11.12)

in order to reduce % to

" m(t7Po:fo)
zé;|'£-wY*(t’po’fo)' g (t) ° el

= [~ &« . ]
Lo Loyt sps£ ) Gk(t —t )t —t )-y(t_:p , £ )dt dt_
(11.13)

That this expression for has exactly the form of Eq. (4.48)

(Y17,

may no>w be verified.

Equations (4.50) through {(4.54) may therefore be used to
write the solution for that y(f:po,fo) which maximizes the
ratio given by Eq. (11.13). The result is

m(t; o’ o)
[‘7( :‘()t)f )]

Fy(tip,,£))} = 3:{5; k(t -t e, - )

(11.14)
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rom which w (t;po,f

ot ) may be found by using Eq. (11,12),
Thus

o]

wopt(t:po,fo) = T;zlz)"f?-l {,‘_}'{y(t:po,fo)}} (11.15)

on the condition that the transfcrms indicated in both Egs.
(11.14) and (11.15) exist.

Before proceeding further it must be noted that Eq. (11.14)

for y(t;po,fo) gives the maximum value to %, subject to

the constraint?

m(t;p ,£)
[~ (@] (@] :
Loy*(tipg,£5) -~y dt | = conmst. =K

(11,16)

By virtue of Eq. (11.12), however, this is identically the

constraint

| [T (tipg, £ )m(tsp £ )dt [P = [ K 12 (11.17)
which is desired in finding the w(t:p_,£ ) to maximize S
given by Eq. (11.11).

The process is therefore iustified, of solving the con-
strained extremum problem of Eq. (11.13), with constraint Eg.
(11.16), and then finding wopt(t;po,fo) via Eq. (11.12). The
same result must ensue as if the original extremum problem
of Eq. (11.11) were solved directly for w
to the constraint Eq. (11.17)

opt(t;po,fo), subject

With the validity of the solution (11.15) established,
the next concern is an expression for the maximum wvalue of
Equati_n (4.51) may be used to write

S
I.

+ see Egs. (A-1) and (A-2) for the origins of the constran.:.
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oo ()
= - 8 g*[t)
(-f)opt B ,5: {m ?(k(tl — tz)w(tl = ta)} df (11.18)

which employ . the functions appearing in the (simpler) alter-
native Eg. (11.13).

When the particular Egs. (11.4) through (11.8) for the
prescnt case are us~d in th2 more general expressions(1ll.14)
and (11.18), the 1esults are

V(2150 o) exp = M = po ) | TRE - W)
- exp ( jenf k
. ‘\w2 - 2 _ w2 11.1
i o "\W& - (W wqf/ ( 9)
and
EW p2 £2)
S. s 1 w2 o) 2
(T)opt = Tg—g [1 * Swepz * 2w2J' exXp {“ p2 [ &XP { W |
c q q
(11.20)
w2 2

An expression for wopt(t:po,fo) can be derived from Egs.
(11.19), (11.15), and .11.6). Kowever, a more informed under-
standing of the functioning of the optimum processor can be

achieved from the viewpoint to be presented in the nex* section.

B. DISCUSSION CF ANALYPIC RESULTS

For the particular assumptions of a "bi-Gaussian" disper-
sion function, and a Gaussian pulse echo, the clutter covari-

ance function has been seen to be factorable in the form of
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Eq. (11.5). It is readily verified, therefore, that the mean-

square clutter interference at any time t 1is given by

(o t) =& . g3(t) (11.22)
c c
The mean clutter level is therefore variable with time, and
the clutter process itself is statistically non-stationary.
The particular non-stationarity which is implied by Eq. (11.5)
for ﬁ%c(tl,tz), however, is of a rither "simple" kind.

A process x(t) with a covariance function }Qx(tl,t )
2

which is factorable in the form

wxul,tz) = a(t )K(t - tz)a*(tz) (11.23)

may be regarded as having been derived from a stationary pro-

cess vy(t), with covariance  unction

5$y(tl,t2) = x(tl - tz)’ (11.24)

by passing y(t) through an instantaneous ampglifier with am-
plification varving as a(t). Uncer these circumstances one
will have

x(t) = a(t)y(t) (11.25)
which yields
Yo (t ot ) =< x(t )x*(t ) >

= Cale )yl y*(t )ax(t ) >
= a(t ) < y(t Jy*(t)) > a*(t_)
= a(t )K(t - t2)a*(t2) (11,26)

as required by Eq. (11.23,.
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Although this is not the physical mechanism through which
the particular clutter interference of the present case arises,
it is a convenient mathematical framework for describing the

operation and structure of the optimum (non-stationary) processor.

1. Structure of the Optimum Processor

At the left of Fig., 17 is shown an equivalent source
£ the clutter interference being considered. A stationary
rana... process x(t) 1is assumed to exist and to pass through
an instantaneous, time-variable amplifier. The amplification
is assumed to vary as g(t). The covariance function of the
process x(t) is taken to be &, k(t) - &(1), as incicated
in the figure,

The resuit is that the prccess emerging from the

equivalent source has the desired covariance function, namely

t ,t ) =&gqg(t )k(t -t t -t )g(t
Sl oe,) = EaleDule, - s p@le, - e sle)
as indicated in Fig. 17 . As the optimum processor requires
no more knowledge of the interference than its covariance func-
tion, the interference assumed to be generatea in the manner
of Fig., 17 1is an acceptable substitute for the aciual clutter

process,

To the (equivalent) clutter interference is adcead
the signal echo m(t;po,fo) to be detected., The sum of echo
and clutter is then available at the processor input. In gen-
eral, noise vould also be part of the sum, as indicated by the
dotted line in Tig, 17 . In the present analysis, however,

noise will be negiected,

For this situation, the optimum processor derived alge-
braically in the preceding section may be regarded as the tandem
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combination of a time-variable amplifier and a stationary,
linear filter. The structure implied by Eq. (11,15) is shown
at the right in Fig. 17 . The amplification varying as 1/g(t)
corresponds to the leading term on the right of Eq, (11.15),
while the stationary filter of Fig. 17 1is assumed to generate
the time function SF-l (f?{y(t:po,fo)}} which appears in

Eq. (11.15)

The two operations performed within the optimum pro-

P Lo

>

s

cessor may now be considered separately

The action of the variable amplifier in the optimum
processor upon the clutter component of the input waveform is
clearly to undo the previous multiplication by g(t) in the
apparent interference source. At the pcint "A" within the
optimum processor, therefore, the clutter has been converted

to a stationary process with covariance function given by the

original

',Kox(tl,tz) =& - k(t -t )@t -t). {11.28)

C 1 2 1 2

The signal echo which enters the optimal processor as

m(t;po,fo) appears at point "A" as the waveform

m(t;p S£ )
z(t:p_,£)) = g(i) - . (11.29)

Now the optimum processor y(t;po,fo) for detecting
the signal z(t;po,fo) in the stationary interference x(t)
has already been defined by Eq. (4.50). The optimum processor
is therefore given by
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(e ) )

F{E k(1)) )

F (v(tip,,£) (11.30)

where eq.ations (11.28) and {11.,29) have provided the nec-
essary terms for use with equation (4,50).

The processor y(t;po,fo) derived in this manner
and given by equation (11.30) is cobserved to be identical
to the processor y(t;po,fo) derived algebraically, and
given by equation (11.14%), It is the processor shown as
the second component of the optimal processor wopt(t;pofo)
in Figure 17 .

From the viewpoint of Figure 17 , and the recent
discussion, optimum processor operaticn in the present case
consists of two actions:

i) First the incoming waveform has i1ts amplitude
appropriately varied as a function of time,
to render the interferinj process statistically
stationary.

ii) Then the optimum processor for detection in
the resulting stationary interference is

found.

The tandem combination of both actions yields the opti-

mum (non-stationary) processor for the original problem,

This manner of interpreting optimum processor
operation is possible whenever the interference covariance

function has the particular form of 2quation (11.5).

Note that the inclusion of noise in this case would

cause the interference covariance function rot to factorable
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in the necessary form, Neither the algebraic nor the inu-
itive mode of solution can therefore be carried out if the
presence of noise is assumed,

= o Signal-to-Interference Ratio

The signal-to-interference ratio for this cptimum
processor has been given in equatvion (11.20). This equation,
in t2-t, is seen to be remarkably similar to the expression
(10.18) for % in the case of uniformly extended Gaussian
clutter. Indeed equation {(11,20) reduces as it should, to
equation (10.18) as the clutter extent parameter D approaches
infinity.

For any finite extent parameter D, it may be veri-
fied that % of equation (11.20) exceeds % of equation
(10.18). oOne might say that the improved performance in
localized clutter was due to the added possibility of dis-~
criminating against the clutter energy on the basis of range
delay Pos in addition to the discriminaticn on the basis
of frequency spectra as described in chapter ten, Such an
interpretation does accord with onefs intuitive expectation,
based on Figure 18, for tnis case of norn-uniform clutter.

It is supported by the observation, from eguation (11,20),
that performance does improve as the range delay, Pg?
between the maximum cluttetr energy (at p = o) and the max-
imum echo energy (at p = po) increases,

The effects of noise upon the optimum soclution
for the present case may be expected to be quite similar to
the effects described in chapter ten for the case of uni-
formly extanded clutter. The two zero-noise solutions have
many points of similarity, with the result that much of the
discussion of chapter ten has analogous applicaticn in the

present case,

it
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4’
RANGE DEL AY
[

Kc (p,p) = MEAN SQUARE CLUTTER AMPLITUDE

FiG. 18 RANGE DELAY PROFILE OF GAUSSIAN PULSE IN NON -
STATIONARY GAUSSIAN CLUTTER
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The first point of similarity exists in the staticn-
ary component of the optimum processor shown in Figure 17.
The Fourier transform of its weight function is given by
equation (1l1,30)as a ratio with denominator equal to
?’{gck('r)cg('r)} . The function k(7)&(t) is Gaussian in the
present case (cf. equations 11,7 and 11.8) with the result
that y{eck(r)a?('r)} is also Gaussian and rapidly approaches
zero as the frequency variable of the transform approaches
infinity. The result is that the weight function
y(t;po,fo) of the stationary component of the optimum pro-
cessor for the present case will tend to emphasize higher
frequency ccmponents of the signal at its input, with es-
sentially similar results to those shown and discussed earlier
in connection with Figures 6 and 7 . 1In the previous case
the high-frequency emphasis arose out of the analogous pre-
sence of y{m('r)ée('r)) in the denominator of the optimum
processor (see equations 4,45 and 10.20).

The optimum processor for the present case posesses
a second point where the presence of noise will greatly modify
processor operation. The preliminary time-variable amplifica-
tion by 1/g(t) shown in Figure 17 provides minimum ampli-
fication at t = 0, but rapidly increasing amplification for
t » + ®», The reason is again the presence of a Gaussian
function in the denominator of a ratio, Here it is g(t)
which tends rapidly to zero for large t, 7Again tle¢ presence
of noise will militate against the unbounded amplifications
which are indicated for the noise-free case, It is to be ex-
pected that if a time-variable amplifier is a component of
the optimum processor for bi-~-Gaussian clutter plus noise, then

its amplification may well be minimum where clutter is large,
but it will almost certainly be constant (rather than un-
boundedly increasing) where clutter is small,
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An exact description of the effects of noise in
the present case is unfortunately not possible, because of
the form of the solution., Ir the preceding case, equation
(10.17) gave the performance essentially in terms of an
eigenfunction expansion of the problem solution?, and noise
was simply included by appropriate modification of eigen-
values, In the present case, however, equations (11,15)
and (11,18) for the solution are not given in terms of
eigerfunctions of the covariance kernel, The result is that
the effects of noise cannot be directly incorporated into
the no-noise solution,

This solution for bi-Gaussian clutter therefore
provides &n example where even complete knowledte of the
zero-noise solution is not necessarily of help .n finding
the opcimum solution for interfererce which includes low

noise levels.

+ Note the formal similarity of equations (10,17) and (6.33),
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XII. DETECTION OF RECTANGULAR PULSES IN
UNIFORMLY EXTENDED CLUTTER FROM A STATIONARY SQURCE

This chapter and the next will deal with clutter arising
from a source which introduces no Doppler dispersion among
the clutter components. Physically, this would correspond to
reflection of the transmitted waveform from a spatial dis-
tribution of essentially motionless scattering centers.

The simpler cases, which arise when the mean clutter
energy is uniform for all range delays, are considered in
this chapter. The resvlts to be given, in addition to having
intrinsic interest, serve also as the basis for extensions

to the more general cases in ¢hapter XIII,

A, THE DIFFERENCE-DIFFERENTIAL EQUATION

The clutter dispersion function &(p,f) is assumed to
have the form

&(p,£) = &, - 6(f) (12.1)
for all range delay p. Introduction of this expression into
the general formula (4.16) for the clutter covariance kernel
then leads to

x’c(tl’tz) - e _c{ & - m(tl:p)m*(té:p)dp ’
(12.2)
where
m(tl;p) = m(tl:p,O) = m(tl-p). (12.3)
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Equation(12.2) will be observed to have the same form as

Eq. (8.28).

The modulation envelope m(t) is assumed co be rectan-
gular with unit integral-square-amplitude, as required by

Eq. (4.21). The envelope

T - F g
0 otherwise

rol-3

corresponds to a single pulse of duration T seconds - the ele~-

mentary radar signal. It is clear that for this pulse

d \
a‘Em(t)z

L 6(t4—%) T %) (12.5)
T T

which is preciszly the form of Eq. (8.30), namely

N
(=]
™Y

L. nm(t) = Mtnté(d s

t
where
.:_C:l__ " B Es
L.f=3¢ £(t) (12, "a
-1
ME=T 2 . f(t) (1.
and
= _T_ — _1 s PO
D f = f(t+ 2) f(t 2) . (12, ¢
It may be verified?t that the adjoint to L, is given by
- _ d SR
Lf= -3 f(t) (1z. 4
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With only real constants involved ia these definitions, it
follows, :moreover, that complex conjugation of an operator
leaves the operaco~ unchanged,

When '+, oprrators defined in the preceding four equations

are applied in Eqs. (8.4) and (8.46), the respective results
are

PR § :
witip £ ) = - gp v*(tip »£ ) (12.8a)
and
26 o
_c . et Y. ._g_, er f =£l .
i DD ¥ (t,po,fo, N dta,l/*(t,po o) dtm(t,po,fo) (12.8b)

This system of equations may be reduced *o a single equation
by Jifferentiating the second with respect to t ana then
using Eq. (12.8a). The .esult is

s

g
- 2;’C DtD:w(t;po,fo) v B SE% w(t;po’fo) - d22 m(t7po’fo)
dt dt
(12.9)
or if the extended form, Eq. (12.7c¢), is used for Dt,T
2&C( .
T \w(t-{-'l‘:po,to) -2 - w(t;po,fo) + w(t—T;po,fo)}
2 2
+ No ;z; w(t,po,fo) = :;; ritip ,f )
(12.10)

+ It is a giirk of this particular operator D, that

+
—DtDt = DtDt
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The pr.blem is now to solve Eq. (12.10) for w(t:po,fo).
In words, Eq. (12.10) asserts that the unknown weight function
is characterized by a weighted sum of its second derivative
and second difference being equal to the second derivative
of the desired echc. Visualization of the unknown function
at this point is not necessarily an easy matter. The simplest
of radar waveforms tngether with the simplest clutter model

has, unfortunately, not led to the simplest of equations.

B. A GENERAL SOLUTION

Eruation (12.10) may be solved by assuming that both
w(t;p ,f ) and m(t;p :f ) admit representations as Laplace
o’ o o o

integrals in the following manner:

st

w(tip ,£ ) = [ W(ssp ,f )e”"ds (12.11a)
c

w{tip ,£) = | M(s;po,fo)eStds (12.11b)
c

where s = ¢ + jw, and C 1is the contour extending from
S = =jo to s = 4jo along the path ¢ = 0. The direct
bilateral transforms are given by

00
-St

W(sin £ ) = [ wi(tip ,f )e ~"dat (1z.1za)
o' o . o o
and
M(sip L,E) = f mtip ,£ )e Stat . (12.12b)
(o] (o] (o] o

=00

Vhen the representations (12.11) are introduced into
Eqg. (12.10) there results, in exactly analogous fashion to

solution by ordinary, one-sided Laplace transforms,
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g 26, -

;! 2 c | o¥ST _ sT . - «2. .

z [NO e + T e 2 + e W(Sppo)fo) -] M(slpolfo)
. (12.13)
Nk Algebraic manipulation followed by solution for W(s:po,fo)

yields
5 M(sip , £ )
i(s;: - c ! I
Wi Po,fo) 2 &c 4 sinh2(SL “TPe %o
N+ 8% + ——= - 4 sinh®(3)
(12.14)

where, using Eqs. (12.4) and (12.12b), it may be verified
that

o2  [(s-3emE)T -(s-jemf )p,
M(S7P°’fo) = g’:‘gg;g; * sinh{ - s - e

(12.15)

In principle one may now use Eq. (12.14) in the integral
(12.11a) to accomplish the necessary inversion for w(t;po,f )

o
by customary techniques.

One such technique - the partial fraction expansion of
W(s;po,fo) - provides the motivation for the following dis-
cussion.

Let it be assumed for simplicity that the echo to be
detected has zero Doppler shift.?t The case of non-zero
Doppler can be studied in the manner to be outlined, but at
the expense of extiemely laborious algebra.

If in Eq. (12.14) one introduces M(s;pO,O) for the
zero-Doppler echo, the result is

+ This is the case considered by Urkowitz 45 for clutter alone.
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T < s . 2 sinh (§§J -sp
o
W(s:p ,0) 5 e
2 2 & ¢ . 2 ¢ST
N s® + 4 sinh® (=)
o T 2

(12.16)

No loss of generality results if Py is now taken to be zero

and attention is restricted to

1
T2 s . 2 sinn (5)
W(s:0,0) = v (12.17)
2 c i nh2 (ST
N s® + —% 4 sinh (2)

The characteristic equation in either case is given by

26
_ 2 Cc . q 2(ST = 0 ~ ~
D(s) = N s® + —% 4 sinh \—2) 0 (12.13)

It may e shown that the roots of this characveristic
equation are symmetrically dispnsed in quadruplets in the
s-plane. This follows from the fact that, for complex s,

[
P
0
S’
N
t

(~s)2 and sinh®(- %%) [ - sinh(%?)]

4

(12.1%a;

and

ii) (s®)* = (s*)2 and sinh (§%Ij [ sinh (%;)]*

(17,13

Thus, from these symmetrv relations for the individual terms

of D(0), one concludes that, if for some "k and o
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i) D(Uk+3mk) = 0 (12,20a)
then also
ii) D(-ok-ka) =0, (12.20Db)
iii) D(ok-jmk) =0 , (12.20c)
and
iv) D(-ok+jmk) =0 . (12.204)

This symmetric dispc.ition of roots is shown in ¥Fig. 19,

It will presently be shown that, for N_ # 0, all the
roots of the characteristic equation ave simple and lie away
from the m-axis (i.e., have ¢ # 0). The expansion of
W(s;0,0) in partial fractions will therefore have the form,

for o, > ¢ and o > 0,

akl

w(s;0,0)= Z{ — + a_kg . + 8y 3 : N ak4. }
k|8~ (o i) 7 s=(-o, +jou ) " s-(-o, -jwy ) " s-(o, -Jay )

(12.21)

where akq is the residue for the k-th pole in the g-th

quadrant of tuhe s-plane. Finding the inverse transform of

this partial fraction expansion is a relatively straightfor-
ward matter.

)

It is known®~ , and readily verified, that

r Sot
. a -+ e for t > O
+Joe o -
3o st
f — ds =
Q -5
-J”ﬂ o
0 for t<{ O
.

(12.22a)
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for sQ in the left half-plane. Conversely, for zeroes in
the right half-plane, one may write

f | E_.:_c?.g_ eStds = N (12.22b)
=Jm o) . o]

where Re (é} > 0. Verification of these relations is ac-
complished by direct substitution of the indicated time
functions into Eq. (12.11b). When the integrals are evaluated,
the resulting transfcrms will be seen to agree with the trans-
forms under the integrals in Eq. (12.22).

When Egs. (12.21) and (12.22) are compared, it may be
seen that the time function which is the inverse transform

of W(s;0,0) may be written in the form

w(:0,0) = z{wi(t) + w(t)) (12.23a)
k
where
[ -0, t jo_t -0, t =jw t
a, * e BTl a, ' e L “x , £> 0 (12.23b)
wi(t) = )
e (£) =
0, for t<{ ©C ; (12.23c)
L.
and
0, for t> 0 (12,234
w, (t) = : ,
k c,. .t -jo, .t g, t ot
k K k- 1% o s
-a, ,e e - a.e e , £t 0 (12.23e)

The only remaining problems are findin

the zeroces

£

(ok,mk) and evaluating the corresponding residues a. .
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To find the roots of D(s), first opnserve that D(s)
may be factored and the characteristic Eg, (12.18) written

3 LAY ST
_ N2 . <) . :
D(s) = N - s+ 37 ) sxnh(z,)}
1
1 2& \2
3 s C . sT\ _
. {No . s ]( T > .2 sxnh(—2 %- G0 .

The roots of D(s) are then values of s such that either

P S

12.24)

1
1 26 \2 =
. : c o sTy _ . .
NO s + 3| =5 2 sinh (2 } =0 (12.25a)
or g
% Eéﬁ ; sT
¢ - |l —= + 2 si 22) = S
NO s - i\ 2 sinh (2 ) C (12.25b)

At this point a certain economy may be effected bv recalling
Egs. (12.19) and noting that if 8, satisfies Eq. (1lZ.7%a’,
then —so will also satisfy Eq. (12.25a) while s; satisfies
Eq. (12.25b). It is therefore sufficient to consider only

the roots of Eq. (12.25a) alone®s in order to discover all the
roots of D(s). Substitution of

s =7 + j» {LEL 267

into Eq. (12.25a), followed by expansion of the hyperbolic

sine, therefore leads to
1

26 \?2

1
2 C
o

N 2 cosh(%gﬁ sin (=) = 0 (12,27 a)

- LT
% T o

t+ Or Eq. (12.25b) alone.
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and

N

O o~

3
2 ;
m+(f°> . 2 sinh(Z) cos(FF) =0 (12.27b)

as a pair of equations to be solved simultaneously for o

and w.

It would seem that, in general, solutions to Egs. (12.27)
are to be had only by approximate or numerical techniques.
The asymptotic behavior of the soluticns as No approaches
zero will in fact be considered in the next section. A gen-
eral indication of the root locations may, however, be obtained

in the following manner.

From Fqs. (12.27) one can derive the following auxiliary
relation which must be satisfied by any solution (o,w) of
Egqs. (12.27):

() -+ tan(4E) = -(ZF) tann(Z) (12.28)

The left and right sides of this equation are plotted separately,
and to the left and right, in Fig. 20, Each term is seen

to be an even function of its argument.

Consider now the interval
tn - < f%‘-( i (12.29)

where { 1is a positive integer. Clearly, for each ® in

this interval, there is a ¢ 1in the interval
0< (F) < = (12.30)

which causes condition (12.28) to be satisfied. Over this

same interval

0 ¢ sinh(%T-) { w (12.31)
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while cos(%?) has fixed sign, given by
(12.32)

Consider now the variation of the left member of Eq. (12.27b)
as S%E ranges upward over the interval defined by the inequal-
ities (12.29). The first term, Néw, remains positive and in-
crear =, The second term variest from zero to (-l)L(+m).

Thus £ odd, the left member of Eq. (12.27b) must undergo
a si, .nange in the interval. Therefore, for 4 odd, there

must be a root (o,w) such that

L o- %( %( L (12.33a)
and
oT ~ 2
0 < >\ ® . (12.33Db)

By exactly analogous reasoning one establishes that for even ¢,

the root (o,m) is such that
i - T (12.33c)
while

~= ¢ ZL<0 (12.334)

The inequalities (12.33), together with the symmetry
relations (12,20) for the roots of D(s), therefore lead to
the conclusion that: for each positive, integral k, there
exists a oot of D(s) called s,» such that

S, = O + jo (12.3%a)

+ As deduced from Egs. (12.31) and (12.32).
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Ok . T
where 0< 5 (12, 34Db)
kﬂ'-% 4 mkg.T< K7 (12, 34%c)
and D(ok+jmk) = 0O (12.344)
D(—0k+jmk) = 0 (12, 3ke)
D(-ck~jmk) = 0 (12.34f)
D(ck-jmk) = 0 (12.34g)

That there exists only one such simple root Sy for each value
of k will be shown by a continuity argument in the next
section of this chapter.

Assuming then that a satisfactory collection of roots

s has been determined, the final data needed for computation

k

of Egs. (12.23) are the four residues a for each valv= cof

kq
k. Because the roots are simple the albebra is straightforward.

Let W(s;0,0) given by Eq. (12.17) be written in the form

W(s;0,0) = g—%— (12,

where the numerator and denominator of Eq. (12.17) have been
identified respectively with N(s) and D(s). Tuen, if the
individual roots of the k~-th quadruplet are identified as to

ta)
(Wl

their quadrant by the subscript g, one may write?

+ See Churchill,® pp. 57-58, for example.

-183-



e e —————AANRY £ 11

;an T R R T e A G

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

N(s
kg D' (s ]s = Sq

where the prime indicates differentiation with respect to s.

If the calculation called for by Eq. (12.36) is carried
out, one has

' . Ce cirn(STY . sT, T
D' (s) —QNO. s+2 . —x - 4 sinh( 2) cosh(g) %
(12.37)
which is the same as
D! (s8) = 2No s + 25c .+ 2 sinh(sT). (12.38)

If the real and imaginary parts oi s are introduced,
then N(s) and D'(s) may be separated into real and imaginary

components, and the residue a; q written

nl(o,m) + jnz(c,m)

kq (12.39) :

q ~ al(a,mo ¥ 38 _(0,a)
“kq

where

_ o (OT wly _ ITy s (DL
nl(o,m) = 2g sinh( 2)cos( 2) 20 cosh( 5 )sin( A )

s =

(12.40a)
nz(c,a)) = 20 sinh(-%‘-)cos(—“?ﬂ) + 20 cosh(%—)sin(%r-)
4 T (12, 40b)

dl(c,m) =\2N o + 26c-- 2 sinh(oT)cos(aT) (12.40c)

1440 BRI R b rsp s




. d2(0,0>) =28 » + 2& _ + 2 cosh(oT)sin(wr) (12.404)
t Finally A may be separated into its real and imaginary §§
components. Thus %E
m +d +m -d m «.d -m -+ d -
1 1 2 2 2 1 1 2 g
a, = + 3
kq a® + a2 Q? + a®
1 2 1 2
(12.41)

where the functions defined in Egs. (12.40) have been used with
abbreviated notation.

Before concluding this section on general aspects of the
solution, two simplifying remarks may be made. First, one
sees by inspection of Eq. (12.17) that, fer all s,

W(s;0,0) = W(-8;0,0) (12.42)

i D s

If in the basic inversion formula, Eq. (12.1lia), one changes

BRI S il s e o bt o ot st

variable according to r = -s and then uses Eq. (12.42), then
one may show directly that for all t

w(t;0,0) = w(-t;0,0) (12.43)

S S e S

Second, one may consider the two roots (-0k+jmk) and
(-ck-jwk) and trace the effects of the change of sign of e
through Egs. (12.40 ) and (12.41 ) down to the conclusion

that
2, = ak (12.44) |
Both Egs. (12.43) and (12.44) now enable one to write more ;
simply, and in place of Egs. (12.23), :
~185-
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2

.“
: i '
b e

-Gyt j< t7 -
to,o)-zz&e{aka L)"},1:>o
(12.45a) ,
w(t:0,0) = w(-t;0,0) , t<{ O {12,45b)

where dk> 0 and mk> Q.
(&4 S ~-NOISE SOLUTION

For No approaching zero it is possible to derive approxi-
mate expressions for the roots of the characteristic eqguation
and, therefore, ultimately to compute approximations to w(%:0,0)
given by Eq. (12,.45a). This approximate analysis for small
noise is the subject of this section,

The starting point for the analysis is the pair of Egs.
(12.27a) and (12.27b). When N is actually zero they become

A S, S M O .W.Wﬁﬁ-ﬁ‘ i

26 )\ oT o
Tc . 2 cosh(—g-)sin(—é-) = 0 (12,45a)
and
26
- (Tc) « 2 sinh{ —-)cos(wr) =0 (12.45Db)
: /
2 V4

The simultaneous solution of this simpler pair of equations
presents few problems, Since for all real x, cosh x is
greater than zero, the first equation can only be satisfied if

sin(%}) =0 (12.46a)
or

@t , t=1,23.."1 (12, 46b)

t Only positive arguments need be considered in view of Eq.

(12.45a).

(it
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Since the cosine has unit magnitude for these arguments,

Egq. (12.45b) therefore :1mplies that

oT _ o
5 =0 (12.47)

]

for all solutions.

These zero-noise solutions are the starting point for find-

ing the smali-noise, approrimate solutions., Note in passing,

however, that the zeroes defined by Egs. (12.46) and (12.47)

are actually double zeroes of the characteristic eguation.

It is readily verified that for any individual (o,w) equal
24T) ' poth of the factors of D(s) in Eq. (12.24)

to (O, -T—)’
are equal to zero. Each quadruplet of simple zeroes for

N, # 0 therefore originates as a pair of double zeroes when

A s

N, = O.
For No sufficiently small one expects that the zeroes
of D(s), Eq. (12.18), will oe near the zeroes for No equal

to zero. With this expectation, let

HAEEEBEET

i =
w, = g~ + éwz = w, o + b0, (12.48)
and E
(12.49)

GL =0 + 60&

Substitutica into Egs. (12.27) then leads to

1
1 25 \z 6c,T Sw,T
2 . = —_—c-. . —-&— . ~— ‘t 3 —L =
N’ 60£ T 2 cosh|— > (-1)* sin 3 0
(12.50a!
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and

26 \% 50,T 5w, T
Ni(wl'o%m&) + ( = c> . 2 sinh( 02” ) . (-1)4’ cos( u;& ) =0

=, (12.50b)

Por the "small" bc, and &w, which result for N sufficiently

small, these equations may be replaced by the approximate pair

26 \* bup, T
ng b, - ( ,,,°> 2 . (-1)’“ . <—%—>= 0 (12.51a)

2& 5 éa,T
N% bw, + ( Tc) . 2 (--—246—)- (-l){’ 1= -N% ®y o

and

R A 005 s s

(12.51b)
Simultaneous solution yields
1
2& \~¢ bw,T
c L
bo, = N°T> 2. (-1)" . Jgr—) (12.52a)
and ‘
5 Yo
w, = = W
2 26 2 Lo
(o 2
N+ == 22 (-2 (D
(12.52b)
For No approaching zero, this last equa‘ion yields
N
2 o1 . o 218
6(,% = =1 QGCT T (12.53a)

which, when substituted into Eq. (12.52a), yields in tuzrn

1
N 2
bg, = -1 - (-1)* . <2—&°?> . 2—,;,’-& (12.53b)

These equations form the basis for Fig, 21 showing root

loci near the c-axis for small No. From Eqs. (12.53) one

finds .
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wT
(hs3) (1.4

Sn 4+

{ks2)
”____a-ax_-...==__-j?‘r_%;:_-
_l

3
3Ir 4. s
o, + -1 (8 25
{(kz)) 2w
= T8, 17V Ne V* 27k
2€c/) T
e J
e L Tka--z-;: (Tsd‘k)
—>
oT
-" pu

(kz-1) -2

F1G. 21 CHARACTERISTIC ROOT LOCI FOR SMALL Ne.
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.-_O_Lo 2 =
dw, = =1 * v (60L) L =1,2,3,... (12.54%)

as the equation for the indicated segments of the root locus

curves, The actual root locatio op any particular curve

will Adepend upon the parameter (52;35 , via Egs. (12.53),
c

This question will be considered in a moment.

Here, however, it is convenient to pause temporarily to
note that as N increases from zero, each of the double

0o
roots of D(s) 1located, for N = ~, at
SL = i‘JQ.’%‘ 4 = 1:2:3:000 (12’55)
gsplits and gives rise to a s/ 7Tle root i:.. eact . f the quadrantiy,

with imaginary parts satisfying

log | < 2 1 =1,2,3,... /12.56)
Reverting now to consideration of the inequalities (12.33)
which are strictly satisfied for all No > 0, one conciudes
that, for each 4, there is only a single root which satisfies
Egqs. (12.34). since this conclusion is true for sufficiantly
small No, it remains true for large No. Viewed differently,
one can say that the root locus which intersects the w-axis at

= 2%& L=1,2,3,... (12.57)

Wy o

is constrained to lie in the band in the s-plane defined by
“he (strict) inequalities

M WL o (12.58)
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The approximate root locations for a given No may be
estimated from Eqs. (12.53b). It is clear, however, that for

sufficiently large 1, neither 6o£ nor 6m£ will be small

for NO fixed. For large 4, therefore, the accuracy of the
approximations (12.53) can be doubted.

A possibly better approximation to the root locations for
large 1 rests upon the inequalities (12.58). These bounds

imply that

w,T
=r> < B (12.59)

as 4 »> ~, or that uy %s of the order of 4. Consider now
w
Ey. {+2.27b). 1If cos-—&— does not approach zero too rapidly

2 2
as 4 > », then Egq. (12,27b) suggests that
5 \}
2 ‘g, T
i c . 3 J_ o) A
W, = 4 N0T> 2 smhk 2) (12.60)

These considerations are summarized in Fig. 22. On the
fundamertal strips implied by Eq. (12.58) are superimposed the =
straight line implied by Eq. (12.53b) and the hyperbolic sine
appearing in Eq. (12.60). The circles indicate actual rnot
locations which satisfy the exact characteristic Eq. (12.25).1t

The fact of probably greatest theoretical interest is
that, for all £, according to Eq. (12.53b),

No 2
0& « 25CT) . (12.61)

Because o, varies as the square-root of No’ even relatively
"small" values of No lead to relatiwv ly "large" displacements

+ The indicated roots were found by successive approximations
using a digital computer for numerical calculations.
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wT Y
Re ¢ - 3100
¢ 0
Rw
2Eg '/z . c‘r
wT -(m— - € sinh (7)

0w -

NANIRNNANANY

AN
T (5)% 2m

" =3 —XA
AN

> FORBIDDEN REGIONS FOR

CHARACTERISTIC

AT =

FIG. 220 CHARACTERISTIC ROOTS FOR SMALL Neo (FIRST QUADRANT;
LARGE 3CALE)
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R, = —: 100
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FIG. 22b CHARACTERIST:C ROOTS FOR SMALL No (FIRST QUADRANT:
3MALL SCALE)
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of the characteristic root locations from their zero-ncise

locations, The effect will be seen to cause analogous rela-

tively "large" deviations of the small-noise problem solution .
from the no-noise solution., This is seen by considering the

asymptotic behavior of the solution, Eq. (12.45) as N - 0.

The asymptotic behavior of the residue Ao is found by
substituting the values

Op, = =00y » 60, < 0 (12.62a)

JTHT

Wy = 2+ b bay < O {12.62b)

into Bgs. (12.40) to find that

Y
(opem) = (0 )7 - (B ok sny )
(12.63a)

a_(oggamy,) = (-z)“{-(%’ﬁ) . 1¥e (o0,) - (50y) - 7 <6%>}
(12.63Db)

dl(cka’wkz) = 2 {-No(bck) - Q&C - T (c’mk)} (12.63c)
. 1
da(‘cke,wka) = e{no(ggﬁ) + zt‘pc T (mk)}. (12.634a)

For a second quadrant zero, one uses Egqs. (12.53) to write
(consistent with Egqs. 12,62)

No : omk
o, =+ 26 T - (12.6!a)
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: o)  amk
6wk = —/’_;&'—T) * T . (12.64Db)
\"“Yc
Equations (12,63) mavy therefore be reduced to
n (O' ) a k Qﬂk T% (12 65 )
1 9k2? P2’ T ee, e
N
. k 2 k ~
na(cka’mka) = 26 ) I ) .Tf (lc.65b)

3
a (o o) = -2(N +2 T} (eaoc'r) (egk)
(12, 65¢)

aa(cka,wka) = E(No) - 1. (—'F') (12.65d)

When these values are finally introduced into Eq. (12.41),

the result for the residue ak2 is

. N 1
e * (-1 {FH) (53]5_) ‘ %(eeoc'r)e + 34 b1z, 66

" Finally, the solution ror No approaching zero is found
by using Egs. (12.45) and (12.66). The result is, for t > 0,

t N \?
w -g
wopt(t ;0,0) = ?& (1) (%)e S -sm(wkt) 2(2& 'I) cos(wkt)
‘ (12.F7a)
wbpt(-t:0,0).= wbpt(t:0,0) - (12.67Db)
where ds
2k No .
oy = —,’1.'—(26 1) (12.67¢)
c
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N i
s 271k _ o =
and O = Tp 1 52;:%) (12.674)

= *The zero-noise solution, which is valnable for comparison
: purposes, can be deduced from the preceding expressions. Thus
for N =0 and t > 0,

4 \
Vopt (£70,0) = ‘?gc 13—1 (-1)"(?-“5‘5){-51:1(—-2’%‘5 -t) }

(12.68)

which may be rewritten

R

O A

-4 @
opt(t 0,7) = 40— . & % c:os{?"k t - %)} (12.69)

The summation now is a recognizable form since, using only
the sifting property of the impuls<. one may write the fol-
lowing Fourier serirs expansion of an impulse train:
Tk; 5(t-kT) = 1 + z cos{e'"k } (12.70)
==

Equation (12.69) may therefore be written in the equivalent
form, for t > 0,

(t;0,0) = T;;f ——é(t-—-k‘r) . (12.71a)

opt 2 k=0 dt

For t< 0, Eq. (12.67b) remains unchanged

(-t;9,0) = (t:0,0) (12.71b)

Yopt

Yopt
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1, Discussion

A

The zero-noise solution of Enqs, (12.71) is illus-
trated in Fig. 23, in relation to the rectangular pulse to be
detected. It is observed to he & sequence of doublets, spaced
by the pulse duration and located to act upon the leading and

tling edges of the pulse, A physical insight into why the
Ze.O-noise weight function has these characteristics, and how
they are related to the clutter dispersion function, will be
v2n in the next section. ITor the present note simply that
for N_ = 0) the weight function extends, undiminished, to
infinity in both directions.

The presence of a relatively cmall noise level, how-
ever, introduces the relatively large changes to be expected

on the basis of Eqs, (12,67) and actually seen in Fig. 204,
The weight fu ction tends to become more restricted to the

i

I

time of occurrence of the echo because of the exponential

(O TR AR AR A AR RS R e il

factor, exp-i-okt) ,» appearing in Eq. (12.67a). The decay
rate, governed by O)s MmOreover varies as the square-root of
the noise level,

The doublets which characterized the zero-noise
solution of Fig, 23 are seen to be very much "smoother" in
the small noise so ution of Fig. 24, The doublet nature of
the solution is still quite pronounced in the vicinity of
t =% 0,5, where the edges of the echo waveform are located,
However, at the times t =% 1,5 and t = £ 2,5 only faint
suggestions of a doublet waveform exist,.

R BT

The reason for the relative smoothness of the small-
noise solution of Fig. 24 is the same exponential factor,
exp'<-okt>', which was m2ntioned two paragraphs back and
which applies to every term of the solution in Eq. (12.67a).
In the present context, however, one notes from Eq. (12.67c)

R O
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REPRESENTATIONS OF IMPULSE DOUBLETS

m{1;0,0)

?
!

Ot ‘ il

—JL_—-—==—_.

FIG. 23 OPTIMUM ZERO-NOISE PROCESSOR FOR A RECTANGULAR PULSE IN
UNIFORMILY EXTENDED CLUTTER FROM A STAT!ONARY SQURCE ’
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that the decay constant Gk is directly proportional

to the index k and, therefore, to the aross frequency of
the k-th term of the solution, (See lgs. 12,67d and 12.67a.)
For any fixed time t, therefore, the action of exp (-okt}
is to attenuate by increasing factors the higher frequency
components of the solution., This "filtering out" of higher
frequency components contributes to the smoother appearance
of Fig. 24 when compared to Fig, 23,

The small-noise solution shown in Fig. 24 was com-
puted from the exact formula, Eq. (12.45), truncated after
the first fifty terms., Exactt locations for the first fifty
characteristic roots were used in computing the necessary
residues a,, according to Egs. (12.39) through (12.41).
These root locations were previously shown (in the first
quadrant) in Fig. 22b. The many caiculztions which this pro-
cedure requires were performed with the aid of a digital com-

puter,

D, SOLUTION FOR LARGE NOISE

The general Neumann series solution given by Eg. (7.5)
provides a moderately convenient means for generating approx-
imations to the optimum processor weighting function for the
present case, in sufficiently large noise,

For clarity of exposition it is convenient to rewrite
Eq. (7.5) in the form

N SR 1 5 2
W(tl’Po’fo) —_ No m(tl,po,fo) + No n§1(-ac) Wn(tlxpoxfo)

(12.72)

+ Exact, that is, to within tolerarces of 0,01 applied to
both real and imaginary comporients of the root location,
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where

o n . ‘
wn(tl7p°,fo) = {m Kc:(tl,tz)m(tz,po,fo)dtz (12.73)

and where the iterated kernels ZK2 (tl,tz) are given by the
original defining Eqs. (7.6) and (7.7). In the present case
m(tz;o,o) is the positive, rectangular pulse given by

Eq. (12.4), or

3

jTE, 2<tg (12.74a)
m(t:0,0) =

. 0 , Otherwise; (12.74b)
while the normalized clutter dispersion function is given by
E(p,£) = 1  5(f) (12.75)

Since the functions m(t;0,0) and E(p,f) are everywhere
non-negative, one may readily verify by inspection of
Eqgs. (7.4%), (7.6), (7.7), and (12.73), that the kernels
Kz (tl,tz) and the functions wn(t;0,0) are likewise non-
negative for all values of their arguments, and for all n,
From the considerations one concludes that, in the present
case, the Neumann series solution of Eq. (12.72) actually
gives w(tl;0,0) in the form of an alternating series for any
time tl.

For the relatively simple waveforms of Egs. (12.74) and

.(12.75), the functions Kg (tl,tz) and wn(tl:0,0) might, in

principle, be generated by straightforward but exceedingly
tedious integration., In fact, approximations to Kzt(tl,t?)
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and wn(tl:o,o) were generated by numerical integration using
a digital computer, The following bounds are abstracted from
the numerical data which has been generated using T = 1 1in

Bg. (12.74):

0 { w {£:0,0) ¢ 0.750 (12.76a)
0 ¢ w_(t:6,0) € 0.599 (12.76b)
0 ¢ w (£:0,0) € 0.511 (12.76¢)
0 ¢ w, (£:0,0) < 0.453 (12.764)

The result of evaluating the Neumann series of Eq. (12.72)
for the values ® = 0.2 and 0.4, while retaining only terms
up to and including w‘(t;0,0), is thown in Fig, 25.t For
comparison purposes the optimum processor for GE =0 is
also indicsted. Apart from the factor No’ the latter pro-
cessor is identical to the echo to be detected. It is the
“matched" processor for the rectangular pulse.

The effects of clutter increasing from zero are clearly
seen in Fig, 25. The "center" of the weight function becomes
increasingly depressed, while increasing "undershoots" appear
at t = 0,5. It is not beyond credibility to say that the
beginnings. of the doublets which will eventually appear at
t = £ 0.5 can be seen even for the small clutter levels
which lead to Fig. 25.

From the progression of optimum processor weight func-
tions which have now been seen in Figs, 23, 24, and 25, one

+ The truncation error should at no point exceed about 1
per cent of the greatest value shown for w(t;0,0), for 02-0.4.
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can hope to summarize the major characteristic - of the opti-
mum processor for detecting rectangular pulse echoes in clut-
ter from a stationary source, When noise interference dqomi-~
nates, the optimum weight function resembles a matched
processor (see Fig. 25). When clutter dominates, the proces-
sor includes doublets which have the effect of detecting the
pulse by; in effect, detecting its edges. (See Fig., 23.)
When both noise and clutter are present, the optimum weight
function includes both of these characteristics in varying

degrees, ar | definitely not in linear combination or super-~
position,

On the one hand, one sees that major features of the
solution for noise-plus-clutter are reminiscent of the sep-
arate solutions for noise and clutter individually considered,
On the other hand, one sees tne complexity of a solution
whose detaiicd structure depends in no obvious way upon the
relative levels of noise and clutter interference.

A i i




Hittiekd]

.
;i_:_
|
%

g

il
'l\

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

XIII. DETECTION OF RECTANGULAR PULSES IN CLUTTER
FROM A STATIONARY SOURCE OF FINITE EXTENT

This chapter will consider extensions cf the results cf
the préceding chapter to cases involving more realistic clut-
ter distributions,

It will be supposed that the clutter source, :lthough
still assumed stationary, may have a reflectivity (or radar
cross-section) which varies with range delay. A dispersion
function corresponding to this description has the form

&lpsf) =§c * B (p) * 6(f) (13.1)

where max Ec(p) =1, (13.2)
P

The modulation envelope m(t) is again assumed, as in
equation (12.4), to be that of a rectangular pulse,

1

N3

<XE, (13.3)

’ otherwise,

The linear operators Lt, e
pulse shape have alrcady been given by equatiorn (12.7}. When
the general equation (8.46) is applied tn the present case,

characterized by equations (13.1) through (.3.3), the result-

ing equation to be solved is

and Dt’ corresponding to this

28 + a2 4 .
T2t DB (E)D W(trpgsfo) N, FeE V(EIPeE)= Gt m(tspyf,)
(13.4a)
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where the optimum weight function is to be found from

w(tip, €)= = &t ¥(tip, ) (13.4p)

Pguction (13.4a)is observed to be more complicated than
its counterpart for uniform clutter; namely equation (12.8b),
by exactly the presence of the variable coefficient Ec(t)
which stems from eguation (13.1). Consideration of a clutter
source with spatially non-uniform reflectivity therefore
elevates the problem to one of solving a difference-differ~
ential equation with ariable, rather than constant, coeff-
icients,

When the linear operator D+Ec(t)D: is expanded, and
equation (13.¥b) for w(t;po,fo) is introduced into equation
(13.42), the result is

E
£
H
=
=
=
=
£
E
=
E
=
E

2
Tc gc(t + %)w(t + T;po,fo)—[Ec(t + g) + Ec(t - %)] w(t;po,fo)

T d2 d2
+ Ec(t - E)w(t - T;po,fo) + N, 32 w(t:po,fQ) = 3= m(t:po,fo) .

(13.5)

which is rather more complicated than its earlier counter-
part, equation {12,10).

A general, formal solutior of equation (13.5) will not
be attempted. 1Instead, certain characteristics of previous
results in Chapter XII will be noted and used in a heuristic
fashion to indicate the nature of exact or approximate solu-
tions to equation (13.5) for various circumstances,
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A, SOURCE WITH UNIFORM CROSS SECTION

One simple clutter source model which fits into the pre=~
sent context is characterized by the disyersion function

&(p,£) =&_ + E_(p) *+ () (13.6a)

C

where

D D
e(p) ={ 2 L P Lo (13.6p)
O, otherwise

This corresponds to a clutter source which is strictly con-
fined to a range-delay interval of D secw:is, with constant
reflectivity over that interval. No clutter energy origi-
nates outside of the interval, even through the received
clutter interference will have a total duration exceeding D,

It may be verified that the introduction of equation
(13.6b) for Ec(p¥ into equation (13.5) will have the effect
of replacing equation (13.5) by a set of difference-differ-
ential equations, each with constant coefficients, Each
equation of the set will characterize the solution w(t;po,fo)
over a different interval of the t-axis, By suitable ad-
justment of the homogeneous solutions of each equation of
the set one would expect to find the total solution for
w(t;po,fo) on the entire t-axis, The solution for
w(t:po,fo) would be in the form of a weighted sum of partic-
ular and homogencous solutions of each equation of the set
and could, in principle, be derived for arbitrary clutter

and noise levels,

That this rather formidable procedure can be circumvented
when noise is neglected will now be seen,
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l. A Set of Reciprocal Waveforms

Consider the set of waveforms mk(t) defined by

m. = m(t - k7) k=0, +1, +2, ... (13.7)
-3 T T
where mt) =¢ T ) S_ & S_ 2 (13.8)
° otherwise

The waveforms mk(t) are ti=refore replicas of the rectan-
gular pulse m(t) originally given by equ: zion (13.3), each

delayed (or advanced) by a multiple of T seconds., It will
T

be supposed that T is an intiger greater than unity, with
the result that typical waveforms mk(t) will appear as in

Figure 26.

The question of interest is: "What are the wave-
forms mk(t) which are reciprocal to the mk(t)?" That is,
find the waveforms wk(t) which hav: the properties

O 00

T a(e) m(t)ae = 1 (13.9a) .&
and ? ch:_(t) mj(t)dt =0 for j # k., (13.9b)

An answer? to the question is given in the following manner.

Consider an elemental waveform (t) with the
properties

1) wo(t) =0 , if |e] > X (13.10a)

+ It will soon be seen that there are many sets of waveforms
with the desired properties,
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m,(t)

M_l“’

mo(ﬂ

-

T/2

-
® o

mltt)

l‘l\z“)

-1/2 0 T/2

FIG.26 A SET OF WAVEFORMS
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11) [ o(t)at =+ F T (13.10b)

-

o N l % 1Y
111) [ o(t)dt = - 3T (13.10c)

o

A typical, but certainly not necescary, example of such a

waveform is o %
_mi 27Tt T /qa
o s;n .3 lt] < 5 (13.11a)
o(t) =4
o lt] > 3 (13.11b)

Y

Consider next the waveform wk(t) defined, for all integral
k, by

wk(t) - ; ot -kt - [4 + 3] T) for t D kv
1=0 (13.12a)

and m&(t) = mk(ng - t) for t S_kT.
(13.12b)

Such a waveform wk(t), based on the particular w(t) de-
fined in equation (13.11), is shown in Figure 27 toge . her
with several mj(t) waveforms,

The assertion is that the set of mk(t) defined by
equations (13,10) and (13.12) constitutc a waveform set which
is reciprocal to the mk(t). This may be verified algebrai-
cally by using equations (13.10) and (13.12) to show that the
mk(t) so defined also have th¢ necessary properties (13.9a)
and (13.9b). However, it is more easily verifijed, and with
greater insight, by considering Figure 27,

Figure 27 has been drawn for the parameter ratio

% equal to 5. The top graph is the (single) waveform
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m;(t), while the next line of graphs comprises ma(t),
ms(t), and m17(t). The lowest set of graphs contains the
products J.€ w;(t) with each of the preceding mk(t), and

inspection reveals that

? wé(t)ma(t)dt #0 (13.13a)
while ? w;(t)mg(t)dt =0 (13.13b)
and ? wé(t)m17(t)dt =0 (13.13¢)

Since these are seen to correspond to the three types of
situation which can arise between mk(t) and wB(t)’ it
should be clear that the waveforms wk(t) are indeed recip-
rocal to the mk(t)t

Figure 27 also makes clear that the detailed shape
of the elemental function (t) is not of great concern, as
long as its area is disposed in accord with equations (13,10),

Finally, the rurpose of introducing the elemental
function w(t), with its particular properties, is for its
resenblance to the impulse doublets which appeared in Sec.
XIX. To make the resemblance clearer, one may define the

function
1 27t T
- [} + cos —?—] , el S. 5 (13.14a)
o(t) =
O, otherwise, (13.14b)
t* That the (t) have the proper amplitude for unit pro-

jectic 18 upon the appropriate mk(t) may be verified algebrai-
cally.

-212-




COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

and verify that

[

[ a(t)at =1 ., (13.15)
- ®
Because of these properties, Q(t) may be regairded as an
approximation to the unit impulse function 6(t). Moreover,
from equations (13.14) and (13.11) one can now write

oft) =g -7t - & a(e) . (13.16)
The resemblance between the reciprocal function
mk(t) depicted in Figure 27, ard characterized by equations
(13.12) and (13.16), and the zero-noise optimal solution
wopt(t;0,0) depicted in Figure 23 and given by equations
(12,71) of the preceding chapter, should now be evident,

2, Optimum Processor (No Noise)

The discussion of the preceding chapter suggests

the form of solution for the present problem, where Ec(p)
is viven by equation (13,6) and repeated here

1, 2<p<2 (13.17)

E (p) = -

o otherwise ,
Let us for the moment restrict attention to the problem of
detecting the rectangular pulse m(t;0,0), given by equation
(13.3), in the clutter interference (without noise) character-
ized by eguation (13.17).

For D = ® in equation {(13,17), the solution has
already been given in the preceding chapter by equations
(12.71), which are repeated here,
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% o
1T d T
w(t;0,0) = S =%+ 6(t - = =kT) t>o0
§Ecé_k=0 at 2 .
and w(t:0,0) = w(-t;0,0) t € 0.
(13.18b)

One may riow either follow tlLe heuristic reasoning of the
preceding section, or use equation (8.16), to demonstrate
that

]

[ w*(t;0,2) m(t;p,0)dt =0 forr p ¥ O

-® (13.19)

However, the clutter resulting from the dispersion
function of equation (13.17) is just exactly the superposition
of waveforms m(t;p,0), with - g-( p € g-, essentially ac-
cording to

D/2
c(t) = [ a(p) + m(t:p,0)dp (13.20)
~D/2
.here <la(p) 12 =26, (13.21)

In view of ¢ - ‘tions (13.19) through (13.21), one
suspects that the solution for the present case will be as
shown in Figure 28, It is identical to w(t;0,0) given in
equations (13.18) for times t where the clutter interference
exists, It is taken to be zero where clutter does not exist,
and may be written

"

+ See equations (4.7), (4.8), and (4.11) for the origins of
this simplitied representation.
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&
m(t,0,0) DESIRED ECHO
= —>
T t
é
Eclp)
CLUTTER
Ee DISPERSION
FUNCTION
>
b 0/2 X
4
Kc“.') T
2Ee MEAN - SQUARE
CLUTTER-AMPLITUDE
-D/2 0/2 .
wom(t; 0,0)
OPTIMUM

L e e

FIG. 28 OPTIMUM ZERO-NOISE PROCESSOR FOR A RECTANGULAR PULSE
IN UNIFORM CLUTTER OF FINITE EXTENT
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1T d T 1
wopt(t)0,0) =352 3t 5(t - > - kT) e t < E(D + T)

‘acfxmo At
(15.22a)
"opt(t’o’o) = wolpt(-t;o,o) - 21(1: + T) E t S 0
(13.22b)
and wopt(txo,o) =0 otherwise
(13.22¢)

1t may be verified, although details will not be
given here, that wopt(t:0,0) given in the preceding cgua-
tions does indeed satisfy equation (13.5) for an optimum
proce3sor (with N, = 0).

Following the example set in Figure 28, one may
derive the various (zero-noise) optimum processors shown in
Figure 29 for echoes with various positions within the clut-
ter interference. 1In all cases the optimum? processors have
the following common characteristics:

(1) the relative times of occurrence of the
impulse Qoublets are determined by the lead-
ing and trailing edges of the echo to be
detected;

(11) except for truncation effects, the weight
' function is symmetric about the time of
occurrence of the echo; and

(1ii) the weight function is non-zero only over
*he interval where cluiter is present,

t The processors shown in Figure 29 do satisfy erquation
(13.5) and are, therefcre, optimum,
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\
w Ec(p)

MEAN - SQUARE
| &K (t,1) CLUTTER AMPLITUDE

/ N

I ECHO LOCATION

Wopt{tip):0)

°’ E%MWVV :

ECHO LOCATlON

Wop'(' ,PZ .G)

= WM

ECHO LOCATION

P'( ' P3'°)
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FIG. 29 CPTIMUM ZERO-NOISE PROCESSORS FOR VARIOUS PULSE-LOCATIONS
IN UNIFORM CLUTTER OF FINITE EXTENT
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It is evident from Figure 29 that these common
char- “eristics lead to weight functions which can have marked
differences, depending upon the echo location, Tnus, for
example, a small retardation of the echo occurrence as shown
between Figures 29a and 29, leads to a corresponding re-
tardation of the weight function. The further ratardation
which leads to Figure 29c, however, causes the suppression
of one doublet from the trailing end weight funct.icn and
the addition of a doublet of opposite "sign" at the leading
end,

The weight functions shown in Figures 29b and 29c
are seen to have esaen*tially different structures, The opti-
mum (no-noise) solution to the present problem is, therefore,
properly called a time-varving processor, since time-transla-
tion of the ‘nput echo does not result in only time-transla-
tion of the corresponding optimum processor,

A formal expression for the optimum brocessors
presented in this section, and in Figure 29, may also be
written, It is:

. = —1 - - - -I_
Wopt(tapo:o) = g; =§ - sgn(t pO) at é(t pO 2 kt)
(13.23a)
1 \ 1 \
for -'2-(D+T;<t<§(D+T), and
wopt(t;po,o) = 0, otherwise (13.23b)

B. SOURCE WITH NON-UNIFORM CROSS SECTION

Attention will now be returned to the more general dis-
persion function originally given in equation (13,1), namely
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E(p,5) =&, - E(p) * 6(E) (13.24)

Presentation of the zero-noise optimum processor for this
more general dispersion function is now a simpler matter
because sclutions in less general cases have been seen in
preceding sections,

Let it be supposed that the optimum weight function for
detecting m(t;0,0) in clutter characteriz=d by equation
(13.24), has the form

- () T
w(t;0,0) = 3 a5 Yt - 5 - krT) (13.25)
k==

where the cocefficients a are to be determined, and where

k

5(1) (¢) = IO (13.26)

The form of equation (13.,25) is suggested by the form of the
previous solution, equation (12,71), for uniformly extended
stationary clutter., 1In proposing equation (13.25) it is
tentatively assumed that inclusion of the unspecified coef-
ficients a, will be sufficient to permit a solution for
the non-uniform clutter of the present case., This remains
to be demonstrated.

The basic integral equation which must be satisfied by
w(t;0,0) of equation (13.25) is

_?w%c(tl,ta)W(tz:O,O)dtz = m(t :0,0) (13.27)

This is the same as equation (6.2) with N ,P,» and £, set
equal to zero, The covariance kernel which results when
equation (13.24) is used in the defining equation (6.3) is
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e =28, 1 5 .(p) mle, - (e, - p)ag
(13.28)

When equations (13.27) and (13.28) are combined, the result is
]

A oM o

26, [ [ EC(p)m(tl-p)m*(ta-p)w(tz;O,O)dtzdp = m(tl;0,0)

(13.29)

The coefricients a, in equation (13.25) will now be found
by requiring that w(t;0,0) of equation (13,25) be a solution
of equation {13.,29),

The integration with respect to t2 in equation (13,29)
may be performed with the aid of equations (8.16) and (13.25).
The result is

- |
d
m*{t - p)w(t ;0,0)at = = a (-1 [— m*(t - )] _T
_'L ‘e P 2'7? 2 k w K ) dt Py = 5 + kt

(13.30)

or, if equation (12.5) is used for the derivative of m(t),

s
* - t ; t = - -p) =5 (xT-p)| .
_jmm (tz pw( - 0,0)d - -ﬁ b ( l)ak [5('I‘+k'r p)=6 (kT p)]
(13-31)
When this expression is introduced into equation (13.29),

the integration with respect to p may be performed. The
result is

26 o
p) (-1)ak [EC(T-*-RT)m(tl-T-kT)-EC(kT)m(tl-kT)] = m(t )

C .
T k= =

1

(13.32)

=220~




COLUMEIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES

The coefficients of concurring waveforms on each side of
this eguation may now be identified. One concludes that for

equation (13.32) to be an identity, the coefficients a,

must be related by

26 .
-—;_21_- (-1) [a-l * Ec(0> - EO EC(O)] = 1
(13.33a)
while
2,
—T-%- Lak‘l 'Ec(kT) - a3 * EC(RT)] =0, k # 0,

(13.33b)
From the latter of these two relations one concludes that

a, = a k=1,2, 3, o0 » (13.3%a)
and that

a, =a_, k= =2, =3, =4, ... . (13.34b)
Thus all coefficients a, are determined once the two co-

efficients a0 and a_1 have been given values, The latter

two, in turn, are constrained to satisfy equation (13.33a) or

1
2
a -a =-—x—2> ‘ (13.35)

The result is that the optimum processor for this case

can be written
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" [ ]
a 3z 5 (t - = = kT) t> 0 (13.36a)
0 k=0 “

w(t;0,0) = {

-1 A
a °* 3 6(1)(t-§-k-r)t<o \13.36b)

~

where the only remaining task is to find the correct amplitude
ao + The 2mplitude a_l will then also have been determined,
by equation (13.35).

It is at this point that a certain formal indeterminacy
may be seen in the solution of equation (13.27) for the pre-
sent case, Note first that if the "function" wo(t) is de-
fined by, for all ¢t,

wo®= 35 sWe-Zowm (1337

then it may be verified (using equation 13,31) that
[- -}
J_Yoltt)) w(e)ae, = o. (13.38)

Thus wo(t) provides what might be termed the "homogeneous"
solution to equation (13.,27) for the present case of a non-
uniform, stationary clutter scurce,

Observe next that if one determines a solution wl(t;0,0)
according to equations (13,36) for a particular a_ = a, and
then determines a second solution wz(tz0,0) for a_=2a+taq,
then the two solutions will be related by

wz(t;0,0) = wl(t:0,0) + a - wo(t). (13.39)
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That is to say, variations of the coefficient a arpearing

)
in equations (13.36) lead only to variations in the amplitude

of the homogeneous component >f the solution defined by
equations (13,36).

That @ homogenecus solution to the basic integral
equation (13.27) exists in this case therefore permits the
existence of a family of solutions interrelated by an equa-
tion such as (13.39).

In these circumstances, the single solution which will
be called optimal in this research is that corresponding to
the choice of coefficients

1
T2

=" T B0 (13.40)

The corresponding weight function is given by, for t > O,

1

: . . 4 T
Wopt(t,O,O) = %8_(0) kio 3t °(t -5 - kT)
(13.41a)
and, for t < 0,
wopt(t;0,0) = ‘wopt('t’°’°)° (13.41b)

It may be verified that wopt(t:0,0) thus defined has no
wopt(t;0,0) cannot be
represented in the manner of equation (13.39) with any non-

homogeneous component. That is,

zero value for a.

It may also be verified that wopt(t;0,0) given by
equation (13.41) is identical to the processor given earlier
by equations (12.71). This is a more striking conclusion,

.y
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which assert: that the processor derived earlier for the case
of a uniformly extended stationary clutter source (equation
12.71) is also the optimum processor for the present casa of
a non-uniformly extended stationary clutter source.

The fact is illustrated in Figure 30, where the processor
weight function for the signal m(t;0,0) is identical to
that given earlier in Figure 23, even though the mean-square
clutter amplitude is now a funciion of range delay.

It must finally be remarked that this solution, although
strange at first glance, is nevertheless entirely consonant
with previous remarks concerning reciprocal waveforms,

In particular, one may refer to the reciprocal waveform
a;(t) shown in Figure 23 and described by equations (13.10)
through (13.13). 1In connection with Figqure 23 it was shown
that a;(t) was orthogonal, for exampls, to m17(t). This
was stated in equation (13.13c) as

[ o (t)m (t)dt =0 (13.42)

In the gpresent context it is relevant to observe that this
orthogonality persists irrespective of the actual amplitude

cf m17(t).

In the detection of mz(t), for which w;(t) is an
optimal processor, the waveform mlT(t) may be regarded as
a typical clutter component, The fact cbserved earlier was
that a;(t) was orthogonal to all clutte~ components not
identical to the desired echo. 1In the present context one
notes that this orthogonality remains true even though the
different clutter components may have different (mean-
square) amplitudes. One therefore might have expected that
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* mity00

-

wop'(t;0.0)

FIG. 30 OPTIMUM ZERO-NOISE PROCESSOR FOR A RECTANGULAR PULSE
IN NON-UNIFORM CLUTTER

-225-

Ef“""ﬂm



COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABODRATOR.ES

the reciprocai wavefc... 'hich arose in the case of uniform
clutter (equation 12,71) would be the same reciprocal wave-
form for optimum detection in non-uniform clutter, 2s was
indeed shown to be the case at equation (13.41).
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APPENDIX A

FORMAL EXPRESSIONS FOR AN OPTIMAL SYSTEM

A weight function w(t) is to be found which maximizes
@ ratio of the form

| [ w(e)x(t)ae |2
%~ — - . (A-1)

f fw*(tl)w(te)}((tl,ta)dtldta

=00 =™

This may be regarded®! as a problem in the calculus of varia-
tions with the object of minimizing the denominator subject
to the constraint of the numerator being constant,

The numerator may be rewritten as a double integral and
the problem converted to one of unconstrained minimization by
the introduction of a Lagrange multiplier A, Ther. a condi-
tion f.r a solution is that the first variation of F ke zero,
where

F =f f we(t Jw(t MK (£ ,t )dt dt

= Q) =00

\A-2)

2
a0 a0
(S 2 = r * t \ t *
+ 2 (|| f J W 1,w( 2)x(tl)x (ta)dtldta}

~ 00 =00
and |X|2 = the constrained value of the numerator.

Upon replacing w(t) by w(t) + éw(t), where &w(t) is an
arbitrary variation of w(t), one finds that the first varia-
tion of F 1is given by
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5F = J; 5w*(t1)JL w(ta){i((tl,ta)-xx(tl)x*(tz)} dt dt_

o0 oe
+ [ bw (tz)j;w*(tl){f((tl,tz)-)\x(tl)x*(tz)> de dt_
J ?

(A-3)

In the present problem the kernel X (tl’tz) is Hermi-
tian, That is

Kt ) =K#(e ,t) . (A-14)

In this circumstance one may verify that the inner integral
in the first term of (A-3) is the complex conjugate of the
inner integral in the second term, Since the arbitrary va-
riation 6w(t) can arbitrarily be real or imaginary, a neces-
sary condition for

SF = 0 (A-5)
is that

oo

{ - = -
!; w(tz){J(\tl,tz) lx(tl)x*(t2)> dt2 =0, (A-6)
Both the real and imaginary parts of this generally complex
integral must be zero.

The necessary condition which w(t) must satisfy is de-
rived by rewriting (A-6) to read

[~ ]

x(e ) f wie )xx(e)ae (a-7)

2 1 b 2 2

[+ ]
t ,t Jw(t )dt
J K (e e)uie)
and racalling the numerator constraint, which may be written

[2.<]

!; wit )x*(e )at =K . (A-8)

-228-
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From (A-7) and (A-8) one conciudes that

:‘;K (t,,t wl(e )at_ = x(t)-u (A-C)

where u is a possibkly complax constant., Since the ratio
% is independent of amplitude scale changes in w{t), the
factor u may be taken equal to unity without essentially
affecting results,

Equation (A-9) expresses x(t) as a linear transforma-
tion of the unknown function w(t). A formal solution to
(A-9) may be derived by assuming that the function w(t) can
be expressed conversely as a linear transformation of x(t),
That is, a kernel (:(tl,t2) will be assumed to exist such
that

wit ) = _fw.c (€, )x(t )at_ . (A-10)

When (A-10) is introduced in (A-9), the result may be written
(with u=l)

{ = -
.fm o(t ,t )x(t )Jat = x(t) (A-11)
where ©
o(t t ) = :{oj((tl,tz).((tz,ta)dtz . (A-12)

Equation (A-11) asserts that the kernel o(tl.ts) de-
fined by (A-12) has a certain "sifting" property with respect
to the function x(t). The conclusion is that, if a kernel
qf(tz,ts) exists satisfying (A-12) then w’'t) given by
(A-10) will he a solution of the desired Eq. {A-3). Equations
(A-10) through (A-12) therefore describe a formal solution to

the problem ‘f maximizing the ratio % .

A formal expression for the maximum value attaine. by the
ratio can also be derived, For the numerator in (A-1) one
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computes
00 o o
" * - * t ,t t )dt dt .
!m w\tl)x (tl)dtz. __L !mx (tl)'é( 1 a)x( 2) 1 2

(A-13)
Equation (A-10) ‘~ also used to compute, for the denominator
of (A-1),

[ f w(t )X (e £ )w(t )at de_

-0 =00 1

o w0 o o

= [ [ [ e e)xx (e )K (e L€ )L (¢t )x(t )dt ae_dt at,

-0 =00 =00 =00

o o o

J IS LH(e st )x*(e ) o (e ,t )x(t )at dt dt

-0 =0 =00

x o

J [ % (e)r(e £ )xx(¢ )ae at (A-14)

-C =00

.
it

wherein the sifting property of o(tl,t4) has been used.

Si.ce the right-hand sides of (A-13) and (A-14) are com-
plex conjugates of each other, their substitution into (A-1)
yields

0

=f 7 x(t jL( ,t )x(t )dt dt (A-15)

-0 =0

~ln

for the maximum valve of % .
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APPENDIX B

ANALYSIS IN THE FREQUENCY DOMAIN

Presented in this appendix is a selection of identities
which relate expressions given in terms of time functions to
expressions which involve their Fourier transforms. The pur-
pose 1is to exhibit those relations which i1acilitate the analy-
sis in +he text.

The first section contains certain results from Fourier
transform theory. The following sections sketch the deriva-
tions of varicus results cited in the text.

1. Excerpts from Fourier Transform Theorv

Time functions will be dc.ioted by lower case letters
and covariance functions by script letters. Their frequency
transforms will be denoted by corresponding capital letters.

A given function g(t) and its transform G(f) are related by:

Q0

G(f) = f« g(t)exp{-jewft} dt (B-1la)
g(t) = [ a(f)exp {jenft) af (B- 1b)
a, The following identities are known and useful:
i. ?'(g*(t)} =G*(-f) (B-2a)
ii. ?{g(t-r)}zc(f)- exp {-jznfr) (B-2b)
iii. Fg(t)exp (Fame)} = G(£-9) (B-2c)
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? b. The linear functionals encountered in the text

are conveniently handled using Parseval's Theorem?¥+*
1 «
) _

) f u*(t)v(t)dt = f U*(£)V{£)df . (B-3)

c. The linear transformation of one function, x(t),
into another, z(t), by convolution occurs in the form

) = f Kt -t )x(¢ )at . (B-4)

Elementary is the knowledge that an equivalent form is

f K(£)X(£f)exp {J?.Tl‘ft ] daf (B~5)

or, more simply,

Fle(t) ) = (ExX(S) (B-6)

d. In several places one must have the value, v,
of a bilinear form having the appearance

f f y*(t )K(t -t )x(t_)dt dc_ . (B~T)

-0 =

When this expression is decomposed into

t) = !mi( (-t )x(t_ )at_ (B-8)

and o

= f y*(t )Z\t ‘dt (B-9)
then application of (B-3) to (B-9), and (B-6) to (B-8), yields

= f Y*(£)K(£)X (£, df . - (B-10). e

{'{;}' .
2 B '
gg' f_gy-
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2, Optimal Processor for Stationary Interfere :e

The covariance function for statistically station-
ary interference depends only upon time difference so that,
as at Eg. (2.46) of the te>rt,

Kt ,t) =K (e-t) . (B-11)

The covariance function is, moreover, Hermitian, That is
= X*(t ,t) . B-12
Kt r) =K*{t ,t) (B-12)

The power spectral density fanction K(f) for the interfer-
ence is defined by

R(E)=FK(T) , 7=t -t . (B-13)
Using (B-12) one shows that
K(f)= f K(T)exp(-jz‘nﬁ} ar

[+ ]

= fj(*(-r)exp(-j?n(-f)(_rw ar

- 00

J K*(t)exp (-32n(-£)7) ar

*

f 2 (7) exp(-j’i’n(f)r} dT}

= K*(f). (B-1%)

Therefore K(f) is a real functicn of frequency for Hermitian

X ().

For stationary interf:rence the optimal processor
w(t) for a signal x(t) must satisfy

- 33_
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LB

LJ{(tl-ta)w(ta)dta - x(tl) . (B~-15)

y‘y

0
TN 2 e LR

which stems from (A-9) and (B-11). When Eq. (3-6) is applied
to (B-15, one concludes that the Fourier transform of the op-
timal weight function is given by

we=EE (B-16)

The frequency response function for the optimal
processor, as for any linear system, is the complex amplitude
of its response to the input exp {j'c‘h’ft} . The response to
an arbitrary input x(t) is given at Eq. (2.6) in the form

00

| u= [ we(t)x(t)at . (B~17)

The response to exp { j21rft) is therefore given by
[ -]

u= f w*(t)exp {j21rft} dt (B-18)

which may be recognized as thzs Fourier transform of w*(t)

evaluated at -f, Letting H(f) denote the frequency re-
sponse function, one may therefore write

a(e) = [Femen] (B-19)
With Egs. (B-2a), (B-il4), and (B-16) this yields
H(f) = W*(f) = %—E’%—L . (B-20)

The cross-ambiguity function ¢ for an optimal
system with frequency response function given by (B-20) is
found by ccnsidering its response to an input y(t) different . |
from X(t). 1In these circumstances the r-.sponse to be studied ‘

»
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i1s given by

e o= [ wr(t)y(t)at . (B-21)
Parseval's thesrem is used to express the :1ight hand side in
the frequency domain, whereupon substitution for W*(f) from

(B-20) yields

= f X*K L af . (B-22)

| m——— - i st e o .
e o e
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APPENDIX C
THE KANTOROVICH INEQUALITY

The tollowing is an English language version of the orig-
inal proof by KantorovichT
"Lemma: The inequality

— ] 2
2 -1 2 1] 1M |m 2\ % (oo
Nk 2 Mk Xk SE,ImT\JM <§"k> (c-1)

is valid, where m and M are bcunds of the numbers Vi

0< m{ y {m (c-2)

One may assume that the sums are finite and that

RE RS (c-3)
and
i xg = 1. (c-4)

We shall seek the maximum

- P P
G=00= (3 y.x2 S = x2 (c-5)
k=1 % K [\ x=1 " k>
with the condition
2
i X =1. (c-6)

t+ See page 142 of reference 19,

-236-
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We equate to zero the derivatives of the function

' P
F=6-A =2 x2-1 (c=7)
k=1
) 1 = =
5%5x = © v Xg 0 VgXg sz =0 (c-8)
S S
i.e. xg(0 + 0v3 = Wyg) = 0 (c=9)

The second term in the latter expression is a multinomial of
the second degree with respect to Ygr SO that it may become

zero for not more than two values of s; let these be
s = k,4, For the remaining s it must be that X, = 0.

But then
G = Y 2 + Y xz L 2 + _];.. x2
max Kk L I TR SR (c-10)
v ‘7_'q 2 T [v v 2
= 5| [FEEE | 2+ x3)2 =+ |k (x2 - x2)2
N7 ~x L 4 e Y k 2

(c-11)

1 ‘.)-;}-(- .Y 2 l Ln. g 2 ti
RN '-\’%- <3 JM- *J: . (=B
"k

The conditions for equality are readily deduced from

the preceding version of the proof. Comparison of equations

(c-11) and (C-12) makes it clear that equality is achieved
only if

1) (x2 + x7)% + (xg - x)% =1 (c-13)
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and

ii) Y = ® (c-14a)
and

i11) vy, = M (c-14Db)
and

iv) xg = 0 , s #k, s ¥ 1L (c-15)

When equation (C-13) is simplified, it reduces to
2.2 _ -
Mxkx£ 1, (c-16)
while equations (C-4) and (C-15) imply

xi + xi =1 . (c-17)

The simultaneous solution of this pair of equations is

1l

X = X3 =5 (c-18)

When these values are introduced into equation (C-11) the

Grax = i—ﬁﬁ * . (c-19)

An alternative form to the basic inequality (C-1) can

result is:

be derived if the scala:s Yy are identified with the eigen-
values of a positive definite matrix A, Then one can write
the equivalent inequality

T ey 5 “—— s T . Py
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. - 2
(ax,x) - (7hex) ¢ ABEHE (202 (c-20)

This form of the inequality seems to be the more usually
given onef. It is certainly the form which, by analogy with

equation (4.41) of the text, suggests its application in the
present problem,

It may be verified algebraically that the right hand

terms of both inequalities (Cc-1) and {¢-20) are identically
equal,

t Forms similar to (€-20) may be seen in Bellman, Ref, 4,p 134;
or Beckenbach and Bellman, Ref, 3, P, 70; or Marcus, Ref. 27,
p. 11,

-2 39-
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APPENDIX D

THE GAUSSIAN FUNCTION

It is well known that the Fourier transform of the Gaus-
sian probahility density function with zero mean is given by

1 t2 1 2 .2 ~
exp{ - — V)| = exp{ - 5(2n£)° 02} . (D-1)
T vemao { 20% ( : }

If however one defines a new parameter W by

1
vemao

then one has the preceding relation in the more convenient
form user in the text:

’}'[W . exp (-ntzwz)] = exp {-rr -:;—} . (D-2)

In the latter form W 1is a parameter linearly related to

W =

the width of the frequency spectrum of the Gaussian time pulse,

Products and quotients of Gaussian functions yield exponen-
tial functions with quadratic polynomial exponents. The simplifi-
cation of such exponents is often facilitated by the ideﬁtity.

LaB; \* LYajas8y(85-8;)
Ya (e-,)2=(¢t-2g (Lo, )+ 22 (D-3)
;] 1 i z:ai { 1 E:Gi

i i
where the right-hand follows upon completion of the square on
the left-hand side. If however

Z:ai = 0 (D-4)
then one can write 1
— 2
§ai(t'e’i)2 = - 2t();"‘if’i)" >i:°‘iﬁi (D-5)
-240-~
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APPENDIX E

APPROXIMATE INTEGRATION BY HERMITE-GAUSS QUADRATURE

Under certain circumstances, good approximations to the
values of definite integrals may be had from the Hermite-

Gauss quadrature formula

[ e ®rmax oM gx™) (E-1)

-00

(M)

where the weights aﬁn) and abscissas X are suitably
chosen and independent of the function f£(x).? Numerical
values for the weights and abscisses are given,for M up to
20, by Salzer, Zucker, and Capuano,3®

In Chapter X the problem arose of evaluating

§ - 6 E M(f7p0) fO) ‘2 (E"E)

opt - Kc(f)+No

where
f ]
( £) & ()7 (£-3)
M £:p_, = =— « exp \-7 E-
U

Kc(f) =2 5; W exp /-m W; (E-4)

+ See Hildebrand '®, pp. 319-330, for an exposition of the
theory of Gaussian quadrature,
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and W2 = W2 ¢ = . (E-5)

The required iutegral in Eq. (E-2) is reduced tc the form
required for Eq. +-1) by the following change of variable.

X = J_gﬁ (f-fo) (E-6)

When this relation is introduced into equation (E-2), to-
gether with the auxiliary function G(f) defined by

6(f) = —L—o, (E-7)
K (f)+No

the signal-to-interference ratio becomes

2€ o 2
(.?.) =—=2[ X . ¢ WX 4 ¢ lax (E-8)
L van °
or, using Eq. (E-1),
& =2€ . 1.(£,W) (E-9)
1'°pt 8 M\" o’
M (M)
wx
where 'EM(fo,w) -\/—% Z a(]r:)G k . £, (E-10)
T k=l vern

The "normalized" signal-to-interferernce ratio parameter g

is computed accordingy to

ho = W * Iy(£5s7) (E-11)
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It is therefnre clear that by the foregoing procedure
one may choose va. for f£ and W and compute approxi-

° (S

mations to the corresponding values of Hg ©OF \F once

)opt’
the value of M has be=zn decided upon., Computations of
IM(fo,W) for different M, and the same f_  and W, will
yield different approximate values for Ko and (%)opt' In
ceneral one expects that the larger the value of M \is
(leading to more terms in tche approximating sum) the better
will bc the approximation. A small M, however, would be

preferred for reasons of economy in generating the data.

For the data presented in the text IM( £,,W) has been
taken to be the value given by the smallest M for which

?M(fo,W) - IM-1(¢D’W) <

\
I(£f,"V

€ (E-12)

for a specified tolerance €. For the values of f_; W, and
ﬁb which appear in the tex*, the inequality (E-12) was sat-
isfied for M 20 with € equal to 0.0l.

The actual numerical values of the various parameters

appearing in the calculations were chosen from among

65 = 100

€. = 5000

Vg = 100

f 2

(2 =0, 1, 2, 3, & 5, 10, 10%, 10°, 10*
q -4 -3 = -1

N~ = 107%, 107°, 107%, 107}, 1, 10, 100

(%) - .1, .316, 1, 3.16, 10, 31.6, 100

with oc..asional other values used to fill ir data required
for better visualization of rapidly varying data.
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