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ABSTRACT 

* 

The radar echo from a moving, non-scintillating point 

target is assumed to be received in the piesence of noise and 

clutter interference.  For best detection of the echo, the 

radar receiver will inclvde a data processor which maximizes 

the signal-to-interference power ratio at its output. 

This report presents the integral equation which deter- 

mines the weighting function of the optimum data processor. 

Several general forms of solution are also presented, along 

with specialized forms of solution which are applicable for 

appropriately simplified sources of clutter.  These solu- 

tions show that th3 optimum processor has no simple relation 

to either the transmitted waveform or to the clutter disper- 

sion function but, rather is markedly influenced by the rela- 

tive power levels of the noise and clutter components of the 

interference.  Ultimately, the extent to which clutter can 

be rejected by a suitably designed signal processor will be 

limited by the (often neglected) noise level which accompa- 

nies the clutter. 

An upper bound is derived for the decibel difference 

between signal-to-interference r tios which may exist at the 

outputs of an optimum processor and conventional "matched" 

processor, respectively, when identical signal and interfer- 

ence waveforms enter each processor.  The bound is generally 

applicable and depends only upon a parameter related to clut- 

ter-to-noise ratio.  It indicates that the greatest potenti- 

alities for performance improvement, through use of an opti- 

mum processor, exist only for large clutter-to-noise ratios. 
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Optimum processors and their performance are derived or 

computed for a number of particular cases involving different 

echo waveforms and sources of clutter.  These results high- 

light many aspects of the problem of detecting radar echoes 
in noise and clutter interference. 
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I.  INTRODUCTION 

The problem of devising radar systems which will oper- 

ate effectively in an interference environment which includes 

both noise and clutter interference is a problem of consid- 

erable theoretical and practical interest.  This dissertation 

considers one possible approach to the problem. 

This dissertation presents the results of a theoretical 

inquiry into ehe properties of a class of signal processorr 

which are optimum for detecting the presence of radar echoes 

in a mixture of noise and clutter interference.  The reasons 

for considering this particular formulation of the problem 

will emerge from the following discussion. 

A common goal of many radar systems which are either 

conjectured or actually constructed is to determine one or 

more components of the position or velocity, or both, of all 

targets within some field of virw.  Means for achieving this 

goal when noise is the only interference to be combatted arc 

quite well understood at the present time.  For brevity, the 

problem of determining only rad-al components of target po- 

sition and velocity may be considered as a simple example.t 

In principle, radial distance is determined by measur- 

ing the time which elapses between transmission of a radar 

signal and reception of its echo.  The radial velocity com- 

ponent may be determined ir. two ways.  One might measure the 

rate of change of the time delay which is already being ased 

f 3ee references 2,t>,35j a!id 39 for ^r"--ideration of angv.iar 
cotvonents of target motion,, 
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to provide range information.  Or one might measure the fre- 

quency of the received echo and thereby deduce the Doppler 

fraquenry shift which the signal experienced upon reflection 

from the target. 

It is known that the accuracy with which both target 

distance and velocity may be determined by these methods is 

priiuarily a function of the detailed shape of the transmitted 

radar waveform.  Unless the received echo is overwhelmingly 

strong with respect to the noise, the accuracy of position 

and velocity measurement is only secondarily affected by re- 

ceived signal strength. 

This discussion has, however, assumed an echo of suffi- 

cient energy to be detected.  In fact, for white-noise inter- 

ference of given power spectral density, the detectability 

of a radar echo does depend only upon its total energy, and 

not at all upon its pa -ticular waveform.t For a target of 

given reflectivity (or radar cross-section), therefore, de- 

tectability ultimately depends only upon the energy of the 

transmitted signal. 

The significant point for the present discussion is 

that the detectability of a target and the accuracy with 

v.hich its radial position and velocity may be measured depend 

upon different and non-conflicting attributes of the trans- 

mitted signal.  Thus it is possible to conceive of design- 

ing a signal with the requisite complexity for achieving ac- 

ceptable measurement accuracy, and then transmitting it with 

sufficient energy for the echo to be detected. 

t Thrs performance is true in theory and is rather closely 
approiched in practice. 

•2- 
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For observing isolated targets in white-noise interfer- 

ence, therefore, system performance depends upon three things, 

They are:  first, the transmitter power; second, the trans- 

mitted waveform; and finally, the manner in which the re- 

ceived echo is filtered or otherwise processed.  In fact, for 

isolated echoes in white-noise interference, system perfor- 

mance tends to be limited only by the degree of system com- 

plexity which can be made to function with existing technol- 

ogy. 

However, when clutter is admitted as one of the compo- 

nents of unwanted interference, then the situation changes 

completely. 

"Clutter" is the term given, in radar, to the unwanted 

interfering echo which arises when the transmitted signal is 

reflected from (usually) extended objects in the radar field 

of view.  The earliest examples of clutter arose by reflec- 

tion of the signal from the nearby terrain, or ocean surface, 

upon which the radar was situated.  Clutter returns are also 

received from the clouds of "chaff" (lightweight reflecting 

dipoles, or tinsel) which are dispersed by an offender to 

nullify a defender's radar effectiveness.  Finally, one might 

consider an echo from the turbulenc, ionized wake region be- 

hind a high-velocity object which is entering the earth's at- 

mosphere, to be a form of clutter which might interfere with 

observation of the object itself. 

In all cases the clutter return arises by reflection 

from a region which is extended throughout some region of 

space and which may have some sort of internal velocity struc- 

ture.  These detailed aspects of the clutter source will be 

considered in later sections. 

-3- 
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There is one attribute of the clutter return, however, 

which has far-reaching significance and which ultimately pro- 

vides the motivation for the present research.  That attri- 

bute is the readily apparent fact that, for a given source 

of clutter, the power of the clutter return is directly pro- 

portional to the transmitter power.  Therefore both received 

signal power and received clutter power increase, and de- 

crease, in exact step with any changes of transmitter power. 

Consequently, when clutter interference predominates, 

it is impossible to cause the signal echo to stand out from 

the interference simply by transmitting a larger signal. 

This means that one adjustable parameter in system design, 

viz., transmitter power, has lost its effectiveness in con- 

trolling signal detectability.  In fact one expects that, for 

any given signal waveform, the ratio of received echo power 

to received clutter power will be independent of transmitter 

power and will depend, instead, upon the ratio of the reflec- 

tivities of the target and the clutter source. 

For any particular source of clutter interference, there- 

fore, one can expect overall system performance to depend 

upon, and be influenced by, only two things, viz,., (i) the 

shape of the transmitted waveform, and (ii) the manner in 

which the received w^vex. ..m is filtered or processed. 

This represents a considerable restriction from the pre- 

ceding case of detection in white noise.  Indeed, because of 

the restricted control over system performance, it is no 

longer clear whether one can simultaneously achieve good sig- 

nal detectability together with specified range and velocity 

measurement accuracies.  One might believe, with some justi- 

fication from the existing literature which will soon be dis- 

cussed, that clutter source reflectivity, for example, will 

4- 
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set a limit to the signal detectability which can be achieved 

if specified measurement accuracies are also to be attained. 

The question however is essentially unresolved and provides 

one of the basif motivations for this research. 

With the possibility of conflicting requirements being 

imposed upon system performance in clutter, it is also to be 

expected that selection of a transmitter waveform, ar>d uesign 

of a signal processor for the receiver, will be influences by 

the priority accorded various requirements. 

In the present research, greatest interest centers about 

signal detection, with less interest attached to range and 

velocity measurement accuracy.  The reverse order of these 

priorities has more often been considered.  However, the or- 

der adopted for this research agrees with the fact that an 

echo must at least be detectable before its parameters can 

be measured with any confidence.  In severe clutter environ- 

ments, moreover, it is exactly the lack of signal detecta- 

bility which provides the greatest practical problems. 

The purpose of this research is therefore to investigate 

the properties of signal processors which yield optimum de- 

tection of radar echoes in noise and clutter interference. 

One area of particular interest is the comparison be- 

tween performance of processors which are optimum for noise 

and clutter interference, and processors which are optimum 

for noise alone but which, are also experiencing clutter inter- 

ference.  The general question to be answered is whether the 

improved detection performance which can be achieved by proc- 

essors suitably optimized for clutter and noise, is worth 

the additional processor complexity, cr possible degradation 

of other aspects of performance, which can be expected.  Ex- 

-5- 
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amples which illustrate the conflicting considerations that 

are involved will be seen. 

It is appropriate at this point, before considering the 

substance of the dissertation, to indicate briefly he organ- 

ization of the material to be presented. 

This chapter has given a aaalitative description of the 

problem, together with the motivation for its study.  Chapter 

two, to follow, provides a discussion of work already reported 

by other authors, on topics related in some manner to the pres- 

ent problem. 

Against thi*: background. Chapter III presents a summary of 

the major results and contributions which have arisen from 

this research.  The remaining chapters provide the detailed 

substantiation of the results described in Chapter III, 

Chapters IV and V together present a careful formulation 

of the analytical framework for this research.  It is Chapter IV 

which defines the class of "optimum" signal processors being 

investigated in the research.  In Chapter IV, also, will be 

found the basic integral equation which must be solved for 

the optimum processor weighting function.  Chapter V gives 

expressions for the general ambiguity functions which are 

appropriate for describing optimum system performance. 

Chapters VI through VIII comprise a group which takes 

up the problem of solving the basic integral equation.  Gen- 

eral forms of solution are presented in Chapter VI, while 

approximate solutions for large and small clutter are given 

in Chapter VII.  For clutter from a strictly stationary 

source. Chapter VIII provides a method for replacing the 

basic integral equation by an equivalent difference-differen- 

tial equation.  This replacement may, or may not , represent 

a simplification of the problem. 

-6- 
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Chapter IX stands by itself in presenting an upper bound 

to detection performance which is achievable by the optimum 

processor. 

The final group of chapters, X through XIII, contains 

specific examples of optimum processors, and their perform- 

ance, for a variety of specific cases which have different 

signal waveforms and clutter source models. 

-7- 
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« 

II.  HISTORICAL BACKGROUND } 

Three significant components of the problem considered 

in this research have already been mentioned, namely 

(i)   a radially extended, possibly turbulent, reflect- 

ing medium which gives rise to clutter interfer- 

ence; 

(ii)   the waveform which is transmitted; and 

(iii)  the data processor, or filter, which character- 

izes the radar receiver,, 

One conclusion of this research is that, in addition, one 

must also consider 

(iv)   the presence of noise. 

These four factors have already been considered in vari- 

ous combinations, and for different purposes ""jy numerous 

investigators.  The present section is a brief discussion of 

this previous research.  The purpose is to identify points 

of similarity and difference with the contents of this dis- 

sertation, in order that the research reported here may be 

placed into proper context.  One conclusion which will also 

emerge is that relatively little of the research reported to 

date is directly antecedent to the research described in this 

dissertation. 

The literature w^ich has arisen concerning radar systems 

reguired to operate with inputs including clutter-type wave- 

forms may be divided into five categories, according to the 

-8- 
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emphasis given various parts of the problem.! There ha/e 

been investigations primarily concerned with: 

1. aetection of time- and frequency-dispersed signals 

in noise; 

2. performance of matched filter receivers in clutter; 

3. design or discovery of "good" waveforms for use 

with matched filter receivers; 

4. design of systems for moving-target-indication; and 

5. performance ~C optimum receivers, -.n the sense used 

to describe -__ present research. 

The remainder of this chapter is i consideration of each of 

these categories. 

A.   DETECTION OF TIME- AND FREQUENCY-DISPERSED SIGNALS 

Typical of research in this category are papers by Price,32 

Price and Green,-^ and Kailath,18 where the problem is to de- 

tect a signal after it has been reflected from a spatial dis- 

tribution of (assumed) randomly moving jcatterers.  Such 

signals have been assumed, for example, to arise because of 

tropospheric scattering of radio signals, 32 or reflection of 

radio signals from large areas of a rough planetary surface.33 

The assumption of 'independently moving scatterers" is 

the characteristic assumption for describing the source of a 

time- and   frequency-dispersed echo.  The same assumption 

is used for the clutter source for this dissertation. 

t Attention is restricted to papers having to do primarily 
with problems of signal detection.  Literature concerned with 
other problems, such as that by Krinitz2 c" on system design 
for mapping the clutter source, is entirely beyond the pur- 
view of the present discussion. 

-9- 
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Note, however, that in this first category the basic 

goal is to detect the time- and  frequency-dispersed echo, 

because it represents the signal component of the receiver' 

waveform; the interference is assumed to bo noise alone.  One 

major concern of the three authors .nentioned is the investi- 

gation of optimum processors for signal detection in the cir- 

cumstances described. 

The problem, however, is rather opposite ro the problem 

considered in the present research.  Here the aim has been to 

reject the time- and  frequency-dispersed echo, as well as 

possible, because it represents an interference component of 

the total received waveform.  This qualitative difference in 

viewpoint has as its direct consequence the fact that the 

two types of problem lead to integral equations for their 

solution which have essentially different structures.  The 

so.lutions to the two problems are, therefore, not readily 

exchanged.  Consequently, the results of research in this 

first category seem not to be directly applicable to the pres- 

ent problem. 

B.   PERFORMANCE OF MATCHED FILTER RECEIVERS IN CLUTTER 

A "matched filter" receiver is the optimum receiver for 

detecting signals which are received in whxte-noise inter- 

ference.! When clutter, however, is present as part of the 

interfering waveform, the matched filter receiver is no longer- 

optimum for signal detection.  Its performance in a clutter 

environment is, nevertheless, well understood and has been 

described by Westerfield, Prager, and Stewart,46 and Fowle, 

Kelly, and Sheehan,   for examples. 

t  See Turin4' or North.30 

-10- 
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The matched filter approach to receiver design yields a 

receiver whose detection perfonaance, and range and velocity 

measurement accuracy as well, can be related simply and di- 

rectly to system and clutter parameters.  The restriction to 

a matched filter, however, permits no indication of possible 

performance improvement which might be obtained by a receiver 

which is truly, or even partially, optimized against the 

clutter environment. 

This second category of previously reported research is, 

therefore, of interest for the present research mainly as a 

source of reference performance data for comparison purposes. 

Data from Westerfield, et al.,46 appears in Chapter X of this 

dissertation. 

C.   DESIGN OR DISCOVERY ^F "GOOD" WAVEFORMS 

The attempt to design matched filter receivers to work 

well in a clutter environment has led to much research on the 

design of waveforms which will provide specified distance 

and/or velocity measurement accuricies, while simultaneously 

permitting detection performance which won't be too seriously 

degraded by clutter interference. 

Rihaczek provides a summary of the interrelated "prob- 

lems of measurement precision, target resolution, and wave- 

form design."37 Price and Hofstetter34 more recently have 

contributed new information on the subject of achievable 

waveform properties. 

All effort in this area, however, seems to be confined 

to waveforms for use with matched filter receivers.  The 

present author is unaware of research into the problem of de- 

signing or discovering "good" waveforms for use in clutter 

environments with optimum receiver systems. 

-11- 
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D. DESIGN OF SYSTEMS FOR MOVING TARGET INDICATION (MTl) 

In this category is research such as that reported by 

White and Ruvin,47 having to do with designing radar systems 

which will indicate the presence only of moving targets. 

Stationary targets, and this includes clutter sources, will 

hopefully not appear,t 

The basic design premise here is that the radar receiver 

will be designed to reject those portions of the received 

spectrum where a significant fraction of the clutter energy 

lies.  Signal energy in this region will likewise be rejected. 

However, the signals which are caused by moving targets will 

be slifted in frequency and will have the bulk of their en- 

ergy  utside of the rejection region.  This energy will be 

accepted by the -eceiver and the moving target detected. 

Such receivers represent a midway point in design phi- 

losophy between the simple matched filter receiver described 

above and the optimum processor of the present research.  The 

improvement in clutter rejection, over that achieved by the 

simple matched filter, is obtained in a relatively simple and 

natural manner.  However, the ad hoc nature of the solution, 

together with the lack of a comprehensive and analytical 

problem formulation, prevents a general determination of, or 

insight: into, just how well clutter might possibly be re- 

jected and at what coit. 

E. PERFORMANCE OF OPTIMUM RECEIVERS IN CLUTTER 

The single forerunner to the present research which is 

known to this auchor is the original paper by Urkowitz.45 

It is, likewise, the sole member of this fifth category. 

t References 10 and 14 consider rome practical restraints 
upon MTI performance. 
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Urkowi^z found the optimum filter for detecting a sig- 

nal, actually a rectangular pulse, in the presence of clut- 

ter from a uniformly extended spatial distribution of motion- 

less reflecting particles, in the complete absence of noise. 

He found that under these circumstances the optimum filter 

for detecting the rectangular pulse is a waveform differen- 

tiator followed by a unity-gain ; ecirculating-delay-line fil- 

ter. 

He then compared the performance of a receiver using 

band-limited approximations to each of th-se components to 

the performance of a receiver with a band-limited "flat" in- 

termediate frequency filter.  He found that the detection 

performance of the band-limited approximation to the optimum 

receiver increased linearly with receiver bandwidth.  The per- 

formance of the band-limited, more conventional receiver, 

however, only increased until the signal bandwidth itself was 

approached.  Above that point the performance remained con- 

stant as bandwidth was increased.  These results, particularly 

the unboundedly good performance of the optimum processor, 

may now in retrospect be attributed entirely to the as^i'med 

lack of noise in Urkowitz' problem. 

He concluded, from qualitative considerations, that al- 

though, in the presence of noise, the recirculating-delay- 

line portion of the processor "increases the signal-to-clutter 

ratio by another three decibels,... it has a disastrous effect 

on the signal-to-noise ratio.  The use of such a filter makes 

the problem of noise at least as severe as that of clutter." 

Thus, Urkowitz' research45 is the first particular so- 

lution for an optimum processor in a clutter environment. 

The problem formulation, however, is quite restricted, being 

-13- 
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almost ontirel  limited to the car.e already described.  It 

does not have generality enough to include either 

(i)    spatial variation of the mean radar cross-section 

of the clutter source; 

(ii)   doppler dispersion introduced by localized motions 

within the clutter source; 

(iii)  effects of noise in determining, and actually 

controlling, the optimum solution; or 

(iv)   effects of target velocity upon signal echo de- 

tectability. 

There is, in consequence, almost no consideration of optimum 

solutions for these more general circumstancest 

The conclusion, therefore, is justified that previously 

reported research includes only scant mention of optimum 

processors for detecting radar echoes in a mixture of noise 

and clutter interference. 

t  The exception to this demurrer is Urkowitz' brief commen- 
tary on noise, part of which has already been quoted. 

-14- 
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III.  RESUME OF RESULTS AND  CONCLUSIONS 

This research has been motivated by the need to discover 

the extent to which radar system performance might be improved 

by employing an optimum receiver in the presence of noise- 

plus-clutter, instead of the simpler "matched filter" re- 

ceiver, t and to discover the costs of such an approach in 

either increased system complexity, or degradation of other 

aspects of system performance. 

The conLcibutions of this research to the existing state 

of knowledge in this area occur in four major categories: 

1. The problem formulation itself, which leads to an 

essentially new integral equation in the realm of 

signal detection theory. 

2. General forms of solution  J the integral equation, 

3. A bound upon possible performance improvement. 

4. A variety of solutions for particular cases which 

involve different transmitter waveforms and clutter 

sources. 

These four categories correspond also to the order of presen- 

tation of the research in chapters IV through XIII of this 

dissertation.  The remainder of this chapter is a presenta- 

tion and discussion of the major results and conclusions 

which have arisen out of the present research.  References to 

subsequent chapters will indicate the origins within the 

present research of the conclusions being discussed. 

t the optimum receiver in the presence of noise alone. 
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A.   PROBLEM FORh.'^ ^1ON 

In the present research, the signal echo to he  detected 

is assumed to arise by reflection of the transmitted wave- 

form from a moving, non-scintillating, essentially point-.ike 

target.  The clutter component of interference, on the other 

handk, is assumed to arise by reflection from a spatial dis- 

tribution of independent scattering centers, possibly in ran- 

dom motion.  The formulation is sufficiently general to ac- 

commodate 

i)   a transmitted waveform with abitrary amplitude and 

phase modulations; 

ii)   an arbitrary level of white-noise interference; 

iii)  a clutter oource which may have different mean re- 

flectivities at different locations, and which may 

yield an echo with Doppler frequency dispersion 

because of local source motions. 

A formulation of this generality is a necessity because all 

the factors mentioned can and do affect system performance, 

sometimes quite markedly. 

The combined noise and clutter interference which arises 

from this formulation is a Gaussian process.  One appropriate 

measure of signal de'-.ectability is consequently the signal- 

to-interference ratio, irrespective of the source of the in- 

terference.  The "optimum" processors of this research act 

to maximize the signal-to-interference ratio (and, hence, the 

signal detectability) at their output.  The integral equation 

which determines the optimum processor is derxved ^nc' pre- 

sented in chapter four. 

-16- 
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The problem formulation, in the generality described, 

and the integral equation which arises from it are essen- 

tially new to the literature in signal detection theory. 

The integral equation which determines the optimum 

processor weighting function w(t;p ,f )  is given byt 

V ^VfV^ + /3:(V%)w(VPo'fo)dt2 
= ra(VP 'V 

(3.1) 

CO    00 

where & (t t ) = £ / ; 4,(p, f )ra(t :p, f)ra • (t ;p,f)dpdf 

(3.2) 

m(t;p,f) - modulation function for an echo received 

after a range delay of p  seconds, with 

a Doppler frequency shift of f cycles 

per second. 

Ö'(pjf) = energy dispersion function for the clut- 

ter r-ource 

N = white-noise power spectral density 

The essential novelty of this equation resides, first, in the 

particular structure of the kernel VG,-.^ »^  )  and, second, 
C   1   p 

in the fact that the modulation function m(t;p,f) appears 

not only on the right-hand side in the conventional role of 

a "forcing function", but also within the defining equation 

for the kernel IJO (t ,t ). 
C  1   2 

In consequence of the second fact, one cannot expect 

that the "forcing" function m(t;p ,f )  and the integral 

eqaatioa solution, or "response" function,  w(t;p .f )  will 

be linearly related.  Because the methods of Linear system 

t Chapter IV 
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analysis are, therefore, not applicat-le in relating these 

functions, optimum system performance is not easily related 

to attributes of the transmitter modulating function. 

Di -ect inspection of the preceding integral equation 

also reveals that the two terms on the left which involve the 

unknown function w(trp ,f )  are proportional to the noise 

level,  N ,  and the clutter level, &{p,f)t     respectively. 

One therefore expects that the form of the optimum solution 

w(t;p ,f )  wil^ depend upon the ratio of the clutter and 

noise levels.  This conclusion will be amplified l^cer in 

this chapter.  For the present it suffices to ooserve that, 

in general, one can expect the means chosen to combat clutter 

in any particular circumstance to depend, not only upon the 

detailed nature of the clutter, but also upon the (always 

present) noise level which is accompanying the clutter. 

The most elementary conclusion has, thus far, not been 

explicitly mentioned. It is simply that the processor which 

is optimal for detection in noise alone is sub-optical when 

clutter interference is added to the noise. Worded differ- 

ently, the optimum processor for detection in clutter-plus- 

noise interference is not, in general, the "matched" filter 

whose impulse response duplicates (with time reversal) the 

signal to be detected. 

B.   INTEGRAL EQUATION SOLUTIONS 

The solution to the preceding integral equation can be 

written in many different forms.  In this dissertation three 

forms of solution are presented! which are valid for all 

reasonable and "non-pathological"  N , ($>(p,f),  and  m(t;p,f) 

Chapter VI 
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Two othG." Irorms of solution are presentedt  for situations 

where noise is either the dominant interference component, 

or is neglected entirely.  Finö.lly, a method is presentedt'^ 

whereby, if the modulation function m(t;p,fj  has certain 

properties, and if the clutter source is motionless, one can 

convert the precedijig integral equation to an equivalent dif- 

ference-differential equation with, generally, variable co- 

efficients. 

The three general forms of so?, tion which are presented ttt 

arise by application of the well known theory of linear in- 

tegral equations to the present case.  They may be character- 

ized, briefly, as: 

1. A solution, according to Hilbert-Schmidt theory, in 

terms of eigenfunctions and eigenvalues of the 

k^nel ^(t ,t ). 
C   1   2 

2. A solution, according to Fredholm's theory, which 

depends upon iterated kernels and which, at any 

time instant, is a rational function of the clutter- 

to-noise ratio. 

3. A solution, possible only because of the particular 

structure of the kernel yo  (t ,t ), which gives 
c  1  o 

w(t;p ,f )  as a superposition of delayed and Dop- 

pler-shifted echoes m(t;p.,f.). 

The practical application of any of these solutions to a par- 

ticular case, however, still requires the solution of formi- 

dable problems. 

In ehe eigenfunction solution the first problem is^ of 

course, to discover eigenfunctions and eigenvalues for the 

t   Chapter VII 
ft  Chapter VIII 
ttt Chaoter VI 
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kernel ^t? (t ,f- ).  Even assuming this to be possible one 

cannot^ in view of equation (3.2) for VG (t >t  ),   expect that 

either the eigenfunctions or eigenvalues will bear any simple 

relation to either the signal, represented by m(t;p ,f ), 

or to the clut ir source, represented by  <$(p,f). 

The following bounds for the eigenvalues A.  have, how- 

ever, been derived 

0 < A < 2 . max ^(p,f).        (3.3) 
" J "   (P,f) 

These bounds make possible the direct evaluation of the per- 

fornance improvement bound which will _,oon be considered by 

itself. 

The Fredholm solutica, which was second in the preceding 

list of the three general solutions, is at least given di- 

rectly in terms of operations upon the basic kernel }(. {t  ,t ) 

If the functions m(t;p,f)  amd  (^(p,f)  are such that, 

through direct integration, the iterated kernels which depend 

upon -J/j (t ,t )  can be found, then the means for a solution 

are a^-. hand.  This mode of solution was not attempted for any 

particular case in this research, simply because of the dif- 
4 -culties of iterated integration of functions which, for 

prartical cases, are not racessarily simple. 

This solution, however, is one which exhibits explicit 

dence upon the clutter- 

defined in thxs research by 

dependence upon the clutter-to-noise-rc.tio parameter «i 
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where «^    =    max    Ofp.f) (3.5) 
C       (p,f) 

The parameter '£  appears in a natural fashion in other 

places in this research, also, but most notably in the per- 

formance improvement bourd.  It seems to be a noteworthy 

parameter for describing mixed clutter aind noise interference. 

The thirl general form of solution presented in this dis- 

sertation gives w(t;p ,f )  as the weighted (double) sum of 

delayed and doppler shifted echos m(t;p.,f.).  The form is 
J 

appealing but determination of the appropriate weights for 

the individual summands rests upon solution of an auxiliary 

(double) integral equation.  Only in the case where noise is 

neglected did this third form of solution, therefore, yield 

results. 

When noise is totally neglect ;d, the optimum processor 

acquires very siir^le characteristics.t  In the suggestive 

terminology of vector analysis, the optimum weight function 

may be described as being "orthogonal" to essentially all 

clutter components, while having non-zero, or unit, "projec- 

tion" upon the desired echo.  The weight function may also be 

described as being "reciprocal" to ehe desired echo. 

It is pointed out in chapter seven, however, that the 

zero-noise optimum processor achieves these properties only 

by having a certain "super-resolution" capability with re- 

spect to the desired echo.  The zero-noise optimum processor 

is therefore characterized by bandv/idths much larger than the 

signal bandwidth and, at 1 ast in one case, by durations which 

include the total clutter return. 

t Chapter VII B. 
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Because these properties can profitably be exploited 

only in the complete absence of noise, one concludes that noise 

is never a negligible factor in considering systems for clut- 

ter suppression.  This conclusion is strengthened by the var- 

ious results for special cases which invariably show that the 

presence of even "small" noise levels (when compared to 

"large" clutter levels) greatly modify the form of the zero- 

noise optimum processor and reduce its performance. 

One further concludes that the optimum weight function 

for small noise levels is not, in general, merely a small 

perturbation of the optimum processor for zero noise.  Un- 

fortunately, while tht case o^ large clutter and small noise 

is the most interesting one from a practical point of view, 

it is the case of zero noise which is mosv often easier to 

solve.  The inability to approximate one solution by the other, 

because one is not a small perturbation of the other, is a 

far-reaching technical fact which directly adds to the dif- 

ficulties of solving the present problem. 

The converse case of detection i.n interference when noise 

is dominant and clutter interference is relatively 5...all pro- 

vides a much simpler solution.t 

The important fact, however, which emerges from compari- 

son of the small-noise and large-noise solutions, is the 

great dependence of the form of the optimum processor upon 

the relative levels of clutter and noise interference. 

The final approachtt to solving the basic integral equa- 

tion (3.1) which was tried in this research was based upon a 

method due to Miller and Zadeh 29 for solving integral equa- 

t  Chapter VII A. 
tf Chapter VIII 
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ticns with kernels somewhat similar to jC^Ct ,t )  . '.ven by 

equation (3.2).  With appropriate modifications, to accommo- 

date the somewhat more general radar waveforms which appear 

in the present context, their method was adjusted to be ap- 

plicable to equations (3.1) and (3.2).  The end result is a 

procedure for deriving an equivalent difference-differential 

equation for the unknown weight function w(t;p ,f ).  Al- 

though it is difficult to characterize this transformation 

of the problem as a "simplification," the method was applied 

in one of the particular cases considered. 

C.   PERFORMANCE IMPROVEMENT BOUND 

It will be recalled that one major question motivating 

this research was the extent to which optimum system perform- 

ance might exceed the performance of a matched filter receiver 

in a clatter-plus-noise interference environment.  0,ae answer 

to this question is provided by the following inequalityt 

(f'opt < (f)n,f • *V (3.6) 

whure the scalar factor B(ö^ )  is given by 

B(ön = t [u+fcj^ + (i+<ac)
4j 2 (3.7) 

L 

and (ft  is the clutter-to-noise-ratic parameter given earlier 

in equations (3.^) ^nd (3-5). 

3(0* ) is therefore an upper bound to the improvement in 

signal-to-interference ratio which may be achieved by depart- 

ing from a matched processor a^d choosing a processor suit- 

t Chapter IX 
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ably optimized against the presence ot clutter.  Equations 
(3.6) and (3.7) are derived in chapter IX and have the full 

generality implied by their appearance.  That is, the in- 

equality (3.6) is valid irrespective of the signal modulation 

function m(t;p .f )  or the detailed form of the clutter ro n 
dispersion function &(Ptf).     The performance improvenent 

bound B(|Ä )  depends exactly and only upon the parameter 

ß  and is valid over the entire scope of this research. 

It is interesting to note that as &  approaches in- 

finity, say for example because the noise level N  is ap- 

proaching zero, then 

B((ftc) -*£•(*, . (3.8) 

In effect this bears cut previous remarks that the presence 

of noise is an inescapable consideration in clutter rejection 

systems.  Were  N  actually zero, then "(öl )  would be in- 

finite and perfect clutter rejection might be achievable. 

In fact  N  is never zero, with the result that B(^ )  is o • v c 
always finite and the previously mentioned "reciprocal" wave- 

forms are seldom appropriate weighting functions for practi- 

cal processors. 

As «i  approaches zero, on the other hand, one finds 

that 

B(fc) -» 1 + i • öi* (3.9) 

which indicates that for small clutter levels there is little 

advantage to departing from the matched filter receiver.  Any 

advantage can only be proportional to the square of the al- 

ready small & . J        c 
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Conditions for which equality in (3.6) is actually 

achieved are given in the text,t but can be expected to be 

only rarely satisfied in practice. 

D.   PARTICULAR CASES 

Optimum processors have been derived for ?* variety of 

particular cases involving different modulation functions 

ra(t:p ,1  )     and dispersion functions <S;(p,f).  The cases 

considered are: 

1. Gaussian pulse echo in uniformly extended Gaussian 

clutter plus noise, 

2. Gaussian pulse echo in clutter with Gaussian delay 

and Doppler profiles. 

3. Rectangular pulse echo in uniformly extended clut- 

ter from a stationary source, with various noise 

levels. 

4. Rectangular pulse echo in clutter from a stationary 

source of finite extent. 

The solutions for these cases illustrate well the general 

remarks which have already been made.  In the remainder of 

this chapter it will suffice to note various aspects of these 

particular solutions which might not otherwise be deduced 

from general considerations. 

In the first case,ttof a Gaussian pulse in uniformly 

extended Gaussian clutter, the basic integral equation is 

readily solved by means of Fourier transforms.  In the fre- 

quency domain one can see that, in the absence of noise, the 

optimum processor emphasizes only those portions of the spec- 

t  Chapter IX. 
tt Chapter X. 

-25- 



COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

trum where the signal energy is relatively large compared to 

the clutter energy, somewhat in the manner of a system for 

moving-target-indication.  One can also see the great changes 

in the solution which occur as the result of even small noise 

levels.  Empirical performance improvements calculated from 

numerical data for this case indicate clearly the extent 

(about 30 db) to which the performance improvement bound 

B((» )  can exceed actual performance differences. 

The second case consideredt includes clutter interference 

with a mean intensity which varies with time because of the 

spatial variation of mean reflectivity of the clutter source. 

Because of the particular waveforms chosen, an analytical 

solution is possible.  The optimum processor is found to be 

a time-variable filter, composed of a time-varying zero-memory 

amplifier followed by a stationary linear filter.  That a 

time-vari?.ble processor is optimum for detecting echoes in 

statistically non-stationary interference is to be expected. 

It is not to be expected that the processor structure will 

be so simply defined. 

The third case is solvedttstarting from the equivalent 

difference-differential equation.  The resulting zero-noise 

processor is a train of impulse doublets which provide an 

example of a reciprocal waveform for the rectangular pu±se 

echo.  In effect, detection is accomplished by sensing only 

the leading and trailing edges of the echo.  Numerical re- 

sults are given,showing the radically different processors 

which arise when small and then large noise levels are in- 

troduced. 

t  Chapter XI 
tt Chapter XII 
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When clutter crem a stationary source of finite extent 

is considered, the fourth and final case,t it is shown that 

the known properties of the reciprocal waveform from the pre- 

ceding simpler case may be used to advantage in providing a 

solution to the final case. 

The several particular solutions together illustrate one 

other general aspect of the basic integral equation.  It has 

already been noted that the kernel M? (t ,t )  depends upon 

whatever functions are chosen for the modulation function 

m(t;p,f) and the dispersion function &{p,f)»     This leads to 

the situation, well illustrated in this research, that the 

particular means used to solve the integral equation will 

depend largely upon the particular case being considered. 

t  Chapter XIII 
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IV.  PROBLEM FORMULATION 

A.   DESCRIPTION OF A RADAR SYSTEM 

The major components! of the system to be studied are a 

transmitter, a receiver, and a linear data processor.  They 

are shown in the functional block diagram of Fig. 1 together 

with designations for the essential system waveforms, 

1.   Transmitter 

The single characteristic of the transmitter which 

is of interest in this study is the transmitted waveform re- 

presented by S(t).  This complex function of time has the 

form 

S(t) » m(t)exp(j27rfct) (4.1) 

where  f  is the unmodulated transmitter carrier frequency 

in cycles per second.  The complex modulation function m(t) 

has the form 

m(t) = a(t)exp( j0(t)) (4.2) 

where a(t) = a  real, carrier amplitude modulating function, 

and   ^(t) = a real, carrier phase modulating function. 

This waveform representation is sufficiently general for the 

purposes of this study and permits consideration of trans- 

mitted signals having simultaneous phase and amplitude modu- 

lation. 

The re?! waveform which would actually be trans- 

mitted is taken to be the real part of the complex  S(t).  In 

the present instance the real component of  S(t) it   simply 
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Äe(s(t)}  * a(t)cos(27rfct + 0(t))  . (4.3) 

The waveform at the receiver input, which is the 

sum of signal and interference, likewise may be represented 

as a complex envelope function modulating a carrier.  If this 

carrier is taken to be identical to the transmitter carrier 

then the received waveform representation is 

V(t)   - v(t)exp(j27rfct}   . (4.4) 

2. Receiver 

The primary function of the receiver for the pur- 

poses of this study is the extraction of the complex envelope 

function v(t).  Mathematically this is accomplished by sup- 

posing t7"»e existence of a signal exp f~i?nf t\ ,   in order 

that a simple product may yield 

v(t) . V(t)-exp(-j27rfct)  .       (4.5) 

In actuality, this demodulation process may be accomplished 

by heterodyning the received waveform separately against 

cos ^2Trf^t^ and sin f27rf t^ and then filtering out double- 

frequency components.  The remaining signals will be quadra- 

ture components of v(t). 

3. Data Processor 

It will be assumed,however it may be accomplished, 

that the receiver output is the complex function of time 

v(t).  It is in the data processor that whatever information 

may be present about radar targets is extracted from v(t) 

and made available for use as a system output. 
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It will further be assumed that the processor is 

designed to detect a radar echo which is received p  sec- 

onds after transmission of S(t)  and with a possible doppler 

shift of  f  cycles per second.  The processor will be char- 

acterized by a weight function which is designated w(tjp  f ). o  o 
The scalar processor output u  is assumed to be a linear 

functional of possibly the entire record v(t)  available to 

the processor input.  The processor is therefore defined by 

the equation 

00 

u=J" w*(t ; po , fo)v(t)dt  . (4.6) 
— 00 

This is a sufficiently general definition of a lin- 

ear data processor for the present analysis, wherein atten- 

tion can be confined to well-behaved functions.  The com- 

pletely general representation of a bounded linear functional 

as a Stieltjes integral which has appeared in the literature,48 

and which arises out of Riesz1 representation theorem,36is not 

necessary here. 

The notation for the processor weight function in- 

cludes rather prominently the parameter set  (p , f )  for 

the echo to be detected.  This is to show that the form of 

the weight function may well depend upon  (p , f ) in a non- 

trivial fashion when clutter interference is present.  This 

is suggested in Fig. 2, where received clutter interfe; ^nce 

is shown following transmission of a hypothetical S(t).  The 

usual situation where the mean clutter energy is a function 

of time delay after transmission is also suggested.  The er- 

sential point is that the clutter interference can have a 

distinctly non-stationary character as a function of time 

delay.  The result is that the desired weight function 

w(t ; p  , f )  for an echo with range delay p   will not r02 '     o oz 
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necessarily be simply a time translation of w(t; p  . f ) 

for an echo with delay p  . The echo parameters  (p , f ) 

are therefore a necessary part of the characterization of 

the data processor. 

B.   THE NATURE OF CLUTTER 

Clutter interference (or "reverberation" in SONAR) com- 

monly arises by reflection of the transmitted waveform from 

a spatial distribution of reflecting, or scattering, points 

or regions.  These sc?ttering centers almost always have some 

relative motion with respect to one another, as well as with 

respect to the observer.  The result is that the individual 

echoes comprising the clutter return also have some distribu- 

tion of Doppler frequency shifts,  ^ecause the locations of 

individual scattering centers arp changing,the clutter re- 

turns corresponding to successive transmissions will in gen- 

eral be different.  The result is that received clutter wave- 

forms are most conveniently characterized statistically. 

In this section a common model for clutter will be de- 

scribed, the model which underlies this research. 

Figure 3 shows two successive narrow transmitted pulses 

and the clutter waveforms resulting from each pulse.  The 

transmissions occur at r  and x  seconds while the com- 
1       2 

plex envelopes of the corresponding clutter returns are de- 

signated c(t 7 T )  and c(t ; f ).  These returns are the 

superposition of numerous delayed and frequency shifted rep- 

licas of the transmitted pulses. 

The first major feature of the model is the assumption 

thac clutter components due to reflection of the same trans- 

mitted pulse from spatially separated points are uncorrelated. 

In terms of Fig. 3 this means, for example, that c(t ; T ) 
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and oft' ;T )  are uncorrelated, because the amplitudes re- 
i  i 

cieved at the different times t  and t'  correspond to 
11 

reflections from different slant ranges. 

The second major feature has to do with the reflection 
of different transmitted pulses from the same region of space 

at different times.t Here correlation between such returr3 

is to be expected, unless the physical structure of the re- 

Ilecting region has completely changed between  interroga- 

tions.  In Fig. 3> for example, correlation is expected be- 

tween the clutter amplitudes c(t ; T )  and c(t ; T ) when- 
11 2    2 

ever the respective time delays ft - T ) and (t -v ) are 
X i 2 2 

equal. 

The rate at which the structure of a collection of scat- 

tering centers changes is determined by the relative veloci- 

ties of the individual points.  The second assumption for 

the clutter model will be that reflections from scatterers 

having different velocities are uncorrelated.tt 

The major features of the assumed clutter interference 

have been discussed here in ter.ns of the returns from suc- 

cessive interrogations by brief pulses.  The later analysis, 

however, requires an expression for the correlation between 

received clutter amplitudes at any pair of times for an ar- 

bitrary illumination.  That result is given in the following 

section.  At the same time a precise description is given of 

the statistical structure of the clutter source. 

t  A large-scale translatory motion of the physical clutter 
source through space is here ignored as it can be comoensated 
for in the receiver. 

tt When averaged over the ensemble of possible scatterer lo- 
cations. 
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1,  The Clutter Covariance Function 

Let the arbitrary transmitted waveform be denoted 

by S(t), It will be assumed that the echo of this waveform 

which is received after reflection from points with time de- 

lays between p and p + dp, and which induce Doppler frt- 

quency shifts between f and f + df may be represented by 

the term 

a(p,f) • S(t-p)exp { j27if(t-p)} .       (4.7) 

Here the change in amplitude and phase which S(t) experi- 

ences upon reflectior: is incorporated in the complex random 

coefficient a(p,f). 

The total clutter return C(t) may then be written 

in the form 

C(t) = £ i;a(pk , ft)S(t-pk)exp(j27rf^(t-pk)}   (4.8) 

representing the sum of echoes from all ranges with all fre- 

quency shifts. If increments dp, and df, are defined to 

satisfy 

Pk + dPk = Pk+i ^-^ 

and 

ft+ dfi = h+i (4-9b) 

then Eq. (4.8) presents C(t)  as the sum of contributions 

from a set of disjoint ceils covering the  (p,f)  plane.  For 

brevity the cell determined by the intervals  (p, , p, + dp, ) 

and  (f. , f. + df.)  will be designated  [dpk, ^f.]. 

The covariance function of interest is defined by 

*C(V tj = (c{tx)c*{t2)} (4.10) 
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where    c(t),     the complex envelope of    C(t),     is given by 

c(t)   = C(t) • exp ^-j27rfct^ (^. il) 

and where the angle brackets indicate the expectation with 

respect to the enseinble of admissible clutter sources.  When 

Eqs. (4.1), (4.8), and (Ml) are used with (4.-10), the re- 

sult is 

J(ci\.^)  '   ? 5:2 E /a(pk,ft)a*(pr,fs)\ ■ m(ti-pk)mMV^) 
/C  Or  r  s   \ / 

•   exp (j27rft(ti-pk)+ j27Tfc(ti-pk)-j27rfcti 

-J27rfs(t2-pr)-j27rfc(t2-pr)+j27rfct2) . 

(4.12) 

It is assiimed for the source that if the cells 

[dp, j df.]  and [dp , df ]  are disjoint, then 

/a(pk , f,)a*(pr , fs)^ =0.       (4.13) 

On the other hand, if the cells  [dPv >  df.]  and [dp, , df ] 
coincide it is assumed that the ensemble expectation may be 

written 

/a(pk , f^a*(pk ,f^N = 2 ^(pk.. ft)dpkdf^  +   (4.14) 

where  ^(Pu >  f;)  represents the average energy returned from 
the cell f^P^^ äf«]  at  (p, , f.)  for incident signals of 

unit energy. 

t  Extended reflecting regions with these assumed character- 
istics have been considered in References 33 and 46. 
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It is worth noting that the reflected energy is pro- 

portional to the call dimensions, an assumption consistent 

v;ith the notion of returns from adjacent points being uncor- 

related.  As a cell dimension is increased one would expect 

the additional signal components to add incoherently to the 

previous components.  In this situation one expects signal 

energies, rather than amplitudes, to add linearly. 

When Eqs. (4.13) and (4.14) are introduced into 

(4.12) only a double sum remains for JC   {t    , t ), namely 

X^t^tJ^Z   E€(Pk,^)-m(ti-pk)m*(t3-pk).2 •        (4.15) 
k I 

• exp(j27rf^(ti-t2)} • dpkdf^ 

In th3 limit, as do,  and df.  approach zero, the double 

sum is assumed to approach a limit which defines the cor- 

responding Riemann integral.  Therefore, in the limit 

00  00 

^c(ti,t2)=2/ Jm(ti-p)m*(t2-p)g(p,f)exp(j27Tf(t -t )) dpdi . 
— 00 — 00 

(4.16) 

This is the result which will be used.  It describes the rele- 

vant statistical properties of the clutter interference at 

the input to the data processor. 

To accord with notation previously introduced for 

the processor weight function, and to simplify expressions 

which will appear, it is convenient to define m(t7p,f) by 

m (t;p,f) = m(t-p)exp ^j27Tf(t-p)) . (4.1?) 

It may be verified that the preceding equation for JC   (t ,t ) 
C   i   2 

is equivalent to 
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.#   {t   ,t   )=2f     f   ^(p,f)in(t  ;p,f)m*(t   ;p,f)dpdf   . (^.18) 

C.   THE OUTPUT SIGNAL-TO-INTERFERENCE RATIO 

The signal-to-interference ratio at the data processor 

output is the quantity of major interest in this study. 

It will be supposed that the ultimate task of the sys- 

tem is to detect point targets of unvarying reflectivity 

(i.e., not "scintillating") with unknown range and velocity. 

The interference is the sum of clutter previously described 

and noise with uniform power spectral density over the re- 

ceiver bandwidth.  The signal-to-interference ratio at the 
e 

data processor output, designated — , will be derived for 

these circumstances. 

Let the complex representation of the waveform at the 

receiver input be designated V(t)  and have the form 

V(t) = R(t;po,fo) + I{t) (4.19) 

where    R{t;p ,f ) = deterministic signal component 

from point reflector at range 

delay p  with doppler shift f . 

l(t) = stochastic interfering waveform. 

The received signal component is assumed to be the usual de- 

layed and Doppler shifted replica of the transmitted wave- 

form, that is 

R(t;po,fo)- A-S(t-po).exp(j2Trfo(t-po)) .    (4.20) 

It is assumed that m(t)  is normalized to yield 
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* 

■- 

00 

/ m*(t)m(t)dt » 1 (4.21) 
— 00 

so that for the received echo R{t;p .f ) o o 

/ R*(t7po,fo)R(t;po,fo)dt = A
?  . (4.22) 

— 00 

Thus it follows that 

A2 = 2e (4.23) 

where g   is the total energy of the received signal echo. 

The data processor acts upon the complex envelope of R(t;p ,f ) 

to yield a scalar, designated r(p ,f ).  The signal component 

of the processor output is therefore given by (see Eq. 4.6) 

00 

r(Po'fo)=  /v^(t;po,fo)R(t;po,fo)exp (-j27Tfct}dt   (4.24) 
— oc 

or, when Eqs. (4.1) and (4.17) are employed, 
00 

r(p0,f0)= A /w*(c;po,fo)m(t;po,fo)dt.exp (-j27Tfcpo\ . 

(4.25) 

The intensity of this component is given by 

00 

I r(poifo) |2= A2 I Jw^t;povfo)m(trpo,fo)dt | 2. (4.26) 
— 00 

T^e received interference component has complex envelope 

i(t), derived in the established manner: 

i(t) = I(t)-exp {-j27Tfct}  .      (4.27) 

For interference of arbitrary nature the interference com- 

ponent in the processor output will be designated i(p ,f ) 
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and written 
00 

i(po,fo)=  JV(t;po,fo)i(t)dt       . (4.28) 

Its mean  intensity  is given by 
00 09 

/i(po,fo)i*{po,f0)>   =   /    /   w*(ti;p0,f0)w(t2;p0,f0) 

•     /i(t   )i*(t  ))   dt dt 
\ 1 2/ 12 

(4.29) 

where the expectation on the right has been brought inside 

the integral.  If one defines the covariance function A[(t ,t ) 
1   2 

by 

X(ti,t£) = (i{tx)i*{t^ (4.30) 

then the following formula is obtained: 

00   00 

(i(po,fo)i*(po,fo)) = / / w*(t ;po,fo)w(t ;po,fo) 
\ '—00—00 

(4.31) 
^(t^t^dt^ . 

The signa1-to-interference ratio is the ratio of output 

signal intensity to mean output interference intensity, 

2 
c       I r(p ,f ) | S _ o o (^32) 

(i(Po,fo)i*(PoJfo)) 

which in the present instance has the appearance 
oo 2 

2^ / w*(t;Po,fo)m(t;po,fo)dt 
S -co 

I 

/  f w*(t ;p.,f.)X(t ,t )w(t ;prt,f )dt dt 

.(4.33) 
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D.   THE OPTIMUM LINEAR PROCESSOR 

The processors of major interest in this research are 

those which lead to a maximum signal-to-interference ratio 

at their output. These processors are called "optimum," 

More specifically, the optimum processor is characterized 

by the weighting function w Dt(
t7P ** ) which, among all 

weighting functions, yields the greatest value for ■=■ de- 

fined r>y ' nation (4.33). 

Obse   that the optimum weight function depends, of 

necessity, upon both the form of the echo to be detected 

m(t;p ,f ),  and the covariance function K(t ,t )  for the x  ro o ' 12 
total received interference, since both of these terms ap- 

pear explicity in equation (4o33). Equations which determine 

the optimum processor will be presented shortly. 

On occasion, however, reference will also be made in 

this research to another kind of linear processor, i.e. the 

processor which is optimum only if the received interference 

consists of white noise alone, without any clutter. The 

processor which is optimal under these restricted circum- 

stances (but which is sub-optimal for the general problem 

being considered in this research) is called a "matched fil- 

ter" or "simple matched filter" (or processor)„ 

This terminology, chosen for its brevity and consistency 

with at least part of the literature, is adhered to through- 

out this dissertation. 

t The word "optimum" is almost universal in referring to a 
problem solution which maximizes pome well defined criterion 
of merit.  The phase "matched filt« r" often enough has ex- 
actly the meaning given in the text, even though the inter- 
ference is non-white0  Reference 46 is an exact illustration 
of this latter usage. 
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1.       Formal Solution  for the General case 

It may be  sho'.vT^   as   in Appendix A,   that  the pro- 
c 

cessor weight function w(t;p ,f )  which maximizes — of ^ v  ho oJ I 
equation (4.33) must satisfy 

OB 

/ ^(t^t )w(t2rp0,f0)dt2 = m(ti;po,fo)    (4.34) 
_ ac 

for all t . 
i 

A basic analytical problem in this research is, 

therefore, the solution of the preceding integral equation 

for w(t ;p .f ), once m(t ;p ,f )  and K(t ,t ) have been 
2 rO  O 1 rO  O 1  2 

specified.  Means of generating such solutions will be dis- 

cussed later, in chapters six, seven, and eight. 

Here it will only be noted that a formal solution 

to the preceding integral equation may be written in the form 

w(t ;pn,f ) = / Ji't  ,t )m(t ;p ,f )dt ,   (4.35) 
Z       O       O _-'oc     2  £     3   O  0    3 

which represents w(trp ,f   )     as some linear transformation 

oC of the modulation function m(t;p ,f ).  As shown in o o 
Appendix A, the kernel oC(t ,t )  introduced here must satisfy 

2  3 
the equation 

/X(t  .t  )  ^(t  ,t  )dt    = c(t    t  ) (4.36) 
_12 232 13 —  00 

where  a(t ,t )  is a kernel with the ''sifting property" for 

m(t;p ,f ),  That is 

00 

/  a(ti,t )m(t ;po,fo)dt3 = m(ti?po,fo)    (4.37) 

for all t 
i 
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Although this solution provides no indication of 
how to diacover those kernels    a(t ,t  )    and   X (^  »t  ) 
which are appropriate for any particular case,  it has the 
merit of providing general expressions for optimum system 
performance.    Thus,  in Appendix A it  is shown that if 
w    .(t  rp ,f )    satisfies equation (4.3^)» then the corre- opt    * ro    o s 
spending (maximum) value of    —    is 

OB 

f = 2 (fe /    w    *(t  rp  .f  )m(t  ;prtJf  )dt (4.38) 

Once an expression for the optimum weight function is avail- 

able, this equation provides a convenient calculation for 

the resulting optimum system performance. It, or its equi- 

valent, is used in later chapters for this purpose. 

One particular expression, ecaivalent to equation 

(4,38), has a certain suggestiveness for establishing the the- 

oretical result of Chapter IX.  It is obtained by noting that, 

since a(t ,t ) defined by equation (4.37) has the role of 
1  3 

an identity transformation, the solution of equation (4.36) 

for e£(t ,t ) amounts to the discovery of a kernel which is 
a 3 

inverse to X(t,*t ). If one introduces the notation which 

is suggestive of this viewpoint by defining 

2  3 2  3 
XT^t ,t ) = o£(t ,t ) (4.39) 

2  3 

then equation (4.38) becomes 

00 
/-I w .(t yp ,f ) = J'X (t ,t )m(t ;p ,f )dt  (4,40) 

Opt  2 rO  O    „^     2  3     3  O  O   3 
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t and. equation (4.38) becomes 

(4.41) 

It is this last equation which has relevance for the bound 

to be derived in Chapter IX. 

2•  Solution for Uniformly Extended Clutter 

The clutter problem most frequently analysed arises 

out of the assumption, made either explicitly or implicitly, 

that the clutter dispersion function o  (p..f) may be written 

£(p,f) - 6C   « QU) (4,42) 

00 

where / Q(f)df = 1. (4.43) 

This corresponds to clutter interference extending over all 

range delays with a uniform mean power,.  The parameter ^  is 

essentially a measure of the spa-cial density of the distributed 

radar cross-section of the clutter source.  It has the dimen- 

sions of energy per unit range delay. 

When Sqs. (4.42) and (4„18) are combined the clutter 

covariance function simplifies to 

JO* ** )■- 6n^  /   f m(t ~p)m*(t -p)«Q(f)exp {j27rf(t ~tJSdpdf. 

(4.44) 

t  See Appendix A tor the derivation, 

t    This assumption underlies the analyses reported by George,14 

and Westerfield, et al.,46 for examples. 
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The important fact is that now -K (t ,t ) depends only upon 

the time difference t -t ,  so it is possible to write 

OB 

where       772 (T) = / m(t -p)m*(t -p)dp (4,46) 
— 00 

Q(T) = / Q(f)exp (j27rfTJ df (4,47) 

T  = t  - t 
i   a 

Under these circumstances the signal-to-interference 

ratio becomes 

S ,     2<gsL
/

at^(t-P0>
fo)^t-Po^o)dt I g 

1     00   00 

/ / w*(t ?p ,f )K(t -t )w(t 7p ,f  )dt dt 

(4.48) 

where the total interference covariance function ^(t -t ) is 

the sum of clutter and noise covariance functions. 

XKVV = -Kc'W  +A:
N(W-   ^-^ 

Because the function )£{t  -t )  depends only upon time difference, 
1  2 c 

the problem of maximizing     ■=■ given by (4.48)  is formally 

identical to the problem of optimal receiver design for colored 

noise interference.  In this latter context of noise alone an 

expression of the same outward form as (4.48) appeared as long 

ago as 194?. 7 The interpretation of the several functions 

appearing in equation (4.48) is, however, quite different for 

the present case and leads to substantial problems in the anal- 

ysis. These problems will be iiscussed as they occur. 
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The solution for this case is conveniently carried 
out in the frequency doifiain. As shown in Appendix 3 the re- 
sults are 

M*(ffP-f   ) 
W*(f;p0,f0)  = ° = H(f;poJ.f0)       (4,50) 

K(f;) 

s               £   **>    lM(f;p   ,f   )   I a 

and |    =    26a j       2—2 di(4.51) 
—   OB /       • 

K(fj 

where W(f;po,fo)  =    ?(w(t;po,fo)j (4,52) 

M(f7Po'fo)   "     y^^'Po^o^'' (4°53) 

K(f) =    ^^(T)} . (4.54) 

The frequency response function H (f?p f )  is given in terms 

of the voltage spectrum of the desired echo M*(f7p ,f ) divided 

by the power spectrum K(f)  of the interference. 

In the present case, however, K(f)  is given by 

K(f) = K (f) + K (f) (4.55) 

whex-e Kc(f)= J[KC(T)] (4.56) 

K (f)= noise power spectral density 

function. 

It is the fact that this interference spectrum K(f) depends 

upon the transmitted waveform (through Eqs, 4.45, 4,56, and 

4.55)  that distinguishes the present case from the case of 

colored noise. The interpretation of equatitns (4.50) and 

(4.51), for example, is made more difficult because K(f) and 
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M(f;p ,f ) are related.  In the present case it is not as if 

a signal were being received through colored noise of fixed 

spectrum. Rather the signal is being received in interference 

with a spectrum depending upon the si^al.  The effects, for 

example, of a change in the transmitted spectrum upon the 

signal-to-interference ratio cannot, therefore, be easily 

asseased in the present case. The very practical problem of 

choosing a "good" waveform for transmission is, therefore, 

rendered much more difficult,, 

This solution for uniformly extended clutter has 

been discussed first because of the prevalence of its basic 
s 

assumption, equation (4.42), and the ease with which the 

solution is obtained0 The simplicity, however, is achieved 

at the expense of possible variation of the clutter source 

with range delay,  p  The assumed lack of clutter variation 

with range delay is never strictly true in a practical envi- 

ronment and possibly can be expxoited for clutter rejection. 
■ 

The problem of solving equation (4.34) in circum- 

stances of more general clutter source distributions will be 

taken up again in Chapter VI.  First, however. Chapter V will 

contain a description of the appropriate ambiguity function 

for descrxbing delay and doppler performance of an optimum 

system. 
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AMBIGUITY FUNCTIONS 

The viewpoint of the preceding chapter was strictly con- 

fined to the problem of designing a system for detecting an 

echo with some definite range delay,  p  , and some speci- 

fied frequency shift,  f .  In the usual radar situation ono 

is almost alvays also interested in an allied question.  As- 

suming that a system has been designed to detect a specific 

signal, what is its response to other signals which might ap- 

pear at its input? As was first observed by Woodward,49 the 

answer to this question is contained in an appropriately de- 

fined "ambiguity function," 

A.   A GENERAL AMBIGUITY FUNCTION 

Let it be supposed, at first quite generally, that the 

system under consideration has been designed to detect the 

echo r(t;p ,f ) by means of the weight function w(t;p ,f ). 

Let U(T,0) denote the response to the echo r(t;p +T, f +0). 

Then Eq. (4.6) gives U(T,0) as 
00 

U(T,0) = / w*(t;po,fo)r(t7po + T,fo+0)dt .     (5.1) 
— CO 

This may be simplified somewhat by recalling that r(t;p+T,f +0) 

is the complex envelope of R(t;p+T,f +0) defined at Eq. (4.20). 

One can therefore write 

r(t7PofT,fo+0)=A.S(t-po-T)exp(j2^(fo+0)(t-po-T)).exp(-j27rfct} 

= A-m(t-po- exp(j2rfc(t-pc-T)} 

.exp(jiMfo+0) (t-po-T)) .exp{-j27rfct) 

= A.m(t-po-T)exp{j2Tr(fo+0) (t-po-T)} 

• exp (-j27Tfc(po+T)} . (5.2) 
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In consequence one may rewrite Eq. (5.1) as 

u(T>0).A^(t,0).oxp (-j27rfc(po+T)} (5,3) 

00 

where    ^(T,0)- / w*(t;po,fo)m(t;po+T,fo+0)dt .   ^.4) 
-00 

It will be shown that the function ?(T,0)  is, in appro- 

priate circumstances, essentially equivalent to Woodward's49 

ambiguity function V(T^) and its generalizations.3^41 In the 

form given above however, ^(T,0) is defined for an arbitrary, 

neither necessarily "optimal" nor "matched," weight function. 

It tnerefore describes the response of an arbitrary linear 

system to a class of input signals.  Depending upon the s< r . , 

it may also be a function ^f    p and '  as -ell as x and v. J ro     o 

The general ambiguity function ?(T,0) may be ured to 

re-express Eq. (4.31) in a more suggestive form.  Equation 

(4.18) is introduced into (4.31) to yield 

00 00 00 00 . . OO 00 00 00 

(i c(P0,f0) r) = /1 / £ w*(Vpo,foMVpo,tv 

(5.5) 
•2^(p,f)m(t   ;p,f)m*(t   ;p,f)dt dt dpdf. 

1        2 

When the definition (5.4) is employed, the result for the mean 
square output clutter interference is 

/ OO   CO 

(!c(Po'foM2) » / /2^(P0+T,f +0).|*(T,0)|
2
dTd0 

\ /       -00 -00 

(5.6) 
wherein the following changes of variable have been made 

p = Po + T (5.7a) 
and 

f = fo + ^ • (5.7b) 
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The signal-to-interference ratio itself may be expressed 

in terms of the general ambiquity function, although this seems 

more useful for interpretation than for optimization of system 

performance in clutter.  If the processor weight function is 

assumed to be normalized so thatt 

00 

/ w*(t;po,fo)w(t;po,fo)dt = 1 (5.8) 
— 00 

and the noise interference is assumed "white," then one can 

rewrite Eq. (4.33) to yield 

f--^ S  ■      (5.9) 
/ /2f(p0+T,f0+*)| 5(t,*) l2dTd0 + No 
— 00 — 00 

With both the clutter dispersion function ^(p,f) and 

the general ambiguity function |(T,0) in full view in 
E(?. (5.9) it is tempting to conclude that one might 

i)   find a ^(i,0) such that ^(0,0) is relatively 

large; and 

ii)  find a ?(T,0) which minimizes the contribution 

of the double integral in the denominator. 

A great difficulty in attempting this intuitively appealing 
S approach to maximizing •= is the lack of a sufficient char- 

acterization for an ambiguity function.  Thus while one might 

choose, or derive, a £(T,<£)  satisfying the preceding two 

conditions, there will not necessarily exist an m(t;p,f) 

and w*(t;p ,f )  from which the desired ?(T,0)  can be de- 

rived by Eq. (5.4). 

t  This is not necessarily the same normalization used to 
write (4.38). 
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Because of this difficulty, attention in this research 
e 

has been restricted to maximization of ■= in the analyti- 

cally more tractable form given at (^.33).  The drawback to 

the latter approach, however, is that the ambiguity function 

which results after the optimal weight function is found is 

not easily or directly controllable. 

B.   UNIT TOTAL AMBIGUITY 

One particular -»roperty of the general ambiguity 

function which has proven useful in this research, however, 

is the property of having "unit total ambiguity,," Suppose 

that both w(t;p .f ) and mitjp  ,f ) are normalized, square- 'OO oo 
integrable functions; that is 

oo 

/ lw(t;po,fo) I 2dt = 1 (5.10) 
— CD 

for any (p0,f0)i and 

/ im(t;p .f ) i 2dt = 1 (5,11) 
0 0 

■— 00 

for any (PQ^O"  Then it may be shown that the general 

ambiguity function |(T,0), already defined by 

00 

e(T,0) = / w*(t?po,fo)m(t;po + T,fo + 0)dt, (5.12) 
— CO 

has the property th^t 

CD     00 

/   / U(T,0) la dT d0 = 1  .      (5.13) 
— oo  — co 

t See equations ( 5 )* ( 3 ), and ( 9 ) of reference kl 
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Two particular aspects of this useful result, should be 

noticed.  In the first place,  4(T,0)  is defined by equation 

(5.12) in terms of a single, fixed w(t;p ,f )  which need 

only exist for the parameter set  (p ,f ).  This can be a 

convenience in situations where properties for other param- 

eter sets might be uncertain. 

In the second place, the function w{t;p ,f )  appearing 

in equation (5« 12) is, except for equation (5,10), essentially 

unconstrained0 Thus, despite the suggestiveness of the 

notation, it need be neither an optimum weight function nor 

a matched weight function, for example. An arbitrary, 

square-integrable function o± t will therefore serve for 

w(typ ,f )  in equations (5ol0) and (5,12), 

C.   AMBIGUITY FUNCTIONS FOR STATIONARY SYSTEMS 

When the interfering process is statistically stationary, 

it is a simple matter to show that the optimal processor is 

likewise stationary.  That is, optimal processors for two 

signals which differ only by a time translation will them- 

selves only differ by the corresponding time translation. 

Thus, if w(t;p ,f )  satisfies 
00 

JA (ti-t2)w(t2;p0,f0)dt2 = m(ti;po,fo) (5.14) 
— 00 

then it should be clear that w(t -T;p ,f )  satisfies v 2    ^O^ O' 
oo 

J> (t^t )w(t -T;po,fo)dt2 = m(t;L-T;po,fo) .     (5.15) 

Moreover, since m[t;p ,f )  as defined at Eq. (4.17) 

has the property that 

m(ti;po,fo)=m(t-po;0,fo) {3.1c] 
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it  follows that the optimal processor satisfying  (5.14)  will 
likewise have the property that 

w(t?po,fo)==w(t-po;0,fo)   . (5.17) 

Using now Eqs. {3. ".6)   and (5.17)* it is possible to sim- 

plify the general ambiguity function of Eq. (5.^) for the 

^rosent case.  Prom (5-^) 

00 

?(T,0) = / w*(t;po,fo)m(t;po+T,f +0)dt 
"•oo " 

00 

= / w*(v.-po;O,fo)m(t-po-TyO,fo+0)dt 

00 

= / w^(tyO,fo)m(t-T;O,fo+0)dt  , (5.18) 
— oo 

wherein it is noted that the possible dependence of ?(T,0) 

upon p  has been removed.  When the explicit definition 

(4.17) of ni(t;p,f) is introduced into (5*15) the result for 
S(T,0)  is 

00 

£(T,0)= / w*(t;O,fo)m(t-T)exp(j27r(fo+0)(t-T)) dt .   (5.19) 
—00 

Parseval's theo: em in turn yields the alternative expression 
00 

*(T,0) = / W(f;O,fo)M(f-fo-0)exp{j27rfT) df     (5.20) 
— 00 

where W(f;0,fo) = ^ (w( t;0, fo)} (5.21a) 

M(f) =r(m(t)}  . (5.21b) 

Finally Eq. (4,50) for the optimal processor in tho fre- 
quency domain, together with (5.20), yields 
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r     M*(f-f   )M'f-f -<M 
e(T,0)   -■=   J      2 o  exp(j2TrfT} df .       (5.22) 

— 00 

This is the expression for the ambiguity function of the lin- 

ear processor which is optimal for detection in colored, sta- 

tistically stationary interference.  Note first, that ^(T,0) 

is not independent of f  in general; and second, that for 

interference which includes clutter, K(f) depends upon M(f). 

In the case of stationary "white" interference, when 

K(f) is constant, the ambiguity function for the optimal 

procepsor (now a "matched filter") becomes 

00 

^(T,0)=  /   M4f(f)M(f-0)  exp rj27rfT^ df . exp (-j27rfoT }     (5.23) 
— 00 

agreeing essentially with Woodward's original definition.*e 
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VI.  GENERAL FOFMS OF SOLUTION 

This and the next two chapters will be concerned with 

the problem of solving the basic integral equation presentei 

in Chapter III. In certain respects the integral equation resem- 

bles a conventional Fedholm integral equation of the second 

kind and existing theory can be used in its solution.  In other 

respects, however, the integral equation has a structure es- 

sentially different from the conventional Fredholm equation 

ana its solution poses problems not heretofore considered in 

the engineering literature. 
u 

Following a discussion of the integral equation itself, 

this chapter concludes with the presentation of three different 

forms for the general solution. 

A.   DISCUSSION OF THE INTEGRAL EQUATION 

This research is  limited to the consideration of inter- 

ference consisting of clutter plus white noise.  The interference 

covariance function is therefore given by 

%(t1>t2) = tf^vV ■f No * ^vV     (6-1) 

where iCit  tt  )     is the clutter covariance function already 
C   1   2 

given at Eq. (4.18), and N  is the noise power spectral den- 
o 

sity in watts per cycle per sec.  The introduction of this 

form of interference kernel into Eq. (4.3^) yields, for the 

integral equation which must be solved, 

oo 

/ ^Jt it )w(t ;p ,f )dt + N  • w(t ;p ,f ) = m(t ;p ,f ) 
l^ C  i   a     2 rO  O    2     O        1 rO  0 1 'o  O 

(6.2) 
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where 

00 "0 

^(^,0 = 2/ /  m(ti?p,f)m^(tg;p>f)(S(p,f)dpdf  . 

(6.3) 
—00    —oc 

If one's attention is for the moment confined to just 

I\  (6.2), then one sees an equation having the form of the 

Fredholm linear integral equation of the second kind.  For 

'-Mch an equation general forms of solution do exist and will 

eiently be exhibited.  The utility and interpretation of 

these forms, however, often depends upon the lin*   rity of 

the relation which exists between the given (or  jorcing") 

function m(t?p0,f )  and the solution (or "response") 

function w(t;p ,f(_),  for any fixed kernel "ij^ (t ,t ). 

When one's view is broadened, as it must for the present 

problem, to include the kernel "^ (t ,t )  defined by Eq. (6.3)* 
c  1  2 

then a considerably different situation arises.  In the first 

place, the kernel ^fo  (t ,t )  may not be regarded as a fixed 

function specified independently of m(t;p ,f ).t This cer- 
00 

tainly introduces technical difficulties into the analysis. 

Of possibly greater significance, however, is the fact 

that linearity no longer exists between ra(t;p ,f )  and the ro o 
solution w(t;p ,f ).     Thus one cannot in general expect to r o  o' 
write the solution as a superposition of the separate responses 

to elemental functions which constitute m(t;p ,f ). 

One can indeed see, virtually by inspection, that ii 

w(t;p ,f )  is the solution for m(t;p ,f ),  then the solution 
00 00 

for a • m(t;p ,f )  is certainly not a • w(t;p ,f ),  for any 
00 00 

t One consequence of this fact has already been noted in con- 
nection with the solution for uniformly extended clutter, 
Sec III.D.2. 
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non-zero scalar "a."  Likewise, if w (t;p ^f ) and w (t;p ,f ) 
1    rOO,      2    rOO 

are the respective solutions for some m (t;p ,f )  and 
i    o  o 

m [tip   ,f ),   then the solution for 
2 O        O 

m(t;p  ,f )  = m (t;p   , f )   + m (t;p  ,f ) (6.4) 
rOO 1 rOO 2 rOü 

is not 

w(t;p   ,f  )   = w  {tip   ,f  )   + w  (t;p   ,f  ) (6.5) 
rOO 1 rOO 2 rOO 

The techniques of linear analysis therefore have only a restricted 

applicability in the present research. 

It will be seent that, as a further consequence of the 

particular structure of Eqs. (6.2) and (6.3)* the situation 

tends not to be one where a single solution is applicable to 

a collection of cases of interest.  Rather, different cases 

tend to present essentially different problems which are sus- 

ceptible to different modes of solution, if^ they are solvable 

at all. 

Similar comments apply with respect to the lack of any 

linear influence of the clutter energy dispersion function 

&{p,f)     upon the problem solution.  It will in fact be sean 

that one parameter which greatly influences the form of the 

solution is the clutter-to-noise power ratio.  This, however, 

is not entirely unexpected, since this ratio directly determines 

the relative importance of the two terms on the left of Eq. (6.2). 

In physical terms appropriate to the present research, 

these considerations imply that the optimum data processor 

depends in an unobvious manner upon not only the detailed 

t In Chapters X through XIII, for example. 
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functional forms of the transmitter modulation and the assumed 

clutter source, but also upon the relative levels of clutter 

and noise interference.  In particular, since only the clutter 

component of interference depends upon the transmitter power, 

the optimum data processor also depends upon transmitter power. 

All these considerations lead to the conclusion that the 

integral equation defined by both Eqs. (6.°) and (6.3) is es- 

sentially new to the literature and possesses solutions with 

characteristics only imperfectly understood. 

B.   SOLUTION IN TERMS OF EIGENFUNCTIONS 

In this section the Schmidt-Kilbert method is applied to 

Eq. (6.2) to y-3ld a general form for the solution.  The method 

is applicable because the kernel M? (t ,t )  is Hermitian and, 
C   1   2 

in a practical situation, square-integrable over the plane.t 

That the kernel is Hermitian is verified by direct in- 

spection of Eq. (6.3).  Since <ib(p,f)  is a real-valued function 

one can see that, as required, 

tt>c(t ,t )E^*(t ,t ) (6.6) 

Tne second requirement, that the kernel be square in- 

tegxable, is 

00   00 

—oo —oo       " '"" 

As will now be seen, this integral will be bounded for suitably 

bounded dispersion functions ^(p**-")-  Using the definition (6.3) 

one can write directly 

t See p. 242j Riesz and Nagy, 3« 
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00        CO 

/   /   ! %{t ,t ) I 2dt dt   = c      I       2 12 
—00      —03 

00 CX3      ^.      00 00 

I    I   {I    !    26(p,f)m(t.  ;p,f)m»(t   ;p,f)dpdf 
-00     -00   I    -00     -oo 2 

00 00 

*</    /    2^(p« ?f»)i#(t  ;p',f')m(t  ^«^f'jdpdf I dt dt 
l^-CO     -no 1 S J 1 2 

(6.8) 

This is condensed considerably by introducing the function 

00 

g(pf,f,?p,f) =/ m(t ,-p,f)in*(t ;p',f')dt , (6,9) 
i 

—00 

and introducing it into Eq. (6.8), after changing the order 

of integration.  The result is 

00   00 

/ / \1faJt  ,t  )  | 2dt dt - 

00    00    00    00 

^ / / / / d(p,f)(^(p,,ff ) ! gfpSf ;p,f) !2dpdfdp'df' 
—oo —oo —oo —oo 

(6.10) 

It has been assumed, however, that for any  (p,f) 

00 

/ j m(t ;p,f) ! 2 dt =1 (6.11) 
i 

-oo 

Since Eq. (6.9) therefore has the same form as Eq. (5.12), one 

concludes from Eq. (5.13) that, for any ^p,f). 
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00 00 

/   /   I g(pSf|;p,f) ! 2dp'Qf'  = i . (6.12) 
—00      —00 

Integrating first with respect to the primed variables in 

Eq. (6.10) therefore yields 

00   00 

J 
—00  —00 

f / I Är(t ,t ) I 2dt dt^ < 4(S / / 6(p,f)dpdf 
-    —00  —op 

(6.13) 

where (S?(p,f)  has been assumed to be a continuous (everywhere) 

function of p  and f, and where 

&  = max 6(p,f)  . (6.14) 
C  (p,f) 

The inequality (6.13) stems frcm the "allotment" by 

Eq. (6.12) of unit "volume" un.ler the surface | g(p,>f
l ;p>f) i 2. 

The maximum value for the integral in Eq. (6.10) is therefore 

achieved if  | g(p1,f';p>f) I is such that its content is 

concentrated at the value of  (pSf )  where ^(p,f)  has its 

maximum value (5 .  Distribution of the fixed volume in any 

other manner leads to lesser values for the integral, 

A further practical matter, which acts only to strengthen 

the inequality (6.13), should be noted in passing.  The function 

g(p,,f|Jp»f)  is essentially the auto-ambiguity function for 

the waveform m(t).  As such it cannot be specified arbitrarily,t 

and strict equality in (6.13) is not necessarily to be expected 

for any particular m(t).  From the inequality (6.13), one 

therefore concludes that» if 

A, 00    CO 

6 • / / d(p,f)dpdf < oo (6.15) 
—00 —oo 

t Constraints upon the auto-ambiguity function are given by 
Price and Hofstetter,3* and Westerfield, et al.,46 
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s 

then 

r / i^(t ,t ) 12dt dt < * (6.16) 
•JVC       x       St 12 

^oo     ~(yj 

as  required. 

The condition (6.15) is unrestrictive in practical cases. 

Boundedness of the double integral, for example, simply re- 

quires that the total energy returned from the clutter source 
/\ 

be finite.  A finite value for S        is likewise readily as- 
c ■' 

sumed.t 

Assuming that the Hermitian kernel jfo (t ,t )  does satisfy 

the inequality (6.13), it then has a finite or countable set 

of eigenfunctions.3eThese eigenfunctions, denoted 0.(t),  and 

their corresponding eigenvalues \x.     may be characterized, 

with no loss generality, as having tht following properties 

i) tf' *. = ii. -0,      j = 1,2,3,...        (6.17a) 
*- J   J   J 

ii) (0.,0.) =1        j = 1,2,3,...        (6,17b) 

iii) ( 6., .' ) = 0  for all different j and k ^ 0  (6.17c) 
J  

K 

where the following conventional notations for linear trans- 

formations and scalar products have been introduced for brevity: 

CO 

^cf=/ '4(
t
1'
t
2)
f(t2)

dt
2 (6.17d) 

t Cases where &(p,f) is impulsive in one variable or the 
other, as for stationary clutter, can be handled separately 
and shown to yield a similar result. 
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and 

(f,g)   = /  f*(t)g(t)dt     . (6.17e) 
—'10 

The possibility of having zero for an eigenvalue of %>   (t ,t  ) 

is, however, not yet excluded.  Until and unless it is, for 

the particular functions m(t;p,f) and ^(p,f)  appearing in 

the case of interest, the analysis must include the possibility 

of square-integrable functions, not identically zero, with the 

properties 

iv) ^PcV 0 (6.18a) 

v)  (0.,0 ) = 0  j = 1,2,...        (6.18b) 
D  o 

for a typical such function 0 (t). 
o 

1.   The Schmidt-Hilbert Solution 

With these preliminary observations concluded, the 

solution of Eq. (6.2) becomes a straightforward matter.  For 

the desired echo to be detected, namely m(t;p ,±),     form 
o  o 

the coefficients a.  defined by 
j 

cij = (0^1*0 (6.19) 

and then consider the function rn (t)  defined by 
o 

00 

m (t) = ro(t;p ,f ) - 2 a.0.(t) . 
o ro  o   j.=i    J   D 

(6.20) 

Using Eqs. (6.17)f(6.19), and (6.20), one may verify that 

(0.,m ) = 0   j = 1,2,... (6.23) 
D  o 
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Moreover,t for m (t)  defined as in Eq. (6.20), o -*     * > * 

%cm     -  0 (6.22) 

The desired echo is,   in this manner,   represented by 

00 

m(t;p   ,f  )   - m  (t)   +    S     a.^.(t) (6.23) 
oo o j^i     3   j 

Let  it be assumed that the solution of Eq. (6.2) has 

the siuxlar representation 

w(t;p ,f ) = w (t) + Z  ß.0.(t)       (6.24) ro  o    o     J^-L 3   3 

where the 6.  and w (t)  ^re to be determined, and 
3 o 

ft> w = o . (6.25) 
*- o 

Combination of Eqs. (6.17), (6.23), (6.2k),   and (6.25) with 

Eq. (6.2) then yields 

?'     ß,U.0.(t) +N  w (t) f I  ß.ö.(t)l - m (t) + Z  a.0.(t) 
j = 1  D 3 D      ol   o j=l  ^ D  J    o    j=i  3 3 

(6.26) 

Upon forming the scalar product of each side of this equation 

with 0, (t), and then using the properties (6.17b), (6.17c), 

and (6.lCa), one finds the requirement that, for k = 1,2,..., 

ßk ' ^k -f No ' Pk ^ ak (6-^) 

t cf. Theorem on p. 242, Riesz-Nagy. 
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or 

a. 

K o 

Moreover, one concludes taat 

w (t) = -^ • m (t) (6.29) 
o     JN    o o 

Incorporation of these results into Eq. (6.24) finally yields, 

for the optimum processor weight functxon. 

a 

'opt^-'^V^c/ ~' N   '"o^; ' ^i \iC~+  N   ^k 
1 k 

w .(t;p ,f ) = ^- • m (t) 4  Z  - I  »  • 0, (t) 
k=l ^k 

(6.30) 

The performance of the optimum processor is derived 

using the basic Eq. (4.38) together with (6.30) and (6.23). 

After simplification the result is 

f) 
(m ,m )    cr  | a, I 2 

-2M-^Vi^r?     (6-31) 
opt       ^  o     k=l ^k   o 

If the kernel ^Ko (t ,t )  has no eigenvalues equal to zero, 
C   1   2' 

then the set of eigenfunctions  0k(t)   form a complete, 

orthonormal set in the space of functions  f(t)  square in- 

tegrable on the line -no <( t <( oo. "^ Under these circumstances 

the functions m (t)  and w (t)  have zero norm.  The pre- 
o o 

ceding results may then be reduced to 

öö     OL 
Wnn^t;P 'f   )    -      *      ,.  7 N  MO (6.32) optv  ' o  o   k_1 M-^ + N  k 

t cf. theorem on p. 234 of Riesz-Nagy.36 
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and 

oo    I ÜU  i 2 

x ' opt       k^l ^k   o 

The sii.'.plicity of these results is somewhat deceptive 

because the fact has not been fxplicity indicated that both 

the eigenfunctions as well as Mieir eigenvalues depend upon 

the modulation function m(t) and the clutter dispersion 

function <$(p,f). Moreover there is no simple relationship 

between the various quantities, other than that provided by 

the defining equation (from 6.17) 

00 ^ 00   no -v 

/ [/ /2^(p,f)m(t jp,f)m*(t2;p,f)dpdf Uk(t2)dt2 = ^k\(t ) 
—oo 1 -oo —oo ^ I ^ 

(6.3M 

The first difficulty with this form of solution is 

therefore the discovery of the pu  and 0k(t)  and their 

relation to m(t) ard <S(p,f).  The second difficulty is re- 

lating changes in either m(t)  or <£(p,f)  to resulting 

changes in w ^(t'p ,f j  and, ultimately, in  (—)   .  It 
opt  r o  o I opt 

is simply not clear what happens to the value of the sum in 

Eq. (6.33)» for example, as all the \i, and Q. change in 

response to a single change in, sa>,  m(t). 

The solution for uniformly extended clutter which 

was j-resented in Eqs. (4.39) through (4.53) provides a direct 

illustration of these remarks because it is, after all, an 

eigenfunction solution.  In fact, for a stationary covariance 

kernel "Mp (t -t )  the eigenfunctions are always known, since 
C       i        2 

/    ^(^-O   •   exp |-j27rft  I  dt2  = Kc(f)   •   exp / -j^Trftl 

(6.35) 
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where Kc(f) = ^^(TA . 

In the case of uniformlv extended clutter one there- 

fore always has the identification 

0f(t) = exp (-j27rft) (6.36) 

and 

uf = Kc(f) (6.37) 

Because the kernel "j^ (t -t )  is not bounded, in the sense 

of Eq. (6.7), the discrete index set  k = 1,2,...   goes 

over into the continuous variable  f,  and the .urns in Eqs. (6.30) 

through (6.33) are replaced by integrations 'üth respect to  f. 

Thus the analogue of Eq. (6,33) becomes 

(f) 
2 00  ;M(f;p ,f ) 

-^s/     K (f  + N    
df -      (6-38) 

opt        -00     c. o 

exactly as seen earlier at Eq. (4.48). 

The difficulty of relating system performance to 

waveform parameters, even for the very easily interpreted 

Eq. (6.38), has already been remarked at the conclusion of 

Chapter IV.  One additional example here will suffice. 

If ^p (t -t )  were a fixed function independent of 

m(t), as it is not, there would be a direct answer to the 

question:  "What should be the waveform m(t),  in order to 

maximize  (■-)?"  The general answer would be:  "Let m(t)  be 

exactly that eigenfunction which has the least eigenvalue," 

for then the sum in Eq. (6.33) would reduce to a single term 

with the greatest numerator (unity) and the least denominator. 
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In the present case it should be clear by now that 

no such direct answer is so easily available to that most im- 

portant question of waveform design.  The difficulty dis- 

cussed at the end of Chapter IV reappears here in somewhat more 

general form.  Because the kernel *&>   {t  ,t  )     in general de- 
t-   1   2 

pends upon m(t)J  any alteration of m(t)  leads to changes 

of not only the a.  appearing in Egs. (6.30) and (6.31)* 

but also the ba?ic eigenvectors 0v(t)  and their eigenvalues 

[i^.  Assessment )f the influence of any change in m(t)  upon 

either the processor weight function or system performance is 

therefore not to be had directly by inspection of this solu- 

tion, Eqs. (6.30) or (6.31), for the general case. 

2.   Bounds for Eigenvalues 

The eigenvalues  |ju,  defined by Eg. (6.17a) and 

appearing prominently in the preceding solution, may be bounded 

directly in terms of &{p,f). 

Equation (6.17a), written in full, asserts that 

00 /" oo  no N 

[If     /  m(ti;p,f)m*(t2;p,f)26(p,f)dpdf Uk(t2)dt2 = ^k(ti) . 

(6.39) 

If one defines the function 

ikip>f)   = I     ^(t ;p,f)'tk(tJdto      (6.40) 2    2 

thereafter changing the order of integration, Eq. (6.39) ntay 

be written 

-o        00 

/ / m(ti;p,f)2^(p,f)|k(p,f)dpdf = ^^(tj . 

(6.^1) 
—00  —00 
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Multiplying both sides by    0*(t  )     and then  integrating over 
the   line     -a  (   t    <    x.t     yields 

00 '» CO 

/    /    ^(p,f)2^(pJf)e, (p,f)dpdf = ^v /    ! ^(t  )  I £dt 
-oo    —oo ' "    -oo 

1 

(6.42) 

or 

/    /    2^(p,f)  i «k(p,f)  i 2dpdf = nk (6.43) 
—oo    —oo 

But now, Eq. (5.13) may be used to conclude that 

/ / iek(p,f) I 2dpdf = 1 (6.44) 
-co —oo 

since both 

f \  ra»(t;p,f) ! 2dt = 1 (6.45) 

and 

/ I 0, (t) | 2dt = 1 (6.46) 

as required by Eqs. (5.10) and (5.11). 

One then concludes, by inspection of Eq. (6.43) that, 

since both <S(p,f) and j iAp,f)   \ 2     are everywhere non-nega- 

tive, 

^k> 0 . (6.47) 

One further concludes that, for a fixed choice of function 

S{p,£),     one can by no means cause the unit-volume allotted 
to  \ i^ip* L)   \ s    by Eq. (c.+k)   to be disposed over the  (p,f) 

-69- 



f 

I 

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

plane in such a fashion as to cause the integral on the left 

of Eq. (6.43) to exceed the maximum value of 2&{p,f).     Thus, 

if 2 Siptf)     is taken to be a continuous function of p  and 

f,  one may write 

0 < UL, < 2 •  nwx &{p,f)   .       (6.48) 
" k-    (p,f) 

The utility of these bounds in limiting achievable 

system performance will be seen in Chapter IX, once other form 

of problem solution have been considered. 

C.   SOLUTION AS A RATIONAL FUNCTION OF CLUTTER-TO-NOISE RATIO 

In general, the ratio of clutter power to noise power 

depends upon many things, such as the transmitted waveform, 

the detailed structure of the dispersion function ^(p,f), 

and whether one is speaking of the interference ahead of, or 

following, the data processor.  It will also be a time-variable 

ratio, in general.  A single, simple parameter which indicated 

the general levels of clutter and noise interference might 

therefore be a convenience. 

One such parameter has appeared in this research and is 

defined by 

2(5 
« = -^ (6.49) 

O 

where 

-\ 
(5  = max <$(p,f)  . (6.50) 

C   (p,f)   * 

Although (H  does not specify the actual ratio of clutter 

and noise powers at any given time for any given location in 

the system as the result of any given waveform and dispersion 

function, it is nevertheless true that the actual ratios are 
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proportional to Öl  once the shapes, but not the amplitudes, 

hav^ been chosen for the modulation function m(t) and the 

dispersion function (5(p,f). 

The parameter <R  appears naturally in the following 

analysis. 

1.   The Fredholm Solution 

The method due to Fredholm (see Riesz-Nagy,3e pp. 

172 ff.) may also be applied to the solution of Eq. (6.2), 

after a preliminary adjustment of notation. 

Let the dispersion function <^(p,f)  by factored ?i 

follows 

&{p,f)   = ^c 'E^f) (6.51) 

with the result that NCo (t ,t )  becomes 
cx 1  2 

00   00 

Vo^lt ,tj = 2(So • /  /  m(ti,p,f)i^{t2;p,f)E(p,f)dpdf 

(6,52) 

■c^ 1' 2'      c   -■ J ^ 1 
—00 —oc 

which may be written 

%c{titt2)  = 2<$c  • ^(t^O .     (6.53) 

Assuming that N /  0 ,  one may now rewrite Eq. (6.2) in the 
c 

form 

w (t   jp   ,f  )   + öl    •   /     K   (t   ,t   )w(t   ;p   ,f   )dt     - ~- m(t   -p   ,f   ) 
l'oo C J C12 2rOO 2 « lr00 

—00 n 

(6.5^) 
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Fredhoim's method of solution first requires the 

generation of kernels D (t ,t ),  n = 
n i  a 

the following manner. 1" The process begins with 

recursive generation of kernels D (t ,t ),  n = 1,2,,,..  in n i  a 

D (t ,t ) = K (t ,t ) (6.55) 
0   12       <-   i   2 

and then, for n - 1,2,..., generates ^ni^  »^ )  according 

to 

Dn{t
1^   = "c^J   ' Dn " n / «c^K-i^*^*   • 

—00 

(6.56) 

where the coefficient D  is always available from the pre- 

ceding kernel, according to 

Dn = ^ Dn-i(T^T)dT * (6-57) 
-00 

After definition of 

D((H) . z -1D^ (6.58) 
c'       n=0 nt _n C 

and 

D(t ,t ;(ft,) - K^(t ,t ) -f Z  ^T D (t ,t ) • (Jf 
n=l nl  n^'i/'s'   'c 

(6.59) 
the optimal processor may then be written 

, oo D(t ,t ;(H ) m(tjp ,f) 

opt  i ■ o  o   N  s i ro  o   c ^    -./.^ x     N dt 
2 

(6.60) 

-oo    D((ft,)        o 

t The notations and presentations of Korn and Korn,22 p. 436, 
and Margenau and Murphy,28 pp. 526-7, form the basis for the 
description which is given. 
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with optimum performance given by 

2£•   2^ ^     oo oo D(t,t y(R) 

O       O        —K "«> c 
2 

(6.61) 

Subject only to the requirement^" that 

oo   oo 
/ 
I 

-oo  —'O "    ^ 

exist and be non-zero (cf. inequality 6.7),   the power series 

for both D(öl )  and D(t ,t ;(R )  converge for all finite (R . 
C i   2   C C 

The series for D(t ,t ;(& )  moreover converges uniformly for 

all  (t ,t )  in the plane.  The Eq. (6.6o) for w  .(t;p ,f ) 
1       2 Opt     o   O 

satisfies Eq. (6.5^) almost everywhere"'"'' and for all ö\,, 

provided 

D((R ) /  0 (6.62) v c 

This last condition is always satisfied in the present 

problem because D{\i)   = 0  if and only  (-p.)  is an eigenvaluettt 

of the kernel K (t ,t ).  In the present case, for &, "> 0 , 
C   1   2 C 

-(R  can never be an eigenvalue (see the inequality 6.48) and 

condition (6.62) must be satisfied.  If  (R = 0, Eq. (6.2) is 

its own solution and there is no problem.  The case (R <( 0 

has no physical meaning for the present research. 

The Fredholm solution contained in Eqs. (6.6C| and 

(6.61) has a different set of attractions and difficulties. 

t   cf. p. 436, Korn and Korn. 

tt  cf. pp. 176, Riesz-Nagy. 

ttt cf. p. 327, Margenau and Murphy. 
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when compared to the Schraidt-Hilbert solution, for prospective 

application in the present research. 

The major difference is that the Fredholm solution 

is given directly in terms of the known functions m(t)  and 

E(p,f),  without the intermediate problem of discovering eigen- 

function representations.  Exploitation of this desirable fea- 

ture, however, rests upon the ability to evaluate the necessary 

iterated kernels D (t ,t )  defined by Eq. (6.56).  This may 
n 1  2 

or may not be a light task, depending upon particular choices 

for m(t)  and E(p,f)  which define K (t ,t ).  For "realistic" 

functions^ choyen without regard to the problems of integration, 

generation of the iterated kernels could be impossible in 

closed form. 

The second potential advantage of the Fredholm solu- 

tion is its validity for all ft  of physical interest in the 

present research.  If ^ne can generate the iterated kernels, 

then the solution can be examined as a function of <R .  How- c 
ever, examination of the solution in one region of great in- 

terest, namely for larger values of ft ,  might we11 require 

the use of many terms from the series for D(t ,t ;ft )  in 
1  2 C 

order to achieve acceptable accuracy in a finite sum.  The 

necessity for being ablt   generate high-order iterated 

kernels is therefore doubly stressed. 

D.   SOLUTION IN TERMS OF ECHO WAVEFORMS 

The third, and final, general form of solution which will 

be developed capitalizes directly upon the particular form of 

the kernel Mo_(t ,t ), Eq. (6.3).  The kernel has a structure v c  1  2 
analogous to that of a kernel of finite rank, i.e., a kernel 

which may be written in the form 

r 
K(x,y) = Z 0i(x)M(y) (6.63) 

i=l 
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with suitably chosen square-integrable functions 0.(x)  and 

^i(y). 

The following development of a general form of solution 

for the present c se follows the line of reasoning presented 

by Lovitt (see Ref. 26, pp. 68-70). 

The kernel % (t ,t ) of Eq. (6.2) is first approxi- 

mated by the following double sum: 

d  b 

j 
%c{t,t)   =2Z  I m(t ;p ,f )m*(t ;p ^.^(p^jApAf 
eis   isi0 .j=0  i i n   2 J- j   x j 

(6.b4) 

whe re 

f,+l = f • + Af   i = 0,1,2,...        (6.65a) 

and 

Pj+1 = Pj + AP   j = 0,1,2,...       (6.65b) 

If now the approximate kernel ^ (t ,t )  is introduced into 

Eq. (6.2) there results, after transposition. 

w(t   ? p   ,f  )   = — m(t  ,p   ,f  )   - ^- ' 
iroo N iroo N _ 

d      b 
•     2       7.     m(t   jp.,f .)2 <S(p.,f .)ApAf   •   C.. 

i=0  j=0 !     ^     1 "■     J XJ 

(6.66) 

where 

uu 

C.   = /    m*(t   ;p.,f.)w(t   ;p   ,f  ) dt     .t (6.6?) 
13 J 2rlD 2r0       0 2 

t That the desired echo paremeters are here identified with 
(p ,f )  detracts in no way from the generality of the treat- 
ment.  It is, however, a notational convenience. 
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If the complex scalars    C..     can be determined,   then Eq.   (6.66) 

gives    w(t   fp   ,f  )     in the   form of a weighted sum of delayed 
10     o 

and Doppler  shifted replicas of the modulation function    n.(t). 

Apart  from the    C..,     all other quantities on the  ri~ht of 

Eq.   (6.66)   are  known  for  any particular case of  interest. 

If Eq.   (6.66)for    w(t   ;p   ,f  )     is  substituted  into Eq.   (6.67) 

a constraint upon the    C..     may be  derived,   namely 

'kl 
= -L ^   _ _L 

N 00 N 

d       b 
Z       2     1^   .2&(p.,fjApAl M 

Ci3 

where 

(6.68) 

r KI ra*(t   ;p   ,fjm(t   ?p   ,f.)dt (6.69) 

Since  Eq.   (6.68)   must be true  for each possible pair of  indices 

(kj-t),     it  implies the   following  set of     (b+l)(d+l)     linear 

algebraic equations  for the    C..: 

(N+r00e     ) 00, 
o    00  00 

r01e 
00 00 

r02c 
00 00 

r10e 
00   00 

mbd Te 
00  00 

r00e 
01   01 

(N+r01e    ) 
o    01 01 

.02, 

r10e 
01   01 

rbdö 1     e 
01   ox 

r00e 
02   02 

r01e 
Oi    02 

•     •      • rooe 
10  10 

r01e 
10  10 

r^e        (N H-r0^   ). . . r02e 
01    01 0       Ü2    02 10    IO 

roo 
1 bdebd 

r01e 1 bdebd 

r02e bdebd 

rxoe      . . .(N +r10e )... ri°e. , 
02  02 v  o     10 io bd bd 

rbde 
02    02 

r,bd Te 
io  10 * * '(N-^vJ bd^bd' 

00 

01 

C 
02 

10 

(6.70) 

00 
00 

P 01 
00 

.02 
00 

10 
00 

pbd 
00 

L    -I 
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where 

eij  = ^(p^f^ApAf    . (6.a) 

A unique solution will exist for tii-."» C. .  if the determinant 

of their coefficients on th3 left of Eq. (6.70) is different 

from zero.  Once the C.^  have been determined, Eq. (6.66) 

then gives a solution for the optimum weight function. 

A possibly more suggestive continuous form of this solution 

c^n also be derived.  To that end consider the situation as 

the subdivision of tht  (p^f)  plane which is used in writing 

thf approximate kernel ^T (t ,t  ),   Eq. (6.6^'), is made finer. 
C   i   2 

If Eq. (6.T0) continues to have a unique solution for the C.. 

during this limiting process, and if a limit function C(p,f) 

exists for the C..,  then Eq. (6.66) converges toward its 

continuous counterpart 

. - OC 00 

w(t;p,f)   = ^ m(t;p,f ) -^- /     /     2 6(p, f )c(p, f)m( t   ;p, f) dpdf 
10     0" 100" 1 

0 0    -os    "oo 

(6.72) 

and Eq.    (6.68)   becomes  an equation  for    C(p,f),     namely 

00 OC 

/     /     G(p,f;r,0)26(r,ö)c(r,+)drdcf)  + N    • c(p,f)   =     G(p,f?p   ,f   ) 
O DO 

—oo    -co 

(6.73) 

where  Eq.   (6.69)   is  replaced by 

0f> 

G(o,f;p   ,f   )   =  /     m*(t   ;p,f)m(t   ;p   ,f   ^ dt 
0        0 2 2    '   0        0 

—00 

(6.-4) 
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Thus, by making use of the particular structure of the 

co  -iance kernel,. Eq. (6.3), the problem of solving the 

origx^al Eq. (6.2) is transferred to the problem of solving 

either the double-integral Eq. (6.73) or its discrete counter- 

part, Eq. (6.68).  While one might envision the solution of 

Eq. (6,73) by application of suitable generalizations of thr 

tcihniques applicable to the one-dimensional Fredholm integral 

equation, it is not clear that such efforts at solutions in 

two ^ .iiiensions represent a simplification of efforts directed 

to solutions in one dimension.  This attempt to capitalize 

upon the structure of the original covariance kernel seems, 

therefore, only to have replaced the original problem by a 

more difficult one in the general case.  When noise is 

(assumed) absent, however, this method does lead to a certain 

insight into the nature of the optimum processor.  This zero- 

noise solution will be discussed in Sec. B in the next chapter. 
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VII.  ASYMPTOTIC FORMS OF SOLUTION 

In the preceding chapter, several forms of solution were 

presented which are valid for arbitrary levels of clutter and 

noise interference.  In this chapter the two extreme situa- 

tions are considered.  Solutions are given cor cases where 

the noise interference is either much greater than the clut- 

ter, or negligible with respect to it. 

A.   SOLUTION WHEN NOISE INTERFERENCE IS DOMINANT 

If the clutter interference is sufficiently small with 

respect to the noise, then the integral term on the left of 

Eq. (6.2) will be small with respect to N -wtt ;p f ) .  If O    1 ' o o 
the integral term is transposed, and the clutter-to-noise 

ratio (k,  introduced, then Eq. (6.2), or (6.54), becomes 

w(Vpo'fo> = *r m(VW' - V'jy VV^'Vpo'fo)dt
; 

(7.1) 

2^ 
where (H = ——2 (7.2) 

C    N v 

£ = max <S(p,f) (7.3' 
(p,f) 

1 oo   or, 

K (t ,t )= --4— -Xft ,t )= /  j E(p,f)mvt ;p,f) 
*-   1   2    o Ä        *-   1   2 1 2& 

m*(t ;p,f:. drdf 
- 00 — 00 

(7.4 

When the right-hand side of Eq. (7.1) is successively substi- 

tuted for w(t ;p ,f ) under the integral sign on the right of 

Eq. (7.1), the following series solution results, 
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o o m=l -oo c c 

(7.5) 

K^(t    tj  = K (t    t ) (7.6) 

and Kc^.^J   E  /    K^'^t  ,T)K (t^  )(5T   . (7.7) 
"" oo 

It is known1" that this Neumann series representation, 

E<3. (7.5)» converges (at least in the mean) to the solution, 

if the kernel K (t ,t ) is Hermitian an^ 
cv l'    2' 

- (R 
max < 1 (7.8) 

where A    is the greatest eigenvalue of the kernel K (t ,t ). 
max        J 3 cx i' 2 

In the present case it has already been shown that the greatest 

eigenvalue of M>  {t   ,t  )   does not exceed 26>  (cf. ßq.  6.46,. 
C  1  2 C 

In view of the definitions (7.3) an^ (7.^) it should be clear 

that the greatest eigenvalue of K (t ,t ), namely A „, does c i 2 max 
not exceed unity.  For the present problem, therefore, the 

Neumann series solution is valid for <H  such that c 

01 
c 

/ 

max 

where the bound  is never less than unity. 
max 

The virtue of the Neumann solution is that with Eq. (7.5) 

one can directly generate successively higher order approxima- 

tions to w ^(typ -f ) in terms of operations with the known opt  r o o 

t cf. p. 435, KornandKorn 22, bearing in mind that their eigen- 
values are the reciprocals of the eigenvalues defined in this re- 
search. 
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functions    K  (t   ,t  )   and m(t;p   ,f  ).     The  fir-^t  two terms of 
Cxi2 roo 

Kq^   (7.5)   may be written,   using Eq.   (7.^)   for    K  (t   ,t ),   as 

a.   oo 
Vfop^tl'Po'fo^ r^'Po^' W ' % /  / m(t;p,f)iJ(p,f)g(p,f)dpdf 

r *■ O O -oo-oo 

(7.10) 

where 

and 

E(p.f)   =d(p,f)/^ 

00 

g(p,f)   = /    m*(t   ;p,f)m(t   ?po,fo)dt     . 

(7.11) 

(7.12) 

The performance of this processor is given by 

(f) 
opt 

26 

N 
1 - (Rc ./ / E(p,f)  g(p,f)   dpdf+. 

— :■) — 00 •)■' 
7.13) 

The optimal processor is seen, in Eq. (7.10), to be writ- 

ten as a matched processor corrected by a term depending upon 

both the clutter source, E(p,f), and the auto-ambiguity func- 

tion,  g(p,f), of the modulation waveform. 

The optimum performance, Eq. (7.13)* Is seen to fall short 

of the best performance in the absence of clutter, namely 2&  /N , r so 
by an amount depending, again, upon the clutter source and the 

waveform auto-ambiguity function.  Equation (7.13) confirms a 

goal of contemporary waveform design for maximizing (—), namely 

to cause | g(p,f) I to be small where £(p,f) ir large. 

Note finally that Eqs. [7.10)   and (7.13) are on3.y first order 

approximations.  They and the conclusions drawn from them are 

therefore only valid for relatively small &    . 
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1.  Comprrisen with Matched Filter 

The matched filter weight function is given by 

o 

It is obtained directly from Eq. (6,2), for example, by setting 

JC (t ^t ) equal to zero.  Using Eq, (4.33)» which is valid for 
arbitrary interference and weight function, one may compute the 

signal-to-interference ratio at the matched filter output.  It 

is given by 

26_ 
(I) 1 mf  Nrt+ f 7m*(t,;prt,frt)^(t,,tjm(t^?pft,fft)dt,dt5 

(7.15) 

O  ^   J y     1 r07 O'        Cx  1  2     2  O' O'   1  2 
— oo ^oo 

or when Eq. (7.4) is introduced for X„(t ,t ) 
C       i       2 

(I)  f ^ § 5  (7.16) 
mf oo    oo 

N^ + 26n I  I  E(P'f)   g(p>f) O C 
— 00    — 00 

dpdf 

where 6»c»E(p,f), and g(p,f) have already been defined by 

Eqs. (7.3). (7.11), and (7.12), respectively. 

For sufficiently small £>      one may now use Eq. (7.16) 
to write 

26    r oo  oo 2 ^ 
(V  t'-ir- i1 - %' f    / E(p,f) g(p,f)  dpdf+•••. (7.17) 

•L mf     o  L    c  -oo -oo J 

Comparison of Eq. (7.10) *üth (7.14), and (7.13) with (7.17), 
leads to the conclusion that although, for small <H f   the dif- 
ference between matched and optimum processors is of the first 
order in &    , the difference in performance is only of the 
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second order in ^_ To first order in & the performances c    r 

of matched und  optimum processors are, surprisingly, the same. 

The practical conclusion is that when clutter in- 

terference is small with respect to the noise, in the sense 

that öt <(<fl.  there is little advantage to be gained by de- 

parting from a matched processor  If there is to be a regime 

where marked performance differences do occur, then it must 

be for öi \ 
/ 1 , or %  » 1. 

Lespite these, possibly pessimistic, conclusions 

one should not lose sight of the fact that Eq. (7.5) presents 

a general solution to the problem for arbitrary functions 

G» (p,f) and m{t;p,f), subject only to the constraint {7.9)- 

This is possibly the only solution in this research which is 

given so simply in terms of known functions and which simul- 

taneously has such broad generality. 

B, SOLUTION WHEN NOISE INTERFERENCE IS NEGLIGIBLE 

Although it will eventually be seen that the effects of 

seemingly negligible ncise are not necessarily negligible, 

first consideration will be of the case when noise is ignored 

and only clutter is assumed to be present. 

A convenient starting point is the finite rank solution 

(6.66), wherein the delay and doppler variables have been 
A r. quantized with increments of 

No = 0, Eq. (6.70) for the  C^ 

and Af respectively, 

becomes 

When 

oo 
oo 

Ol 

OÜ 

OP 

oo 

oo 

ru- e 
GO 

ru- e 
oo 

■ oo 
Ol 
r^ e 
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r^- e 
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r0- e 
Ol 

rbd e  rbd e 
O O   O O 01 

r00 e 
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Let  it be   supposed,   at first,   that no    e 
3J 

is zerc.  Then 

note that the separate e..  enter the coefficient matrix of 

Eq. (7.18) only as multipliers of separate colunma of elements. 

But the effect of multiplying a column of a matrix by a fixed 

scalar is to multiply the determinant of the matrix by that 

scalar.  Therefore one concludes that the determinant of the 

coefficient matrix in Eq. (7.18) will be zero, or not, accord- 

ing to whether th» determinant 

pOO 
00 

pOl 
00 

,bd 
00 

pOO 
ox 

poa 
01 

^bd 
01 

pOO 
02 

1OO 

bd 

,bd 

(7.19) 

is zero, or not. 

This matter is finally resolved by noting that each entry 

in the determinant (7,19) is 

M  _ r 
ij 

— 00 

/ m*(t ;pk,ft)m(t ;pi,f.)dt> (7.20) 

That is to say,  P..  is the scalar product of the functions 

m(t ;pk,ft) and m(t ?p,,f.).  The determinant (7.19), con- 

taining all pair-wise scalar products for the set of functions 

(mltrp-.f.); i = 0,1,...,d , j = 0,1,...,t)  is, therefore, 

exactly Gram's determinant1 for that set of functions.  It is 

knownt that Gram's determinant is zero if the set of functions 

t See p. 424, Korn and Korn, 
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CöiA.tains linearly dependent members;   it  is non-zero  if all  the 
functions are  linearly independent. 

Retracing  this argument,  one can conclude  that  if the 
functions    m(t;p.,£   )   constitute a  linearly  independent collec- 
tion,   and all    e..   /■ 0.   then the determinant of coefficients 
in Eq.   (7.18)   is non-zero and a  unique solution does exist  for 
the     C... 

It may be verified1'    that this unique  solution is 

C  « -^- (7.21a) 
00 

ana cij » 0 i  (M) ^ (0^0) • (7.21b) 

Th e optimum weight function w(t ;p ,f ) cannot be determined 

from Eq. (6.66) in this case, because N ^ 0, but Eqs. (7.20) 

and (7.21) nevertheless yield a sufficient characterization; 

namely 

1 1 
i m^t£*Po^

fo'^t2
?Po>fo}dt£ 

=i 00  26 (p0,f0)ApAf 

(7.22a) 

and  / m*(t ;pi,f.)w(t ;p  f )dt = 0 , (i,j)^(0,0) . (7,22b) 
— 00 

The performance for this case is also given quite simply. 

From Eqs. (4.38) and (7.22a) one deduces 

(f)  „ = "T"-^"  • ™i~  •      (7.23' 

t  Visual applicarion of CraTier'i? rule suffices, since the right- 
hand member of Sq. (7.I8) is proportional to the first column of 
coefficients. 
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Equations (f 00)   and (7.23! provide the basis for under- 

standing optimum detection in clutter for the ideal circum- 

stance when N = 0.  They also indicate why in any realistic 

case noise can probably not be so completely ignored. 

In the first place, note that Eq. (7.23)  asserts that 

really the only contribution to clutter in the optimum processor 

output is from the clutter components origii ally received with 

delay and doppler ?vift identical to the delay and doppler 

shift  (namely p and f ) of the echo to be detected,  Dis- r o     o 
crimination against these echo-like components of clutter 

c nnot be accomplished by a linear processor. 

The implied discrimination by the optimum piocessor 

against the other cl     ter components i.e., those for which, 

p ?£ p or f 7^ f . however, is the exact consequence of property 

(7.22b) of the optimum processor.  The optimum weight function 

is simply orthogonal to the "other" clutter components. 

By virtue of the properties (7.22), the optimum processor 

is, apart from a scale factor, identical to one member of the 

set of functions "reciprocal" to the m(typ.,f-).  To be pre- 

eise, let the reciprocal set of functions be denoted by 

(a3(t;pi,f. ) ; i = 0,1,..., d,  j = 05l,.,.,b} and defined im- 

plicitly by 

00 

i)  / m*(t?pi,f .)aj(t;pi,fj)dt = 1, for all ( i , j )   (7.?4a) 

ii)  / m*(t7pi,f .)(D(t;pk,ff )dt =0, for -\1   (:^V(i,j). (7.24b) 
— 00 

Then comparison of (7.22) and (7.24) yields 
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A particular example of a processor which is reciprocal 

to the set of signal echoes will be seen in Chapter XII.  In 

fact, the notion that the processor must be reciprocal to the 

set of signal echoes (for N = 0) proves valuable in extend- 

ing the results of Chapter XII to the cases considered in 

Chapter XIII. 

The situation for N = 0 is thus adequately described. 

The suspicion that one can probably not ignore noise so com- 

pletely, stems from two considerations.  Equation (7.23) as- 

serfs that ■= must diverge to infinity if either  ^(PQ^Q) 

goes to zero, or if the product ApAf approaches zero. 

On the first count, if the clutter output from the pro- 

cessor output does decrease linearly to zero with ^»(p ,f ), 

then surely a point will be reached where the predominant out- 

put interference is not clutter, but noise, and Eq, (7.23) 

becomes invalid. 

The second cause for reservation, however, is the more 

interesting, as it affords some insight into the nature of an 

optimum processor for a low noise situation. 

According to Eqs. (7.22), the optimum (reciprocal) processor 

has the capability of responding to a particular desired signal, 

while being completely insensitive to the same signal if it is 

displaced in delay by only so much as Ap seconds, or dis- 

placed in Doppler by only Af cycles per second. 

In matched filter theory one is accustomed to observing 

that if a delay discrimination capability of Ap  seconds is 

to be achieved, then a system bandwidth on the order of  (Ap)" 

cycles-per-second must be contemplated.  Likewise, discrimina- 

tion between signals separated by only Af cycles per second 

in Doppler, implies signals and weight functicns with durations 

on the order of  (Af)"  seconds.  As ApAf approaches zero, 

therefore, one would not be surprised if the (duration) X(band- 
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width) product of the optimum processor became large without 

bound.  Nor would one be surprised if as (Ap)" , and there- 

fore processor bandwidth, became large, the optimum system 

was increasingly dominated by considerations of noise, no 

matter how small, rather than by clutter. 

Cases will be seen in succeeding sections where the op- 

timum processor achieves its performance either through large 

bandwidth or through long duration, or through both.  The 

effects of even small noise levels will also be seen. 

Finally, the conclusion that noise can *43ver be neglected 

has far-reaching implications for the analysis.  The immediate 

consequence is, of course, that ouo must solve the exact 

equation 

00 

/^c(VVw(Vpo'fo)dVVw(VPo'fo)= ^VPo'V 

(7.26) 

rather than the approximate equation 

00 

— 00 

Unfortunately it is not generally true that the solution 

to Eq. (7,26), for small N , closely resembles the solution 

to Eq. (7.27).  Cases will, in fact, be seen where there is a 

marked divergence between the small-noise and no-noise solu- 

tions.  Thus there seems to be no 73neral way of writing the 

small-noise solution to üq. (7.26) as a small perturbation 

of the no-noise solution to Eq. (7.27)   The no-noise solution 

cannot, therefore, properly be called a first approximation 

to the true solution. 

This stands in marked contrast to the situation of dominant 

noi e described in Eqs. (7.1 ) through (7.13).  In that situation. 
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Eq. (7.10) explicitly gives the small-clutter solution as a small 

perturbation of the no-clutter solutic.i (i.e., the matched 

processor). 

C.   A HYPOTHETICAL SOLUTION 

Let it finally be observed in this connection that if a 
signal could be designed which would be orthogonal to delayed 

and Doppler shifted versions of itself over some range of in- 

terest, then the reciprocal waveforr space would be identical 

to the signal space itself.  For such a signal Eq. (7.25) then 

indicax.es that the optimum processor would be exactly a matched 
processor, just as in the case of no clutter whatever. 

It may not be surprising, there fore, that if a modulation wave- 

form m(t) could exist which gave rise to echoes m(tjp.,f.) such that 

•00 

while 

/ m*(t;pi,fi)m(t;pi,fi)dt = 1,  for all (i,j)        (7.28a) 

/ m*(t;pi,f )m(typk,ft)dt = 0, for all (k,t)^(i,j)    (7.28b) 
— oo -' 

then the solution to Eq. (6.2), with the finite rank kernel of 

Eq. (6.64), would be 

w At;o   ,f )=  ^  • m(t;p ,f )      (7.29) 
* 2 6(po,fo)ApAf + No 

for arbitrary levels of clutter and noise, i.e., for arbitrary 

d(p,f) and 

Eq. (4.38), 

d(p,f) and N .  The resulting performance would be, from 

26 
(f) opt= -; §  (7.30) 1 0pt  26(p  f )ApAf + N 
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which from its  form would seem to be about as well as one 

might expect to do with a  system characterized by range reso- 

lution    Ap and Doppler resolution    Af. 
g 

Note finally that the ratio -- is insensitive to the 

scale factor ap lied to the weight function w(t;p ,f ). 

Equation (7.29) can therefore equally well be written as"'" 

wopt(tyPo^ = ^t'-Po^o)  • ^'^ 

One therefore has the conclusion that if a "self-reci- 

P'-oca.l" waveform existed, in the sense of Eqs. (7.28), the 

optimum detector would be a fixed matched filter under all 

circumstances of clutter and white no^^e.  This would re- 

present an opposite extreme to the type of solution which 

has, so far, seemed to arise for other types of waveforms. 

t When tho icale factor which causes w t{t;pQ,f0)   to  be a 
solution of £q. (6.2) is diopped, howeve?^ Eq.(^.38) iö no 
longer valid for computing S/l.  Equation (4,33) must be used 
instead 
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VIII.  A MODE OF SOLUTION FOR STATIONARY CLUTTER 

The solutions presented in the preceding chapter have 

been either general solutions of the basic integral equation, 

applicable for arbitrary kernels; or solutions reflecting the 

particular structure of the kernel of interest in this research. 

In this chapter a method of solution is presented which is 

applicable if the functions (^(p^f) and m(t;p,f) which d^fin- 

the kernel have suitable properties. 

The method is a variation of the method reported by Miller 

and Zadeh 29 for solving integral equations with kernels similar 

to the present i>(v,(t ,t ).  The variation is necessary in or- 

der that the method be more applicable to the sorts of waveforms 

which appear in the present radar context. 

A.   PRELIMINARy DISCUSSION 

Recal1 thrt the equation to be solved is 

/ *>c: vV
w(VPo'fo)dV Vw(VPo'fo)= n,(t ;po,fo).(8.1) 

The method to be described hinges upon the ability to discover 

a linear operator P such that, after applying it to the func- 

tions of t  in Eq. (8.1) to obtain 
i 

00 

/ (p^VV>w(Vpo'fov'dV Vl^vv^)35 ^S'Po^o^ 
— CO 

(8.2) 

the indicated integration may be performed to obtain 

/ (p^vV>w(Vro'fo)dt
2 = ^V^o'V ^-3) 
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vhere Q is some other linear operator acting with respect 

to t upon w(t »pOjf0).  The preceding two equations imply 

the following formal result 

Qw(ti;p0,f0)+ No- Pv7(tirpo,f0)= Pm(ti;po,fo)        (8.4) 

where the integral originally appearing in Eq. (8.1) is now 

no longer present. 

Whether the solution of Eq. (3.4) for w(t 'P0>£0)   pre- 

sents an easier problem than solution of the original Eq. (8,1) 

depends entirely upon the operators P and Q.  Whether such 

operators can be discovered depends, in turn, directly upon 

the kernel "X» (t »t )• 

In 1950, Zadfch and Ragazzini 50 applied essentially this 

technique to covariance kernels of the form 

K(t ,t ) = K(t -t ) (8.5) 

having rational functions of frequency for their Fourier trans- 

forms (or power spectral densities).  In their case, Eq. (8.4) 

is a linear differential equation with constant coelricients. 

The extension of the method, in 1956, by Miller and 

Zadeh29 was to more general kernels of the form 

00 

K(ti't2) = ^ r(t1^)r(t2^^d>        (8.6) 
— 00 

where r(t,A) was such that linear differential operators L 

and M, with variable coefficients, existed with the property 

L r(t,A) = M<5(t-A)   . (8.7) 

In their case, Eq. (8.4) is a linear differential equation with 

variable coefficients. 
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In the present case,  L and M will be taken tc have 

constant coefficients.  Nevertheless, the kernel JA^lt ,t ) 

remains a function of each of ics arguments separately (not 

only of their difference), and Eq. (8.4) will be seen to be a 

linear difference-differential equation with, in general, vari- 

able coefficients. 

B.   LINEAR DIFFERENTIAL AND DIFFERENCE OPERATORS 

Let the differential operators  L and M, acting upon a 

function f(t), be defined by 

Lf =   fa    + a   -£: + • • •  + a. -^-r  ) f(t) ^8.8) ^"o T a
1 dt T ^ al dtl 

and 

Mf 
r , ^.m > 

b    + b    Ä +   ••■   + b    -—       f(t) (8.9) |   o i   dt m   , m  I      , ^ 

where,   for  the present,   the     a    and b.   are constant coeffi- 

cients.     In addition,   consider  the delay-superposition operator 

D which,   for an arbitrary function  f(t),   is defined by 

Df = c   •   f't-t   U  c   •   f(t-t   )+   •"   + c,f(t-t,)      .        (8.10) o oit da 

These operators will be observed to all yield functions 

of t as results of their application.  Furthermore, it is 

readily shown that they commute, for just as 

d a, 
dt 

so  a 1 so 

d1 

a, 

■^r (b    •a— f(t)l   " b   -^ fa, -^y f(t) 1 :8.ii) 
dtJ Im dt^1     i     m dtm Il dt1 

cdf.t-td^  E  cd  •   |a( j-j tit) )     I .       8,12 
dt"   V " ~ J "       V "   dt ! t-t d 
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These equalities lead to the respective conclusions that 

LMf - MLf (8.13) 
and 

LDf =  DLf   . (8.14) 

One may also verifyj by repeated integration by parts, 

and the repeated assumption that 

t=+«> 

r6(v-1)ft-to)f^-v+1)(t)jt   =0  v=l,2,...,n,  (8.15) 

that J* 6(m)(t-t lf(t)dt = (-l)n f(n)(t ) (8.16) 

where 6 ( v) (t) * -^- 6( t) (8.1?) 
dt 

and f(n)(t) = -$— fit) 
dtn 

(8.18) 

The change of variable T = t - t in Eq. (8.17) leads ulti- 
mately to the complementary conclusion 

7 ö(n)(to-t)f(t)dt = f(n)(to) . (8.19) 
— ao 

From Eqs.  8.8), (8.16), and (8.19) one can deduce that, 
for the differential operators, 

/  f(t)   JL Ö(t-T) f dt s  L f(T) (8.20a) 

) I and j   f(t)     Ltc(T-t)     dt =  LTffT)    , (a,2Qb) 

where If z L    - ^-^ + z^ jL „  ...   +^1 j^.^^^^ 
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These results will be used presently for their clear utility 

in removing indicated integrations.  Also to be used is the 

fact that, in terms of L and M,  the respective adjoint opera- 

tors to L and M, the adjoint of the composition of L and M is 

given by 

(ITM) f s M L f (8.21) 

The reverse order on the right is used here, although not 

necessary, in order to facilitate later comparison with the 

results of Miller and Zadeh29 , where L and M have variable 

coefficients and the reverse order _is the only correct order. 

The symbolic inverse  L ^^  to the operator L may be de- 

fined by 
CO 

L-1 f = /  L'^t ,t )f(t "/dt (8.22a) 

where  L~ (t ,t )  satisfies the differential equation 
1   2 

L,.  iT^t ,t ) = 6(t -t ) (8.22b) 
t^ 12 12 

The consistency of the definition is verified by using these 

equations with Eq. (8.l6) to deduce 

00 00 

L^   L71f(t   )=  /   L.   L"   (t   ,t   )f(t   )dt       = /   5(t  -t   )f(t   )dt     =  fft   ) 
ti   ti        ^       -c ti 1     2 2'      2 lo.       1     2 2 i 

(8.22c) 

A useful operator D )  related to the operator D defined 

by Eq. (8.10), Is given by 

D+f = c fft+t )+c ^(t+t )+ ••• + c,-f(t+t,) .       (8.23a) o "   o  1     1 d  v   d ^ 

The particular property of interest for the sequt.1 is 

D f(t -t) 2 D^; f(t -t) . (8.23b) 
t-p    2   1       "-^    21 

-95- 



-mv£ö>«»«fcj5IB 

I 

COLUMBIA UNlVERSiTY—ELECTRONICS RESEARCH LABORATORIES 

Finally, let it be noted that complex conjugation,in- 

dicated by an asterisk, has the following notational conse- 

quences.  For the differential operators 

d .   .^ d (Lf)* = L*f* - |a* + a* ^ + ' ■ " + a* ^] f*(t)   (8.24a) 

while for the delay operator 

(Df)* = D*f*  = c*-f*(t-t )+c*-f*(t-t )+•••+c*f*(t-t ) v o      o  i      i      a     i 

(8.24b) 

The meanings to be attached to L*f and D*f are readily de- 

termined by consideration of (Lf*)* and (Df*)* respectively. 

Thus 

L*f = ^a* + a*^ + -•■ + a*|-}f(t) (8.25a) 0 
and 

D*f = c*-f(t-to)+ c*-f(t-t )+ ••• •*■  cj-f(t-td)  .    (8.25b) 

With the necessary basic relations for the operators now 

having been described, attention may once again be directed to 

the problem of solving Eq. (8.1). 

C.   THE EQUIVALENT DIFFERENCE-DIFFERENTIAL EQUATION 

Let it be supposed that the clutter source is essentially 

stationary and that the dispersion function &  (p,f) may there- 

fore be represented in the form 

<S(p,f) = <SC • Ec(^ • 0(f) (8.26) 

where, as before,    <^ c = max ^c^ ' (8.27) 
p 
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For this dispersion  function,   the clutter covariance  function 

^   (t   ,t  )   is given by 

^  (t    t  )   = 2<S     /  E  (p)m(t   ;p)m*(t   ?p)dp (8.28) 
— c» 

where Eqs. (6.3^ 3nd (8.16) have been used, and notation has 

been shortened by defining 

m(typ) =  m{typ,0) = m(t-p)  . (8.29) 

Let it further be supposed that for the modulation en- 

velope m(t) , linear operators L^, and D with constant coeffi- 

cients e^ist such that 

Ltm(t) = MtDt6(t]  . (8.30) 

The subscripts attache '' to the operators indicate explicitly 

the independent argument being acted upon. 

Using Eqs.   (8,28)   and  (8.30)   one. may therefore write 

Lt ttctW  = 2&c    MLi-    '     •^)Ec(pm*(t ;p)dp    (8.31) 

=  26c     /    [Mt Dtiö(t  -p)]Ec(p)m*(t   ?p)dp(3.32) 
»oo   L       -^        * J 

where the fact that L, M, and D have constant coefficients 

enables on^ to write from Eq. (8.30), 

Ltm(t-p) = MtDt^(t-p) . (8.33) 

The integration indicated in Eq, (8.32) may now be performed 

to obtain, with the aid of Eq. (8.19), 

^^V^ = ^c^tA^^^i^^S^^}- (8'34) 
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Having now come to this partial result, one can use it 

to write 

-I ,00 *. 

C        C   1 2       2       O       O 2 C 1 ~ oe 

00 

• Mt D. E (t ) / m»(t ?t )w(t ?p ,f )dt  . (8.35) 

The integration on the right, with respect to t , will be 

removed by writing symbolically, from Eqs. (8.29), (8,33) and 

(8.23) 

m(t.| rt '; = W^^    Dt- b\t^~t  ^ 

Ll^ D^" 6(t_-tJ , (8.36) 
t0 t.„ t,   i. 

Using Eqs. (8.20xi and (8.36) one may now write, for the right 

hand side of Eq. (8.35' 

f [ir/   Ht  D» 6(t -t ))w(t ;p , f idt = M* LT^D^wit ;p , f ).(8.37) 
'  ) t,   t,., t..,    2   1 j  '  2 P0- O    2    t   t.   t,  '  1'^0

> O'*^--'' 

This  result,   together with Eq.    (8,35).   yields 

j  %it   tt   )w(t   ?p^,f   )dt ^2^ -M,   D.   E„(t )M*  L"1  D:^(t;p   ,f 
j   «00 i     a     '   2  ro'  o       2       c     tx  t    c

v i    t    t       t     v  inc   o 

(8.38) 

to serve as 5 replacement for the first term of Eq, (8.1) after 

L.  has been applied to it. 

Tus, by applying  L  to each side of Eg. (8,1) and using 
1 K(3- (8.38) for the first term, one arrives at 

2^cMtDtEc(t)M^
1*D^w(t;^,y+ W0- ^^H^-l^Xl^J^        [6. 39) 

as the equation to be solved for w(t;p ,f ^ 
T. ■ ■ - o' o' 
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D.        DISCUSSION OF  THE   SOLUTION 

The  first  thing to consider with respect to Eq.   (8.39) 
is the set of circurastances  for which  it reduces to an equa- 
tion consistent with the work of Miller  and Zadeh.29       To 
this end,   suppose that 

i)     2&c'Ec{t)  =   1, (8.40a) 

ii)     Dtf(t)  =  f(t), (8.40b) 

iii)     No = 0 . (8.40c) 

Then Eq. (8.39) becomes 

MtMJL;
1Mt;p0,f0) = Ltm(t;po,fo) . (8.41) 

If, on the other hand, one uses their Eq. (5)> which for the 

present case becomes 

CO    _1 

w(t;po,fo) = / ^c (t,P)m(^po,fo)de (8.42) 
— 00 

together with their Eq. (24), which is 

M^L;
1
^-

1
^,?) = Lt5(t-e) (8.43) 

in the present case, then upon multiplying both sides of 

Sq. (8.43) by rn(£;p ,f ) and integrating with respect to %, 

-ne again arrives at (essentially) Eq. (8.41) above.t In the 

process of transcribing Eqs. (8.42) and (8.43), those terms 

which arose in Miller and Zadeh29 because the solution w(t;p^,f0) 

t Miller and Zadeh29 analyze an equation with real waveforms. 
The complex notation of Eq. (8.41) is, therefore, not reproduced 
by the process described. 
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was to be restricted to a finite interval (a,b), are neglected 

for the present case of the doubly infinite interval (-00,00). 

Thus, by restricting the present analysis in one fashion 

and restricting the analysis of Miller and Zadeh29 in another 

fashion, both analyses may be shown to include as a special 

case, the common simpler problem defined by Eq. (8.41). 

The solution of Eq. (8.41) can be written formally in 

terms of the individual operators L and M.  This cannot be 

done for the more general Eq. (8.39)» however, because of the 

presence of the term proportional to N .  The problem of 

solving Eq. (8.39) can however be described in somewhat more 

precise, though not explicit, terms.  The discussion parallels 

that given by Miller and iadeh.29 

Let there be introduced an auxiliary function ^(t;p ,f ) 

defined symbolically by 

^(t7P0,f0) = L;- w(t;po,fo), (8.44) 

and from which w(t;p ,f ) can be recovered by the inverse r o o 
relation 

w(t;po,fo) = L^(trpo,fo) . (8.45) 

In terms of this auxiliary function, Eq. (8.39) can be re- 

expressed as 

^6cMtDtEc(t)MJD^+No.LtL^(t;po,fo)= Ltm(t;Po,fo)   (8.46) 

where the cornmutativity of D  and L.  has been used (cf. Eq. 8.14) 

The operator appearing in braces in the preceding equation 

is seen to be a difference-differential operator with variable 

coefficients supplied by the function E (t).  If that equation 
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can be  solved  for THt;p   ,f  )   ,   then th?  solution w(t;p   ,f  ) oo roo 
for the original problem is directly available from Sq. (8.45). 

Indeed, if ^ (t;p ,f ) represents the "particular solution" 

to Eq. (8.46) and ^.(t?p ,f ) are linearly independent solu- 

tions to the homogeneous equation 

2^cMtDtEc(t)S*Dt + No » Ltl*t  j ^(trp^fj = 0 

' (8.47) 

then the optimal processor weight function is given symbolically 

by 

wopt(t'po'fo) = £%(t?Po^fo) +]Cr  J:^J(t;po'fo) 

(8.48) 

The undetermined coefficients C. are to be chosen such that when 

w t(t;p ,f )  given by equation (8,48) is substituted into 

the original equation (8U1), the resulting expression is an 

identity0  This is a procedure also followed in solving pro- 

blems of stationary interference0 

It is seen, therefore, that the proolem of solving the 

original integral equation (8„1) has by this procedure been 

converted to the problem of solving a linear difference- 

differential equation with variable coefficients, namely 

equation (8,39)0 Chapters XII and XIII contain examples of 

this mode of solution. 

Note particularly that the equation which must be solved 

in an individual case depends entirely upon the underlying 

t  cf. Zadeh and Ragazzini  , or Heistrom, b pp. 109-114. 
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modulation function m(t)  through the linear operators L. ., 

M., and D „ *■  change of m(t), therefore, changes not only 

the right side t  equation (8046), but also changes at least 

the coefficients, and possibly also the terms, which appear 

on the left side. 

JC 
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IX.  A GENERAL PERFORMANCE IMPROVEMENT BOUND 

This chapter presents an upper bound to the amount by 

vhich the performance of an optimum processor may exceed the 

performance of the matcheJ processor for the same situation. 

This bound results from the fact that j.n  Chapter VI upper and 

lower bounds could be derived for the eigenvalues of the 

clutter covariance kernel. 

A.   DERIVATION 

It has already been shown in Chapter VI that the optimum 

performance for a linear processor may be written in the form 

1  opt     s  k=0 ^k+No 

where the liberty has been taken of introducing the new 

quantities 

I a o 
2 = (m ,m ) (9.2a) 

and 

a  = 0 (9.?b) 
o 

If these definitions are used in Eq. (9-1) and the first 

term (k = 0)  of the sum indicated separately, then it is 

clear that Eqs. (9.1) and (6.31) are identical. 

Matched filter performance can also be derived in terms 

of eiaenvalues LU  and the coefficients a, ,  after a few 

preliminary calculations.  The matched filter is defined by 
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o 

where, it will be recalled. 

(9.3) 

00 

/  j m(t;p^f J 1 2 dt = 1 
O   O (9A) 

These two equations therefore imply that, for the numerator 
of  Eq. (4.33), 

/ ^f^P^f )m(t;p ,f )dt 
o  o O   O - "^     (9.5) 

N4 

Using next Eqs. ^6.23), (6.-), and (6.18), one finds that 

/   ^c(t,tJwmf(VPo,fo)dt2.f  -^   ak.   u>        ^^ 2     a, 
'o       k-1 

■v(t: 

(9.6) 

which   in  turn   leads  to 

*^- 

' /     ^f(t,rp     ^(t -tjw   (t^p  ,f )dtdt:=_L    * 
-oo-oo -       0      0    ^     '       2   .at    £  f 0      0      1     2 ^ 

N-   k-1 
o 

uk !ak 

Finally, 
(I ~i 

00 00 
r f 1     /     ^f^.'Po^^Mt  -t   )v     (t   ,.p   ,f  )dt  dt     .±. -TO    -oo ^        u       o 12       nir       D    r n       o' 2    '   O        o' 2        N2 

(9.3) 

Since   the   covanance  kernel   for  the   total   interference 
M)(t   ,t   )      is  given by 

%(t^tJ %Jt   ,t   )    4   N      -of Mt -t ) 
2 (9.9) 
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one may use  Eqs.   (9.5)   and  (9.7)   through   (9.9),   together with 

Eq.   (4.33)   to  find 

(f)      -  ^      . (9.10) 

0        kssl      K K 

However,   since 

/       i m(t;p   ,f  )   j 2dt =    T    j a,   i 2   -  1  , (9.11) 

one may write 

(f) §     .   (9.12) 
mf oo oo 

N      2     | a    j 2  +    Z    n     •   | a,   | 2 

0 k=0       K k-1     K K 

This may finally be written, using Eq. (9.2b), as 

(f)  =  ^-  .      (9.13) 
mt   Z  (N -H.k) 'la,!

2 

k-0  0 K     K 

Equations (9.1) and (9.13) now yield the intermediate 

result 

(I) 
^{ioTwHio^-'vi'].^) 

mf 

to which Kantorovich's inequality may be applied directly. 

Kantorovich showedt that 

t See either p. 14? of Kantorovich s article,13 or Appendix C 
of this dissertation. 
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'V'k 

provided 

v^K^r (ä\ 
+   ^ Ik 

0 <   m <   7,  <   M 

,2' 

(9.15) 

(9.16) 

The bounds for the eigenvalues \i,,     given by the inequalities 

(6.^8), are now used to establish the necessary bounds for 

the  (N +\I,),     namely 
o K 

0 < N < N  + u, < N  4 2 6   ,  k - 0,1,2, . . 
o — o 

(9.17) 

'herefore, Eq. (9.1^) used with the inequality (9.1^) yields 

(f) 
'1' mf 

/No+2^c N. 

V N 
+ 

vN  +2<S    , o c j 

(9.18) 

which, except for rearrangement, is the final result.  If one 

int 

by 

introduces the clutter-to-noise ratio parameter (R.   defined 

2& 

ßc =-F (9.19) ) 

then the bound on the right of the inequality (9.18) is seen 

to be a function only of (R, .  Thus one may write the inequality 

in the form 

1 (f) 
opt     mf 

B ( dl ) v  c (9. 20) 
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where 

B  ( (J^)   = ^ {l+&c)
lp +   (^(R^)"^ (9.21) 

B.        DISCUSSION 

From the   inequality   (9.20)   one   sees  that  the  extent  to 

which signal-to-interference  ratio may be   improved by de- 

parting  from a matched processor   is  strictly  limited by the 

bound B   ( (ft.  )     given by Eq.   (9.21). 

As  the  notatior   indicates,   the bound depends only upon 

the c.lutter-to~noise-ratio parameter   (J{,   .     Figure 4   shows the c 
variation of the bound as a function of & .  By appropriately 

expanding the right side of Eq. (9.1) one may verify the 

asymptotic behavior shown in Fig. 4; namely 

i)  for (Slc + 0 ,   B {<&c)   + I  + l&l  ,        (9.22) 

while 

ii)  for 6lc » « ,   B ( «JO -* 1 + i6lc .   (9.23) 

The asymptotic behavior of B ( (R, )  for small (ft ,  given 

by Eq. (9.22), supports the conclusion deduced earlier from 

Eqs. (7.13) and (7.I7).  For small clutter-to-noise ratios 

the performances of optimum and matched processors can differ 

only by an amount proportional to the square of (ft, .  As 

shown explicitly by Eqs. (7.13) and (7.17), and implied by 

Eq. (9.22),  (f-)    and ff)    as functions of (R  must be 
I opt       ■L mf ^ 

identical up to and including terms proportional to  Q\)c, 

for (R,  near zero, ^c 

For ut   sufficiently large* however, one can write 
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in 

60 h 

FIG    4    VARIATION  OF PERFORMANCE  iMPROVEMi'NT BOUND  WITH 
CLUTTER-TO-NOISE-RATIO PARAMETER 
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-S- 10 log (f-)   - 10 log (f)  < 10 log R  - 10 log 4 
1 opt 1 mf " 

(9.24a) 

or 

if)       (db) - (f)  (db)^ ^(db)~6db    (9.24b) 
""■opt      1 mf   -  c 

where Eq. (9.23) and the inequality (9.20) have been combined, 

For large clutter-to-noise ratios, therefore^ the potential 

improvement open to ar. optimum processor is, except for 

6 decibels, exactly the clutter-to-noise ratio parameter (ft^. 

Whether the maximum performance improvewent can be 

achieved or not is an entirely different question.  Two con- 

ditions can be shown to be necessary.t Strict equality will 

be achieved in Eq. (9.20) only if 

i)   the echo to be detected,  m(t;p ,f),     is exactly 
o  o 

given by 

m(t;p ,f ) = —A— 0 (t) +-i— (p (t) ;  (9.25) 
0   0      x  • o    *• 4- fO        ^ \J d 

and ii)   the least and greatest eigenvalues are (j.. 

[i  respectively, with values 
'V 

and 

and 

Hk - 0 (9.26a) 

\xx  - 2 5c  . (9.26b) 

It is to be expected that these conditions will only 

rarely, if ever, be achieved in a practical situation.  In 

the first place, there is little to guarantee that the upper 

and lower limits of Eqs, (9-26) will indeed correspond to 

eigenvalues of the clutter covariance kernel MJ (t ,t ).  In 
  C   x  2 

t See Appendix C. 
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the  second place,   even  if Eq.   (9.23)   were  satisfied for  «some 
particular parameter pair     (c   ,f  ),     there   is  little  reason 

o  o 
to expect a similar representation of m(t;p f) for another 

pair of echo parameters. These considerations stem in large 

part from the generality of the bound. 

That the bound is generally applicable over the entire 

scope of this research problem, should be noted.  It is ap- 

plicable for arbitrary modulation functions m(t),  arbitrary 

clutter dispersion functions & {p,f),   and arbitrary white- 

noise levels N .  It is indeed independent of any detailed 
o 

characteristics of the modulation and dispersion functions. 

These virtues have as their consequence the likelihood that 

the bound will be conservative (i.e., too great) in individual 

cases. 

Finally, from the fact that the bound is a function only 

of the parameter (J^, ,  one may once again deduce the importance 

of noise in limiting optimum system performance.  It is only, 

but indeed, the presence of noise which causes both (ft,,  and 

the bound itself to be finite.  In consequence, no matter how 

great the clutter, system performance will be limited by 

B (flj. 
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X.  GAUSSIAN ECHOES IN UNIFORMLY 

EXTENDED GAUSSIAN CLUTTER 

This chapter describes the optimal processor for detect- 

ing a doppler shifted radar echo, with an envelope the shape 

of the Gaussian function, in uniformly extended clutter which 

has a Gaussian frequency dispersion function. The signal-to- 

clutter ratio, optimal processor frequency response function, 

and the optimal cross-ambiguity function are found and dis- 

cussed. 

These results are compared with the results already de- 

rived by Westerfield, et al,46 for a matched filter receiver 

designed for the identical detection problem. 

Because the functions which characterize this problem 

have been assumed Gaussian, the results for both optimal and 

matched processors can be found analytically and in closed 

form when noise is neglected. 

A.   ANALYTIC RESULTS 

The pulse modulating function m{t)  is assumed to be 

given by 

i  i 
,2 m(t) = 2'* W^ • exp (-7TW2t2 ) ,        (10.1) 

where the amplitude has been chosen to satisfy the energy con- 

straint 

/ ui*(t)m(t)c,.t = 1 (10.2) 

for ail values of the bandwidth parameter W.  The Fourier 

transform of m(t)  is given by 
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i. 

M(f)   « ^j    •   exp f-n ^n     . (10.3) 

From this one concludes that the power spectrum of the modu- 
lation is given by 

|M(f) |2 »^ . exp |^-2^ | (10.4) 

and that    required autocorrelation function m(T)  is 

m(T) -y-^iMU) i2) (io.5) 
or 

7n(T) = exp /-TTT2 • ^ I .        (10.6) 

The dispersion function for the clutter source is given 

by 

where 
5c(p,f) = 6C ■  Q(f) (10.7) 

Q(f) .iexp^j  . (10.8) 

The received clutter is therefore assumed to arise from an 

extensive distribution of scattering centers which have a 

Gaussian distribution of radial velocities. 

It may be verified for this clutter model that 

00 

/ Q(f)df = 1  , (10.9) 
— 00 

and that the associated correlation function Q  (T),  given 

in general by 
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Q(T) = 7"1 (Q(f)) , (lo.io) 
is 

^(T) = exp(-7rr£W^}  . (10.11) 

The correlation function J(,cix)     for the received clut- 
ter process is found using Eqs. (4.45),(10.6), and (10. 11). 

The result is 

^C(T)«2^C • exp(-7TT2W^) (10.12) 

where W^ = w^ + ~ W2  , (10.13) 

The received clutter power spectral density, defined at Eq. 

(4.56) as 

Kc(f) =y(^c(T)} , (10.14) 

is given by 
K
ci
f} = 2£c' w

exvl-n -^ \ • (10.15) 

It may be observed in passing that, since K (f)  is the 

Fourier transform of the product of WI(T) and Q (t),     K (f) 

might alternatively be computed as the convolution of | M(f) | 

and Q(f).  In the present case the calculation outlined abo. ; 

seems simpler.  The general fact remains, however, that the clut- 

ter power spectrum is the convolution of the signal power spectrum 

with the clutter dispersion function in uniformly extended clutter, 

The final result needed for computation of system per- 

formance is an expression for the Fourier transform of the 

echo to be detected.  In the present case, for M(f)  given by 

(10.3) ,   tie  result is 

1        f ( f - f ) 2 "N 
M(f;^fo)=~i " exp|-7r-~^~ \   . exp(-j2rTfpo) .(10.16) 
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One can now compute the output signal-to-interference 

ratio for this case.  When noise is ignored, Eq. (4,51) be- 
comes 

i = 2V J     KTfT df   ■        (io.i7) 
-oo c 

Together with Eqs. (10.15) and(l0.l6) it yields 

This result may be compared directly to the corresponding 

result for a matched filter processor which was given by 

Westerfield, et al.4a Their result, in an altered form. is 

2 

The discussion and comparison of these and subsequent 

results in this section will be deferred to the next section 
of this chapter. 

The frequency response function for the optimal processor 
is shown in Appendix B to be given in general by 

/       x M*(f;p ,f ) 
Hopt(f'*Po'fo' = W*(f'*Po'fo) -   K(f° 0   (10.20) 

where 

M(f;p0,f0) = r(m(t;po,fo)) 

=    M(f-f0)expfj27Tfpo}      . (10.21) 
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Using Eqs. (10.3),(10.15) ,  and (10. 21)   the right hand side of 
(10.20)   can be evaluated.     The result,   for    W^ <   2W2   ,   is 

optv •Pofo)- G     - 
1 

exp/- TT 

where 
v. 

ß 

1 w2 

(f-fo-^  2 \ .exp(+j27rfpo}   (10.22) 

v q        2 

In the event that    W2 = 2W^  ,     Eq.(10.22)   becomes 

(10.23a) 

W2 » W2   •   ß       for    0 >   0 (10.23b) 

Hopt^f7fVV  = G
£  '   exp^r-f. -^A.   exp(+j27rfpo)    (10.24 

JL 

where ^ .. |1 .  ^1 + ^ j      exp ^ S j     . (10.25) 

c 

The transition from the form of(10.22) to that of (10.24) will 

be discussed in the next section. 

The frequency response function of thr matched filter for 

the echo m(t?p .f )  is given directly by 

FWf'-Po'fo)ÄM*ff'fVfo) (10.26) 

r      (f-f0)2>l 
•j- n~-tf ')•   exp(+j27rfpo}  . 

2u 
exp* 

W 
(10.27) 
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* 

As a preliminary step toward determining the ambiguity 
function    Kt,*), Eqs, (IO.3)   and (10.15)  yield 

M*(f"fo)M(f-fo-0) 
G   • exp 

3 

where 

W2W,2 - f+1 o    S 
) 

-1 2 

1+ 
2W2 

•exp < TT 
^2        ^   ^       1^2, f
o
+V + ¥0   ,:L- 

2w: 

w 

6C
W 

(10.28) 

(10.29a) 

^ 1 fo"tfo (10.29b) 

0 =^0 (10.29c) 

According to Eq. (5.22), the ambiguity function is the in- 

verse Fourier transform of the preceding expression.  Using 

the expression for the required transform from Appendix D, 
one can show that 

^^opt s G
4   *   exP 

exp 

where 

{■"-* H) 
^2    /-> /\ 

^ + fo*o+ I *" I" -^ 

w. 

{■[ 
-»{i»'M(»^).) 

2W2^ 

2 
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The ambiguity function for the matched processor is found 

somewhat more simply.  From Eqs. (10.3) and (5»23) one concludes 

that 

exp { -7T ■— ) 
^  2W2 J 

• exp rj27r(fo+ |)T|. (la 32) 

One can verify that I |(T,0) - |2 is in accord with the result 

given by Woodward49 for the Gaussian pulse with W = 1. 

B.   DISCUSSION OF ANALYTIC RESULTS 

The major results of the analysis outlined in the pre- 

ceding section will be discussed below, together with indi- 

cations of their range of validity, 

1.        Signal-to-Clutcer Ratio 

Equation (10.18) for output signal-to-interference 
S ratio -=  forms the basis for Fig. 5.  In terms of decibels 

(10.18) reads 

10 log(l) = 10 logf-|-2| + 10 log (nj     (10.33) 

where 10 logfp. )  is the ordinate in Fig. 5.  Along the ab- 
0 W scxssa are values of the ratio ^~  .  Thus, for any fixed set 

of parameters 0, g  ,   and W , Fig. 5 essentially shows the 

variation of output iignal-to-interference ratio as a function 

of signal bandwidth for various normalized 'ioppler frequencies 

wq • 
The dashed curves reflect values of u,  for a o 

matched filter system and are due to Westerfield.'46 The solid 
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OPTIMAL   SYSTEM   PERFORMANCE 

MATCHED   FIL'ER   PERFORMANCE 

(-f)=  "ff wq.Mo 

w 
I 10 

SIGNAL   BANDWIDTM    PARAMETER 

SOG 

Wq     CLUTTER  DISPERSION   PARAMETER 

A-l94-S-007i 

F!G 5   /i0  AS  A FUNCTION  OF  SIGNAL   BANDWIDTH  FOR VARIOUS  DOPPLER 
FREQUENCY    SHIFTS 
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curves are for u  as determined in the present research for 

the optimal processor.  For any fixed f  it can be seen that, 

for all W 
q 

(I)   > (|) (10.3^) 
opt     mf 

as one indeed expects. 

Equality of performance between the optimal and 

matched processors occurs only for negligibly small values 
w of rj- at the left in Fig. 5.  These correspond to signals 
q 

of essentially zero bandwidth or, in the time domain, of re- 

latively long duration.  It will be seen that as the signal 

duration (proportional to -k )   increases, the optimal proc- 

essor approaches a matched processor and, consequently, the 

difference in performance vanishes. 

As the bandwidth oi the transmitted signal increases, 

the performance of the optimal processor improves monotonically 

from its zero-bandwidth value.  This is in marked contrast to 
K 

; 

the rapid deterioration of matched filter performance as W 

becomes comparable to W .  For w = W  and f = 2W , 
q q     ■-    si 

Fig. 5 indicates that optimal system performance exceeds 

matched filter performance by about 30 db.  Moreover, as W 

increases above W , the disparity in indicated performance 

becomes greater still. 

As already noted by Westerfield46 the relatively 

poor performance of the matched filter is due to the relativly 

large overlap of the filter pass-band and the frequencies 

with much clutter enr vy.  The gcod performance of the optimal 

processor on the other hand presumably stems from the effective 

fashion in which it tends to reject the clutter spectrum. 
- 
1 1 

i 
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The mechanism for improved performance through op- 
timal processing becomes clear upon consideration of the op- 

timal processor frequency response function. Also clarified 

is the crucial role of noise in limiting system performance, 
particularly for values of W near and exceeding W_ . 

2.  Frequency Response Function 

The frequency response function for the optimal 
processor is given at Eq. (30.25).  Its magnitude is propor- 
tional to the Gaussian function with 

and 
center frequency « fo* ^ (13-35) 

bandwidth = wh « W • ß* l'^ 3*>) 

W2 + ^ 
where A » -ü § p - dr-w*  ■ (io-s?) 

The magnitudes of the frequency respoi.^e functions 
for optimal and matched processors are compared in Vig. 6 

for three values? of relative bandwidth =- , on the assump- 
"q 

tion that an echo with no doppler shift is to be detected. 

A similar comparison appears in Fig, 7 where the echo to be 
detected has a doppler shift f equal to 2W   In all cases 

the center frequency and bandwidth of the matched processor 
are f and W respectively. 

Two conclusions may be drawn immediately, either 
from Eqs. (1(136) and (10.37) or from Figs. 6 and 7. 

i)  The center frequencies for matched and op- 

timal processor are different, in general; 
unless the echo to be detected has zero 
doppler frequency shift. 
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D 

6 
Wn 

-r- 
6 _f 

C^ = ^, 

-T- 
6 

T" 
8 

T ► 
f 

Wq 

LEGEND 

Hmf-MATCHED   FILTER   FREQUENCY   RESPONSE    FUNCTION 

Hopt-OPT|MAL   PROCESSOR   FREQUENCY   RESPONSE   FUNCTION 

K      -CLUTTER    INTERFERENCE   POWER   SPECTRAL   DENSITY   FUNCTION 
A-I94-S-0072 

FIG  6    FREQUENCY RESPONSE FUNCTIONS FOR DETECTING GAUSSIAN 
PULSES WITH  NO   DOPPLER SHIFT. 
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Hopf 
(Expon«ntiol)| 
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LEGEND 

Hmf-MATCHED   FILTER   FREQUENCY   RESPONSE    FUNCTION 

H0pf-OPTIMAL   PROCESSOR   FREQUENCY  RESPONSE   FUNCTION 

K   —CLUTTER    INTERFERENCE POWER   SPECTRAL  DENSITY   FUNCTION 

A-I94-S-0073 

FIG  7    FREQUENCY RESPONSE  FUNCTIONS FOR  DETECTING GAUSSIAN 
PULSES WiTH DOPPLER   SHIFT OF 2Wq cps. 
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ii)  The bandwidth of the optimal processor 

is greater than the bandwidth of the 

matched processor, in general; unless 

both are zero. 

Both of these effects, in fact, become extreme as the signal 

bandwidth parameter W increases from zero and approaches 

N/2 W .  As shown by Eq. (1.37), the factor ß will correspond- 

ingly increase from 1 to <», with the striking consequences 

apparent in Figs. 6 and J. 

This behavior of the optimal processor is best un- 

derstood by considering the formula for its frequency re- 

sponse function, 

M*(f;p ,f ) 
H(f--po.fo) rffT"    • (10-38) 

cv 

In the present case, when noise is ignored, both numerator 

and denominator are Gaussian functions, with the result that 

the quotient is also Gaussian.  For small signal bandwidths, 

however, the bandwidth of the numerator is less than the 

bandwidth of the denominator.  Therefore as f becomes large 

the quotient goes to zero. 

However, for W£ = 2W , tha numerator and denominator 
q 

attain equal bandwidths.  For this case, if f0 ~  '", the re- 

sult is that numerator and denominator are identical Gaussian 

functions, and the quotient is independent of frequency.  In- 

deed, if W2 exceeds 2W the numerator of (10.38) does not fall 

off with increasing frequency as rapidly as the denominator. 

Th^ result is that the quotient, i.e., H(f;po,0),  diverges 

to infinity with increasing f. 
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The results given in Figs. 5,6, and 7 were derived 

on the assumption that noise was negligible and clutter was 

the only interference. Examination of Figs. 6 and 7, however, 

suggests that the effects of noxde cannot be so easily ignored. 

In the fi^st place, let it be noted that the mean- 

square noise interference at the output of any of the optimal 

processors discuased will be greater than for the correspond- 

ing matched processors, because of the difference in optimalt 

and matched bandwidths.  In fact one expects that for any 

noise level, no matter how small, the output noise will at 

some point exceed the output clutter as the bandwidth W, 
approaches infinity. 

One concludes that the optimal processor performance 
W r— implied by Fig. 5 for value of ^- exceeding v'2 will be 

fundamentally unattainable because of the unavoidable presence 
of noise at tue processor input. 

This is not to say that a processor which is ap- 

propriately optimized for the clutter-plus-noise interference 

now being discussed cannot be significantly better in per- 

formance than a matched filter.  Rather, the possible effects 
of noise must be realistically assessed. 

A ^ase in point is the seeming performance adv^nrage 
of 30 db whloh has already been mentioned for the optimal 

processor when W = W  and f = 2W .  In this case the tmd- 

width factor /ß  is onlyN/3" so that the optimal processor band- 

width is not markedly greater than the matched processor band- 

width.  One does not therefore, at first, expect fiat noise 

will be a significant factor in system perfoimance.  This ca^«; 

nevertheless indicates a second aspect of the problem, 

t The optimal processors for clutter -ilone ar?, of course, 
no longer optimal ;:or the mixed cl^tt^r-plus-noise interfer- 
ence bsing discussed. 

-124 



fe 

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

The processor yielding the results of Fig. 5 was 
taken to be 

M*(f;p_,f ) 
(10.39) H (f;p ,f ) =  —-r§T 

1
V '^o' o' K (fj ) 

whereas in the presence of noise the optimal frequency response 

function is really 

M*(f;p ,f ) 
H^p0>f0)       o;0 

-     0  0       K (f)+n 
(10.40) 

cx"' 'o 

where 7lQ    is the white noise power spectral density.  The 

question is whether H {f;po,fo) is an adequate approximation 

to H2(f;po,fo).  The answer will be a qualified "yes," if 

Kc(f) » no (10.41) 

for those frequencies f where H (f;p ,f ) has significant 

values. 

It has already been learned however that the fre- 

quencies in question are not necessarily the same as the echo 

center frequency f .  Rather, the processor center frequency 

has already been identified as f • ß, so that(l0.4l)  might 
be replaced by 

W^ » ^o (10.42) 

The significant point is that f • 6 and the nearby larger 

frequencies can lie relatively far away from the frequencies 

where most of the clutter energy is concentrated.  When f «2W 
o  q 

and W = w . for example, the value of ß is 3 and 

V e =6wq (10.43) 

As can be seen in Fig. 7, ^c(6w ) is indeed small relative 

to Kc(0). The figure has no general significance, but for 

the Gaussian function in the präsent case 

Kc(6wq) 

Kc(0) - 300 db (10.44) 
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One concludes that for an optimal processor to have 

characteristics determined essentially by the clutter inter- 

ference, without consideration of noisej the noise energy 

must be negligible with respect to the clutter energy, even 

at those frequencies where a possibly minor part of the 

clutter energy lies. 

In the present case it so happens that the signal 

energy is also small at f « 6W   The result is that the 

performance implied by Pig. 5 for fo * 2W and W = Wq will 

not be achieved by the processor of Fig. 7b unless the noise 

spectral density is negligible with respect to both the re- 

latively small signal and clutter energies in the vicinity 

of f = 6Vf . 
«I 

3«  Ambiguity Function 

The mujor features of the ambiguity function for the 

optimal processor may be surmised after careful study of Figs. 

6 and 7.  They are readily extracted, however, from Eq. (10.30). 

If attention is confined to the doppler resolution profile for 

zero delay mis-alignment, i.e., T = 0, then one can find with 

little algebra that 

\^A)  |opt ^exp/-.^-^    (10.45) 

0 

where 

and 

(10.46a) 

K s */ 
/2W; 

q 

\ 

In the transition case, when W^ « 2W^ , one concludes directly 

from (10. 30) that 

|«(O,0)|opt« exp(7r.fo.0}  •     (10.47) 
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Equations (10.45)   and (10.47)  may therefore be plotted 

as in Figs.   8 and 9  for the same sets of parameters appearing 

in Figs.  6 and 7.     The well-known doppler profile of the matched 

processor ambiguity function  ror a Gaussian pulse  is  simply 

(from 10.32) 

*{0A)  I mf  «    exp{-7T<*   . -^) (10.48) 

where the normalized <t    has been introduced. 

The matched filter ambiguity function  is independent 

of the doppler frequency  f  of the echo t be detected.  It 

i_ characteristically symmetrical, ^n the T = 0 plane, about 

0=0,  The optimal processor ambiguity function, on the other 

hand, depends upon fo as well as t    and is distinctly un- 
symmetri al about 0 = 0. 

The asymmetry of the optimal ambiguity function 

arises directly out of the asymmetry of the optimal frequency 

response function with respect to the echo spectrum.  The re- 

lative maximum of  1(0,0) |  . occurring at 0 « 4W  in I opt        3 q 
Fig. 9b, for example, directly reflects the fact that the pass- 

band for H
0pt(

f)  lies 4w cps above the signal spectrum 

located at SK cps, as shown in Fig. 7b.  Signals with a 

doppler shift of (?W + ifW )cps therefore yield a greater 

processor output than the "design" signal of doppler shift 

2W cps. 

Because of the indicated asymmetry, the ambiguity 

function which is "optimal" from the view-point of clutter 

suppression is not necessarily even "desirable" from other 

possible viewpoints.  An ambiguity function such as that of 

Fig. 9b would be eminently undesirable in a system which was 

required to provide an indication of echo doppler shift f , 
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in addition to simply detecting the presence of the echo.  The 

presence of a weak signal with doppler shift 6w  for example 

would not be distinguishable from, and could be mistaken for, 

the presence of a signal with the "design" doppler shift 2W . 

For applications requiring doppler frequency estima- 

tion the symmetric ambiquity functions associated with matched 

filter receivers are attractive and provide, not unreasonably, 

the basis for system design.  To attempt to maintain an ap- 

proximate symmetry, while simultaneously attempting to reduce 

clutter interference through appropriate choice of a processor 

weight function, is to strive for "good" system performance 

according to two possibly contradictory criteria.  As an 

analytic problem, it was not attempted in this research.  As 

an intuitive problem it retains the difficulties originally 

discussed in connection with, and following, equation (5.9). 

Figures 7b and 9b illustrate, as well as any figures, 

the possible difficulty of an intuitive problem approach.  The 

task might be undertaken of modifying the known matched filter 

transfer function of Fig. 7b, or the matched ambiguity func- 

tion of 9b, in order to reduce clutter.  To reduce the trans- 

mission of frequency components between f = 0 and, say f = f 

would be a natural endeavor.  It would hardly be natural or 

intuitive, however, to expect that the "best" modification of 

the matched filter would be, essentially, to translate it up- 

ward in frecrusncy by 4w cps and to increase its bandwidth 

somewhat. 

Two other attributes of the optimal solutions pre- 

sented in Figs. 6 through 9 also deserve comment.  First of 

all, the particular functional forms (in this example, all 

Gaussian) depend strictly upon the assumed modulation function 

and clutter aispersion function.  Alterätion of either of these 
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Jrunctions can lead to solutions greatly different in detail 

from uhe present onest.  In a very real sense, tnerefore, any 

optimal processor is optimal only for a particular set of 

signal, noise, and clutter circumstances.  A processor with 

performance not greatly dependent upon the particular in- 

terference at its input would be desirable, even if not 

strictly optimal for most input conditions. 

The second attribute of the Gaussian optimal proc- 

essors is a certain general similarity to the clutter rejec- 

tion systems yielding "moving target indication," (NPTl),  In 

MTI systems,tt echo components with small doppler shifts lie 

in the region of strong clutter energy and are suppressed. 

Echo components of larger doppler shift are more or less uni- 

formly amplified to give the system output.  Moreover, the 

purpose of an MTI system is merely to indicate those targets 

which are moving, without giving an indication of their vel- 

ocity. 

The transitional solutions of Figs. 7c and 9C have 

these general characteristics of an MTI system.  Signals of 

small doppler shift are suppressed by the exponential fre- 

quency characteristic while signals of larger doppler shift 

are amplified.  This optimal processor would also give only 

an output indication, with no estimate of velocity, for sig- 

nals of large enough doppler shift,just as an MTI system. 

The similarities between optimal and MTI systems 

have a common origin, in that both systems act to suppress 

frequency components containing relatively great clutter energy 

while emphasizing the remainder of the received spectrum. 

t  A frequency response function with poles located periodi- 
cally along the frequency axis, for example, appears in an 
early paper45 on clutter reduction. 

tt See, for example, References 39 and ^7. 

; 
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C.   NUMERICAL RESULTS (FOR  CLUTTER PLUS NOISE) 

The analytic results of section A of this chapter are, 

i j       in principle, quite readily modified to include the effect 

of "white" noise added to the Gaussian clutter interference. 

Thus Eq (10,17) for the optimal signal-to-interference 
ratio becomes 

t S    c    7  lM(f,p,£)|2 

■ - »      cv '  o 

(«ee eqs. 4.49 and 4.51), while eq. (10.20) for the optimum 
frequency response function becomes 

W»(f;p .f ) 
Hopt^Po'fo) = W*(f''Po'fo) = K(f)°N0   (^.50) 

where i*  is the noise power spectral density in watts per 
cycle per second. The additional presence of N  in each 

o 
of these denominators, however, prevents the realization of 
simpler analytic expressions than Eqs. (10.49) or (10.50) 

for either j or H
0pt(f;P0*f0)•  For actual values of either 

of these quantities, therefore, and for j especially, nu- 
merical calculations are necessary, 

1.  Signal-to-Interference Ratio 

Fortunately the integration indicated in Eq. (10.49) 
for j- can be approximated quite well, and with comparatively 

little effort, by the Hermite - Gauss quadrature formula.t 
This numerical method has therefore been used in this re- 

e 
search to compute ■=■ for various values of signal bandwidth W, 

t See Hildebrand16 , pp. 319 to 330, or Appendix E of this 
dissertation. 

-132- 



COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

echo doppler  frequency    f  ,   and noise level    N ,   for  fixed o o 
signal and clutter levels.  The resulting data tnen yields 

the graphs presented as Figs. 10b through 10h. 

It will be recalled chat the clutter-to-noise 

ratio parameter Öl  was defined as (see Eq. 9.19) 

« = -T-c (10.51) 
O 

where £? = max 6(p,f) (10.52) 
C  (P,f) 

In the present circumstances one may verify, using Eqs. 

(10.7) and (10.8), that 

A = ^c 
c  wq (10,53) 

and that consequently 

ä =!±c. 
c  WqNo (10.54) 

It may also be verified, using Eqs. (10.13) and 

(10,15), that 

M0) =  S_T < _c      do.55) 

(^+r) 
Since K (f)  reaches its maximum value at f equal *.o 

zero, one sees that    c corresponds to the maximurr. clut- 
W 
q 
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ter power spectral density achieved for any transmitted 

(Gaussian) waveform. Thus,  ^  is a measure of the clutter- 

to-r.i>ise power ratio for the largest clutter components near 

zero frequency. Unless W2 » W 2,  a value of R equal q c 
to zero decibels therefore means that, in the vicinity of 

f = 0,  clutter and noise powers are comparable.  If W = 0, 

then Ä  is exactly the clutter-to-noise ratio at f = 0. 
c 

The value of &, equal to 60 db, indicates a 

clutter-to-noise ratio of about 60 db for f = 0.  The 

corresponding noise level is therefore reasonably described 

as "small" compared to the clutter level. 

Figure 10a is a repetition of Fig, 5 for conven- 

ient comparison in the present context.  It presents a com- 
c 

parison of the ratios r- achieved by optimum and matched 

processors for several doppler shifts f ,  as a function 

of echo bandwidth W in the absence of noise. Figures 10b 

through 10h present similar data for increasing noise levels 

N  (or decreasing *•_). 

The most striking aspect of this collection of 

performance data is the great difference between Fig. 10a 

and the other Figs. 10b through 10h.  The very great differ- 
c c 

ences between (j")ODt 
and ^mf whic:h would exist for large 

bandwidths W in the absence of noise, in Fig. 10a, are seen 

to be almost entirely eliminated by the presence of even 

the very small noise level for Fig. 10b. 

This result is not unexpected in view of the dis- 

cussion in he preceding section.  Its cause, in terms of 

the effects of noise upon the optimum frequency response 

function, will be discussed presently. At the moment it 

suffices to observe that the presence of even a small noise 
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level has greatly modified optimum system performance.  It 

may also be verified incidentally that matched processor 

performance does not differ greatly between Figs. 10a and 

10b. 

When any noise is present the performances of Loth 

optimum and matched processors are seen to have many similar 

features.  In the first place the increasing noise level 

represented by the progression of figures from 10b to 10h 

is seen to cause a (totally expected) general lowering of 

the plotted curves, corresponding to decreasing signal-to- 

interference ratios. 

In the Figs. 7b through 7h a horizontal dashed 

jeen c 

corresponds to 

line has been drawn to indicate the level for LL  which 
o 

S = 
2€?
s (10.36) 

1   No 

This performance would not be exceeded by any linear pro- 

cessor acting in the presence of noise alone.  As shown in 

Figs. 10b through 10h, it is certainly not exceeded when the 

additional clutter interference is present. 

Subject to the limit imposed by equation (10.56), 

performance is seen to improve as  f ,  the doppler frequen- 

cy difference between the echo and the clutter mean doppler 

frequency, increases. 

In all cases three bandwidth regions can be seen 

for both optimum and matched processors.  For narrow echo 

bandwidths {rr- <^ 1 ) , both processors have essentially the 

same performance at all noise levels.  The performance in- 

:. 
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deed is limited only by the noise level, as most of the 

clutter doppler spectrum is rejected by the processor. 

For bandwidths W approximately equal to the clut- 

ter dispersion bandwidth W , the performances of both pro- 

cessors enter a transition region of generally declining 
e 
=■ ratios with increasing bandwidth.  It is in this transi- 
tion region that the greatest differences between optimum 

yi       and matched performances are to be seer>. 

Beyond the transition region, for rr- ;> 10 say, 
■ q —S both processors exhibit a gradually increasing  — ratio, 

attributable to the increasing range resolution associated 

with increasing bandwidth.  In this asymptotic region, the 

clutter power level at the processor input is decreasing 

linearly with increasing signal bandwidth.  This results in 
s the linearly increasing output =• ratios shown in Figs. 10b 

S through 10h.  The upward trend of the =" ratio with bandwidth 

is, of course, ultimately checked by the constraint of 

Eq. (10.56).  This leveling off of a  for large rr- is 

evident in Fir.10g for f el» W ,  say, and W equal to 

100 Wq. 

2.   Frequency Response Functions 

Pypical ti.-iquency response functions for the op- 

timum processors leading to the graphed performance data of 

Figs. 10 have been computed from Eq. (10.50) for various 

noise levels.  A number of these frequency response func- 

tions are shown in Fig«:. 11 and 12, for echo doppler fre- 

quency shifts of zero and 2W  respectively.  These two 

figures, for non-zero noise, correspond to Figs. 6 and 7 

respectively for the zero-noise case.  Where clarity permits, 

the zero-noise optimum frequency response functions are also 
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shown in Figs.11 and 12.    The matched  frequency response 

functions    M  -.(frp  ,f  )     and the clutter power  spectral den- mf      ro'   o 
sity  functions    K(f),     however^   do not depend upon *:he noise 

level and are available  from Figs.   6 and 7. 

The curves of Figs.   11  and  J.2 correspond to noise 

levels in eqs.   (10,49)   and  (10,SO)   which yield 

fft    = oo,   60 db,   30 db,   and 0 db, (10.5?) 

Apart from the no-noise case this spans a range of 

60 db, from noise relatively small compared to the clutter 

((R, = 60 db)  to noise of a level comparabl-- to the clutter 

level (H.c = 0 db.). 

For small echo bandwidths, the optimum frequency 

response function is essentially unaffected by the noise 

level (see Figs, llaand 12a).  As in the no-noise case 

H j.ifjp  ,f  )  and H ^(fjp ff  )     are essentially identical optK     Ko^ o7       mfv  ro o7 J 

for W <^0.1 W .  This is consistent with the similarity of 

performance in this range which has already been noted. 

It is for the intermediate and larger echo band- 

widths that the effects of noise are strikingly evident. 

Recall the case for  f --=  2W  and W = Wq which 

was shown in Fig. 6b, where detection of an echo with dop- 

pler shift 2W  required an optimum frequency response 

with pass-band centered about 6wq.  From Fig.133 however 

one sees that even the small noise level corresponding to 

R, = 60 db leads to a large displacement of tht optimum 

pi»ss-band down to about 2.7W cps.  For larger noise lev- 

els the optimum frequency response function very rapidly 
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approaches the matched  frequency response  function (essen- 
ally i 

and 12). 

ally identical to the curves for & = 0 db in Figs. 11 

The cases depicted in Figs, lie and 12c show simi- 

larly great differences for Ä -- <» and <& = 60 db.  In 

all cases the primary effect is the reduction to (essential- 

ly) zero of the large values of the frequency response func- 

tion which can exist for large values of f/Wg when N = 0, 

These reductions have their common origin in the fact that 

for such values of f the numerator of Eq. (10.50) is small 

compared to the N = 0.0001 which constitutes essentially 

the entire denominator value at the same frequencies.t 

Thus the marked differences in performance orig- 

iijally noted in Figs. 10a and 10b are seen to be rooted in 

correspondingly great differences in the optimum frequency 

response functions for zero-..oise and small-noise situations. 

Figures 11 and 12 therefore reinforce the primary conclusion 

that the bmall-noise solution cannot necessarily be regarded 

as a small deviation from the no-noise sf    ^tion. 

D.   PERFORMANCE IMPROVEMENT OVER THE SIMPLE MATCHED FILTER 

The performance differences which ha'-e been seen to 

exist between the optimum and matched processors considered 

in this chapter may be compared to the general performance 

improvement bound derived in chapter nine. 

It is convenient to continue to use of decibel 
S 

measure for r- and to define the performance difference 

A(<Hc,f0,w) by 

A((ac,fo,W) = 10 log (f)opt - 10 log (f)^  ^^ 

t See Appendix E for other parameter values. 
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where the fact that L    depends upon each of (ix clutter- 

to-noiso ratio Ä ,  Cü) echo doppler frequency f .  and 

(iii) echo bandwidth W, has been explicitly indicated in 

the notation.  Actually A also depends upon the clutter 

bandwidth WQ.  Since the dependence, however, is only 

through uhe ratios f /W- and VJ/v^,  the simplified nota- 

tion adopted in eq. (10.58) is adequate for the present dis- 

cussion, t 

The difference A(Ä ,f ,w), a function of three vari- 

ables, is now to be compared to the bound B(Ä ), which is 

a function of only one variable. Since, however, the pres- 

ent discussion is primarily concerned with the maximum val- 

ue which A(öi ,f ,w) might achieve, the task of comparison 

is simplified, by considering the function A^- defined by 

AW(lKc'fo) = max ^(^c'VW)        (10.59^ 

Values of the function A./^ ,f )  can be determined W" c  o 
from the data already graphed in Figs. 10b through 10h. 

The procedure is suggested by Fig. 13, where the curves 

for  (j-)  .  and  (—) f corresponding to (R = 60 db and 

f = 2Wq have been reproduced from Fig. 10b,  For these 

values of <R  and f ,  the value of A.i^i ,f )  is then c      o Wv c o 
given by the greatest vertical separation of the two per- 

forn nee curves.  As shown, the value of Aw(60 db,2W )  is 

about 24 db. 

By using other pairs of curves from Fig. 1Q, one may 

determine other values of ^v/^c*fo^'  Figure ^ contains 

t One may consider Wg to be fixed throughout the discus- 
sion. 
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• 
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FIG. 13     I LLUSTRATIVE   EXAMPLE OF MAXIMUM  PERFORMANCE 
DIFFERENCE 
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NOTES 

1) DATA   IS  FOR   GAUSSIAN PULSE   IN UNIFORMLY 
EXTENDED   GAUSSIAN CLUTTER 

2) ECHO   DOPPLE R   f    = 2Wq 
o 

-o 

FIG. 14      EMPIRICAL  PERFORMANCE   IMPROVEMENT DATA  AS A 
FUNCTION OF CLUTTER-TO-NOISE RATIO 
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1 the seven values  for 

V; (ft   = 0,   10,   20,   30,   40,   30,   60 db (10.60a) 

and 

fo = 2W  . (10.60b) 

From the data of Fig. 14 one notices that 

(i)   the indicated function values for ^w^c* fo' lie 

below B(öi ),  as required; 

(ii)  the function Aw(<ft ,f )  is an increasing func- 

tion of (ft ,  at least for f = 2Vf.  just as c' o    q 
the bound B((ft )  itself is? 

(iii)  the difference between 8(0*,)  and A^^^q) 

increases with (ft  until, at (ft = 60 db, c c 
AW^öc,2Wq^  falls short of B((ftc) by about 30 db. 

These data clearly indicate that, at least for the present 

case with echo doppler equal to 2W ,  the potentially large 

performance improvements "permitted" by large values of the 

bound B((ft )  may exceed by many decibels the actual per- 

formance improvements which may be achieved. 

The natural question arises concerning how much the 

actual performance improvements shown in Fig. 14, for one 

particular echo doppler frequency, might be increased for 

echoes with other values of f 

An indi'-.iition of the dependence of performance improve- 

ment upon doppler frequency may be had by consideration of 

Figs. 15 and 16, 
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FIG. 15     OPTIMUM AND MATCHED PROCESSOR PERFORMANCE FOR 
VARIOUS DOPPLER SHIFTS, AND Re = 60db 
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In Fig. l^, optimum and matched processor performance 

data are plotted as a function of echo bandwidth W, for 

several values of echo doppler frequency f  and the single 

value of Ä  equal to 60 db.  The greatest difference be- 

tween each pair of curves yields, in the manner of Fig. 13, 

a single point shown in Fig. 16,  By this procedure one de- 

velops a profile of values of ^v/^c,fo^  considered as a 

function of f  with &  fixed, o       c 

One sees in Fig. 15 the very pronounced tendency, al- 

ready noted, of system performance for both optimum and 

matched processors to improve with increasing doppler fre- 

quency separation between the echo and the bulk of the clut- 

ter energy. Also quite evident is the termination of this 

general increase of signal-to-interference ratio when the 

maximum value of 2^?VN  is attained (see eq. 10,56). 

In Fig. 16 one sees that the actual performance differ- 

ence ^M(^ * ^ ) between optimi : and matched processors 

tends at first to increase with increasing doppler frequency 

shift f .  For some f  in the vicinity of about 5Wg, 

however, the data suggests that ^J^c'fo^  reaches a maxi- 

mum and then begins to decline for larger f . 

Thus Fig, 16 suggests an improvement of perhaps 5 db 

over the data of Fig. 14 for Ä  equal to 60 db.  More spe- 

cifically. Pig. 16 indicates that, for Ä = 6C db, the 

greatest performance difference which can exist between op- 

timum and matched processors is about 30 db.  This difference 

occurs (at one particular echo bandwidth) for an echo doppler 

frequency in the vicinity of 5W cps.  It is about 25 db 

below the performance improvement bound B(M,). 
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5s 

XI.  DETECTION OF GAUSSIAN PULSES IN CLUTTER 

WITH GAUSSIAN DELAY AND DOPPLER PROFILES 

In the example of the preceding chapter, the clutter en- 

ergy was assumed to be uniformly distributed over all values 

of range delay,  in practice, however, a clutter source will 

certainly not have the infinite physical dimension implied by 

such an assumption.  Rather, the clutter source might be re- 

stricted to only certain range delays of interest, with the 

result that some signal echoes might be received in noise only, 

while other echoes were heavily masked by clutter.  The effect 

upon the optimum  ocessor of such spatial (or range delayed) 

variations of clutter energy is a question of some interest. 

In this chapter a clutter dispersion function is considered 

which has significant variation over both range delay and dop- 

pler frequency shift. 

A.   ANALYTIC RESULTS 

The clutter dispersion function to be studied is given by 

<$(p,f) = 6C • &(p) • Q(f) (11.1) 

where ^(p) = exp { - TT ^ I (11.2) 

and 

{■■s} 
Q(f) = iT' exp f" ^ Si (11-3) 

q    L   g . 

The doppler profile, Q(f),  is that of the preceding section 

(see Eq. 10.8), while the delay profile is chosen to yield 

maximum energy at delay p equal to zero.  This is a conven- 
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lent choice  for the  origin relative to which echo delays will 
be  specified. 

The  transmitter modulation  is again taken to be 

m(t)  = 2^. exp l~ Tr^ts\ (11.4) i- Trt^t2* 

as in the preceding chapter. 

Under these circumstances it may be verified that Eq. 

(4.l8) for the clutter covariance function yields 

^(t    t  ) =Ä   -gU  )g(t ) • k(t    - t Wt    - t ) (11.5) 

ij   1 

where g(t) = ,0
2I r 7J - exp f~ ^ 2^ffil 1)       ^11-6) (2W^D2+ l)u ^        .w u    +   xj 

an 

f         W4D2(t -  t   )3^ 
k(ti - t2)  = exp [- TT      2^Dk 4.   x2     j (11.7) 

fl?(t    - t  )  = exp < - 7iW?(t    - t   )s>  . (11.8) 
1        a                 ^        qi aj v 

It will be noted that as    D -> «    in Eq.   (11.2),   the  function 
^(p)  •> 1    for all    p,     and the  results  of this chapter  should 

approach those  in the preceding chapter for uniformly extended 
clutter.     This  indeed happens for,  as    D ^ «, 

g(t)  -►  1    for all    t (11.9) 

and k(ti  - t   )  -> exp <- TT |-  (ti  -  t2)2\ (11.10) 

When Eqs.   (11.5),   (11.9),   and   (11.10)   are compared  to Eq.   (10.6^ 
it  is  seen  that    % (t   ,t   )     for the present caae does approach cv 1' a' 

% (t  ,t )  for the case of uniformly extended clutter. 
cv i* a' 
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The fact that   50 (t  ,t  )     in the present case  is not a 
function of the difference     (t    - t  ),    however,  necessitates 
a different approach to the solution. 

If the explicit form for   ^i (t   -t  )     given by Eq.   (11.5) c   1  2 
is inserted into the general expression (4.33) for signal-to- 

interference ratio, the result is 

i-eo 

^sN-oo^^Po^o^'Po^o^ 
1  ,« ,.00 

r  / w»(t;p.f )g(t )-Äk(t -t )ö?(t -t )'g(t )w(t ;p^,f )dt dt 
Leo*-»      v I'^O* O'^^  l7  C v 1  Z 1      2      2     2 ^O' O7   1  2 

(11.11) 
s 

where — is to be maximized by appropriate choice of w(t;p ,f ) 

Equation (11.11), however, suggests the substitution 

ytt;po,fo} = g(t)^(t;po,fo) ,        (11.12) 

c 
in order to reduce •=• to 

2& 
s 

m(t;p ,f ) 

1 r I00  y*(t rp ,f )-^k(t -t )^(t -t )-y(t ;p ,f )dt dt 

(11.13) 
c 

That this expression for —    has exactly the form of Eq. (4.48) 

may now be verified. 

Equations (4.50) through (4.54) may therefore be used to 

write the solution for that y(t?p ,f ) which maximizes the ro o' 
ratio given by Eq. (11.13). The result is 

rgr/m(t'Po'£ohl 

(11.14) 
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from which    wo t(
t?P0»f0)     !nay toe  found by using Eq.   (11.12). 

Thus 

optv     ^o*   o' "WJ-V'1      {^(t;Po'fo))}     f11-^) 
on the condition that the transforms indicated in both Eqs. 

(11.14) and (11.15) exist. 

Before proceeding further it must be noted that Eq. (11.14) 

for Y(t;p ,f )  gives the maximum value to -r,     subject to 

the const-raintt 

m(t;p ,f ) 
•«> .w^    .r \      ho' o7 = const. = I K 1 o*(t'Po'fo)--wr^dt 

(11.16) 

By virtue of Eq. (11.12), however, this is identically the 

constraint 

i /_00^(trpo,fo)m(tjpo,fo)dt |2 = I K i2     (11.17) 

c 
which is desired in finding the w(t;p ,f )  to maximize — ro o I 
given by Eq. (12.11). 

The process is therefore iustified, of solving the con- 

strained extremum problem of Eq. (11.13), with constraint Eq. 

(11.16), and then finding w
0pt ( ^"PQ* 

f
0)  

via EcI- (11.12).  The 
same result must ensue as if the original extremum problem 

of Eq. (11.11) were solved directly for w
ODt^

t;Po,f ^  subject 

to the constraint Eq. (11.17) 

With the validity of the solution (II.15) established, 

lext concern is an expression fo] 

Equation (4.51) may be used to write 

c 
the next concern is an expression for the maximum value of —. 

t  See Eqs. (A-l) and (A-2) for the origins of the constrant. 
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26 
oc 

which employ the functions appearing in the (simpler) alter- 

native Eq. (11.13). 

When the particular Eqs. (11.4) through (11.8) for the 

present case are us-^d in th^s more general expressions(11.14) 

and (11.18), the results are 

y(t;po,fo)« exp ^ ^ t - po • w2 : wa 1 I wg . (^ .\|y 

/ 

• exP < i^fo • ^4 - (w* - «|)j >       (11.19) 

and 

rs-. 
<S w 

fi    1         ! (Ijopt 1       2WSD2 

sS" 

^ q 

f?> 
• exp 

r"q 
(11.20) 

where "il-Vf-^^N (u-21) 

An expression for w
0pt(

t;Po,fo^  can be derive^ f*om  Eqs. 
(11.19), (11.15), and .11.6).  However, a more informed under- 

standing of the functioning of the optimum processor can be 

achieved from the viewpoint to be presented in the next section. 

B.   DISCUSSION OF ANALYTIC RESULTS 

For the particular assumptions jf a "bi-Gaussian" disper- 

sion function, and a Gaussian pulse echo, the clutter covari- 

ance function has been seen to be factorable in the form of 
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Eq.   (11.5).     It  is  readily verified,   therefore,   that the mean- 

square clutter  interference at any time    t     is given by 

M. (<   t)   = &   - g2(t) fll.22) 

The mean clutter level is therefore variable with time, and 

the clutter process itself is statistically non-stationary. 

The particular non-stationarity which is implied by Eq. (11.5) 

for ^_(t ,t ),  however, is of a rither "simple" kind. c  1 s 
A process x(t)  with a covariance function jrO (t ,t ) 

x     1     2 
which is factorable  in the  form 

^  (t    t   )   = a(t   )K{t     -  t   )a*(t   ) (11.23) 
X        1       2 112 2 

may be regarded as having been derived from a stationary pro- 

cess y{t),     with covariance Junction 

^ (t  t ) = K(t  - t ), (11.24) 
y 1 2     12 

by passing y(t)  through an instantaneous amplifier with am- 

plification varying as a(t).  Under these circumstances one 

will have 

x(t) = a(t)y(t) (11.25) 

which yields 

iWt ,t ) =< x(t )x*(t  ) > 
X        1       2 12 

=< a(ti)/(ti)y*(t   )a*(t   )  > 
112 2 

= a(t   ) < y(t   )y*(t   ) >  a*-(t   ) 
1 12 2 

= aft   )K(t    -  t  )a*(t   ) (11.26) 
1 12 2 

as required by Eq.   (11.23). 
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Although this  is not ths physical mechanism through which 
l|j| the particular clutter interference of the present case arises, 

^ it  is a convenient mathematical framework for describing the 
operation and structure of the optimum  (non-stationary)  processor. 

1.       Structure of the Optimum Processor 

At the  left of Fig.   17 is shown an equivalent source 
f       the clutter  interference being considered.    A stationary 
rana^..   process    x(t)     is assumed to exist and to pass through 
an  instantaneous,   time-variable amplifier.     The amplification 
is assumed to vary as    g(t).     The covariance  function of the 
process    x(t)     is  taken to be    6   • k(T) • #(T),     as  indicated 
in the figure. 

The  result  is that the process emerging from the 
equivalent source has the desired covariance  function,  namely 

5Ut  .t  )  = Ä g(t  )k(t    - t  W(t    - t  )g(t  ) eis ci i 2 i a ia        /^^ 2j) 

as indicated in Fig. 17 . As the optimum processor requires 

no more knowledge of the interference than its covariance func- 

tion, the interference assumed to be generated in the manner 

of Fig. 17 is an acceptable substitute for the acLual clutter 

process. 

To the (equivalent) clutter interference is addad 

the signal echo m(t;p ,f )  to be detected.  The sum of echo 

and clutter is then available, at the processor input.  In gen- 

eral, noise vould also be part of the sum, as indicated by the 

dotted line in Fig. 17  .  In the present analysis, however, 

noise will be neglected. 

For this situation, the optimum processor derived alge- 
braically in the preceding section may be regarded as the tandem 

162- 



COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

FIG   17    OPTIMUM   PROCESSOR FOR   A PARTICULAR  SORT OF NON-STATIONARY 
INTERFERENCE (N«=0) 
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combination of •* time-variable amplifier and a stationary, 

linear filter. The structure implied by Eq. (11.15) is shown 

at the right in Fig. 17  . The amplification varying as l/g(t) 

corresponds to the leading term on the right of Eq. (11.15), 

while the stationary filter of Fig. 17 is assumed to generate 

the time function y"1 { 9r{y(t*P0i
f
0)} )  which appears in 

Eq. (11.15) 

The two operations performed within the optimum pro- 

cessor may now be considered separately 

The action of the variable amplifier in the optimum 

processor upon the clutter component of the input waveform is 

clearly to undo the previous multiplication by g(t)  in the 

apparent interference source. At the point "A" within the 

optimum processor, therefore, the clutter has been converted 

to a stationary process with covariance function given by the 

original 

^VW - V*^ - V^x -12
)- (11.28) 

The signal echo which enters the optimal processor as 

m(typ ,f )  appears at point "A" as the waveform 

m(t;p0,f0) 
z(t?Po'fo) = —iTtl  (11.29) 

Now the optimum processor y(t;p ,f )  for detecting 

the signal z(trp ,f )  in the stationary interference  x(t) 

has already been defined by Eq. (4.^0). The optimum processor 

is therefore given by 
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K^?^)] g- fy(t)p .f )) =   ^   s ; q[Z' ^r—   (11.30) J l 0   0 J 3r{6ck(T)«(T)) 

where eq^ations (11.28) and (11,29) have provided the nec- 

essary terms for use with equation (4.50). 

The processor y(t;p ,f )  derived in this manner 

and given by equation (11.30) is observed to be identical 

to the processor y(t;p ,f )  derived algebraically, and 

given by equation (11.14).  It is the processor shown as 

the second component of the optimal processor w .(tjp f ) opt  r o o 
in Figure 17 

From the viewpoint of Figure 17 , and the recent 

discussion, optimum processor operation in the present case 

consists of two actions: 

i)  First the incoming waveform has its amplitude 

appropriately varied as a function of time, 

to render the interfering process statistically 

stationary. 

ii)  Then the optimum processor for detection in 

the resulting stationary interference is 

found. 

The tandem combination of both actions yields the opti- 

mum (non-stationary) processor for the original problem. 

This manner of interpreting optimum processor 

operation Is possible whenever the interference covariance 

function has the particular form of equation (11.5). 

Note that the inclusion of noise in this case would 

cause the interference covariance function rot to factorable 

-I65- 



i     COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

in the necessary form. Neither the algebraic nor the invi- 

itive mode of solution can therefore be carried out if the 

V1      presence of noise is assumed. 

2.  Signal-to-Interference Ratio 

The signal-to-interference ratio for this optimum 

processor has been given in equation (11*20). This equation, 

in i'r-t, is seen to be remarkably similar to the expression 

(10.18) for Y in the case of uniformly extended Gaussian 

clutter.  Indeed equation (11.20) reduces as it should, to 

equation (10.18) as the clutter extent parameter D approaches 

infinity. 

For any finite extent parameter D, it may be veri- 
s s 

fied that — of equation (11,20) exceeds — of equation i x 
(10.18).  One might say that the improved performance in 

localized clutter was due to the added possibility of dis- 

criminating against the clutter energy on the basis of range 

delay p ,  in addition to the discrimination on the basis 

of frequency spectra as described in chapter ten.  Such an 

interpretation does accord with one's intuitive expectation, 

based on Figure 18, for tnis case of non-uniform clutter. 

It is supported by the observation, from equation (11.20), 

that performance does improve as the range delay,  p , 

between the maximum clutter energy (at p - o) and the max- 

imum echo energy (at p « p ) increases. 

The effects of noise upon the optimum solution 

for the present case may be expected to be quite similar to 

the effects described in chapter ten for the case of uni- 

formly extended clutter. The two zero-noise solutions have 

many points of similarity, with the result that much of the 

discussion of chapter ten has analogous application in the 

present case., 
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FtG.   18      RANGE DELAY  PROFILE  OF  GAUSSIAN PULSE IN  NON- 
STATIONARY GAUSSIAN CLUTTER 
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The first point of similarity exists in the station- 

ary component of the optimum processor shown in Figure 17, 

V       The Fourier transform of its weight function is given by 

equation (11.30)as a ratio with denominator equal to 

^ {/fck(T)(^(T) } . The function 1C(T)4?(T)  is Gaussian in the 

present case (cf. equations 11.7 an<3 11.8) with the result 

that  5rftck(
T)^(T) }  ls also Gaussian and rapidly approaches 

zero as the frequency variable of the transform approaches 

infinity.  The result is that the weight function 

y(t?p ,f )  of the stationary component of the optimum pro- 

cessor for the present case will tend to emphasize higher 

frequency components of the signal at its input, with es- 

sentially similar results to those shown and discussed earlier 

in connection with Figures 6 and 7 .  In the previous case 

the high-frequency emphasis arose out of the analogous pre- 

sence of ^^ 711{T)^(T) ^ in the denominator of the optimum 

processor (see equations 4,45 and 10o20). 

The optimum processor for the present case posesses 

a second point where the presence of noise will greatly modify 

processor operation0  The preliminary time-variable amplifica- 

tion by l/g(t)  shown in Figure 17 provides minimum ampli- 

fication at t = 0, but rapidly increasing amplification for 

t -► + ». The reason is again the presence of a Gaussian 

function in the denominator of a ratio.  Here it if; g(t) 

which tends rapidly to zero for large t. Again tlf presence 

of noise will militate against the unbounded amplifications 

which are indicated for the noise-free case.  It is to be ex- 

pected that if a time-variable amplifier is a component of 

the optimum processor for bi-Gaussian clutter plus noise, then 

its amplification may well be minimum where clutter is large, 

but it will almost certainly be constant (rather than un- 

boundedly increasing) where clutter is small. 
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An exact description of the effects of noise in 

the present case is unfortunately not possible, because of 

the form of the solution.  Ir the preceding case, equation 

(10„17) gave the performance essentially in terms of an 

eigenfunction expansion of the problem solution , and noise 

was simply included by appropriate modification of eigen- 

values 0  In the present case, however, equations (11.15) 

and (11„18) for the solution are not given in terms of 

eigenfunctions of the covariance kernel.  The result is that 

the effects of noise cannot be directly incorporated into 

the no-noise solution. 

This solution for bi-Gaussian clutter therefore 

provides an example where even complete knowledge of the 

zero-noise solution is not necessarily of help ^n finding 

the opcimum solution for interferer.ce which includes low 

noise levels. 

t Note the formal similarity of equations (10„17) and (6.33) 
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XII.  DETECTION OF RECTANGULAR PULSES IN 

UNIFORMLY EXTENDED CLUTTER FROM A STATIONARY SOURCE 

This chapter and the next will deal with clutter arising 

from a source which introduces no Doppler dispersion among 

the clutter components.  Physically, this would correspond to 

reflection of the transmitted waveform from a spatial dis- 

tribution of essentially motionless scattering centers. 

The simpler cases, which arise when the mean clutter 

energy is uniform for all range delays, are considered in 

this chapter.  The results to be given, in addition to having 

intrinsic interest, serve also as the basis for extensions 

to the more general cases in chapter XIII. 

A.   THE DIFFERENCE-DIFFERENTIAL EQUATION 

The clutter dispersion function 6(p,f)  is assumed to 

have the form 

£(p,f) =  6C • 6(f) (12.1) 

for all range delay p.  Introduction of this expression into 

the general formula (4.16) for the clutter covariance kernel 

then leads to 
00 

X (t ,t ) = 2- / &     ■   m(t ;p)m»(t ;p)dp , 
C*  1   2 

—oo 

(12.2) 
where 

m(t ;p) =  m(t ;p,0) = m(t -p).        (12.3) 
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Equation(12.2)   will be observed to have  the  same   form as 

Eq.   (8.28). 

The modulation envelope    m(t)     is  assumed  co be  rectan- 

gular with unit  integral-square-amplitude,   as  required by 

Eq.   (4.21).     The envelope 

m(t)   =/ (12-4) 
I 0 otherwise 

corresponds to a single pulse of duration T seconds - the ele- 

mentary radar signal.  It is clear that for this pulse 

^ m(t)^ \  5(t + |) - -i- 6(t- ?)      (12.5) 

which is precisely the form of Ea. (8.30), namely 

Ltm(t) - MtDt^t) , (Ic.- ' 

where 

Ltf = ~  f(t) (12.Ta; 

i 

Mtf = T"
2
 • f(t) (12.7b; 

and 

Dtf =   f(t+ |) - f(t-|)  .        (1 c .  C 

It may be verifiedt that the adjoint to Lt  is given by 

Ltf S - ^ f(t) . (12. d: 

t See Eq. (8.20) 
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j 
f      With only real constants involved i.i these definitions, it 

vj      follows, moreover, that complex conjugation of an operator 

leaves the operaco" unchanged. 

When Lf'. operators defined in the preceding four equations 

are applied in Eqs. (8.^5) and (8.46), the respective results 

are 

w(t;p ,f ) = - ~ ^ (t?p ,f )       (12.8a) 
O  O      at       o  o 

and 

2& . .2 
=-^-DD^*(t;p ,f)-N --S-^typ f)=^,m(typ ,f )  (12.8b) 
T     t t     rO  O   C J4.2      ro O  at    rO  O 

This system of equations may be reduced to a single equation 

by differentiating the  second with respect to t ana then 

Ubing Eq. (12.8a).  The result is 

2fi 
D.D\{t;p   ,f ) + N -^— w(t;p ,f ) - -^— ra(t;p ,f ) 
t t     r0  O      O dt2      

r0  0     dt2      
rO  O 

(12.9) 

or if the extended form, Eq- (12.7c), is used for Dt*^ 

2& 
-{w(t-Pr;p ,f ) - 2 • w( 

f 0  0 

d2  ,.   . ,   d2 

=-g-{w(t4T;p ,f ) - 2 • w(t;p ,f ) + w(t-T;p ,f )1 
if        '00 00 00' 

O    dt2        0  0     ut2      ^C  Ü 
+ N  •   w(t;p ,f ) - -2—  ir.(t;p ,f ) . 

(12.10) 

t It is a qiirk of this particular operator D,  that 

-D.D^ = D.D^ t: t    t t 
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The problem is now to solve Eq. (12.10) for w(t;p ,f ). 
o o 

In words. Eq. (12.10) asserts that the unknown weight function 

is characterized by a weighted sum of its second derivative 

and second difference being equal to the second derivative 

of the desired echo.  Visualization of the unknown function 

at this point is not necessarily an easy matter.  The simplest 

of radar waveforms together with the simplest clutter model 

has, unfortunately, not led to thp simplest of equations. 

B.   A GENERAL SOLUTION 

Equation (12.10) may be solved by assuming that both 

> ,f )  and m(t;p ;f )  admit 
o o ro o 

integrals in the following manner: 

w(t;p ,f )  and m(t;p ;f )  admit representations as Laplace ro o ro o 

w(t;p ,f ) - / W(s;p ,f )eStds       (12.11a) 
CO    - ' o  o 

m(t;p ,f ) = / M(s;p ,f )eStds       (12.11b) 
0  0     p      '00 

where  s = a + ju),  and C  is the contour extending from 

s = -jor  to  s = -fjoo along the path a = 0.  The direct 

bilateral transforms are given by 

00 

W(s;o .f ) = / w(t?p ,f )e'St:dt      (12,12a) 0  o    _^     r0  o —oc 

and 

M(s;p ,f ) = /  m(t?p ,f )e'Stdt .     (12.12b) 0 o    ^    ro o —00 

Vlhen  the representations (12.11) are introduced into 

Eq. (12.10) there results, in exactly analogous fashion to 

solution by ordinary, one-sided Laplace transforms. 
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[\^  + ^ {^ - 2 + e"ST)] ^^Po'V = «2-M(s:p0,f0) 
(1P.13) 

aic manipulation followed by solution for w(s;| 

yields 

^y       Algebraic manipulation followed by solution for w(s;p ,f  ) 

s2 W(s;p ,f  =  ~  * M s;p ,r 
0  0 o   2^r ,,sT^ c  0 N

rt- S
2 + -^ • ^ Sinh2 ^- o       T v 2 

(12.14) 

where, using Ecs. (12.4) önd (12.12b), it may be verified 

that 

.     T4 ^(s-j27rf0)T'\   -(s-j27rf0)po 
M(s;Po'fo) = s - j27Tfn • sinhv—^—;•e 

(12.15) 

In principle one may now use Eq. (12.14) in the integral 

(12.11a) to accomplish the necessary inversion for w(t;p ,f ) 

by customary techniques. 

One such technique - the partial fraction expansion of 

W(s;p ,f ) - provides the motivation lor the following dis- 
o  o 

cussion. 

Let it be assumed for simplicity that the echo to be 

detected has zero Doppler shift.t The case of non-zero 

Dopplsr can be studied in the manner to be outlined, but at 

the expense of extremely laborious algebra. 

If in Eq. (12.14) one introduces M(s;p ,0)  for the 
o 

zero-Doppler echo, the result is 

t This is the case considered by Urkowitz 45 for clutter alone, 
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-T -ST- T ''  s   •   2  sinh  (•^-) -sp 
W(s;po,0)   = — ^   •   e       0 

N  s2  + --^ •   4   sinh2   {^-) 
o T- <= 

(12.16) 

No loss of generality results if p   is now taken to be zero 
o 

and attention is restricted to 

T"2 s • 2 sinh {^-) 
W(s;0,0) = — ^     (12.17) 

N0s
2 + -^ • 4 sinh2(^) 

The characteristic equation in either case is given by 

D(s) = N s2 + —rr^ -   4 sinh2(-IS - 0    (12. IS) 
0       T d 

It nay be shown that the roots of this characteristic 

equation are symmetrically disposed in quadruplets in the 

s-plane.  This follows from the fact that, for complex s, 

i)  (s)2 = (-s)2  and sinh2(--^-) =  [- sinh(^)]2 

(12.19a) 

and 

ii)  (s2)* = (s*)2  and sinh (^•) = [sinh (■^)]* 

(12.l9bl 

Thus, from these symmetry relations for the individual terms 

of D(0),  one concludes that, if for some -,      and ox 
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vi 

V 1      then also 

W| i) D(ok+joük) - 0 , (12.20a) 

ii) D(-ök-jaik) = 0 , (12.20b) 

iii) D(ök-jük) = 0 , (12.20c) 

iv) D(-ak-i-ja)k) =  0 . (12.200) 

and 

This symmetric dispcition of roots is shown in Fig. 19. 

It will presently be shown that,, for N ^ 0, all the 
o 

roots of the characteristic equation ?re simple and lie away 

from the 'D-axis (i.e., have  a ^ 0).  The expansion of 

W(s?0,0) in partial fractions will therefore have the form, 

for ak ^ 0 and ox )> 0, 

r^  ^ n.\       T f        kl ak2      ka      k»   1 
fc(S;0'0)= kl

S-(V^) + -(-o^'^) ^-(-o,-^) +s-(ak-j(ak)j 

(12.21) 

where  a,   is the residue for the k-th pole in the q-th 

quadrant of the s-plane.  Finding the inverse transform of 

this partial fraction expansion is a relatively straightfor- 

ward matter. 

It is known9 , and readily verified, that 

+300   a 

r 30t 
a • e    for t > 0 
o '— 0       .     st J         — • esv • ds = < ^ .   s - s ^ 

V. 
0 for t < 0 

(12.22a) 
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^k+i^k 

FIG.  19    A TYPICAL OUADRUPU"/   OK CHARACTERISTIC   ROOTS 
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ä|| for    s       in the  left half-plane.     Conversely,   for zeroes  in 

% the right half-plane,   one may write 

+ioc       a 0 for    t ^ 0 

/." —i-eStdH     st      ""       '^-^ 
■^ 0 -a     .   e  '^       for     t<   0 

k     o — 

where (Re fs\   > 0.  Verification of these relations is ac- 

complished by direct substitution of the indicated time 

functions into Eq. (12.lib).  When the integrals are evaluated, 

the resulting transforms will be seen to agree with the trans- 

forms under the integrals in Eq. (12.22). 

When Eqs. (12.21) and (12.22) are compared, it may be 

seen that the time function which is the inverse transform 

of w(s;0,0)  may be written in the form 

w(t70,0) =  2:{wk(t) + v£(t)) (12.23a) 

where 

w^t) , 

ak2 • e  K e  K- + ak3 • e  K e  K  , t> 0   (12.23b) 

0 , for  t < 0 ; (12.23c) 

and 

0 , for  t > 0 (12.23d 

W^       \ C   t    -JCD, t CUt JO) t 
-ak4e 

K e  K      -  akie 
K e *     , t< 0 .   (I2.23e) 

The only remaining problems are finding the zeroes 

(o. ,01)  and evaluating the corresponding residues a. . 
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To find the roots of D(S),  first ooserve that D(S) 

may be factored and the characteristic Eq. (12.13) written 

D(S) ={«: • s + j(V^)   • 2 sinh(^) 

Nf • s - jf-^)2 • 2 sinh(f-)> - 0 . 

(12.24) 

The roots of D(s)  are then values of s  such that either 

1       (2tfi  \* T 
No • s + jf-^l  * 2 sinh (^-) - 0     (12.25a 

or 
/o A \ 2 

• 2 sinh (4?-) = C .    (12.S5b) 

At this point a certain economy may be effected by recalling 

Eqs. (12.19) and noting that if  s   satisfies Eq. {12.7z a   , 
c 

then -s  will also satisfy Eq. (12.25a) while  s*  satisfies 
o ' o 

Eq. (12.25b).  It is therefore sufficient to consider only 

the roots of Eq. (12.25a) alone"N in order to discover all the 

roots of D(s).  Substitution of 

s = c+ja3 (12 . it ^ 

into Eq. (12.25a), followed by expansion of the hyperbolic 

sine, therefore leads to 

o & 
2 cosht^) sin (—) = 0    (12, 

t Or Eq. (12.25b) alone, 
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and 

2 ainh{^)   cos(^)   = 0 (12.27b) 

as a pair of equations to be solved simultaneously for a 

and CD. 

It would seem that, in general, solutions to Eqs. (12.2?) 

are to be had only by approximate or numerical techniques. 

The asymptotic behavior of the solutions as N  approaches 

zero will in fact be considered in the next section.  A gen- 

eral indication of the root locations may, however, be obtained 

in the following manner. 

From Eqs. (12.2?) one can derive the following auxiliary 

relation which must be satisfied by any solution  (0,03)  of 

Eqs. (12.27): 

(f) • tan(f) =-(f) tanh(^)      (12.28) 

The left and right sides of this equation are plotted separately, 

and to the left and right, in Fig.  20.  Each term is seen 

to be an even function of its argument. 

Consider now the interval 

^ - |< ^f < -tTT (12.29) 

where -t  is a positive integer.  Clearly, for each cu in 

this interval, there is a a  in the interval 

0< (^) < - (12.30) 

which causes condition (12,28) to be satisfied.  Over this 

same interval 

0 < sinh(^) < 00 (12.31) 
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while    cos(~)     has  fixed sign,   given by 

sgn cos(^-)   =   (-l)"1 (12.32) 

Consider now the variation of the left member of Eq. (12.27b) 

as -5- ranges upward over the interval defined by the inequal- 
i 

ities (12.29).  The first term,  N2CU,  remains positive and in- 
o t        \ 

crear^.  The second term varies1" from zero to (-1) (+»). 

Thus     I    odd, the left member of Eq. (12.27b) must undergo 

a si.  . nange in the interval. Therefore, for I    odd, there 

must be a root  (a,a))  such that 

7T  •   CUT 
-C7T   - 

and 

I* - |<  ^<   tTr (12.33a) 

0<  ^<  00   . (12.33b) 

By exactly analogous reasoning one establishes that for even .t, 

the root  (a,ai)  is such that 

(Xfl 

while 

I* -  |< ^f< l-n (12.33c) 

-oo< ^<0 (12.33d) 

The inequalities (12.33)> together with the symmetry 

relations (12.20) for the roots of D(s)J  therefore lead to 

the conclusion that:  for each positive, integral k,  there 

exists a root of D(s)  called s, ,  such that 

sk =  Gk + ^k (12.3^a) 

t As deduced from Eqs. (12.31) and (12.32). 
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where 0 < -~— (I2.3^b) 

k7T - | < ^2—< k7r (12.3^c) 

and DCa^jo^) = 0 (12.3^d) 

DC-a^ja^) = 0 (l?.34e) 

DC-a^-j'i^) = 0 (I2.34f) 

D'ak"jfDk^ = 0 (12.3^g) 

That there exists only one such simple root s.  for each value 
of k will be shown by a continuity argument in the next 

section of this chapter. 

Assuming then that a satisfactory collection of roots 
s,  has been determined, the final data needed for computation 

of Eqs. (12.23) are the four residues a,   for each valv« of 

k.  Because the roots are simple the albebra is straightforward. 

Let w(s?0,0)  given by Eq. (12.17) be written in the form 

W(s;0,0) =|[|} (12.:^ 

where the numerator and denominator of Eq. (12,17) have been 

identified respectively with N(s)  and D(s). Then, if the 
individual roots of the k-th quadruplet are identified as to 

their quadrant by the subscript q,     one may write"^ 

t See Churchill,9 pp. 57-58,for example. 
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hcq - mir} B Ä 
(12.36) 

s 
kq 

where the prime indicates differentiation with respect to s. 

If the calculation called for by Eq. (12.36) is carried 

out, one has 

26 
D' (s) ^ 2N .s4 

o 
2 sT' sT.   T 

T  • 4 sinh(^-) • cosh(^) • | 

(12.37) 

which is the same as 

D'(s) = 2N • s + 2Ä   • 2 sinh(oT).   (12.38) 
o        c 

If the real and imaginary parts ol s are introduced, 

then N(s)  and D^s)  may be separated into real and imaginary 

components, and the residue a.   written 

n (a,ai) + jn (a,a>) 
1 2 

a kq " d (a,m) + jd (a,®) 
X 2 

0 = ökq 

^ =: ^q 

(12.39) 

where 

n (a,£ü) 2o  3inh(f-)cos(f) oT' fOcfT' - 2a>cosh(^)sin(^) 

T (12.40a) 

n (cf,üi) 
2 

= 2m sinh(^)cos(^) + 20 coahi^) sinif-) 

T Tt (12.40b) 

d (a,üi) =V2N a + 2 £ • 2 sinh(aT)cos(air)  (12.40c) 
i o      c 
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d (a,«)   = 2N CD + 2^     «2 cosh(oT)sin(dr)     (I2.40d) 

Finally a^  may be separated into its real and imaginary 

components.  Thus 

■kq 

m    •   d    f m    •   d 
112 2 

d2 + d2 

1 2 

+   J 

m    •   d    - m    •   d 
2 112 

-d"   +   d2 

i 2 
(12.41) 

where the functions defined in Eqs. (12.40) have been used with 

abbreviated notation. 

Before concluding this section on general aspects of the 

solution, two simplifying remarks may be made.  First, one 

sees by inspection of Eq, (12,17) that, for all s. 

W(s;0,0) =  W(-s;0,0) (12.42) 

If in the basic inversion formula, Eq. (12.1xd), one changes 

variable according to r = -s and then uses Eq. (12.42), then 

one may show directly that for all t 

w(tyO,0) = w(-t;0,0) (12.43) 

Second, one may consider the two roots (",av+JüO  an<^ 

(-Gj-jf-Dj)  and trace the effects of the change of sign of co^ 

through Eqs. (12.40 ) and (12.41 ) down to the conclusion 

that 

ak2 = ak3 
(12.44) 

Both Eqs. (12,43) and (12.44) now enable one to write more 

simply, and in place of Eqs. (12.23)» 
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w(t?0,0)  - 2    X    6U <ak2e    K e    K    >   ,     t>  0 
^        ^ J (12.45a) 

w(t?0,0)  • w(-t;0,0)     ,     t<  0 (12.45b) 

where ^y 0    »"^ ov ) 0» 
c'   SMALL-KQISB SOLITTION 

For H  approaching zero it is possible to derive approxi- 
o 

mate expressions for the roots of the characteristic equation 

and, therefore, ultimately to compute approximations to w('wO,0) 

given by Eq. (12.45a). This approximate analysis for small 
noise is the subject of this section. 

The starting point for the analysis is the pair of Eqs. 
(12.27a) and (12.27b). When N  is actually zero they become 

• 2 cosh(^)sin(^) = 0      (12.45a) 

and 

m 2 sinh(^)cos(^) = 0      (12.45b) T '        s 2 

The simultaneous solution of this simpler pair of equations 
presents few problems.  Since for all real x, cosh x is 

greater than zero, the first equation can only be satisfied if 

sin(^) = 0 (12.46a) 

or 

^ = lir    ,  -t = 1,2,3,... t        (12.46b) 2 

t Only positive arguments need be considered in view of Eq. 
(12.45a). 
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Since the cosine has unit magnitude for these arguments, 

Eq. (12.45b) therefore implies that 
i 
1 

OT - 0 (12.47) 

for all solutions. 

These tero-noise solutions are the starting point for find- 

ing the small-noise, approximate solutions. Note in passing, 

however, that the zeroes defined by Eqs. (12.46) and (12.47) 

are actually double zeroes of the characteristic equation. 

It is readily verified that for any individual (a,a))  equa! 

to (0, ^JT"), both of the factors of D(s)  in Eq. (12.24) 

are equal to zero.  Each quadruplet of simple zeroes for 

therefore originates as a pair of double zeroes when 

N0 = 0. 

For N  sufficiently small one expects that the zeroes 
o 

of D(s), Eq. (12.18), will oe near the zeroes for N  equal 
o 

to zero. With this expectation, let 

1 

^ = ^ + H = ^o + H (12.48) 

and 

«t = 0 + öül (12.49) 

Substitutic.i into Eqs. (12.27) then leads to 

1 
N2 
o 

6al  - 

f2& 
• 2 cosh (-ir sin 

6a). T 
LL _ = 0 

(12.50a) 
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and 

H^4o^) + — • 2 sinh 
, /öm.T\ 

. (-!)* cosf-^-J = 0 

(12.50b) 

For the "small"  öo. and 6ü3. which result for N  sufficiently 

small, these equations may be replaced b/ the approximate pair 

i 
N^ 6a. - o  -t 

f2& 
•p (-1) 

i   I*'*A 0   (12.51a) 

and 

N^ 6m,   + 
o  -t 

^26 

2 (-1) 1 = - N2 a>.rt 

(12.51b) 

Simultaneous solution yields 

^ - IwV • 2 • t-v1 

and 

6^ = - 
2ä 

o   T 

N. 

£ . 22 (-1) 
2*, 

6^T 

(|) 

(12.52a) 

CD '^o 

(12.52b) 

For    N      approaching zero,   this last equation yields 

N 
2TTI 

6(*l  =  -l       \2*TI     T (12.53a) 

which, when substituted into Eq. (12.52a), yields in turn 

6a. = -1 • (-1)^ • 

i 
2 

2 AT;   T • ^    (12.53b) 

These equations form the basis for Fig. 21 showing root 

loci near the a-axis for small No. From Eqs. (12.53) one 
finds 
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FIG. 21      CHARACTERISTIC  ROOT LOCI  FOR SMALL   N. . 
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H " "1 * ilt ' (öö^)2   l  " 1'2'3'---  (12-5^) 

as the equation for the indicated segments of the root locus 

curves. The actual root location on any particular curve 

will depend upon the parameter (^ 0
T1,  via Eqs. (12.53). 

This question will be considered in a moment. 

Here, however, it is convenient to pause temporarily to 

note that as N  increases from zero^ each of the double 
o 

roots of D(s)  located, for N =  >  at 
o 

sl  = ±j T    l '-'- i'2'3"" (12.5.5) 

splits and gives rise to a s: Tie root ii.  each  f the quadrants, 
with imaginary parts satisfying 

03, | < %k   l =  1,2,3,...      ^2.56) 

Reverting now to consideration of the inequalities (12.33) 
which are strictly satisfied for all N ^0.  one concludes 

that, for each -t,  there is only a single root which satisfies 

Eqs. (12.3^).  Since this conclusion is true for sufficiently 
small N ,  it remains true for large N .  Viewed differently, 

o o 
one can say that the root locus which intersects the (D-axis at 

^o = ^   l =  1'2'3,... (12.57) 

is constrained to lie in the band in the s-plane defined by 
'-.he (strict) inequalities 

^^< a)< ^ . (12.58) 
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The approximate root locations for a given N  may be 

estimated from Eqs. (12.53b).  It is clear, however, that for 

sufficiently large I ,  neither 60^ nor 60^ will be small 

for N  fixed.  For large It  therefore, the accuracy of the 
o 

approximations (12.53) can be doubted. 

A possibly better approximation to the root locations for 

large l    rests upon the inequalities (12.58). These bounds 

iinply that 

V 27r (12.59) 

as 

as 

I -*• cu,     or that    üii     is of the order of    I,    Consider now 
^oopT 

Vi2.27b).  If cos -|- does not approach zero too rapidly 

00,  then Eq. (12.27b) suggests that 

(12,60) 

These considerations are summarized in Fig. 22.  On the 

fundamental strips implied by Eq. (12.58) are superimposed the 

straight line implied by Eq. (12.53b) and the hyperbolic sine 

appearing in Eq. (12.60). The circles indicate actual r^ot 

locations which satisfy the exact characteristic Eq. (12.25).t 

The fact of probably greatest theoretical interest is 

that, for all I,     according to Eq. (12.53b), 

(12.61) 

Because varies as the square-root of even relatively ._._  ^ N . 
-t 0 

"small" values of N  lead to relativ« ly "large" displacements 
         o 
t The indicated roota were found by successive approximations 
using a digital computer for numerical calculations. 
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FIG. 22o   CHARACTERISTIC  ROOTS FOR  SMALL No   (FIRST QUADRANT- 
LARGE SCALE) 
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FIG   22b   CHARACTERlSTiC  ROOTS  FOR  SMALL N«  (FIRST QUADRANT; 
SMALL SCALE) 
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of the characteristic root locations from their «ero-noise 
locations.    The effect will be seen to cause analogous rela- 
tively "large"  deviations of the small-noise problem solution 
from the no-noise solution.    This is seen by considering the 
asyn^totic behavior of the solution.  Eg.   (12.^5)   as    N    -»0. 

o 
The asymptotic behavior of the residue a.   is found by 

substituting the values 

0k^ = -6ok    '     6ak <   0 (12.62a) 

id 

^ = ^ + K  '   H < 0 (12.62b) 

into Egs.   (i2.4o)  to find that 

^^'«W  =  (-l)kp.   (6ak)2 -  (^)   .  T*.   (6^)] 
(12.63a) 

n K2'<\2)  L (-,)1C[-(^)   •  T**   (6ak)- (6ak) • T*.   (öa^)] 

V0!«^)   4 2 [-N 
0(6ak)   - 2&c  .  T  .   (, ^] 

(12.63b) 

(1L\63C) 

d«(avo*ö>i,0) 'ks £Dke)  = 2Yfoi^)  + 2Ä>c * T '   (6<*J)-   (12.63d} 

For a second quadrant zero, one uses Eqs. (12.53) to write 

(consistent with Eqs.  12.62) 

6ak = +V26 T 

i 

o \   27rk 
(12.6^a) 
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and 

T 

Equations (12.63) may therefore be reduced to 

(12.64b) 

^•^ L-H*0 + * =T)- (iftf)^) 

(12.65a) 

(12.65b) 

27rk< a>l«'Vi2(No>- ^ (^ 

(12.65c) 

(I2.65d) 

When these values are finally introduced into Eq, (12,41), 

the result for the residue a, „ is 

ak. i (-1) 
:/27rk\/   1 
\ T ;\2^ 

Lii N, ./I "i 
212, d     + j(f)>-T^( 12.66 

Finally, the solution tor N  approaching zero is found 

by using Eqs. (12.^5) and (12.66). The result is, for t > 0, 

»o a 

Vt(t!<i0) 'wc S, (-«k(^ e'0k f'^K*) - IW  "'('^ 
(12.^73) 

where 

wopt("tj0*0) " wopt(t70'0) 

_ 2rrk/ No ^ ? Gk ~ T U^ Ti 

(12.67b) 

(12.67c) 
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JBii 

and ^ 
g-rrk ),       /    No 

T    N1 "  Ufi  T (I2.67d) 

The zero-noise solution,  which is valuable  for comparison 
purposes,  can be deduced from the preceding expressions.    Thus 
for    N    =0    and    t > 0, o 

00 

«opt^o.o) - ^ ^ (-in 

which may be rewritten 

k/27Tk ){-(¥ -)} 
(12.68) 

wopt(t:0.0) = 5| £,!,-(¥(*-I)}- (^-69) 

The summation now is a recognizable form since, using only 

the sifting property of the impulse, one may write the fol- 

lowing Fourier series expansion of an impulse train: 

T .£  6(t-kT) =1+2 cosf—^t) 
k=-oo k=l    K } 

(i?.7o; 

Equation (12.b9) n»ay therefore be written in the equivalent 

form, for t > 0, 

«opt(t:0,0) = ^- |-|o A 6(t. I .w) .   (12.71a) 

For t <( 0, Eq. (12.67b) remains unchanged 

wopt(-t;0,0) = wopt(t;0,0) (12.71b) 
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1 

Id 

1.  Discussion 

The zero-noise solution of E^s, (12,71) is illus- 

trated in Pig. 23, in relation to the rectangular pulse to be 

detected.  It is observed to be & sequence of doublets, spaced 

by the pulse duration and locatf.J to act upon the leading and 

Hing edges of the pulse. A physical insight into why the 

ze^o-noise weight function has these characteristics, and how 

they are related to the clutter dispersion function, will be 

van in the next section.  Tor the present note simply that 

,for N = 0) the weight function extends, undiminished, to 

infinity in both directions. 

The presence of a relatively s^all noise level, how- 

ever, introduces the relatively large changes to be expected 

on the basis of Eqs. (12.67) and actually seen in Fig. 2^. 

The weight fu ction tends to become more restricted to the 

time of occurrence of the echo because of the exponential 

factor,  exp ^-0 t^ ,  appearing in Eq. (12.67a). The decay 

rate, governed by ak, moreover varies as the square-root of 

the noise level. 

The doublets which characterized the zero-noise 

solution of Fig, 23 are seen to be very much "smoother" in 

the small noise solution of Fig. 24. The doublet nature of 

the solution is still quite pronounced in the vicinity of 

t = ± 0,5,, where the edges of the echo waveform are located. 

However, at the times t = ± ,1,5 and t = ± 2,5 only faint 

suggestions of a doublet waveform exist. 

The reason for the relative smoothness of the small- 

noise solution of Fig. 24 Is the same exponential factor, 

exp S-Q-LXJ $    which was mentioned two paragraphs back and 
which applies to every term of the solution in Eq. (12.67a). 

In the present context, however, one notes from Eq. (12.67c) 
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FIG. 23    OPTIMUM ZERO-NOISE PROCESSOR FOR A RECTANGULAR  PULSE  IN 
UNIFORMILY EXTENDED CLUTTER FROM  A   STATIONARY SOURCE 
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I 

that the decay constant a  is directly proportional 

to the index k and, therefore, to the  aross frequency of 
the k-th terra of the solution.  (See Iqs. 12.67d and 12.67a.) 

For any fixed time t,  therefore, the action of exp {-ökt^ 
is to attenuate by increasing factors the higher frequency 

con^onents of the solution. This "filtering out" of higher 

frequency components contributes to the smoother appearance 

of Fig, 24 when compared to Fig. 23. 

The small-noise solution shown in Fig. 24 was com- 

puted from the exact formula, Eq. (12.45), truncated after 
the first fifty terms.  Exactt locations for the first fifty 
characteristic roots were used in computing the necessary 

residues a^ according to Eqs. (12.39) through (12.4l). 
These root locations were previously shown (in the first 
quadrant) in Fig. 2^. The many calculations which this pro- 
cedure requires were performed with the aid of a digital com- 

puter . 

D.   SOLUTION FOR LARGE NOISE 

The general Neumann series solution given by Eq. (7.5) 
provides a moderately convenient means for generating approx- 

imations to the optimum processor weighting function for the 

present case, in sufficiently large noise. 

For clarity of exposition it is convenient to rewrite 

Eq. (7.5) in the form 

"(VPo'V = t m(VPo'fo) ^ nS (-^V^'Po'V 

(12.72) 

t Exact, that is, to within tolerances of 0.01 applied to 

both real and imaginary components of the root location. 
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where 

n 
and where the iterated kernels K (t ,t )  are given by the 

original defining Eqs. (7,6) and (7.7).  *" the present case 

m(t ;0,0) is the positive, rectangular pulse given by 

Eq. (12.4), or 

j 
in(t;0,0) = ■ 

rT^  ,  -?<t<i 2 ^ " ^ 2 

, 0   ,  otherwise; 

(12.74a) 

(12.74b) 

while the normalized clutter dispersion function is given by 

E(p,f) = 1 • 5(f) (12.75) 

Since the functions ra(t;0,0) and E(p,f) are everywhere 

non-negative, one may readily verify by inspection of 

Eqs. (7.4), (7.6), (7.7), and (12.73), that the kernels 

Kn (t ,t )  and the functions wn(t;0,0)  are likewise non- 

negative for all values of their arguments, and for all n. 

From the considerations one concludes that, in the present 

case, the Neumann series solution of Eq. (12.72) actually 

gives w(t ;0,0) in the form of an alternating series for any 

time t . 
i 

For the relatively simple waveforms of Eqs. (12.74) and 

(12.75), the functions K" (t ,t ) and w (t r0,0) might, in 

principle, be generated by straightforward but exceedingly 

tedious integration.  In fact, approximations to Kc (t^tj 
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and w (t y0,0)    were generated by numerical integration using 
a digital coniputer.    The following bounds are abstracted from 
the numerical data which has been generated using   T « 1    in 

Eq.   (12.74): 

0 < w (t;0,0) < 0.750 (12.76a) 

0 < w (t;0,0) < 0.599 (12.76b) 
-    2 

0 < w (tj0,0)  < 0.511 (12.76c) 
-    3 

0 < w (t;0,0)  < 0.453 (I2.76d) 
••4 — 

The result of evaluating the Neumann series of Eq. (12.72) 

for the values Ä =0.2 and 0.4, while retaining only terms 

up to and including w (tj0,0),  is rhown in Fig. 25.t For 

comparison purposes the optimum processor for ^V, •= 0 is 

also indicated. Apart from the factor N ,  the latter pro- 

cessor is identical to the echo to be detected.  It is the 

"matched" processor for the rectangular pulse. 

The effects of clutter increasing from zero are clearly 

seen in Fig. 25, The "center" of the weight function becomes 

increasingly depressed, while increasing "undershoots" appear 

at t=±0.5. It is not beyond credibility to say that the 

beginnings of the doublets which will eventually appear at 

t = ± 0.5 can be seen even for the small clutter levels 

which lead to Fig. 25. 

From the progression of optimum processor weight func- 

tions which have now been seen in Figs. 23, 24, and 25* one 

t The truncation error should at no point exceed about 1 
per cent of the greatest value shown for w(t;0,0), for <Ä«o.4. 
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can hope to summarize the major characteristic' of the opti- 

mum processor for detecting rectangular pulse echoes in clut- 

ter from a stationary source. When noise interference domi- 

nates, the optimum weight function resembles a matched 

processor (see Pig. 25). When clutter dominates, the proces- 

sor includes doublets which have the effect of detecting the 

pulse by, in effect, detecting its edges.  (See Pig. 23.) 

When both noise and clutter are present, the optimum weight 

function includes both of these characteristics in varying 

degrees, ar J definitely not in linear combination or super- 

position. 

On the one hand, one sees that major features of the 

solution for noise-plus-clutter are reminiscent of the sep- 

arate solutions for noise and clutter individually considered« 

On the other hand, one sees tne complexity of a solution 

whose detaiiGd structure depends in no obvious way upon the 

relative levels of noise and clutter interference. 
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XIII.  rETECTION OF RECTANGUIAR PULSES IN CLUTTER 

FROM A STATIONARY SOURCE OF FINITE EXTENT 

This chapter will consider extensions of the results of 

the preceding chapter to cases involving more realistic clut- 

ter distributions. 

It will be supposed that the clutter source, although 

still assumed stationary, may have a reflectivity (or radar 

cross-section) which varies with range delay. A dispersion 

function corresponding to this description has the form 

&(p,f) =£c ' Ec(p) • 6(f)        (13.1) 

where max Ec(p) = 1. (13.2) 

P 

The modulation envelope m(t) is again assumed, as in 

equation (12.4), to be that of a rectangular pulse, 

m(t)-/T-*,   -|<t<|        (13.3) 

^   *     otherwise. 

The linear operators L , M., and D., corresponding to this 

pulse shape have already been given by equation (12.7). When 

the general equation (8.46) is applied to the present case, 

characterized by equations (13.1) through (x3.3)i the result- 

ing equation to be solved is 

A 
2£ 

- '  DtEc(t)Dt ^Po^o^o dt» ^Po'fo^ dt ^^Po^) 
(13.4a) 
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where the optimum weight function is to be found from 

"(t'Po'V  *= - dt ^(^Po'V te'to) 

F'iuction (13.4 a) is observed to be more complicated than 

its counterpart for uniform clutter, namely equation (12.8b), 

by exactly the presence of the variable coefficient E (t) 
c  ' 

which stems from equation (13.I). Consideration of a clutter 

source with spatially non-uniform reflectivity therefore 

elevates the problem to one of solving a difference-differ- 

ential equation with variable, rather than constant, coeff- 

icients. 

When the linear operator D^E (t)D^ is expanded, and 

:ion (13.4b) for 1 

(13.^a), the result is 

26 

equation (13.4b) for w(t;po,fo) is introduced into equation 

/Ec(t + |)w(t + T;po,fo)-[Ec(t + |) -h Ec(t - f )j w(t,po,fo) 

+ Ec(t - |)w(t - T;po,fo)l + No -^ w(t;Po,fo) = ^r m(t?po,fo) 

J (13.5) 

which is rather more complicated than its earlier counter- 

part , equation (12.10). 

A general, formal solutior of equation (13.5) will not 

be attempted. Instead, certain characteristics of previous 

results in Chapter XII will be noted and used in a heuristic 

fashion to indicatf the nature of exact or approximate solu- 

tions to equation (13.5) for various circumstances. 
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A.       SOURCE WITH UNIFORM CROSS  SECTION 

One simple clutter source model which fits into the pre- 

sent context is characterized by the dispersion function 

<&(p,f)   =<SC   •   Ec(p)   •   6(f) (13.6a) 

where 

EC(P) (13-6b) 

This corresponds to a clutter source which is strictly con- 

fined to a range-delay interval of D secovis, with constant 

reflectivity over that interval. No clutter energy origi- 

nates outside of the interval, even through the received 

clutter interference will have a total duration exceeding D. 

It may be verified that the introduction of equation 

(13.6b)for Ec(p>  into equation (13,5) will have the effect 

of replacing equation (13.5) by a set of difference-differ- 

ential equations, each with constant coefficients. Each 

equation of the set will characterize the solution w(t;p ,f ) 

over a different interval of the t-axis. By suitable ad- 

justment of the homogeneous solutions of each equation of 

the set one would expect to find the total solution for 

w(t;p ,f ) on the entire t-axis. The solution for o o 
w(t;p ,f ) would be in the form of a weighted sum of partic- 

ular and homogeneous solutions of each equation of the set 

and could, in principle, be derived for arbitrary clutter 

and noise levels. 

That this rather formidable procedure can be circumvented 

when noise is neglected will now be seen. 

- - 

■ 
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1.  A Set of Reciprocal Waveforms 

Consider the set of waveforms "^(t) defined by 

* = 0, + 1, + 2, ... (13.7) 

(13.8) where m(t) = -f < t < | 
otherwise 

1 
2 

The waveforms "^(t) are ti.^refore replicas of the rectan- 

gular pulse ra(t) originally given by equ.' iion (13.3), each 

delayed (or advanced) by a multiple of T seconds,  it. will 

be supposed that - is an intiger greater than unity, with 

the result that typical waveforms m. (t) will appear as in 

Figure 26. 

The question of interest is: "what are the wave- 

forms ^(t) which are reciprocal to the m. (t)?" That is, 

find the waveforms ^(t) which havo the properties 

— 00 

and 

/ <\(t) mk(t)dt - 1 (13.9a) 

/ (Mt) mi(t)dt = 0     for j ^ k.    (13.9b) 
— Ob 

An answer to the question is given in the following manner. 

Consider an elemental waveform co(t) with the 
properties 

i)   co(t) =0 ,  if I t I > I    (iB.lOa) 

t It will soon be seen that there are many sets of waveforms 
with the desired properties. 
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FIG. 26      A   SET OF WAVEFORMS 
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0 i     A 
ii)       /    ü)(t)dt = + i T? (13.10b) 

- 00 

00 

-IT* iii)    /    CD(t)dt » - ^ T? (13.10c) 
O 

A typical, but certainly not necessary, example of such a 

TT 'i*  _,  27rt     I ._ I •  T 
2T sin^     It I < f (13.11a) 

waveform is       f l 
sin ^     I 

t\   >    TT  (13.11b) 

ü)(t) = 

L I 4- I   V 

Consider next the waveform ^.(t) defined, for all integral 
k, by 

00 

oi (t) - S ü)(t - kT - [^ + i] T)  for t ^ kx 
1=0 (13=12a) 

and     ^v^) = £\(2kT " t) for t ^ kT« 
~ (13.12b) 

Such a waveform oi (t), based on the particular üü(t) de- 

fined in equation (13.11), is shown in Figure 27 together 
with several m.(t) waveforms. 

The assertion is that the set of "^(t) defined by 

equations (13.10) and (13.12) constitute, a waveform set which 
is reciprocal to the m. (t).  This may be verified algebrai- 

cally by using equations (13.10) and (13.12) to show that the 

ü) (t)  so defined also have the necessary properties (13.9a) 

and (13,9b).  However, it is more easily verified, and with 
greater insight, by considering Figure 27. 

Figure 27 has been drawn for the parameter ratio 
— equal to 5.  The top graph is the (single) waveform 
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as (t),    while the next line of graphs comprises    m (t), 
ro(t), and    in    (t).    The lowest set of graphs contains the 

ft 17 
products jf CD (t) with each of the preceding "^(t), and 

inspection reveals that 

CO 

/    MtK (t)dt / 0 (13.13a) 

i « 
while /    a) (t)in (t)dt = 0 (13.13b) 

- 00     2 9 

00 

and /    CD (t)m    (t)dt = 0 (13.13c) 
- 00     * 17 

Since these are seen to correspond to the three types of 
situation Which can arise between «^(t) and CD (t), it 

should be clear that the waveforms CDk(t) are indeed recip- 

rocal to the rCjft), 

Figure 27 also makes clear that the detailed shape 

of the elemental function ü)(t) is not of great concern, as 

long as its area is disposed in accord with equations (13.10). 

Finally, the purpose of introducing the elemental 

function cD(t), with its particular properties, is for its 

resemblance to the impulse doublets which appeared in Sec. 

XII. To make the resemblance clearer, one may define the 

function 
rir1 + cos2|ti   ,t( < x (13>14a) 

n(t)=/    L J - 
I  O,     otherwise, (13.14b) 

t That the ca (t) have the proper amplitude for unit pro- 
jectiois upon \he appropriate m. (t)  may be verified algebrai- 
cally. K 
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and verify that 

/    n(t)dt =  1  . (13.15) 
- 00 

Because of these properties, n(t) may be regarded as an 

approximation to the unit impulse function Ö(t). Moreover, 

from equations (13.14) and (13.11) one can now write 

to(t) A. 
dt n(t) . (13.16) 

The resemblance between the reciprocal function 

oi (t) depicted in Figure 27, and characterized by equations 

(13.12) and (13.16), and the zero-noise optimal solution 

w ^(trOjO) depicted in Figure 23 and given by equations 

(12.71) of the preceding chapter, should now be evident. 

2,  Optimum Processor (No Noise) 

The discussion of the preceding chapter suggests 

the form of solution for the present problem, where 

is civen by equation (13.6) and repeated here 

'l ,   § < p< §       (13,17) 

EC(P) 

EC(P) 
otherwise 

Let us for the moment restrict attention to the problem of 

detecting the rectangular pulse m(t70,0), given by equation 

(13.3)* in the clutter interference (without noise) character- 

ized by equation (13.17). 

For D = » in equation (13.17)> the solution has 

already been given in the preceding chapter by equations 

(12.71), which are repeated here. 

1 
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w(t;0,0)  - gif-Z    ^-«(t-l-kT) t>0 
C kfc0 (13.18a) 

and        w(t;0,0) = w(-t;0,0) t < 0. 
(13.18b) 

One may now either follow the heuristic reasoning of the 

preceding section, or use equation (8.16), to demonstrate 

that 

/ w*(t?0,.>) m(t;p,0)dt = 0     for p / 0 

(13.19) 
- 00 

However, the clutter resulting from the dispersion 

function of equation (13.17) is just exactly the superposition 

of waveforms m(t;p,0), with - ^< P < f * essentially ac- 
cording to —  — 

D/2 
c(t) =  / a(p) • m(t?p,0)dp      (13.20) 

-D/2 

where < | a(p) I 2> =2^ . (13.21) 

In view of c  tions (13.19) through (13.21), one 

suspects that the solution for the present case will be as 

shown in Figure 28.  it is identical to w(t;0,0) given in 

equations (13.18) for times t where the rlutter interference 

exists.  It is taken to be zero where clutter does not exist, 

and may be written 

t See equations (4.7), (4.8), and (4.11) for the origins of 
this simplitied representation. 
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FIG. 28     OPTIMUM ZERO-NOISE PROCESSOR FOR A RECTANGULAR PULSE 

IN UNIFORM CLUTTER OF FINITE  EXTENT 
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(13.22a) 

wopt(tj0'0) " wopt("t;0'0) - |(D + T) < t < 0 
(13.22b) 

and w t(tjO,0) « 0 otherwise 

(13.22c) 

It may be verified, although details will not be 

given here, that wODt(
t'0aO) given in the preceding equa- 

tions does indeed satisfy equation (13.5) for an optimum 

processor (with N - 0). c 

Following the example set in Figure 28, one may 

derive the various (zero-noise) optimum processors shown in 

Figure 29 for echoes with various positions within the clut- 

ter interference.  In all cases the optimum processors have 

the following common characteristics: 

(i)   the relative times of occurrence of the 

impulse doublets are determined by the lead- 

ing and trailing edges of the echo to be 

detected; 

(ii)  except for truncation effects, the weight 

function is symmetric about the time of 

occurrence of the echo; and 

(iii) the weight function is non-zero only over 

*:he interval where clutter is present. 

t The processors shown in Figure 29 do satisfy equation 
(13.5) and are, therefore, optimum. 
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FIG.   29     OPTIMUM   ZERO-NOISE PROCESSORS FOR VARIOUS PULSE-LOCATIONS 
IN UNIFORM CLUTTER OF FINITE EXTENT 
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It is evident from Figure 29 that these common 

chai'  eristics lead to weight functions which can have marked 

differences, depending upon the echo location. Thus, for 

example, a small retardation of the echo occurrence as shown 

between Figures 29a and 29I», leads to a corresponding re- 

tardation of the weight function. The further retardation 

which leads to Figure 29c, however, causes the suppression 

of one doublet from the trailing end weight function and 

the addition of a doublet of opposite "sign" at the leading 

end. 

The weight functions shown in Figures 29b and 29c 

are seen to have essentially different structures. The opti- 

mum (no-no.lse) solution to the present problem is, therefore, 

properly called a time-varying processor, since time-transla- 

tion of the input echo does not result in only time-transla- 

tion of the corresponding optimum processor. 

A formal expression for the optimum processors 

presented in this section, and in Figure 29, may also be 

written.  It is; 

wopt(t;po'0) Ä zi" „ "  ^^ " Po) 0 dlt ^ - Po " 2 * kt) 

(13.23a) 

for - ^ (D + T) < t < I1 (D + T) ,  and 

wopt(t;Po'ü) " 0' otherwise (13.23b) 

B.   SOURCE WITH NON-UNIFORM CROSS SECTION 

Attention will now be returned to the more general dis- 

persion function originally given in equation (13,1), namely 
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g(p,f)  «4   •  Ec(p)   '  6(f) (13.24) 

Presentation of the zero-noise optimum processor for this 

more general dispersion function is now a simpler matter 

because solutions in less general cases have been seen in 

preceding sections. 

Let it be supposed that the optimum weight function for 

detecting m(t70,0)  in clutter characterized by equation 

(13.24), has the form 

OB 

w(tyO,0) =  2  a 6 {l]  (t - | - kT)   (13.25) 
k=- « 

where the coefficients a.  are to be determined, and where 

6(l)(t) =4 5(t) . (13,26) 

The form of equation (13.25) is suggested by the form of the 

previous solution, equation (12.71), for uniformly extended 

stationary clutter.  In proposing equation (13.25) it is 

tentatively assumed that inclusion of the unspecified coef- 

ficients a,  will be sufficient to permit a solution for 

the non-uniform clutter of the present case. This remains 

to be demonstrated. 

The basic integral equation which must be satisfied by 

w(t;0,0)  of equation (13.25) is 

/ X)c(t1,tsf)w(ta;0,0)dta = m(ti?0,0)   (13.2?) 
— 00 

This is the same as equation (6.2) with N ,p , and f  set 

equal to zero. The covariance kernel which results when 

equation (13.24) is used in the defining equation (6.3) is 
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^c( W " 26c    !    Ec(P)  m(ti " P)"*^ - P)dP 
(13.28) 

When equations (13.27) and (13.28) are combined, the result is 

2&
c    J    S    E (p)m(t -p)m*(t -p)w(t ;0,0)dt dp = n»(t ;0,0) 

(13.29) 

The coefficients a.  in equation (13.25) will now be found 

by requiring that w(t70,0) of equation (13.25) be a solution 

of equation (13,29), 

The integration with respect to t  in equation (13.29) 
2 

may be performed with the aid of equations (8.16) and (13.25). 

The result is 

2 " kt 
_J m*(ta - p)w(V0,0)dt2 = J: ^ ak(-l) [^ m*(t - p)]t « T + 

(13.30) 

or, if equation (12,5) is used for the derivative of m(t), 

/ m*(t  - p)w(t ;0,0)dt = -^r  2   (-l)av fö (T+kT-p)-6(kT-p)j. 
-co« 2        «T^k«-«        {_ J 

(13.31) 

When this expression is introduced into equation (13.29), 

the integration with respect to p may be performed. The 

result is 

2^    »        p -i 
~ *  2  (-l)av E«(T+kT)m(t -T-kT)-Er,(kT)m(t -kTH = m(t ) 

]C=-«     Kj^C x        c       1J       1 

(13.32) 
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The coefficients of concurring waveforms  on each side  of 
this equation may now be  identified.     One concludes that  for 
equation  i13.32)   to be an identity,   the coefficients    a. 

must be related by 

2£  c 

7 (-1)     L       '  Ec(0)   - ao   •   Ec(0)J     -  1 
(13o33a) 

while 

2^c   r 
— 

•E   (kT)  - a,    • E  (icT)       « 0,  k / 0. 
L-l C^ K C 

(13.33b) 

From the latter of these two relations one concludes that 

a, = a    k « 1, 2, 3j .»» * 
K     O 

(13,34a) 

and that 

a = a_   k = -2, -3, -4, ...  =   (13.34b) 

Thus all coefficients a,  are determined once the two co- 

efficients a  and a   have been given values. The latter 
o       -i 

two, in turn, are constrained to satisfy equation (13.33a) or 

i 

T? 
a - a  = -^ '— (13.35) 

The result is that the optimum processor for this case 

can be written 
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a      2    Ö^Ct - £ - kT) 
0 k«0 2 

t > 0 (13.36a) 

w(t;0,0) -   < 
-1 

-i 
Z 6 (l) (t  - ? - kT)   t < 0 (13.36b) 

where the only remaining task is to find the correct amplitude 

a . The amplitude a_ will then also have been determined, 

by equation (13.35). 

It is at this point that a certain formal indeterminacy 

may be seen in the solution of equation (13.27) for the pre- 

sent case. Note first that if the "function" w (t) is de- 
o 

fined by, for all t. 

w (t) =  2  6(l)(t - J - kT) 
o     k»—        2 

then it may be verified (using equation 13.31) that 

(13.37) 

/ ^c(t1,ta) wo(ta)dta = 0, (13.38) 

Thus w (t) provides what might be termed the "homogeneous" 
o 

solution to equation (13.27) for the present case of a non- 

uniform, stationary clutter source. 

Observe next that if one determines a solution w (ty0,0) 

according to equations (13.36) for a particular a = a, and 
o 

then determines a second solution w (tyO.O) for a = a + a. 
2 O ' 

then the two solutions will be related by 

wa?(t?0,0) = wi(t70,0)    -f    a • w (t).       (13.39) 
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That is to say, variations of the coefficient a  appearing 
o 

in equations (13.36) lead only to variations in the amplitude 

of the homogeneous component of the solution defined by 

equations (13.36). 

That a homogeneous solution to the basic integral 

equation (13.27) exists in this case therefore permits the 

existence of a family of solutions interrelated by an equa- 

tion such as (13.39). 

In these circumstances, the single solution which will 

be called optimal in this research is that corresponding to 

the choice of coefficients 

1 
2 

r- a 
-1 4Ä (0) (13.40) 

The corresponding weight function is given by, for t /- 0, 

wopt(t!0,0) = 

1. 
m2 

and, for t < 0, 

00 

2  ^ 6(t - I - kT) 
k=0 aT:       d 

(13.41a) 

wopt(t;0,0) = -wopt(-t;0,0). (13.41b) 

It may be verified that w Dt(
t*0*0)  thus defined has no 

homogeneous component. That is, w
ot)t^

t7^*^ cannot be 

represented in the manner of equation (13»39) with any non- 

zero value for a. 

It may also be verified that ^    At;®^)     given by 

equation (13.41) is identical to the processor given earlier 

by equations (12.71). This is a more striking conclusion. 

-223- 



{I m 

COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

which asserts that the processor derived earlier for the case 

of a uniformly extended stationary clutter source (equation 

12.71) is also the optimum processor for the present case of 

a non-uniformly extended stationary clutter source. 

The fact is illustrated in Figure 30* where the processor 

weight function for the signal m(t;0,0)  is identical to 

that given earlier in Figure 23,  even though the mean-square 

clutter amplitude is now a function of range delay. 

It must finally be remarked that this solution, although 

strange at first glance, is nevertheless entirely consonant 

with previous remarks concerning reciprocal waveforms. 

In particular, one may refer to the reciprocal waveform 

ü) (t)  shown in Figure 23 and described by equations (13.IO) 

through (13.13).  In connection with Figure 23 it was shown 

that CD (t) was orthogonal, for example to m (t). This 
2 i7 

was stated in equation (13.13c) as 

/ CD (t) m (t)dt = 0 (13.42) 

In the present context it is relevant to observe that this 

orthogonality persists irrespective of the actual amplitude 

of m (t), 
17 

In the detection of m (t),  for which OJ (t)  is an 
z z 

optimal processor, the waveform m (t) may be regarded as 
17 

a typical clutter component. The fact observed earlier was 

that CD (t) was orthogonal to all clutter components not 

identical to the desired echo.  In the present context one 

notes that this orthogonality remains true even though the 

different clutter components may have different (mean- 

square) amplitudes.  One therefore might have expected that 
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m(f,0,0) 

i 
1' 

*     (r.0.0) 

I 

FIG. 30     OPTIMUM ZERO-NOISE PROCESSOR FOR A RECTANGULAR PULSE 

IN NON-UNIFORM CLUTTER 
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the reciprocal wavef<    »hich arose in the case of uniform 
clutter  (equation 12.71)  would be the same reciprocal wave- 
form for optimum detection  in non-uniform clutter,  as was 
indeed shown to be the case at equation (l3o4l). 

s 
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APPENDIX A 

FORMAL EXPRESSIONS FOR AN OPTIMAL SYSTEM 

A weight function w(t)  is to be found which majzimizes 

? ratio of the form 
00 

s ^   
I        CO  oo 

/ w*(t)x(t)dt 

/   /   yf*{txMtz)K{tiJtg]dtidti 
— 00    —00 

i51 This may be regarded51 as a problem in the calculus of varia- 

tions with the object of minimizing the denominator subject 

to the constraint of the numerator being constant. 

The numerator may be rewritten as a double integral and 

the problem converted to one of unconstrained minimization by 

the introduction of a Lagrange multiplier A.  Then a condi- 

tion E.jr  a solution is that the first variation of F be zero, 

where 

00 00 

F   =   /     /    W*(t   )w(t   )X(t   ,t   )dt   dt. 
vA-2) 

00 00 

+ MlK|2'/   /  w*(t  )w(t  )x(t  )x*(t  )dt dt 
L -oo-oo 12 1 2 1       2| 

and |K|2 = the constrained value of the numerator. 

Upon replacing w(t) by w(t) + 6w(t)> where 6w(t)  is an 

arbitrary variation of w(t), one finds that the first varia- 

tion of F is given by 
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00 00 

6F «  J   öw^tj/   w(t2)(X(ti,tg)->.x(ti)x*(t2)) dt^ 
— 00 

00 00 

+ /   6w(t2)/  w»(ti)(X(ti,t2)-Xx(ti)x*(t2)) dtidtj 
-00 -00 

(A-3) 

In the present problem the kernel^ (t ,t )  is Hermi- 

tian.  That is 

X(vt2) EX*(t2,ti) . (A-4) 

In this circumstance one may verify that the inner integral 

in the first term of (A-3) is the complex conjugate of the 

inner integral in the second term.  Since the arbitrary va- 

riation öw(t)  can arbitrarily be real or imaginary, a neces- 

sary condition for 

6F = 0 (A-5) 
is that 

00 

/ w(t )(X{t  ,t )-^x(t )x*(t ))dt = 0 .    (A-6) 
— oo 

Both the real and imaginary parts of this generally complex 

integral must be zero. 

The necessary condition which w(t) must satisfy is de- 

rived by rewriting (A-6) to read 

00 00 

/ Ji  (ti>t2)w(t2)dt2 = x(ti).x/ w(-2)x*(t2)dt2     (A-7) 

and recalling the numerator constraint, which may be written 

00 

/ w(t )x*(t )dt  = K  . (A-8) 
n 2       2    2 v 

— oo 

-228- 



COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

From (A-7) and (A-8) one concludes that 

TO 

f X (t ,t Mt )dt  = x(t ).u (A-o) 
•'_       12     2    2        1 
— 00 

where u is a possibly complex constant.  Since the ratio 
e 
~ is independent of amplitude scale changes in w(t), the 

factor u may be taken equal to unity without essentially 

affecting results. 

Equation (A-9) expresses x(t)  as a linear transforma- 

tion of the unknown function w(t).  A formal solution to 

(A-9) may be derived by assuming that the function w(t) can 

be expressed conversely as a linear transformation of x(t). 

That is, a kernel •£ (t ,t )  will be assumed to exist such 
1        2 

that 
00 

w(t   )   =   /   ^ (t     tjx(t   )dt     . (A-10) 
1 -oo 12 2 2 

When  (A-10)   is   introduced in  (A-9'/   the result may be written 
(with    u-1) 

00 

f   o(t   ,t   )xft   )dt    - x(t  ) (A-ll) 
~. 1       3        '     3 3 1 

where 
— 00 

00 

a(t    t  )  =  / J({t    t  )£{t  ,t )dt    . (A-12) 
13 •'v12 232 — oo 

Equation (A-ll) asserts that the kernel o(t ,t ) de- 
1   3 

fined by (A-12) has a certain "sifting" property with respect 

to the function x(t).  The conclusion is that, if a kernel 

,£ (t ,t )  exists satisfying (A-12) then w't)  given by 
2   3 

(A-10) will be a solution of the desired Eq. (A-9).  Equations 

(A-10) through (A-12) therefore describe a formal solution to 
g 

the problem >f maximizing the ratio -r . 

A formal expression for the maximum value attainevl by the 

ratio can also be derived.  For the numerator in (A-l) one 
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computes 
oo <v  oc 

/ w(t )x*(t )dt - f / x*(t )^(t ,t )x(t )dt dt . 
•»00 ~ 00 » 00 

(A-13) 
Equation (A-10) '~  also used to compute, for the denominator 

of (A-l), 

00 00 

/   /   w*(t  )^(t±   )w(t  )dt dt. 

00 00 00 00 

/„ /. il L -c^s^^^sX ^^MK^^^K 
00 00 00 

Iff   JC*^  »t  )x*(t ) a (t  ,t )x(t )dt dt dt 

ao      oo 

/   /     x  (t1)^*(ti.t2)x»(t2)dtidtg (A-14) 
— &     —00 

wherein the sifting property of a(t ,t ) has been used. 
1   4 

Si.ice the right-hand sides of (A--13) and (A-14) are com- 

plex conjugates of each other, their substitution into (A-l) 

yields 

oo      oo 

J=  f   I     x*(t   )^(t    tjx(t  )dt dt (A-15) 
-oo-oo 1 lfc 212 

c 
for the maximum value of -r . 

-230- 

*mmmmmmm 



COLUMBIA UMVERSITY—ELECTRONICS RESEARCH LABORATORIES 

APPENDIX B 

ANALYSIS IN THE FREQUENCY DOMAIN 

1.  Excerpts from Fourier Transform Theor^ 

Time functions will be dciioted by lower case letters 

and covariance functions by script letters.  Their frequency 

transforms will be denoted by corresponding capital letters. 

A given function g(t)  and its transform G(f) are related byi 
00 

G(f)   =  /     g{t)exp/-j27rft> dt (B-la) 

00 

g(t)   =  /     G(f)exp (j27rft) df (B-lb1 

— 00 

a. The following identities are known and useful: 

i.    r{g*(t)) =G*(-f) (B-2a^ 

ii.   !r(g(t-T))=G(f)- exp {-j27rfT) (B-2b) 

iii.  7'(g(t)exp (j27r(W:)} = G(f-0) (B-2c,) 
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Presented in this appendix is a selection of identities 
I 

which relate expressions given in terms of time functions to 

expressions which involve their Fourier transforms.  The pur- 

pose is to exhibit those relations which lacilitate the analy- 

sis in ^he text. 
I 

The first section contains certain results from Fourier 

transform theory.  The following sections sketch the deriva- 

tions of various results cited in the text. 
5 
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b. The linear functionals encountered in the text 
are conveniently handled using Parseval's Theorem14 

00 00 

/ u»{t)v(t)dt - / U»{f)V(f)df .       (B-3) 
— 00 —00 

c. The linear transformation of one function, x(t), 

into another,  2(t), by convolution occurs in the form 

00 

z{tx)  - / ^(t^t^xCt^dt . (B-4) 
— oo 

Elementary is the knowledge that an equivalent form is 

-o 

z(t ) « / K(f)x(f)exp(j27rft }df     (B-5) 
-00 

or, more simply, 

7'(z(ti)} = K(f)X(f) {B-6) 

d.   In several places one must have the value,  v, 

of a bilinear form having the appearance 

00   00 

v« / / y*{t )J({trt )x{t )dtdt    . (B-7) 
— 00 — CO ~    - 

When this expression is decomposed into 
00 

— 00 

and 
00 

2(t ) - / i( (t -t )x(t )dt (B-8) 

v - / y*(ti)z(ti)dti (B-9) 
— 00 

then application of (B-3) to (B-9), and (B-6) to (B-8), yields 
00 

v    -  /   Y»(f)K(f)X(f:df   . (B-10) 
*M- 

<f ^ 
-'yi.; 
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2.       Optimal Proceasor  for Stationary Interfere   2© 

The covariance function for statistically station- 
ary interference depencls only upon time difference so that, 
as at Eq.   (2.46)   of the tej.t, 

xcw -^(trt
2
) • {B'll) 

The covariance function is, moreover, Hermitian.  That is 

JCCt^t^ ^J(*{t2,tx)    . (D-12) 

The power spectral density fanction K(f)  for the interfer- 

ence is defined by 

K(f)«7{i((T)}  ,  T = t^ . (B-13) 

Using (B-12) one shows that 

00 

K(f)=     J   i((T)exp/'-j2/rfT) dT 
-00 

00 

88     / JC#(-T)exp{-j27r{-f)(-T)}  dx 
-co 

oo 

*       /    >(*(T)eXp  /'-j27T(-f)T}   dT 
— oo 

«[/ >C(T)   exp(-j2rr(f)T} dTJ 

= K*(f). (B.U) 

Therefore K(f)  is a real function of frequency for Hermitian 

For stationary interf« rence the optimal processor 

w(t) for a signal x(t)  must satisfy 
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>» 

/ ^(t -t2)w(t2)dt    - xitj  . (B-15) 

which stems from (A-9) and (B-ll). When Eqt (3-6) is applied 

to (B-13« one concludes that the Fourier transform of the op- 

timal weight function is given by 

w(f)=|[|]- . (B-16) 

The frequency response function for the optimal 

processor, as for any linear system, is the complex amplitude 

of its response to the input exp fj2~ft') .    The response to 
an arbitrary input x(t)  is given at Eq. (2.6) in the form 

u - / w»(t)x(t)dt . (B-17) 
— 00 

The response to exp /j27rft} is therefore given by 

00 

u«/ w*(t)exp (j27rft}dt (B-i8) 
—00 

which may be recognized as the Fourier transform of w*(t) 

evaluated at -f. Letting H(f) denote the frequency re- 

sponse function, one may therefore write 

H(f)« fy{w*(t))i f .        (B.19) 

With Eqs. (B^a), (B-i4), and (B-16) this yields 

H(f) - W*(f) -^f- . (B-20) 

The cross-ambiguity function ^   for an optimal xy 
system with frequency response function given by (B-20) is 

found by considering iti response to an input y(t)  different 

from X(t).  In these circumstances the r sponse to be studied 

-234- 

1 " PjWP 



COLUMBIA UNIVERSITY—ELECTRONICS RESEARCH LABORATORIES 

is given by 

00 

^XY 
=  /   w*(t)y(t)dt    . (B-21) 

* —00 

Parseval's theorem is used to express the light hand side in 

the frequency domain, whereupon substitution for W*(f)  from 

(B-20) yields 

CO 

5xy ■ / ^mr1« •       ^v 
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APPENDIX C 

THE KANTOROVICH INEQUALITY 

The tollowing is an English language version of the orig- 

inal proof by Kantorovich 

"Lemma; The inequality 

I v^k i yVx\ < ? N 
M 

A 
m 
M I.**]       (C-l) 

is valid, where m and M are bounds of the numbers 7, 

0 < m < 7k < M. (C-2) 

One may assume that the sums are finite and that 

and 

7, < 7 < ...  , 1     2 

2xJ =  1 . 

(C-3) 

(c-4) 

We shall seek the maximum 

G = acr - ^vSJUiU** (c-5) 

with the condition 

2 x* « 1 . (C-6) 

t  See page 142 of reference 19. 
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We equate to zero the derivatives  of the  function 

(C-7) 

1 OF 
2 ^x 

s 
a — x    + a 7 xa  -- >ote = 0       (c-8) y S '3   3 S v 

i.e. xs(a + a7| --  \ys)  = 0 (c-9) 

The second term in the latter expression is a multinomial of 

the second degree with respect to 7 ,  so that it may become 
zero for not more than two values of s;  let these be 

s = kft.    For the remaining s it must be that x = 0. 

But then 

max V^ + ^ixVt 
■i- x« + -i x2 I (c-10) 

JL 
4 

2i . r 
K+X?)2  4 1.17? + 

^ 

(X 2 _ V2N2 

<i 
r% 

"N '1 N 
ys 1 2 

< 
1 
4 

"\ 

m 
M 

+   | - 1 m    1 
2  «i 

x2V 

(C-ll) 

(C-12) 

The conditions for equality are readily deduced from 

the preceding version of the proof. Comparison of equations 

(C-ll) and (C-12) makes it clear that equality is achieved 

only if 

i) (x2 + x|)2 -f (xj - x2)2 = 1 (C-13) 
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-«= 

K* 

and 

and 

ii)   7^ = m 

iii)  7^ = M 

(C-l4a) 

(C-I4b) 

and 

iv)   x s 0  ,   3 / "k,   3  ft I (c-15) 

When equation (c-13) is simplified, it reduces to 

Kxi ^1 ' 

while equations (c-4) and (c-15) imply 

(c-16) 

^ 

2 + x? = 1 (c-17) 

The simultaneous solution of this pair of equations is 

X* = X* = * 1 I " 2 (c-18) 

When these values are introduced into equation (c-ll) the 

result is: 

max M 
M 
m (c-19) 

N "N 
An alternative form to the basic inequality (c-1) can 

be derived if the scalais 7  are identified with the eigen- 

values of a positive definite matrix A. Then one can write 

the equivalent inequality 
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(Ax,x)   •   (A-Vx) <     (VmS)2     (x'x)a       (c-20) 

This form of the inequality seems to be the more usually 

given one .  It is certainly the form which, by analogy with 

equation (4,41) of the text, suggests its application in the 

present problem. 

It may be verified algebraically that the right hand 

terms of both inequalities (c-l) and (c-20) are identically 

equal0 

t Forms similar to (r-20^ may be seen in Bellman, Ref. 4,p 134; 
or Beckenbach and Bellman, Ref. 3, P. 70; or Marcus, Ref. 27, 
p. 11. 
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APPENDIX D 

THE GAUSSIAN FUNCTION 

It is well known that the Fourier transform of the Gaus- 

sian probability density function with zero mean is given by 

i 

f 
i 

f 2na 
exp (-£) exp(- |(27rf)2 a2} (D-l) 

If however one defines a new parameter W by 

1 w 
s/ltir o 

then one has the preceding relation in the more convenient 
form user in the text: 

^[W . exp (-7rt2W2)] « exp ["^ |l } - (D-2) 

In the latter form W is a parameter linearly related to 

the width of the frequency spectrum of the Gaussian time pulse. 

Products and quotients of Gaussian functions yield exponen- 

tial functions with quadratic polynomial exponents.  The simplifi- 

cation of such exponents is often facilitated by the identity. 

f ?aißi Y 11^.6.(3.-6.) 

^     i   J    1 £ 1 

where the right-hand follows upon completion of the square on 

the left-hand side.  If however 

T o^ « 0 (D-4) 
then one can write 

Icx^t-ß.)2 = - 2t(raißi)+ I a^l 
(D-5) 
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APPENDIX E 

APPROXIMATE INTEGRATION BY HERMITE-GAUSS QUADRATURE 

Under certain circumstances, good approximations to the 

values of definite integrals may be had from the Hermite- 

Gauss quadrature formula 

/ e-x2f(x)dx4    a[M)f(4M))      (E"1) 
—00 

where the weights Ohi  an(^ abscissas xA '  are suitably 
chosen and independent of the function f(x).t Numerical 
values for the weights and abscissas are given, for M up to 
20, by Salzer, Zucker, and Capuano.38 

In Chapter X the problem arose of evaluating 

?iM(f;Po.fo)|^f (E.2) 
X opt    B -oo  K (f)+N 

where 

2^      I       <f-fo)2' M(f;po,fft) = ^r • exp ^-TT  f— (E-3) 
O' O'     1 

V^ =2&C    -Tt^i*^) (E-V 'k    ^  w,2 

t See Hildebrand10, pp. 319-330, for an exposition of the 
theory of Gaussian quadrature. 
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and k q        2 (E-5) 

The required integral in Eq. (E-2) is reduced tr the form 

required for Eq.  t'-l) by the following change of variable. 

x = VÜL (f.f ) (E-6) 

When this relation is introduced into equation (E-2), to- 

gether with the auxiliary function G(f) defined by 

G(f) = 
K (f)+N, 

(E-7) 

the  signal-to-interference ratio becomes 

Opt VTT   ' -' 
^    ^ 7    e'x2  .   cf^5^- +  f   jdx 

/ 

or,   using Eq.   (E-l), 

(E-8; 

(I) » 2£.   IM(f   ,W) 
^ opt s M^  o'   ^ 

M 

where yv) - -fe E a(x)Gl fwsc 
(M) 

^ k«l V2^ 0' 

(E-9) 

(E-10) 

The "normalized"   signal-to-interferer.ee ratio parameter    |x 

is computed according to 

2£, 
^o = IT ^o'^ (E-ll) 
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It is therefore clear that by the foregoing procedure 

one may choose vaj.   for f  and W and compute approxi- 

mations to the corresponding values of u  or ^x^ovt'   once 

the value of M has been decided upon.  Computations of 

IM(f0,W)  for different M,  and the same f0 and W,  will 

yield different approximate values for M-0 
an^ (i^opt*  In 

general one expects that the larger the value of M is 

(leading to more terms in ehe approximating sum) the better 

will be the approximation.  A small M,  however, would be 

preferred for reasons of economy in generating the data. 

For the data presented in the text ^^o^  has been 

taken to be the value given by the smallest M for which 

< e (E-12) 

for a specified tolerance e» For the values of f * w* and 

Ä which appear in the tex-1-, the inequality (E-12) was sat- 

isfied for M < 20 with e equal to 0.01. 

The actual numerical values of the various parameters 

appearing in the calculations were chosen from among 

£s = 100 

«c = 5000 

v'q 
~ 100 

f 2 

(^) = 0, 1, 2, 3, ^ 5, 10, 102, 103, 104 

g 
N   = 10"4, 10"3, 10"^. 10"1, 1, 10, 100 

itr)  = .1, .316, i, 3.16, 10, 31.6, 100 Wq 

with occasional other values used to fill in data required 

for better visualization of rapidly varying data. 
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