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ABSTRACT

This report covers the state of the art of welding procedures for
titanium and its alloys.:'- Methods employed in the past and present
are described. Many of the conventional welding and brazing processes
are used for joining titanium and its alloys. Information on the use of
these processes, when available, was condensed or extracted and in-
cluded in this report. Necessary additional processing such as pre-
weld cleaning, joint preparation, postweld cleaning, and postweld
operations are also included since they form an integral part of the
welding processes without which successful welding cannot be accom-
plished. Joining processes that have been tsed only experimentally
also are described briefly.

The need for proper preweld cleaning operations and proper
shielding to prevent contamination of titanium welds is emphasized
throughout.

This report does not exhaustively cover the selection of titanium
alloys for specific applications or mechanical properties obtained from
joints. These areas were not included in the scope of this program.
The reader is reminded of the importance of these areas in obtaining
desired service performance in structures fabricated from titanium.

":Principal Investigators, Battelle Memorial Institute,

Contract No. DA-01-0ZI-AMC-l1651(Z)
::'Adhesive bonding and mechanical joining are covered in other

reports.
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PREFACE

This report is one of a series of state-of-the-art reports being
prepared by Battelle Memorial Institute under C"ontract No. DA-01 -

2Z1-AMC-l1651(Z) in the general field of materials fabrication.

This report describes practices for welding titanium and titanium
alloys. It is intended to provide information useful to designers and
manufacturing engineers. The information in this report has been se-
lected primarily as a guide for selecting conditions, equipment, and
fabricating techniques for welding titanium. Common problems en-
countered in welding and brazing titanium and its alloys are identified,
and precautions for avoiding the problems are described.

The report summarizes information obtained from equipment
manufacturers, titanium producers, technical publications, reports on
Government contracts, and from interviews with engineers employed
by major titanium fabricators. A total of 133 references, most of
them covering the period from 195.7 to the present, are cited. In addi-
tion, much detailed data covered by reports and memoranda issued by
the Defense Metals Information Center are used. A recent Aircraft
Designers Handbook on Titanium and Titanium Alloys prepared for the
Federal Aviation Agency by Battelle also provided much background
information. The assistance afforded by these previous programs has
helped in the preparation of this report.

In accumulating the information necessary to prepare this report,
the following sources within Battelle were searched for publications
from 1957 to the present: Defense Metals Information Center, Main
Library, Slavic Library. Information was obtained also from informa-
tion centers outside Battelle, viz., the Redstone Scientific Information
Center and the Defense Documentation Center. Descriptors employed
for recovering information from these information centers are given in
Appendix A.

Personal contacts also were made by visit or telephone with the
following individuals and organizations:

Durwood G. Anderson Howard Cary
Airite Division Hobart Technical Center
Electrada Corporation Troy, Ohio
Los Angeles, California

ii



.. Mitchel

John Rudy Titanium Metal0 Corporation of
The Martin Company America
Denver, Colorado New York, New York

Melvin C. Clapp F. L. Murphy
Columbus Division Pratt & Whitney Aircraft Division
North American Aviation, Inc. United Aircraft Corporation
Columbus, Ohio East Hartford, Connecticut

R. S. Emlong V. H. Pagano
E. R. Funk Materials Laboratory
Astro Metallurgical Corporation U. S. Army Tank-Automotive
Wooster, Ohio Center

Warren, Michigan
J. L. Fleming
Aluminum Company of America J. Gordon Parks
Pittsburgh, Pennsylvania Methods Research and Develop-

ment Branch
G. Garfield Manufacturing Engineering
Aerojet-General Corporation Division
Downey, California George C. Marshall Space Flight

Center
Grumma~i Aircraft Engineering National Aeronautics and Space

Corporation Administration
Bethpage, Long Island Huntsville, Alabama
New York

Reactive Metals, Inc.
A. M. Krainess Niles, Ohio
Space and Information Systems

Division William S. Rudin
North American Aviation, Inc. Sciaky Brothers, Inc.
Downey, California Chicago, Illinois

K. C. Linepensel A. Schoeni
Linde Division Ling-Temco Vought, Inc.
Union Carbide Corporation Dallas, Texas
Newark, New Jersey

Howard Siegel
J. Manfre McDonnell Aircraft Corporation
Crucible Steel Company of St. Louis, Missouri

Ame ric a
Pittsburgh, Pennsylvania
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Sumner Smith Fred W. Vogel
SMenasco Manufacturing Company Modern Machine Shop

Burbank, California Watertown Arsenal
Watertown, Massachusetts

W. 0. Sunafrank
General Dynamics/Fort Worth

Fort Worth, Texas

The authors wish to thank each of these individuals and their or-
ganizations for contributions. They also wish to thank Vernon W.
Ellzey and Albert G. Imgram, of Battelle, Project Technical Coordi-

nators, and Walter H. Veazie, Battelle Information Specialist, for
their assistance during this program.
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TECHNICAL MEMORANDUM X-53432

WELDING PROCEDURES FOR TITANIUM AND
TITANIUM ALLOYS

SUMMARY

Titanium and titanium alloys can be welded by a variety of
methods. Most welding processes used in the past for joining more
common metals have been used to successfully join titanium. Many
new metals-joining processes also have been used with success in pro-
duction and experimental applications. It i-s expected that the older
established joining processes will continue to be used successfully, and
that applications of the newer joining processes will gai.n wider use for
titanium as more experience and knowledge is developed.

Difficulties in welding titanium and titanium alloys originate from
several basic sources. The high reactivity of titanium with other ma-
terials, poor cleaning of parts before joining, and inadequate protec-
tion during joining can lrad to contamination, porosity, and embrittle-
ment of the completed joints. There are many fabricators currently
joining titanium, however, by various processes. The successful
joining of various titanium-alloy products has been accomplished
through the use of good welding practices and a knowledge o, the fac-
tors that affect titanium-weld-joint quality.

Many of the difficulties experienced in joining titanium and titanium
alloys can be minimized or eliminated by following the procedures de--
scribed in this report. When proper techniques are employed, welding
of titanium is not an unusually difficult operation. An awareness of the
cleanliness needed to successfully weld titanium is essential, and good
cleaning practices must be followed throughout the welding fabrication.
Brazing of titanium is still limited by difficulties encountered in se-
lecting suitable filler alloys that satisfy performance criteria.
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INTRODUCTION

Titanium and titanium alloys have a number of desirable proper-
ties and, when suitably combined, these properties make the metal the
best material for a variety of service applications. These properties
include:

(I) Excellent fatigue resistance

(2) Good notch toughness

(3) Stability over wide temperature range

(4) Low coefficient of thermal expansion

(5) Low thermal conductivity

(6) Outstanding corrosion characteristics for some of the
most troublesome industrial chemicals

(7) Excellent resistance to erosion and cavitation from high-
velocity fluid flow

(8) No scaling below 800 F, although discolorati, n of the
metal may occur

(9) Inert in electrochemical operations, when charged as an
anode in electrochemical circuit.

These properties are important in a variety of applications including
airframes, jet engines, aerospace equipment, chemical or processing
equipment, and electroplating equipment. Whether manufactured from
bar, plate, sheet, or forgings, some type of joining operation often is
required to assemble components or subassemblies as a step in com-
pleting the final product.

The joining of titanium oy welding and brazing processes is de-
scribed in this report. Previous reports in this 'series have described
adhesive bonding and mechanical fastening of titanium. Emphasis is
bting placed in these reports on the details of joining procedures.
This report is organized into three major sections: (1) Joining funda-
mentals that cover those aspects of titanium joining that are common
to several joining methods, (2) Joining processes that cover equipment
procedurps, typical joining conditions, and applications, and (3) Dis-
similar metal joining in which titanium is one of the materials being
joined.

2

2ZI____________



WELDING FUNDAMENTALS.

Successful titanium welding involves a careful consideration of
many factors related to the actual joining operation. These factors
are common to most joining processes and include such items as ma-
terial selection, process solution, cleaning, tooling residual stresses,
repairs, etc. Collectively these factors constitute the fundamental
basis of a successful joining procedure. The following sections dis-
cuss these basic considerations, particularly as they relate to
titanium joining.

MATERIALS

Joining operations involve two types of materials: (1) those that
make up the component being joined and (2) those used or supplied in
the joining operation.

Component Materials. Component materials are selected to
obtain desirable combinations of mechanical and physical properties
under the imposed service conditions. ' Consideration of all the fac-
tors involved in the selection of component materials is important but,
in this report, only those factors related to joining operations will be
discussed.

Important features of titanium alloys that must be considered to
successfully join this highly reactive material are:

(1) The extreme sensitivity of titanium to embrittlement by
small amounts of some impurities

(2) The very high reactivity of titanium, not only at welding
temperatures but at temperatures as low as 1200 F

(3) The effects of the heating and cooling cycles involved in
joining operations on the mechanical properties of the alloys

(4) The inherently brittle structures, which are almost always
formed when titanium is joined to other metals

(5) The specific titanium alloy composition to be used.

The sensitivity of titanium and titanium alloys to embrittlement
imposes limitations on the joining processes that may be used. Small

amounts of carbon, oxygen, nitrogen, or hydrogen impair ductility

"Appendix B (DMIC Memorandum 171. July 15, 1963) tabulates the physical and mechanical properties
of many titanium alloys. Information on titanium-alloy producers also is included.
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and toughness of titanium joints. As little as 5000 parts per million of
these elements will embrittle a weld beyond the point of usefulness.
Titanium has a high affinity for these elements at elevated tempera-
tures and must be shielded from normal air atmospheres during join-
ing. Consequently, joining processcs and procedures that minimize
joint contamination must be used. Dust, dirt, grease, fingerprints,
and a wide variety of other contaminants also can lead to embrittle-
ment and porosity when the titanium or filler metal is not properly
cleaned prior to joining. Contamination that arises either from the
open atmosphere or from dirt on the filler metal or surfaces to be
joined must be strictly avoided for the successful joining of titanium
and titanium alloys.

Recognition of several metallurgical characteristics of titanium
is im.portant if we are to understand the reasons for using the specific
joining methods discussed later. These characteristics, (1) chemical
activity, (2) interstitial alloying, (3) substitutional alloying, and
(4) strengthening mechanisms, are discussed in the following sections.

Chemical Activity. When heated to joining temperatures,
titanium and titanium alloys react with air and most elements and
compounds, including most refractories. Therefore, gas-fusion and
arc-welding processes where active gases and fluxes are in contact
with hot metal are not used. The reaction products cause brittle
welds. Titanium can, however, be wel.ded by inert-gas-shielded or
electron-beam fusion welding and spot, seam, flash, induction-
pressure, gas-pressure, and other welding and joining processes.
With the inert-gas-shielded arc-welding processes, argon or helium
shields the welds from air and prevents weld contamination. Electron-
beam welding takes place in a vacuum. In spot and seam welding, the
molten titanium in the weld is surrounded by the titanium-base metal
so *he welds are protected from contamination. In flash and pressure
welding, air mray be in contact %vLth the weld, but most of the contami-
nated metal is pushed out of the weld area and any remaining impuri-
ties diffuse iWto the metal away from the weld interface. Inactive flux
backups have been developed for use in combination with inert-gas
shielding for welding titanium.

Brazing and solid-state-welding processes for titanium generally
are limited to those techniques that involve vacuum or inert-gas
atmospheres.

- Interstitial Alloying. Of the few elements that can form
interstitial solid solutions in titanium, only carbon, oxygen, nitrogen,
and hydrogen are of specific interest in the joining of titanium.

4

I-lo



Carbon, n'trogen, and oxygen all behave in about the same way in ti-
tanium. Small amounts of these elements cause significant embrittle-
ment of titanium welds. The effects of these elements on weld duc-
tility and toughness are both progressive and additive (Ref. 1)'%.
Because of this, it is difficult to establish a definite amount of any
single interstitial element that causes a distinct change from good to
bad properties. During joining of titanium, contamination by carbon,
oxygen, hydrogen, and nitrogen must constantly be guarded against;
when these elements are found in titanium joints it is because:

(1) They are deliberate alloying additions to some forms of
titanium

(2) They may be present as residual impurities

(3) They may be picked up as contaminants from various
processing steps.

Hydrogen behaves somewhat differently in titarlium; nevertheless, its
presence in titanium welds can be extremely harmful. Hydrogen is
never deliberately added to titanium and should be kept at as low a
concentration as possible in all processing operations.

Interstitial elements have potent effects on properties of titanium
alloys. Consequently, caution is necessary when comparing titanium
alloys or different heats of the same alloy. Variations in impurity
content, or interstitial content, can cause significant changes in
toughness. Therefore, it is important to consider the effects of all
impurity content and alloying elements when selecting welding pro-
cedures, processing procedures, and other parameters..

The interstitial level that can be tolerated in welded joints depends
on the use to which the welds will be put and the alloy that is being
welded. Weld toughness is decreased by lower interstitial levels than
those that will affect ductility. Therefore, greater care should be
taken to insure against weld contamination in fabricating assemblies
that are subjected to impact loading. Also, welds in some alloys are
more ductile, and have a higher toughness than welds in other alloys.
Welds with a high basic ductility or toughness can tolerate higher in-
terstitial levels. Unalloyed or lower alloy or extra-low interstitial
(ELI) filler wire is often used to improve weld ductility.

The interstitial level that can be tolerated in welds is lower than
the corresponding tolerance level in base material. Interstitials that

*References are given on page 182.
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are present in the base metals prior to welding or are introduced dur-
ing welding may cause weld embrittlement.

Substitutional Alloying. The most generally recognized
effects of substitutional-alloy additions in titanium relate to the type of
alloy formed by the specific addition or additions. Titanium alloys are
classified as pure titanium, alpha alloys, alpha-beta alloys, or beta
alloys, depending on their metallurgical structures. Each titanium
alloy behaves according to the characteristics of its alloy type during
joining. The initial base-material condition (cold worked or heat
treated in some manner) is equally as important as alloy content, as
will be shown in the next section.

a'0

Commerciall- Pure and Alpha Alloys. All commer-
cially pure titanium and alpha alloys are weldable. The mechanical
properties of joints in either commercially pure titanium or alpha
alloys are not affected by welding operations or brazing thermal cycles
on annealed sheet material. Alloys of this type that have been
strengthened by cold working will exhibit a loss of strength in weld
heat-affected zones or brazements. Very little use is made, however,
of cold working to increase the strength of either commercially pure or
alpha-type alloys. Welded joints in annealed alpha-titanium material
are ductile and exhibit strengths that are equal to those of the base
metal. Alpha alloys with a maximum of usable strength are obtained
by using a level of substitutional-alloy addition that is close to the
maximum solubility. The 7AI-l2Zr titanium alloy is of this type and
is the highest strength all-alpha alloy currently available that exhibits
good weldability.

Alpha-Beta Alloys. The mechanical properties and
ductility of alpha-beta alloys can be affected greatly by heat treatment.
The response of these alloys to heat treatment depends upon the exact
alloy content. Therefore, very few generalized statements about
weldability of alpha-beta alloys can be made. Welding or brazing
these alloys may significantly change the strength, ductility, and
toughness as the result of the thermal-cycle exposure during joining.
The selection of an alpha-beta alloy for use in an application requiring
joining should be based on the known effects of the alloy content and thc
intended application. Alloys that contain about 3 per cent of either
chromium, iron, manganese, or molybdenum, and more than 5 per cent
of vanadium either singly or in combination with each other are seldom
used in fusion-welding applications because of the resulting low weld
ductility. When welding alloys contain percentages of these ele-
ments in excess of the amounts given above, it is sometimes possible
to improve weld ductility by a postweld heat treatment. However, the
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use of heat treatment is not always effective in improving ductility.
The thermal stability of welded alpha-beta alloys is another area of
concern if the intended application involves prolonged service at ele-
vated temperatures.

Alpha-beta alloys are sometimes welded with either commercially
pure or alpha-alloy filler metals. This is done to lower the alloy con-
tent of the weld fusion zone. The use -of filler metals of this type
lowers the beta-phase content of the fusion zone and generally results
in improved weld ductility and toughness. The composition of the
heat-affected zone, however, remains unchanged. In alpha-beta alloys
that are subject to heat-affected-zone embrittlement, special filler
metal alloys are ineffective in obtaining an overall improvement in
weldment properties.

Beta Alloys. The all-beta alloy, l3Cr-llV-3A1, de-
pends very strongly on either cold work or heat treatment to obtain
desirable strength properties. In these conditions, welded joints are
readily made, but the resulting weld strength is considerably lower
than that of the base plate. Postwelding operations designed to raise
the weld-strength level either are not practical or result in severe
embrittlement of the beta alloy. The reasons for this are not well
known, but are apparently related to different aging responses of
structures that differ in grain size, grain structure, or orientation.
All-beta alloys are also susceptible to thermal instability. Their use
in a fully annealed condition is generally not warranted because of the
low strengths available.

Strengthening Mechanisms. Titanium alloys can be
strengthened by cold working (strain hardening) and by heat treatments.
The strengthening mechanisms used for titanium alloys are important
because of their effects on weldability of alloys as based on mechanical
properties. Some alloys are considered to be weldable if the welds
are not given any postweld heat treatment. However, quite often welds
in such alloys are much lower in strength than the heat-treated base
metals. Attempting to increase the strength by a postweld heat treat-
ment may be successful, but quite often some other property (such as
ductility) is degraded.

The importance of strengthening mechanisms as a consideration in
the weidability of titanium alloys can be illustrated in another way by
considering the following statements.
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alloy content and a controlled-mechanical and thermal-
processing history.

(2) Welding imposes variable thermal cycles on material in
the joint area that are unlike any other exposure conditions
normally used on titanium alloys.

(3) The effect of welding thermal cycles on the properties of
titanium alloys may be insignificant or very significant.

(4) The apparent weldability of any given titanium alloy can
be altered considerably by either the initial base-
material condition or postweld thermal or mechanical
treatments.

Strengthening mechanisms also are important items to consider in
planning brazing operations for titanium.

Process Materials. The principal materials used in joining
operations are filler metals, protective shielding gases, and, on rare
occasions, protective fluxes.

Filler Metals. Some fusion-welding processes involve
the addition of metal from sources other than the base metal. Wire is
generally used and added at a controlled rate. Wire added during TIG
welding is called "filler wire" or "cold wire". Wire used in MIG
welding also is called filler wire, or it may be called "electrode wire".

Titanium wire for welding must meet high-quality standards. The
same is true for most welding wire. This requirement results from
the high surface area to volume ratios characteristic of the common
wire sizes used in welding (see Figure 1). Obviously, any wire-
surface-layer contamination represents a sizable addition to a weld.
Also, it is much more difficult to process titanium to wire without
contamination than is the case with other products. For example,
wire cannot be processed by any method comparable to the pack-
rolling procedures used for thin sheet.

Wire products sometimes contain defects. The terminology used
to describe various wire defects is illustrated in Figure 2. None of
these defects can be tolerated in titanium wire intended for welding
structural components of high-performance airframes.
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FIGURE 2, WELDING-WIRE DEFECTS
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The availability of good-quality titanium welding wire in the past
and today has been debated extensively. Some welding engineers feel
that high-quality titanium wire just does not exist. Others do not think
there is a "welding wire problem". The real answer probably lies
somewhere between these two extremes.

The "titanium welding wire problem", if there is one, must be re-
solved before some fusion-welding processes can be used for certain
applications. Titanium-welding-wire development has suffered from
the lack of a sizable market. Unalloyed titanium commercially pure
wire has been the major marketable item. Experience with the various
titanium alloys has been limited. The required quality level and relia-
bility in titanium-alloy wire probably can be developed once a market
is evident.

Filler wires for welding titanium are produced by the major ti-
tanium fabricators and by a number of specialty-wire manufacturers.

Filler metals also are used in brazing and some solid-state-
welding processes. Requirements pertinent to these applications are
discussed in the appropriate process sections.

Protective Shielding Gases. When molten, or even just
cherry red, titanium acts like a blotter for gases containing carbon,
hydrogun. nitrogen, oxygen, and water vapor. Small amounts of these
gases can embrittle titanium alloys beyond the point of usefulness.
Even trace amounts of these gases can have large effects on properties
of titanium alloys. Extensive tests have shown that argon used to pro-
tect the weld zone had to contain less than 500 ppm of air by volume
when welding Ti-5A1-2. 5Sn (Ref. 2). Bend tests showed a 50 per cent
reduction in ductility when air contamination was increased from
100 ppm or less to 500 ppm. Consequently, when joining titanium and
its alloys, any melted or heated metal must be protected from coming
into contact with air and other atmospheres containing these potentially
harmful elements.

Air around a titanium joint must be replaced by an inert gas dnd it
must be replaced whether the joint is fully penetrated or not. In actual
practice, inert gases, argon and helium, or mixtures of argon and
helium are used for shielding titanium with all fusion-welding pro-
cesses. Electron-beam fusion welding normally is done in a vacuum
at pressures low enough to preclude air contamination. Brazing and
solid-state joining are usually done in inert-gas atmospheres or
vacuum. Inert-gas shields help blanket all of the heated metal with
inert gas. The inert gases do not react with titanium whether the
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metal is hot or cold and there is no embrittling effect from these
gases. If the normal surrounding air contacts the heated metal it will
react with it to promote porosity, embrittlement, cracking, or other
serious effects. In addition to shielding, the inert gases argon and
helium are used to provide distinct welding arc characteristics and
weld features. Arc voltage in helium is about 30 to 50 greater than in
argon for a given welding current. The heat energy liberated in
helium is about twice the heat given off in argon. This means that
faster welding speeds can be obtained with helium shieldin6. Helium
also provides greater weld penetration and permits welding of thicker
gages more readily. Argon is used for welding thinner gages where
lesser heat may be desirable. Arc length can be changed in argon
without appreciably changing the heat input to the work. This is an
important factor when the electrode cannot be brought close to the
work or when arc length may vary as in manual welding operations.
Mixtures of shielding gases also are used to obtain characteristics that
are intermediate between those of the pure gases. Selection of the
particular shielding gas, therefore, is made to provide desired weld-
ing arc characteristics in addition to preventing contamination. Also,
gases such as hydrogen, carbon dioxide, and oxyacetylene mixtures
that are normally used in joining other metals cause severe embrittling
effets when used in joining titanium; consequently, they are not used.
Special grades of inert gas containing additives, such as oxygen, that
are used in some welding should not be used in welding titanium.

High-purity inert gases are needed for joining titanium. Special
welding grades of inert gases are available commercially. The major
concern with inert gas is insuring that the basic-gas quality is not de-
graded during flow through the joining equipment. The number of dis-
connectable fittings used in the gas- system should be minimized. All
such fittings must be kept in good condition and must be tight to prevent
aspirating air and moisture into the shielding gas stream. Damaged or
loose fittings can allow air or water leaks to contaminate the inert-gas
shield and the joint.

Protective Fluxes. Titanium and titanium alloys have
been welded using a proprietary-flux back-up, conventional MIG-
welding technique. In feasibility studies, 3/4-inch-thick commercially
pure titanium and 7/16-inch-thick ELI Ti-5AI-2. 5Sn plates were
welded in the flat position (Ref. 3). Torch-trailing-shield arrange-
ments were used to protect the access side of the welds while the
underbead side was protected with the proprietary flux. The flux was
placed in the separation between two back-up bars. The fused flux
forms a cocoon on the back sides of the welded plates and affords good
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protection from the atmosphere. The fused flux was removed by
scraping or wire brush"ing and ...... in w.t..r R.f. 41.

Similar techniques have been used for manual and mechanized TIG
welding titanium and there are indications that the flux ma~erial also
may be useful for submerged-arc-welding applications (R,- 3).

On the basis of preliminary results, it appears that fluxes for
welding titanium have merit although there are no known commercial
uses as yet.

PROCESS SELECTION

Titanium has been joined by many common welding and brazing
processes. Widespread use has been made of the following processes:

(1) TIG welding (tungsten inert gas)
(2) MIG welding (metal inert gas)
(3) Electron-beam welding
(4) Resistance spot-, roll spot-, seam welding.

Limited use has been made of many other joining processes including:

(1) Arc spot welding
(2) Plasma-arc welding
(3) Brazing
(4) Diffusion welding
(5) Roll welding
(6) Pressure-gas welding
(7) Flash welding
(8) High-frequency resistance welding.

Processes such as oxygen-gas fusion welding, submerged-arc welding,
coated-electrode welding, and arc welding with active gases are not
used for joining titanium because of the resulting embrittlement of the
joint area.

As with many other metals, selection of a joining process for ti-
tanium often is influenced by the physical characteristics of the part to
be joined. Fortunately, the varied characteristics of joining processes

lead to a very broad range of possible applications. Most titanium
joints can be made by any one of a number of joining processes. How-
ever, welding finds major usage in subassembly fabrication and a few
large structural compco:ents. Cost, available equipment, maintenance,
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reliability, accessibility, thickness, and overall component size also
are important factors in assessing the proper usage of welding and
alternative joining methods.

Joint design also can influence the selection of the joining process.
Design can limit the number of potentially usable processes and ex-
clude those processes that are either not usable or would be very dif-
ficult to adapt for the particular application. Figure 3 illustrates
several joint designs and lists the processes that normally would or
would not be used for joining; it is apparent that several processes can
be selected for making e ich joint when considered from a purely capa-
bility viewpoint. Other factors reviewed earlier may reduce the num-
ber of potentially useful processes to a fewer number than those
indicated.

The relationship of joining to other fabrication operations is an
important aspect in process selection. A simplified subassembly-
process flow chart follows to show some of the possibilities. The part
used as an example is a contoured stiffened skin too large to make
from a single titanium sheet. The materials involved are skin sheets
and formed stiffeners as sketched in Figure 4. The flow chart, Fig-
ure 5, shows that many possible approaches might be used to fabricate
this single part. The important point here is to remember that the
fabrication operations immediate" ', before and after joining are closely
related to successful part fabrication. Good joint fitups are needed
and all titanium parts must be properly cleaned before joining. Stress
relieving of complex (and perhaps any) weldments immediately after
welding is sometimes essential.

JOINT DESIGN

Suitable joint designs must be selected for all types of joining op-
erations, but they are particularly important in welding. Joints with
square abutting edges for arc or electron-beam welding for the thinner
gages of titanium normally require machining to provide a good fit-up.
Thicker gages require a more complex joint preparation. Typically,
such preparation involves machining bevels or contours on the abutting
edges. Part tolerances also are an important consideration in e--*ab-
lishing good joint designs. Close tolerances are always preferred, but
they cannot always be planned for in production parts. With titanium it
is also essential that the joint design selected be one that can be
properly shielded from contamination if welding is to be done in air.

Joints designed for TIG, MIG, or electron-beam welding titanium
alloys normally are prepared by machining so as to provide a good
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a. Butt Joint

Select: TIG, M!G, electron beam,
flash, pressure gas b. Fabricated Tee

Exclude: resistance spot and seam Select: TIG, MIG, electron beam
Consider: plasma, high frequency Exclude: flash, resistance spot and seam

Consider: plasma, high frequency, solid state

c. Sheet-Stringer Lop

Select: resistance spot or seam d. Multilayer Lap

arc spot, solid state Select: resistance or arc spot or seam,
solid state

ExClude, flash, pressure Exclude: flash, pressure gas
Consider: electron beam, plasma Considerr electron beam, plasma

e Sheet Splice With Doubler f. Cop or Tee

Select: resistance or arc Select: electron beam, TIG, MIG,
spot or seam, solid state high frequency

Exclude: flash, pressure gas Exclude: flosh, orc and resistance spot

Consider: electron beam, plosmo Consider: solid st6te, resistance seam

FIGURE 3. TYPICAL JOINTS IN TITANIU'J AND TITANIUM ALI.OYS
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FIGURE 4. STIFFENED-SKCIN COMPONENT
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FIGURE 5. FLOW SHEET sirIoWiNG POSSIBLE RELATION OF WELDING TO OTHER OPERATIONS
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joint fit-up. Unless the parts are well fitted together, burnthrough or
excessive deposits that may crark can result. The joints are ma-
chined by milling, shaping, and grinding. Draw files often are used
to remove burrs and to help clean the surfaces before welding. Al-
though many f-.bricators regularly use draw filing as part of their
normal joint-preparation procedures, some fabricators believe that
draw filing produces burrs that contribute to porosity; consequently,
the latter hesitate to use draw files for titanium-joint preparation.

Preparation of edges to be welded is performed by conventional
methods such as machining and grinding. Oxyacetylene-flame cutting
followed by light manual grinding also has been used to prepare weld
grooves in the 6A1-4V titanium alloy (Refs. 5, 6). The edges can be
dye-penetrant inspected to assure the absence of surface defects.
Cracks can occur in the flame-cut edge during cutting. Also, delayed
cracks can form so grinding should be done immediately following the
flame-cutting operation (Ref. 7).

Typical weld-joint designs for fusion welding titanium alloys are
shown in Figure 6 (Ref. 8). Information available regarding joint di-
mensions is given in Table I. Dimensional details of U-joints are
given in Table II. Other special joint-design details for MIG welding
are shown in Figure 7 (Refs. 5, 9). A consumable-land joint design
shown in Figure 8 also has been used for welding titanium (Ref. 9);
the thickened portion of the joint is melted during welding and serves
as the filler metal. This joint design is useful when satisfactory filler
metals are not available. However, the joint must be prepared from
thicker parent metal sheet or plate or the edge must be upset to per-
mit machining. The joint design shown in Figure 9 incorporating a
back-up ring also has been used for welding titanium (Ref. 9). The
back-up ring is used to help hold the molten metal in place and to help
control the underbead-weld geometry. Since the back-up ring is fused
during welding, it becomes an integral part of the weldment. In the
only known application of this joint design for welding titanium, the
back-up ring was not machined away. For other applications, the
back-up ring probably can be machined away. In most applications,
however, welding is performed without back-up rings.

Resistance welding usually involves joints that consist of overlap-
ping layers of material. Multiple layers may be included in a single
joint. In resistance welding such factors as edge distances and inter-
spot spacings are an important consideration in the selection of a suit-
able joint design. Another important factor is the initial sheet separa-
tion. Sheet separation must not be so great that unusually high forces
are required to bring the surfaces into contact.
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"Ull GROOVE WELD DOUBLE FILLMT WELD
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FIGURE 6. TYPICAL FUSION-WELD-JOINT DESIGNS (REF. 24)
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FIGURE 8. CONSUMABLE-LAND JOINT DESIGN (REF. 15)

a. Before Welding b. After Welding

FIGURE 9. BACK-UP-RING JOINT DESIGN (REF. 15)

Many of the joint designs used for resistance welding are not in-
tended to transmit transverse tensile loads. Joints of this type are
sometimes referred to as scab or attachment joints.

All joints designed for resistance welding must normally be ac-
cessible from both sides of the parts being joined. Sufficient clear-
ance must be maintained to allow for the extension of the electrodes
and electrode holders to properly contact the sheets.

CLEANING

Careful preweld cleaning is essential to the successful joining of
titanium alloys. Proper surface preparation is important to (1) re-
move scale, dirt, and foreign material that can contaminate the joint,
(Z) help control weld porosity in arc-welding operations, and (3) in-
sure uniform surface conditions and thereby improve weld consistency
in resistance-spot- and seam-welding operations. A flow chart of a
successful cleaning operation is shown in Figure 10 (Ref. 16).

Prior to resistance welding the cleaning of the surfaces of sheets
as received from the mill with any of the commercial solvents that
leave no residue often is satisfactory. However, if elevated-
temperature forming has been performed, the light oxide scale should
be removed. Otherwise the oxide skin on the adjacent surfaces being
joined will be fused into the weld nugget, which can lead to a drastic-
reduction in the ductility of the welded joint. Poor or variable clean-
ing can have another bad effect in resistance welding. Much of the
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FIGURE 10. FLOW" CHART OF CLEANING PROCEDURE FOR
TITANIUM ALLOYS (REF. 16)

initial heat generated during the early stages of resistance welding is
localized at the joint interface. This happens because the electrical
resistance through the interfaces is generally higher than the resis-
tance of the bulk material. Thus, the surface resistance of the mating
surfaces is an important factor controlling the heat generated during
the weld cycle, and it is important that this resistance not i'luctuate

widely. The surface resistance of any metal is controlled largely by
the surface preparation of cleaning techniques that are used infrior to
welding.

Grease and Oil. Grease and oil accumulated on titanium
parts during machining and other operations must be removed prior to
joining to avoid contamination. Scale-free titanium often is degreased
only; titanium having an oxide scale is degreased prior to descaling
operations. Degreasing may be accomplished in any of the following

ways:

(1) Steam clean

(2) Alkaline wash or dip in a dilute solution of sodium
hydroxide

(3) Solvent wash methyl ethyl ketone, methyl alcohol, toluene,
acetone, or other chlorine-free solvents

If
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(4) Hand wipe with solvent-dampened. clean- lint-free cloths
immediately before welding. Plastic gloves are recom-
mended for this type of operation. Reactions between
solvents and some of the compounds in rubber gloves can
leave deposits on the joint that cause porosity.

The steps followed in a typical cleaning procedure for machined parts
prior to joining are as follows (Ref. 17):

(1) Degrease with toluene, alkaline-steam cleaners, or com-
mercial degreasing equipment. (Residues from silicated
or chlorinated solvents have been blamed for cracking of
some titanium weldments. Consequently, this use for
cleaning titanium is prohibited by many fabricators.)

(2) Force air dry with clean, dry air

(3) Alkaline clean (commercial cleaners)

(4) Water rinse with running water or a spray rinse at ambient
temperature until a pH of 6 to 8 is reached. pH paper is
used for this determination

(5) Water rinse for 4 to 6 minutes with deionized water at
ambient temperature

(6) Alcohol rinse for 15 to 30 seconds with alcohol at ambient
temperature. Alcohol rinse is optional

(7) Dry by blowing with hot dry air or nitrogen gas.

Parts showing evidence of surface contamination immediately prior to
assembly should be rejected and must be recleaned. If the surface
contamination is light dust settled out of the atmosphere, the parts are
wiped with solvent-dampened cloths and dried just prior to the joining
operation.

Chlorinated solvents, such as trichloroethylene and silicated sol-
vents, should not be used to degrease titanium. * Stress-corrosion
cracking in weld areas during subsequent processing has been attrib-
uted to the use of chlorinated solvents (Ref. 1). Cleaning of parts con-
taining crevices should be analyzed carefully to avoid trapping solu-
tions that can cause porosity. Good rinsing and drying procedures are
important in these operations. Residue from the degreasing treatment
must not be allowed to remain in the joint area.

*Some solutions used in dye -penetrant testing may contain chlorinated solvents. Use of these materials
should be carefully checked out prior to approving their use on titanium.
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Temperature-sensitive crayon and paint markings and pencil and
ink markings also should be removed from. areas fM arheate d,-a, r -

ing joining operations. These materials can contaminate either the
underlying metal or the weld metal and result in embrittlement or
porosity.

Scale Removal. Light scales are formed on titanium at tem-
peratures up to about I100 F., This scale is generally thin and can be
removed by chemical pickling. Chemical pickling is often the most
efficient and economical process for scale removal compared with
mechanical techniques (Ref. 18). The most commonly used pickling
baths are solutions of hydrofluoric acid, nitric acid, and water, These
baths contain from 2 to 5 per cent HF and 30 to 40 per cent HNOQ. A
pickling bath used by many fabricators contains 5 per cent HF, 35 per
cent HNO 3 , balance water, and a 30-second immersion time. After
pickling, the parts are rinsed in water and dried. Pickling treatments
also are used to prepare scale-free material for spot- and seam-
welding cperations. Pickling should be avoided when possible on as-
semblies that contain crevices that may entrap the acid solution.

The steps followed by one fabricator in removing light scale are
as follows:

(1) Degrease to remove oil or grease

(2) Alkaline clean

(3) Rinse

(4) Immerse in scale. conditioner

(5) Rinse

(6) Immerse in HF-HNO 3 pickle. Stains resulting from the
IIF-HNO3 pickle can be removed by a 30-second im-
rmersion in a 45 to 55 per cent HNO 3 pickling solution.

Prolonged immersion can remove too much material, so pickling pro-
cedures must be developed and controlled carefully.

When heated to temperatures above 1100 F the scale formed on
titanium ii thicker than the scale formed below 1100 F. Removal of
the heavier scale requires a more complex treatment than is required
for removal of light scale. Chemical or salt-bath treatments, me-
chanical treatments, or combinations of these treatments are used.
Molten-salt baths, which are basically sodium hydroxide to which
oxidizing agents or hydrogen have been added to form sodium hydride,
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are commonly used to remove this scale in preparation for welding.
Caution is needed in using these molten-salt baths. Bath compositions
and temperatures must be carefully controlled to prevent the introduc-
tion of excessive amounts of hydrogen into the titanium.

Both the molten-salt-bath treatments and mechanical scale-
removal operations are followed by a pickling operation to insure com-
plete scale removal and to remove subsurface contaminated metal if
necessary. Removal of scale can be aided by scrubbing with a brush
and reimmersing (Ref. 16). Caution is necessary when pickling tita-
nium. Titanium can absorb hydrogen readily when improper pickling
procedures are used. During subsequent welding operations, porosity
can occur from hydrogen absorbed during pickling operations. Pickling
baths that contain HF with little or no HNO3 acid cause hydrogen ab-
sorption. HNO 3 inhibits hydrogen pickup during the reaction between
titanium and HF. At least a 7 to I HNO 3 to HF weight ratio normally
is recommended.

Handling and Storage. All part handling after cleaning and
before joining must be controlled. So-called "white glove" operations
are often used to prevent contamination after careful cleaning. Cleaned
material should be joined within a few hours or wrapped with iint-free
and oil-free wrapping for storage until needed. Some recleaning of
material that has been in storage may be recuired before certain join-
ing operations.

Between cleaning and joining operations, the parts maybe exposed
to the open atmosphere. During such exposure, dust and fine dirt par-
ticles may settle out on the joint surfaces and adjacent areas. The
"fallout" dirt also can contaminate titanium joints. In many instances,
these dust particles are removed by carefully wiping the joint area
with lint-free cloths dampened with a solvent such as methyl ethyl
ketone.

Fabricated parts that are to be hot formed or stress relieved must
be clean. In view of the problems in cleaning complex parts, it may
be simpler to keep such parts from becoming dirty during joining op-
erations. This will require careful handling and storage throughout
all operations associated with the actual joining.

Evaluating Cleanliness. The effectiveness of cleaninf meth-
ods is evaluated by variou_" methods. The most unpopular mnethod is
discovering porosity, cracks, or other evidence of contamination in a
completed weldment.
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A common method for evaluating the cleanliness of a part emerg-
ing from descaling and pickling operations is to observe water breaks
during the water rinse. No water break indicates a clean surface
while the presence of a water break indicates some foreign material
remaining on the surface.

Limited contact-resistance measurements have been made to
compare the effectiveness of several cleaning methods prior to
resistance-spot welding Ti-3A1-13V-ilCr alloy in the solution treated

condition (Ref. 19). Average contact-resistance values obtained for
three cleaning methods were as foilows:

Belt sanding Ill microhms

2. 5% HF, 30% HNO 3 , bal H2 0 158 microhms
(2. 5 minutes)

Proprietary solvent (5 minutes) 160 microhms

Measurements of contact resistance can p'ovide useful information on
the effectiveness and consistency of cleaning operations.

SHIELDING

Protection of titanium from contamination during joining opera-
tions can be accomplished in several ways.

(1) Perform the operation inside an inert-gas-filled chamber

(2) Perform the operation with flowing inert gases through
the welding .-,rch, back-ups, fixtures, and auxiliary
tooling

(3) Perform the operation in a good vacuum "i a closed
chamber.

A wide variety of tooling has been designed to contain and/or supply
inert gases for shielding titanium welds. Although these shielding
devices vary in constructional detail, they all serve the same basic
purpose, i. e., protecting the weldrnent from gases that can contami-
nate the hot metal.

Several types of shielding and controlled-atmosphere chambers
have been used to weld titanium and other reactive metals. Such
chambers are designed to contain the entire component to be welded,
or in some cases, merely the weld-joint area. The air in the chamber
is replaced with inert gas by (1) evacuation and backfilling, (2) flow
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purging, or (3) collapsing the chamber and refilling it with inert gas.
Welding chambers are particularly useful in the welding of complex
components that would be difficult to fixture and protect properly in
the air. Use of a welding chamber, however, is not a cure-all. The
inert gas in many welding chambers is of much poorer quality than the
inert gas contained in the conventional flowing shields. Leakage of air
or water vapor into a chamber atmosphere must be avoided to do a
good job in welding titanium. Monitor devices that will disclose con-
tamination o0 a chamber atmosphere are available.

A tank-type controlled-atmosphere welding chamber for manual
and machine, TI,3 and MiG welding of titanium alloys is shown in Fig-
ure 11 (Ref. 20). Many small chambers are made from plastic domes
and steel or stainless steel spheres; stainless steel is preferred be-
cause it does not rust and is easy to clcan. Several small-size
chambers for welding small subassemblies are shown in Figure 12
(Refs. 21, 22). The adaptation of a small-size chamber to welding an
oversize part is shown in Figure 13 (Ref. 22); only the localized area
that is heated needs to be inert-gas shielded.. Flexible-plastic cham-
bers are illustrated in Figure 14 (Ref. 23).

N73600

FIGURE 11. TANK-TYPE CON'TROLLED-ATMOSPHERE WELDING
CHAMBER FOR MANUAL OR MACHINE, TIG OR MIG
WELDING TITANIUM ALLOYS AND OTHER
REACTIVE METALS (REF. 20)
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a. Welding of Subassemblies in a Controlled -Atmosphere-Box -Type Chamber (Ref. 21)

b. Close-Up of Transparent -Plastic -Dome-Type Welding Chamber

(Ref. 22)

FIGURE 12. CONTROLLED-ATMOSPHERE CHAMBERS FOR :IG WELDIING SMALL SUBASSENIBUES

28

40-*~



S•.... ~ -... .. • ,, _ ,_m_

ItI-

FIGURE 13. ADAPTATION OF A SMALL SIZE CHAMBER FOR TIG WELDING AN
OvERSIZE PART (REF. 22)

The welding chamber has two pairs of glove ports. In this operation.

one glove port is used for insertion of a titanium part too large to fit
inside the chamber,

FIGURE 14. FLEXIBLE-PLASTIC CONTROLLED-ATMOSPHERE WELDING

CHAMBER (REF. 23)
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Shielding gas used in these chambers may or may not flow
through the torch, depending on the fabricator. Also, the shielding
gas can be recirculated through a purifying train to remove undesir-
able gases that are evolved from the alloy being welded or from the
chamber walls and tooling as these become heated.

For in-air welding with the TIG and MIG processes, shielding is
provided in several ways.

(1) Flowing inert-gas shield through the torch to shield the
molten weld pool and adjacent surfaces

(2) Flowing inert-gas shield through a trailing shield to pro-
tect the weldment as it cools (usually to below 1200 F)

(3) Flowing inert-gas shield through hold-down and back-up
bars. Shielding gases flowing through the hold-down
bars provides additional shielding for the face side of
the weld. The back-up gas flow protects the root side
of the weld during welding and during cooling of the
weld metal.

A variety of inert-gas-shielding devices have been developed for
in-air welding of titanium alloys. However, all are designed primarily
for blanketing the hot titanium metal from the surrounding air atmo-
sphere. Figure 15a illustrates shielding methods for aluminum and
stainless steels, as compared with the hold-down and back-up shield-
ing parts used with titanium alloys, Figure 15b.

Examples of torch-trailing-shield arrangements for TIG and MIG
welding are shown in Figures 16a and 16b (Ref. 6), respectively. The
trailing shield shown in Figure 16b is detachable as shown in Figure 17
(Ref. 5). The detachable-trailing-shield concept provides for inter-
changeable trailing-shield units for use with other joint designs or
degrees of accessibility.

Phenolic-plastic nozzles in TIG-welding electrode holders have
been blamed for carbon pickup (Ref. 10). This effect can be over-
come by replacing the phenolic nozzles with ceramic or metal nozzles.
As titanium needs good shielding, the torch nozzle should be larger
than for other metals. A torch nozzle can be modified as shown in
Figure 18 (Ref. 8). The copper shavings act as a diffuser so the inert
gas will flow down over the weld in a soft cloud. For manual welding,
this device generally gives better results than a trailing shield and it
is easier to manipulate. Porous-metal diffusers are often used in the
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FIGURE 15. INERT-GAS-SHIELDING ARRANGEMENTS FOR
CONVENTIONAL MATERIALS COMPARED
WITH TITANIUM ALLOYS

trailing shields to help obtain better coverage of the hot metal by inert
gas at lower flow rates. For machine MIG welding, a flat metal
baffle as shown in Figure 19 (Ref. 8), attached to the leading side of
the torch is advisable; otherwise, small metal globules (spatter) would
leave the protective gas atmosphere, become oxidized, and drop down
on the joint line where they would be drawn into the weld and cause
weld contamination and porosity. Studies of the effects of air currents
and blasts were made ior a typical TIG-welding arrangement (Ref. 24).
As was expected, inert gases flowing from 1/2- and 5/8-inch nozzles
in still air gave satisfactory coverage, but in some instances proved
excessive and wasteful. When cross currents of 40 to 300 fpm were
introduced, the picture changed drastically. Air currents greater
than 60 fpm had detrimental effects on titanium welds, greater than
180 fpm was harmful to aluminum welds, and at 330 fpm stainless
steel welds were harmed if the nozzle was not kept as close to the
work as possible. Side shielding also can be provided through the
hold-down bars shown in Figure 15b or by means of baffles as shown
in Figures 20 (Ref. 21) and 21 (Ref. 8). The baffles help to retain the
inert-gas ;hield in desired areas and help prevent stray drafts from
disturbLag and deflecting the shield-gas-flow pattern.
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I g rTorch
. I Troilong -gas shield

Porous diffusion
sheet

m. Tog- Welding Torch-Troiling- Shield Combination

b. Mg- Welding Torch- Troifing-gued Awrangment

• "FIGURE 16. TORCH-TRAILING SHIELD ARRANGEMENTS
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FIGURE 17. DETACHALE TORCH - TRAILING- SHIELD
ASSEMBLY (REF. 5)

Top left - wide shield for wide joint open-
ii, and capping passes; bottom left -
narrow shield for root passes and narrow
jwmM openiugs.

Similar, concepts are used to protect the nonaccess (root) side of a
wele joint. figures 22, 2Z3, and 24 (Refs. U1, S, 6,8) illustrate sev-
eral methods of preventing root _ontamination.

Advantage also is taken 0f the fact that argon tend" to seftle and
displace air. Conversely, helium is best suited for die#Larcing air
when a rising gas flow is desir-9ble. For in-air wel&ng, fta-iling
shields designed for MMG welding are usually considerably longer than
those used in TIG welding. This is .c insure good provection for the
larger volurmes of mate-rial that are heated during MIG welding and as
a result cool more slowly.

Inert-gas-shielding considerations also are important in designing
joints for weLding. Figure 25 (Ref. ZI1) shows the orig.. 1 design of a
coil cross section with welded spacers or supports. Adequate external
shielding would be extremely difficult if not impossible to achieve due
to the gap at the root of the fillet weld out away from the contact painit
of the spacer. Furthermore, if the ends oL the spacer bars were ma-
chined to fit the curvature of the pipe ait could be trapped and er -

brittle the root side of the fillet weld. Figures 26 and 27 (Ref. 21)
show the design modifications to elimiaate welding required in the
original design and a compieted assembly, respectively. The chaige
was to a mechanical support.
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Gas. fGos

"Tungsten electrode

FIGURE 16. MODIFIED MIANUTAL TiG WELDING TORCII-SIHELDING NOZZLE (REF. 6)

Electrode woe

Torch Coohlng-water Cooling-watr
7Gzle inlet rioutlet

Ooffle for MIG 

Ga

welding only ,

Dffuse inert goS,
Stainless steel

,,_ _ .... ._w ire s c re e n

Direction -of - motion

FIGURE 19. TIG-MIG TORCIH-TRAILING-SFHELD ASSEMBLY WITH LEADING SIIlELD BAFFLE

FOR WELDING TITANIUM Al LOYS (REF. 8)
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FIGURE 21. SHIELDING BAFFLE. FOR AN OUTSIDE-CORNER WELD) (REF. 8)

8•k•Naor-cooe

shield copper backing

FIGURE 22. BACKING SHIELD (REFS. 5,6)

At right is complete backing-shield oevice
for Army first-pass crack-susceptibility test

plates and for li-plate cross bars.
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a Root Shielding of Tubing JoAnt

b. Two Interr'al Purging Devices (Ref 21)

Top fixture is for straight runs lower fixture is designed for
use around bend and curves

Sp�'t ring with proosctewe

c� IiiterraI and External Shielding �)evices (Ref. �)

FIGURE 23. SHIELDING DEVICES FOR PROTECTING ROOT SIDES OF BUTT WELDS

IN TUBING* PIPE. AND CYLINDERS
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a. Fixture for Fillcý Welding Flange to Tubing

Gas bleeder

\''Collapsible fing

Gas PqWrn
shield Thoni~Yf ýtubei

Titaniuvm f lange

b. Fixhav for Flrsb Welding Flawje IG Tubing

c. s Fixture for glasEn Welduki

FIGURE 24. SHIELDING ARRA ielETdO RTCTN OTSDE FFAG-O

TUBING~~ WEDS(RF.s
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FIGURE 25. CROSS-SECTION OF ORIGINAL COIL FIGURE 26. TACK-WELDED MECHANICAL
DESIGNED FOP, WELDED SPACERS ANID FASTENERS FOR THE COIL SPACERS
SUPPORTS (REF. 21) SHOWN IN FIGURE 25 (REF. 21)

FIGURE 27. COILS IN VARIOUS STAGES OF COMPLETIONT SHOWING MECHANICAL SUPPORTS AND
TACK-WELDED NUTS (REF. 21)
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TOOLING

The tooliag used in joining titanium may differ markedly from
tooli.ý; normrally used in joining other materials. Contamination,
porosity, distortion, and penetration can be affected by tooling; special
techniques have been developed to help minimize or eliminate these ef-
fects. Tooling per se may range from simple clamps to hold parts in
position to more elaborate holding devices designed for specific par-ts.
Simple tooling is adequate for welding titanium when other means are
used to insure adequate shielding, for example, electron-beam or arc
welding in an enclosed chamber. However, for fusion-welding opera-
tions conducted outside of chambers, tooling can provide a much more
effective safeguard against weld contamination than other shielding de-
vices. Tooling often is used to cool the weld area rapidly so that e.x-
posure in the temperature range of high chemical reactivity is mini-
mized. Such tooling is referred to as "chill" type.

Welding and stress-relief fixtures must never come in contact
with trichloroethylene for degreasing purposes, because of the stress-
corrosion problem. Rigid tools are a necessity. For example, the
Ti-5AI-Z. 5Sn -iloy has a 1,-ield strength of I10 ksi at room tempera-
tare, and every weld is going to -develop t-at voiount of nuli in at least
one and perhaps several directions. A weak tool wil be pulled out rif
shape allowing the weldment, in turn, to distort.

Materials that come in contact with titanium on both root and face
sides of welds include copper, aluminum, stainless steel, carbon
steel, and other common materials. Often, these materials are used
in the form of bar-type inserts or sheet- or plate-type facing plates
for fixtures. Top-side hold-down bars extend the full length of the
weld and often contain inert-gas passages for weld face and root
shielding.

Considerable trouble wil.U welding operations is inevitable unless
weld-joint preparations are accurately machined, and the joints are
held properly in the welding fixtures.

The tooling used in resistance welding titanium is general.ly simi-
lar to tooling used in resistance welding other materials. Resistance-
vwelding tooling consists of suitable fixtures or jigs to hold the parts in

proper position for welding. Sometimes tooling is also designed to
index the part through the welding equipment to insure that welds are
made at the proper positions. The same general rules followed in de-
signing any resistance-welding tooiing should be followed in designing
tooling for use with titanium. Generally, this means that nonmetallic
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or nonmagnetic components should be used exclusively, and the tooling
should not contaminate the titanium.

HEAT INPUT

The term "heat input" is widely used in the welding industry to
characterize many of the conditions typical of arc welding. Limiting
heat inputs are defined by:

(1) The rninimun energy required to melt sufficient metal to

form a weld

(2) The maximum usable energy level that will produce an

acceptable weld

(3) A maximum level Ihat will not degrade properties of a
particular material.

With titanium, it is best to use heat inputs just above the minimum
required to form the weld. Greater heat inputs expose the titanium
welds to conditions that promote contamination distortion and other
bad effects. An exact measure of heat input is not :-eadily made, but
good empirical formulae are known for each welding process. Intra-
process comparis,,ns -of heat inputs are not always valid and should be
viewed with caution.

Lowest heat inputs are obtained with electron-beam welding.
Then, as a gener 11 ruie, heat inputs typical of normal welding condi-
tions increase as follows:

(1) Single-pass TIG - no filler
(2) Single-pass TIG - with filler
(3) Multipass TIG - with filler

(4) Single-pass MIG
(5) Multipass MIG.

Other general trends useful in estimating heat input are-

(1) Welds made with helium shielding gas have a lower heat
input than similar welds made- with argon shielding.

(2) Higher welding speeds result in lower heat inputs.

(3) High currents or voltages result in high heat inputs (at
any given speed).

(4) Snall melted zones are characteristic of low heat inputs.
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SHRINKAGE - DISTORTON

Fusion-weld processes are characterized by thier:'na1 cycles that
cause localized shrinkage. This shrinkage often causes -:Jistor, Ion ofl

the parts being joined. Figure 28 illustrates the changes n shape that

occur as the result of wielding just a s-imple butt Joint. More cotpicpkc
weidments obviously involve much more comple.-x shrinkage1 and distor-

tion patterns.

A=~ LOngitudiroi bowng
B Transver-se towing
C Tros rs st-einkogeLLTT

FIGILURE 28. TYPES OF WELD-jOINT DISTORTION

Shrinkage and d-strartion are mruch less tro,ýublesomre in brazing
and solid-state welding because usually heating iS unifo~rmn.

Weld shrinkage must be planned fo, since there is no absolute
waytoaxol A Tus aknov.dedge of expected shrinkage valuces for

typical1 weld configurations isneeded befere production wcelding a-.ppi-

cations. Also, a logical -sequence of welding components inv~olving
several welds mnust be established -with shrinkage in mind. With the
proper w.elding sequence, shrinkage can be 'turned to good use to

minimize distortion. This is accompl.shed by. properly balancing the
various shrinkage forces developed.

Shrinkage also can be controlled to sonmc extent by the restraint
imposed by tooling. Use of this technique is sometirnes helpful in

preventing serious part distortion. (Caution: Freedom from
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distortion does not mean that a weldrnent is not highly stressed' Quite

often the coL'verse is true. )

Shrinkage and distortion are minimized by using low he:,t inputs.
Thus, the listing given earlier also .s valid for showing the relative
tendencies of fusion-welding piocesses to produce these changes. Un-
necessary welc, reinforcement also is undesirable from the standpoint
of keeping shrinkage and distortion as low as possible.

Thermal cycles employed in resistance welding a!so result in
highly localized shrinkage. This shrinkage may cause some distortion
of the part being joined, but generally distortion is not as noticeable in
resistance-welded components as it would be in fusion-welded parts.

The effects of weld shrinkage and subsequent distortion aje gen-
erally minimized in resistance welding by starting the welding near the
center of any component and following a welding sequence that involves
moving progressively toward the edges of the component. Sequences
of this type are not readily used during seam welding or roll-spot

welding, and consequently distortion may be more of a problem when
these processes are used. Selection of improper welding sequences
can also introduce various problems with sheet separation prior to
welding. For example, if three welds are being made in a.row and the
two outside rows are welded first, then there is a good chance that the
center row will be welded under conditions where excessive sheet
separation is likely. In a case such as this, the center row should be
welde-. first followed by the outside welds.

RESIDUAL STRESS

Shrinkage inevitably leaves residual stresses in fusion weldments.
Residual stresses are defined as those which zexist in a body without
any external force acting. The residual strefses in a welded joint are
caused by the contraction of the weld metal and the plastic deformation
produced in the base metal near the weld during welding. Residual
stresses in a welded joint are classified intc: (1) "residual welding
stress", which occurs in a joint free from any external constraint and
(2) "reaction stress" or "locked-in stress", which are induced by an
external constraint.

Residual stresses generally are not a problem in brazed or solid-
state-welded joints.
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Stress Distribution. The distribution of residual stresses is
determined largely by joint geomnetry. Therefore, similar stress dis-
tributions are found in joints of similar geometry, regardless of how

the joint was made. (For example, resistance-seam welding and TIG
welding will result in a similar stress distribution in a long straight

joint. )

A typical distribution of residual stresses in a butt weld is shown
in Figure 29. The stress components concerned are those parallel to
the weld direction, designated ox and those transverse to the weld,
designated oy. The distribution of the Ox residual stress along a line
transverse to the weld, YY, is shown in the Figure 29b. Tensile
stresses of high magnitude are produced in the region of the weld;
these taper off rapidly and become compressive after a distance of
several times the width of the weld, then gradually approach zero as
the distance from the weld increases.

The maximum residual stress in the weld is determined by:

(1) Expansion and contraction characteristics of the base metal
and the weld metal during the welding thermal cycle

(2) Temperature versus yield strength relationships of the
base metal and the weld metal.

Much research in mild-steel weldments has shown that the maximum

stress is as high as the yield stress of the weld metal. However, in a
recent investigation (Ref. 25), the maximum stresses in weldments

made with heat-treated SAE 4340 steel were around 50, 000 to
80, 000 psi, considerably less than the yield strengths of the weld
metal (around 150, 000 psi) and the base metal (Z24, 000 psi). In
limited investigation on titanium-alloy weldments, maximum residual
stresses ranging from 35, 000 to 85, 000 psi have been observed, de-
pending upon the type of base metal and welding processes (Refs. 26-28).
However, the effects of base metal and weld metal properties and
welding processes on the magnitude of residual stresses on titanium-

alloy weldments have not been established.

Out-of-flat base plate also can contribute to restraint problems in
welding (Ref. 5). As-received materials that are wavy and out of flat
lead to a condition of misalignment when placed in the welding fixture.

Where this condition creates fabrication difficulties it is necessary to
flatten the plates. This working when added t. the already high level
of restraint can increase susceptibility to cracking, or cracking can
occur during the flattening operation.
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The residual stress distribution in a spot-welded joint is very dc-
pendent on the joint pattern or weld pattern used. The simplest case
to consider is the residual stress due to a single spot weld. Figure 30
is a schematic representation of the distribution of residual strcsses
in the area near a single spot weld. The components of stress of most
concern are those in the radial direction and those in the circumfer-
ential direction. The relation between the distance from the weld
center and the radial-residual stress is shown by Curve I in the figure.
Tensile stresses as high as the yield strength of the material may
exist in the weld zone. Outside the actual weld zone the tensile re-

sidual stress decreases as the distance frz..n the weld area is in-
crepsed. Curve Z shows the distribution of the circumferential stress.
Again, very high tensile stresses exist within the weld zone; however,
outside the weld these stresses are compressive and again fall off as
the distance from the weld is increased. From Curve 2 it is apparent
that there is an extremely sharp stress gradient around the circum-
ference of any spot weld where the stresses undergo a complete re-
versal from very high tensile values to high compressive values.

The actual stress distributions in a spot weld in an area very
close to the weld are not nearly as simple as shown in Figure 30.
Very concentrated .st-:esses often exist in the heat-affected zone close
"• the original interface of the sheets.

When several spot welds are considered instead of .just a single
spot, the resulting residual stress patterns are even more complex.
An approximate distribution of the residual stress pattern produced by
a series of spot welds can be obtained by the saperposition of the re-
sidual stress distributions produced by e-ach weld as shown in the
figure. The interaction between the residual stresses accompanying
each individual weld becomes significant when the distance between
the welds is short - probably at any distance less than four times the
diameter of the weld.

The residual stresses left in resistanc-c spot welds can be altered
by changes in the welding schedule. Changes in heat input, heat pat-
tern, or possible forging action that may be applied through the elec -

trodes are effective. Some information on the effect of such changes

in welding parameters on residual stresses has been obtained but
there are many corflicting aspects to this data.

Stress Effects. For many years there was a trend among en-
gineers to discount the effect of residual stress, since it had been
prcven that the effect of residual stress is almost negligible when a

welded structure fails ir. a ductile manner. During the last several
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years much information has been obtained on the effect of residual
stress on brittle fracture in steel weldments. It has been found that
residual stresses decrease the fracture strength of weldments only
when certain conditions are satisfied, but that the loss of strength can
be drastic when these conditions are satisfied. No systematic investi-
gation has been made on the effects of residual stresses on fractures
in titanium-alloy weldments. The following discussions are based on
information on steel weldments and the limited data on titanium-alloy
weldments.

In general, the effect of residual stress is significant on fractures
that take place at low applied stresses. Observations that have been
made on various types of fracture are as follows:

(1) Dut.tite fracture. Ductile fracture occurs at high stresses
after general yielding. The effect of residual stress on
fracture strength is negligible.

(2) B:ittle fracture. W-hen a notcn is located in areas where
high residual tensile stresses exist, brittle fracture can
initiate from the notch at a low applied stress and then
propagate through the weldment. Extensive research has
been conducted during the last several years on the low-
stress brittle fracture of steel weldments. No systematic
investigations have been Ynade on the low-stress brittle
fracture of titanium-alloy weldments. Some failures have
been observed which ndicate that residual stresses may
have caused premature failures in titanium-alloy weldments.

(3) Stress-corrosion cracking and hydrogen-induced cracking.
Stress corrosion of titanium or titanium alloys can cause
cracking or degradation of properties under some combi-
nations of time, temperature, stress, and environment.
Stress-corr:sion cracking and hydrogen-induced cracking
can occur under low, applied stresses, even under no ap-
plied stress. Residual welding tensile stresses promote
the cracking, while, residual compressive stresses sup-
press the cracking.

(4) Fatigue fracture. The effect of residual stress on fatigue
fracture is still a controversial subject. Many investi-
gators have reported fatigue-test results which they claim
were affected by residual stresses. However, others be-
lieve that the effect of residual stress on fatigue is not
significant.
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(5) Buckling failure. It is known that residual compressive
stresses in the base-metal regions around welds may

decrease tie buckling strength of welded columns and
plates.

Stress Relieving. There a number of reasons for reducing or
relieving residual stresses associated with welded joints. It is proba-

bly necessary to relieve residual stresses whenever a welded struc-
ture is: (1) manufactured to close dimensional tolerances, (2) com-
3lex and contains many stress risers, (3) subjected to dynamic leading,
(4) subjected to low-temperature service, or (5) subjected to service
conditions that might promote stress corrosion. The decision of
whether or not to 't-'"a -.... •. c. anent and
previous experience.

Residual stresses can be relieved in two ways: (1) mechanical
stress-relieving treatments, or (2) thermal stress-relieving treat-
ment. Stress relieving can be performed on a finished part or during
various stages of processing when dimensional control is a problem.

Occasionally, both treatments are used.

Mechanical stress-relieving treatments take a variety of forms.
These include tensile . .: etching, roll planishing, and peening. With

any mechanical stress-relieving treatment, control of the process is
difficult. in addition, the complete removal of residual stresses by
mechanical techniques is difficult to accomplish. Mechanical stress-
relieving techniques are most effective in accomplishing a redistribu-
tion of residual stresses in a single direction. Effective stress re-
lieving by operations such as roil planishing requires that the weld

geometry be very consistent prior to the planishing operation.

Thermal stress-relieving treatments are commonly employed for
many materials, including a number of titanium alloys. These treat-
ments can be combined quite effectively with hot-sizing operations to

control both the existing residual stresses and to produce parts to
close dimensional tolerances. Thermal stress -relieving treatments
produce much more uniform changes in the residual stress patterns
than do mechanical stress-relieving treatments. For most titanium

alloys, a treatment between 1000 and 1450 F for a period of time
ranging from one-half to several hours is required for stress reliev-
ing. Possible interactions between a thermal stress-relieving treat-
ment and other changes in a material that may affect its properties
must be anticipated. For example, age hardening will occur in the
6A1-4V titanium alloy within the weld zone over a certain temperature
range. If this age hardening is allowed to occur, it may reduce the
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beneficial effects of stress relieving. A similar effect is noted vith

the Ti-13V-IlCr-3Al alloy, although for different reason.s. With this

alloy exposure to the normal stress-relieving temperature range will

result in a drastic loss of bend duc:tility in the weld zone; thus, it is

necessary to find other methods of relieving the residual stresses.

This has been done by combining mechanical and thermal treatments

to alter the residual stress patterns in the circumferential joints of

rocket motor cases (Ref. 1).

Residual stresses in resistance welds can be altered and to some

extent elinminated by either mechanical or thermal stress-relieving

treatments. The application of mechanical stress-relieving methods

to spot welds is difficult because of the complexity of the residual

stress patterns and the limitations generally imposed by joint con-

figurations. At best, mechanical techniques can probably only result

in a redistribution of the residual stress pattern and not the comrplete

elimination of residual stress. On the other hand, thermal stress re-

lieving can be used effectively to eliminate all residual stresses re-

sulting from resistance welding. It is difficult to see how such treat-

ments can be employed effectively though, unless the treatments are

conducted in vacuum furnaces. The major problem with methods of

thermal stress relief is that it would be almost impossible to prevent

some contamination of the surfaces of titanium components in the

overlap area characteristic of resistance -welded structures. Clean-

ing -fdter such a thermal stress-relief treatment would impose equally

severe probltxns.

P,_rhaps the most fruitful method of controlling residual stresses

in r'ýsisla.cce -,v'lded joints will be by the selection of suitable process

paraatr.:.,: rs.

INSPEC TIC,-

t
Mes-. joined components are inspected for two reasons. First, it

i:; often desirable or necessary to check changes in dimensions that

may have resulhed from welding. The visual and measurement-type

inspections perfcrmed for this purpcse may also include checks of
weld-joint pr)file, and measurements of the weld thickness. Second, t

various inspection procedures are used to insure that the joints pro-

duced are of satisfact,:ry quality. The most commonly used techniques
in this area include vi'ual, dye penetrant, and X-ray techniques.

Various tyles of leak tests are also used on components designed to

S- contain gas¢s ur fluids. • 7nfortunately, no suitable nondestructive in-

spection tecl anquc exista At r deýecti.g weld conta-mination of titanium

weldn-ents.
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Use is being made of indications based on surface discoloration

during welding. However, the presence or absence of a discolored

surface is not a reliable method of detecting contamination of titanium
welds with interstitial elements. Surface discoloration, when obtained

in welding titanium, is extremely important. Surface colors indicate

that the welding atmosphere was contaminated. On the other hand a

clean-weld and heat-affected-zone area does not necessarily indicate

clean welds. Titanium is so reactive that contaminants can penetrate
to below the surface without discoloring the surface.

The ease with which inspection can be accomplished varies with
different joint geometries. Butt joints, T-joints, and corner joints

are generally much easier to inspect than joints involving overlapping

layers of material.

Inspection of resistance welds to insure adequate quality is diffi-

cult. X-ray techniques appear to be the only suitable nondestructive
inspection method. Even this method is subject to limitations in its

usefulness. Because of the difficulties associated with inspecting re-
sistance welds, the economic necessity of not allowing a large number
of defective welds to get through processing, and the difficulty of re-
pairing defective resistance welds considerable emphasis is being

placed on supplementing or supplanting postweld inspection procedures
with in-process controls.

SPECIFICATIONS

Most of the materials and processes used in titanium joining are

covered by some type of specification. The basic specifications are

generally MIL standards (Refs. 29, 30) or other applicable Federal
Government specifications. However, the most pertinent and impor-
tant facets of titanium-joining techrnology are often not covered by
these specifications. Therefore, most titanium fabricators have de-
veloped company specifications, which are used in lieu of, or in the

absence of suitable Federal specifications (Refs. 31-33). These com-
pany specifications a-e almost always more restrictive and definitive

than any comparable Government-type specification. This is probably

because the company specifications are generally written with a more

lirmned coverage in mind than is the case with many Government

specifications.

The available company specifications are not entirely adequate to

control the fabrication of all titanium products. However, existing
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specifications form a firm foundation for the preparation of suitable

specifications for new applications.

The lack of an adequate inspection method for determining weld
contamination makes it necessary to place a high degree of reliance
on process specifications for fusion-welding processes. Such speci-
fications should spell out in some detail the requirements for preweld
cleaning, and operations to prevent contamination.

Almost all resistance--welding specifications require certification
of the welding machine that will be used and establishment of a suitable
welding schedule prior to the actual start of welding operations. Most
specifications then require that various types of test coupons be welded
prior to, during, and after any production welding run. Such proce-
dures, while not foolproof, are the best available for use with existing
typeý of equipment and process control.

Applicable military specifications (Ref. 29) allow the weiding of
any titanium alloy that has satisfactorily passed tests designed to es-
tablish that resistance welding does not harden the weld zone or reduce

weld ductility. The requirements state that the direct tension strength
of a spot weld must not be less than 25 per cent of the minimum shear
strength required when tested in an as-weided condition. It is also
required that any spot welds subjected to subsequent thermal eu:posure
shall exhibit a sirr-ijar minimum tension strength after such thermal

exposure.

DEFECTS

The definition of joint defects is arbitrary, Although many years
of experience have been gained with welding codes and specifications
that either prohibit or allow certain features characterized as defects,
very little of this experience is based on statistically bound engineer-
ing data. As a result, features recognized as defects are generally
limited in accordance with very conservative practices. This ap-
proach to defects has been quite successful in the past, but is of some

concern when dealing with many of the newer materials being used in
various types of fabrication. This concern is based on the belief that
the removal of certain types of features classified a- nonallowable de-
fects often results in more da.mage to the service;,bility of a structure
than the damage that potentially might have been done by allowing the

feature to remain. The reluctance of many welding tngineers to re-
pair certain features is based on this feeling, not on a desire to make
"the welding job easier.
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Typical arc-weld features that are sometimes classilied as defects
are shown in Figure 31.

FIGURE 31. FUSION-WELD DEFECTS

Not shown: (1) Arc strike,

(2) Discoloration, and

(3) Contamination.

The fabrication of defect-free welds is highly dependent on the
quality requirements of applicable specifications and on the inspection
methods that are used. For example, few welding codes or specifica-
tions allow cracks in a weld. However, cracked welds can and do get
into service if inspection methods that will insure detecting all cracks
present in a weld are not required.

Characteristics described as defects in resistance welds are diffi-
cult to assess. Defects in resistance welds are generally subdivided
into external and internal defects. With the exception of cracks that
are exposed to the exterior of the sheets and which are obviously unde-
sirable, the remaining external defects are probably considered as

such because they are indicative that the wvelding conditions may not
have been exactly right. External defects in this category are sheet
preparation, surface pits. metal expulsion, tip pickup, and excessive

5_ _ 3-



indentation. With internal defects, cracks are obviously undesirali»e,

but there is very little evidence that porosity in minor amounts is

harmful to properties. The same is true of either insufficient o-" ex--

cessive penetration.

The only reliable way to determine what weld features are truly

defects is to evaluate the effects of such features in a test. program.

Such an evaluation must include tests that are representative of the

service conditions. Many defect-like weld features have no effect on

the static-tension properties of the weld. However, these same fea-

tures may be found to seriously degrade performance in a fatigue test.

With the knowledge currently available about the performance of

titaniun n-fusion weldments, a conservative engineering approach to de-

fects should be followed. Because of the prevalence of porosity in

titanium-fusion weldments, it would be desirable to determine more

realistically the extent to which porosity can be allowed, or develop

simpler means of minimizing porosity than those currentl% available.

Porosity. The prevalence of porosity problems in titanium

welding warrants special mention. A special report on this subject is

available (Ref. 34). The Summary from this report is repeated below:

"Porosity in fusion welds in titanium has been encountered to

some extent in all programs using this joining method. While mea-

sures to control cleanliness and to employ good welding techniques
have successfully reduced the occurrence of porosity, specific identi-

fication of the various causes of porosity is still lacking.

"Some factors suspected of causing porosity in titanium welds are:

(1) Hydrogen. Many of the things, which when eliminated
reduced porosity, are sources of hydrogen.

(2) Cleanliness of Joint Area. Mechanical cleaning of edges

to be welded and adjacent surfaces reduces porosity and

improves uniformity of welds. Two factors shown to

increase porosity are fingerprints and handling with

dirty rags or lint-bearing gloves. Plasticizers dissolved

from rubber gloves by solvents, especially alcohol, have

been identified as a cause of porosity. 'Soapy' residue in

cloths used for wiping cleaned jo-int areas also has been
identified as a cause of porosity.
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(3) Contamination in Filler Wire. Surface inclusions worked
into the filler wire duiring drawing have been ident),ied as
a major cause of porosity.

(4) Welding Procedures and Techniques. There is evidence
that some of the parameters associated with welding
procedures also affect porosity. Many of these are
interrelated and the offending parameters are not well
identified; however, improper technique in tack welding
,nd wide joint gaps in fusion welding have been idi:.tified
as causes of porosity. Other parameters that play a part
in causing porosity are rates of heat input, rates of cool-
ing, welding speeds, arc voltages, and rates of gas flow. "

Anyone encountering porosity problems should obtain this report as it
contains a good summary of published information on the subject.

Unpublished data (Ref. 35) generally confirm this summary and
in addition, data showing the effects of edge preparation, pickling,
preheat, and welding variables on porosity formation are available.

Porosity in titanium welds can be controlled if the procedures that
have been developed by the many investigations in the area are
followed.

REPAIRS

Repair of weldrnents is not desirable. However, it is an almost
inevitable occurrence in production operations. An important aspect
of repair welding is determining what cý.used the defect which must be
repaired. With titanium, this is important, not only for its feedback
value to minimize the need for subsequent repairs, but also to deter-
mine a suitable repair-welding procedure.

Cracks, which occur rarely in titanium-fusion weldments, are
generally the result of contaminati. i. from some external source. For
example, copper from back-ups, hold-downs, and wire guide tubes
may get ir.to a weld if the equipment malfunctions during welding. In
order to effect a successful repair, the material contaminating the ti-
tanium must be removed first. Fusion welds that are contaminated as
a result of poor shielding may require complete removal of the first
weld made and its replacement.
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used on the original weld should be used for the repair. When this is
not possible, it is common practice to use manual TIG welding for re-

pair operations. The same shielding precautions used in the original
welding procedure should be followed for all exposed surfaces.

TIG fusion welds in thin sheet and electron-beam welds have been
repaired simply by remelting the defecti% e zone of the original weld.

The same process and conditions were used for making the repairs.

Very little information is availabhz concerning the repair of de-
fective spot welds. A number of the defects classified as external de-

fects can be repaired by very light machining of the external weld sur-
faces. The repair of cracked resistance welds must be accomplished
by either a fusion-weld process or through use of a mechanical

fastener.

WELDING PROCESSES

Many welding processes can be used successfully on titanium

comnponents. These processes are described in the following sections.
Included are discussions of the following processes:

(1) TIG welding

(Z) MIG welding

(3) Arc spot welding

(4) Electron-beam welding
(5) Plasma-arc welding
(6) Resistance sDot welding

(7) Roll spot welding
(8) Seam welding

(9) Flash welding
(10) High-frequency welding

(11) Brazing
(12) Solid-state welding.

Not included are discussions of adhesive bonding, mechanical fasten-
ing, and various other specific welding processes. Adhesive bonding

and mechanical fastening of titanium are being covered in other re-
ports in this series being prepared for publication. Welding pro-

cesses omitted from this report are either not suitable for use on
titanium or are seldom used.
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A listing of titaniuni alioys that are often considered for use in
welded structures and a relative weldability rating for these alloys

appears in Appendix B.

TIG WELDING

The T"G welding process is used extensively for joining titanium
alloys and many other high-quality materials. It is particularly suited
for the joining of very thin materials, and is adaptable to manual,
semiautomatic, or fully automatic operation. It can be used on almost
an- thickness, but as the thickness increases above 0. 1 inch, other
fusion-welding processes offer important advantages.

In TIG welding, all of the heat required to melt the joint edges is
supplied by an arc between a tungsten electrode in the welding torch
and the workpiece. The arc and surrounding area are kept free of air
by a flow of inert gas around the tungsten electrode. TIG welds can be
made with or without filler metal additions. For many applications
only the edges of the parts to be joined are melted. Sometimes addi-
tional metal is added to the weld by using a filler wire. Filler wire is
always added when the joint is open or contains a specially prepared
groove. The addition of filler wire to closed, square butt joints in-

creases the tolerance of TIG welding for slight variations in the joint
fitup. This can be quite important in welding titanium, since the metal
is very fluid when melted.

Most TIG welding of titanium has been done in the flat welding po-
sition. Other welding positions have been used to a limited extent.
WVhen welding titanium in other positions, the changes in shielding-gas

behavior should be anticipated. Welds made in the horizontal position
would be expected to be slightly more prone to porosity entrapment
than welds made in other positions.

Equipment. Conventional TIG welding power supplies,
torches, and control systems are used effectively in welding titanium.
No significant changes in welding characteristics or -'\eld properties
that can be attributed to the use of any specific type of welding equip-
ment have been reported. Most fabricators use conventional power
supplies having drooping volt-ampere characteristics. High-frequency

arc starting is used to avoid tungsten inclusions that are often found
with touch starting techniques. The conventional TIG welding equip-

mnent selected for use must be supplemented with auxiliary shielding
devices of the types described in earlier sections of this report.
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The• shielding chambers u f.r 11' tiianium can be of
several basic designs. Inert gases replace the air in the chbamber by
evacuating and backfilling, by flow purging, or by collapsing the
chamber and backfilling. Shielding chambers are used when welding
titanium parts that cann-bt be protected satisfactorily in the open atrno-
sphere. Precautions need to be taken to prevent leakage of air, water

vapor, and water into the chambers.

Titanium alloys also can be welded very successfully in air with
the right supplemental equipment. The inert gas flowing from a con-
ventional TIG welding torch is generally not sufficient to protect ti-
tanium during welding. Auxiliary trailing shields attached to the weld-
ing torch, or auxiliary shielding devices built into the weld toolit-g
afford the required protection. The importance of tooling to assist in
weld shielding was discussed earlier in this report in the section
"Shielding". Figure 32 shows one of the commonly used combined
torch-trailing-shield arrangements. Such shitids are designed to
supply a uniform nonturbulent flow of inert gas over the weld as it
cools behind the torch. It is much easier to insure good shielding
during mechanized TIG welding than in marual op-rations: therefore
mechanized welding operations are recommnended anc used wherever
possible in welding titanium assemblies.

Torch
I I
! I

I I

4 : , 

G a s in le t

0 7 -- Porous diffusion
sheet

$.• €i.... t * 4 4 4 $ 4 4

Torch Trailing-shield gas
s hie lding

gas

FIGURE 32. A COMBINAT'ON TORCH-TRAILING-SHIELD
ARRANGEMENT
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Electrodes for TIG welding titanium and titanium alloys normally
are operated on straight-polarity direct current. The electrodes are
always ground ei+her lo a conical shape having a sharp point or to a
rounded point. A cone height of 1. 5 to 2. 0 times the electrode diame-
ter has been used by one fabricator (Ref. 36). Thoriated-tungsten
electrodes are used by many fabricators (Refs. 21, 12, 36, 37). Tung-
sten electrodes also are used, but experience shows that weld-metal
contamination by tungsten is less with the thoriaced-tungsten elec-
trodes. Tungsten inclusions are of two kinds - globular tungsten
drops and tungsten oxide flakes. These inclusions are minimized by
using proper welding current for the electrode size and by providing
inert-gas shielding for the electrode until it cools to temperatures at
which oxidation cannot occur. Chemical compositions of conventional
TIG welding electrodes are given in Table Ill (Ref. 38). The gap be-
tween the rod ard metal is critical in gages less than 0. 006 inch; on
0. 001 -inch-thick metal a gap of 0. 010 inch has been used (Ref. 39).

TABLE WI. CHEMICAL COMPOSITION OF ELECTRODE MATERIALS

FOR TIG WELDING (REF. 38)

Tungsten. Total Other Elements.
AWS-ASTM Minimum. Thorium. Zircomum. Maximum.

Classification per cent per cent per cent per cent

EWT 99.5 .... 0.5

EWTh-1 98.5 0.8 to 1.2 -- 0.5

EWTh-2 97.5 1.7 to 2.2 -- 0.5

EWZr 99.1 -- 0.3 to 0.5 0.5

The equipment used to drive titanium welding wire in the TIG pro-
cess should receive special attention. Filler-metal feed rates should
be as uniform as possible with both manual and machine wire feeding
to prevent localized irregularities that may contribute to cracking
(Ref. 10). Even the best quality welding wire can be contaninated in
this equipment if periodic checks are not made to be sure that oil is
not present in the drive system or guide components.

Materials. Commercially pure titarium arn many of its al-
loys can be TIG welded readily. Commercially pure titanium is the
most popular filler wire, although titanium-alloy filler metals are
used for some applications. Titanium and titanium-alloy filler wires
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are available in continuous coils. However, cut and straightene,
4 lengths of filler wire may be used instead of -ontinuous coils. Cut

lengths are easier to clean immediately prior to welding than coiled
products. In manual TIG welding, sheared strips of a base-metal
sheet are sometimes used as filler wire. On rare occasions, a simi-
lar procedure is used in mechanized welding when a preplaced strip of
sheet or wire is inserted in the joint to serv-e as a filler metal. Care
is recommended when using this procedure because potential contami-
nation problems involved.

Porosity, contamination, and embrittlement have been experi-
enced with all of the commonly used joint designs. These problems,
however, normally are eliminated by following procedures that will
ensure cleanliness of the material, fille r wire, and welding fixtures
and protection of the parts from contamination during welding. Pre-
weld cleaning is essential to the successful welding of titanium alloys.

WELDING CONDITIONS

Welding conditions are dependent on material thickness, joint de-
sign, the type of weld tooling being used, and whether manual or ma-
chine welds are made. Also, for any given thickness and joint design
various combinations of amperage, voltage, welding speed, and filler-
wire input speed are satisfactory. As a result, no hard-and-fast rules
can be specified for welding conditions. Tables IV and V illustrate
typical weldling conditions that have been used in the TIG welding of
titanium.

Welding conditions generally do not have to be adjusted radically
to accommodate the various titanium alloys but are often adjusted as a
means of controlling weld porosity. Almost any change in a welding
condition that will decrease the freezing rate of the we'd will produce
a decrease in porosity.

As in welding other materials, starting and runoff tabs are used
by Come fabricators (Refs. 12, 36). The starting and runoff tabs usu-
ally are of the same material as the parent metal being welded and are
placed against the parent part at each end of the weld as shown in Fig-
ure 33. The purpose of these tabs may be one or more of the following:

Starting tabs

(1) Initiate the arc
(2) Establish a steady arc

(3) Allow time to adjust welding conditions
(4) Observe irregularities in material or arc behavior
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Runoff 
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tab
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FIGURE 33. T'.E USE OF STARTING AND RUNOFF TABS

Runoff tabs

(1) Extinguish the arc
(2) Avoid crater formation within the part
(3) Avoid the formation of crater cracks within the part

(4) Eliminate weld stops and resultant craters from the
weldment.

Difficulties have been experienced with starting and runoff tabs. Un-
less a good fit of the tabs to the plates to be welded is maintained,
burnthrough can occur at the junction. To overcome this difficulty the
arc is operated at a very low current on the starting tab and increased
to weld amperage as soon as the arc crosses the part (Ref. 40). This
sequence is reversed at the end of a weld.

Tack Welding. Tack welding is used to pre-position detail
parts or subassemblies for final welding operations. Elaborate fix-
turing often can be eliminated when tack v4elds are used to their full
advantage. Various tack-welding procedures are used by titanium

fabricators but good cleaning practices and adequate shielding are pro-
vided to prevent contamination of the welds. Contamination or cracks
developed in tack welds can be transferred to the finish weld. One
procedure is to perform tack welding in such a way that the finished
weld never crosses over a previous tack weld. To accomplish this,
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J sufficient filler metal is used in tack welding to completely fill the joint
at a particular location. The final weld beads are blended into each

end of the tack welds (Ref. 9).

Properties. A large number of joint properties have been de-

termined for TIG welds in titanium alloys of interest. The properties

measured by static tension, notch tension, bend and crack suscepti-

bility tests compare very favorably with parent-metal properties.

Axial-tension fatigue tests generally show a significant decrease in

properties wnen compared with similar parent-metal specimens.

Fracture-toughness test results on fusion weldments are not easily in-

terpreted. Depending on the evaluation criteria selected, the data

from these tests are indicative of fair to good performance. Weldment

thermal-stability trends in the 6AI-4V and 8A1-lMo- 1V alloys appear

to parallel parent-metal trends.

"TIG weldments have been used in several structural test compo-

nents. The behavior of weldments in such tests is by tar the best

evaluation of joint properties. Reported behavior to date is encourag-

ing with few exceptions. Delayed cracking of weldments has been ob-

served in some instances. In some cases, the reasons have been ap-

parent and solutions obvious. Where the cause of such cracking is not

known, a strong effort to find the cause is indicated.

Sources of detailed information on properties of TIG welded ti-

tanium and titanium alloys are given in Table VI.

Applications for TIG Welding Titanium Alloys. TIG welding

is among the most widely used joining processes for titanium and ti-

tanium alloys. Some of the typical products manufactured by TIG

welding are described below.

Chemical Processing Equipment. Commercially pure ti-

tanium was the preferred material for several large heat-exchanger

coils for use in a calcium hypochiorite plant (Ref. 21). The coil sub-
assemblies required the butt-welding of titanium tubing and pipe into

lengths necessary for each complete coil as shown in Figure 34

(Ref. 21). Inlet, outlet, and dummy connections, angle supports, and

othe:. attachments also were made. All welded connections were made

using manual TIG welding techniques. Since numerous joint designs

and part cwrifigurations had to be welded, it was necessary to use sev-

eral inert-gas-shielding techniques to make the required welds suc-

cessfully. Features of the fabricating and shielding methods are
desc ribed below.

64



1j~~~4 CCCSS C4

o. o

7Z -0

-~7 Z .a

< Z < < <-

C- 6

.Z

0 - -

65

1 4- I-er

C -!I! ýo C



The iabrication procedure KAs desgned;% to_ perit th axi
number of welds to be visually inspected, both inside and out. To per-
mit internal inspection of the weld root, strz ight lengths of pipe were
welded. Full root penetration was mandatory to avoid internal stress
raisers and no undercut was permitted on either side of the joint.
Weld-face reinforcement was kept to a minimum so that welds could
pass through bending rolls. (The first coil bent revealed that even very
slight reinforcement on the outside had to be dressed down to below a
maximum height of 1/32 inch to avoid buckling of the pipe wall adjacent
to the weld and to avoid damage to the bending rolls. )

Figure 35 shows such a butt wveld being made in pipe out of posi-
tion in the open atmosphere (Ref. 21). N"one of the welds failed during
bending to a 2-1/2-foot radius. This radius was very near the bend
radius of the un'velded pipe. B,.nding was done cold and the tube was
not fi_led. After bcnding, welds were air leak tested and hydrostati-
cally tested at 225-pounds pressure. Figure 36 shows some compo-
nents that were welded in a controlled atmosphere box (Ref. 21). The
elbows were fabricated to the maximum bend that permitted goed
visual inspection of the root side of the butt weld connecting the elbv¢
to the coil. Angles also were fabricated from 1/4-inch by 2-1/2-inch-

thick titanium bars by inside-fillet and outside-corner welding. Both
welds were continuous. This welding resulted in considerable distor-
tion but the angles were cold strightened after welding. Figure 37 il-
lustrates the welded angle and attachment to the pipe coil.

Leak tests and visual inspection were selected in preference to
X-ray, magnetic -particle, and ultrasonic examination for several
reasons. These processes were considered more costly and would not
provide useful information conc-rnina root-side contami.zation or em-
brittlement. The back-side of welds was inspected visually using the
bore inspection instrumnent to determine the physical condition of the
weld root after making the root pass and again after making the cover
pass. Penetration, undercut, weld concavity, and adequate back-side
shielding were inspected. Only two of approximately 275 welds were

cut out because of the loss of the back-side shielding when a workman
tripped over the supply host and when a welder inadvertently ran out of

cgas from his purging bot.se.

Figure 38 shows the underbead side of a typical butt weld in pipe
as seen through the bore-inspection instrument (Ref. 21). The great-
est difficulty in using the bore-inspection instrument was to determine
whether the bead was concave or convex. The difficulty was entirely

one of depth perception through the optics and determining whether the
weld surfaces were projecting inward or outward.
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IFIGURPE 34. CALCIUM. HYPOCHLORITE PLANT HEAT-EXCHAN'GER COILS MADE FROM
COMIMERCIALLY PURE TITAINIUM. (REF. 21)

FIGURE 35. OUT-OF-IOSITION BUTT WELD BEING MADE IN' THE OPE2; ATMOSPHERE USIN-G
TORCH SHIELDING COMBINED) WITH SUPPLEMENTARY SHIELDIN-G EQUIPMENT
(REF. 2 1)
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FiGURE 36. HEAT-EXCHANGER SUBASSEMBLIES WELDED 1N A CONTROLLED
ATMOSPHERE CHAMBER (RFF. 21)

- .

FIGURE 37. DETAIL OF THE MECHANICAL SUPPORT SHOWLNG THAT THE NU'S
ARE TACK WELDED (REF. 21)

This is a view of the intermediate point in the coil.
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After bending, two major areas of cracks originating from discon-
tinuities on the inside of the pipe wall in the first coil were found visu-
ally. The cracls were not related to welding since the nearest weld
was about 25 feet away. Air testj were used instead of water to detect

leaks.

Butt welds were inspected differently from the other welds. The
procedure was to make the root pass leaving approximately 1 inch of
the root on the 9 to 10 o'clock side open, the side that would not be in
tension when passing through the pipe bending rolls. The inside of the
root pass was inspected using a small inspection instrument as shown
in Figure 39 (Ref. 21). Next, the cover pass was made except at the
closure area and a second bore inspection was made. The second in-
spection was primarily to ensure that there had been no inside purge
_aLure when making the cover pass. Following this last bore inspec-
tion. the root side purge gas pressure was dropped and the open length
of weld was closed. There were no failures in this area from bending.

Rings. In work aimed at developing high-strength, light-
weight pressure vessels, the Ti-3Ai-13V-IlGr alloy was studied ex-
tensively because of its inlerent high strength and potential of exceed-
ing 1, 000, 000 inches strength-to-density ratio and possibly i eaching
11 200, 000 inches (Ref. 50). The main problems involved the develop-
ment of fabricating techniques to achieve consistently high strength
levels along with the most economical use of material. Welding de-
velopment was aimed primarily at obtaining good weld quality and
fracture toughness. During development work 40-inch-diameter rings

were prepared from 0. 250-inch-thick plate, by TIG welding (Ref. 13).
The weld joint developed for welding 1/4 by 8 by 10-inch panels was a
double vee-grcove jo ', ccn-,pleted in three-passes. The first pass
was a fusion pass, followed by a filler pass from the outside, and then
a filler pass from the inside. Welding conditions were not reported,
but radiographic weld quality appeared satisfactory.

Roll-forged rings of Ti-6A1-6V-2Sn alloy also have been evaluated
for weldability using the TIG process, by making single-pass circum-
ferential machine butt welds, using commercially pure titanium ;iller
metal. A segmented, expanding internal copper back-up of the type
shown in Figure 40 together with external stainless steel hold-down
bands were used tRef. 13). Sound welds were obtained using normal
welding conditions. A small amount of porosity was the only observed
weld defect. In other work, higher mechanical properties were devel-
oped by the 6AI-6V-ZSn alloy welded with commercially pure titanium
welding filler than compar.-ble welds in the 6A1-4V alloy using the
same filler metal (Ref. 51). A wider range oi aging temperatures for
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FIGURE 38. PHOTOGRAPH TAKEN' THRO)UGH A BOR ES-COPE OF A TYPICAL
WELD ROOT (REF. 21)

FIGURE 39. i1SP&..TION OF THE ROOT PASS OF THE BUTT WELD
SHOWN IN FIGURE 38 (REF. 21)
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FIGURE 40. SEGMEMTED WELDING FIXTURE WITH SOLID COPPER BAC K-UP SHOES
IMOUNTED ON POSITIONER (REF. 13)
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6A1-6V-ZSn alloy weldments has been shown to develop parent-metal
yield strength of 130, 000 or better. Welding techniques used on
Minuteman were designed to produce a weld with lower strength, but
greater ductility than the parent metal. The lower strength is com-
pensated by thickened material at the weld so as to place the weld at
lower stress than the parent metal. A stress-relief heat treatment is
performed after welding.

No significant improvement in quality or fracture toughness was
observed with electron-beam welds as compared with TIG welds
(Ref. 13).

Space Vehicles. The inner shell of the Mercury capsule
shown in Figure 41 is basically a pressure %essel consisting of a cone-
shaped side wall with a large spherical pressure bulkheae )n one end
and a small pressure bulkhead on the other (Ref. 52). The side wall
and the large bulkhead are both made of two thicknesses of 0. 010-inch
commercially pure titanium. The inner thickness is smooth, and the
outer one is stamped with a pattern of strengthening beads.

Because of size limitations on the available titanium sheet, it was
necessary to make each layer of the large bulkhead from three pieces
welded together, and each of the sidewall cones from eight pieces.
Each ef the sidewall cones was fitted one inside the other so that the
mating surfaces were in intimate contact all over. Further, wrinkles
that might interfere with resistancc-seam welding were prohibited so
the forming operation is critical. A special machine trims the parts
to size with a Z-1/2-inch high-speed steel saw blade. Speed was
210 rpm, and feed wa3 8 ipm. This combinatiorn produced a smooth
edge that did not require draw filing or hand fitting for welding.

Welding the Mercury capsule starts by joining the eight segments
of the smooth inner conical skins by TIG welding without filler metal.
To make a good joint with this technique, the 0. 0-10-inch titanium
sheets must be spaced with a maximum gap of 0. 004 inch. The length
of each weld on the inner skin is about 4 feet: on the outer skin about

6 feet. The fixturing fer this operation as shown in Figure 42, in-
cludes a conical support for the parts and a row of segmented clamps
on each side'of the joint (Ref. 52). The clamps hold the parts in pre-
cise adignment and also serve as a chil' bar. To hold the proper
shape, the panels are strapped down against the conical supporting
fixture during each weld. Then, as additional panels are added to the
assembly, each one in turn occupies the same relative area on the
contour of the tool. The spherical skin assemblies are welded in
much tht: same manner, but their shape causes an added complication.
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FIGURE 41. MERCURY SPACE CAPSULE (REF. 52)

Astronauts were checked out on instruments in this
space capsule at the fabricator's plant. Outer shell

is made of Rene 41 shingles. Inside is fiberglass in-
sulation and the double-wall inner shell is made of

0. 010-inch titanium.

FIGURE 42. FIXTURE HOLDS FIRST TWO
PANELS OF OUTER CONICAL

SKIN FOR TIG WELDING

(REF. 52)

Straps keep part tight against

contour of fixture.
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They are made in three sections, a center piece and two pieces, so
that the joint forms a curved path about 6 feet long. The fixture for

X• this operation as shown in Figure 43, rotates the whole part so that
the joint to be welded moves past a stationary torch, just the opposite
of the setup for welding the cones. In both operations, however, the
welding speed is 7 ipm.

•PP

FIGURE 43. ROTATING FIXTURE MOVES THE WORK PAST
STATIONARY TIG TORCH AT 7 IPM TO JOIN
TWO SECTIONS OF SPHERICAL BULKHEAD
(REF. 52). SEGMENTED FINGERS HOLD
EDGES OF JOINT iN ALIGNMENT

Aircraft Wing Leading Edge. The Ti-5,I-Z. 5Sn alloy is
readily weldable if atmospheric contamination is avoided. The A-5
Vigilante wing leading edge shown in Figure 44 is fabricated from this
alloy using manual .hd mechanized -'rG welding techniques (Ref. 53).
Commcr,.ially pure titr.n'un filler metal is used.

Figure 43 shows the ieating-edge section and illustrates several
types of weld-joint deaigns established to permit fabrication of thin
parts. rhese joint designs include a simple square-butt joint,
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Becam

Lower skin

L e skin Sp(

Closeout

FIGURE 44. VIGiLANTE WING LEADING EDGE (REF. 5ý3)

Several welds are needed to assemble zhe boundary layer
control wing section. Subsequent stress relieving is carried
out in vacuum to prevent contamination of the structure by
halogeps.

H--

1 to

FIGURE 45. TYPICAL CROSS SECTION OF WELDED TITANIUM

LEADING EDGE (REF. 53)
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Fiatire 4(a a qniiare-hbitt joint having an inteisral back-up- Figure 46b;

and an arc-seam lap joint, Figure 46c (Ref. 2).

a. Simple Butt Weld b Lap Butt Weld Fillet

T
SArc -Seam Lap

"FIGURE 46. WING LEADING-EDGE JOINT DESIGNS (REF. 21

The arc-seam lap joint originally involved melting completely

through the skin member with the arc and fusing it to the edge of tile

rib, as shown in Figure 47 (Refs. 2, 53). Early assemblies were suc-

cessfully welded in this manner, but the joint carried the constant
danger of being ruined if the welding electrode was misaligned with the
hidden web. Because of the alignment problem, the sheet metal web
was redesigned into a flanged I-beam. The wide flange provided con-

siderable latitude for aligning the electrode. Initial welding tests in-
dicated that arc-seam lap welds could be made without undue difficulty.

Water-cooled copper chill bars were used to control the width of the
top bead and enough curreA,t was fed into thie arc to melt completely
through the top skin and into the I-beam flange. It was an engineering

requirement that the fusion zone between the skin and the flange be at

least 0. 18 inch wide. Trouble was encountered when the welding cur-

rent was increased to obtain the 0. 18-inch width. Good arc behavior

at

FIGURE 47. ARC-SEAM TEE WELD-JOINT DESIGN

(REFS. 2, 53)
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east l evcrdi inches of weld, and then the arc-voltage-

controlled welding head would suddenly drive the welding electrode
down into the puddle. Careful observation of this runaway welding-
head action revealed that just as the electrode dove into the puddle,
the puddle itself seemed to get much wider and the bottom of it seemed
to drop. A groove was machined on the top side of the skin to reduce
the current.input necessary to get the proper width of fusion at the
interface. This change did make it easier to melt through the skin,
but did not reduce the arc problems. Additional tests were made to
determine the gap that could be tolerated between the skin and the
I-beam flange and still get an acceptable weld. It was found that the
current neeaed to melt through the skin into the flange was actually
much lhss when the skin was off the flange than when it was down tight.
It was also found that the amount of gap present between the skin and
the flange could vary considerably, once a few thousandths of an inch
gap existed, without changing the current requirements significantly.
Next, tests were made with the skin thickness reduced by means of a
groove on the bottom side of the skin, against the I-beam flange. This
provided a built-in gap of about one-half the thickness of the skin. The
groove was made 0. 18 inch wide to match the fusion-zone width re-
qui:'ement. The arc readily melted away the half thickness of the skin
and actually formed a hole through the skin. The arc then went on
down and impinged on the flange, melting its surface. As the welding
operation proceeded along the joint, the arc melted the skin ahead of
it, the molten metal flowed around the sides of the hole, and came
together again at the back where it joined with metal from the flange
that had been melted as the arc passed along the seam.

in production operations, holes are drilled completely through the
skin from the groove bottom at about 10-inch intervals. These holes
provide lineup cues on the top, visible portion of the skin during fitup
in the weld tool. Tests have shown that the welding elect-rode can vary
as much as 0. 030 inch from the centerline of the groove without losing
fusion on the sidewall farther away. After the parts are fitted up,
manual tack welds are made through the holes to anchor the skin to
the flange and keep it from creeping and crawling during the main
welding operation. The machine weld is then made and proceeds right
over the tack welds. A second pass is made to add filler wire and fill
up the concavity left from the first pass.

Structural Shapes. The equipment shown in Figures 48
through 51 is used for accurate sine welding of aircraft ribs at high
speeds (Ref. 54). The ribs require the welding of thin titanium cor-
rugated sheets at right angles to rib stiffeners on both ends. Because
of the difficulty in following the long continuous series of ridges and
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FIGURE 45. GE.NEAL VITEW OF THE SINE-W'AVE WELDING MACHINE (REF. 54)

FIGURE 49. WELDING OF THiN COR-

RUGATED T'I rANIUM

SHEET (REF. 54)
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FIGURE 50. SINE-WAVE WELDIN'G STATION AREA (REF. 54)

Adjustments aze being made to the argon shielding
box whihc follows the welding head.

FIGURE 5L. COMIPLETED RIB FOR THE AMERICAN RS-770 AIRCRAFT (REF. 54)
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grooves in extremely thin members, manual control of the weld torch
S;° •.... cc ,l-q,,-;nI rne•irhnu c have hpen developed to make sine-

Swave shaped welds. The sine-wave welding machine can deal with
20-foot lengths and can weld at the rate Jf 30 in. !min. Titanium in
thicknesses from 0. 008 to 0. 125 inch has been welded on the machine.

This welding sciup is operated with two tables so that fixturing
can be carried out on one while the ribs and beams are being welded
on the other. Since each weld fixture has provisions for tracing
template, the concept eliminates the need for indexing the entire
length.

A trace mechanism works off a template guide to follow the sine-

wave weld pattern. The welding torch is led through its path by a
magnetic tracing system (Refs. 54, 55). The system includes a stylus
that clings to the template by magnetic-flux attraction. Only rolling
action exists between the stylus and the template. Since no pressure
is applied on the stylus, hardened templates are not needed. Con-
struction of the beam and carriage assf .nbly is such that the torch tip
center can track the seam center within ±0. 002 inch. This accuracy
can be maintained over the full weld length in any direction.

By means of jog buttons that act on X and Y motions the operator
brings the tracer to its starting point on the template. The tracer is
then set for automatic operation. The welding torch is positioned over
its starting point on the weld seam by means of micrometer adjust-
ment. Then the wire feeder is positioned properly. A small moving
boxlike shield measuring 3-1/2 by 7 in. is linked to the welding head
and moves close behind it to shield the weld. The end result of the
system combines high production rates with higher than normal use of

both the machine and the weld tec-hnician's time (Ref. 55). Each table
fixture has provisions for a tracing template. For this reason, there
is no need to index the entire length of a weld path.

Special Products. Weldments designed specifically for
testing purposes also often provide useful information on welding pro-
cedures and properties. The Navy t-xplosive Bulge Test Specimen
may be included in this classification. During work to develop final
welding conditions for fabricating bulge test specimens, it variety of

joint designs and welding conditions were investigated (Ref. 56); these
are illustrated in Tables VII and VIII. Properties obtained are re-
ported in Table IX.
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TABLE VII. VARIATIONS OF A MODIFIED DOUBLE-VEE-JOINT DESIGN USED FOR EXPERIMENTAL

TIG WELDMENTS AND FOR A 2 x 30 x 30-IN7H FINAL PLATE WELDMENT ON 2-INCH-

THICK COMMERCIALLY PURE TITANIUM PLATE (REF. 56)

--f
,~ ' "hick •)

Weldment Indicated Angle or Dimension I
Identification Land (x). in. (y). in. Angle (a), deg- Angle (b), deg Gap (s), in.-

1 (1:xperimental) 0.100 1/4 45 20 Butt

2 (Experimental) 0. 100 1/4 45 20 Butt

3 (Experin. ntal) 5/16 1/4 45 15 Butt

4 (Experimental) 1/2 1/4 30 15 0.060"

5 (Expcrimental) 1/2 1/4 45 15 0.070"

Final weldnient 3/1 3/16 30 15 Butt

(2 x 30 x 30 in.)
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TABLE IX. BASE METAL AND WELD METAL TENSILE AND COMPRESSION TEST RESULTS ON
COMMERCIALLY PURE 2-INCII-TIIICK PLATE TIG WELDMENTS - WELDED WITH

CC.MMERCIALLY PURE TITANIUM FILLER WIRE(REF. 4-4)

YS. Elongat:on.
Sample 0. 21o Offset. TS. RA. per c•'t I
Lucaitiuo ksi ksi "o 2 ii J

Tensil Tests

Base Metal 77.3 9c 8 45 24

(Weldment 1)
Weld 1 69.3 16.5.0
Weld 2 73.3 90.7 37 7

Wcld 3 -1G. (; 4-1.S S 3

Weld 4 64.C 101.8 14 7
WLid 73.3 9,2.1 37 17

Spnec. Mm. 70.0 80.0

(RS-70 Grade)

Compression Tests

Base Metal 64. 2
(Weldnment 1)

Weld 1 73.2

W-.1d 2 u!..5

Weld 3 G9.5

Weld 4 82.5

Wold 5 79.2
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MIG WPvELDING

MIG w,-d:' - is a process that can provide high deposition rates
and ease in ,welaing in the "out-of-fiat position". The process is being

A deveioped for joining titanium alloys and has been used to a somewhat
lesser degree than TIG welding for actual production and prototype
components. MIG welding can be manual, semiautomatic, or fully
automatic. MIG welding is particularly well suited for the joining of
thicker sections of titanium. The process is very economical for this
type of work because high weld finishing rates are obtainable. How-
ever, MIG welding also can be used on light gage thicknesses.

In MIG welding, the heat required to melt the joint edges is sup-
plied by an arc between the filler wire and the workpiece. The filler
wire replaces the tangsten electrode used in TIG welding. The filler
wire, there.fare, is designated as the electrode in MIG welding as was
the tungsten electrode in TIG welding. The MIG welding filler wire
also is called "electrode wire". "consumable electrode", "consumable
eIectrode wire", "filler metal", and "filter wire". For welding of ti-

1: .ium, the consumable electrode is either commercially pure titanium
wire or a titanium-alloy wire. The arc and surrounding area is kept
free of air by a flow of inert gas around the electrode, as is the case in
TIG welding. All of the metal added to the weld joint is supplied by the
consumable electrode. This mete-I is transferred from the electrode to
the workpiece as fine droplets, a metal spray, or by short-circuit
transfer. The metal being transferred across the arc may be exposed
to much higher temperatures than if it were just being melted. The
combination of very high temperatures and fine particle sizes repre-
sents a set of coz.ditions ideal for the contamination of titanium.
Therefore, in MIG welding, it. is extremely important that the arc area
be completely protected from exposure to any gases other than the
inert gases.

MIG welding of titanium is normally done in the flat wr'ding posi-
tion. However, when required other -'-elding positions ca -e used.
For exampie, the Navy has developed suitable out-of-posi.. 'I welding
techniques that could be applied to the fabrication of titanium hull
structures. A chcck should always be made before MIG welding 'ita-
nium in any position to insure that adequate gas shielding is being ob-
tained. In general, good shielding is more difficult to provide when
welding in positions other than the flat position.

Equipment. Conv:ýntir.-al MIG welding power supplies,
torches, and control systems a; e used effectively in welding titanium.
The nature of MIG welding makes this process zo-newhat more
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sensitive to changes in welding equipment characteri-tics than is the
case for TIG welding. The limited published information on MIG
welding (Refs. 1,6,57-59) indicates that constant potential power
sources are being used with various types of constant wire feeders.
Conventional MIG welding water-cooled torches are modified to provide
the necessary supplemental gas shielding needed for titanium. Al-
though MIG welding has been conducted in vacuum-purged weld cham-
bers and in the open atmosphere, it is likely that most applications of
this process will be set up in dir. Typical MIG welding equipment ar-
rangements are shown in Figures 52 and 53 (Refs. 7, 20).

For in-air welding with the MIG process, supplemental shielding
devices described earlier should be employed. Trailing shields de-
signed for MIG welding are usually considerably longe: than those used
in TIG welding. This is to insure good protection for the larger vol-
umes of material that are heated during MIG welding and as a result
cool more slowly.

Direct-current reverse polarity is normally used in MIG welding
of titanium.

Wire-Feeding Equipment. For economic reasons MIG
welding equipmn--t should be kept in proper operating condition at all
times. The most common causes of downtime are found in the wire-
feed system. A typical wire-drive unit for constant-potential welding
is shown in Figure 54. For feeding filler wire, a spool of wire is
placed on a spindle threaded through a straightening device and into the
grip of wire-feed rolls. From the rolls the wire is pushed through a
flexible wire-feed cable through the gun and into the arc. Hoses and
plumbing to supply the gun with shieldiA.g gas and cooling water, if
used, are included.

The only function of thc wire feeder is to move wire and shielding
gas to the arc in such a manner as to provide a sound porosity-free
weld deposit. It is up to the operator to move the gun and the arc
along the seam to distribute the weld metal properly.

In a correctly designed wire-drive system, the wire is confined
laterally so that it can move only in tie desired direction. If the drive
motor has sufficient power, the wire will move smoothly from spool to
gun.

Often there are signals of pending wire-feeding failures. An alert
operator becomes aware that the wire speed is varying, which is usu-
ally the signal that something is going to happen. Before a complete
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FIGURE 5'2. MIG WELDING-EQUIPMENT ARRANGEMENT FOR WELDING IN TH~E OPEN
ATMOSPHERE (REF. 7)

Fronm clamping bars are removed.

FIGURE .53. MIC. WELDING ARRLANGE-

MEENT IN A CONTROLLED
ATMOSPHERE WELDING

CHiA: IBER (REF. 20)
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speed

Wire food cable and
power hoses

FIGURE 54. (REF. 60)

stoppage occurs, a quick step-by-step inspection of the equipment will
usually locate the trouble. Precautions that should be taken with wire-
feeding apparatus are well known and are reviewed below (Refs. 5-7,
60):

(1) Check the wire on the spool or coil. If it is not wrapped
snugly and if loops have slipped down over the wire as it
is drawn off the spool, the effect is the same as pulling
the wire through a knot. This situation can occur if the
spool is mounted horizontally and the friction device al-
lows it to coast when the arc is stopped. When wire is
fed from a barrel, rolling the barrel will also cause the
wire to tangle. The effect of an entanglement is usuaily
gradual, but it can eventually stop the movement of wire
entirely.

(2) Check the adjustment of the wire-straightening rolls.
Very little bending is required to remove the "cast"
from the wire, and excessive bending as shown in Figure 55
will give At an opposite cast. This increases the load on the
drive motor and causes overheating.

W~nsP• ,rolls!

WWire
jollsspool

Cwedc"No Cost' "Cast in Reverse
Diection"

FIGURE 55. (REF. 60)
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(3) Check the distance from the point where the wire leaves
the feed rolls to where it enters the wire-feed cable, see
"Figure 56. This is possibly the most critical link in the
whole system because the wire is unsupported and is also
subjected to maximum thrust. If this distance is adjust-
able make sure the unsupported wire is as short as possible.
If it ,is not adjustabl1e, make sure the various parts re in
perfect condition; parts showing any wear should be replaced.

( length of wire

FIGURE 56. (REF. 60)

(4) Make sure the wire enters at the proper location on the
drive rolls. If it approaches the rolls at an angle, it
tends to climb out of the groove. Then the rolls tend to
separate, loosening traction on the wire and allowing it
to slip, Figure 57.

M X

FIGURE 57. (REF. 60)

(5) Make sure the drive-roll clamping pressure is as recom-
mended by the manufacturer. Too light a pressure will
allow slippage; and too heavy will flatten the wire to the

point where it will not go through the contact tube in the
gun, Figure 58.
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FIGURE 58. (REF. 60)

(6) Make sure the wire-feed cable is clean and free of kinks.
Steel welding wires are usually copper stained, and the
copper tends to flake as it passes through the drive rolls,
especially knurled drive rolls. Some ol the flakes are
then scraped off inside the wire-feed cable, Figure 59.

Dirt flakes and Chips
Exterior wrop pocked in tight

( weliqwr

C#*1Ioterior wrap
Longitudinal layer

FIGURE 59. (REF. 60)

If the wire-feed cable is not cleaned out often enough,
dirt, copper flakes, or other foreign material can ac-
cumulate and jam the wire so tight that it cannot be moved
either way, even with tools. However, the gun and cable
can usually be cleaned out (with the wire removed) by
placing an air-hose nozzle on the exit end of the contact
tube and blowing the chips out. When the wire-feed cable
is not free of kinks, a condition known as "wire whip" can
occur (Ref. 57). This tervn describes a condition when
the electrode wire upon emerging from the contact tube,
surges erraticaily teward the joiat faces. An analysis of
one equipment setup revealed that the wire, after leaving
the straighteners, had passed through one 90-deg turn
and two 180-deg turns before entry into the welding gun.
This series of turns induced -i irregular curvature in
the wire that eventually resulted in wire whip. The
problem was alleviated by mechanically supporting the
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wire-carrying cable from an overhead roller device.
Figures 60 and 61 illusirate hlu -hange -ma•de to ovcr,
come the wire-whip problem. It is a good general rule
to clean the cable every time a new spool of wire is in-
stalled, at least until a cleaning program based on ex-
perience is established.

(7) Make sure the correct wire-feed cable and/or liner for
the job is used. A cable with too small a bore will
cause excess friction when bent, and too large a bore
will let the wire deflect laterally and possibly collapse.

The first and final test for a wire-feed system is the ease of wire
movement. With drive-roll clamping pressure removed, and with the
hoses and cables relatively straight, the wire should be free to move
in either direction without too much effort.

MIG Gun. Although the gun or torch is the last link in the
wire-feed chain, it usually does not cause gradual failure of wire feed
as the others do. Instead, its function and its possible failings are
more concerned with electric power and shielding gas.

One of its functions is to transfer the welding power to the wire,
preferably at the exit end of the contact tube. Its other major function
is to direct a gas shield over the weld zone so as to exclude the adja-
cent atmosphere, which would otherwise cause porosity in the com-
pleted weld.

The gun is without question the most abused part of the system,
and yet, it absolutely must be kept in good condition to produce good
welds. Bent. worn, or broken parts should be replaced.

Contact Tube. Particular attention should be given
to the contact tube. These tubes are usually made of copper or some
special copper alloy, and they are subject to a number of ills. They
become spattered, they wear out. and they are occasionally melted
when the wire burns back to the tip as a result of wire-feed failure.

Burn backs are generally caused by arcing in the contact tube.
"This makes the wire stick, and then the open-circuit voltage burns
the wire back to the tube.

Worn contact tubes contribute to burn backs because, as the bore
size increases, the transfer of electric power to the wire becomes
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FIGURE 60O. LUG WELDING SETUP SHOWS SHARP BEN;DS IN WIRE-FEED CABLE (REF. 5,6)

F"IGURE 61. HOSE-AND -CABLE SUPPORT ARRAIKGEMENT EMPLOYED TO ELMINATE
WIRE WHIP DURING MIG WELDING (REF. 5, 6),

914



erratic. For this reason, reaming out the bores with'l ta-t-orch tip
cleaners is not recommended.

Burn backs are not too much of a problem with CO 2 shielding gas

used with steel because of the short arc length per volt. When welding

titanium, inert gases can amplify the burn-back problem. In arc-spot
welding applications where argon or argon mixtures are necessary,

the burn-back problem can be handled very well with burn-back timers.

Shielding. Gas coverage, the second function of the

gun, is controlled by its nozzle, which is designed to produce a satis-
factory gas-flow pattern. When weld spatter builds up, the shape of

the gas pattern may change, and if not corrected soon enough will

cause poor welds. The proper rate of gas flow will normally produce

a laminar flow at the nozzle tip. The flow rate is not critical but too

low a rate will not supply enough gas to do the job and too high a rate
will cause turbulence, which brings air into the gas shield and con-

taminates it.

Gas leaks or cooiing- .%ater leaks can also cause porosity in tita-
nium welds. Bending, plugging or mis-installation of parts should be

corrected.

Materials. A limited number of titanium alloys have been

welded with the MIG process. The alloys that have been MIG welded
to date include:

* Commercially pure titanium (Ref. 5)

* Ti-5A1-2. 5Sn (Ref. 5)

* Ti-3A1-13V-1lCr

* Ti-4A1-4V (CP titanium filler wire) (Ref. 9)

* Ti-6AI-4V (CP titanium and Ti-6AI-4V filler wire)

(R'-fs. 5, 6)
* Ti-7AI-ZC'O-lTa (similar or lower aluminum content

filler wire).

It is expected that the MIG process will be adapted for welding other

a titanium alloys in the not-too-distant future.

The most important material in MIG welding is the welding elec-

trode or filler wire Commercially pure titanium or titanium alloy

filler wires that match the base-metals composition are normally
used. MIG welding makes use of wire provided in coil form. Other

methods of supplying wire are impractical for MIG welding. The

quality requirements for MIG welding wire are perhaps even more
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stringent than comparable requirements for TIG wire. One reason for
this is that welding current must be transferred frorm. t+he contact or

guide tube to the wire. Alsc, the wire-feed speeds employed in MIG
welding are much higher than those employed in TIG welding. There-
fore, any wire characteristic that tends to impede the flow of wfre
through the welding torch may cause undesirable variations in welding
conditions or even an equipment malfunction. Such undesirable char-
acteristics as kinks, soft spots, and rough surfaces are not tolerable

in MIG welding wire.

Cleanliness of the welding filler wire is extremely important, and
good cleaning practices must be used to minimize contamination.
Fabricators have experienced unacceptable variations ix. weld quality
that have been attributed to inadequate control of filler-wire
preparation.

One fabricator found a "waxlike' surface coating at regular inter-
vals aiong the length of Ti-6A1-4V filler wires (Ref. 6). The nature of
this coating could not be identified. Since cleanliness is extremely
important in welding titanium, it is believed that coatings of this type
can contribute to porosity. Attempts to remove the surface coating by
passing the wire through a tube filled with abrasive fibers were not
totally effective. However, periodic inspections showed definite evi-
dence of residues on the abrasive fibers.

Electrochemical surface finishing techniques have been developed
for inspection of incoming filler-wire ntialityr (Ref 6l-). Th chem-

milling technique discloses seams, laps, and some other defects that
are difficult to find by other means.

Titanium welding wire is supplied by all of the major titanium

companies and by several companies specializing in processing high-
quality metals and alloys. Filler metals that are cleaned and packaged
in sealed containers are available.

Gases for shielding the weld pool, underbead side of the weld, and
hot weld metal include the welding grades of argon, helium, and
argon-helium mixtures. Inert gases containing oxygen additions
shouid not be used.

Tooling and Fixtures. Backing for MIG welding titanium al-
loys has been varied depending on joint design, quality requirements,
and fabricator. Backing bars are used to provide root-side shielding
and to facilitate control of the weld puddle, root reinforcement, and
heat effects of welding. Backing bars also are used to minimize I
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distortion by promoting more rapid solidification and cooling of weld
"metal. In some instances, the more rapid solidification of weld metal
is reflected in higher ductility an .t "ug... s (Ref.

Copper is the most popular material for back-up bars used for
MIG welding. So)id-copper back-up bars were used for fabricating
tank-cupola prototypes (Ref. 41) while water-cooled copper back-ups
combined with inert-gas shielding devices were used in development
work on thick-plate cross sections (Refs. 5, 6). Contamination of ti-
tanium welds by the back-up materials can occur and precautions must
be taken to avoid excessive heating or puddling.

Welding Conditions. The welding conditions employed in MIG
welding are dependent on two separate groups of factors. These
groups include those that affect (I) welding arc characteristics and
(2) welding conditions.

First, a suitable combination of curreat, voltage, heat input
rates, and other parameters that will produce the desired arc charac-
teristics must be selected. The arc stability and metal transfer oc-
curring in MIG welding are very dependent on these electrical vari-
ables and the composition of the shielding gas used. With low current
densities, metal transfer is erratic and consists of large metal
globules. Large globules often contact the workpiece before they
separate from the end of the filler wire. This behavior interrupts the
arc due to the short circuit formed by the large globules. Current
fl-ow continues, however, until the globule melts sufficiently to sepa-
rate from the end of the filler wire. -When separation occurs, the arc
reignites and the transfer process continues as before. Low-current-
density MIG welding has been used for welding titanium. One impor-
tant advantage is that the lower currents and heat-input rates can be
used with spray-type metal transfer. As the current density is in-
creased, arc stability is improved and metal transfer changes to a
characteristic spray-type transfer. High-current-density welding
conditions are generally preferred in the MIG welding of most
materials.

The second group of factors affecting the welding conditions are
the materiai thickness, joint design, weld tooling, and whether manual
or machine welding techniques are being used. The first group of
factors affecting welding conditions usually sets minimum limits on the
usable current and voltage. Variation above these minimums corn-
bined with the possible variations introduced by the second group of
factors makes it possible to produce welds of very similar appearance
with many possible combinations of welding conditions.
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Table X illustrates some of the combinations that have been used
U Y V 4 L 4L il W LA4,.J- ira LAAC; ±V1xJ VV%1.A AL J IL&AL JoantsL &i

and its alloys. Table X! illustrates welding conditions used for other
types of weld joints. Insufficient work has been reported on MIG
welding to allow any comment on the most suitable conditions of those
that have been investigated. Because of difficulties with crater crack-

ing and control of penetration, starting and runoff tabs are recom-
mended (Ref. 9).

PROPERTIES

Information on properties of MIG welds in titanium and titanium
alloys is scarce due to the limited use of MIG welding for titanium
alloys.

The inechanical properties of the weld metal are related to its
compositions. Weld-metal composition, in turn, depends on the com-
position of the filler metal that is used to deposit the weld, the coinpo-
sition of the base metal, and the welding conditions that affect the ratio
between the amount of filler wire and base metal melted in ma. :ing the
wd.1d. Therefore, weld-metal properties can be varied through filler-
metal selection and to a lesser extent through changes in welding con-
ditions. Weld-metal properties for typical material combinations are
given in Table XII. Weldment properties are given in Table XIII.

Only unnotched and notched tension and Charpy vee-notch impact
data are available. Satisfactory properties are generally obtained in
alpha or alpha-beta alloys. Very low impact properties are obtained
in the beta alloy. Low impact values may result from foreign mate-
rial or deposits (Ref. 9) on the welding wire.

Weld-cracking problems have been encountered at locations where
weld passes cross one another and in multipass welds. Accordingly,
procedures have been devised by one fabricator to use single-pass
welding as much as possible and to minimize the number of locations
at which two different welds come into contact (Ref. 9). In particular,
crossover welding, which permitted one weld deposit to cross another,
was avoided. Cracking was detected in 2-inch-thick Ti-6A1-4V weld-
ments made with ten passes of Ti-6A1-4V filler wire when no preheat
was used. A similar specimen made using 125 F preheat for the first
and second passes, and a 175 F interpass temperature for the -emain-
ing passes showed no radiographic evidence of cracks (Ref. 5). These
weidments also contai,_ed porosity that tended to concentrate at the
ends of the joints. Sources of additional properties information are
listed in Table XIV.
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TABLE XI. GAS METAL-ARC WELDING CONDITIONS FOP. FABRICATION OF Ti-4AI-4V

TITANIUM TANK CUPOLA (REF. 9)

(1) 1/4*Fi1gt (2) l14'x4V I

- n - (7) 3/8" Fillet (8) 3/8" i45'V..

(3) I/4"Coumn Weld 4) I/4X Fillet

INPo 
1(9)1/2 x45* Voe

(5) 3/8" x 450 Voo (6) I/4Fillet

CP Titanium

Filler Wire

Plate Metal Feed
Tiiickness. Diam. Rate.

Type of Joint in. in. Volts Amp ipm

1 1/4 1/32 38 250 1470

2 1/4 1/3-2 38 2,50 1470
1/16 39 400 350

3 1/4 1/32 38 250 1470

4 1/4 plate 1/32 38 250 1470

1/4 diarn

round

5 1/2 1/16 40 400 350

1/ /Ic 39 330
7 1/2 1/16 40 400 350

8I 1 1/16i 40 400 350

9 !/2 1/16 40 4o00 350
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TABLE XIlI. TENSILE PROPERTIES OF MIG WELD METALS IN TITANIUM ALLOYS

Filler Metal 0. 2 Per Cent Ultimate Elongation, Reduction

Nominal Size, Offset Yield St.ength. pe: cent ip in Area,

Composition in. Strength. ksi ksi 2 in. per cent Reference

Ti 6Al-4V Parent Metal

Parent metal -- 115 132 11 21 63

CP titanium 0.062 83 93 16 39 63

CP titanium 0.062 85 100 31 25 63

5AI-2.5Sn 0.062 123 133 25 2.5 63

5AM-2. 5Sn 0.062 131 139 11 19 63

6AI-4V 0. 062 128 144 6 9 53

6AI-4V 0.062 129 143 15 13 63

6AI-4V o. 062 139 151 8 8 63

6AI-4V 0. 062 143 151 4 5. 35
C? titanium 0.062 57 72 24 49 5

Parent metal -- 115 132 11 21 65

6AI-4V 0.062 -- 135 -- --

Ti -5A1-2. SSn Parent Metal

Parent metal -- 12 135 13 25 43

CP titanium 0.062 77 87 21 34 13

5AI-2.5Sn 0. 062 125 138 8 12 63

06 -2.25Sn 0. o -- 137 -- -- 64

6AI-4V -- 127 141 1 !6 63
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TABLE Xl1i. TRANSVEgS T1NSILE PROPERTIES OF MIG WELDMENTS IN TITANIUM
AND TiT.ANIV.M ALLOYS

Ultimate
Filler Metal Offset yield Teasile Elongation. Reduction Location

Nominal Size, StreIQO(A). Strength. per cent in of Area. of
Composition in. kzz i a in. per cent Failure(b) Reference

Comrinercially Pure Ti

CP titanium 91(0,1) 107 22.0 49.2 -- 9

(parent metal)

C CPtitanwm(c) 0.62 99(0'1) 110 15.0 .53. HAZ 9

Ti-4AI-4V Alloy

4A1-4V I1E 12- 14 44 -- 62

(parent metal)
4A1-4V@') 0.62 113 Il 5 12.9 52.5 HAZ 62
CP titanium 112 12-2 -25 W

T.!l-2.5Sn Alloy

.5A-2.5Sn 13: 13i 20 43 -- 62
(parent metal)

5AI-2. 5Sn -- 132 142 -- 38 -- 62
C? tit3nium 12,1 130 -- 34 - 62

Ti..-6AI-4 V Alloy

6AI-4V 13.5 148 16 42 -- 62
(parent metal)

6AI--" 138 152 -- 44 -- 62
CP titanium -- 126 134 o- 30 -- 62

(a) 0. 2 per cent unless othcrw!5e poted.
(b) HAZ = heat-affccted zonie; W -- weld metal.
(c) Filler metal deposited at 365 amp arad 45 v; side-bend samples bent 180 deg without cracking.
(d) Fj!lcr metal deposited az 400 al4p ani 46 v, side-bend tests fractured at 5.5 and 80 deg.
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has been used to nmanulacture z variety of complex shapes from tita-
nium and for welding thick titanium plates. Some good examples of
applic~tions for the process are described in the following.

Armored Vehicles. Armored tank cupola components
fabricated frorn Ti-4A1-4V alloy are shown in Figure 62 (Ref. 9). MIG
welding was used extensively throughout to demonstrate the fabrica-
bility of complex titanium shapes by MIG welding.

Thick Titarnum Plates. Independent and Government
facilities have been welding thick plates of titaniumn alloys since about
1952. In one program (Ref. 6) ihe objective was tu develop and estab-
lish procedures for welding 2-inch and 5/8-inch annealed Ti-6AI-4V
titanium alloy H-plates and corner joints with comnmercially pure tita-
nium and Ti-6AI-4V filler metals. The procedures for welding were
developed using the inert -gas -shielded metal-arc consumable-
electrode process using crack-susceptibility plates and I-plates.
Fabrication of the joints with unalloyed filler metal was accomplished
readily; however, with the alloyed filler metal it was necessary to use
a 175 F preheat and a 170 F interpass temperature for crack-
susceptibility test plates, and a 1i5 F preheat and a 200 F interpass
temperature for iabricating H-piates. Two-inch-thick plates of
li-8Mn alloy also have been welded in early titanium alloy armor-
welding development progranms (Ref. 62). Due to weid-metal cracking
and the development of newer, more readily weldable alloys, welding
development work with the Ti-84n alloy was terminated.

For welding 2-inch-n.hick titanium plates, automatic consumable-
electrode equipment was set up in a chamber for welding 2-inch-thick
plate (Ref. 20). The piates were clamped in a welding fixture that
could be rotated inside the chamber for weld passes on either side of
the double-vee joint. This -velding fixture was attached to a traversing
mechanism that moved the plates under the welding torch mounted on a
horizontal plate a, the top of the welding chamber. The torch cotild be
adjusted vertically or horizontally to position it with respect to the
ioint. Adjustments in wire-feed speed and welding travel speed were
made from outside the welding chamber. Water cooling was supplied
to the welding torch and to the entire shell of the welding chamber.
Water cooling the chamber will be advantageous in removing some of
the heat generated during welding. A constant-potential welding gen-
erator was used in welding tests.

A typical -cint design and a back-up bar for welding thick-plate
titanium alloys are shown in Figure 63.
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Titanium plate Copper back - up bar

FIGURE 63. TYPICAL JOINT DIMENSfONS FOR WELDS IN
Z-INCH--THICK Ti-13V-llCr-3A1 TITANIUM
ALýLOY PLATE (RFF. ?,U)

ARC SPOT WELDING

Arc spot welding is being developed for joining titanium alloys --n
applications where resistance spot welding cannot be used or as an al-
ternate to the resistance -spat -welding process. Arc spot welding c-;a-,
employ either the basic Tlf3 or MIG welding Rroczss and is a semi-
automatic or fully autormatic technique. Arc zinot welding can be ased
to join thickness combinations which are not suitable for resistance
spot welding an-c in joints that are accessible fromr ::ne side only.

The mnajor difference b-etween arc spot wel',ding and either comnven-
tional TIG ~-MIG welding is thar them? is nr, relati~ve lateral rnov-e~ment
betwe en the wending torch and thc- parts being Joined. Star-tiý and
stopping cycles 4.or the welding process are exct~erely imporsant -,n
arc spot welding- The total welding time generally is qurze sho~rt so
that it is necessary to automatically program welding paraxneut-rs to
insure a smnooth start and stop of the proco-ss. The shieldxing of arc
spot welfs is somnewhat simpier than for conven-ional TiG or MIG
welds. Simple cylindrical auxiliary shieids placed around the weiding
torch are suffic L-ent to p~revent contamination from the top surface of
the weld. Shielding o.; the underside of the joint also may be r~equLred.
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Equipment. The equipment required for arc spot welding is

ever, the arc-spot-welding nozzle is a complete down-to-the-surface
shield and it is a locater for arc length or contact-tube-to-work dis-
tance. Also, some means of programming appropriate welding
parameters to obtain desired starting and stopping cycles is used.

Materials. The materials used in arc spot welding usually
are the same as those used in either TIG or MIG welding. Earlier
sections should be consulted for comments on materials.

Welding Conditions. 71he welding conditions enmployed in arc

spot welding are generally similar to the TIG or MIG welding condi-
tions used in joining comparable thicknesses of the outer materials.
Arc *spot welding can be used for joining similar and dissimilar metal

thickness combinations. The arc spot is always made through a rela-

tively thin member of the part being fabricated. The backing member
may be thin or thick. There are indications that the top layer that can
be penietrated by TIG spot welding is limited to 0. 060 to 0. 070-inch-
thick titanium. However, detailed welding conditions for arc spot

welding of titanium have not been reported.

ELECTRON-BEAM WELDING

Electron-beam welding is an extremely attractive process for use
in joining titanium and other highly reactive materials. The process
is applicable to a wide range of thicknesses from about 0. 0015 inch to
over 2 inches. One major advantage of the process is that all welding
is performed in a high-vacuum chambez. Contamination of the weld-
ment from external sources is essentially nonexistent. All electron-
beamr welding is done using mechanized equipment. Electron-bcam
welds made with high-power-density type equipment exhibit a charac-
teristic high depth-to-width ratio of the weld metal and heat-affected
zone. This characteristic is advantageous from the standpoint of
minimizing the distortion that normally accompanies welding. It may
also result in welds whose properties are not altered significantly
from those of the base material.

The electron beam can concentrate a large amount of energy in a
spot diameter of about 0. 010 inch or less (Ref. 60). Energy densities
range from about 5, 000 to 40, 000 kw per square inch, compared with
about 100 kw per square inch fcr tungsten-arc welding.

In electron-beam welding, the heat required to melt the joint
edges is supplied by a focused electron beam generated in an e-ectron

104



gun. This beam is focused and accelerated so that it strikes the joint
line parallel to the existing interface. Electron-beam welds are usu-

ally made without the addition of any filler wire.

Equipment. Electron-beam welding equipment is classified
in two divisions. High-voltage welding is performed in the 75, 000 to

150, 000-volt range while low-veltage welding is performed ýn the
15, 000 to 30, 000-volt range. Normally, the high-voltage equipment
produces much narrower heat-affected zones than low-voltage equip-

ment.(Ref. 66). Low-voltage equip: ent provides a wider weld and is

used very effectively in special can-sealing operations. Acceptable

welds can be made with either type of equipment. A schematic dia-
gram of an electron-beam weiding machine is shown in Figure 64

(Refs. 67, 68). Special electron-beam units using either clamp-on-
type chambers of special electron-gun assemblies designed to allow

the electron beam to be projected into the air have not seen much use

on titanium. Clamp-on-type chambers may be quite useful in the
joining of long lengths of special shapes fabricated from titanium.

Fixturing is needed to hold the parts in position, but the fixturing

need not be as heavy as for other welding methods (Ref. 69). Copper

chill bars can be used to restrict the width of the heat-affected zone
and to confine and control the fusion-zone geometry (Ref. 66).

Materials. No special material requirements are involved in

electron-bean welding. However, because of the very high solidifica-
tion rates aszociated with most electron-beam welding, it is impera-
tive that the weld area of the parts to be joined be very clean prior to
welding. The high freezing rates associated with electron-beam weld-

ing allow very little time for the escape of any gaseous impuriti,-3 dur-

ing weIding. Thus, it might be anticipated that electron-beam welds
could be somewhat more prone to porosity formation than other types
of fusion welds. To date, there is very little evidence to either sub-

stantiate or refute this supposition.

There are no known applications where filler metal is used for

electron-beam welding of titanium alloys.

Welding Conditions. Welding conditions used in electron-

beam welding are dependent on material thickness and the type of

electron gun being used. For a given thickness of material, various

combinations of accelerating voltage, beam current, and travel speed
are satisfactory. In electron-beam welding, the electrical parameters

do not adequately describe the heat-input characteristics of the beam
since these characteristics are affected significantly by the focus of
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the beam. Measurements o1 beam diameter are difficult to make
under production conditions so that the transfer of weldin2 parareters
between different equipment units is very difficult. Fortunately, suit-
able welding parameters can generally he developed on a given piece
of equipment with only a very few trials.

In very thick material, the first pass made to completely pene-
trate the joint sometimes is undercut along both edges of the weld
metal. This undercutting car. Le eliminated by a second weld pass
made at somewhat lower energy levels with a slightly defocused beam.
However, undercutting has been largely reduced by making minor ad-
justments in travel rate (Ref. 66). The underside of electron-beam
welds also may exhibit an undesirable contour. Some type of metal-
removal operation is generally required to produce an acceptable

underside contour.

The flat welding position is used in electron-beam welding. The
welding positions that can be used are limited by the versatility of the
available welding equipment. Table XV shows some of the welding
conditions that have been used in the electron-beam welding of tita-
nium and its alloys.

Properties. Sources of property data on electron-beam welds
are shown in Table XVI. In general, the properties obtained in
electron-beam welds are similar to those obtained in TIG welds.
Strrngths up to 140, 000 psi can be obtained depending on the welding
conditions used (Ref. 70). Postweld aging of electron-beam welds in
1-inch-thick Ti-6A1-4V. alloy increaseu the tensile properties 2 to 3
per cent (Ref. 71).

Applications for Electron-Beam Welding Titanium Alloys.

Normally used for the production welding of precision assemblies,
electron-beam welding has been used for fabricating pressure vessel
spheres as shown in Figure 65 (Ref. 72). Electron-beam repair weld-
ing has saved tens of thousands of dollars by its ability to make re-
pairs on close-tolerance parts that might otherwise have to be
scrapped. Electron-beam welding enabled one fabricator (Ref. 65) to
salvage many parts that formerly codld not be repaired because of
tolerance, configuration and/or material problems. Repairs con-

sisted essentially of patching, plugginý,, joining, and similar welding-
type operations. Typical applications included: adding a block of
material to an area where too much stock had been machined off;
plugging unwanted holes; adding tabs, bosses, and other fittings to a
machined part; filling porosity or voids in machined castings; and
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TABLE XV. ELECTRON-BEAM WELDING CONDITIONS

Acc. Beam Travel Beam
Voltage, Current, Speed. Diameter,

Base Alloy Thickness, in. kv ma ipm in. Referent2

SAI-4V 0.05 85 4 60 0.006 42
Ditto 0.2 125 8 18 0.01 42

"- 0.191 28.2 170 98 .... .

Sevexal 0.084/0.125 14 250 8 to 10 66
alloys

5A1-2.5Sn 0.09 90 4.8 IE -- 69
13V-llCr-3A1 0.125 135 6.5 28 - 69

Ditto 0.125 20 95 30 --

"" 0.03 30 26 89 -- 40

8AI-1Mo-IV 0.05 110 2 45 0.005 40

CP titanium 0.05 95 1.8 30 ....
Ditto 0.125 125 6 30 ....

"0.250 138 10 25 ....
"" 0.340 150 15 60 .
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FIGURE 65. ELECTRON-BEAM WELDED TITANIUM
PRESSURE-VESSEL SPHERE

patching cracks in precision fixtures. Examples of electron-bearr.
weld repairs are shown in Figure 66 (Ref. 65).

PLASMA-ARC WELDING (Refs. 74, 75)

Plasma-arc welding is an inert-gas welding method utilizing a
transferred constricted arc. The process is now used as an alterna--
tive process for TIG welding for a limited number of industrial appli-
cations where greater welding speeds, better weld quality, %nd less
sensitivity to process v7ýriables are obtained.

The general characteristics and electrical circuit used for
plasma-arc welding are shown schematically in Figure 67. The arc
plasma or orifice gas indicated in Figure 67 is supplied through the
torch at a flow rate of 1 to 15 cfh. Suitabre gases are argon, and
mixtures of argon and helium. Argon-hydrogen mixtures also are
used for some materials, depending on the application. The gas flow-
ing through the arc-constricting nozzle protects the electrode from
contamination and provides the desired composition in the plasma jet.

Relatively low plasma-gas flow rates are used to avoid turbulence
"and undesirable displacement of the molten metal in the weld puddle.
Since the low gas-flow rates are not adequate for shielding the puddle,
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S~FIGURE 67. SCHEMATIC REPRESENTATION OF PLASMVA-
AARC WELDING OPERATION (REF. 74)

"supplementary shielding gas is provided through an outer gas cup. The
type and flow rate of supplemental shielding gas are determined by the
welding application. Typical arc and shielding gas flow rates are 4 and
35 cfn, respectively.

Keyhole Action. In plasma-arc welding, the term "keyhole"
has been applied to a hole that is produced at the leading edge of the
weld puddle where the plasma jet displaces the molten metal, allowing
the arc to pass completely through the workpiece. As the weld pro-
gresses, surface tension causes the molten metal to flow in behind the
keyhole to form the weld bead.

Keyholing can be obtained on most metals in the thickness range of
3/32 inch to 1/4 inch, and is one of the chief differernces between the
plasma-arc and gas tungsten-arc processes. Presence of the keyhole,
which can be observed during welding, gives a positive indication of
complete penetration.

Equipment. A mechanized plasma-arc welding torch is shown
in Figure 68. This torch can be operated with either straight or re-
verse polarity connections at arc currents up to 450 amp. Water-
cooled power cables are connected at the top of the torch to supply
power and cooling water to the electrode. Fittings are provided on the
lower torch body for the plasma-gas hose, the shielding-gas hose, and
the cooling water for the nozzle.

The two types of electrodes used in the plasma-arc torch are
shown in Figure 69. The tungsten electrode shown on the left is used
for straight-polarity operation and is available in 1/16-, 3/32-, and
1/8-inch diameters, depending on the current to be used. A
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FIGURE 68. MECHANIZED PLASMA-ARC WELDING TORCH (REF. 74)

Straight ;loarity
po!o •- Iy elecI -ode

electrode

SFIGURE 69. TUNGSTEN AND COPPER ELECTRODES USED FOR STRAIGHT AND

REVERSE POLARITY OPERATION, RESPECTIVELY (REF. 75)
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water-cooled copper electrode shown on the right side of Figure 69 is
used for reverse-polarity operation.

A variety of multiport nozzle designs are available for different
welding applications. The diameter of the central port of the nozzle
depends on the welding current and gas-flow rate. The spacing be-
tween the side gas ports is inlfuenced by the thickness of the
workpiece.

Welding Conditions. Typical welding conditions for square
butt joints in titanium arc shown in Table XVII. Often, conditions de-
termined for joining various thicknesses of stainless steel can be used
as starting-polnt conditions for welding the same thicknesses of other
materiais. The data in Table XVII were obtained with the electrode
set back 1/8 inch from the face of the torch nozzle. Electrode setback
is accomplished by rotating a collar on the upper torch body, and the
distance is gaged with a probe on a setback tool. Nominal torch-to-
work distance is 3/16 inch.

TABLE XVII. PLASMA-ARC WELDING CONDITIONS FOR SQUARE BUTT
JOINTS IN TTANIUM

Plate Welding '11c Arc
Thickness, Speed, -urtient. Voltage. Gas Flow Rate. cfh

in. ipm amp ',dc-sp) v Nozzle Shielding

1/8 20 185 21 8 30

3/16 15 190 26 12 45

Pure argon is used to weld reactive materials that have a strong
affinity for hydrogen, such as zirconium and titanium. Use of Vrgon
as the nozzle gas and CO? as the auxiliary shicld has increased speeds
on certain miid-siede welding applications but CO0 is not to be used for
welding titanium cr its alloys. When making the second or cap pass on
a joint requiring two passes, helium can be used for the plasma and
shielding gases. The helium effluent does not have the momentum re-
quired to produce a keyhole, but this is not necessary on the cap pass.

There is no information on properties of plasma-welded titanium
alloys available in the- published literature at this time. However,
since several organizations are using the process in development
work, properties data probably will be available in the near future.
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Applications. Plasma-arc welding has proven commercially
important advantages in several specific areas of application. These
inciude the welding of stainless steel tubing, making circumferential
joints on copper-nickel and stainless steel pipe, and the welding of
reactive-metal compacts to form furnace electrodes. Development
activities are under way on other promising applications incluA.ing
missile cases.

Aerospace Applications. Development work is in prog-
ress on the plasma-arc welding of missile casings of titanium, 18 per
cent nickel maraging steel, D6AC steel, Type 410 stainless steel, and
4130 steel. The plasma-arc welds on thicknesses where keyholing is
obtained, have strength, elongation, and notch-toughness properties
equivalent to thzse of TIG welded joints. In addition, welding speed is
increased and greater uniformity is obtained. For example, lo-c-.-
tudinal and circumferential joints in 3/16-inch-thick titanium t: nkage
are welded in one-fourth the time required for the TIG process- The
overall time saving is even greater, because the plasma-arc welds are
made on square butt joints while prepared joint designs were required
for TIG welding.

Titanium Sponge. Production of ingots of reactive metals
such as titanium and zirconium starts with the pressing of small chips
of the metal and alloying elements into a mold to form a sponge com-
pact or briquette. The compacts are then welded together to form a
primary electrode which in turn is melted into ingot form in a vacuum
electric furnace. The wLIding of the metal compacts is another com-
mercial application for plasma-arc welding.

Use of TIC welding is not permitted in the production of reactor-
grade zirconiun. L;ecause of the possibility of tungsten inclusions in the
base metal. Since TIG welding is ruled out, MIG welding (or consum-
able electrode welding) was generally used to join the compacts. How-
ever, MIG is an expensive process for this application because of the
price of zirconium welding wire (about $17.00 per lb). Occasional
burn backs of the guide tubes in MIG torches resulted in excessive
copper deposits in the primary melt ele'ctrodes which sometimes
caused the copper content of the finished ingot to exceed the specifica-
tion. Similar difficulties would be expected with titanium made by this
method.

In plasma-arc welding of titanium and zirconium sponge, the torch
"- uses a nonconsumable water-cooled electrode operating on reverse po-

larity without filler-wire addition. There is no tungsten present which
eliminates the possibility of tungsten inclusions. The cost of the

i
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welding wire is also eliminated. Plasma-arc welding of sponge com-
pacts is performed both in the atmosphere and in inert-gas chambers.
When the compacts are loaded into a chamber, the air is evacuated and
the space is back filled with argon. The plasma-argon issuing through
the torch nozzle keeps the chamber under positive pressure. When
compacts are being welded in the open atmosphere, a trailing shield is
attached to the torch to blanket the weld puddle with inert gas to pre-
vent contamination.

Laboratory tests and production experience indicate that transfer
of copper from the water-cooled copper electrodes used in this pro-
cess is essentially zero. In one plant, the plasma torch is taken out
of service after each 60 hours arc time to clean accumulated spatter
from the electrode and nozzle. In another plant, downtime per torch
varies from 5 to 7 hours per month, with production time scheduled
for 550 hours per torch.

In one installation, the savings realized by eliminating the use of
welding wire paid back the investment in plasma-arc welding equipment
in fifteen 8-hour shifts.

RESISTANCE SPOT WELDING

Resistance s-;-z welding has been used more than any other
resistance-welding process for joining titanium and its alloys. Spot
welding has been used to join titanium in thicknesses ranging from a
little under 0. 01 inch up to pile-up thicknesses totaling 2-1/2 inches.
The thickness that can be welded in any given application is limited
only by the power and force capacity of the available equipment.

In resistance spot welding, all the he•.t required to accomplish
joining is supplied by the passage of an el.'ctric current between two
opposed electrode tips that contact the surfaces of the parts to bc
joined. The electrode tips are held against the workpieces with con-
.,iderable force, so that good electrical contact is maintained through-

out the assembly. Resistance-spot-welding techniques can also be
used to make joints in which no melting is involved. Such joints can
be called diffusion welded, diffusion bonded, yield-point diffusion
bonded, or solid-state bonded. Joints of this type are very similar to
conventional resistance welds with the exception that no molten metal

"*is formed during the joining process. Titanium normally is welded
using the conventional technique involving melting. The diffusion-
bonding technique has been used only experimentally. Even conven-
tional spot welds in titanium contain an area around the molten nugget

1171



that is diffusion bonded. The bond in this area is generally strong
enough to make a significant contribution to the load-carrying ability
of the spot weld.

v Titanium is spot welded in much the same manner as other metals.
"In many respects, titanium is an easy material to resistance spot
weld (Ref. 11). The configurations involved in spot welding and the
relatively short time periods used with the process tend to preclude
any contamination from the atmosphere. As a result, there appears
to be little need to consider auxiliary shielding of titaniurn during re-
sistance spot welding. The relatively low thermal and electrical con-
ductivities of titanium are definite advantages for the spot-welding
process. As a result, titanium is often considered to be more readily
spot welded than aluminum and many of the carbon and low-alloy steels.
Titanium and stainless steel alloys are similar in thermal and electri-
cal conductivity and strength at elevated temperatures. These simi-
larities have simplified the spot welding of titanium. A titanium alloy
of a given thickness can be spot welded with the settings that are satis-
factory for a similar gage of stainless steel. The recommended spot-
welding machine settings developed for titanium by various investi-
gators substantiate this to a degree which is generally as accurate as
the ability to incorporate any recommended data into the settings from
one production machine to another. In fact, the differences of control-
panel settings from machine to machine probably exceed the differences
in recommended settings between titanium and stainless steel (Ref. 11).

EQUIPMENT

Titanium has been successfully welded on almost all types of
available conventional resistance -spot -welding equipment.

Figure 70 "¶Ref. 11) illustrates a conventional spot-welding opera-
tion. Spot-welding machines used for welding titanium should provide
accurate control over the four basic spot-welding parameters: welding
current, duration of welding current, force applied to the welding elec-
trodes, and electrode geometry. Various data indicate that each of
these parameters may vary to a certain degree without appreciably re-
ducing weld quality. But once the optimum settings are obtained for a
given application,, it is desirable to have enough control over the
parameters to obtain reproducible results. Light gage sheet (less than
0. 040 inch) can be welded with most of the 30 kva, 6 0-cycle, single-
phase, rocker-arm-type machines. Because of the higher currents and
electrode forces required for heavier gage sheet, the larger press-type
"machines are more suitable for gages above about 0. 040 inch.
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FIGUJRE 70. CONVENTIONAL RESISTANCE -SPOT -WELDING

EQUIPMENT

Press-type, 600 kva, 60-cycle single-phase

spot-welding machine with control unit, for
welding sheets in thicknesses oi 0. 062,
0.070, and 0. 093 inch (Ref. 11).

Various auxiliary controls such as up slope or down slope, or
postweld heat controls have not demonstrated any advantages when
used in welding titanium.

No significant changes in welding characteristics or static weld
properties have been reported that cý n be attributed to the use of any
specific type of resistance--welding equipment. Future developments
may show such a preference when weld properties are evaluated more
thoroughly on the basis of properties, such as fatigue, or the reduction
in residual-welding stresses.

Electrode Types. The most satisfactory electrodes are
the spherical-faced, copper-alloy types. They allow a wide range of
current settings from the point of no weld up to the point of metal ex-
pulsion. Also, higher weld strengths can be obtained with larger weld

nuggets, better control of penetration, less electrode indentation, and
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less sheet separation for a given set of welding conditions in compari-
son with other types of electrodes. The truncated-cone electrodes
have been satisfactory for some cases but often produce nonuniform
sheet separation and excessive electrode indentation. A comparison
between weld strengths obtained when using spherical-faced and
truncated-cone electrodes for spot welding 0. 093-inch Ti-6A1-4V is
shown in Figure 71 (Ref. 11). The figure indicates that higher
strengths for a given set of weld conditions can be obtained with
spherical-faced electrodes. Also, metal expulsion occurs at signifi-
cantly higher current settings. Resistance Welder Manufacturers As-
sociation Class 2 copper alloy was used for both electrode configura-
tions. RWIN.A Class 3 copper alloy electrodes may also be used and
will result in a longer tip life where production rates are high. Elec-
trodes for resistance spot and seam welding may be water cooled ex-
ternally. Wez,-einc- conditions and weld properties obtained with external
water cooling are not available.

14 07
S0114rvcoI-faCed electrode
(3 in. top redhs. 5/8 *n-ieo)
Tensin shseer

12 06 0 Cfress tension

- Tisicod-cone electrode ODttmum M eapu l

0minr 05 -. Cur:on! I ITrulncet~l
l O - s ,n. meeor i 13 o radius) 11 cone

• U- Cress tnsione

Mil 8lis T-S43 Wredii)

U0
C 03 T-S I

4- 02 (Trion cr *)( rediuns)

2 Os W *C-T(3-,oiius)

0 C-T

Welding Current. 103 amip

FIGURE 7i. SPOT-WELD STRENGTH VERSUS WELDING CURRENT
FOR SPHERICAL-FACED AND TRUNCATED-CONE
ELECTRODES (REF. 11)

As welded with 2400 lb electrode force, 16 cycles weld
time. Class 2 electrodes.
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Joint Design Considerations.

Minimum Joint Overlap. When spot welding overlapped
sheet joints, it is important to maintain a minimum jcint overlap great
enough to avoid end tearing of the sheet in tension-shear loading. In-
sufficient overlap will result in metal expulsion and a very weak spot
using the weld settings ordinarily considered to be optimum with
proper joint overlap. An illustration of the type of tension-shear
failures cbtained with varying overlaps at the optimum weld settings
is shown in Figure 71 (Ref. 11). For the 0.062-inch sheet, an overlap
of 1/4 inch resulted in metal expulsion and end tearing; end tearing is
evident with the 1/2-inch overlap, while at overlaps of 3/4 inch and
above the tension-shear failures occurred by nugget pullout which is
typical of the strongest tension-shear ruptures in titanium. For this
0. 062-inch sheet, a minimum overlap of 5/8 inch was selected as the
optimum. The 0. 070-inch specimen in Figure 72 (Ref. 11) illustrates
the occurrence of metal expulsion caused by too little overlap. Here,
overlap was only 3/8 inch, while the optimum for this gage was fixed
at 5/8 inch.

FIGURE 72. THE EFFECT OF MINIMUM CONTACTING OVERLAP
ON THE TYPE OF RESULTING FAILURE FOR
TENSION-SHEAR SPECIMENS (REF. 11)

The specimen at the left is 0. 070-in. sheet with
3/8-in. overlap. Overlap distances for 0. 06Z-in.
specimens from left to right are: 1/4, 1/2, 3/4. 1,
and 1-1/2 inches, respectively. A decrease in over-
lap changes failure from button pullout to end tearing.

i
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Minimum Spot-Weld Spacing. In most materials, '
spot welds are placed too close together, a portion of the current re-
quired for the second weld is shunted through the preceding weld.
This, of course, means that the actual weld current is somewhat below
the optimum and the resultant weld may be weak because of low heat.
even though the machine is set at the optimum weld current.

Current shunting is not as critical a factor as with most other ma-
terials due to the high electrical resistance of titanium and weld
strengths are not appreciably reduced until spacings are small enough
to produce spot overlap. Figure 73 shows that the weld nugget size
remains about the same with various spacings up to the point of spot
overlap.

FIGURE 73. THE EFFECT OF SPOT SPACING ON WELD
GEOMETRY (REF. 11)

Welding Conditions. Resistance spot welding conditions are
primarily controlled by the total thickness of the assembly being

¶ welded, and to a rather large degree, by the welding machine being
used. Similar welding conditions may be perfectly suitable for making
welds in the same total thickness where the number of layers differs
significantly. However, for any given thickness, or total pile up,
various combinations of welding current, time, and applied force may

. - produce similar welds. Other variables such as electrode size and
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shape are important in controlling such characteristics ?s metal ex-
pulsion, sheet indenta'ion, and sheet separation. The use of slope
controls such as preheat, postheat, and additional weld forging cycles
have not been found necessary in the early welding of titanium alloys.

Establishing Machine Settings. It is recommended that
for each sheet thickness of titanium alloy the initial values for elec-
trode force and weld time be obtained from the Resistance Welding
Manual (Ref. 76) for comparable thicknesses of stainless steel
(Ref. 11). Then optimum settings for welding current for titanium
alloys caýn be determined.

In a recent investigation to check the spot-welding settings listed
in the Resistance Welding Manual, many tests were conducted on
Ti-6A1-4V using electrode forces and weld times recommended for
stainless steel. The RWMA recommended conditions for spot welding
stainless steels are given in Table XVIII. These settings were found
to produce good spot welds with no advantage gained by varying any of
the settings. When using electrode forces lower than those recom-
mended, the welds were weaker in both tension and shear. Higher
electrode forces than those recommended produced higher shear
strengths but lower cross-tension strengths, the result being much
lower cross -tension/tension -shear ratios. Higher electrode forces
also caused metal extrusion to occur at lower current settings, thus
increasing the per cent of sheet separation at the optimum current
setting.

Establishing Welding Current. After selecting the rec-
ommended electrode force and welding time for a given sheet thick-
ness, the optimum weld current must be established. This is the most
importa.it spot-welding variable and determination of the optimum cur-
rent setting is best accomplished by welding some test specimens and
choosing the weld current on the basis of weld strength, sheet separa-
tion, electrode indentation, weld dia.meter, and per cent penetration.
Figure 74 (Ref. 11) illustrates the variation in some of the weld-
quality parameters obtained by a.sing welding currents below and above
those selected as optimuin for .he various gages. If some of the pa-
rameters such as sheet separation, etc., are of no concern higher
weld currents (up to the point of metal expulsion) may be used to obtain
stronger welds. There ;_s a definite decrease in weld strength and
sheet separation at the point of metal expulsion.

Establishing Squeeze Time and Hold Time. Electrode
force is applied to the sheets being welded for a period longer than the
time that welding current flows. The total time that electrode force is
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applied consists of squeeze time, weld time, and hold time. Squeeze
time is the time that the electrodes hold the material together at the
required force before the weld current is actuated. Weld time is the
time of actual zurrent flow. Hold time is the interval during which
the electrodes are in contact with the material after the current flow
has o4,'-rped. Solidification of the weld nugget takes place during the
hold time. Both the squeeze and hold times are generally set at about
ZO cycles duration, but can be varied according to the sheet gage. In
light gage sheet, the weld nugget is solidified in less than 20 cycles
hold time and adjustments in these machine settings can be made in
accordance with production requirements.

Spot-welding conditions used in industry for titanium alloys are
given in Table XIX.

Properties. The quality of spot welds is determined by sev-
eral testing methods. In addition to cross-tension and tension-shear
strengths, many specifications, such as the military specification
MIL-W-6858B (Ref. 8), place certain restrictions on weld penetration,
sheet separation, electrode indentation, and weld diameter. These
limits were originally set for stainless steel spot welds, but because
of the similarity bet .veen the spot-welding characteristics of stainless
steel and titanium, most of the quality parameters for stainless are
applied to titanium.

Many of the properties and characteristics of resistance spot
welds in titanium alloys have been determined. The properties usu-
ally determined for various titanium alloy .pot weldmcnts are given
in Table XX. In many instances, complex testing procedures are re-
quired to determine the behavior of titanium spot welds under special
conditions. Sources for additional information obtained from these
special tests are given in Table XXI. Some of the conventional spot-
weld evaluation meihods are described in the following.

Tension-Shear and Cross-Tension Strength. A tension-
shear test on a spot-welded specimen gives some indication of ductility
since stress gradients and concentrations are set up by the nonaxiality
of the specimen, the attendant bending stresses, and the stress con-
centration at the end of the spot weld.

A cross-tension specimen undergoes even more severe loading
and, therefore, is a still better evaluation of ductility. I-Kwever, spot
welds in service are practically never subjected to this type of loading.
Presumably, if extr-emely brittle zones exist in the region of a spot
weld, the specimen will have low resistance to the cross-tension type
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TABLE XXI. SPOT-WELD PROPERTY DATA SOURCES

Total Thickness
Base Alloy of Test Plate, in. Type of Tests and Test Temperature, F Reference

6AI-4V 0.04-0.180 Tensile shear (RT). penetration, an..d 41
nugget diameter

SAI-1Mo-1 0.04-0.175 Ditto 41
6AI-4V. " 0.1 Tensile shear(a), cross tension(a), and 12

8AI-lMo-IV fracture toughness (-110. 75. 400,
650); thermal stability, and multispot
shear (IT)

6AI-4V, 0.180 Tensile shear(a). and cross tension(a), 12
8AI1IMo-1V (-110. 75, 400. 650); multispot shear

(rT)
SAI-1Mo-IV 0.044. 0.078. 0.124 Tensile shear, cross tension, and multi- 77

spot fatigue (RT); tensile shear (200,
400, 600. 800, 1000, and 1200);

thermal stability (RT)
6AI-4V 0.070-0.186 Tensile shear (RT. 600. 800. and 10GO); 78

cross tension, thermal stability., and
thermal-stress stability

6AI-4V 0.05, 0.1 Tensile shear, cross tension, and 79
fatigue (RT)

CP :itanium,
6AI-4V

CP titanium.
6A1-4V. 0.05 Tensile shear, cross tension, and 80
5A!-2.5Sn fatigue (RT)

6AI-4V,
5A I-2.5Sn

8AI-lMo-!V 0.04. 0.08 Tensile shear, cross tension, and 47
thermal stability (RT. 600. 800t 1600)

13V-1IC'-3Al 0.128 Fatigue (RT and ET) 81
13V-1lCr-3A1 -- Airframe structures - static and 82

rc-peated load (RT)
CP titanium 0.08 Tensile shear, cross tension, and 83

fatigue (RT)
Pre-1960 data summarized 1

5A1-2.5Sn 0.05. 0.064, 0.08 Tensile shear (RT. 200. 40(,. 600. 800. 84
1000); fatigue (RT)

8AI-lMo-1V 0. 0.04-1.5 Various (RT to 650) including all simple --

tests plus thermal stabiiity. thermal-
stres stability, and structures evaluation

5AI-2.5Sn 0.02. 0.040, 0.063. Effects of peel loading 85
0.100. 0.125

2.5AI-16V 0.040. 0.063, 0.090 Tensile shear 86

(a) About one-half of these tests made after exposure to 1300 F for 10 hours, all ozhers as welded.
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of loading, cross-tension strength will be low, and the commonly used

"ratio of cross-tension strength/tension-shear strength will be low.

The properties measured by tension-shear tests are excellent.

Cross-tension values also are good. Cross -tension/tension-shear

ratios are somewhat low (0.20 to 0.35) except in the Ti-13V-IlCr-3AI

alloy. Examples of tension-shear and cross-tension specimens are

shown in Figures 75 and 76 (Ref. 11). The tension-shear specimens

are pulled in a tensile testing machine employing grip jaws. A com-

monly used jig for pulling cross-tension specimens is shown schemati-

cally in Fioure 77 (Ref. 11). In both cases, the maximum load prior

to failure is recorded in pounds.

Fatigue and Fracture Toughness. The fatigue properties

of spot welds are low, but this behavior is characteristic more of the

joint type than of titanium alloys. Spot-weld thermal stability stuaies

indicate some loss in room-temperature properties from exposure at

050, 1000, and 1200 '. Similar exposure at 800 F did not lower the

room-temperature properties. A reason for this apparent inconsis-

tency is not apparent. Fracture toughness tests of spot weldments

exhibit properties inferior to comparable TIG fusion weldments. Spot
welding ha-s been used in a number of structural test comnponents. Such

tests provide the best evidence of expected weldment performance.
Data from such tests have not been available for review.

Penetration. Spot-weld penetration is a measure of the

distance that the weld nugget extends through the thickness of the

sheets that were spot welded. It is normally expressed as a percent-

age of the sheet thickness with equal penetration in each of two similar

sheet thicknesses.

dt db
Pt = 1= - x 100 - x 100

tt tb

Penetration is a function of weld current but can be affected, or con-

trolled, by such factors as the cooling effect of the electrodes, the

material thicknesses and thermal and electrical conductivity. When

dissimilar sheet thicknesses, electrodes, materials, or welding con-
" d ition s o n th e tw o sid e s of th e sh e et ex ist, p en etratio n of th e w e ld nug -

get in each of two sheets can be quite different values. When proper

welding conditions are used, spot-weld penetration usually is less than

100 per cent. Most specifications limit weld penetration to a minimum

of 20 per cent and a maximum of 90 per cent for high quality spot, roll

spot, and seam welds (Ref. 87).

130
i

9-



to,-

00

0A

z 55z

L8- -

*131

-w -C-t,



teetdSheet Separation. Sheet separation occurs as a result of

the electrode force tending to extrude the plastic phase of the weld
nugget out between the adjacent surfaces of the weld joint. This sepa-
ration in actual practice is generally measured away from the edge of
the weld at a distance equal to half the diameter of the electrode in-
dentation. It is common practice to sp.-ecify a maiximum acceptable
separation of 10 per cent of the sheet thickness joined, or 0. 006 inch,
whichever is larger (Ref. 87).

One should be careful about sacrificing weld strength for low sheet
separation. It is possible to have very low separation with lower than
optimum weld current. Higher than optimum weld currents also pro-
duce low sheet separation, but at the expense of excessive weld-metal
expulsion. In either case, the weld strength would be somewhat less
than optimum, and it would be more advisable to select an electrode
with a larger spherical tip radius, it is also possible to reduce sheet
separation through proper selection and control of the welding
variables.

Electrode Indentation. Electrode indentation is a mea-
sure of the depth of the indentations produced in the outer sheet sur-
faces contacted by the electrodes. It is caused by a combination of
electrode force, weld current,, weld time, and upsetting and shrinkage
of the heated metal. Most specifications restrict electrode indentation
to 10 per cent of the sheet thickness.

Weld Diameter and Weld-Nugget Diameter. The weld
diameter includes the weld nugget and heat-affected zone (assuming nc
metal expulsion). This can be controlled, for the most part, by the
radii of the electrode tips. Weld-nugget diameter is a measure of the
diameter of the fused or cast metal. These diameters are expressed
in inches or in terms of sheet thickness. It was shown in Figure 73c
that as the weld current increases, the weld nugget diameter and the
overall weld diameter approach each other.

Extrusion. The only apparent difficulty with the actual
making of titanium resistance spot we'ds is a problem with metal ex-
trusion between the faying surfaces of the overlapping sheets. With
thinner gages of material, extrusion does not appear to be a significant
problem. However, as the gage thickness is increased there appears
to be - much greater tendency for extrusion to occur. Proper welding
conditio-n-s and close control of welding variables are required to mini-
mize or eliminate extrusion.
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^-':--*---o Alpplications requiring the use of resistance

spot welding range from small aircraft components to spacecraft.
Representative examples of the use of spot welding for fabricating ti-
tanium alloys are given in the following.

Spacecraft. Spot welding has been used for many joints
in Mercury and Gemini spacecraft. Many combinations of material
thicknesses are encountered in resistance welding stiffeners to
doublers and to skins. Spot welds have been made through as many
as seven layers and more than 300 thickness combinations have been
welded successfully. Gemini spacecraft involved over 25, 000 spot
welds.

Figure 78 shows the arrangement of the parts and equipment for
spot welding stiffeners to the side wall of a Mercury capsule (Ref. 52).
Spot welding fixtures are moved manually but the path of travel is es-
tablished by the fixture. Typical applications of resistance spot weld-
ing to the fabrication of various spacecraft sections are shown in
Figure 79 (Ref. 88).

Seam
" • welds

FIGURE 78. SPOT WELDING ATTACHES STIFFENERS TO
SIDEWALL SKIN ASSEMBLY OF THE
MERCURY CAPSULE (REF. 52)

Stiffened Titanium Sheet Panels. A statically strong,

spot-welded titanium skin structure is highly practical for use in high-
speed transport, according to tests conducted by one aircraft manufac-
turer (Ref. 87). Tests have been made on Z -stiffened sheet panels for
application in the empennage section of the transport. Three panels,
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18 bv 18 inches. were made from Ti-8AI-IMo-lV with five equally
spaced Z-stiffeners. All material was 0.060 inch thick, and welds
were spacc-d at 1.05, 2. 10, and 3. 15 inches. Equipment used was a
100-kva, single-phase spot-welding machine. Spacing at 2. 10 inches,
center to center, was found to be best for resisting inter-spot-\veld

kMing, yet wide enough to avoid residual-stress interaction between
.,pots. An average lap-shear strength of 4500 pounds was produced on
individual spots, along with an average normal tensile strength of
1000 pounds.

Aircraft Structures. Several steps in the fabrication of
a left-hand horizontal -stabilizer test component from Ti-4A1-3Mo-IV
using spot welding to establish fabricability are shown in Figures 79 to
83 (Ref. 90). The subassembly fabrication consisted of spot welding
doublers and angles to flanged ribs, Figures 80, 81, and 82; these de-
tails then were welded to the upper external skin, Figure 83. The
spot-welding machine and fixture used for spot welding are shown in
Figure 84.

ROLL SPOT WELDING

Roll spot welding is very similar in most respects to standard spot
welding. The major difference between the two processes is that in
roll spot welding, wheel-shaped electrodes are used instead of the
cylindrical type of electrode used in conventional spot welding. The
use of the wheel electrodes in roll spot welding provides a convenient
means of indexing the parts between each individual spot weld. Rota-
tion of the wheels is intermittent; the wheel electrodes are in a fixed
position riuring the actual welding cycle. Electrode wear is more uni-
formly distributed with a wheel-type electrode than it is with a conven-
tional cylindrical electrode, thus it is possible to make many" more
welds without dressing of the electrodes when using roll spot welding.
Con-ersely, roll spot welding techniques are less flexible than those
used in conventional spot welding.

Equipment for roll spot welding differs from conventional spot-
welding equipment primarily in that provision must be made to accom-
mrdate the wheel-shaped electrodes. Also, a suitable drive and index-
ing mechanism must be provided.

Roll spot welding of titanium alloys has been performed by at least
one aircraft manufacturer. Welding conditions for roll spot welding of
titanium have not been found in the literature, but they are expected to
be very similar to conventional spot-weldinxg conditions. Equipment

135



co co

0L

U-3-~-c

0u

-t3 z:

V6 
L

cr.

136~

imp



YE

* � I

0
It)

A41 z.
I
I fWI EdzIL.

�It r�,*. IA.I
2 W U,

IA.
* 0

0

0
0.'a�EE�' U)U

U,

IA.

14
H

IL
Ed
z
a.

C'
Ii.

-j

i

I
137



F!GURE C-4. A SPOT -WELDING OPERATION ON THE UPPER SKIN SUB ASSEMBLY (RE. 90J)

- Skin is clanmoed m: tile contoured ýoot-welded asse~nbly jig.
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for roll spot welding is essentially the same as equipment for resis-
tance seam welding as shown in Figure 85 (Ref. 91).

7 iý

'FIGURE 85. PROJECT MERCURY SPACECRAFT, BUILT OF
TITANIUM, REQUIRED 20, 500 INCHES OF

SPOT WELD PER CAPSULE (REF. 91)

SEAM WELDING

Seam welding also is similar to spot and roll spot welding. In

seam welding wheels are used in place of spot-welding electrodes.
Individual overlapping spots are created by coordinating the welding

current flow, time, and wheel rotation. Seam welds often are made
with conventional spot-welding techniques. However, it is much more

common to use equipment designed specifically for seam welding and
available comm-nercially. The principal advantage of seam welding is
that it can be used to produce leaktight joints. The principal disadvan-

tage is that there is much more distortion with sea-m welding than with

other types of resistance welding. In seam welding, the wheel- usu-
ally can be rot.ated continually or intermittently.
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The use of continuous scam welding imposes additional limitations
on the weld-cycle variations that can be used. For example, a forge
pressure cycle is not possible during continuous seam welding because
of the continuous rotation of the electrodes.

Selected data on seam-welding conditions and properties of seam-
welded joints are given in Table XXiI. Theze data include room-
Lemperature static tensile strength. Static tensile propert~es are
comparable in efficiency to the parent metal for r.-iost of the titanium
alloys for which seam-welding data are available.

Applications. Resistance seam welding is of interest for
many applications where titanium i..lRoys are used in sheet form. Rep-
resentative applications of the process fcr fabricating various products
are described in the following.

Aircraft and Spacecraft. For the Mercury capsule skin
assemblies the inner and outer skins of each section are joined to-
gether by an intricate pattern of resistance seam welds, as shown in
Figure 86 (Ref. 91). The size of the two cones is extremely important.
Because of the seam-welding operation, they must fit together in inti-
mate contact. In the cone section, the total length of these circurmwfer-

ential and longitudinal seam welds is about 22, 000 inches. The result
is hundreds of small, separately sealed pockets, which means that a
crack anywhere will stop instantly. Special handling fixtures at the
welding machines move the work radially or longitudinally, depending
on the machine, with the electrode providing the driving force. The
carriage-mounted fixture for seam welding is shown in Figure 87
(Ref. 91). Several additional applications of seam welding for space-
craft fabrication were shown earlier in Figure 78.

The use of seam welding to apply fuel-cell insulation for the
F4B/C aircraft is shown in Fieure 88 (Ref. 11).

Commercially pure titanium in the form of rigidized sheet also
has been resistance seam welded successfully for an engine-cooling
shroud assembly (Ref. 93). The original thickness of the embossed
sheets was 0. 012 inch. The ridges in the embossed sheets offered no
difficulty to seam "welding and lap joints had 100 per cent joint effi-
ciency in static tension-shear tests.
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FIGURE Z46. SCHEM\ATIC OF SEAM WELDS
USED IN MERCURY CAPSULE (REF. 91)

\ Detail shows offset rows of reinforcing beads
\ and intricate pattern of lonmitudinal and

~ circumnferential seam welds that hold the two
U. 01 u-inch -thick mercury capsule titanium

kL skinS topether.

FIGURE 87. INNER AND MI2TER MERCURY CAPSULE SKINS ARE SEAM WELDED

(REF. 91)

(:iriave-.rncuw~ed fixture hVlds worhS% for hiitermittent seams.
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FIGURE 88. THREE-PHASE, 200 KVA, SEAM-WELDING
MACHINE JOINING TITANIUM PANELS
0. 002 INCH THICK TO BASE SHEET
0. 020 INCH THICK (REF. 11)

End unit is for fuel-cell insulation in F4B/C
aircraft.

FLASH WELDING

Flash welding is used almost exclusively to weld titznium rings for

jet engines. In addition, it has been used to weld many prototype and
experimental assemblies, including propeller blades and other complex
assemblies.

In two respects, flash welding is better adapted to the high-
strength, heat-treatable alloys than are arc, spot, or seam welding.
First, molen metal is not retained in the joint, so cast structures are
not present. Second, the hot mnetal in the joint is upset, and this up-

setting operation may improve the ductility of the heat-affected zone.

Flash welding has several important advantages. Welding speeds

are very rapid, heavy sections can be joined, and high production rates
can be achieved. Filler metal is not added. Weight saving can be
realized because there is no need for overlapping bolting, riveting, or

welding flanges. Extruded shapes can be flash welded and with suitable
designs machining costs can be reduced. Good quality welds can be

obtained with the process.
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and titanium alloys does not differ greatly from that required for steel.
This is especially true for transformer capacity. The upset-pressure
capacity for making titanium (Ref. 94) weldments is not so high as that
required for steel. Figures 89 and 90 (Ref. 94) show the transformer
and upset capacity required for welds of different cross-sectional area.
Also of importance, however, is the fact that transformer-capacity
requirements vary from one machine to another, depending upon the
coupling between the parts and transformer.

Joint Design and Joint Preparation. Joint designs for flash
welds also are similar to those used for other metals. Flat edges are
satisfactory for wrelding sheet and plate up to about 1/4 inch thick. For
thicker sections, the edges axe sometimes beveled slightly. Figure 91
(Ref. 94) shows the metal allowances used in making titanium flash
welds. The allowances include the metal lost in the flashing and uset-
ting operations.

Inert-Gas Shielding. For joints witn solid cross sections,
inert-gas shielding is not necessary (Ref. 95) but may be used. When
used, Fiberglas enclosures are placed around the joints, and inert gas
is introduced into the enclosure. For joints in tubing or assemblies
with hollow cross sections, inert gas is introduced into the assemblies.

Conditions. The flash-welding conditions that are of greatest
importance are flashing current, speed and time, and upset pressure
and distance. With proper control of these variables, molten metal,
which may be contaminated, is not retained in the joint, ane the metal
at the joint interface is at the proper temperature for welding.

Generally, fast flashing speeds and short flashing times are used
to weld titanium and titanium alloys. These conditions are desirable
for minimizing weld contamination and arc possiLble because of the low
electrical and thermal conductivities of these metals. Also, the use
of a parabolic flashing curve is more desirable than the use of a linear
flashing curve because maximum joint efficiency can be obtained with a
minimum of metal loss. Low-to-intermediate (7, 000 to Z0, 000 psi)
upset pressures are used (Ref. 94).

Although flash-welding variables vary from machine to machine
and application to application, -some conditions that proved satisfactory
for two titanium alloys are listed in Table XXII (Ref. 96). Welding
current is not given, but welding current and arc voltage depend on the
transformer tap that is used.
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TABLE XXIII. FLASH-WELDING CONDITIONS (REF. 1)

Material ConfigcUradon Ti -4A I-4Mn. Ti -8A-4V. Ti-6A I-4V.
3-1/2-Inch Round 3-1/2-Inch Round 1/4-Inch Plate

Flashing Voltage. volts 5.0 5. 0 4.5

Total Metal Allowance. inch 0.617-0.940 0.617-0.940 0.700-0.800

Upset. inch 0.200-0.500 0.200-0.500 0.225-0.275

Current Cutoff. inch 0.150-0.400 0.150-0.400 0.205-0. 255

Upset Pressure. ksi 15 15 18

Sheet Height. inch 1. 10 1.10 0.63
Atmosphere Argon Argon Argon

Properties. Flash welds that have mechanical properties ap-
proaching those of the base metals are being regularly produced in

conventional machines.

The static-tension-test properties of flash-welded joints are sum-

marized in Table XXIV (Refs. 94, 95, 96). The bend ductility and

fatigue strengths of the flash-welded joints are summarized in

Table XXV (Refs. 95, 96).

The static and fatigue properties of flash-welded joints are good.

Most tension specimens fail away from the weld center line with

strengths that are almost equal to or exceed those of the base metals.
in fatigue tests, more failures at the weld center line a-re observed

than in tension tests, but the incidence of center-line failures is not

high.

Application. Flash welding has been used for fabricating

components ranging from light sections such as jet-engine rings to

heavy sections such as aircraft landing gear. Steps in the fabrication

of several components illustrating the use of flash welding are de-
scribed in the following.

Airframe Structural Components. In a program to de-

velop new methods and techniques for titanium airframe structural

components, an aluminum stabilizer yoke for the FlIF-1 supersonic
fighter airplane was redesigned and manufactured from Ti-5A1-2. 5Sn

(Ref. 98). The original yoke was made from numerous aluminum alloy
pieces bolted and riveted together as shown in Figure 92. The titanium

yoke for flash welding, Figure 93, consisted of three box-type sub-

assemblies and two end-fitting subassemblies. One of the subassem-

blies is shown before and after flash welding in Figures 94 and 95,
respectively.
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TABLE XXIV. ROOM-TEMPERATURE TENSILE PROPERTIES OF FLASH-WELDED JOINTS (REF. 1)

Ultimate
NominaP Tensile Elongation

Composition. Condition of Strength, in 2 Inches,
weight per cenit Base Metal Postweld Heat Treatment ksi per cent

Commercially pure Annealed Not welded 117 21-23
titanium Annealed 1000 F. 1 hour, air cool 114-118 19-23

5AI-2.5Sn Annealed Not welded 133-134 14-31
Annealed 1200 F. 2 hours, air cool 127-136 11-28

Ti-4Mn-4AI Annealed Not welded(a) 130-141 15-19
Annealed 1400 F. 2-3 hours, furnace cool 127-138 11-17

Ti-4Mn-4A1 1450 F. 3 hours. Not welded lb5-160 10-12
water nuerch; 1450 F, 3 hours, water quench; 153-162 1(b)_ 1 0

100 F. 8 hours, 1000 F. 8 hours, air cool
air cool

Ti-3Cr-3AI Annealed Not welded 142 15
Annealed -- 142 12

Ti-6AI-4V Annealed Not welded 133-137 12-19
Annealed 1300 F. 2 hours, air cool 13C-145 10-15

Ti-6AI-4V 1550 F. 1 hour, Not welded 144-148 9-10

water quench; 100 F. 1 hour, water quench; 142-143 8-10

950 F, 24 hours 1000 F. 24 hours, air cool
air cool

(a) Some specimens furnace cooled to 1000 F and then air cooled.
(b) Failed on weld center iine.
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TABLE XXV. BEND DUCTILITY AND FATIGUE STRENGTH
OF FLASH-WELDED JOINTS (REF. '75)

Nominal
Composition. Minimum Fatigue

weight Condition of Postweld Heat Bend Radius, Strength(a),
per cent Base Metal Treatment T ksi

Ti-5A1-2.5Sn Annealed Not welded 2-4 --

Annealed Annealed 4 --

Ti-4AI-4Mn Annealed Not welded 3 56-72
Annealed 1400 F. 2 hours, furnace 3-4 35-79

cool to 1000 F. air cool

Ti-4AI-4Mn 1450 F. 3 hours, water Not welded 3-4 70-89
quench; 1000 F. 1450 F. 3 hours, water
8 hours, air cool quench; 1000 F.

8 hours, air cool 5->5 53-87

Ti-5Cr-3AI Annealed Not welded 2-3 84
Annealed 2-3 70

Ti-6A1-4V Annealed(b) Not welded 3 80-91
1300 F, 2 hours, air cool 4 44-87

(a) Rotary beam specimens. Prot method used. Most specimens failed away from the weld
center line but some failed on the weld center line.

(b) Fatigue data on another heat obtained, but was very low because of impurities.

1i
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FIGURE 92. PRODUCTION YO' .F WITH STABILIZER PANELS ATTAC'iED ("EF. 98)

. . -. , .. , STAGE 2--Il

STAGE 3

FIGURE 93. FLASH-WELDED FOIL STABILIZER YOKE ASSEMBLY (REF. 53)
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Clamping during flash welding had to be clean, secure, and uni-
form in order to insure low contact resistance and avoid die burns.
Flash was removed by chip hammering, grinding, and polishing.

Rings. Titanium rings used primarily as inlet guide
flanges and as front compressor flanges in aircraft jet engines also
have been fabricated by flash welding (Ref. 95). Cross-section areas
that have beea welded range from 0. 26 to 5. 39 square inches for com-
mercially pure titanium and from 0. 66 to 3. 84 square inches for some
titanium alloys. However, 12-square-inch sections of titanium are
weldable with commercial flash-welding machines. The rings usually
are rolled to near the final size, allowing for material that will be
flashed away. The open ends of the rolled rings then are flash welded
together to form the completed rings. Substantial cost savings can be
realized using this fabricating technique (Ref. 99). Examples of the
economy of flash-welded ring products are illustrated in Figure 96
(Ref. 100).

C:igualca•-430 lb

•.ri' Ww 2,"r•WeA - DD N PRde U I T S. (REF. 1

ora 931I ua*. 71 It,

k f~r~d Vav"Vadde

III
C_ #"N1NrJ-b Voe"m la"pd Sct.Sx

FIGURE 96. TYPICAL EXAMPLES OF TH ECONOMY OF
FLASH- WELDED RING PRODUCTS (REF. 100)
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"HIGH- FR EQUENC .WELDP.G

Titanium tubing has been made using the high-frequency welding
processes illustrated in Figure 97 (Ref. 101). Althoaigh used for de-
velopment quantities, speeds up to 105 fpm have been used.

At trcsent, only one fabricator has referred to production of high-
frequency welded tubing (Ref. 102). The tubing has a 0. 025-i:ich-thick
wall and is used in manufacturing a heat-exchanger bundle. The tubing

features a 12 per cent cost reduction. Because of high tube mill and
material costs, it is unlikely that high-frequency wel,:ed titanium or
titanium-alloy tubing will become available as a standard product until
quantity requirements increase. High-frequency welding, however,
does have long-range potential for making titanium tubing economical.

High-frequency welding also has capabilities for manufacturing
fabricated structural shapes from titanium. Titanium tees have been
fabricated experimentally and indications are that the process can be
adapted to fabricate I-beams, stiffened-skin sections, and other struc-
tural shapes.

BRAZING

Brazing has attractive advantages over other joining processes in
the fabrication of titanium sandwich structure, and in the completion of
dissimilar metal joints. Despite the great potential for these two
areas, most of the programs that have been conducted to complete re-
quired development have not produced universally acceptable proce-
dures for completing such joints.

Most of the problems encountered in attempting to braze titanium
are related in one way or another to the characteristics of titanium
metal. The high affinity of titanium for other elements leads to a re-
quirement that brazing must be conducted under conditions that prevent
contamination or degradation of the material being joined. Also, be-
cause of its high reactivity, it is difficult to find suitable braze filler
metals that do not react excessively with the titanium base material
producing subsequent embrittlement or serious erosion of the base

metal. The final problem area has been one of finding brazing filler
metals suitable for use with brazing thermal cycles that are compati-
ble with the limited thermal heat-treatment cycles that can be used on
titanium alloys.

Filler Metals. To be useful as a brazing filler metal, an
alloy must melt within a desired tempel ature range, it must wet the
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FIGURE 97. HIGH-FREQUENCY WELDING METHODS FOR \L-ANUFACTURING TITANIUM
TUBING (REF. 101)
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base ratpria! :nvolverd. and it should flow to some extent while molten
on the base metal. Of all the various metals and alloys that meet one
or more of these criteria, only the silver-base alloys have been used
with much success for the brazing of titanium. Not all of the silver-
base brazing alloys are suitable for use with titanium, but at least sev-
eral have been found that appear to exhibit many of the desirable prop-
erties of a brazing filler metal. The most promising allo 3 are either
silver-lithium, silver -aluminum. -manganese, or silver-copper-
lithium allols. The most common problem encountered with other
brazing alloys, which on the surface appear usable, is that they react
readily with titanium. Only through the use of very short brazing
times is it possible to prevent excessive alloying between the filler
metal and the titanium-base material.

The most promising alloys at present are those containing alumi-
num and manganese in a silver base. Although alloys of this type ap-
pear to be somewhat better than the silver-lithium alloys with respect
to oxidation resistance and salt-spray corrosion resistance, there is
still some reluctance to use the materials where exposure to these
conditions can be expected. The brazing temperature for the silver-
aluminum-manganese alloys ranges between about 1450 to 1650 F.

The silver-lithium alloys are used in a composition ranging from
0. 5 to 3 per cent lithium. However, joints made with these alloys do
not have good oxidation resistance in air at temperatures of about
800 F and the joint strength is seriously degraded by exposure to these
conditions. Joints made with the silver-lithium alloys also appear to
have poor corrosion resistance in salU-spray environments.

The silver-cachnium-zinc brazing filler metals al~o have been de-
veloped and have been used for oxyacetylene torch-brazing applica-
tions. Consistent joint tensile strengths in the range of from 40, 000 to
50,000 psi and single-lap-joint sheai-strength values in excess of
30, 000 psi are reported. Silver-cadmium-zinc brazing filler alloys
containing 20 per cent silver have been patented for combining excep-
tional mechanical properties (Ref. 104). These alloys were developed
for use in joining titanium to itself, steel, stainless steel, and silver
alloys. Fluxes for use with these alloys have also been developed.

The experimental palladium-base alloy, Pd-14. 3Ag-4. CSi, has
some very desirable characteristics (Ref. 103). It has excellent flow
characteristics in the temperature range of 1395 to 1450 F (below the
beta-transition temperature of pure titanium). The alloy forms a
metallurgical-bond, with alloy interfacial penetration of 0. 0015 inch
into titanium and 0. 003 inch into stainless steel. Ultimate tensile
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strengths of joints as high as 75, 000 psi have been achieved. Connec-
tions brazed with the alloy are inert to nitric acid and, -inder vacuum,
helium leakage is less than 0. 63 cubic centimeters per year.

A wide variety of brazing alloys has been investigated and some
are available commercially. A partial listing of patents issued on
brazing filler metals and fluxes is given in Table XXVI (Ref. 104).
Many additional alloys and properties of brazed joints are described in
published literature. Obviously, brazing alloys for titanium alloys
must be selected with care, depending on the alloy being joined, thick-
ness, mass, penetration tolerance, and service requirements.

Brazing Methods. The methods that have been used to braze
titanium are similar to those used for other materials such as stain-
less steel. With titanium, however, particular care must be taken to
insure against contamination of the base metal during the brazing
cycle. This has necessitated the careful use of either inert gas or
vacuum environments during the brazing cycle. Heating for bra-.ing
is generally accomplished in retorts placed in furnaces or by some
type of radiant heating device such as quartz lamp panel. Ceramic
blanket brazing also has been used (Ret. 105). Some success has been
reported with a conventional oxyacetylene -torch brazing technique
(Ref. 104). Brazing methods used on titanium demand careful control
throughout all steps to insure that the titanium-base material is not
degraded or contaminated from any source.

Properties. .The lap-shear btrength of brazed joints is listed
in Table XXVI. These data were obtained from specimens brazed
using inert-gas-filled retorts and conventional furnaces. The brazing
cycle for most of the joints consists of heating the retort to a temper-
ature of 1450 ±L0 F, holding for 5 minutes, and air cooling to room
temperature. The joints made with the silver-aluminum-manganese
alloy were brazed at a temperature of 1600 F. The joints prepared
with the silver-aluminum alloys have better elevated-temperature
strength and better resistance to salt-spray corrosion and elevated-
temperature oxidation than the joints made with the silver-lithium
alloys even when the brazing alloys 're plated.

Effects of Brazing Cycles on Base-Metal Properties. An
important factor in selecting brazing filler metals for titanium alloys
is the effect of the brazing cycle on base-metal properties. This fac-
tor is especially important in brazing heat-treatable titanium alloys.
Several general rules may be outlined.
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TABLE XXVI. TITANIUM Bgq-ZING AND SOLDERING PAI ENTS FROM THE "TITANIUM ABSTRACTS-
.-iL THE t2' IST'PTALCHETCA!C A!!iNDSTRIIý LTD- (!C!I !REF. 1041

Patents Authors Annotations

British

741.735 Industrial Chemical Industries. Ltd. Ti:anium flux containing KKF2 KCI
741.736 Ditto Joining titanium articles with aluminum

base - 2 to T7 magnesium filler metal
741. "737 Titanium brazing aluminum base 5 to 1I

silicon filler metal

750.928 Lundin. H. Flux for coating titanium 25 to 70t AIF3

45 to 6.* NaF, bal. KF
752,117 Long. R. A. Ni-Ti-Cu brazing compounds
768.126 Nat. Res. Dev. Corp. Titanium flux containing Cu Cl. Ag CI
788.589 Kaisha. S. K. K. Titanium brazing to stainless steel, silver.

Ag-Mn, Ag-Cd alloys used

824.256 Thompsen-Houston Co. Titanium brazing with chromium carbides

German (Applications)

1003012 Titanium soldering with A!-12% silicon

alloys
1003013 Titanium soft solder Al-5.•' Mg alloy.

KHF2 -KCI flux

10036017 Like U. S. 2.666.7725

German

859.249 Degussa Co. Ag-Cd-Zn alloy silver up to 2056

United States
2.666. 725 Chemer. E. S. LiF. KCI. KHF 2 brazing flux
2. 781. 04-7 Meredith. H. L. Joining titanium to aluminum
2. 76,.. 27 1 Meredith. H. I.. Brazing titanium with gas tungsten-arc

process and silver filler metal
2.798.1843 Slovin. G. W. Plating and bWazing titanium

2.82-2.269 Long, I. H. Bonding titanium to base metals by a
Ti-Ni eutectic composition

2.834. 101 Boam. W. M. and Friedman. I. Plating method for braziisg titanium
2.844.867 Wernz. D. E. and Swartz. M. M. Titanium dip-brazing method
2.847.302 Long. R. A. Titanium bonding ceramics by Ti-Ni eutectic

with additions of copper, cobalt.
manganese. etc.

2.882.593 Sobel. M. %'. and'Weigert. K. M. KHF 2 . KC1. BaCh2. LiF brazing flux
2.914. 848 Ph-llips. E. and Blum. S. Titanium brazing alloy with 2 to .V tin.

2 to 5ý, aluminum. balancr. silver

2.919. 984 Eutectic Welding Co. Silver 51. cadmium, zinc alley
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TABLE XXVII. SHEAR STRENGTHS OF TITANIUM BRAZED JOINTS (REF. 106)

Test
Temperature. Shear Strength. ksi

Condition F Low High Average

Ti-.WAI-2.75Cr-1.25Fe Base Metals
Nickel-Plated 97Ag-2Li Filler Metals

As brazed RT 12 !6 14
As brazed 800 3 5 4

Ti-5AI-2.75Cr-I.25Fe Base Metals
Platinum-Plated 97Ag-2Li Filler Metals

As brazed RT 17 23 19

As brazed 800 2 4 3

Ti-5AI-2.75Cr-1.2SFe Base Metals
Ag-Al-Mn Filler Metals

As brazed RT 22 26 24
As brazed 800 14 17 16

The brazing temperature shculd be 100 to 150 Fbelowthebetatran-

sus for the alloy. If the brazing temperature exceeds the beta transus,

the base-metal ductility may be impaired, especially in the alpha-beta

aiioys. In beta-type alloys, the beta transus may be exceeded without

impairing base-metal properties but if the temperature is too high, the

ductility of the alloy after heat treatment may be impaired.

In brazing heat-treatable alloys, the brazing temperature may af-

fect the ultimate and yield strengths of the alloy after final heat treat-

ment unless it is possible to fully heat treat the assembly after braz-

ing. For example, full heat treatments for most of the heat-treatable

alpha-beta alloys consist of two operations: solution treatments to

adjust the ratio of aipha and beta phases (thereby adjusting the compo-

sition of the beta phase) for optimum heat-treatment response, and

age-&hardening treatments. If the brazing operation is part of the heat-

treatment cycle, it is desirable to braze at either the solution-treating

or age-hardening temperatures. However, the age-hardening tem-

peratures are low (800 to 1100 F) and satisfactory alloys that rrvelt and

flow at these temperatures are not available.

If the brazing operation is pF•rformed near the solution-treating

temperature as part of the heat-treating operation, then, the cooling

rate from brazing temperature may affect the final properties of the

base metals. This is especially true for alloys, such as Ti-6A1-4V,

159

Z"P V0 0_' " zA



that have low beta content and require rapid cooling f.rom solution-

treating temperature to obtain good heat-treatment response. Some
of the all-beta alloys retailn g0d r ---,-ponse- ---..
furnace-cooling operations.

Applications. Brazing has been used for joining titanium ex-
perimentally for about 20 years, and in production applications for

about 10 years; the widest use has been in fabricating honeycomb sand-
wich panels. This application has been studied by many organizations
(Refs. 103, 105, 107-109). Representative applications of titanium
brazing techniques are described in the following.

Honeycomb Sandwich Structures. In furnace and retort
brazing operations, titanium can be contaminated by leakage of air
into the brazing atmosphere. To insure agz.inst such leakage, one
fabricator has devloped a double-layer inert-gas shroud retort for
brazing titanium (Ref. 110). ' he shroud retort has been used mainly
for fabricating brazed honeycr.mb panels from titanium and from stain-
less steel. In addition to providing good protection against contami-
nants, the process provides ior lo-..wer argon consumption and shorter
brazing cycles than were obtained with conventional retorts. The
technique permits the use of gas or electric furnaces and eliminates
the need for a secondary argon-filled retort around the brazing retort.

The technique isolates the titanium from contamination both dy-
namically and mechanically. Protection is afforded by two separate
atmosphere zones and a pressure differential that insures more effec-
tive protection. This system, shown in Figure 98, is similar to a

conventional retort, except that it is larger and is divided into two
pressure zones. The outer zone is maintained at a reduced pressure

while the inner zone is filled with argon gas. Air entering through a
leak in the retort is removed between the retort and the barrier Znd
exhausted through the vacuum tube. The pressure differential helps
hold the parts in intimate contact duriing the brazing cycle. A typical
brazing sequence of operations is described below.

Thin contoured skins are cold stretch formed. Only the close-
tolerance sheet-metal edge members are hot formed to obtain correct
dimensions and contour. After the titanium parts are produced, they
are checked for fit, dimensions, and tolerances in a prefit operation,
or trial assembly. Then they are cleaned as follows:

(1) V-por degrease thoroughly
(Z) Soak 10 to 15 minutes in caustic cleaner (180 to 190 F)

(3) Rinse in tap water (120 to 140 F)
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(4) Acid clean 15 to 30 seconds (3% Hf-15% HNO 3 )

(5) Rinse in tap water (RT)

(6) Soak 2 minutes in caustic cleaner (180 to 190 F)

(7) Rinse in tap water (120 to 140 F)

(8) Rinse in distilled or demineralized water (RT)

(9) Dry in hot air.

Brazing alloy foil, Ag-Al-Mn, is cleaned by vapor df-greasing, soaking
2 to 5 minutes in caustic cleaner, rinsing in hot tap water (120 to 140 F),
and wiping with soft cheesecloth. From this point on, extreme care
must be taken to keep the parts clean. Operators must wear clcan
gloves and perform the following operations as rapidly as possible to
minimize the formation of oxides on the clean metal surfaces.

First the panel is assembled and checked in a lay-up fixture that
has copper chill bars for tack brazing. Here the parts are fastened in
position with light tack-braze spots. Then the panel is placed inside
the stainless steel brazing retort and thu atmosphere barrier tool.
Slip sheets that prevent the skins from bonding to the diaphragm and
fillers are added. Next, antibraze "stop-off" material is painted on
surfaces where adhesion is not desired. After this, the vacuum dia-
phragm, or cover sheet, is welded in position on the retort, and the
unit is checked for leaks. If leaks are not eliminated, air cannot be
purged from the retort satisfactorily. Purging consists of alternately
drawing a vacuum on the retort and then supplying it with argon gas;
the number of repeat cycles depends on retort capacity and vacuum
pressure. Pressures of 25 to 50 microns are desirable, but effective
purging can be done with pressures as high as 1.92 inch Hg (absolute).

Next, thermocouples are attached to the vacuum diaphragm di-
rectly over the panel, and the diaphragm is covered with insulating
material to offset the effect of the graphite reference tool - one layer
of 0. 080-inch aluminum silicate paper for each inch of graphite thick-
ness. This b.1ances the heat input to the panel from both sides. Then
the automatic vacuum control is set to maintain the desired pressure.
This setting is critical, because insufficient vacuum fails to provide
enough contact pressure for a good quality braze- but too much vacuum
can crush the honeycomb core, which becomes extremely weak at
brazing temperatures. The rate of heating to brazing temperature
(1625 F) dues nct appear to be critical. However, to reduce the risk
"of contamination, it is desirable to complete the hot cycle as quickly
as possible.
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The retort is then removed from the furnace and air cooled. With

sone titanium alloys the retort rnmv he in'zprted into An naing furnace,

although additional cooling will do no harm.

Residual antibraze material is removed by scrubbing wth alumi-

nun oxidf powder and a stiff-fiber brush. Then a light coating (-"

silicone oll is applied to prevent surface contamination in subsequent

handling. All panels are inspected radiographically to verify the quai-
ity of internal brazed joints, but visual examination determines the ex-

tent of possible external defects. The basic retort is re-useable. The
parts are cleaned and straightened after each brazing operation for re-
use. The vacuum diaphragm and slip sheets, however, are expendable.

Three titanium-5Al-l. Z5Fe-2. 75Cr sandwich panels ased on the

B-58 aircraft, as illustrated in Figure 99, have been made by brazing

using the system described above. The panels included an elevon sur-
face panel, a nacelle panel, and an elevon training wedge.

Brazing Stainless Steel to Titanium. Commercially pure

titanium and stainless steel tubes, 1 -inch OD by 0. 035-i. ch wall have
been brazed (Ref. 111). The titanium tube was inserted in the ex-

panded end of a stainless tube, with various amounts of 98Ag-2Li alloy

foil and wire. The assembly was placed in a Vycor glass tube with a
flowing argon gas atmo.,-phere. An induction coil with five turns was

placed around the joint. A 10-kw (450-kc) induction generator was
used as the heating source. The brazing cycle consisted of argon

purge for 5 to 10 minutes and heating to the brazing temperature of
1450 to 1500 F in Z to 4 minutes. Up to 75 per cent of the circumfer-

ence of the tubing joint was brazed. No benefits were obtained from

either silver plating the titanium tubing or nickel plating the stainless
steel tubing. All the sections of the brazed joints that were exposed to

salt spray failed within 100 hours.

SOLID-STATE WELDING

In solid-state welding, joints are formed with all components of
the joining system being maintained as solids. Welds can be made

under these conditions if two metallic surfaces, which have been pre-

pared properly, are brought together under an applied pressure at a
suitable temperature for a sufficient length of time. Deformation and

diffusion are important mechanisms of solid-state welding. It is con-
venicnt to subdivide this type of welding on the basis of whether de-

formation or diffusion is the predominant mechanism contributing to
weld formation. Actually, both mechanisms always operate to some
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extent during the formation of a joint, but there are significant differ-
ences in the extent to which these two mechanist-as control a given
welding process. Deformation may be limited to very smnall surface
areas during welding that is controlled primarily by diffusion mecha-
nisms. When considerable deformation is used during the welding op-
eration, diffusion can be quite linnited. Both deformation and diffusion
welding have been applied successfully to titanium.

Solid-state welding consists of ma.iy joining urocesses that have
oeen referred to by a numbe" of di;ferent names. As used in this re-
port, the term solid-state welding is intended to cover all joining
processes in which either diffusion or deformation plays a major role
in the formation of the joint and in which a liquid phase is absent dur-
ing welding.

Diffusion Welding. Solid-state diffusion welding is a joining
method in which metals are welded through the application of pressure
and heat. Pressure is limited to an amount that will bring the sur-
faces to be joined into intimate contact. Very little deformation of the
parts takes place. Solid-state diffusion welding does not permit rnelt-
ing of the surfaces to be joined. Once the suriaces are inl intimate

contact, the joint is formed by diffusion of some element or elements
across the original interfaces.

Some of the merits that make this process attractive as a method
of fabrication are as follows:

(1) Multiple welds can be made simultaneously.

(2) Welds can be -nade that have essentially the same mechani-
cal, physical, and chemical properties as the base metal.

(3) Welding can be done below the recrystallization temperature
of most materials.

(4) The formation of brittle compounds can be avoided provided
that proper materials and welding conditions are selected.

(5) For each material combination, the:-e are several con.bina-

tions of parameters which will produce v ;!ds.

Diffusion welding is primarily a time- and temperature-controlled
process. The time required for welding can be shortened considerably

by using a high welding pressure or temperature because diffusion is
much more rapid at high temperatures than at low temperatures. Both
the weiding time and temperature often can be reduced by using an
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intermediate material of different comrosition to promote diffusion.
This procedure reflects the increase in diffusion rate that is obtained
by the introduction of a dissimilar metal.

The steps involved in diffusion welding are as follows:

(1) Preparation of the surfaces to be welded by cleaning or
other special treatments

(2) Assembly of the components to be welded

(3) Application of the required welding pressure and tempera-
ture in the selected welding environment

(4) Holding under the conditions prescribed in Step 3 for the
required welding time

(5) Removal from the welding equipment for inspection and/or
test.

The peparation step involved in diffusion welding usually includes
a chemical etching and other cleaning steps similar to those employed
during fusion welding or brazing. In addition, the surfaces to be
welded may be coated with some other material by plating or vapor
deposition to provide surfaces which will weld more readily. Coatings,
such as ceramics, are sometimes applied to prevent welding in certain
areas of the interface. The methods used to apply pressure include
simple presses containing a fixed and movable die, evacuation of
sealed assemblies so that the pressure differential applies a given
load, and placing the assembly in autoclaves so that high gas pres-
sures can be applied. A variety of heating methods also can be used
in diffusion welding, but generally, the temperature is raised by heat-
ing with some type of radiation heater. As suggested above, the en-
vironme:At during welding is another important factor during this type
of joining. With titanium, a vacuum environment is desirable, al-
though it is possible to bond in an inert gas.

Diffusion-welded joints have been made in titanium and several of
its alloys at selected conditions including 'he foilowing ranges:

Temperature 1500 to 1900 F
Time 30 minutes to 6 hours
Pressure 57 000 to 107 000 psi.

Welding conditions reported in the published literature are given in
Table XXVII!. In all cases, the environment during welding was a
vacuum. Some zuccess has been reported with the diffusion welding
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of titanium employing an intermediate material to either decrease the
welding temperature or the required time. The usefulness of this
method with titanium is limited by the difficulty in finding an inter-
mediate material which will not re- t excessively with the titanium to
form either brittle intermetallic compounds or other undesirable
phases.

Deformation Welding. Deformation welding differs from dif-
fusion welding primarily in that a measurable reduction in the thick-
ness of 4he parts being joined occurs during deformation welding. The
large amount of deformation involved makes it possible to produce a
weld in much shorter times and frequently at lower temperatures than
are possible during diffusion welding. The major application of defor-
mation welding of titanium to date has been in the fabrication of roll-
welded sandwich structures. Unidirectional structural panels with
either a corrugated or ribbed structure have been produced with this
process. In addition, the process shows promise for the fabrication
of structural shapes such as tees or I-beams.

The steps involved in deformation welding are very similar to
those used in diffusion welding. The major difference between these
two solid-state-joining methods is the amount of deformation used.
Diffusion welding uses only that deformation required to bring the fay-
ing surfaces, with commonly encountered roughnesses, into intimate
contact. The deformation is confined to a narrow region on either side
of the interface. In deformation welding, however, the restrictions
given above do not apply. Welding deformations as great as 95 per
cent may be used, for example. The use of high deformations, applied
rapidly, can substantially reduce the time required for welding; e.g.,
I second or less.

Roll Welding. Roll welding is a solid-state deformation-
welding process that has been used for the fabrication of titanium
sandwich panels and other structural shapes (Refs. 119, 120). Truss-
core panels., with the structural members supported by a matrix ma-
terial of mild steel, are fabricated using a hot-plate rolling-mill re-
duction sequence. The cleaned and assembled pack, Figure 1010. is
sealed by welding, evacuated, and outgassed at 1600 F for about
'I hours. For .most titanium alloys, the rolling temperature is in the
range of 1400 and 1800 F. Subsequent to rolling, the composite can be
formed, with conventitnal equipment in the same mannr as a solid
plate. After forming, the mild-steel supporting structure can be re-
moved by leaching with a nitric-acid solution.
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FIGURE 100. EXPLODED VIEW OF ROLL-WELDED PACK

PRIOP. TO HOT ROLLING (REr. 119)

Materials which have been investigated and found to be suitable for

this method of fabrication include:

(1) Aluminum alloys, 2024 and 5052

(2) 1iitaniu,-n, alpha and alpha-beta alloy

(3) 300 series stainless steels

(4) PH 15-7 Mo precipitation hardening stainless steel

(5) Nickel-base alloys, Rene 41 and Inconel

(6) Ref:actory metais, tantalum, columbium, mnolybdenum,

and tungsz:n.

Roll weids between columbiurn andc molybdenum. B66 columbiumr-base

alloy c.,nd TZM molybdenum bast- alioy, tantalum and tungsten, tungsten
ind Te-I0W, copper and titanium, stainless steel and :itanium, and

stainles steel a-.,d tantalum have recently been reported (Ref. 121).
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trated in Figure 301.

Heated or coo~ed Cylinders predominantly
looding edge axial lood and bending

Pred~minantly pressure L~oor conductivity saridifich

FIGURE 101. T YPICAL APPLICATIONS OF ROLL- WELDED
CORRUG AT ED SAND WICH CONSTR UC TIOiR
(R EF - 1l1'4)

Pressu~re -Gias Welding. Pres sure -gas welding faefs. 122,
123, 124), is a welding ?,rocess in which the joint is prod.,,-ed ssirul-
taneousiy over the e-ntire area of abutt-ing surfaces, by he--ting wi~th gas
flam-ies and by the application of pressure, without the use of fl~
metal- Pressure-gas wvelding may or may not be a solid -stase-%velring
process, depending on the actual welding procedure used. The twqo

modifications of the process in commri.o use are the closed-joint amd
the open-iciints method-s. in the- clos~e-iPýoinr method, the cle~an fac-es of
the parts Ito be joined are abutted tog~ether under pressure and heate-d
by gas f~larmes until a predeterminied upsetting of tZhe -*imt OCCUTS- Th i
method off pressure-gas welding has been used for wektlng severa ta-
taniurn alloys for tubing andi prressure vessel. applkcatio-is. in the
open-joint mmethod the faces to be- joined are individual'I heated by -i
gas f'lames to the melting temnperatu~e and then brought into contact
for upsett~ng. The open-Joint method has not been used for welding
titanium or titanium alloys. The process in both modifications is
ideally adapated to a mechanized ope~ratiorz, and practically all cor-m
mercial applicatio-ns are either partially or fully mechansized- 7he
process is 4,adaptable aisc. zo the welding of low- and high-carbon sleells,
low- and hig-.-allov steels, and several nonferrous metal alloys.



Since the metal along the interface in the closed-joint method does
not reach the melting point, the ode •f we•Idi•g is different from that
of fusion-type welding. Generally speaking, welding takes place by the
action of grain growth, diffusion, and grain coalescence across the
interface under the impetus of high temperature and upsetting or pres-

sure. It has been demonstrated in several research programs that
these forces are capable of creating a high grade weld. Pressure-gas
welds are characterized by a smooth-surfaced bulge or upset at the
weld and by the general absence of fused metal in the weld zone.

In the open-joint method, welding takes place in the molten state
but most of the molten metal is squeezed from the interface by impact
pressure. The welds made by the open-joint technique resemble flash
welds in general appearance.

Pressure-gas welding has been successfully applied to the fabri-
cation of titanium alloys for liquified-gas container tanks, tubing and
pipe, and stabilizer arms for B58 aircraft escape capsules. A wide
range of thicknesses and sizes have b.!en welded by this method. To
be acceptable, for these applications weld strength must equal or ex-
ceed 95 per cent of the average base-metal strength.

Pressure-gas welding equipment used for joining titanium is the
same as for pressure-gas welding other materials. The process pro-
duces a forged butt weld by upsetting the faying surfaces under heat
and pressure. The heating system consists of a multi-orifice circular
oxyacetylene torch equipped with suitable pressure regulators and
flowmeters to provide a controlled heating rate at the joint. in one
application for joining titanium the circular to,-ch is oscillated so the
individual pinpoint flames are oscillated back and forth around the
joint to avoid local overheating. The welding pressure is supplied by
a hydraulic system of a size sufficient to produce the requirea forging
pressures. Pressures may vary from 3,000 to 15, 000 psi of weld
area. Ar' overall view of a pressure-gas welding machine is shown in
Figure 102. A close-up view of the welding station showing the torch,
gas flames, and joint being welded are shown in Figure 103. Although
the equipment used for pressure-gas -.velding is a conventional machine
for heating and applying pressure, details of the equipment such as the
circular -heating -torch design are considered proprietary. Pressure-
gas welding has been successfully applied to the welding of the follow-
ing alloys: Ti-5A1-2. 5Sn, Ti-6AI-4V. Ti-6Al-6V-ZSn, and
Ti-7AI-4Mo. Prior to welding, all of these materials are in the an-
nealed or solution-treated condition. ýWhether the process can be
applied to other titanium alloys remains to be determined. Size
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ranges that are pressure-gas welded include thicknesses ranging from

1.!8 to 1-1/4 inches.; diameter_ u i_,p to . 2.6. n h,-• .s .•e• gths up to arbout
60 inches.

A typical pressure-gas-wel. :g cycle is as follows:

(1) The parts to be welded are aligned in the machine.

(2) A controlled welding force is applied.

(3) The torch is ignited.

(4) Heating is continued until sufficient forging has been pro-
duced to upset the joint a predetermined amount to complete
the joint.

(5) The gas flame is extinguished.

(6) Hydraulic welding force is released.

(7) The part is removed from the machine after cooling to a
predetermined temperature.

After welding, the completed weidments are heat treated as required.

It should be noted that there is no shielding gas used to protect

either the inside or outside of the titanium vessels during pressure-
gas welding. Argon gas is used to help protect the inside of the tanks
,jr containers during heat-treating operations.

ii-6A1-4V is the only alloy for which information is available on
pressure-gas-weld properties. The tensile, notch-tensile, and impact
properties of pressure welds are listed ia Table XXIX. These data
seen' to indicate that the pressure welds have lower strength than the
base metal; this is true for some welds but not others. Usually the

joints have strengths eqaivalert to or exceeding those of the base
metals.

Experience has indicated that forgings and extrusions are supe-
rior to plate or spun sections for high-strength light-weight pressure-
vessel assemblies. Heat treating after welding is employed to provide
maximum tensile strength both in steel and titanium-ailoy pressure

vessels currently in production.

Although not directly concerned with welding, pressure-gas-

welding equipment has another interesting applica•ion. This applica-
tion is called upsetting and may be compared with the process known
as resistance-metal gathering. During fabrication of cylindrical
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TABLE XXIX. TENSILE. NOTCHED TENSI.V. AND IMPACT PROPERTIES OF PRESSURE
WELDS IN Ti-6AI-4V TUBING

Ultimate
Testing Tensile Tensile Yield Elongation. Reduction Impact Energy(a).

Temperature, Strength. Strength, per cent in Area, ft-lb
Specimen F ksi ks;. in 41) per cent -65 F 80 F

Unnotched, 8s 172 2 36 10 28 12-13 12-17
bas-e metal

Unnorzhed. so 166 146 8 33 9-11 10-12
pressure weld

Notched, 80 221 -- -- -- -- --

base metal

Notched, 80 2114
pressure weld

SNOtcned. -, 20 -- 230
base metal

- Notched. -65 220 --

pr'!ssuze Weld

(a) Vee-notch Charpy specimens.

2i
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sections, inside or outside shoulders are often required. Normally
when additional material is required for such shoulders, it is neces-
sary to start with stock or forgings of sufficient size so that these can
be machined. By using the upsetting method, the wall thickness can
be increased locally, and the design located for either external or in-
ternal shoulder. This has the double advantage of requiring less
weight initially plus the fact that less machining is required to make
the final part. More detailed information on solid-state welding may
be found in the literature (Ref. 125).

DISSIMILAR METAL JOLNTS

Occasionally, it is desirable to join titanium-base alloys to other
metals for various applications. Titanium is difficult to weld to steels,
aluminum, nickel, and copper alloys because brittle structures result
when it is highly alloyed with these metals. Highly alloyed structures
are formed in the fusion zones of welds that are made with processes
that result in melting of both base metzls. These highly alloyed zones
contain intermetallic compounds and are extremely brittle. Colum-
bium, molybdenum, tantalum, and zirconium are more compatible for
welding to titanium than are steel, nickel, and copper. When titanium
is highly alloyed with columbium, molybdenum, tantalum, or zir-
conium, brittle intermetallic compounds are not formed. The result-
ing solid solutions usually have low ductility.

Titanium can be joined to some other metals by the use of special
techniques. The problem usually is to join titanium to aluminum,
copper, stainless steels or carbon steels while providing a leak-proof,
reliable joint or a good electrical contact. There are many different
approaches geared to suit the individual problem. Some of these ap-
proaches are listed in the literature as follows (Ref. 8):

(1) Welding, using pure vanadium rod as a filler material

(Z) Welding, using ultrasonic or electron-beam techniques
to avoid formation of high-temperature phases

(3) Brazing, by furnace, torch, induction, or resistance
brazing. Techniques are most advanced for silver-base
brazing alloys, however, these have some limitation in
corrosion applications.

(4) Titanium-lined steel. Heavy walled pressure vessels
have been lined successfully by expanding a light-gage
titanium cylinder into a steel shell. Successful joining
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techniques have been developed to prevent contamination of
the titanium liner with the steel shell.

(5) Titaniun-,-clad steel. Special welding techniques have been
developed for joining either brazed or rolled clad titanium.

Examples of titanium-dissimilar metal applications are described
in the following.

MIG SPOT WELDING ALUMINUM TO TITANIUM

MIG welding has been adapted for attaching titanitun to aluminum
alloys (Ref. 126). With this process, a lap joint is welded with alumi-
num filler metal through the titanium into the aluminum to produce a
"fused rivet"t . The shear strength of the assembly depends on the
product of the shear strength of the deposited filler metal and its
cross-section area.

It is well known that direct fusion welds between aluminum and
most other metals produce brittle intermetallic compounds that seri-
oushv limit st.Length and ductility. In gas metal-arc spot welds, how-
ever, the brittle int,.rmetallic c,,:.r1 ou•nds formed at the periphery of
the welds do not extend across the s:-_ear piane and have little effect on
strength and ductility in shear loading. This joint geometry permits
metal-arc spot welding of metal combinations that cannot be resistance
seamn weldea without the use of special techniques.

The equipment is the same type used for gas metal-arc spot weld-
ing all-aluminum joints. Good spot timing controls should be ccmbined
with a reliable wire feeder and a constant potential (and preferably
variable slope) power supply. Argon shielding is used.

Welded lap joints between aluminum and titanium are made by
MIG arc spot welds fused through one sheet into the bottom sheet.
When the titanium is thin, the weld can be made simply by melting
through it with the arc. The in-rushing filler metal and arc force
push the other metal away from the center of the weld so that the core
and head are composed of relatively ductile aluminum. Another tech-
nique that is used involves drilling a hole through the top sheet and
filling the hole with filler metal. This technique helps minimize dilu-
tion and resulting ermbrittlement. An illustration of a dissimilar
metal arc spot weld is shown in Figure 104 (Ref. 126). These fused-
rivet joints are about as strong as gas metal-arc spot welded all
aluminum joints. Typical tensile-shear strengths and welding pa-
rar-neters for a variety of titanium-to-aluminum joint thickness
combinations are shown in Table XXX.
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II

7. 5X Keller's Etch

FIGURE 104. CROSS SECTION OF GAS METAL-ARC SPOT WELD
JOINING 0. 025-INCH ALUMINIZED STEEL AND
0. 064-INCH 3003 ALUMINUM WITH 4043 ALUMI-
NUM ALLOY FILLER METAL, NO PILOT HOLE

(REF. 126)

TIG PLUG WELDING

TIG plug welding has been used to join titanium to steel (Ref. 127).
In development work, two procedures were used to weld 0. 040-inch-
thick commercially pure titanium to 1/4-inch-thick low-carbon steel.
Both were modifications of plug welding using a standard gas tungsten-
arc torch. Vanadium and "olybdenum were investigated as the inter-
mediate filler metals. Aluminum and silver were not considered be-
cause of the considerable uifference between their melting temperature
and those of titanium and steel.

The first method of fabrication, which was used only with the
vanadium, was to bottom drill 1/16 inch deep, a 9/16-inch-diameter
hole in the steel. A standard counterboring tool with a replaceable
pilot drill was used for this purpose. This hole was filled by deposit-
ing two layers of vanadium using 1/16-inch-diameter filler wire. A
1/4-inch-diameter hole was drilled through the titanium, aligned con-
centrically with the vanadium, and welded to it using commercially
pure titanium filler wire.

The second procedure was similar to the first. Instead of surfac-
ing the mild steel, however, a solid disk of the intermediate material
was inserted in the steel, flush with the top, and welded around its
periphery. Both 0. 062-inch-thick vanadium and 0. 032-inch-thick
molybdenum were used. As in the first procedure, the titanium was
welded to the intermediate material. Results were more promising
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with vanadium than with molybdenum. Process equipment has been
fabrIcated asing these methods.

RESISTANCE SPOT WELDING

Limited development work has been done on resistance spot weld-
ing of titanium to Gther metals (Refs. 127, 128). Process equipment
utilizing titanium-to-steel joints made by resistance spot welding has
been fabricated and is being evaluated (Ref. 127). Titanium can be
spot welded to steel if an intermediate layer of vanadium is sandwiched
in the joint. Both conventional and series-spot-welding arrangements
have been used successfully. Properties of series-welded titanium-to-
steel joints are given in Table XXXI.

TABLE XXXI. STRENGTH OF JOINTS(a) BETWEEN COMMERCIALLY PURE TITANIUM AND
0.255-IN.-THICK LOW-CARBON STEEL USING A VANADIUO(b)
INTERMEDIATE (REF. 127)

Electrode Tension-
TI=:,ium Electrode Separation. Welding Welding Shear

Thickness, in. Force, lb in. Current. amp Time. cycles Strength. lb

0.025 450 3-3/4 6,900 15 1490
0.025 450 3-3/4 6,900 15 1320
0. 025 450 3-3/4 6,900 15 1433
0.025 450 2-1/2 6.900 15 1r25
0.025 450 2-1/2 6.900 15 1508

e 0.025 110 2-1/2 6,100 15 625
0.025 i10 2-1/2 6,100 15 1325
0.025 110 2-1/2 6,100 15 1342
0.062 675 2-1/2 10.300 1= 2730
0.062 675 2-1/2 10,300 15 2785
0. 062 375 2-1/2 10,300 15 2030
0.062 375 2-1/2 10,300 15 3120
0.062 375 2-1/2 !0.300 15 3110
0.062 375 2-1/2 10,3•0 15 3122

(a) Scrics-type resistance spot wcld.
(b) Vanadium was 0.010 in. thick.

Resistance spot welding of commercially pure titanium to .ISI 301
and 446 stainless steel, iron, nickel, chromium, zirconium, aluminum,
and magnesium alloys also has been surveyed (Ref. 128). Titanium-
zirconium spot welds had the highest strength of any combination; duc-
dlity was poor, and the tension-shear strength was about 1100 pounds.
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Magnesium and aluminum produced braze-type joints having tension-
shear strength of 525 pounds. The maximum tension-shear strength
of titanium-stainless steel spot welds, 640 pounds, was obtained with
solid-state bonds. Increasing welding heat caused cracking and rapid
decrease in tension-shear strength accompanied by the formation of
intermetallic compounds.

CAPACITOR DISCHARGE WELDING

Capacitor discharge welding of titanium to aluminum for miniature
missile a-:•d electronic components has been reported (ref. 129), but
no details are available.

CONCLUSIONS AND RECOMMENDATIONS

Titanium and titanium alloys normally are considered to be diffi-
cult-to-weld materials. This is because titanium will react readily
with most other materials when heated to elevated temperatures such
as those encountered with most welding processes. These reactions
can reduce the ductility and toughness of titanium, and in addition, can
cause porosity, cracking, and embrittled welds. Titanium is welded,
however, on a day-to-day basis by many fabricators and the" techniques
that were considered "special" or higbly sophisticated are now often
considered conmnonplace.

Experience has shown that good-quality welds can be prepared with
a variety of joining processes, provided the heated metals are pro-
tected from contamination by foreign materials. Processes and proce-
dures that minimize joint contamination must be used. Dust, dirt,
grease, fingerprints, and a wide variety of foreign materialc can lead
to embrittlement and porosity when the base metals or filler metals
are not properly cleaned prior to joining. Contamination that arises
either from the open atmosphere or from foreign material on the filler
metal or surfaces to be joined must be strictly avoided for the suc-
cessful joining of titanium.

Although titanium and many titanium alloys can be joined readily
with conventional processes combined with special techniques to pre-
vent contamination, a significant number cannot be welded satisfac-
torily and additional information on joining these materials is still
needed. The needed information is concerned with nearly all phases
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of joining - cleaning and preparation of the base metals and filler
metals, welding processes, posfweld heat treatments and inspections.
Particular areas in which additional information would be helpful for
joining titanium and titanium alloys are described in the following.

WELDING METALLURGY

Although titanium and titanium alloys have been fabricated exten-
sively by various welding processeýs during recent years, a better
understanding of the welding metallurgy of these alioys is needed in

e order to develop successful joining processes and procedures. Studies
of the metallurgical changes that occur in these alloys during w,'elding
and related processing are recommended. These studies should be
aimed at establishing the effects of potentially important processing
variables such as prior working history, heating and cooling rates,
postweld heat treatments, intermetallic reaction, dilution when adding
filler metals, and microstructure on weld-joint properties. Existing
information should be evaluated and additional needed information
developed.

CLEANLINESS

Limits need to be established for the cleanliness requirements for
titanium-base metals and filler metals, welding atmospheres, and
fluxes; also, more reliable and simpler methods for establishing
cleanliness wouLd be helpful. Instruments and monitoring devices are
available for detecting surface contact resistance and the presence of
some contaminants in the welding atmosphere, while chemical anal-
ytical methods can be used for analysis of flux compositions. How-
ever, these methods often cannot be used and may be cumbersome or
expensive. Since extensive cleaning procedures are employed for
cleaning titanidm, it appears that studies aimed at developing improved
cleanliness standards and methods of evaluation would be helpful to
titanium-welding fabricators.

r FILLER METALS

Filler-metal development programs probably will be needed to
fulfill future needs for preparing higher strength, high-quality joints
between similar and dissimilar metals and titanium alloys. Filler-
metal development has been slow due to the lack of suitable markets
and funds. In this area of development, a thorough knowledge of the
welding metallurgy of titanium alloys will be required. Filler-metal
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quality requirements and inspections methods also need further devel-

opment and wi.l be worthy of study.

WELDING CONDITIONS

Conditions for joining and related processing need to be established
for the older and often infrequently used joining processes and for new
joining processes that are promising for titanium and titanium alloys.
Examples of such processes include pressure-gas and other solid-
state joining processes, flash, seaLI, MIG, electron-beam, and
plasma-arc welding.

TACK WELDING

Tack welding is often used to help position and maintain alignment
of weld joints in preparation for final welding. Unless tack welding is
performed properly, the weld joint may become contaminated and ruin
the joint. Studies to establish satisfactory tack-welding procedures
and quality requirements are recommended to supplement the meager
information that is now available. One result of such a study could be
the eliminatiarn of cumbc-rsome and expensive tooling that might other-
wise be required for large-size weldments in addition to improved-
quality tack welds.

CONTAMINATION AND POROSITY

Embrittled welds and porosity in titanium are attributed to various
kinds of foreign materials that react with titanium. However, there
are no known nondestructive techniques for detecting contamination
when present in a titanium or titanium-alloy weld. Detection of con-
tamination requires destructive inspections such as hardness tests,
metallographic examinations, or chemical analyses that often render
the part useless. Studies are recommended, therefore, to develop
reliable nondestructive methods of detecting contamination in titanium
welds. In addition, specific identification of the causes of the porosity
in titanium welds is needed. Porosity is a troublesome and recurrent
problem in titanium welds; probably every welding fabricator who is

"*4k inexperienced with titanium alloys will encounter porosity early when
attempting to weld these alloys. Less complex, less expensive, more
reliable solutions to the porosity and contamination problems are
needed, however, by all titanium welding fabricators.
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CRACKING

Specific identification of the mechanisms and causes of stress-
corrosion cracking, hydrogen-induced cracking, and delayed cracking
of welded joints in titanium and titanium alloys is needed. There ap-

.ed pears to be no easy solution to these problems. However, studies of
the welding metallurgy of these alloys and the metallurgical change-,
that take place during welding and related processing will provide in-
formation that will be useful in overcoming these problems.

THICK TITANIUM PLATE

The future needs for joining of thick titanium or titanium-alloy
plate should be evaluated. Present information on the joining of tita-

it nium alloys over I/Z inch in thickness is limited to relatively few
S alloys. Studies aimed at developing welding and related joining proce-
fl dures for thick plates of titanium alloys not yet welded in thick-plate

form can provide useful information. Oxygen-fuel-gas cutting of thick
titanium plates, for example, has been performed for armored-tank
welding development. Gas cutting methods may be useful for thick-
plate joint preparation prior to welding.

STRESS RELIEF

Stress-relieving requirements Fnd procedures need to be estab-
lished for various titanium alloys. Although thermal and mechanical

us stress-relieving procedures are used by current titanium fabricators,
the question of when and how to stress relieve titanium weldments still
requires more definitive answers. Studies need to be undertaken to
establish proper techniques for determining residual-welding-stress
magnitudes and their effects, and ways to prevent or eliminate them.

REPAIR WELDING
n
ty Information available on repair welding of titanium alloys is

limited. Studies are needed, therefore, to provide information on
making satisfactory weld-joint repairs in alloys and weld seams
where they may be anticipated. Information available should be eval-
uated and new information developed to fulfill expected future needs.
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APPENDIX A

I DESCRIPTORS FOR LITERATURE ON
FABRICATION OF TITANIUM AND
TITANIUM ALLOYS BY WELDING
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DESCRIPTORS FOR LITERATURE

on

FABRICATION OF TITANIUM AND TITANIUM ALLOYS BY WELDING

Descriptors for titanium welding and joining fabrication are re-

viewed below.

GENERAL AREA OF INTEREST

Fabrication of titanium and titanium alloys by welding and

joining.(1 )

DESCRIPTORS FROM THE "THESAURUS OF ASTIA
DESCRIPTORS, SECOND EDITION"

IZa - 96 Metals Joining, p. 39

Arc welding Silver solders Spot welds
Arc welds Soldered joints Thermal joining
Brazing Soldering Welding
Flash welds Soldering alloys Welding fluxes
Fluxes (fusion) Soldering fluxes Welding rods
Resistance welding Spot welding Welds

DESCRIPTORS FOR RELATED AREAS SELECTED
FROM THE "THESAURUS OF ASTIA DESCRIPTORS,
SECOND EDITION"

1-7 - Aircraft Structures, p. 12

Air frames Fuselages
*k Airplane pan-els Wings

1-150 Spacecraft, p. 55

Space tools

(1) Adhesive bonding and mechanical joining excluded.
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11-8 - Alloys, p. 13

Titanium alloys

Metals
Titanium

11-38 - Containers & Packaging, p. 23

Propellant Tanks

Storage tanks
Tank liners
Tanks (containers)

13-153 - Structural Engineering, p. 55

Angle bars
Beams (structural)
Filament wound construction
Honeycomb coYes
Monocoques
Pipe bends
Pipe
Sandwich construction

17-114 - Ordnance, p. 45

Armor

Armor plate
Body armor
Tanks

20-141 - Rockets, p. 53

Rocket cases

22-104 - Mvodels, p. 41

Rocket models
Ship models
Submarine models

I
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23-145 - Ship Structures & Marine Equipment, p. 53

Hulls

Hydrofoil boats
Hydrofoils
Submarine hulls

25-163 - Vehicle Parts, p. 57

Tank turrets
Vehicle tracks
Vehicle wheels

25-164 - Vehicles, p. 58

Armored vehicles

RELATED KEY WORDS AND PHRASES

Key words and phrases listed below also may be helpful in isolat-
ing the information desired.

B razing
Fabrication
Postweld operations

Preweld operations
Recommendations for welding titanium
Soldering

Tack welding
Titanium and titanium alloys
Welding

Arc

Electron-beam
Friction
Plasma

Pressure

Diffusion bonding

Roil welding
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Resistance

Butt
Flash
Projection
Seam
Spot
Upset
Upset butt

Ultrasonic welding

Welding equipment
Welding problems & solutions
Welding procedures
Welding techniques
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APPENDIX B

DESIGNATIONS, PROPERTIES, AND TREATMENTS
OF TITANIUM AND TITANIUM ALLOYS
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I ___________ Pfoduzcers Nomenclatim ________

Copgti rciblie Steel f Hanecy P eactivt Republic Stce-l Titanium

(3.Alancc Ti). ICo.. Tit&anium jA 2
WT~nL.m Metals Co.. Special Metals

P" cent I Division ritaniurn Division Ptoducts hicfls, Divineon Cotporatiot

99.5 MA _________ f1930 16ST-30 RS-25 _________

99.2 1 A-40 - I A- 1940 %Ws -40 RS -40 _________

99.0 -I A-55 HA -' 950 MST-65___ Rs-55 Ti-65A
99________0 __ A__70__________% ST-?O RS-70 T-5

0. 15 t 0.20Pd A___40Pd__ ____________ MST-Ti-0.2?d Ti-O. 15Pd

______________ ___________ ALPPA ALLODY GRADES______

_______________ A-IIOAT MA -5137 %IST-SAI-2.Snt i RS-IlOC - Ti-SAI-2-56n

WA-2.Wri (owv0) A-9-ET IHA -5137ELI M.STI-SAl-2.5SnE11l RS-lIOC-L T I- 5A -2.-%n ELI
5AI-5Sn-5Zr Tj-AI-5Sna5r

7IA -127-i __________________fNIST-7.A1-127t Ti-?IA I- I2Zr

jA l-2Cb-lITa (b) I________________MST-72i _______ Ti-7A1-:Cb-lTa

aAl-L'4o-lV f HA-81l6 16ST-821 R-SliX Ti-gAI-Lo-IV

_______________ ___________ ALPHA-BETA ALL40Y GRADES _______ ______

SWi C- 11M j________MST-aln RS-110.A Ti-BMn
2ft-2r-alo ________j________ITi-140A

2.5&1l-16V _______ _______ ST-16V-2.5&M1 _______

3A1-2.5V I ___________ -
4AI-4M.n C-13DAM WA -414 5 MST-4A11-4ln RS-130 1

4A1-3%1o-iV %I_______ _______ ST--kAI-3VMo-IV RS-115 Ti-4AI-3M.-WV

SAI-i.251'e- I _______ ________ IS-140 jTi-5AI-4FeCr
5Al--1.Fe-I.4Cr- _______________ _______-i-15xss.,

EA 1-4V j C-l2O0AV IHA -650 MSTI-G&I-4V. RS-!20.A Ti-6A1-4V

&A 1-4V (lowO0) _ _____ HA-6510EI. PS_____ 5- 120A -L Ti-6A1k1-4V ELI
6Al-6V-2Sn- I _____ HA-51ISS =S-6AI-G-V-2S13 ______ TF8&-6-

jA 1-411o jC-135A~o HA-714E jMST ~I-4Mo j 11-135 T--IAI-4Mo J
________________ __________BETA ALLOY GP4LDES ______

2AI-8V- SNe ST-1Al-EV-61 Fe

3A1-13V-IlCr -20C MST1- ISV-i Ict-3A1 11-120B Ti- 3-iiCr-3A1

(a)Oth crnb= -}117~ xW WAt-6~l pl o allg-au andal ptoduct 7-14W7~. T-i4568. T-9046C. and T-9041C

appy i al rads:and T-SSS4ASG) applies to vanoias grades.
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4 9

Fonmability. Nominl
Othet Designanons Minimum Melting Compolston

.hiS Military Forms ?.nd Radi,,. Weldability Temperatue. (Balance Ti).
No. No. I Available(c) T l(emauls F pet cent

B. b.P.S.s.T.W. E I to 2 All ualloyed 3038 99.5

"4902 1 grades I _I
4941 T-90473-1 B. b.P.S.s.T.W.E I ao3 ae 13000-3100 99.2

[4951 c.ompletely
4S•OA T-7993B B.b.P.S.s.T.W.E I to3 weldable (W) 3000-3100 99.0

f49018 B. b.P.S.s.T.W.E 2 to3 3020 99.0
a.2_ B~b. WE I -- 3025 98.9
B.b.P.S.s.T.W.E •-I Lo, Completely W 3000-3100 0. 15 to.2Pd

14910
4926 aB.b.P.S.s. W.E 3 to 5 Weldable 2820-3000 6AI-2.56n
4953

B__. b. P.rS.as. W.E 3 to 5 Weldable 2820-3000 5A 1-2. 56n (low 0)

in pmpatica B. b.PS.s _3 to ,5 Weldable ,3000 lA1-56=-5ZT

In preparation B.b.P.S.s 3-1/2 r 5 Weldable -3000 IAI-l2Zr

IQ I preparation B.b.P S. W.E 4 to 6 Weldable 3005-3115 7A1-2Cb-1TarO)
In p.-ep- In preparation S. b.r. -,s. W.E 3 to 5 Weldable 8AI-lMo-1V
aa~tton

4908a. I_ _ _ __ .__ _ 2-1/2 %D 4 W not recommcdeJd 2730-2970 $Mn
4923 _B. b. S.s 3 to 5 W not reconmiended I _2Fe-2Ct-2Mo

ST-b,.4i) B.b.P.S.s. W 2 W not recomnmended 2. 5Al-36V

_.1 _2so 3 3A1-2.5V

492A B. b.P. W -- W not reconmmended 2820-3000 4AI-4Mn

4912. P.S.s 2-1/2 to 4 Special coendtios -3000 4A1-3Mo-1V
4913 permt same w

3._b.P.S 3-1/2 to 5 Special conditions _,_-_.25Fe-2.'_Cr

I ~Permit ionic W
f4929 ID._b.P -- W not recommended -3100 5A-i.3:e-I.4Cr-

4969 1 1.2340

4911l
492MA 0S-10737 B.b.P.S.s. W.E 3to5 Weldable ,-3000 6A!-4V

T,4-935 OS - 0740 B. b.P.S.s.T.W.E 3 to 5 Weldable -2000 6A1-4V (3ott0)

T-46035 B.b.P. W.E -- Special co-dios ,31LI0 6AI-6V-2Sn-

T-41638 _ _ _nit som _ _l(Fe.Cu)

DB.b.P. W.E Special conidtci"s -3000 7AI-4Mo

P. b.P - W not rewonmended 2 f AI-8V-SFe

4917 B.kP.S.s. W 2 to 4 Weldablej 3I-13V-ICr

(b) Formrzly 8AI-2Cb-ITa. All data given are Jo: The 3-2-1 composMion.
(c) B. bilict b. bar P. plate: S. sheet: s. strip. T. tubing; W. wire. E. extrui.OOL
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"Nominal Betz

Compositioc Recommended Forguog Transus . . Recommended Ilcar Treat-
(Ealance Ti. Tem rrature Range. F Temp.

"per cent Sart Finisit F i 5 5F Sirris-Rclici Annealing Annealing Treatment

99.s 1500-1100 120G-1500 1630 1000 toOO I 1-0/0F r. AC 1250 to 1300 F, 2 h,. AC

1500-1700 1200-1500 1675 1000 to 1100 F. 112 hi. AC 1260 to 1300 F. 2 hr. AC

49 n 1600-1700 1200-1600 690 1000 tvi 1W00 F. 1/2 hi. AC ' 1253 m 1300 F. 2 hr. AC

99-0 1700-1750 1300-1600 140 ________ ."
qa 4 1750 1550 1760 1000 to 1i1%F. 1 J.hr. AC 12.50 t 1300 F. 2hr. AC

0.15 zo 0.20 Pd 1200 1650 1675 10 OW 110. F '.112h., A(' 1250 o '300 F. 2hL. AC

ALPHA ALLOY GkADES

fs•1-2sn 1 1600-1950 1400-1750 190o 1000 to 120- F. 1/4 to 2 hr. AC 132i to C F. IC r,- -o
_ 0%_ _ AC

5AI-2.5Sn (low 0) 1600-1900 1400-1150 1910 1000 to 1200 F. 1/4 to 2 hr. AC Dr.to

5Al-,Sn-SZr 180C-1900 1600 1515 110C F. 1/2 hr. AC 1650 C. 4 hr AC
7AI-12Zt 182--1925 1800 182.5 I000 F. 1/2 ht. AC to)( ) 600-!650F.1/2to-hr. A

[(2) 1300 F., 1 hr, AC
?A'n-.Chi 1950 1656 1920 1100 to 1200 ý. 1/2. AC 1650 F. 1 hr. AC

8AI-lMo-IV 1950 1850 1900 1100 to 1200 F. I hr. AC (1) 1450F. 8 hr. FC (Co-ult

""_ _ _ _"__Fo: sheet_2) 1450F. 8hr. FC+ 1455 F.

_ _and plate • 3).1450 F. 8 hr. PC + le5o .

S1'For forzins 1(4) 1550 F, 1hr. AC + o00oF.
ALPHA-BETA ALLOY GRADES

Wmn : ... iý ucc reco'nreded 1475 9 to 1100 F. 1/2 to 2 hr. AC 1250rt 1300F. lhr.FCtc1000F

2Fe-2Ct-2Mo .101,001 1300 900 to 1000 F. 1/2 to 1 hr. AC 1200F. 1/2hr. AC

2.5AI-1V 1400 (max) 1350 (i.,) Solution treating is rtcommended for both anneali.

and stress relieving
3A 1-2. SV Forgin2 not rr ernmended _____I_____________1 13C0 F. 1It& AC
4A1-416n 41600-1150 1300-1600 1200 41300 F, 2 h:. FC 1300 F. . to 4 hr. FC

S-450 1650 15.5 . 1000 to I100. 1 hr. AC Ij2F4 hr.SCtol O05F. A
4 Forein2 rnot reconamended I

5AI-1.25Feý-2•.5Cr 1400-1759 1400-1500 IM25 1100 F. I hr. AC *450F. AIr.SCtoIl0S.F

5AI-.5Fe-'I.4Cr- 1650-1750 1650 1755 .. 1200F. 2h;. AC !SOO F, 
4

to2
4 h. AC

^AI.-4V 11450-1900 1400-11750 1820 900 to 1200 F, I to 4 hr, AeC slto 15OF, I to 8hr, SC

1250 (max)t (Usual: I hr. 1100 F. AC) to 1050 F. AC
6%1-4V flow 0) IIS0-1900 14010-1750 IM20 Ditto Ditto
6Al- -- 1 "426 15-0 0 1735 1100F, 2 hr Af, 100lo140F. lt02hr'AC

7fI-Wf o 1C00-u0 150-16u 1846 900 to 1300 F, I to 8 hr, AC 1450 F. 1 to B hr, SC to

I IM _ A105, CL I- - - " -
BETA AU.OY GRAIDES

AIM-8V-SFe 1500 1450 1.525 1 00 IOto 1 1006F. I1hr. AC 12506 F,*1hr, FCto 90_0_F.ACI

--3(I3V-blCr )1500150 1400-1800_e i11325 Solution treating is snoonomo with a•wea•ing for this alloy.

(a) Abbreviatiom AC = air cool. SC = slow cool. FC = furnace cool. WQ = water q".eoch. CR = cold rolled.
(b) %umbers in paremb-es refer to beat a'eatments used to generate the data give.-I inlater tables. See Condhtioa te-m,.'s.

.II--
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Tvpic..xs Tensic Properties
Room Extreme

Tern "atmc 600 F _ Temprta rcs Nominal

men (a E E. Test Comproston

Solution Tr,-atment 106 Us. YS.. US. YS. ETep. US. -. (Balance Ti).

(Aging Treatment) Form Condzu psi kI kss , psi W ks M kt i per cent

Not heat treatable S- Ann 14,9 3 273 011. 20- 94 5

Not heat treatable 5 Ann 14.9 60 45 28 12-31 28 13 45 -423115 99.2
.

--- -

Not heat treaable S A^nn 15.0 1,56o 25 12.5 33. 19 -321 .165 99.0
5 I ! 15.1 90 25 2312.5 43121 28 -3411 .... 99,0INot teal treatable S Ann 15.5 100 85 17 12.6 4 30 259

Not beat treatable S Ann 14.9 62 46 27 12.328 1330, 0.15 to 0.20 Pd

Not heat treatable S Ann 16.0 1251117 18.13.4 82165 19 1000 75 56 18 5AI-2.5Sn
b Ann 16.0 115 1O 20 I

Not heat treatxble 5 [Arn 16.0 110 95 20.13.4 78 60 20 -423 M 06 15 5AI-2.Sn~hnv 0
Not beat treauble S Ann 15.0 125 120 IS 1.4.2 94 "34 20 1000 84 E-7 21 5Al-5Sn-*?r

Not heat treatable S (1) Ann 16.0 135 130 1514.3 '09 86 21 1000 93 25 23 "2A1-22zr
b () Ann -- 165 159 14 130 119 18
b Ann 17.7 126 120 11115.1 100 81 _25_ _ AI-2Cb-ITa

producers for other zmatme*vs) S (1) Ann 18.b 160 150 181 1000 85 70 20 SAI-1Mo-1V ,
1/4 it, AC(Dupk - S ) 18.0 145 138 15I

5min AC. 1375F. 1/4hr. AC S (3) Ann -- 150 142 13;

8hr. AC - (4)Ann -- 41301S-- -n17 -519_1000 88 71 20

Solution treat ont recommended S Ann 16.4 132 125 15 14.4 8 75 13, 00
1400 to 1480 F. 1 hr- WO or AC b Ann 16.7 137 125 30 .
f900 to 950 F. 2 to 8 hr. AC) b 4Aid -- 179 171 13 -- 136 112.16
1360 to 1400 F, 20 to 30 min. WO S | $ -- 10( 4516 2.1A1-1/'

(960to990F, 4hr, AC) S ]AM . 15.0 180 165 6 3.5 155 1401 8 800 140 25 !0
Solefion treat not recommended S . Ann 15.5 100 6. 0 1j -3 0 - _ 50-_25__________
1400 to 1500 F, 1/2 to 2 hr. WO b Arn 16.4 148 135,1.5 3.9 110 90 12 800 100 521 4AI-4Mm

t OO to 10O F- Rt 124 hr- AC) M h A IL... -- ' 1-3
lh-1tn 1950F 1/41-r W - j 16.5 L4120 ____-___._- __S(925 F 8 to 12 hr. AC) S-q ! .-- 195 1" - 1m M A SOO I I .R
1tc-rILSOF 2l-X b I An. I§- n155 14-5 15 L5Al-_.Fe2.75r

(900 to 950 F. 5 to 6 s.t. AC) h.. A2ed 17.,6 190 1l. § 62-
1600 to 1625 F. 1 hr. WO b _Ann_ 16.5 154 145 16 15. 0 00 B U SAI-2.SWe-1.4C0-
(i000F. 24hr, AC) b Aga n17..0 195 184 14.6 1.M151o

15•0 t. 1-750?. 5 mn to I hr, WO S. b Ann 16.5 13 i2 5 2 - c an . IR I 5 AI-4V
(900to l000F, 4to 8., AC) S Aged . - _10 1p, v2n nn a

Solution treat no recommended S Anm 1.. 122= "n" /3 21 1 AA 12 -4ty .
1600 to 1625 F. I hr WO Anb 1A5 151 = Poo W C h, SAI-6V-2sn-

(900to 1100 F. 4to8hr, AC) _ h_ And 16-5 11. 10 (2jFie- C.
1 6 5 0 to 1 7; 5 0 F , 1/ 2 to 1 - 1 /2 hr . b I A nn 1 6 .2 16 0 1 5 0 iq42 1 2 A I A I - 4 16o

WC(900to1200F. 4o16h.AC) b Aged 16.9 185 125 10 13 0 Ki -______

1375 to 1425 F. 1/hr. W O b Ann I 6.5 177 17.0 i 4 -4 1 0 Boo 5 132 IA I- 4-,oe

(92,5 to 1000F. 2 5? . AC) b Aged 16.5 221 15 10 I-..5 140 123 12 SO0 120 _00 130

1400to ISOfF. 1/4tolbr. WQo;;A. SJ Ann 14.2 1351130 16 13.2 Boo800 I15 OO M_ 3AI-13V-1IQC

(900F. 2 to 96hz. AC)1450 F. S e 14.8 185 175 8 3.8 125 145 8 800 160 20 :12
I/ 3 h,. A C . C R. S ~o F . 2 4h !. ., Z s - -~g d . 2 6 z o 45 i 4 !
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Xaac V) S, - - - - - ------ -

o .ninti C~ee, Di ____ - St, c.P.u otue Data -

[arm STress. Time. ?lstic Temp. Strcss. Time. Kt
per cent ,:tio F ki i ht Df. . Form C -:__ttl__ F Imi ht Factor

I9 -- _h AU)__n AM - - -

• 9 9 . 0 • A n n R -s 0 a 8 15 0 0. 1 ,5 b A n n 8 0 0 i I / 4 3 0 1

lo - _5 2 0 E ,d.

Ann•_s R • soo 4P zoo m.! s Ann so 62 IoDo I
A" 1000 150 0.15 S Ar 1 1 1

5A' -2-6SD iw 0_ -i

SA I-fSin-57r s .-- A=- 3..- 150 q A.i 1000 60 99 1
""AI-12zf S (1) Ann 1000 30 150 0.15 S (1) Ann 1000 60 330 1

h A1 0),12h low0 20 cl. 0.1t0"IAl-2Cb-Ta Is 1000 I i 1-, 0 0S , A- 10:Q 32 1000 1
8AI-IMo-lV S (1) Am 1000 18 4 150 0.15

S __ Ann - I.--SO - - -

S 4) Ann 0 25 10 040, (4) Anm 1000 60 40 1

____ A LPJ, A-BETA.. - __

_S A__ 900 5 100 0.50 S Ann 400 100 1000 1
21e!2Ct°2Up

_ SA1-16V
- - -___v_ - s Aged 600 90 100 1

,_-4Mn b Ann 400 99 800 4.50 b0nn SOO 47 1.00 1

b A-a-- I oo L o2 100 1

______S__,___ 200 44 200 0 S SOed 00 72 500 1

. - b Ann 800 46 1000 0.20 b Ann 800 is 100 1

1.2!J ________o________

- b Ann 600 70 1000 0. i0 b A=- 850 68 100 1

b Aged 850 -2 100 1

L~t-AV Mgstr'• . .
lAI-'V-2Sn b Arn 6S0 100 150 0.20 I

I (Fe- CC) b Aged 600 100 191 0.2.
?AI-41M6_ b Ann 1000 14 150 0.20 b Arm 800 11.'7 153 1

b Aged 1000 50 3 1

N, 'A I--V-SF, b Ann 600 120 310 0 .
b Aged 80o 45 212 6.60

- - s Anm 600 107 500 0.20 b Ann 600 107 S00 1
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- ____ Fatigue DAta RT ~r~
stress. Kt Factor Charpy i Nomoiiona

Tcnp, 0 (Stress Impact. H ard-. (Balance Ti).
Fo-mCodiioF Tye = yc fne)4 t-b ej)Usagee Remarks Per cent

Ann ft_ 1209 Highest formability Wrde "1____5 _

b Ann 2_.5-40 .200 8 AerOsPace. ___9-___

_________22_ _____ Q miciij and ________

Ann___ -0J ____ fll .. efw 0.15 toO0.20 Pd

S .AL. ~'R- DiCI ax1ialh 93- f1A=2  36 RC -A &--~- bezfr ghi qU 9A12 Wit

b A' T P t. b a 27 3.2 -_ _

1b 36 -k - __ Coeic grade 5AI-2.5SO (low 0);

_____ ______ - High creep strenot grade SAl-~-I2zr

_____ __ ____ __ __ ____High strength Plas laon time l-hnI

Ann ~ ~ ~ ~M creesittstance ______

b±i(4) Ann j____ __- ________

SIAnn RT Direct axial 9C 1(A=WC ___[1n or-Ahi~ ih.mdra tc~I

fl Ann 600 Reverve bend 14~.6 221 - Z___________ e-2r-2jao

b_ Aged __LQ __ __ _ __ _ _ _ _ _ _ _

S Ann - _____ - - __ xee11ent fabrlita!y as annealed 2_ SAl-IbV
S ilged RT Ei-ect axial 32 ICA - 21 M__ __Hat treatable to bugh UM20s~

T.. .A.n -. la - __ 3A1-Z.5V

b Aan RT Rot, beam 90 1 NG-15 HUME" .1s tr arrf 4A1-4Mn

.L I.g -ka. -incledint famstemr

... L t.. -, -oo - lnability. Heat Vimtable 4Al- d-IV

S i r D..ect axial 124 I A= -61 tobg Zeo T~
R An P I IL.Ir NL.. asOJ I_ Atrframe RRMn22ORes 5At--i2Mec

b Aged RZT IRot, beams 105 1 _ ___________ 2.75Cr

b Ann RT Rot. beam 100 1 !0 ___ Airframe and ordnance corr~coents ZAl-i. S'e-2.4Cz
b A ed RT Rom. beamn 110 1 1____________ _ 2Mo

b Ann FRT Foot. beam 75 1 1020 9R1 C Wide vetsarillryr grade.. Heat 6JA1-4V~
b A ed RT Rot, beam 92 1 - trazable to hig s ______

b Ann ____10 3 R :mnic jade 6AM-4V flow 0

Iaircraft componentrs I MFe- Cal
b Ain RT IROt. beam 10 1 is ___ ngaean arframe 7A1-4Mo

b gd10 ___ applications _____

b Aged ST IDirect axial F0 IThreaded___________ _ _

I--'______I Ex_ j 1 ~tC£cellent formability and beat 3AI-13v-!ICr

(a) A Altetrnating garcus/Ztsca stress. (b) Brinelli(8) or Rockwell (RC).
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Ther-Tmal ExpauLoa tsia
"J Nalaal Mean Coeffia 7amal Con- Zmutanemw ElecatrlCal IlasUc

campoaldsw w F (10") dc€t•ity. st/he SpsClc H"t. Re."viy. Modu,.

(BUaaCe TO L L T R ft2/f /ft DW/lff microbm-en. 106 md

perceCt b/iLt. 3  200 F t000!t w1000 rT 800? IT 80? ItT g00?F I G

._ 0.10_ 4.8 5,2 _ 9 1o. -- S7 -- 14.9 6.5

1 --.2 - 0.103 4.8 5.2 5.5 9.5 -- 0.125 56 -- 14.9 6.5

W.0 0.163 4.8 5.2 5.5 9.5 to 11.5 10.5 0.125 0.155 48 to57 117.7 15.0 6.5
99.0 0.164 4.8 5.2 5.5 9.8to10.1 10.0 0.129 0.15 t5o5o60 122... 15.1 6.5
96.9 0.164 4.S 5.2 5.5 9.8 -- 0.129 -- 58 1- 15.5 6.5

0.5wo0.20 IN 0.163 4.8 5.1 I 5.4 19.5 0.m5 -- 1 56 -- 14.9 6.5

ALHA ALLOYS
___ ___ - - - - __ - - I - 1

_______ 015. 3 5.3 4.W 5 7.2 0.125 0.15 157 180 16.0 17.0
to .1_

ZA,-2.SSa(low0) 0.161 5.2 5.3 3.4 4.5 -- 0.125 -- 157 -- 16.0 --

~0. ic-. .. -- -- -- -- -- I.o --

-7AL-12Z 0.16.5 ... ... .. .. .. 16.5 --

7AX-2Cb-ITa 0.159 .. .. .. .... -.. .. . .. 17.7
sA1-lMo-lV 0.158 4.7 ;.0 5.6 .... .. .. 199 203 18.5

ALWA-EA ALLOYS A
sun 0.171 4.8 5.4 6.0 6.3 9.0 0.118 0.152 92 140 16.4 7.0

-=--_r-2Mo 0.171 - 16.7 --

2.15AI-16Y, 0.165 .. ..

3Al-.6V15.0 M kEMO

AI-2.5V 0.163 15.5 --
4*,l-4We 0.113 4.9 5.1 5.4 4.2 7.4 0.126 0.159 153 172 16.4 7.3

4A1-JmO-IV 0.163 5.0 5.3 5.5 3.9 6.8 0.132 0.142 165 - 16.5 7.0

Ml-1.2*e- 0.162 5.2 5.3 5.5 -- -- -- 16.8 3 -
2.7'5Cr to . 1_ _ 17.6 (AsJ}

.:-1.-1.4Cr- 0.162 5.2 5.5 5.7 4.7 7.0 - -- 163 180 M6. 6.3
I.Xwl to -15317.0 IAe

6AI-4V 0.160 4.9 5.1 5.3 4.2 6.8 0.135 -- 171 187 Is.S 6.1

-4V(Ma O) o0.160 5.3 5.3 5.3 -- .. 0.13 -- 171 -- 16.5 6.1
rFaw-- 10.164 5.0 5.2 5.3 4.2 - 0.155 -- is.5 -- 15.0 -

i,,rt. Cu) ______ ____157 j17o 16.5 Xm

Al-Wo 0.2162 5.0 5.2 5.6 .7 7.0 0.123 0.151 175 183 16.2 6.5

TA AlLO16_____

::-0V-lC 0.175 5.2 5.6 5. .0 " 90.= o.19 153 14.2 6.2

Mza p ~tmc Pameabilzy at IT fEm sbov a•U• 1.00005 At 20 Oemeds.

200



KSL416p otI 11.0 ft-lb metallaqlcal metal pez caMs

________ 201 15.5 30 60 13 f 3 dCOW 101-A TU.....C........

_______ 217 1553 90 70 10 F- WC 10 2-A 2L2M~
217 15-1 W0 70 10 - W C103 0__15_to_0_20_P

________ 321 16.0 140 10 11 a COdC 166-A A-.s

________ 321 127.0 145 1IN 2 63-A .... I.......LA4
_____ 311 17.0 147 130 10 17 ouc 26612
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