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F
SABSTRACT

3 This report describes a notation and a programming language for

expressing, from within a LISP system, string transformations such

I as those performed in COMIT or SNOBOL. A simple transformation

(or transformation rule) is specified by providing a pattern which

must match the structure to be transformed and a format which

r specifies how to construct a new structure according to the seg-

mentation specified by the pattern. The patterns and formats are

f1. greatly generalized versions of the left-half and right-half rules

i of COMIT and SNOBOL. For example, elementary patterns and formats

can be variable names, results of computations, disjunctive sets,

[ or repeating subpatterns; predicates can be associated with

elementary patterns which check relationships among separated

I elements of the match; it is no longer necessary to restrict the

operations to linear strings since elementary patterns can them-

selves match structures. The FLIP language has been implemented

[ in LISP 1.5 and has been successfully used in such disparate tasks

as editing LISP functions and parsing Kleene regular expressions.
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SECTION I

INTRODUCTION

The processes involved in symbol manipulation can be expressed

in a number' of different notations. For example, IML employs

a machine language type of notation in which elementary pro-

cesses are performed on data structures. It utilizes the

equivalent of an accumulator (the push-down accumulator Hii)

and a push-down program counter Hi. A second type of nota-

tion for expressing symbol manipulation is found in LISP, a

function-oriented laneuage. In this language, transformations

of symbolic structur'es are achieved by applying functions Wo

lists and using the values of these functions. Functions may

be defined using composition, condition4l expressions, and

recursion. These processes make LISP a very powerful symbol-

manipulating programming language; however, the explicit

function-oriented nature c-f LISP makes it difficult to express

some operations and transformations which are necessary for

the solution of certain types uf problems. Basically, these

problems require locating certain substructures in a larger

structure, either to ascertain their presence, to find their

value, or as is more usual, to uso them is assembling other

structures.
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Such transformations may be characterized (and caricaturized)

by the following instructions for transformation: find in

this string the substring consisting of the three elements

1'immediately preceding the first occurrence of an a, and find

the element Just before the occurrence of a b which follows

these three elements; if such elements exist, exchange the

position of the three elements and the one element, delete
0

the a, and replace the b by a c.

The LISP formalism cannot easily express such processes,

although each can bc individually programmed (if only because

LISP is a universal symbol-manipulating language). A nota-

tion for expressing such transformations is the basis for a

number of programming languages that exist today, such as

[COMIT, SNOBOL, and AXLE. Each provides a formal method for

selecting substrings from a 3tring, and then indicating the

1 structure of the transformed string. These formalisms make

it easy to write rules which perform string transformations
p

L such as rearrangement, deletion, insertion, and selection of

r elements from contents. However, it is cumbersome in these

languages tc express some of the operations which are ex-

pressed quite easily in LISP. Some of the latter operations

depend very strongly on the fact that LISP can have sublists

within lists to unlimited depth, whereas COMIT has lists only

to depth 3 and SNOBOL and AXLE deal only with linear strings.

[ -2-
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An obvious solution to this notational difficulty is to pro-

vide both types of language capability, a function-directed

list processing and a format-direct list processing notation

within the same programming system. This paper is a report

of the marriage cf these two capabilities within the LISP

1.5 programming system, and a proposal for the type of cap-

ability needed within the LISP 2 system. The implementation

in LISP 1.5 of FLIP (Format List Processor, done by Teitelman)

is based upon, but is a considerable generalization over,

programs and writings of Bobrow and Macintosh, and haa cer-

tainly been influerced by features of the string-processing

languages referenced above.

The notation used in this paper will be that of FLIP, although

this notation probably should not be carried over in its

entirety to LISP 2. Part of the awkwardness in the current

notation is due to the awkward way in which reading and print-

ing occur in the LISP 1.5 system. The important thing to

realize here is that utilization of this language involves

a translation from the external language to a more efficient

form for internal use. Therefore, it will be possible when

more sophisticated translators ai.e available (as in LISP 2)

to provide whatever notation the user wishes. The critical

thing will be the semantic features available to the user.
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The features of the string-processing languages mentioned

above can be divided into two almost-independent features.

The first is the method of specifying a parsing, or segmenta-

tion, of a list structure or string according to a pattern;

and the reconstruction of a string accurding to a format,

utilizing parts found in a parsing. Each transformation of

this type is called a rule. The second feature of the system

deals with the flow of control between rules., and its depen-

dence on success or failure of the. matching process used to

find the parsing. Because FLIP is embedded within LISP, it

need not have its own control mechanisms.*

Our principal concern in this paper will be the match opera-

tion which yields the desired parsing of an input list, and

the construct operation used to form new lists. Because these

processes are independent, they should be treated separately;

there needn't be just one construction corresponding to a

single match or parsing. In FLIP in LISP i.5, these pro..

cesses are implemented by two functions, match and construct.

The two arguments of match are (1) a list to be parsed, and

* In fact, several different useful executive programs have
been written in LISP to facilitate using sets of rules,
but since these are so easy to change or write anew for
each application, we shall discuss them only briefly in
the conclusion.

£
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(2) a pattern which specifies the parsing desired. The argu-

ments used by construct are (1) a representation of a parsing

found by a match and (2) a format which specifies the desired

structure of a list.
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SECTION II

THE MATCHING PROCESS

The purpose of the matching process is to determine whether

or not an input list is an instance of a particular (input)

pattern. If it is, the match process is designed to tell us

this and also to yield a parsing of the list with respect to

this pattern. This parsing can then be used by the construct'

process to build new list structures.

The pattern mentioned here is a list of elementary patterns,

and each of these must match a portion of the input list, or

else the entire pattern will not match the list. Furthermore,

these portions, or segments as they will be called, must

r together, and taken in order, make up the entire input list.

This set of segments will then constitute the parsing of the

f list. As an example, let us consider a pattern composed of

the following three elementary patterns:*

$ which matches anything

$n which matches a segment of length n

x which matches x, i.e., a segment of length i

consisting of a single item equal to x.

* This notation is taken from COMIT and is representative
of the external notation used in FLIP. A translating
function is used to convert the external notation to the
internal notation for a pattern used by match.

71-
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Suppose the pattern was

($ $3 A $ $i. B $

and the list to be parsed was

(A W X Y Z A B C D B B C D)

then the parsing would be (using [...] to denote a segment

of a list):

[A W] IX Y Z ] [A 1 [B C Dl [El [BI [C D]

where each segment corresponds to one elementary pattern.

Note that the A pattern did not match the first A, because

tho $3 pattern must first find a segment of length 3. The

first $ matches the segment up to the beginning of that

matched by the $3. Similarly, B does not match with the

first B after the second A because there must be at least i

item between them to satisfy the $1 pattern. Finally, note

that if the $ at the end of the pattern were not present,

then there would be no match because there is no way for

the segments of the match to make up the entire list.*

* This is similar to using SNOBOL rules in anchor mode.
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In the rule above we used A and B as quoted items, that is

they matched items identical to themselves. In order to

match with an item.named A, we use the notation (=A) which

will treat A as a variable. Thus if A is a variable which

•i has as Its value the list (X Y Z), then the pattern

($(=A) $

matches the list

(A X Y Z (X Y Z) )

with parsing

(A X Y Z] ((X Y Z)]

In the example above we note that the elementary pattern

(=A) matched a segment consisting of exactly one item, the

list (X Y Z). This was because the value of A was the list

(X Y Z).*

It is also possible to treat a variable as a segment,. In

FLIP this is denoted by using the special symbol "**". Thus

* The operator = is essentially an evaluation operator,
and as such it allows the user to call any LISP function
from within a pattern. The value of the LISP function
for the specified arguments is used in the match process.

-8-

VO



if the pattern were ($ (** (=A)) $), a match would occur

with the list given above and have the parsing:

[A] (X Y z] [(X Y z) Q]

Almost all of the elementary patterns we shall discuss can

be used to match either a single item in the workspace, or a

segment of the workspace. We saw above that we used the

special symbol "**" to indicate that a segment was to be

matched. Similarly, in FLIP, the special symbol "*" is used

to indicate that a single item is to be matched. We really

should have used (* (=A)) in the first example above. How-

ever, since common usage of variables is to match single

items, a default declaration is inserted by the translator,

making (=A) equivalent to (* (=A)). In general, the trans-

lator allows the common usage of each elementary pattern to

be specified by default.

Since one of the advantages of working in LISP is the ability

to handle complicated structures, we want to utilize FLIP

rules to match nonlinear lists. An elementary pattern which

achieves this is the subpattern. A subpattern matches a

single item which is a list in the same way that the top-

level pattern matches the top-level list. For example, given

the list

-9-
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(A (B C) D (B E F) a)

and a pattern

($ ($ F $) $),

a match will occur and yield the top-level parsing

(A (B C) DI [ (B E F) I (G]

Furthermore, the internal representation of ((B E F)] which

matches the subpattern ($ F $), reflects the fact that it has

been matched by a subpattern, and also includes the parsing

with respect to that subpattern

[B E] [F] [ ].

In line with a general philosophy for design of programming

languages which states that any place where a constant may

appear it is desirable to allow a variable to appear, in FLIP

we have the ability to have a variable whose value is a

pattern. If A is such a variable, then ($* (=A)) is an

elementary pattern which will match a sublist which matches

with the pattern which is the value of A. Thus if the value

of the variable A were ($ F $), then the pattern ($ ($* (=A)) 5)

is equivalent to the pattern shown above, ($ ($ F $) $), and

will yield corresponding identical parsings. However, the

difference is that one can change the value of A, and obtain

different parsings with the same pattern.*

* A can of course be replaced by an arbitrary LISP computation.

-to-



Suppose a user wishes to use a variable pattern to match a

segment of the workspace, rather than a single item. By

utilizing the special symbol "$**", the user may specify that

a variable should be treated as a pattern, and be used to

match a segment of the workspace. Thus if the value of A

were ($1 E) the pattern ($ ($** (=A)) $) would match the work-

space (A (B E) D E F) with parsing (A (B E)] (D El (F], and

the internal representation of the segment [D El would indi-

cate that it was matched by a subpattern and would include

the parsing [D] [E].

Another string processing language, AXLE, uses an assertion

table as well as rules, and thus attains the ability of defin-

ing a variable having one of several alternative values.

The same effect can be achieved directly in FLIP by using an

elementary pattern (EITHER (El) (E2) ... (En)) which will

match a segment containing a single item, which is either

El or E2 or ... or En. We can use the EITHER elementary

pattern directly in a patt6rn, or we can define a variable

to be equal to such a subpattern. One useful example of this

would be to define the variables

digit = ( (EITHER (1) (2) (3) (4) (5) (6) (7) (8) (9) )) and

integer = ( (EITHER (=digit) ( ($** (=digit)) ($** (=integer)))

-ii-
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With these two variables defined, it is then possible to use

Fk($** (=integer))

I in the workspace to find a segment of the workspace which

i matches the Backus normal form definition of integer given

in the above two rules.

Another very useful ep, or elementary pattern, is one indi-

F cated by REPEAT. This ep allows one to match a pattern which

appears repetitively in the workspace. The elementary pat-

tern (REPEAT El) will match zero or more occurrences of the

elementary pattern El in a workspace.* Two simple examples

for utilizing this REPEAT are ( (REPEAT $2)) which will match

I the workspace if and only if there are an even number of

items in the workspace and ((REPEAT-1(=digit))) which will

match a string of one or more digits in the workspace, giving

an alternative way of recognizing integers as defined above.

* (REPEAT El E2 ... En) matches zero or more occurrences
of a sequence of segments matching El E2 ... En, e.g.,
(REPEAT A $1 B) matches (A X B A Y B A Z B). In addi-
tion, if a number n is inserted immediately after the
REPEAT, the subpatfern must match n or more times.

L -12-
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The EITHER and REPEAT subpatterns are similar to the opera-

tions of disjunction, "v", and * in the formation of regular

expressions. Ir fact, given the definition of a regular

expression, it is very easy to write the FLIP matching pat-

tern which will parse a string if, and only if, it is an

example of that regular expression. For example, the patterxt

(REPEAT (EITHER (A B) ((REPEAT (EITHER (B C) (D E F)) ))

will be equivalent to the regular expression

(A By (B C v DEF)*) *

and will match with

ABDEFBCBCDEFAB.

The reader may have noted that the definition of the $

elementary pattern is not complete. For example, suppose

the workspace is (A B C D C D E) and the pattern is ($ C $.

According to the definition, both (A B] [C] [D C D El and

(A B C D] [C] [D E] are admissible parsings. This ambiguity

will not arise in practice because the operation of the match

is a sequential, left to right process. Thus the first match

will be the one that is found.

Normally, one does not consider the match process in these

terms, i.e., as a series of distinct operations. One of the

-13-



niceties of a format processing language is precisely that

I the user can specify a search procedure in terms of the

structures being searched for, and not be concerned about the

I details of the search. This makes the language more or less

goal-oriented. However, for some purposes, it is desirableI
to think of the matching process (and constructing process)

f as proceeding from left to right with each 6lementary pattern

performing a certain operation on the partial match, work-

space, etc.

L This latter conceptualization is not without its rewards.

Since the match does proceed from left to right, at the time

any particular elementary pattern is operating, all the

I elementary patterns to the left of it must have already

matched with acceptable segments (or this elementary pattern

would never have been reached), and these can therefore be

referenced. This referencing can be done in two ways, one

similar to the way it is done in COMIT and the other similar

to the SNOBOL notation. Each elementary pattern is assigned

a mark (number) corresponding to its position in the total

pattern. Thus if the pattern were ($ $2 A $), the $2 would

be referenced by the mark 2 and the A would be referenced by

3. These marks or numbers, refer back to previously matched

segments in the workspace. An item can be named by embedding

[-14.
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it in a list of the form (NAME <name> <ep>). For example,

the pattern ( (*NAME FOO $2) would give the same matches as

the pattern above, but will assign a value to the variable

FOO corresponding to the segment matched by the $2.

Given a pattern ($ $2 $ 2 $), this will match a workspace

which has a segment of two items repeated in the workspace.

For example, it will match the workspace (A B C D E B C D)

with the parsing (A] [B C] (D E] [B C] [D] where the $2 in

the pattern matched [B C] and the mark 2 matched the second

occurrence of this segment in the workspace.* One can use

marks to reference single items by utilizing the special

symbol "*". For example, the pattern ($ $2 $ (* 2) $) will

match a workspace (A B C (A B) D) with a parsing ( ] (A B)

(C] [(A B)] (D].

These temporary names, or marks, which refer to pieces of a

parsing, will be saved in the parsing of a particular work-

space with respect to a particular pattern. However, one

may want to use part of the workspace in setting up the values

of variables. This can be done as shown earlier or by using

* One cat also use marks as inputs to LISP computations,
e.g., $2 CAR 2) $ will match (A B C D E B G)
and yield (At iB C] [DEl [B] [G].

-- m--



an elementary pattern within the match which will actually

r give a variable a value corresponding to the value of one of

the marks (or any LISP computation). The notation used in

FLIP is ($SET VAR 2), for example, which will give as a per-

manent value for VAR the value of the mark 2 at the time this

I VAR is set up (even if the rest of the match fails).

I
In addition to being able to utilize marks to describe matched

fsegments of the workspace, there are marks, more complex in

notation, which describe segments of subpatterns which have

V been matched within a pattern. We will not discuss that nota-

tion here, but only mention that it is important to be able

to pick out any segment parsed in any subpattern of a pattern,

I including subpatterns in an EITHER or REPEAT elementary pat-

tern. One of the philosophies of design in FLIP was that all

information obtained is saved and made available to the user

[ in some way. The details of the current implementation are

found in the reference cited.

Considering the pattern as a search from left to right, one

Smay at some point in the matching process, wish to ask ques-

tions about segments that have been already matched. That is

to say, one may wish to ask questions about the relationships

Sbetween the current segment and previously matched segments

which are more complex than straightforward matching criteria.

• -±6-
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We allow this to be done in FLIP by allowing LISP predicates

to be attached to patterns, and allowing these predicates to

have asr:arguments the previously matched segments. Thus, for

example, the pattern

($3 $3 / (EQUAL (=VERSE ±1))

will match with any workspace containing six elements where
the first three elements are the same as the last three

elements in automatically reverse order. The first argument

of this predicate is the segment matched by the second $3.

Then with a workspace (A B C C B A) this pattern would give

the parsing [A B C] [C B A].

As an example of how one might use a mark within a pattern,
one can use a pattern which looks like

(QUOTIENT $1 (TIMES $ 2 $) )

for determining whether or not a quotient (in LISP formalism)

has a common factor in it. The 2 refers back to the segment

matched by the $1, the second elementary pattern in the pattern.

The elementary pattern which essentially runs the left to

right search is the $ pattern. It is this pattern which

changes over and over again every time there is a failure in

a. patterns to the right of it in attempting to match. The $

-17-



pattern ma'ches the smallest segment it can, namely the nul)

segment fi-st, and each time is increased by I item until tk

patterns to the right of it match. However, consider the

A I case where we have the pattern ($1 $ 1 $5 $). This pattern

will match any workspace in which the first item is repeatec

at least five items before the end of the workspace. This

i I left to right search is run essentially by the second elemer

f• pattern, the $, which keeps increasing the size of the segme

Tit matches and then allows the i and $5 to attempt to match.

However, what happens once the $5 runs out of things to matc

and there is no longer any possibility of obtaining a match?

Even so, this second elementary pattern, the $, continues

to increase in length trying to let the further rightmost

elementary patterns obtain a match; this is now impossible,

and there is a way of transmitting this information back. I

attaching a special failure predicate to the $, it can test

to see whether it should continue searching or not. That is

because all the information on what happened further on in

the match is retained, the $ pattern can test to see whether

it should continue expanding and attempting a match. We wi3

not discuss the notation used for this in FLIP, but this vex

F- powerful feature makes for much more efficient FLIP programs

L' Because pattern matching is essentially a left to right sear

there are certain things which are very awkward to express.

{- 8
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For example, suppose we wish to locate the last A that appears

any place before the first B. The pattern ($ A $ B $) will

not work because the A pattern will match the first A it comes

to in a workspace, and will not skip over all A's to make the

second $ as small as possible.* In order to facilitate this

search, which is essentially a right to left search, we have

incorporated into FLIP an elementary pattern which will do a

reverse search. A pattern which would match the workspace and

find the last A before a B would be ($ B ($R A) $ B $), and

would match the workspace (Q A R A L M B D) with the correct

parsing.

Each elementary pattern used in a pattern has been implemented

by utilizing a separate LISP function which is called by the

FLIP executive program, and given the workspace and partial

match as arguments. Because each pattern is separate, the

system is modular and new elementary patterns can be added

very easily. The only things that must be done are:

1. tell the translator how to translate a particular

form found in a pattern, that is, into what function

the form should be translated, and

* The pattern ($ A $ / (NOT CONTAUN A) B $) will work.

-19-



S2. program the new function so that it interfaces

S[ properly with the other functions in FLIP.

If, on the other hand, a new function for searching is needed

only infrequently, a new elementary pattern can be inserted

SI into a pattern directly by giving its function definition

"right there. Thus any LISP function can be called from

SI within the match, and can be used in aiding the match.

Occasionally, one would like to locate a particular structure

in a list disregarding its depth. For example, working with

a list

(A B (C D E) ( (F G (M (N O) ) P)) I J)

to refer to the (N 0) one must use a pattern

"($ (($ ($ (N o)) $)) $)

a to refer to the S-expression at the correct depth. The

internal representation of LISP necessitates this sort of

specification, since parentheses are not characters but

structural symbols. However, if one considers this list as

a linear string of characters, locating (N 0) would be

trivial. Therefore, we have defined a function, FLATTEN,

which transforms a list into a linear string of characters
(or atoms) substituting special atoms L* and R* for left and

[2
-20
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right parentheses, respectively. This function is isomorphic

in a sense to the function PRINT, which takes a list struc-

ture and converts it into a linear string, substituting the

print names for atoms, and using the characters "(" and ")"

to indicate depth. Thus if the list above was called X,

then (FLATTEN X) would be

(L* A B L* C D E R* L* L* F G L* M L* N 0 R* R* P R* R* I J R*).

Now to locate (N 0) we need merely write ($ L* N 0 R* $).

We can then perform the necessary transformations and recon-

struct the final structure using the function UNFLATTEN.

In utilizing FLATTEN to work with list structtures in flat-

tened form, it turns out that a very useful elementary

pattern is one that locates a structure containing a specified

substructure. Thus where X was given as defined earlier, it

would be nice to locat3 the structure (M (N 0)) in the

flattened structure by specifying that it contains M, or (N 0),

or ever. just N. This latter is similar to asking FLIP to

locate N and then back up until it finds two pairs of balanced

parentheses. Such an elementary pattern, denoted by UPN, was

added, in just the way specified earlier, after the rest of

the structure of FLIP had been defined. The pattern used

would be ($ N UP2 $), or equivalently ($ M UPI $). This is

-21-



another example of a case in which one wishes to do a right

to left search at some point in the left to right search

which governs the match.

-22-
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SECTION III

THE CONSTRUCT PROCESS

The purpose of the construct process is to construct a new list

structure using a format and the parsing from a match. Since

the flavor of the construct is very similar to that of the match,

and, in fact, it uses many of the same functions as the match

does, we will not go into it in nearly as great detail as we

have the match.

The inputs to the construct process are a representation of the

parsing found by match, and a format. The format is a list of

elementary formats, which are evaluated sequentially from left to

right, their values being attached to the list structure under

construction. For example, suppose we wish to locate the item

Just before an A, and wish to reverse the order of these two

items while replacing the A by a B. Then as a pattern for the

matching process we would use ($ $i A $) and as a format for

construct process we would use (I B 2 4). Here the numbers refer

to the segments matched by the first, second, and fourth marks

in the pattern, and B is a quoted item which stands for itself.

There are elementary formats analagous to each of the elementary

patterns for matching. For example, one may use (- VAR) to

compute the value of a variable and to insert it as an element

in the construct. Instead of simply a variable, one can indeed

evaluate a LISP function and insert the results of this LISP

-23-
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computation into the new list being constructed. In addition,

there is the same flexibility (and notation) for specifying

whether the result of a computation, and the value of any ele-

mentary format, should be placed in the new list being constructed

as an item or as a segment. There are elementary formats which

allow one to reference elements of sub-patterns in a work space,

and elementary formats which are themselves formats, so that one

can construct new list structures in a very general way. There

are also elementary formats which allow one to perform con-

struction in a way parallel to the parsing done by EITHER, and

choose which construction element, or elementary format, you

wish to use, depending on which of the elementary patterns was

the one matched in EITHER. There is also an elementary format

which allows repeated constructions in the same way that the

REPEAT elementary pattern allows one to look for a repeated

pattern in a work space.

- 24-



I
F

&J..Id.LVhAI .LV

CONTROL PROGRAMS

I
A nuii•er of LISP functions have been written which control flow

in a set of FLIP rules. Some of these do the following: I

1. Repeat uae of each rule until it fails, and then I
go on to the next. f

2. Every time a rule is successful go back to the top

of the set of rules. On failure go to the next rule.

3 On a successful match, control goes to a specified (
labelled rule (similar to COMIT). I

LISP 2 is an algol-baced language with (labelled) statements.

Format directed list processing will be done by a special FLIP I
statement which will provide a convenient way to call match and

conatruct implicitly. The general form in source language for

this FLIP statement will be

FLIP W, U@-4pattern", Ao-Aformat>...., DI-Kformat>, S(s8) F(s 2 )

W is a locative expression for a list which will be the work

space for the pattern match. U is the name of a symbolic array j
in which the representation of the parsing will be stored if the

-25- ,
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assignment of value (as the - is in FORTRAN). An implicit call

is made to match with the cpattern> and W as arguments. A, B,

... D are locative expressions which are assigned values (if

the match is successful) of a list constructed according to

their respective <format>'s.

If the match is successful, after assignments to A, ... , D

control goes to the statement labelled s, (indicated by S(s 1 )).

If the match fails, a transfer is made to s2 (indicaied by
F(s2)).

Many elements of this statement are optional. If "i-j.' ib

omitted, a local array is created, but not named. If "W-"

(the first locative expression with a format) is omitted, it

is assumed to be W. No other formats need appear. S(s 1 )

and/or F(s 2 ) may be omitted; transfer will be made to the next

statement for an omitted condition label. If (s3) appears,

unconditional transfer is made to the statement labelled s3.

-26-
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SECTION V

CONCLUSION I
FLIP seems to be a very powerful addition to LISP 1.5 as a

tool for symbolic manipulation. The combination of the function I
oriented list processing of LISP and the format directed list

processing of FLIP allows easy expression of a wider range of

processes then either individually. The language of FLIP seems

to be as powerful for expressing string manipulations as COMIT,

SNOBOL, or AXLE, if we assume an interpretation of the =mtch

a3 a search through a string variable of LISP 2. Finally, the

fact that FLIP is itself written in LISP makes it very flexible V
and easy to change, and does not seem to sacrifice much in the

way of efficiency.

I

F
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