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ABSTRACT 

The Cooley-Tukey method for greatly reducing 

the number of computations required to eval- 

uate a velocity periodogram has been extended 

to the evaluation of velocity-acceleration 

periodograms. For N data points, this method 

requires approximately a factor of 2/3 K 

fever computations than would be required by 

straightforward evaluation of the periodogram. 
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An Efficient Technique for the Calculation 

of Velocity — Acceleration Periodograms 

The velocity — acceleration periodogram associated with the (complex) 

data samples r , ... r„ , is defined by 

P(f,a)-£ ^ eJ2nfkA ^nadcA)
2 (l) 

k=0 

where A denotes the (uniform) time separation between successive data points. 

-1 -2 P is periodic in f with period A  and periodic in a with period A  so that 

P need only he evaluated over the (f,a) region defined by 0 < f < A~ , 

_2 
0 < a < A . Furthermore, since the velocity and acceleration resolutions of 

-1       -2 the periodogram are given (approximately) by (NA)"' and (NA) " respectively, 

it is usually sufficient to evaluate P at the discrete points given by 

f = n(NA)~ , a = m(NA)" where n = 0, 1,   ... N-l and m = 0, ... 1T-1. These 

considerations transform the original periodogram problem to the evaluation 

of the expression: 

N-l 2 

P(n,m) = ^   \ ** ** <2> 
k=0 

where n = 0, 1, ... N-l; m = 0, 1, ... 1T-1; W = exp(j 2«/N), V = exp(j 2n/K ). 



Following Cooley and Tukey*, we assume that K = 2^ and proceed to express 

the integers k, n, m in binary form as follows: 

P-l 
p-l"    "1" " "o 

k = k_ ,2F •"+... + k-2 + k 

n = n n2
P" + ... + n-2 + n 

p-l 1    o 

2p-l 
p-l J.    o m = m? .2 *      + ... +m-2 + m 

where k., n. and m. take on the values 0 and 1. In addition, it will be 

2 
convenient to express k in the form 

k2= (k2).+ ... + (k2)0 

2 2 
where (k )  . = those terms in k that depend on k . but not on k . ., 

k , . Thus, 
p-l 

(k2)  , . k , 2^+1  V k   2*"* + k2 , 22^"^ 'p-i   p-£ /_,  p-g       p-i 
0-3+1 

The derivation of this last formula is straightforward exercise. Note that 

* Cooley and Tukey, An Algorithm for the Machine Calculation of Complex 

Fourier Series, Math, of Comp. 1£; April, 1965. 



'* t  contains a fact" 

Next we note that 

(k )  , contains a factor 2T except when Z = p. 

W^-W 
(n + ... n . 2P~1)(k + ... + k . a5'1) o      p-1      o        p-1 

k , 2?~\_ 
= W **    "°    Wkp-22P  K + "l2» 

. w 
k (n + ... + n n 2P ) . ov o        p-1    ' 

and 

(*2Wm
0 

+ - +vi2P"1) ••• = v  p 

^k2)^ + ... + ^3 22p-3) ^(k2)o(mo + _ + ^ 22p-l} 

because the exponent of W need only he computed modulo N = 2^ and the exponent 

of V need only be computer modulo N = 2 p. 

With some obvious changes of notation, equation (2) now can be written in 

the form 

P(V ••• Vi' V ••* "Vi^ = 



Mno+ •••+ vi 2P"1) „(k2)oK+ •••+ ^p-i22p_1) W~ ~ p^      V 

k o 

Y r(kQ, ... kp_x) W*"
1     ° V   p-X °        P"1 

P-1 
(3) 

For computational purposes, it is convenient to think of equation (3) as a 

sequence of p calculations as follows: First compute 

pi(k
0' ••• k

P-2' v v ••• Vl* 

r-i k . 2P_1n   (k2) .(m + ... m . 2P"1) 
= £r(kQ, ... k^) WP"1    ° V   P"1'0      P"1 

then successively compute P. from P- ., I  = i, ... p-1, according to the 

formula 

P^(ko, ... kv_£_lf  nQ, ... n^, mQ, ... mp+jg_2) = 



Vl 2P""(no • - n« 2'"X)    „(k2)P-* (mo + - + V« rf^M 
W V 

(5) 
Finally,  P    is computed from the formula, 

P (n .   ... n    ,,  m ,   ... HL    , ) 
v   o' p-1'    o' ^p-1' 

2/1 
k o 

,PP-1(V  V   ••* np-2'  V   '•• m2p-3) 

/oK + - Vl ^    v
(k2)oK + -  + V ^"^ 

(6) 

The last computed function P is the desired function P given "by equation (3). 
XT 

A straightforward computation of the periodogram from equation (2) would 

require (H-l)N computations.  (A computation is defined as being the perform- 

ance of two complex multiplications followed by an addition. Thus, each 

evaluation of the sum in equation (2) requires N-l computations and, since 

there are N«l< = K values of n and m for which the sum must be evaluated, the 

resulting number of computations is (N-l)N .) The computation method just 

proposed requires many fewer computations as will now be demonstrated. 

The calculation of P, requires 2p~    2.%2?  = 2 * computations and the 

calculation of P£,  from P^ -, £ = 2,   ... p-1 requires 2p~'e2i2p+'e~1 = 22p+^_1 

computations. Finally, the calculation of P from P - requires 2^ 2 p = 2^p 



computations. Thus, the total number of computations is given by 

.2=1 

2 
For large N, this figure is roughly a factor of -^ N smaller than the number 

of computations required by straightforward evaluation of equation (2). 

A further reduction in the number of computations can be effected if P 

need not be evaluated for all possible values of its arguments. For example, 

assume that P is to be evaluated for all velocity resolution cells but only 

for the M smallest acceleration cells where M is of the form M = 2r&, 

0 < g < p.  (The reason for assuming M to be of this form vill become apparent 

in a moment.) In this case, the binary expansion for m requires only p + g 

instead of 2p binary digits; i.e. m=m + ... + m , n2
pg". Examination 

o       P+g-1 

of equations (1+), (5), and (6) now reveals that the number of computations 

required for P - is equal to 2^" for i = 1, ..., g and equal to 2 ^s" for 

Z  = g +1, ... p. It follows that the total number of computations CM is 

given by 

CM - V 22*+£-1 + (p-g) 22^-i 

4=1 

H(M-H) + f logg ( gl) (7) 



It is interesting to compare the value of CM given by equation (6) with 

the number of computations required by(two other methods) for evaluating P 

for N velocity resolutions cells and M acceleration resolution cells. Straight- 

forward evaluation of equation (2) requires UM(N-l) computations; thus the 

efficiency of the above proposed method can be assessed by evaluating the 

ratio 

N 

(8) 
C       1 - - 2 
°M M      1    ..    / ITx 

NM(N-l) =  N-l     2(H-1)   &2  *   M ; 

As a numerical example, consider the numbers N = M = 32 for which equation (8) 
CM yields ^-./^ ,\  = 0.08. This illustrates the considerable computational 

advantage the proposed method has over straightforward evaluation of equation 

(2). 

Another way of calculating P for N velocity resolution cells and M 

acceleration resolution cells is to combine the acceleration factor v   with 

the data r, in equation (2) and then apply the Cooley-Tukey method for a pure 

velocity periodogram for each desired value of m. This approach results in a 

total of KM logpN computations which when compared with CM yields 

0K (1 - g) • I 10^ ( g) 
NM loggN        lo^K 

Substituting N = M = 32 in equation (8) results in 0./NM log2 H = l/2 which 

means that, in this case, our method is only a factor of two more efficient 

than the modified Cooley-Tukey method. 
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