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K(xyY, T >0
i,j=1
For additional discussion see Karlin (1964).
We shall need the following total positivity result:
Lemma 3.5: Let fin denote the density of the ith order statistic
in a sample of size n from F having density £f. Then
(i) fin(x) is totally positive of order infinity (TP ) in i=1,2,...
and =o < X < o
(ii) fin(x) is RR_ in n=1,2,... and =-= < x < ®, and
(iii) fn—i,n(x) is TP in n=1,2,..., and =« < x < «,

Proof: Note that

n! i-1, .=n-i
fin(X) = =1) {n=1}} F (x)F (x)f(x). (3.5)
(i) Since [F(x)/f‘(x)]l-1 is TP_ in i=1,2,...,n and =-® < x < =,
then f, (x) is TP in i and x.
in ©
(ii) Since [-I':(x)}n is RR_ in n and x, so is fin(x).
i 53 ; _ n. n-i-1, =i n .
(iii) Since fn—i,n(x) = ?;:E:IT?IT F (X)FF(x)f(x) and F (x) is
TP_ in n=1,2,..., and =-® < x < =, the result follows. ||

Using this total positivity property, we obtain

THEOREM 3.6: Let G2

F  be starshaped on the support of F and
F(0) = 0 = 3(9)s Then EXin/EYin 18

(7) Zecreasing in 17,

({1) <increasing in n, and

(Civ). EX o ./EY 18 decreaeing in n.
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ABSTRACT

Comparisons are obtained between a linear combination of order
statistics from a distribution F and a corresponding linear combination
from a distribution G where G-lF is (a) convex, and (b) starshaped.
Ihe results have applications in life testing where the underlying
distribution has monotone failure rate or monotone failure rate on the

average.
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1. INTRODUCTION

In this paper we present some results of theoretical interest
concerning order statistics and their spacings from certain restricted
families of positive random variables. Applications to life testing
are discussed in a separate paper [Barlow and Proschan (in process)].

For a specified continuous distribution G for which G(0) = 0,
we consider the family & of distributions such that for F in &
and F(0) = O, G_lF is starshaped or convex on the support of F.
Distributions related in this way by convexity have been studied by
Van Zwet (1964). It is known that F(0) = 0, G(0) = 0, and G IF
convex imply G-lF starshaped. [Bruckner and Ostrow (1962)].

If G ig the exponential distribution, then G—lF convex where
finite is equivalent to F having an increasing failure rate (i.e., F is
IFR). G-lF starshaped is equivalent to F having an increasing failure
rate average (i.e., F is IFRA) [Birnbaum, Esary, and Marshall (1965)].

G-lF concave on [0,») 1is equivalent to F having decreasing failure
rate (i.e., F 1is DFR).

If G 1is the uniform distribution, then G-lF convex on the support
of F 1is equivalent to F having an increasing density. If F (G) denotes
the gamma distribution with shape parameter a (g8) with o > £, then G-IF

is convex on [0,=») [Van Zwet (1964)]. The Weibull family is similarly

ordered, as may be readily verified.




Comparisons for linear combinations of expected values of order
statistics from F and G are obtained when G_lF is starshaped. 1In
addition, stochastic comparisons for linear combinations of order
statistics are obtained when G-lF is convex as well as when G—lF is
starshaped.

Specializing to the case where G 1is the exponential distribution
and F 1is IFR or IFRA, stochastic comparisons are made for the 'total time
on test'", which is of interest in life testing. Bounds on the expected
values of order statistics are also obtained for this case.

Finally, we investigate the preservation of certain class properties

under the operation of taking order statistics.

2. PRELIMINARIES

Throughout this paper we adopt the following notation and assumptions.
Let X (Y) have distribution F (G). We assume that F(0) = 0 = G(0), and
that F and G are continuous. We also assume that the support of F
is an irterval, possibly infinite, and that G 1is strictly increasing on
its support. We use F for 1-F and G for 1-G.

We consider functions ¢ defined on [O,b], 0 < b < o, ¢ 1is
starshaped on [0,b] if ¢(ax) < a¢(x) for 0 <a <1, 0 <x <b
(or eguivalently, if ¢(x)/x 1is increasing for x in [0,b]); and ¢
is convex on [0,b] if ¢fox + (1-a)y] < a¢(x) + (1-a)¢(y) for O < o < 1,
0 - x%x,y<b., Then on [O,b], convex ¢ such that ¢(0) < O are star-

shaped.



The following properties of IFR (DFR) distributions will be needed

[cf. Barlow and Proschan (1965), Chapter I1]. If F is IFR (DFR) and

then
(i) G-lF is convex (concave) where finite (on [0,x));
(ii) Fu(x) = [F(x+u) - F(u)]/F(u) is increasing (decreasing) in

u >0 for all x > 0 whenever the denominator is nonzero;

1F (F—lG) is starshaped where defined (on [0,x));
1

(iv) [F(x)]il is decreasing (increasing) in x > O.

(iii) G

xln =heel Xnn (Yln

n from F (G); define X = 0 (Y
on on

Let if"f-Ynn) denote an ordered sample of size

0). We drop the second subscript

when there is no danger of confusion. We use the term increasing (decreasing)

st /st
for nondecreasing (nonincreasing). We use the notation > (ﬁ) for
st
"stochastically greater than'" ('"stochastically less than') and = for

"stochastically equivalent to".

3. INEQUALITIES IN THE CASE OF STARSHAPEDNESS

In this section we consider pairs of distributions F and G such
that C—lF is starshaped on the support of F. We shall obtain a stochastic

comparison between linear combinations of order statistics xln 1---;_xnn

from F and Y, < *°< Yn from G. To do this we first present some basic

In

inequalities for starshaped functions. For further discussion ond

extension of Lemmas 3.1 and 3.3, see Barlow, Marshall,



and Proschan (in process). We shall find it convenient to define

S
= a,.
j=1

n n
Lemma 3.1: ¢(2a xi) < Eaicb(xi) (3.1)
i=1 =

for all starshaped ¢ on [0,b] and all 0 < x; se**c x, b if

and only if there exists k (1 < k < n) such that 0 = Ali'°°< Kk <1

and Kk+l =eso o= Z = 0.

n
Proof:
Sufficiency. Assume 0 f_Al 5 0 ors) Ak <1l and Ak+l =meee= An = 0.
Then al<0 for i-l in e e k—l 0 < a, < 1, a i‘O for i=k+l,...,n.

Using the identity 2 aixi = EA (xi X l)’ we conclude that

< Sa,
X Xilie Thus
1 k
¢(xk)/xk z_cb(xi)/xi for i=1,...,k-1, and

p(x ) /%, > ¢(fa;x,)/Ta % .

b atx) k-1
2 (Fa)elxy) + ¢(Tax,),
1

k-1 n
Hence % (--ai)xi + %aixt X

k-1
or a t(x.) > % (ma)e(x,) + ¢(Zasx,).

Jecessity. Let ¢(x) =x~, 0= X) =ree= X, and

By, =TS NS 1. Then (3.1) implies
2

n n



Next we shall show that Aj > 0 implies Aj-l =) Aj. To see this,

) = =0 0 o= ¢ < = —==s Onol= . :
let  ( hl hj-l kJ-l < xj x_]+l x Then
3 e : :
T ax, - ?Ai(xi—xi_l) = Aj-lxj-l + Aj(xj-xj_l), Let xj-l e xj

n
and X, be so large that Ea.x. > z. Let
j 1 1

P2

Z(X)

a starshaped function. From (3.1),

n
a,x,) = K. X, + K, X, X, < K,x..
¢E(; 11) = =1 _‘](_] J-l)— i3

This implies 1-\ - K. < Q.
P =1 3 -

Finally let k denote the largest subscript i, if it exists, such

that /_\i > 0. Assume that Kj+1 =0 for j < k-1. We shall show that

this implies Ai =0 for i< j. Let xj < 2 ixj+1 and Xy be so

n k
large that Eaixi = 2 Z\i(xi-xi_l) > z. Then
1 1

n n
‘2 (%aiy‘i) - %aixi = 1% i

~

j J o =
which implies a8 | = EAi(xi-xi_l) + Aj+lxj < 0. This in turn implies
1 1

A, =0 for i=1,2,...,j since AJ.+1=0 and 0 <A < 1.]]

‘\;



THEOREM 3.2: Let G 'F be starshaped on the support of F,

() =0 =6(0). If there exists k (1 < k <n) euch that

" st 7
then F(ZaiXi) < G(zaiyi> . (3.9)
1 1
Proof: By Lemma 3.1,
=1 e n -1 st n
: G F_‘<% e.li.xi) = %.aig F(..Xi) = %ai)fi,..._.... - S

The stochastic equivalence follows from Lemma 1, p. 73, Lehman (1959).

Hence (3.2) holds.l
Theorem 3.2 can be used to obtain conservative lower tolerance

limits [Barlow, Proschan (1966)].
To obtain a reverse inequality to that of (3.2) we need the following

lemma:

Lemma 3.3:

n

n
¢(§ ax;) 2 % a o (x,) (3.3)

for all 0 < x; <*+*< x  and for all starshaped ¢ on (-»,») if and

only if there exists k (1 < k < n) such that

->_A2 i..'iA‘kil; Ak+1 =e e o= An=0’

or equivalently,



L}
(e}

a, >0 for 11 <k; a >1 and ai for i=k+l,...,n.
Proof :

Suffielener,  We may assume X, ” 0. Hence

k k
"(231"1) /2 agxg 2 o(xg)/xg
1 1

k
for 1i=1,2,...,k, since ¢ 1is starshaped and Zaixiixk. It follows
1

Kk k k Kk
that 2 a,x,¢ Za.x. /Ea X, > Za ¢$(x,), yielding (3.3).
1 i"i ( T 1 1) 1 i1 1 i

Necessity. From the proof of necessity in Lemma 3.1 we see that

for each i, either A, < 0 or Kiil. First we claim KiiO implies

i
Ai+1 < 0, and hence Ai+1 > 1 implies Ai > 1. To see this, let
0 = Xy ==X < xi < z < Xipg =0T X Choose (xi_‘_1 - xi) sufficiently

small so that

n
%aixi EHA S A R S RS

We can do this since by assumption Ki < 0. Hence by (3.3),

n
e ( %aixi) =0 > Ai+lx+l’ which implies Ai+1 < 0. Thus we have shown

that for some k (0 < k < n)

A 3_1,...,Ak 215 Ak+l <_-0,...,An 008

i~



TRy ¢ e

We claim that we cannot have A, > 1 and A, < 0 for j > 1.

i- 3

Suppuse this were the case. Choose

and (xj - xi) in such a manner that

n
0 < %Ai(xi - xi—l) = Aixi + Aj(xj - xi) < z.

Then by (3.3)

n
‘:z 2 aixi] =0 —>-Aixi +Aj(xj - xi) > 0,
which is a contradiction. It follows that A =eee= A = 0.
k+1 n
Next we shall show that Ai+l > 1 implies Ay 2 Ai+1' To see this,
let O = Xy =ees X 1 “ X; < z < Xipp =000 X Then

n
21 Ay S Bgly Ay ) Gy —agl 2 E s

which implies by (3.3) that

n
| %aixi> DR LG R VR RS

This implies Ai = Ai+l' ||

From lemma 3.3 we obtain



THEOREM 3.4: [ct & °F fe starsiuped on the suprcrt of F o and

oAl = 0= 300). Let a. 210 Jor W=l U seoll, @ a > &, s
n 8t N
"’(2 a\) > G(Za.}’.). (8.+)
7 it = 7

Proof: By assumption, the support of F 1is an interval, say
n
[O,b]. 1If :2 aiXi > b, the result is obvious. Hence we may suppose
1

n
EaiXi < b. Apply Lemma 3.3 to obtain
1

= n n = st n
G F(}l:aixi)i§aic F(X,) = %aiyi.

The stochastic equivalence follows from Lemma 1, p. 73, Lehman (1959).
Hence (3.4) holds.||

Theorem 3.4 can be used to obtain conservative upper tolerance limits
[Barlow, Proschan (1966)].

Next we obtain results concerning expected values. We shall need
the concept of total positivity. A function K(x,y) of two real variables
x ¢ X, yeY, where X and Y are ordered sets, is said to be totally
tocaitive ¢ order r (TP ) if for all 1 <m <r, x| <X, S**°< %, and

Ngi S Wiy S YL where each X, € DY y; € Y, we have the determinantal

inequalities

IK(xi’y-) " > 0.
L=t

K(x,y) 1is said to be reverse regular oj order r(RRr) if for every

Lemer, X 2%y 2002 %, ¥ £y " Yoo where each x. ¢ X,

}'j e Y s
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K(xyY, T >0
i,j=1
For additional discussion see Karlin (1964).
We shall need the following total positivity result:
Lemma 3.5: Let fin denote the density of the ith order statistic
in a sample of size n from F having density £f. Then
(i) fin(x) is totally positive of order infinity (TP ) in i=1,2,...
and =o < X < o
(ii) fin(x) is RR_ in n=1,2,... and =-= < x < ®, and
(iii) fn—i,n(x) is TP in n=1,2,..., and =« < x < «,

Proof: Note that

n! i-1, .=n-i
fin(X) = =1) {n=1}} F (x)F (x)f(x). (3.5)
(i) Since [F(x)/f‘(x)]l-1 is TP_ in i=1,2,...,n and =-® < x < =,
then f, (x) is TP in i and x.
in ©
(ii) Since [-I':(x)}n is RR_ in n and x, so is fin(x).
i 53 ; _ n. n-i-1, =i n .
(iii) Since fn—i,n(x) = ?;:E:IT?IT F (X)FF(x)f(x) and F (x) is
TP_ in n=1,2,..., and =-® < x < =, the result follows. ||

Using this total positivity property, we obtain

THEOREM 3.6: Let G2

F  be starshaped on the support of F and
F(0) = 0 = 3(9)s Then EXin/EYin 18

(7) Zecreasing in 17,

({1) <increasing in n, and

(Civ). EX o ./EY 18 decreaeing in n.
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Proof:

(1) Let o¢(x) = G-lF(x). Since ¢ 1is starshaped, then for arbitrary

c >0, x - c¢(x) changes sign at most once, and from positive

to negative values if at all. Define

o«

h(i) = _é. [x - c¢(x)]fin(x)dx = EXi - cEYi.

Since fin(x) is TPao in i and x, then h(i) changes sign
at most once, and from positive to negative values if at all, by
the variation diminishing property of totally positive functions
[Karlin (1964), p. 34]. Hence [Exi/EYi]_ ¢ changes sign at most
once, and from positive to negative values if at all. Since
c > 0 is arbitrary, the ratio Exi/EYi is decreasing in i.

(i1) Since fin(x) is RRco in n and x, by using a similar
argument we may show that Exin/EYin is increasing in n.
(iii) Since £ . (x) is TP in n and x, by using a similar

n~-i,n
|

Choosing G to be the uniform distribution we see from Theorem 3.6 that

argument we may obtain the desired conclusion.

(n + 1)EX, /i is decreasing in i and increasing in n, where X <eeec X
in In -~ = "nn

are order statistics from F, a distribution with increasing density. Choosing

i
I
G to be the exponential distribution, we see that EX, / :S -
in =1 n-j+1

decreasing in i and increasing in n, where Xln e s Xnn are order

is

statistics from F, an IFRA distribution.

By using Theorem 3.6, bounds on EXin can be obtained as follows.

-~
v
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Note that

LN, /EY,; < EX, JEY © Exl,n-i+l/EYl.n-i+1’ (3.6)

the first inequality from Theorem 3.6 (ii), the second from

Theorem 3.6 (iii). Now suppose that

ar o0

‘[ xdF(x) = ./ xdG(x) = 8.
0 0

This implies

CEY, JEY,, < EXg o< R, JEY, - (3.7)
To obtain an application of Theorem 3.6 (iii) we choose G
uniform on [0,1] and F such that f 1is increasing on the support

of F. Then we immediately have

(n+l)EAn_i

(n-1) -

decreasing in n > i+l (i=0,1,...). This is a strengthening of the
monotonicity result of Corollary 4 of Marshall and Proschan (1965) which
implies as a special case that EXnn/n is decreasing in n whenever the
underlying distribution F satisfies F(O-) = 0,

Ve will need the following lemma:
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Lemma 3.7: If a—l- is increasing in i (1 < i < n), and

Qmvg  E g, Bi > 0, then
r
. . ;? (n-1+1)(bi-bi_l)
(1) ?Ll/gai and =
% (n-i+1) (ai-ai_l)
are increasing in r (1 < r < n); in particular,
I r r %
X, Do, D (n-itl) (8,=6, ) X (n=i+l) (a=o; ;)
N 1 1 1 1
(i1) < and < .
Se, 2 s P
B o, B8 &
T T ! ol
n n n n
2 By ?aiai ?ai(n—ﬁl)(ei-ei_l) ?ai(n-1+l)(ai-ai_l)
(iii) < and <

1
n - n I N

Proof: Define ¢(0) = 0, w(al +eeot ai) = Bl +eoet Bi (1 <1i<n).
Define Yy (x) elsewhere on [O,al deoot an] by linear interpolation between

successive points defined above. Note that

w(al Foo ot ai) - vJ;(a1 +oo ot ai—l) Bi

(al e+ ai) = (al Fooost ai-l) ay

is increasing in i, so that y 1is a convex function on [O,a1 +oeot an].
. O AL e .
Since .(0) =0, ¢ 1is also starshaped, i.e. lﬁ—l is increasing in x.

Hence . rva

Bapere - o e ma—— - - e gy o — - . —



is increasing in

ié
B, + (n-r)8
1 i r

r.

To show

r
? ay + (n-r)otr

i oL
define fl(x) 5 X + bl
r
£, (x) oy s, b,
r+l
where bl and b

+l..+ .
I br, so that

fl[al Foo et @ + (n-r)ar] = 31 +oeod er + (n-r)sr

f2[a1 +ooot a. + (n-r)a

and
8 g
Since ar+l i‘az
r+l r
Hence

f1[a1 oo o o + (n-r)ar]

r+l]

=Bl

f2[al +eeet o + (n-r)ar]

is increasing in r,

+ooet B. + (n-r)8r+l.

it follows that fl(x) < fy,(x) for x> a

+eeot g .
r

<
4ooot + (n- =
ay a. (n r)ar

<

folay +oeot o,

+..l+ + -
&y a (n r)ar

+ (n-r)a

r+l]

do oo
®1 *r

+ (n-r)a

r+1

are chosen to satisfy fl(al +ooet ar) = f2(a1 +ooot ar) =
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The last inequality follows since f2 is tangent to a starshaped

function and therefore is starshaped, and since

a, +***+ a_ + (n-r)a > a, +°*°+ a_ + (n-r)a_.
r r ~3 r r

1 +1 1

This proves (i). (ii) is an immediate consequence of (i).

To see (iii), let a,|l=— -1 = a,d,, and note that
T i ZBi Zai 1 ii

n
%aidi = (ay=a,)d; + (a,~a;) (d;+d,) +

+a (d) +eee+d).

Since a, >0, i=1,2,...,n-1, d1 +eoed di-i 0 (i=1,2,...,n-1),

4i-1 "~ &4

and dl S RL dn = 0, we conclude that

n
?aidi < 0.

The second inequality in (iii) 1is proved similarly. | |

To prove the next result, we need to introduce the following

concepts:
Definition: A sequence a = (al,...,an) is said to majorize a

sequence b = (bl""’bn) (written a »>b) ii ay 2ttc2 8, b1 2o ibl g

r r n
and Ea. A Ebi for r=1,...,n-1, while Eai = 2bi'
1 -7 1 1 1
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This definition differs slightly from that of Hardy, Littlewood,

Pélva (1959), p. 45, but corresponds to the usage of Beckenbach and

Bellman (1961), p. 30.

Definition: If a differentiable function H(zl,...,zn) satisfies

5 3H
(z; = 2y) ( 32, azj)i 0

for all 2z, i, j, then H 1is said to satisfy the Schur condition.

We shall use the following theorem (see Ostrowski (1952)):

THEOREM 3.8: (Schur, Ostrowski) Assume H 1is defined for

57 202 2, and has partial derivatives. Then H(z) > H(z') for all

r B
s >z' ifand only if H(z) satisfies the Schur condition.

THEOREM 3.9: Let G IF be starshaped on the support of F,

F(G) = G(0) = 0, and f xdF(x) = f xdG(x). Then
0 0

r r r ‘4
(1) ‘Szjfyi/g EX, and ;(n-z+1)E(Yi-Yi_1)/§(n-z+1)E(Xi-Xi_1)

are tnereasing in r (1 < r < n);

£ 5 00 5 PP « o o g B
(12) (EY,EY, 1seesBY)) D= (EX EX ., SEX )

r
and g(n-iﬂ)E'(Xi-){i_I) 2 ;(rz-i-rl)E(Yi-Yi_I) for 1< rc<n;

(iit) H(Eyn’Eyn-I"°"EY1) :.H(Exn,EWh_lt...,EXI)

S % {e a Schur function;



L] [

==
n n
. s N v _

(L) Pa m=i+DEX X, ) > Fa,(n=i+1)E(Y =Y. )

1 b
L apzap 2tz an

EYi
Proof: Since " is increasing in i by Theorem 3.6, (i)
1 QQ [s ¢}

follows from Lemma 3.7 (i). Since ./‘xdF(x) = ./.xdG(x), (ii} follows

0 0
from Lemma 3.7 (ii). (iii) follows from (ii) and Theorem 3.8. (iv)

follows from Lemma 3.7 (iii).]]
The following result presented in Hardy, Littlewood, and Pdélya (1959),
p. 89, is used to obtain Corollary 3.11.

THEOREM 3.10: If ¢ <s convex on the interval I and z >y,
n

n
where Lyseensd s Ypoeeosly, belong to I, then ;? ¢(xi).1 ;;¢(yi).

Corollary 3.11: Let G_lF be starshaped on the support of F,

0) =0= G(O), ./ xdF(x) = ./.xdG(x), and ¢ be convex. Then
0 0

Proof: The result follows immediately from Theorem 3.9 (ii) and

ineorem 3.10. ||

The following theorem is obtained in Marshall, Olkin, and Proschan

(1966).

THEOREM 3.12: If ¢ Ir is starshaped on the support of F, then

() Xy i st [ In zl_
- i e PR
(A 7, 1 1

&;.

i~
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¢ : Yy g
(i) [Jﬁ. ._Y_J. st 41 1/
o B TTE A e By Lt AV T
1 1 1 iz

4 ie a Schur function;

~

4‘—.: N ST o el ORI SR s 2l

r (n=1+1)(X.-X. ,) st »r (n=-t+1)(Y.-Y. )
(iii) X Ll e
1 X 1 Y

!

S|
|~

(iv) ?xi - #)pE gyj-#)/?g.

(v) If, in addition, a, >***> a s then

¥

n _ st n
; -
? aX./X 2 % a;¥./¥

na.m=1+1)(X.-X. ,) st na.(n-i+1)(Y.-Y. )
7 1 1=-1" 1 1

7-1

and

1 X 1 Y
_ n .
where X = ZXi/n and ¥ = Y./n.
1 1
-1 -
G F(Xi) Yi

Proof: By definition —_X__ = -)?_ is increasing in 1i. Hence (i)
i it

follows from Lemma 3.7 (i) and Lehman (1959), p. 73. (ii) follows from (i)

and Theorem 3.8. (iii) is a consequence of Lemma 3.7 (ii). (iv) follows

from (ii) where

1 < 2
H(zl,...,zn) = n %Zi_ 1.

(v) follows from Lemma 3.7 (iii).]]
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4. INEQUALITIES IN THE CASE OF CONVEXITY

In this section we consider pairs ot distributions F and G
such that G-lF is convex on the support of F and F(0) = 0 = G(0).
This is a strengthening of the starshapedness hypothesis of Section 3.
Our first result has applications to conservative lower tolerance limits
[Barlow and Proschan (1966)]. We shall need the following inequality

which is of independent interest. See Barlow, Marshall, and Proschan

(in process) for further discussion and extension of Lemmas 4.1 and 4.3.

Lemma 4.1:

n n
(1) o(Zayx,) - 0@ < Talot) - ¢(0)] (4.1)
il L

for all 0 < x i"'i.xn < b and for all convex ¢ on [O,b] if and

1
only if 0 < Ki

n
}Ba. <1 for i=1,2,...,n.
j=1

(ii) 1If (4.1) holds for all a satisfying O <A, <1, i=l,...,n,

then ¢ is convex on [0,b].

e —— e R TP e e e o o e—— B T S —— - —— gy e

i~

‘."
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(i) . 7eiersy., First assume ¢(0) = 0 and O f—;‘i <1 for

i=l,...,n Then
n n n j_ j—‘l
(231\1) - ‘(§ Ai(xi—x 1)) B j§1‘¢(i§1A1(x1—x1-l)) B ¢)< i%‘lAi(x o —1)>|
0
(where 2 = 0). Since the ‘K‘j are < 1, the last expression is
i=1
n_ o4l -1
= 3§1Ajl¢< iglAi(xi"‘i—l) K (Xj'xj—l)) - ¢(i§l"‘i(x1'xi-1))]
no_ j=-1 j-1
z J.=1Aj‘i’< El(xi'xi—l) + (xj_xj—l)) B ¢’(i§1(x1'xi—1))l

Mo

n
j=lAj[:(xj) - olx )] = J};‘.lajuxj).

Note that if we let ¢(x) = ¢(x) - $(0) where ¢ 1is convex, then ¢

is convex and ,(0) = 0. Hence (4.1) holds for all convex ¢ on [O,b].

(1) Jezcceity. Next assume (4.1) holds. Choose ¢(x) =x2 and

n 2 n
0 = x., =eee= X, l; X, meee= xn = 1., Then (4.1) implies (JZai) € %ai,

so that 0:_&:1.
o

(ii) Now suppose (4.1) holds for all a satisfying 0 < A,

<1 for
1-—

i=1,2,...,n. Then ¢(x) - ¢(0) 1is convex on [0,b] directly from the

=iy

definition of convexity. Hence ¢ 1is convex on [0,b].||



We may now prove
THEOREM 4.2: Let G IF be comvex on the support of F, F(0) = 0 = G(o),

and 0 <A, <1 for i=1,...,n. Then

1
7 a8t n
F(Saun,)% 6(Sav,), (4.2)
1 1
or equivalently,
I’ _ st n _
F’Z.@.(;{i-,&'ﬂ._]), qi .3;'2,41.(}'5-){. ])] (4.3)
7" - "1 -

Proof: Using Theorem 4.1, we have

n n n
G lF@aixi) = Baerey) T ERN

The stochastic equivalence follows from Lemma 1, p. 73, Lehman (1959).
Thus (4.2) follows.
The equivalence of (4.3) and (4.2) follows from the identity
n n
% 3% T %Ki(xi-xi-l)' |l )

For specified G, the distribution of G(% aiYi) may be determined.
Theorem 4.2 may then be used to obtain a conservative lower tolerance limit
for distributions F for which G-lF is convex [Barlow and Proschan (1966)].

To obtain a reversal of inequality (4.2) we need Theorem 4.4 below. To

prove Theorem 4.4 we state the following result:
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Lemma 4.3:

n n
o (Zagx;) - 0@ > Safox-00] (4.4)
1 1

for all O 2 %) <eer<x o and for all convex ¢ on (-»,o) if and

only if

for some k (0 < k < n).
Proof:
Sufficiency. We shall prove the result for convex ¢ satisfying

¢(0) = 0. The more general result then follows immediately.

n
First suppose :S a;X; < Xy Then
1

6 (x)=6(x, _))

k ¢(x,)-¢(Za,x.)
= k i7i
% (A=D1 (xy=x; ) % X

n
+(x, - Xa,x,) -
k 1 i"i Xy Zaixi

i-1

2 6 (%)= (x, )
< (-A,) (x,-x ) ’
- i i 7i-1 xi-xi_1

since (a) each ratio on the left is less than every ratio on the right by

convexity, and (b) the sum of the coefficients on the left,
k n
51: (Ai-l)(xi—xi_l) + (xk - ?aixi), equals the sum of the coefficients on

n
the right, :g (-A,) (x.-x, l)’ and (c) every coefficient is positive. After
kq1 5T

simplification, the inequality reduces to the desired result.
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n
Next suppose :2 ajXy > % . Then rewrite the inequality above as
1

$(x )= (x, )

k
DA~ (x =x. ) .
1 i i"i-1 X4 xi_1

$(Zagx )=0(x,) n v (x )= (x, )
Ta,x, -X (Tagxg=x) + 3 (-A) (xpmx; ) ——
1% %k k+1 i7%i-1

The desired result follows by the same arguments as before.
Necessity. Next assume (4.4) holds for all convex ¢. Choose

d(x) = x2, 0= x, =vee= xj_l; X, =eee=x = 1. Then (4.5) implies

2 : .
(:S‘ﬁ)
J

J

n
> Xa;. Thus Kj is either > 1 or < 0.
3

Now we show that A, < O implies A, < 0. Choose
i— i+l —-
0 = xl =eee= xi-l < xi = 7z < xi+l =ee o= xn’ and
0 for x < z
¢(x) =
x -z for x> z.
Choose Xiv1 T %y > 0 sufficiently small so that

0 )y

n
:2 aixi = Aixi + Ai+l(xi+1-xi) < 0. Thus ¢(Zaixi) i-Ai+l(xi+1_xi

1
by hypothesis. Hence Ai+1 < 0.

Finally, assume Zi+l > 1. Then Ki cannot be < 0 by the result

just obtained. Therefore, Ki > 1. The proof of necessity is now complete.l[

Using Lemma 4.3 we may now prcve
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-1,

THEOREM 4.4: Let G be convex on the support of F, F(0) = 0 = G(0),

G Jor scme k(0 < k < n), Ei > 1, i=ly...k, while Zi < 0, i=k+l,...,n.

7 st 7
F(§aixi) > a(gaiyi), (4.5)
or cquivalently,
I{; _ st n _
r’%ﬁf(}(i-/&i_:), > G[%Ai(}'i-yi_])]. (4.6)

Proof: Theorem 4.4 follows from Theorem 4.3 in the same way that
Theorem 4.2 follows from Theorem 4.1.]|]|

Next we obtain a comparison involving expected values of the order
statistics rather than a stochastic comparison of the order statistics
themselves.

THEOREM 4.5: let G 'F be convex on the support of F, F(0) = 0 = G(0),

n
2, 20 for i=l,...,n, and :S a, < 1. Then
4

n n
F(}Z: X, ) < G(§ a;EY;). (4.7)

Proof: First using Theorem 4.1 and then Jensen's inequality, we have
-1 /& n -1 n -1
G F(Ea.ﬁx ) < Xa,G F(EX,) < >a.EGC "F(X.).
1 ii/ - 1 1 i’ — 1 1 i

st

Since Yi = G—lF(Xi), using Lemma 1 of Lehman (1959), p. 73, we obtain

(4.7). |



S 1
2§ ¥

-25-

This result was noted by Van Zwet (1964) for the case a, = 1

"
(=]

and aj =0 for j # 1, without the requirement that F(0) = G(0)

n
We use (4.7) in Section 6 to obtain bounds on EaiEXi.
1

As another application of Theorem 4.2, we obtain the following

inequality on weighted sums of spacings.

THEOREM 4.6: Let G 'F be convex on the suprort ¢ F,
F(0) = 0 = G(0), 8 =f xdF(z) = /xdG(x), and A, 21 for i=l,...,r.
0 0

Then

r
P, ’ %}Zi(x'i-xi_z) > .r' =NE

e

for x < 8 min (ZI,...,ZP).

Proof: For ¢ > L by Theorem 4.5

—-m1n(A1,...,Ar)

F ‘ % cZ\i(xi-xi_l)l Sit cl% cKi(Yi—Yi_l)] .

It follows that

> F(8)

r r
PF|Fl21 ek, (XX, ) > PG|Gl§ A (v-v, D > F(e)l :

By Theorem 7.1 of Barlow and Marshall (1964), p. 1256, F(6) < G(¢). It

follows that

>

r
PelF R R

r
PG|C ?cAi(Yi—Yi_l) ic(o),,
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implying

r
pFlzl A (XX, _|) > ele

r
> PG'§ A(YY, ) > a/cl.

Setting x = o/c < 6 min (Kl,...,xn), we obtain the desired conclusion.l]

5. INEQUALITIES WHEN ONE DISTRIBUTION IS THE EXPONENTIAL

We now specialize to the case G(x) =1 - e

for

x > 0.

The

following results are motivated by the observation that in this case the

normalized spacings (n-i+1)(Yin—Yi_l n) are independent and identically
]

distributed for i=1,2,...,n and n > 1. Thus we might expect that the

spacings (n-i+1)(xin—Xi_1 ) would exhibit certain monotonicity properties

for distributions F such that G—lF is convex where finite (concave on

[(0,=)). Such distributions F are IFR (DFR).

THEOREM 5.1:

+

PO T ]
(C U

teenastically increasing (decreasing) in n > 1

If F is IFR (DFR) with F(0) = 0,

then (n-1+1)(X. -X.
n

for fixed <.

Proof: Assume F 1is IFR. Let Fin(x) = P[Xin < x]

F (x) = [F(x+u) - F(u)]/F(u). Then

[+ 4]

. ./ n-i
P[(n_l)(ki+1,n-kin) > x] = 0

X

since [F(t)]l/t is decreesing in t for F 1IFR.
decreasing in u for F IFR and Fin(x) < F

bv the lemma on p. 52 of Barlow and Proschan (1965),

) <

|

@

F
u

(

and

n+l-1

)

1-1,m

dFin(U),

Also since fu(x) is

(x)

for all F, we

have



-

il

Ny e o}

[ - 5 n+l-1 [ _ n+l-i
0 lFu< n+l-i)] dFin(u) h 0 Fu( n+l—i)| dI:i,n+l(u)
= P[(n+1-1)(xi+1,n+1_xi,n+l) > x].

All inequalities are reversed when F is DFR.]||

Corollary 5.2: If F 1is IFR (DFR) and F(0) = 0, then

(n-i+1)(}\in-Xi_l’n

i=1,2,...,n for fixed 1..

) 1is stochastically decreasing (increasing) in

Proof: Assume F 1is IFR. First we shall show that

st 3 n .
(n—l)(in-Xln) Sl nkln. Given th X2n-xln is the minimum of n~-1 random
st
variables each stochastically less than X, . Hence X, -X < X .
1n 2n "In = "1,n-1
st st
By Theorem 5.1, (n_l)xl,n—l < nXln, so that (n-l)(in-Xln) g nXln.

The result follows by repeated conditioning.

An analogous argument applies in the DFR case. | |

Next we obtain results concerning 'total time on test" when successive
observations are taken from an IFRA (DFRA) distribution. For example, if n
items are put on life test and experimentation is terminated at the time of
the rth failure (censored sampling), then Trn = é:(n_i+l)(xin-xi-l,n)
denotes the total time on test. This statistic has been extensively studied
and applied in the case of the exponential distribution by Epstein and
Sobel (1953) and Epstein (1960 a,b). The best estimate for the mean 0

in the exponential case is A__=T_ /r.
rn rn
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@

THEOREM 5.3: et F Ete IFRA (DFRA), F(0) = 0, and _/ xdF(x) = 6.

0
NENCES
5 () :S (n-i+1)(Ai-Ai_]) st st
(1) i : 2 ( < )
X r¥ -
r
S =i+1)(Y =Y. 1) 5y
1 rpn— .
- - — 3
ry Y
(it) E@P g4 is decreasing (increasing) in r so that
3
Eép,r » (<) 6}

i

n
(111) %ai(n-'L'+1)E(.X’l.‘-X:.'_1) < (>) e}ljai if a; 22 a.

Proof: (i) follows from Theorem 3.12 (iii). (ii) follows from
Theorem 3.9 (i). (iii) follows from Theorem 3.9 (iv).]||

Note that when F 1is IFR we can assert
H(nEXl,(n-l)E(Xz—Xl),...,E(Xn-Xn_l)) 3_H(9,6,...,e)

when H 1is a Schur function.
THEOREM 5.4: Let F Le IFR (DFR) and F(0") = 0. Then
2

7)
T = > (n-i+l)(X, -X. , ) is stochastically increasing (decreasing)
7] 7 in " 1=1,n

Mmoo on > r,
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Proof: Assume F is IFR. The proof is by induction on r. By
Theorem 5.1 the result is true for r=1.

Now assume the theorem is true for r-1l. Note that

PF[Trn > x] = /' PF [Tr-l,n-l > X - u]duP[nXln < u]
0 “u/n

j_.ﬁ)PFu/n[Tr_l’n > X - u]duP[nXln < u]
by the induction assumption since Fu/n is IFR.

Next note that if X1 i---i_xn are order statistics from any
distribution F, then P[X2 R Xr + (n-r)Xr > x|X1 = w] 1is increasing
in w. This is a consequence of the following two facts:

(i) Given Xl = w, X2,...,Xn are order statistics of a sample of

size n-1 from the conditional distribution P[X < x|X > w],
where X has distribution F.
(ii) P[X > x!X > w] 1is increasing in w.

It follows that P [T > x - u} 1is increasing in u for any

F r-1l,n

distribution F. Hence

[0 PF [Tr—l,n > X - u]duP[n)\ln < ul

f_f PF [Tr-l,n > X - u]duP[(n+l)Xl’n+l < u]

0 "u/n

i /.P [T__ > x - uld P[(n+1)X < u]
0 Fu/(n+l) r-1,n u 1,n+l

= P[T X]
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The last inequality follows from the fact that if F is IFR, then Fw(x)

is decreasing in w.

Another result concerning total time on test in the case of censored

A similar proof holds if F is DFR.

sampling from an IFR distribution may be obtained directly from Theorem 4.6.

Simply choose Ki = n-i+l, i=1,...,r, in that theorem. We immediately

obtain:

Corollary 5.5: Let F be IFR with mean 6 and G(t) =1 - e_t/e.

Then
r 3
PJ% (n-1+1)()\i—)\i_l) > xl > PGI? (n-i+1) (Yi-Yi-l) > X

for x < (n-r+l)é.
Next we consider truncated sampling. If n items are placed on test
and successive failure times are observed until a pre-assigned time to,

the associated sample is called a truncated sample. Let

r
V(to) = Egaxi + (n-r)to,

where r denotes the number of observations < t and is a random variable.

0’

V(to) represents the total time on test up to time t This statistic

0.
occurs in life testine in the exponential case. See, for example, Epstein
# and Sobel (1955).

THEOREM 5.6: Let IF be starshuped on the support of F,

o) =0 =G(0)y, ara [.ra'F(x) = f xdG(x). Then
"0 0



r 8
E';'Yi + (rz-r)tol :El;)’i + (n-s)tol, 5.4)

Where r(s) denotes the number of X(Y) observations i-to'

Proof: Since F and G have the same mean, they cross at least
once. Since G-lF is starshaped, F crosses G exactly once and from
below. Hence there exists a least value X0 such that x > G-lF(x)

for x < x, while x < G-lF(x) for x > Xg*

0
Let Y{ = G_IF(Xi) and let s' denote the number of Yi,...,Yé <ty

Then Y;,...,Y; and s' have the same joint distribution as Yl" ,Yn
and s.
(i) Suppose ty < %o Then
r r s'
- ] _ ' .
2X1+(n r)toi 211+(nr)t0: 2Y1+(ns)t0.
1 1 1
This implies (5.4).
(ii) Suppose ty > Xp° Let
Y! if Y!' <t
Yf - i i—-—"0
t otherwise.
0
Write
r s’
- - L. —c!
Exi + (n 1:')t0 2 Y (n-s )to
1 1
r r
= b1 - - X - -
%.i + (n-v)ty %Yi (n-r)t,

r n
> .- + D YD,
PR



F¥and

= B

since Xi :_Yi for i > r. Hence

r s
El%){i + (n—r)tol - ElzlYi + (n—s)t:0

1 n
SEXX, —EDY, = 0.]]
— i i
1 il
Remark: In the special case in which G 1is the exponential
distribution and F is an IFRA distribution, then G_lF is starshaped.
In this case, (5.4) yields a lower bound on the expected total time on
test in truncated sampling from an IFRA distribution with known mean.

6. BOUNDS ON EXPECTED VALUES OF ORDER STATISTICS FROM MONOTONE FAILURE
RATE DISTRIBUTIONS

In Section 3 we cbtained explicit bounds on EX, o assuming G 'F
9

is starshaped [cf. (3.7)]. 1In particular, if F is IFRA with mean 6,

we have the result

i
8> 1/(n-j+1)
=1

i
< EX, g < nd ;2 1/(n-j+1)

1 < EX; >
S 1/5 3=
31

for 1 -1 < n and

for 1i=n. The bounds are non-trivial but only sharp for i=1 or i=n.

If F 1is DFRA with mean + we have, using (3.6),
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0 < EX < €/n,
—_ l,n —
i
16 > 1/(n-j+1)
0<EX, < —t for 1< i< n,
i,n — i
> 1/3
1
- 1
6> T < EX_ _ < nd,
= j = -

All lower bounds are sharp. To see this, let

= 'EX
8

€e %2 0,

where 0 < ¢ < 1. Then F is DFR with mean 6, and for 1 < i < n,

i-1

{ER R (7)Foor(Feo ™
i-1 _ ex(n=j)
< 2 I}en-Je 6 .
§=0 (5

oo

Hence EXi = fP[)(i > x]dx < 2% ¢ o, Since we can choose : arbitrarily
0
close tn 0, we see that

Exi_>_0 (1 <ic<n)

n
is sharp. Note that since EEX. = n4, EX approaches n+ as ¢
1 i,n n,n

decreases to 0. Hence che upper bound for i=n is also sharp. The upper




bound for i=1 is attained by the exponential. The other bounds are

non-trivial but not sharp.

Using Theorem 4.5 we car obtain additional explicit upper bounds on
n n
za.EX. assuming F is IFR, a, > 0 and Ea. <1

i1 i-— i-
1 1

THEOREM 6.1: If F 18 IFR with mean 6, F(0) = 0, a, > 0 for

I=1lygeeeyhty, and’ then

NM::
Q
o
|A
~
.

n i n
;%EX{. < 9;“'”;'/’1 - exp(- Eaisyi)] (6.1)
z
where EYi = ;;a 1/(n=g+1).
J=

Proof: We may assume without loss of generality that 6 = 1. As

shown in Barlow and Marshall (1964),

0 x <1
F(x;1) > b(x;1) = —wx
1l -e x <1,
where w depends on x and satisfies
1-e " =, (6.2)

Since
n n
FI ?ai&\il <1 - exp |- ?aiEYil

by Theorem 4.5, we have
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n n
bl%aiE.\i;ll <1- expl- %aiEYil'
Choose t such that
-wt -
Blesl) =1 -e "=y~ exp[ - ZaiEY.‘.
1 i
where w depends on t. It follows that
n n
?aisxi <t = %aiEYi/w.

Using (6.2) and (6.3) we obtain (6.1). |

(6.3)

Sharp bounds on expected values of order statistics from an IFR

distribution can he given in terms of the pth percentile.

THEOREM 6.2: Let F be IFR with pth percentile &p. Then

1

# —-— L N ] #
-log g n perah n-j+1)}

EX, < max {Ep,

B, > .7:21 (Z)ij (1 - e:c log q/Ep)t(ex log q/ep)n-idx

J T {f=0

where q = 1 - p. All inequalities are sharp.

Proof: To show (6.4), let

(6.4)

(6.5)
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Note that EA(A) =1 and E\(ip) = q. Since log F(x) 1is concave, there

exists at least one value of A > 0 such that EA(x) > F(x) for all x > 0.

Thus EX, < sup EY, where Yj is the jth order statistic from GA' Now

O:A:ﬁp

mj-l n i = n-i
EY, = A +v_f > (i)[GA(X)] (G, ()] “dx

J A i=0 =

© 1
I (n+l) 3=1 n-j
= A+ - t (1-t) dtdx
-{ r(j)r(n+l-j) GA(x)

by p. 234, Mood (1950).

To find the maximizing A, consider

1
i EY =1 - I'(n+l) tj-l(l-t)n-jdt
38 F(i)T(n+1-3)
GA(A)
z . - X=£
[ (n+1) i-1; = n-j *"p °p
+ T (n+1-7) ~£[CA(X)] [GA(X)] q exp[gp_A log q]log q " -A)2 dx.
P

EY.
Since G,(&) = 0, =(£_ - 1) —1  reduces to
JAY ’ P oA

e o]

' §-1,= n-j e
£[G&(x)] [GA(X)]- gA(x)(x-ip)dx = EYj gp

['(n+l)
T(3)T(n+l-3) -

where G is the density of GA. Hence

3EY g =4
_(,’ -;) —i: A --L-— (l+ooo+ 1 )- E_'
P A log q n n-j+l1 P

- '(EP'A) Il * 102 q ("1: 23 i n-;+l )l.
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®

=Bk
1 1 1 JEY,
For j such that 1 + Tore (;~+---+ n-j+1) < 0, we have N;gzj-i 0.
: 1 (l 1 ) ’ i
: + — s oo ~ >
For j such that 1 Tog q \n e+l > 0, we have YN 0.

Thus EYj is maximized in the first case at A =0 and in the second

case at A = ¢ . When A =0, EY

A= g g BY, = E

e for 0 < x < ¢

o p

0 for < < o,
Ep_x

G has pth percentile gp. Moreover, since log F is concave, it cannot
cross log G on (0,£p); hence G(x) i_F(x) for all x > 0. Thus

EYj g EXj, where Yj is the jth order statistic from G. But

[o¢]

n~-1 .
EY, = ./. :S (?)[G(x)f{é(x)]n-ldx.
30 {=0

Eq. (6.5) follows from the definition of G given just above.||

7. PROPERTIES PRESERVED IN TAKING ORDER STATISTICS FROM IFR (DFR) DISTRIBUTIONS

In Barlow and Proschan (1965), pp. 38-39, it is shown that order statistics
from an IFR distribution themselves have an IFR distribution. This is not true
for spacings from an IFR distribution. To see this, suppose that F 1is IFR with
mass at a < », Then the distributionr of X2 = Xl will have a jump at the
origin, and hence cannot be IFR. The reverse situation exists for DFR

distributions. Order statistics from DFR distributions are not necessarily DFR.
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This is evident since the exponential is DFR, while the ith order
statistic from the exponential is strictly IFR for i > 1. However,
spacings from a DFR distribution are DFR.

THEOREM 7.1: IS 7 <& DFR, then X; = X4 has a DFR distribution,

[

Proof: Let Hi denote the distribution of Xi - xi-l' For i=1,
Hy(x) = [F(x)]™, so that H, is DFR. For i=2,...,n, write
= _ o H .[ 1=2,= n-i+l -
H (x) = (=) (a-iF D) A [F(u)) [F(u+x)) dF(u) for i=2,...,n.|]

Now F(u+x) is logarithmically convex in x > 0 since F 1is DFR. Hence,

n-i+l

so is [F(u+x)] and therefore ﬁi(x) is, since it is a positively

weighted linear combination of logarithmically convex functions [Artin (1931)].

A stronger property than IFR is the property that F has density f

Thus Hi(x) is DFR for fixed i=2,...,n.

such that 1log f(x) is concave where finite; i.e., f 1is PFZ' Order

statistics do preserve the PF2 property, as shown in
THEOREM 7.2: Suppose f 1is PF gy with f(x) not necessarily 0 for

3 ~ . 1 ° ; . . ]
negative &. Then the demsity f%n of the it order statistic is aleo PF,

» oL N >
‘L"r':.’.a-ﬂeu L=1,2’ooo,no

Proof: When f 1is PF so is F and F. Thus

2’

n:

£, = il Fl o (0 £ (x)

is also logarithmically concave. Equivalently, f is PF2.||



THEOREM 7.3: Let [ be PF, with f(x) not necessarily 0 for

& < 0. Zhen hi’ the density of X, - Xi 7 is also PF, for fixed
- &

=2, iwgWe, IF flx) = 0 for x < 0y then h] ie PF2, where h1

18 the density of X
Proof: Note

co

n'

) = T [@ FL72 () £ (u) f (uhx) FV L (utx)du

for i=2,3,...,n. Since f is PF,, so is r(u) = Fl-z(-u)f(-u),

2

s(u) = f(u)Fn-l(u). Since the PF2 property is preserved under convolution,

hi(x) = (1-2)?En-i)3 jF r(-u)s (u+x)du

- 00

is PF2

Assuming f(x) = 0 for x < 0, we see that h1 is PF2

for fixed i=2,3,...,n.

from

hy () = afGF" (.||
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