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ABSTRACT 

Comparisons are obtained between a linear combination of order 

statistics from a distribution F and a corresponding linear combination 

from a distribution G where G F is (a) convex, and (b) starshaped. 

The results have applications in life testing where the underlying 

distribution has monotone failure rate or monotone failure rate on the 

average. 
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1.  INTRODUCTION 

In this paper we present some results of theoretical interest 

concerning order statistics and their spacings from certain restricted 

families of positive random variables. Applications to life testing 

are discussed in a separate paper [Barlow and Proschan (in process)]. 

For a specified continuous distribution G for which G(0) = 0, 

we consider the family 9   of distributions such that for F in ^ 

and  F(0) =0, G F is starshaped or convex on the support of F. 

Distributions related in this way by convexity have been studied by 

Van Zwet (1964).  It is known that F(0) = 0, G(0) = 0,  and G~1F 

convex imply G F starshaped.  [Bruckner and Ostrow (1962)]. 

If  G is the exponential distribution, then G F convex where 

finite is equivalent to F having an increasing failure rate (i.e., F is 

IFR).  G F  starshaped is equivalent to F having an increasing failure 

rate average (i.e., F is IFRA) [Birnbaum, Esary, and Marshall (1965)]. 

G F concave on [0,°°) is equivalent to F having decreasing failure 

rate (i.e.,  F is DFR). 

If G is the uniform distribution, then G F convex on the support 

of  F is equivalent to F having an increasing density.  If F (G) denotes 

the gamma distribution with shape parameter a (ß) with a > ß, then G F 

is convex on  [0,°°)  [Van Zwet (196A)]. The Weibull family is similarly 

ordered, as may be readily verified. 

rrzr "«i^- ^'.—m ■(!. nwp ■  ^^ -ii ~-■ 
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Comparisons for  linear combinations of expected values of  order 

statistics from    F    and    G    are obtained when    G    F    is starshaped.     In 

addition,  stochastic comparisons for linear combinations of order 

statistics are obtained when    G    F    is convex as well as when    G    F    is 

starshaped. 

Specializing to the case where    G    is the exponential distribution 

and    F    is  IFR or IFRA,   stochastic comparisons are made for the "total time 

on test", which is  of interest in life testing,    Bounds on the expected 

values of order statistics are also obtained  for this case. 

Finally, we investigate the preservation of certain class properties 

under the operation of  taking order statistics. 

2.     PRELIMINARIES 

Throughout  this paper we adopt  the following notation and assumptions. 

Let  X   (Y)    have distribution F (G).    We assume that    F(0)  = 0 = G(0),    and 

that    F    and    G    are continuous.    We also assume that the support of    F 

is an interval,  possibly infinite,  and that    G    is strictly increasing on 

its support.    We use    F    for    1-F    and    G    for    1-G. 

We consider functions    ^    defined on     [0,b],    0 < b <_ "o.       $    is 

starshaped on     [0,b]     if    (Kax) ± acKx)     for    0<_a<_l,    0<_x<_b 

(or equivalently,   if    ({)(x)/x    is increasing for    x    in    [0,b]);  and     $ 

is convex on     [0,b]     if     $[a.K +  (l-a)y]   <_ a(|)(x)  +  (l-a)())(y)     for    0 ^ a <_ 1, 

0 ^  x,  y ^ b.     Then  on     [0,b],    convex    $     such that    (j)(0)  ^_ 0    are  star- 

shaped. 
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The  following properties of  IFR  (DFR)  distributions will be needed 

[cf.   Barlow and Proschan  (1965),  Chapter II].     If     F    is IFR  (DFR)  and 

G(x)   = 

0 x <  0 

1  - e'X,      x >  0 

then 

(i)     G    F    is convex   (concave)  where finite  (on  [0,°°)); 

(ii)     F  (x)  =  [F(x+u)  - F(u)]/F(u)    is  increasing   (decreasing)   in 

u >_ 0    for all    x ^ 0    whenever the denominator is nonzero; 

(iii)    G    F    (F    G)    is  starshaped where defined   (on  [0,°°)); 
1 

(i.v)     [F(x)]x    is decreasing  (increasing)  in    x  >_ 0. 

Let    X..     <•••< X      (Y,     <•••< Y    )    denote an ordered sample of size 
In —     -   nn      In —     —   nn r 

n    from    F  (G);    define    X      E  0  (Y      H 0).    We drop the second subscript 
on '  on 

when there is no danger of confusion.    We use the  term increasing  (decreasing) 
st   /Stv 

for nondecreasing (nonincreasing).     We use the notation    ^   \l)    ^or 

st 
"stochastically greater than"   ("stochastically less than")  and    =    for 

II stochastically equivalent to". 

3.  INEQUALITIES IN THE CASE OF STARSHAPEDNESS 

In this section we consider pairs of distributions F and G such 

that G F is starshaped on the support of F.  We shall obtain a stochastic 

comparison between linear combinations of order statistics X.  <•••< X r in —  ~ nn 

from F and Y, <•••< Y   from G. To do this we first present some basic 
In -  - nn 

inequalities for starshaped functions.  For further discussion and 

extension of Lemmas 3.1 and 3.3, see Barlow, Marshall, 
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and Proschan (in process). We shall find it convenient to define 
n 

A = 2a . 
j=i J 

Lemma 3.1: 
vi=l 1 1/  i=l x      1 

(3.1) 

for all starshaped $ on [0,b] and all 0 ^ x.   <_••'<_ x    <_h    if 

and only if there exists k (1 ^ k ^ n) such that 0 <_ A < • • • ^ A, <_ 1 

and A k+1 A = 0. n 

Proof: 

= A = 0. n 
Suffiaienoy.     Assume 0 <_ A1 f.* *'f. A, <_ 1 and A, .. ■ 

Then a, <_ 0 for 1=1,2,... ,k-l, 0 ^ ak <_ 1, a. = 0 for i=k+l,...,n. 
n       n ^ 

Using the identity 2 a-fxi E 2 ^-j (x-t"x-i_i ^» we conclude that 
n 11 

0 <_ 2 aix.i  1 \'    Thus 

<>(x, )/x, >^ 4)(x,)/x.    for i=l,...,k-l, and 

(J)(xk)/xk >_ ({)(Zaixi)/Zaixi. 

Hence 
n k-1 

2 (-ai)xi + 2 Vi 
^(xk) k-1 

1 2 (-ai)*(x1) + ({>(Eaixi), 

k-1 
or ak^(xk) >_ 2 (-ai)^(x1) + ♦(Za^). 

Necessity. Let ^(x)  = x , 0 = x1 =•••= x. . , 

x. =•••= x =1.  Then (3.1) implies 
in r 

and 

n 
2 a- ) 1 2 a-»  so that 0 1 ^ 1 ^^ for 1=1.2,... ,n. 
.1=1 
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Next we shall show that A. > 0  implit'H A. , < A..  To see this, 
J J-l - J 

let  0 = x = • • • = X . „ ■  X . . < X, = X, 
J-2 

=•••= x .  Then 
n j-l  "j   "j+l 

n       n 
^a.x.   51 A. (x. -x. ,) =Ä. .x.   .   +A,(x,-x. ,).  Let  x. . 

n 
and x.  be so laree that  Aa.x. > z.  Let 

J 1  1 1 

< z < x 

z 

0 

X 

X < z 

X > z, 

a starshaped function. From (3.1), 

/ n    \  - * ( 51a,x.) = Ä. nx, n + A.(x.-x, .) < Ä,x. *z \ ^ 11/   j-l j-l   j  j j-l' - j j 

This implies A. , - A. < 0. 
J-l   J - 

Finally let k denote the largest subscript i,  if it exists, such 

that Ä. > 0.  Assume that A.,, =0 for 1 < k-1.  We shall show that 
i j+l 

this implies Ä, = 0 for i < j.  Let x. < z < x.^..  and x.  be so i     ,    — J       j    — j+l       k n       k J      J 

large that  51 a.x. = 51Ä.(x.-x. .) > z.  Then 
^ i i  ^ i i  i-i 

n        n        n 

(Sa.x.) =  2vi-    2  aiXi 

J J _ _ 
which implies  51 a.x. = S*A.(x.-x.   .) +  A.^.x. ■ 0.  This in turn implies h     y    *■  i ^ i  i  i-l    J+l J - 

Ä. = 0 for  i=l,2,...,j  since Ä.,, =0 and 0 < Ä < l.|| 
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THEOREM 3.2: Let    G~ F   he starshaped on the support of   F, 

F{J) = 0 = G(0).     If there exists    k    (1 <_k <_n)    suoh that 

0 1^2 -^2 -"-\ - 2    and   \+lsm"=^ns0> 

/ n ,   st     , n 

then nl^i)   1   G\2aiyi)' (3'2) 

Proof; By Lemma 3.1, 

, / n    w   n    ,     st n 

The stochastic equivalence follows from Lemma 1, p. 73, Lehman (1959). 

Hence (3.2) holds.|| 

Theorem 3.2 can be used to obtain conservative lower tolerance 

limits [Barlow, Proschan (1966)]. 

To obtain a reverse inequality to that of (3.2) we need the following 

lemma: 

Lemma 3.3; 

/ n    \   n 

for all 0 ^ x, .I*''1 x  and for all starshaped $    on  (-00,00)  if and 

only if there exists k  (1 .1 k ^ n)  such that 

\ IA2 r-'i^ii;  Äk+1 
=--*=Än = o. 

or equiv.Tlently, 
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a  > 0 for  1 1 ^ 1 k;  a > 1 and a. = 0  for i=k+l n. 

Proof: 

Fuffiaicyioy.     We may assume    x1   >  0.     Hence 

k v      k 

" 1    x  *'      1 

/ k \      k 

12alxi) /S a^i l*(xi)/xi 

k 
for     i=l,2,...,k,    since     $    is  starshaped  and     2^x-   i xi/*     ^t   f0llows 

k ,  k k k 
that     2 a1x1$ ( 2 aixi ) / 2 aixi i 2 a

i*(x
i)»    yielding  (3.3). 

k      , k       k       k 

2 ax $ ( 2 a^i ) / 2 a^i i 2 
1  ii^11'  I11   1 

Neaessity.     From the proof of necessity in Lemma 3.1 we see that 

for each  i,  either A, < 0 or A. > 1.  First we claim A. < 0 implies 
i —       i — i - 

A. , <^ 0,  and hence A, .. >^ 1  implies A. >^ 1.  To see this, let 

0 = x, =•••= x. 1 < x. < z < x. ,. =•••= x .  Choose  (x.,, - x.)  sufficiently 
1       i-l   i       i+1       n i+l   i 

small so that 

n 

|aixi = Vi + Äi+i(xi+i - xi) -xi- 

We can do  this since by assumption    A,  ^ 0. Hence by   (3.3), 

/    n \ - f    (   2a.x. ) = 0 > Ä..,x1n,    which implies A.,.   <  0.     Thus we have shown zV^ii/ -    i+l +1' r i+l — 
1 

that   for  some    k     (0 <  k <  n) 

^  > l,...,Äk > l;    \+ll0,...tln<_ o. 
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We claim that we cannot have A. > 1 and A. < 0 for i > 1. 
i -        j 

Suppose this were the case.  Choose 

0 = v s*«.s x. , < z < x, = x,.. =•••= x. ! < x. =•••= x , 
1      i-l      i   i+1      j-1   j      n 

and  (x. - x )  in such a manner that 

n 
0 < >]Ä.(x, - x, ,) = A.x, + Ä.(x, - x.) < z. 

Y i  i   1-1    ii   j j   1 

Then by (3.3) 

v   S a-xJ = 0 >  Ä.x. + Ä. (x. - x.) > 0, z \ **   i i\ — ii   jj   1 

which is a contradiction.  It follows that A, ..=•••= A =0. 
k+1      n 

Next we shall show that A . >^ 1 implies A. ^ Ä,^ .  To see this, 

let     0 = x1   =•••= x.   ,   < x,   <  z  < x,,,  =•••» x  .     Then 
1 i-l i i+1 n 

n 
2 a.x.  = Ä.x.  +Ä.+1(x1+1 - x^   >  xi+1, 

which   implies by   (3.3)   that 

n , 
:
z( ?aixi)= Äixi + ^i+i(xi+i - Xi) ^ wi+1. 

liis   implies    A.    ■ A . , . . 
' i —    i+l 

From Lemma 3.3 we  obtain 
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THEOREM 3.4:    Lrt     (7    F   he starchurwi on  the vuppcrt  of   F    an.: 

FM
1
)  = .' = CCO).     Let    a ■ l_ (-"'    for    1=1,2,... ^y    and    a    >_1,     Tuen 

/ n .st       , n 

Proof;  By assumption, the support of  F is an interval, say 
n 

[0,b].  If  2 a4^' > t)»  t'ie result is obvious.  Hence we may suppose 
n        1 
2a.X. ^ b.  Apply Lenuna 3.3 to obtain 

, , n        n    .     st n 

The stochastic equivalence follows from Lemma 1, p. 73, Lehman (1959). 

Hence (3.4) holds.|| 

Theorem 3.4 can be used to obtain conservative upper tolerance limits 

[Barlow, Proschan (1966)]. 

Next we obtain results concerning expected values.  We shall need 

the concept of total positivity. A function K(x,y) of two real variables 

x e X, y e Y, where X and Y are ordered sets, is said to be totally 

icsitive c? order    r    (TP )  if for all l<m<r, x1<x0<
,,,<x, and 

r —  —    1— 2—  — m 

y, < y^ <•**< y , where each x. e X, y. e Y,  we have the determinantal 
'1 — ■'2 --  — m i      i 

inequalities 

llUx.^J m      „ 
> 0. 

K(x,y)  is said to be reverse regular of order    .^(RR )  if for every 

1 <_ m <_ r, *,>_ x2 >_•••>_ x , y, 1 5^2 -*"— ^'m* where each xi t  X» 

yj ■ v. 
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Proof; 

(i)  Let 4)(x) = G F(x).  Since (j> is starshaped, then for arbitrary 

c ^ 0, x - C!{)(x) changes sign at most once, and from positive 

to negative values if at all.  Define 

00 

h(i) = /  [x - C(()(x)]fin(x)dx = EXi - cEY.. 

Since f  (x)  is TP  in i and x, then h(i)  changes sign 

at most once, and from positive to negative values if at all, by 

the variation diminishing property of totally positive functions 

[Karlin (1964), p. 34]. Hence [EX /EY.]-c changes sign at most 

once, and from positive to negative values if at all.  Since 

c >^ 0 is arbitrary, the ratio  EX./EY,  is decreasing in i. 

(ii)  Since f. (x)  is RR  in n and x, by using a similar 
in »o 

argument we may show that EX, /EY.  is increasing in n. 

(iii)  Since f  ,  (x)  is TP  in n and x,  by using a similar 
n-i,n  /       oo t       j & 

argument we may obtain the desired conclusion.| | 

Choosing G to be the uniform distribution we see from Theorem 3.6 that 

(n + 1)EX. /i is decreasing in i and increasing in n, where X.  <•••< X in & . In —     —   nn 

are order  statistics  from    F,    a distribution with increasing density.     Choosing 
i   1 

G    to be the exponential distribution, we see that EX, / >]  TTT is K in  ~-
1 n-j+1 

decrcasine in i and increasing in n, where X.  <•••< X   are order 6 &     >        In -  - nn 

statistics from F,  an IFRA distribution. 

By using Theorem 3.6, bounds on EX,   can be obtained as follows. 

■i 

iLi 

i»y — 
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Note that 

LX../EY.. < EX, /EY. <   EX.   .^/EY.   ,_,_., (3.6) 
ii  ii —  in  in -  l,n-i+l  l,n-i+l 

the first inequality from Theorem 3.6 (ii), the second from 

Theorem 3.6 (iii).  Kow suppose that 

/  xdF(x) = / xdG(x) = 6. 
0 0 

This implies 

OEY. /EY,, < EX.  < OEY. /EY-   _. (3.7) 
in  ii —  in -   in  l,n-i+l 

To obtain an application of Theorem 3.6 (iii) we choose G 

uniform on  [0,1]  and  F such that  f  is increasing on the support 

of F.  Then we immediately have 

(n-KL)EX 
n-ijn 

(n-i) 

decreasing in n >_ i+1  (1=0,1,...).  This is a strengthening of the 

monotonicity result of Corollary 4 of Marshall and Proschan (1965) which 

implies as a special case that EX /n is decreasing in n whenever the 

underlying distribution F satisfies F(0 ) = 0. 

We will need the following lemma: 
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i   in 

r 

Lemma 3.7;  If — is increasing in i  (1 ^_ i <_ n),  and 
i 

a, <•• •< a ,  B. > 0,  then 
1 —  — n   i - 

(i)   2^/2-i   « nd 
2 (n-i+lXß.-t..^ 

2 (n-i+l)(a -a  ) 
1 

# 

^ 

..' 

are increasing in r (1 ^ r ^ n); in particular, 

r     r r 

/•■N     1 1 (11)   -T-i^T" 

i        i 

and 

2 (n-i+1) (ß^B^^   2 (n-i+D ^^^ 

n n 
2 a. 
1 

(iii) 

n n n 

2a
ißi    S

3^!        2a
i(

n-i+1)^i-ßi_i)    2a
i(

n-i+1)(ci
i-

a
i_1) 

n 

?8' 
and 

n 

2 B, 
n 

if a, > a0 >• • •> a . 
1 — 2 —  — n 

Proof; Define ^(0) = 0,  ^(a +•••+ a.) = ß. +•••+ ß  (1 1 i 1 n). 

Define ^(x)  elsewhere on  [0.a1 +• • •+ ocj  by linear interpolation between 

successive points defined above.  Note that 

H^.  +•••+ o^) - ^(a1 +•••+ oii_1)  ßi 

(a +•••+ a.) - (a1 +•••+ oiji)   a • 

is increasing in i,  so that \p     is a convex function on [0,a, +•••+ a_] • 

Since  . (0) = 0, ^ 

Hence 

is also starshaped, i.e. x 
s increasing in x. 
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1    1    u    1    J 

r r 

i i 

is  increasing in    r. 

r 
S^i +  (n-r)ßr 

To show     is increasing in r, 

2 a.. + (n-r)a 
1 1 

define  f. (x) = — x + b, 
la      1 r 

ßr+l f9(x) = -^^ x + b. 2     a ...     2 r+1 

where b, and b- are chosen to satisfy f,(a, +•••+ a ) = f0(a, +•••+ a ) 1      2 J      I    1 r    2 1      r 

+•••+ (5 , so that 
j      r 

fAa,  +•••+ a    + (n-r)a  ]  = B,  +•••+ ß    + (n-r)ß ll  1 r rJ        1 r r 

and 

f2[a1 +•••+ ar + (n-r)ar+1]  » B1 +•••+ ßr +  (n-r)ßr+1. 

ßr+l      ßr Since     > — ,     it  follows that    f,(x)  <  f~(x)    for    x >  a,  +•••+ a   . a   in  - a lv  '  —    2V  ' —    1 r 
r+1        r 

Hence 

f, [a,  +•••+ a    + (n-r)a  ]       f/Ja,  +•••+ a    + (n-r)a  ] 11 r r 2    1 r r 
a,  +•••+ a    + (n-r)a      —        a.   +•••+ a    + (n-r)a 1 r r 1 r r 

i2^(xl +,*,+ a
r 

+  (n-r)ar+1] 
< 

a,  +•••+ a    +  (n-r)a   ,, 1 r r+1 



-15- 

The last inequality follows since f- is tangent to a starshaped 

function and therefore is starshaped, and since 

a, +•••+ a + (n-r)a ,. > a, +•••+ a + (n-r)a . 
1      r       r+1 — 1      r       r 

This proves (i).  (ii) is an immediate consequence of (i). 

To see (iii), let ^ a 
I 

ß i 
Zß. 

a 
_1_ 

= S^-d.,  and note that 
,11 

n 
2aidi = (a1-a2

)di + (a2-a3)(d1+d2) + 

+ a^Cd. +•••+ d ). 
n i      n 

Sine e a  ^^ - a, >_ 0,  1-1,2,. . . ,n-l, d1 +•• •+ d. <_ 0 (1=1,2,... ,n-l), 

and d. +•••+ d = 0, we conclude that 
1      n 

n S^d.io. 
1 

The second inequality in (iii) is proved similarly.|| 

To prove the next result, we need to introduce the following 

concepts: 

Definition;    A sequence    a =  (a.,...,a )     is said to mojorize a ————— in 

sequence       fc =  (b.,«.. ,b )     (written    a y b)     if    ^  1*''l an.     b^l'^'lbn» 

and 
r r n n 
2 a.   1  2 N     ^or    r=l,...,n-l,    while     2 a.   =   ^b,-* 

1     1 1    i 1    1 1     1 
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n n 
C:)       y.a.(n-i+2)E(X.-X.   J > Y a . (n-i+l )t:(Y .-Y.   J 

V ^j 1 a2 -"-a
n' 

EY. 
Proof;  Since 77- is increasing in i by Theorem 3.6, (i) 

t 00       00 

follows  from Lemma 3.7   (i).     Since      /   xdF(x)  =    /   xdG(x),     (ii)   follows 
J0 J0 

from Lemma  3.7   (ii).     (iii)   follows  from (ii)  and Theorem 3.8.     (iv) 

follows  from Lemma 3.7  (iii).|| 

The following result  presented  in Hardy,  Littlewood,  and Pölya  (1959), 

p.   89,   is used  to obtain Corollary 3.11. 

THEOREM 3.10:    1/   <\>    is convex on the interval    I    and   £>-*£, 
n n 

where    x13...ix j    yl3.,.jy      belong  to   I,    then    ^<t>(x.) ^_  ^^(y-)' 
1 n        1 n ~ u *,       is 

Corollary 3.11: Let G F be starshaped on the support of F, 
00        00 

F(0)  = 0 = G(0),      /   xdF(x)  =    /   xdG(x),    and    ty    be convex.     Then 
n n J0 "0 
2^(EY  )   >_   2>(EX ). 
11 

Proof:     The result  follows  immediately from Theorem 3.9  (ii) and 

aieorem 3.10. | | 

The  following theorem is  obtained in Marshall,  Olkin,   and Proschan 

(1966). 

THEOREM 3.12:    1/   G~ F    is starshaped on the support of   F,    then 

ii) 
n 2    \  st   I   n 1 

lX.i'",lX. J  "<    \ US'^'IY. 
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"{ix. *'"' u. J L " [zy. J"* n. 

;'   H    is a Sohuv function; 

r  (n-i+l)(X.-X.  J    st      r  (n-i+1) (Y.-Y.  J 
(tti)    2d     —    2d  

<iv>  i1- 2 xl - fj/f  sl  (l 2 ^ - r2)/?2. 

Ty/*    If,  in addition,    a. >•••> a 3 ^ * *      1 —     —   n then 

n st      n 
'La.X./X    i     |a.Vy 

n a.(n-i+l)(X.-X,  J  st     n a.(n-i+l) (Y.-Y.   J 
 _     ^     ^ ~  

n n 
^^re    X=   ^X./n    and   Y=   ^Y./n. 

G":LF(X1)     Y' 
Proof:     By definition  = —    is  increasing  in    i.     Hence   (i) 

i i 
follows  from Lemma  3.7   (i)  and Lehman   (1959),  p.   73.     (ii)   follows from  (i) 

and Theorem  3.8.      (iii)   is a consequence  of Lemma 3.7   (ii).     (iv)   follows 

from  (ii)  where 

H(z1,...,z  )  = n        "V z .  - 1. 
in ^   i 

(v)  follows  from Lemma 3.7   (iii).|| 
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4.     INEQUALITIES  IN THE  CASE  OF CONVEXITY 

In  this section we consider pairs ot   distributions    F    and    G 

such  that    G    F    is convex on the support  of     F    and    F(0)  = 0 = G(0). 

This  is a strengthening of  the starshapedness hypothesis of  Section  3. 

Our  first result has applications to conservative   lower tolerance  limits 

[Barlow and Proschan   (1966)].     We shall need the  following  inequality 

which  is of  independent  interest.    See Barlow,  Marshall,  and Proschan 

(in process)  for further discussion and extension of Lemmas 4.1 and 4.3. 

Lemma 4.1: 

/ n    \ n 

(i) 4(2 Vi) " *(0) - SV^i) - ^0)] ^-D 

for all 0 < x. <•••< x < b and for all convex 4 on [0,b]  if and 
- 1 —  — n — 

n 
only if 0 <_ A, =  S3, —^    ^or 1=1.2,...^. 

1   j=i 1 

(ii) If (4.1) holds for all a satisfying 0 <^ Ä. <_ 1,  i=l,...,n, 

then i.    is convex on  [0,b] . 
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Proof: 

(i)     ruf^ijiemy.     First assume    0(0) = 0    and    0 ^ Ai  <_ 1    for 

1=1,...,n.     Then 

■ (h^) - Hivvvi') = l^i^i^rvi') - ♦(|/i(vxi-i))l 
0 

(where      2   E  0) •     Since the    Ä.     are    <_ 1,     the  last  expression is 
i=l 2 

1  SÄ  H'iVu.-x.^) +  (x.-x    ^-^iÄ^x.-x.^))! 
j=l J 1=1 i=l 

n n 
=   ^A.lMx.)  - $(x.   .)]  =   2a ^(x). 

Note that if we let iHx) = <t (x) - MO) where <\>     is convex, then C 

is convex and v (0) = 0.  Hence (4.1) holds for all convex 0 on [0,b]. 

2 
(i)     Hejeasitu.     Next assume   (4.1) holds.     Choose    ct (x) = x and 

, n        2 n 
0 = x,   =•••= x,   ,: x.   =•••= x    =  1.     Then  (4.1)   implies   (2a-) <   S 

1                  j-l'    j                  n                                                            j    1 j 
so  that     0 <  Ä.   < 1. 

(ii)  Now suppose (4.1) holds for all a    satisfying 0 <_ A, <_ 1 for 

i=l,2,...,n.  Then i(x) - i(0)  is convex on  [0,b] directly from the 

definition of convexity.  Hence i     is convex on  [0,b].ll 
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Lemma A.3: 

, n    > n 

i / 

' 1 * A'       1 
(Svi)" *(o) - i^il^v-^0)] (4-4) 

for all 0 < x. <•••< x  and for all convex 4 on  (-00,00) if and 
— 1 -  — n 

only If 

Al i 1» A2 1 1'' ' * »\ 1 1' \+i 1 0»•' • »An 1 
0 

for some k (0 <^ k <_ n). 

Proof; 

Suffiaienay.    We shall prove the result for convex $    satisfying 

a (0) = 0.  The more general result then follows immediately. 

n 
First suppose 2 a-x^ ^l ^^  Then 

k (j)(xi)-({)(xi ^ n      (|)(xk)-(^(Eaixi) 
2 (Ai-l)(xi-xi_1)  + (xk - Sa^.)   
1 i  i-1 1 k  i i 

n  _ ({)(x1)-(|)(xi 1) 
1 2 ("A )(x -x  )  — =— . 

k+1      1 1 i    Xi Xi-1 

since   (a)   each ratio on the  left  is  less than every ratio on the right  by 

convexity,   and   (b)  the  sum of  the coefficients on the  left, 
k    _ n 
2 (Ä.-l)(x,-x.   .) +  (x,   -   2a-x-)»    equals  the  sum of  the coefficients  on 

n 
tlie  right,      2 (-A.)(x.-x.   .),     and   (c) every coefficient  is positive.     After 

k+1      !       !     i-1 

simplification,   the  inequality reduces to the desired  result. 
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n 
Next suppose  2 a-ixi * xw •  Then rewrite the inequality above as 

k 4'(xi)-0(xi_1) 
2 (Ä.-lHx^x^) 

x.-x. , 
1 1-1 

4(^aixi)-4)(xk) n  _         >; (xi)-^(x1_1) 
< —  (Za.x.-x,) + V (-Ä.)(x.-x, .)   
—   Ea.x.-x.       ilk ,,n   i  i i-1    x.-x. . 

ilk k+1                i  i-l 

The desired result follows by the same arguments as before. 

Neoeseity.     Next assume (4.4) holds for all convex $.     Choose 

2 
t(x) = x , 0 = x, =•••= x, ,J x. =•••= x =1. Then (4.5) implies 

1      j~l  J       n 
n  \2  n 

is either  > 1 or < 0. (?^) 1 ?V   Thus  A. 

Now we show that A. < 0 implies A,.n < 0.  Choose 
I —     r i+l - 

0=x, =*',-x. , < x. =z< x,,, =•••- x  , and 
1       i-l   i      i+l n 

0(x) = 
0   for x < z 

x - z for x > z, 

Choose x.in - x. > 0 sufficiently small so that 
i+l   i 

Sa.x. = Äixi + Ä^x^-x^ <. 0.  Thus ^Za.x^ = 0 >_ ^(x^-x^, 

by hypothesis.  Hence A.., f_ 0. 

Finally, assume Ä..n > 1.  Then Ä.  cannot be < 0 by the result J i+l — i — 

just obtained.  Therefore, Ä. >_  1.  The proof of necessity is now complete, 

Using Lemma 4.3 we may now prove 
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This result was noted bv Van Zwet (196A) for the case a, = 1 
i 

and a. = 0 for j ^ i,  without the requirement that F(0) = G(0) = 0. 
-' n 

We use (A.7) in Section 6 to obtain bounds on  51 a.EX.. 
•■*   i     i 

As another application of  Theorem A.2, we obtain  the  following 

inequality on weighted suns of  spacings. 

THEOREM 4.6:    Let    G    F    he ccnvex on the support cf    F, 
00 00 

F(0)  = 0 = 0(0),   6 =\  xdF(x) =    f xdG(x),    and   A.  >  2     for    i=l,...,p. 
J0 J0 t -       J 

Then 

Pv ( y.AJX.-X.   J   > x\  > Pr 1 yiJY.-Y.   J   > x\ 

for   x < Q min  M.......^  )' J — r      '  r 

Proof:     For    c > ——■?= T^T.     by Theorem 4.5 — min(A1 ,...,A ) 

FJScÄ.CX.-X.^l   f  AZ^i-h-A- 

It follows that 

r r 
P^FJScÄ.cx.-x.^)] 1F(e)| IPGIGJSCÄ.CY.-Y^)! >_Fi,)\. 

By Theorem 7.1 of Barlow and Marshall (1964), p. 1256,  F(e) ^G(e).  It 

follows that 

PF|F||C*l(Xi-Xl-l>l -Tm 
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implving 

r v 

Setting x = 0/c <_ 0 min (A,,...^ ), we obtain the desired conclusion. 

5.  INEQUALITIES WHEN ONE DISTRIBUTION IS THE EXPONENTIAL 

—x 
We now specialize to the case G(x) - 1 - e   for x ^ 0.  The 

following results are motivated by the observation that in this case the 

normalized spacings  (n-i-l-l)(Y. ~Y. ,  )  are independent and identically 

distributed for i=l,2,...,n and n >_ 1.  Thus we might expect that the 

spacings  (n-i+l)(X, -X. 1  ) would exhibit certain monotonicity properties 

for distributions  F such that G F is convex where finite (concave on 

(0,*)).  Such distributions F are IFR (DFR). 

THEOREM 5.1: If F   is IFR  (DFR) with   F(0) = 0i     then     (n-i+l)(X. -X.   ,     ) 
" in    x-lsn 

is stoanastivally increasing  (decreasing)  in   n >_ i    for fixed    i. 

Proof;  Assume F is IFR.  Let F. (x) = P[X,  < x]  and 
  inv      in — 

F  (x)  =   [F(x+u)  -  F(u)]/F(u).     Then 

OO ^ QO 

P[(n-i)(X.^.     -X.   )   > x]  =   J    IF ("Ml      dF.   (u)  <    I   |F(—^-r)| dF.   (u), 
i+i,n    in •'    I   uVn-l/J in        —  •>, I mn+l-i/l in 

since     [F(t)] is decreasing  in    t    for    F    IFR.    Also  since    F  (x)     is 

decreasing   in    u     for    F    IFR    and     F.   (x)   <  F.     ,, (x)     for all     F,    we  have 
in        —    i,n+l 

by  the   lemma  on  p.   52 of  Barlow  and  Proschan  (1965), 
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•'    1   uVn+l-i'l in        -  •'    1   u\ n+l-i/| i,n+l 

.Pl(n+1-l)(X1+1>n+1-X1>n+1)   >  xl. 

All inequalities are reversed when F is DFR.|| 

Corollary 5.2;  If  F is IFR (DFR) and  F(0) = 0, then 

(n-i+l)(X. -X. ,  )  is stochastically decreasing (increasing) in 
in i-l,n J ft 6 

i=l,2,...,n for fixed i>. 

Proof;    Assume    F     is IFR.     First we  shall  show that 

st 
(n-l)(X-  -X,   )   <    nX-   .     Given X- , X»   -X,        is  the minimum of    n-1     random 

2n    In    -       In In     2n     In 
st 

variables each stochastically  less than    X,   .     Hence    X» -X,     <    X,        ... J In 2n In —  l,n-l 
st st 

By Theorem 5.1,  (n-l)Xn   . < nXn , so that  (n-l)(X- -X. ) < nX. . J l,n-l —  In 2n In  —   In 

The result follows by repeated conditioning. 

An analogous argument applies in the DFR case.|| 

Next we obtain results concerning "total time on test" when successive 

observations are taken from an IFRA (DFRA) distribution. For example, if n 

items are put on life test and experimentation is terminated at the time of 

th r-. 
the r  failure (censored sampling), then T  = V (n-i+1) (X -X._1  ) 

denotes the total time on test. This statistic has been extensively studied 

and applied in the case of the exponential distribution by Epstein and 

Sobel (1953) and Epstein (1960 a,b).  The best estimate for the mean 0 

in the exponential case is 6  = T /r. r rn   rn 
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Proof:  Assume F is IFF. The proof is by induction on r.  By 

Theorem 5.1 the result is true for r=l. 

Now assume the theorem is true for r-1. Note that 

P^LT  > xl = j Pr  [T .    > x - u]d P[nX.   u] 
Fl rn      J

n    V   .      r-l,n-l        u   In - 
0  u/n 

00 

<   j   PP       [T^  .   ^  > x - u]diP[nX      iu] —  Jn    Y   ,      r-l,n u in — 0      u/n 

the induction assumption since    F   ,       is IFR. r u/n 

Next note that if X <•••< X  are order statistics from any 1 —     —   n 

by 

distribution    F,    then    P[X2 +•••+ X   + (n-r)X    > x|X= w]    is  increasing 

in    w.     This  is a consequence of  the following two facts: 

(i)    Given    X.  - w,  X„,...,X      are order statistics of a sample of 
1 2 n 

size    n-1    from the conditional distribution    P[X ^ x|X > w], 

where    X    has distribution   F. 

(ii)    P[X > x'X > w]     is increasing in   w. 

It follows that    PT,      [T    ,       > x - u]     is increasing in    u    for any F   ,      r-l,n u/n 
distribution    F.    Hence 

oc 

)   P,,       [T    ,       >  x - u]d PlnX.     <   u] ■'      F   ,      r-l,n J  u        In - 
0      u/n 

00 

-/PF   ,  'Vl.n'  '<-"lVl(n+1>Xl.n+l-
ul 

0     u/n 
00 

-I**  „.,   'Tr-l,n
>X-ulduPl<n+1)Xl,n+l^l 

0      u/(n+l) 

= r[T     ,.   • x] r,n+l 
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since    X.   ^   Yl     for     i  >   r.     Hence 
i—i 

r 
E 2x.  +  (n-r)t0| - EI^Y.  +  (n-s)t( 

u n 
- EVX. - EVY. = 0. 
"    ?   1        T   1 

Remark:     In the  special case   in which    G    is the  exponential 

distribution and    F    is an  IFRA distribution,   then    G    F    is  starshaped, 

In  this case,   (5.4)   yields a lower bound on the expected  total time on 

test   in truncated sampling from an IFRA distribution with known mean. 

6.     BOUNDS  ON EXPECTED VALUES  OF ORDER STATISTICS  FROM MONOTONE  FAILURE 
RATE  DISTRIBUTIONS 

In Section 3 we  obtained explicit bounds on    EX. assuming    G    F f i,n       & 

is starshaped [cf. (3.7)].  In particular, if  F is IFRA with mean G, 

we have the result 

i 

e2 i/(n-j+i) 

2 i/j 
1 EX,  < n9 V l/(n-j+l) 

1,0     j=l 

for  1 ^_ i < n and 

n 
•3 < EX   < 0 S Y. , 

for  i=n.  The bounds are non-trivial but only sharp for i=l or i=n. 

If  F  is DFRA with mean b     we have, using (3.6), 
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0 < EX,  < O/n, l,n - 

0 < EX.  < 

IP S l/(n-j+l) 
1 

—  i ,n —    i 

1 

for  1 < i < n, 

n 
6 V -r < EX   < ne 
Y J ~  n,n - 

All lower bounds are sharp.  To see this, let 

F(x) =  ' 

0       x < 0 

ex 
~ 6 

ce  v    x > 0, 

where 0 < E <_ 1.  Then F is DFR with mean 6, and for 1 ^ i < n, 

i-1 
P[X. IK] - 2 (^[FOOl^Hx)]11^ 

i-!       _ ex(n-.1) 
^ v^ /n\ n-j     6 1 2 ur   e 
j=o 

Hence EX . = / P[X. > x]dx < 2ne 6.  Si 
1   0   1 " 

nee we can choose t  arbitrarily 

close to 0, we see that 

EX. ^ 0   (1 ^ i < n) 

n 
is sharp.  Note that since  2EX-  = ne'  Ex« n approaches n(<    as f r *r  i,n        n,n 

decreases to 0.  Hence the upper bound for  i=n is also sharp.  The upper 
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1/1 1      \ (3 EY. 
For    j     such that     1 + ( — +• • •+  TTT I <  0»    we have       TT*' <   0. 

log q \ n n-j+l' - 3A    - 
1/1 1      \ J      ■ 

For    i     such that     1 + -;  (— +•••+  TTT ) s 0,    we have       :  ^   •  0. 
log q \n      n-j+1 / - ' 3A  - 

Thus EY.  is maximized in the first case at A = 0 and in the second 
3 C 

case at A = ^ .  When A = 0,  EY, = —r-^— (-+•••+  —T^ : 
p j  -log q \n     n-j+1 / when 

A = r_ , EY. = ^ . 
P   3   P 

To show (6.5), let 

x log q/^ 

C .x) = 

e for 0 < x < f 
P 

for K    < x < ". 
P - 

G has p  percentile £, . Moreover, since log F is concave, it cannot 

cross log G on  (0,C ); hence G(x) <_ F(x) for all x >_ 0.  Thus 

EY. < EX., where Y. is the j  order statistic from G.  But 
J -  J J 

-i 

^ ' /  2 (i)tG(x)li[G(x)]n"1dx. 

Eq. (6.5) follows from the definition of G given just above, jl 

7.  PROPERTIES PRESERVED IN TAKING ORDER STATISTICS FROM IFR (DFR) DISTRIBUTIONS 

In Barlow and Proschan (1965), pp. 38-39, it is shown that order statistics 

from an IFR distribution themselves have an IFR distribution.  This is not true 

for spacings from an IFR distribution.  To see this, suppose that F is IFR with 

mass at a < «.  Then the distribution of X- - X  will have a jump at the 

origin, and hence cannot be IFR. The reverse situation exists for DFR 

distributions.  Order statistics from DFR distributions are not necessarily DFR. 
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