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ABSTRACT 

This is a progress report covering recent attempts to 

estimate the size of linear programming problems.  Such estimates 

could be very useful as a guide to practical computation and 

as an aid in choosing among alternate methods of solution«  How- 

ever, the results at present are far from complete, and many 

unsolved problems remain. 



1.  INTRODUCTION 

Aß linear programming has developed into a powerful and popular 

tool for the solution of practical problems, a sizeable gap has 

appeared between the theory and the technique of the subject.  Much 

more space in the literature has been devoted to routine applications 

or minor modifications of the standard methods than to critical ex- 

amination or comparison of these metnods.  In particular, there is 

a striking contrast between the observed practical efficiency of 

the simplex algorithm and a complete lack of theorems to explain this 

efficiency.  In the words of Dantzig (5):  "The simplex method 

amounts to moving along the edges of a convex polytopet from one 

vertex to a neighboring vertex which gives the greatest change in 

the value of the linear objective function, and continuing this 

process until a vertex is reached at which the function attains its 

optimal value.  For polytopes defined by m equations in n non- 

negative variables, the number of such moves is remarkably low, 

often between m and n in practice.  Intuitively, wandering along 

the edges of a polytope in this ray would appear to be extremely in- 

efficient, yet experimental evidence from thousands of cases is to 

the contrary.  Why?M 

Dantzig*s question suggests some basic problems concerning 

the facial structure of convex polytopes.  These problems are of 

considerable geometric interest and they »ay also be of practical 
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importance, for while the simplex method and its relatives usually 

work well in practice Saaty (26) has commented that "...a number 

of large linear programming problems have been left unsolved because, 

after many hours of machine operation, it was not known how much 

longer the process would continue." Further, there are related areas 

such as integer programming in which the practical situation is 

clearly unsatisfactory, and in these a thorough geometric under- 

standing would probably lead to significant practical improvements. 

Hoping to narrow the gap mentioned above, I have recently be- 

gun a critical study of the geometrical background of linear pro- 

gramming, with emphasis on estimating the size of a linear program- 

ming problem   that is, on geometrical aspects of the problem 

related to the computational difficulty which may be encountered in 

solving it.  None of the important questions ha^ been fully answered 

but some progress has been made.  This report summarizes the results 

obtained thus far, in the hope of drawing attention to the questions 

and leading toward their ultimate solution. 

2.  PROGRAMMING AND POLYHEDRA 

A linear programming problem is that of maximizing or minimizing 

a linear function qi,  the objective function, subject to a finite 

number of linear constraints.  The constraints define the so-called 

feasible region of the problem.  They may be linear equalities, cor- 

responding to hyperplanes in the finite-dimensional real vector space 

on which  cp is defined, or linear inequalities corresponding to closed 

halfspaces, or a mixture of equalities and inequalities.  In any case. 
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the feasible region is the intersection of a finite number of closed 

halfspaces.  Such a set is called here a polyhedron^ and a bounded 

polyhedron is a polytope.  Dimensions are indicated by prefixes and 

the O-faces, 1-faces and (d-l)-faces of a d-poiyhedron are called 

respectively its vertices, edges and facets»  T?.o vertices are said 

to be adjacent provided they are joined by an edge.  Attention is 

restricted to pointed polyhedra, that is, to those having at least 

one vertex.  A pointed d-polyhedron is said to be simple provided 

each of its vertices is on exactly d edges. 

A polyhedron is said to be of class  (d,n) provided it is a 

pointed d-polyhedron with precisely n facets.  It may be difficult 

to determine the exact class of a feasible region from the defining 

constraints, but the form of the constraints does impose some im- 

mediate limitations on the class.  A region defined by n linear 

inequality constraints in d  real variables is a polyhedron of di- 

mension at most  d and has at most  n facets.  A region defined 

by m linear equality constraints in n nonnegative variables is 

a polyhedron of dimension at most  n,  is of dimension at most n - m 

if the linear functions appearing in the equalities are linearly 

independent, and has at most  n  facets.  Thus for the study of 

polyhedra in connection with linear programming it seems reasonable 

to group the polyhedra according to class and to study the behavior, 

with respect to feasible regions of a given class, of the notions 

and procedures of linear programming.  And since the feasible region 

is sometimes known to be bounded it seems reasonable to devote some 

special attention to the polytopes of a given class. 
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Now consider the problem of raaxirai. ing a linear function on 

a pointed polyhedron P. A solution of this problem is defined as 

a vertex v of P such that either yiv) = sup TP or v is the 

endpoint of an unbounded edge E of P with sup tpE = + «. A so- 

lution must exist, and indeed from any vertex x0 of P there is 

a sequence (xofx, ,*'*.x.) of vertices of P such that x- is a 

solution and the following conditions are satisfied: 

(1) x  is adjacent to x ^ (1 ^ i ^ O; 

(2) q)(x0) <  cpCx^ < ••• < cpCx^). 

A sequence  (x0,x. ,• • • fxjj)  of verrices of P is called a path 

provided it satisfies (l) and a cp-jpath provided (1) and (2) are 

both satisfied; the number I    is the length of the path.  The 

path  (xnfx.,•••«x,)  is said to be simple provided x, ^ x 

for i f' j. 

The moat common procedures for the solution of linear pro- 

gramming problems are based upon various rules for the construction 

of cp-paths.  Having found a vertex of the feasible region, one 

applies the rule to produce a ep-path leading from that vertex to 

a solution.  For a given rule the required computation time is 

roughly proportional to the length of the resulting cp-path and 

thus there is considerable interest ia relating this length to 

the class of the feasible region.  The expected value of the length 

is of prime interest, but at present it seems impossible to give a 

useful mathematical definition of this notion.  Computational ex- 

perience has been reported by Dantzig (U, p. 156), Kuhn * Quandt (22), 
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Quandt * Kuhn (2*+, 25), and Wolfe * Cutler (27).  The raaxlmum length 

is also of interest, and some results have been obtained concerning 

it.  They are reported in the final section below. 

While a a>-path on a polytope  P generally encounters only a 

small fraction of the vertices of  Pf  for each class of polytopes 

there are simple examples in which all vertices are encounted (Klee 

[l5, 16]).  Thus it is of interest to determine the maximum number 

of vertices for polyhedra or polytopes of a given class.  The same 

question arises in connection with the problem of solving completely 

a system of linear inequalities.  And in contemplating the use of 

search processes more general than those involving «-paths, one is 

led to ask for the maximum length of simple paths on polyhedra or 

polytopes of a given class.  Results in these directions are summa- 

rized in the next section below. 

The distance  6p(x,y) between two vertices x and y of a 

polyhedron  P is defined as the length of shortest path joining 

x and y,  and the diameter  6(P)  of  P is the maximum of the 

distances between its vertices.  Let  Md,n)  and A (d,n) denote 

the maximum of  MP)  as P ranges respectively over all polyhedra 

of class  (d,n)  and all polytopes of class  (d,n).  For any poly- 

hedron P it is possible to specify an objective function cp and 

an initial vertex so that at least  6(P)  iterations are required to 

solve the corresponding linear programming problem, regardless of 

the edge-following algorithm employed.  Thus &(d,n)  represents, in 

a sense, the number of iterations required to solve the "worst" linear 
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prograo of n inequalities in d variables using the •'best" edge- 

following algorithm.  Results on A and Ab  are reported in the 

second section below. 

3.  NUMBER OF VERTICES 

Let  ^(dtn)  denote the maximum number of vertices of polyhedra 

of class  (d,n).  It is known (Klee [l1*])  that this maximum is at- 

tained only for certain simple polytopes of class  (d,n),  and (Gale 

[81) that 

n- d+1 n- d+2 2 
(3) ^n) M n-d / + \ n-d 

Indeed, the right-hand member of (3) is the number of vertices of 

the simple polytopes of class  (d,n)  which are polar to cyclic 

d-polytopes.  Several authors have conjectured that equality always 

holds in (3) (Motzkin [23], Jacobs &  Schell [12], Gale [8]).  The 

conjecture has been proved by Gale [9] for  n ^ d + 3 and by 

Klee [l^] for n >  (d/2)  - 1.  These two results show that it is 

valid for d ^ 6,  a result obtained also by Fieldhouse [6]. 

Fieldhouse [71 showed the conjectured equality is valid for d » 2m 

if it is valid for d s 2m - 1, and Grünbaum [ll] used a theorem 

of Kruskal [21] to establish the validity for d = 7.  Thus 

equality holds in (3) if any of tie following conditions is 

satisfied: 

CO    d * 8,  or n ^ d + 3,  or n i (d/2)2 - 1. 
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For more detailed information on this and related questions see the 

papers cited above, the reports of Grünbaum [lO] and Klee [19], 

and the forthcoming book by Grünbaum [ll]. 

In addition to their obvious occurrence in linear programming, 

polyhedra arise in less obvious ways from other optimization 

methods, and results on the number of vertices are of interest for 

some of these.  As an example we mention a procedure which has been 

applied in convex programming, best approximation and optimal con- 

trols (see Cheney & Goldstein [2] and some of their references).  A 

subset X of R  is said to be a Haar set provided X consists 

of at least d + 1 points and every d-pointed subset of X is a 

linear basis for R .  In some of the problems discussed by Cheney & 

Goldstein [21 one is faced with a Haar set X,  with a real-valued 

function (j) defined on the set  B(X)  of all positive bases for R 

contained in X,  and with the task of minimizing «p over B(X). 

The difficulty of this task depends in part on the cardinality b(X) 

of B(X),  and thus it is natural to seek the maximum M(d,h)  of 

b(X)  as  X ranges over all Haar sets of cardinality h in R .  Let 

C(X)  denote the set of all convex relations on X —- that is, the 

set of all functions y on X to  [0,11 such that  2 v y ■ 1 
xcX    x 

and    2    Y y    x a 0.    Then    C(X)     is a polytope of dimension    h - d  - 1 

which has  at most    h facets,   and  by a theorem of  Davis   [5] there  is 

a biunique  correspondence between the vertices of    C(X)     and the 

members of     B(X).     Consequently 

M(d,h)   ^ >i(dth) 
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h- 
(5) M(d,h)   ^ 

h-d 
2 

d+1 

h- h-d+1 
2 

d+1 

i if    d<2    or    h^d+9    or    h^d  +  3+   2(2d  + 3) 

It  is conjectured that  equality always  holds in (5)»  but  this  has 

been  established  only  for    d  5  2    and  some  other  special ca&e 

The problem of determining the maximum length of the  simple 

paths admitted by polyhedra of a given class appears  to b3 equi- 

valent to  that of determining the maximum number of vertices.     At 

any rate,   the polytopes polar to  cyclic  polytopes have been shown 

to admit Hamiltonian circuits  (Klee  [l3l),   so if any of the  con- 

ditions of  (k)  is satisfied then 

n- d+1 
2 

n-d 

n- d+2 
T 

n-d -  i 

is the maximum of the lengths of simple paths admitted by polyhedra 

of class  (d,n). 

^.  DIAMETERS 

The known values for the functions  A  and  ^.  are tabulated 
b 

below. 
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\n-d 
d^\ 1 2 3 *♦ 5 

1 1   

2 • 2 3 k 5 • 

3 
• 3 h 5 • 

k 
* 3 • 

5 
• ? 

• • • M2,n) = n - 2 

• • • M3,n) = n - 3 

2 

3 

3 

3 

3 

5 

5 

k  •   -   •   Ab(2,n) .-. rn/2] 

5 • • • M3fn) = [2x1/3] - 1 

The formulas for A(2tn)  and a (2tn) are obvious.  The formula 

for A, (3fn)  and the fact that  A (i+,8) » ^ were established 
b o 

by Klee [131,  as was the formula for M3«n) [17,181.  The as- 

terisks in the tables indicate that each column is constant from 

the main diagonal downwards.  This fact, the values of A(4(8), 

A, (^,9)  and A (^,10),  and several other properties of the functions 
D D 

A and A ,  were established by Klee A Walkup [201. It had been 

conjectured (p. 160 of Dantzig [41) that  A(d,n) = n - d.  While 

this is true for d ^ 3,  note that A(4,8) ■ 5»  It was proved in 

[201 that 

Off 
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d n-d 
A(d,n) ^ n - d + rain ( ^  ,  -JJ— ) 

so that the excess of A(df2d)  over the conjectured value tends 

to infinity with d.  The problem of determining Md,n)  for 

d * ^  or even of determining the asymptotic behavior of A('4fn) 

as n - o»,  appears to be very difficult. 

The assertions that  ^. (d.n) ^ n - d and  -,(df2d) = d 
b b 

were called in [201 the bounded Hirsch conjecture and the bounded 

d-step conjecture (cf. Danzig [4, p. 160 and p. löSl).  As is seen 

from the second table, the bounded Hirsch conjecture has been esta- 

blished for d ^ 3 and the bounded d-step conjecture for d ^ 5. 

A related conjecture, due to Wolfe and Klee [iSl, asserts that any 

two vertices of a polytope can be joined by a so-called  W  path -— 

that is, by a path which does not revisit any facet from which it 

has earlier departed.  This was proved in [17,18"' for d ^ 3,  and 

for 3-polyhedra as rrell as 3-polytopes.  However, it fails for 

4-polyhedra (though perhaps not for ^-polytopes) because ^(^,8) = 5 

and on a d-polyhedron with n facets each W  path is of length 

at most n-d.  If «p is a linear function on a 3-polyhedron P, 

any vertex of P can be joined to a solution by a q)-path which is 

also a Wv path [17].  If the two vertices of a 3-polytope do not 

share a facet they can be joined by the three independent  W 
v 

paths  (Barnette   [ll).     It waa proved  by Klee  * Walkup   [201  that 

the  bounded  Hirsch conjecture,   the  bounded d-step conjecture and 

the Wolfe-Klee  conjecture are  all equivalent,   though not  neces- 

sarily on a dimension-for-dimension basis. 



-11- 

5.  HEIGHTS OF POLYTOPES 

We turn now to some questions which are more directly related 

to linear programming, and specifically to the number of iterations 

which may be encountered for feasible regions of a given class in 

applying various rules for the formation of cf-paths leading to a 

solution.  When  (x fx  •••.x^)  is a -p-path on a polyhedron  P  it 

is said to be a strict «p-jaath provided for 1 s i s Xf  x   is 

chosen so as to maximize  cf on the vertices of  P adjacent to 

x. .•  The path is a steep (f-path provided for  1 ^ i < i,  x.  is 

chosen among the vertices adjacent to  x. .  so as to maximize 

the slone 

(f(xi) - <p(xi.1)| 

"xi'xi.l" 

where  I!  II is the norm for the containing space* And the path is 

a simplex cf-path provided it is formed according to the standard 

simplex algorithm, requiring that  x.  should be chosen among the 

vertices adjacent to  x,  so as to maximize the so-called gradient 

of cp in  the space of nonbasic variables.  (See Dantzig f^, pp. 

156-1601 and Klee [l5? for an explanation of this.) The third rule 

is the one most commonly used in practice because of its compu- 

tational simplicity.  It is geometrically more complicated than 

the others because the space in which the gradient is being maxi- 

mized changes from one iteration to the next. 

t        n    .    if 
Let  L (d,n), l/(d,n), L (d,n)  and  L(d,n)  denote the maxi- 

mum length of strict ep-pathsf steep (p-paths, simplex cp-paths and 
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^p-patha on polytopes of class (dtn).  Here the raaxiraa are tauten 

over all polytopes P of the given class, all linear functions 

«p on P,  and all q>-paths of the specified type.  It was proved 

by Klee [15,16] that 

(6) 

(7) 

1^(2,n)  = n -  2,   1^(5,n)  = 2     I 

I^Cd.n)   ^ 2(n-d)   -1    if    d  a k. 

Lp(d.n) 

Lx(dtn) 

L(d,n) 

•*  (n-d)(d-l)   +  1,     with  equality  if    d   ? 3- 

Comparison of the results for L and L suggest that at its 

worst the usual simplex algorithm behaves at least as badly as 

any of its variants, and comparison of the number (n-d)(d-l) in 

(7) with the number 2(n-d) in (6) suggests the superior ef- 

ficiency of linea- programming algorithms which produce strict 

»p-paths. However, no firm conclusions can be drawn until much 

more  evidence has been accumulated. 

=e^; 
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