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ABSTRACT 

The relative motion between an earth-based 
radar and a satellite object is of interest for radar- 
tracking studies, signature simulation studies, and 
for developing inverse scattering techniques.    Here, 
the motion analysis is accomplished with elementary 
vector algebra.    This approach results in consider- 
able simplification of the final equations and relation 
ships. 
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SECTION I 

INTRODUCTION 

The relative motion between an earth-based radar and a satellite 

object is of interest for radar-tracking studies, signature simulation 

studies, and for developing inverse scattering techniques.    This relative 

motion can be decomposed into two component motions:   the radar-tracking 

motion; and the rotation of the satellite about its center of mass.    The 

radar-tracking motion is, in turn, caused by the relative motion between 

the satellite in its orbit and the radar site fixed on the surface of a rotating 

earth. 

The equations and relations required in consideration of overall motion 

can be considered in terms of products of rotation matrices which transform 

from one coordinate system to another.   '    The approach here is to examine 

each of the component motions separately and to form the final combination 

with elementary vector manipulations. 

The purpose of this report is to study the gross effects of the relative 

motion on radar observations, and consequently only first-order orbit per- 

turbations are considered.    The advantages of considering higher order 

perturbations are not great enough to justify the complications which they 

introduce. 

* J. F. A.  Ormsby, Motion Simulation of Ground Observed Earth Satellites, 
The MITRE Corporation, W-7289, Bedford, Mass. , 4 September 1964. 

t J. F. A.  Ormsby and S. H.  Bickel, A Generalized Radar Output Simulation, 
The MITRE Corporation, W-7346, Bedford, Mass. ,  19 October 1964. 



Both stabilized and torque-free motion of the satellite about its center 

of mass are considered. In all cases, expressions for the relative orienta- 

tion angles between the body and an earth-based radar are developed. 



SECTION II 

ORBITAL MOTION 

There are four different motions of a satellite in orbit: 

(1) the motion of the satellite which is restricted to move in an 

elliptical path due to the inverse square law for radial force; 

(2) the slipping motion of the perigee point within the plane of this 

ellipse; 

(3) the twisting motion of the plane regressing westward; and 

(4) the change in the size and shape of the ellipse due to atmospheric 

drag. 

Effects (2) and (3) above are caused by the bulge of the earth at the 

equator.    Five orbital elements (see Figure 1) are necessary to define these 

motions: 

(1) the perigee height h, which is the distance between the center of 

the earth and the closest point on the ellipse. 

(2) the inclination angle <5, which is the angle that the orbital plane 

makes with the equator; 

(3) the right ascension of the orbit, which takes the form 

a = a   + co t, o        n ' (1) 

where a   is the right ascension at time, t = 0, and a>   is the rate of change 
o n 

in the westward direction of the right ascension due to the earth bulge; 

(4)   the time of the ascending node, which takes the form 

2 3 
tQ + Tn + Djn    + D^  , (2) 



where n is the revolution number,   T is the satellite period, and D    and 

D   are drag coefficients; and 

(5)  the argument of perigee, which takes the form 

(P= *o + k2 (I  " Sin2 Ö)U (3) 

where k    is a constant which specifies the rate of change in the argument 
2 

of perigee due to the earth's bulge.   At sin <5 = 4/5, or at an inclination of 

approximately 63. 4 degrees, this rate of change is zero.   At this inclination, 

a crossover exists where the rate of change shifts from positive to negative. 

The inverse square law for the radial force field from the center of 

the earth results in an elliptical orbit for the satellite object with the earth's 
A A A 

center at one focal point.    Let e , e , e    be an orthnormal set of vectors in 
X A O 
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CENTER \ /                 / 

C   / ^<5 / m 
^^-PERIGEE 

\       / EQUATOR       /^ 

^    ASCENDING 
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• 
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< 

Figure 1.   Orbital Element Geometry 
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an inertial coordinate system with the origin at the center of the earth.    Let 

e    point in the direction of vernal equinox,   e    in the direction of the north 

pole, and e    in the direction of e    X e   . In this coordinate system, the 
_ • i 1 

vector equation for an ellipse becomes 

3       r 1 
0=2    e      (ä • a. ) (cosE-e) + ( b • e.)   sinEJ , (4) 

where e is the eccentricity of the orbit, and the vectors a and b have the 

length of point along the semi-major and semi-minor axes of the ellipse, 

respectively.    (Note:   a points in the direction of perigee.)   The eccentric 

anomaly. * which is related to time in Kepler's equation, is E. 

t - t 
a 
d 

1/2 
(E-e sinE) =—    (E-e sinE), 

2 7T 
(5) 

where t    is the time of perigee crossing, d is the gravitational constant, 

and a is the length of a.    Substituting for d in Equation (5), the major 

semi-axis of any satellite is given in terms of its period by 

a = 205. 82T 
2/3 

(6) 

where T is the period in minutes.    The ellipticity of the orbit is given in 

terms of the semi-major axis, and the perigee height by 

e = 1 - h/a. 

The semi-minor axis is given by 

(^     2\ 1/2 b = a( 1-e   ) 

* See page 1, first reference. 

(7) 

(8) 



From (4) it follows that the length of the vector 0 is given by 

10 ]  = a|l-e cosEJ. 0) 

Figure 2 illustrates the geometrical relationships between these orbital 

elements. 

In order to complete the description of the orbit, the vector dot 

products indicated by (4) must be represented in terms of the inclination 

angle and the argument of perigee.    Let a be the angle between ascending 

node A and the unit vector e   (see Figures 1 and 3). 

A 
b 
1 i 

PERIGEE 

t     ls^~^ 4 r /E 0 
\ r                      A 

1 
^- EARTH 

• 
• 

*- •a—» *-h-» 

1 < 

Figure 2.    Basic Ellipse Orbit 



£s  POLARIS 

PERIGEE 

ASCENDING NODE 

Figure 3.   Earth-Orbital Orientation 

From the geometry of Figure 3, it follows that: 

(a • e ) = cos a cos <p - sin cp sin a cos <5; 

(a# e
9) = sm a cos <P + sm <P cos a cos ö; 

(a- e ) = sin <5 sin (p. 

(10) 

(11) 

(12) 

Since b is perpendicular to ä,   it is only necessary to replace <p by <p + IT /2 

in order to develop the corresponding equations for b. 



SECTION III 

SITE ORIENTATION AND RADAR-TRACKING MOTION 

Let X    be the latitude of the site and a    the right ascension of the 
s s 

site (i. e. , the angle between the site longitude and the vernal equinox. 

This angle is time varying due to the earth's rotation).    The unit vectors 

in the direction of the zenith, east, and north as measured at the site 

are given by: 

Z 

E 

cos X    (e^cosa   + e\sina  ^ + sinX  en svl        s        2       s / s3 

-e^sino!    + e„cosa 
1       s        2        s 

N = -sinA    ( e. sin«    + e„sina ") + cosA  e_ 
svl       s        2       s/ s3 

(see Figure 4 for a description of the geometry involved). 

(13) 

(14) 

(15) 

POLARIS 

VERNAL 
EQUINOX 

EARTH  S 
CENTER 

OBJECT 

SITE 

Figure 4.   Site-Earth Geometry 
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The vector from the site to the object is given by 

r = 0 - r Z , 
e 

(16) 

where r    is the radius of the earth.   From Equation (16), it follows that 
e 

the distance or radar range from the site to the object is 

/ Ö|2 - 2r  (0« Z) + r2, 
e e 

(17) 

The evaluation and azimuth angles of the radar (i. e. , the angle which the 

target makes with the horizon measured at the site and the angle between 

due north and the target measured in a clockwise direction when looking 

down on the earth) are given by: 

(0- Z) - r 
Tan T = 

Tan p = 

Döl2 -[(5- z,2]1/2     2 

0- E 

0- N 
2   7T   . 

(18) 

(19) 

A simple and useful acquisition scheme would be to test for the zero 

elevation angle.    Positive angles indicate that the satellite is above the 

horizon and visible, while the satellite is below the horizon for negative 

elevations.    From Equation (4), 5- Z can be written as 

—        ^ 
0- Z = OZ cos  (E - EZ) - e(a- Z), 

where 

Vi V(a- Z)2 + (b- Z)2 Tan EZ 
b- Z 
 vc 
ä- Z 

(20) 

(21) 



Thus, it follows from setting the numerator of (18) equal to zero that the 

horizon plane (i. e. , the plane tangent to the earth at the site) intersects 

the orbit when E is given by either 

E    = EZ + EC (22) 

or by 

E    = EZ + 2?r   - EC, (23) 

where 

ix +e(£. Z)\ 
EC = cos      . (24) 

\ OZ / 

The first solution, E , indicates the last point where the satellite 

is visible before it sinks below the horizon, while E indicates the first 

point where the satellite becomes visible above the horizon (see Figure 5). 

The dot product between Ö and any general vector V is given by 

(20) and (21), where Z is now replaced by V.    Hence, in order to complete 

the description of range, elevation, and azimuth, it is necessary to find 
A A A _ 

the vector dot products between the set Z, N, E, and the orbit axes a and 

b.   After combining (10),  (11), and (12) with (13),  (14), and (15), the 

desired products for a become 

_        A 

a* Z = C cos\   cos a + a sinX   sin 6 sin cp, (25) 
X s s 

a- E = - C    sin a, (26) 

a- N = - C,   sinX   cos a + cosX   sin <5 sin w, (27) 
Is s 

10 



where 

a (oo   +co\t + a_,-a    - Tan      (cos 6 tan <p); 
V e        n/ 1        n V / 

to   = angular velocity of the earth; 

to   = rate of change of the right ascension of the 

ascending node due to earth's bulge; 

a    = right ascension of the site at t = 0 ; 

a    = right ascension of the ascending node at t = 0 ; 

<5 = inclination of the orbital plane 

cp = argument of perigee ; 

X     = latitude of site; and 
s 

I      2 2 2 
C    = a ycos <p   + sin <p   cos    6 

o 

r» 

I < 

VISIBLE 
REGION ORBIT 

TANGENT   PLANE 

Figure 5.   Region of Satellite Visibility 
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The corresponding equations for b can be developed by replacing cp 

by <p + TT/2 in the above equations. 

In order to relate the radar orientation to the target orientation, it 

is convenient to relate the radar to the e ,   e ,  e    coordinate system or, 

more specifically, to specify the latitude and right ascension of unit 

vectors in the radar range direction r,   the radar horizontal H, and the 

radar vertical V.    From inspection of Figure 4, the unit vector in the 

radar range direction is given by 

A A A A 

r = sin T z + cos r (cos p N + sin p E). (28) 

From Equations (13),  (14), and (15), it follows that the latitude of r is 

given by 

sin X    = r • e„ = sin T sin X    + cos T cos X    cos p , (29) 
r 3 s s 

and the right ascension by 

sin T sin a   cos X    + cos T (sin p cos a.   - sin \   cospsina ^ 
„, s s V s s 8       /nnx Tana   =— rr ; : N-    (30) 

r     sin T cos a   cos X    - cos T (sin p sin a  + sm X  cospcosa N 
s s \ s s s/ 

The latitude and right ascension of the radar vertical vector can be 

found by replacing T by T + 7r/2 in (29) and (30), while the horizontal 

vector is defined by letting T = 0 and p  = p  + 7r/2.    In this case, the 

vectors r, V, and H form a right-handed system. 

12 



SECTION IV 

TARGET MOTION 

In general, three Eulerian angles are necessary to specify the 

orientation of an earth-based radar with respect to the satellite.    They 

are: 

(1) aspect angle, the angle between an axis fixed in the satellite 

(satellite axis) and the radar line-of-sight; 

(2) polarization angle, the angle which the projection of the 

satellite axis on the plane normal to the radar line-of-sight 

makes with the radar horizontal polarization axis; and 

(3) roll angle,  the angle which denotes rotation about the satellite 

axis. 

These angles are labeled 9,  ß,   and £, respectively, in Figure 6. 

Figure 6.    Euler Angle Geometry 

A 
r 

A 

Jl B 

-e   *(A 

A yS                   \            ß 
V

x    1 
x i 

H 

A       A 
r X   B 

iß 
IO 
oo 
< 
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B points in the direction of the satellite axis, and £ is referenced from a 

unit vector in the f X B direction to a fixed axis B    in the body perpen- 
A 

dicular to B.    The horizontal axis H is taken in the r X V direction 

(i. e. ,   H is pointing east when the radar is pointing north).    It follows 

from the geometry of Figure 6 that these angles are given by: 

cos  0 = f • B, 0 < 6 £ 7r ; (31) 

B- V 
Tan ß = -—- , 0 < ß <  2fr ; (32) 

B- H H v    ' 

B   . r 
Tan i = T

25—s 1 ,      0 < £ < 2TT . (33) 
BXB„.r 

In order to work out these relationships explicitly, the satellite 

motion about its center of gravity must be studied.    The principal types of 

stabilized and unstabilized motion are summarized herein. 

The six principal types of satellite stabilization are: 

(1) spin, the satellite is fixed in inertial space; 

(2) earth center, one axis of the satellite points toward the center 

of the earth; 

(3) earth horizon, the satellite is stabilized with respect to the 

local horizon; 

(4) magnetic, an axis of the satellite points along the lines of 

magnetic force (often the magnetic field is used for damping 

for earth center stabilization); and 

14 



(5)      inertial guidance, the satellite orientation is governed by some 

predetermined program or by signals from ground-based 

transmitters. 

The four principal types of unstabilized motion are: 

(1) tumbling, 

(2) spin, 

(3) precession, and 

(4) precession with nutation. 

By combining Equations (31) through (33) with the body motion 

equations for a particular satellite, the three orientation angles (aspect, 

polarization, roll) can be found explicitly.    For example, consider an 

earth-centered stabilized body.    In this case, the vector B points along 

0 and consequently 

cos   0 = -    ( lo I - r    sinr ) 
r    \ e / 

ß  = 

(34) 

(35) 

The roll angle will depend upon the type of stabilization assumed for B . 

One possibility for earth center stabilization would be to take B    in the 

direction to the unit vector normal to the orbital plane.    In this case, from 

Equation (33) 

n- Z 
Tan £ 

(0- a) (b- Z) - (0- b) (a- Z) 
(36) 

where n - ä X b.    Explicit formulas for the dot products indicated in (36) 

were presented earlier. 

Another common method of stabilization is spin-stabilization.    Here, 

the B axis is considered as fixed in space.    Taking X     and a    as the 
P P 
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latitude and the right ascension of the body axis, respectively (which 

corresponds to the angular momentum vector for spin-stabilized bodies), 

the aspect angle is given by 

cos 0      = sin X    sin X    + cos X    cos (a -a ). (37) 
pr p r p v r    p' v    ' 

Hence,   X    and a    correspond to the latitude and right ascension of the 

radar in inertial coordinates. *  Similarly, the dot products in (32) for the 

angle ß   may be determined from (37) by replacing X    and a    by the 

corresponding latitudes and right ascension for the radar horizontal and 

vertical vectors. 

Since the angular momentum vector is fixed in space for torque- 

free motion, the 0      given by (37) is the angle between the radar and the 

angular momentum vector.    Torque-free motion of an axially symmetric 

body results in precession about this vector.    If we take 0    and <j> as the 

precession cone angle and precession rate, respectively, then the radar 

aspect angle becomes 

cos 9 - B- f = cos 9     cos 9   + sin 0     sin 0   cos (6t+<b -cb^ ,    (38) 
pr p pr p v        o     1/ 

where 

sin X    cos X   -cos X    sin X    cos (a -a \ 
• rp rpVrp/ ,„_, 
Tan 4>   =  f — ^ K 39 1 cos X    sin (a -a \ 

y        v r    p/ 

and 4>    is the initial location at time t = 0 of the body axis on the preces- 

sion cone.    The particular cases of spin-stabilized or tumbling motion may 

be obtained by setting the precession angle equal to 0 or 7r/2 , respectively. 

See Equations (29) and (30). 
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Ö and consequently 

cos   0 
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0 r    sinT 
e 

ß  = 
w 
2 

(34) 

(35) 

The roll angle will depend upon the type of stabilization assumed for B . 

One possibility for earth center stabilization would be to take B    in the 

direction to the unit vector normal to the orbital plane.    In this case, from 

Equation (33) 

ri- Z 
Tan £ 

(0- a)  (b- Z) -  (0- b) (a- Z) 
(36) 

where n = ä X b.    Explicit formulas for the dot products indicated in (36) 

were presented earlier. 

Another common method of stabilization is spin-stabilization.    Here, 

the B axis is considered as fixed in space.    Taking \     and a    as the 
P P 

L5 



latitude and the right ascension of the body axis, respectively (which 

corresponds to the angular momentum vector for spin-stabilized bodies), 

the aspect angle is given by 

cos 9      = sin X     sin X    + cos X    cos (a -a ). (37) 
pr p r p v r    p' v    ' 

Hence,   X    and a    correspond to the latitude and right ascension of the 

radar in inertial coordinates. *   Similarly, the dot products in (32) for the 

angle ß  may be determined from (37) by replacing X    and a    by the 

corresponding latitudes and right ascension for the radar horizontal and 

vertical vectors. 

Since the angular momentum vector is fixed in space for torque- 

free motion, the 9      given by (37) is the angle between the radar and the 

angular momentum vector.    Torque-free motion of an axially symmetric 

body results in precession about this vector.    If we take 9    and <p as the 
P 

precession cone angle and precession rate, respectively, then the radar 

aspect angle becomes 

cos 9 = B- r = cos 9     cos 9   + sin 9     sin 9   cos (6t+<b -<b,\ ,     (38) 
pr p pr p V       ^o ^1/      v    ' 

where 

sin X    cos X   -cos X    sin X    cos (a -a  ) 
Tan *   =  T- 2——± -E {-*-^} (39) 

1 cos X    sin (a -a \ 
y       v r   p/ 

and <t>    is the initial location at time t = 0 of the body axis on the preces- 

sion cone.    The particular cases of spin-stabilized or tumbling motion may 

be obtained by setting the precession angle equal to 0 or 7r /2 , respectively. 

*See Equations (29) and (30). 
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