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Introduction 

The mathematical concept of a mechanical system as a system of mass-points 

whose behavior is determined by elementary laws of motion has a venerable 

history. The classical formulation of this concept first appeared in the work of 

Kepler, Galileo, and Newton, and has engaged the attention of nearly every major 

mathematician since [2],  By 1900 a formidable body of literature, stretching over 

some three centuries, bore witness to the intensity of the effort invested in the 

development of this concept.  At that time it was quite generally felt that the 

foundations were so securely established, both theoretically and experimentally, 

that all that remained to do was to refine the existing experimental techniques and 

calculating procedures to bring them into ever closer agreement. 

Subsequent refinements in techniques and procedures, however, disclosed dis- 

crepancies between theory and experiment in both the macrocosmic and the micro- 

cosmic world. These discrepancies could be resolved in the one case by rewriting 

the laws of motion, but could be resolved in the other only by reconstructing the 

foundations of the theory. The first part of our century has seen the advent of a 

quantum formulation of the concept of a mechanical system, whose principal fea- 

tures are by now a matter of general agreement, and whose claim to its throne is as 

well established within its realm as is that of the classical formulation. 

The two formulations of the concept of a mechanical system are quite distinct, 

and neither of them includes the other. Nevertheless, as one passes from the 

macrocosmic to the microcosmic world, one passes from one to the other via a form 

of correspondence principle, which holds that all the relevant elements of struc- 

ture in the old formulation find corresponding elements in the new. In modern text- 

books devoted to these subjects, the correspondence principle is embodied in a 

single phrase, viz., "replace Poisson brackets with commutator brackets through- 

out" [19]. 

To a mathematician this principle suggests immediately that there must be an 

abstract formulation of the concept of a mechanical system which contains both of 

the accepted formulations as special cases. The description of such a structure 

would clarify the relations between the two and illuminate the role of the corre- 

spondence principle in passing from one to the other. 

It is the purpose of this paper to provide such an abstract formulation and to 

derive its most elementary properties. In sections 1 and 2 we review the common 

features of classical and quantum mechanics which are relevant to this purpose. 

In section 3 we set forth an abstract formulation of these common features in terms 

of a system of axioms. Section 4 is devoted to a discussion of the axioms, with a 
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2 R. T. PROSSER 

review of possible alternatives.  In section 5 we show that the structure described 

in section 3 always admits a representation in terms of operators on a suitably 

constructed Hilbert space, and that the Heisenberg uncertainty relations are ob- 

tained in consequence.  In section 6 we verify that the structure of both classical 

and quantum mechanics satisfy our axioms. We then go on to show that any other 

form of mechanics which satisfies our axioms must be reducible either to classi- 

cal mechanics, or to quantum mechanics, or to a suitable combination of the two; 

no essentially different structures are possible within this framework. 

In section 7 we classify all the representations of the abstract structure in 

terms of operators on Hilbert spaces, assuming that the associated kinetic energy 
operator is well behaved in a suitable sense. We show that every such representa- 
tion must be a direct sum of those commonly adopted for the classical and quantum 

mechanical structures. 

In section 8 we present certain extensions of the structure, and prepare the 

ground for section 9- 

In section 9 we describe briefly the dynamical behavior of the theory.  Here 

we show that every infinitesimal canonical motion of the structure is determined 

by an appropriate generating function through the canonical bracket operation, and 

that this generating function may be obtained from an appropriate variational prob- 

lem.  In this way we are able to extend to our abstract mechanics, at least in prin- 

ciple, most of the dynamical properties commonly shared by both classical and 

quantum mechanics.  In sections 10 and 11 we discuss briefly statistical aspects 

and the problem of constraints in the theory. 

The study of the foundations of mechanics has not been neglected in recent 

literature.  From our point of view the best presentation of the structure of class- 

ical mechanics is the treatise of Whittaker [25], while its counterpart for quantum 

mechanics is that of von Neumann [16].  Various reformulations of the structure of 

quantum mechanics are to be found in the book of Weyl [24] and the papers of 

Jordan, von Neumann, and Wigner [8], and Segal [20], and Mackey [14].  A formula- 

tion which also includes the structure of classical mechanics but which differs 

considerably from ours appears in the recent papers of Jordan and Sudarshan 

[9. 25» 27, 30].  The work most nearly akin to ours is a paper on the formulation of 

quantum field theory by Wightman [23], which provided the nucleus for our develop- 

ment. * 

It is a pleasure to record here our debt to George Mackey and Irving Segal for 

their numerous comments and suggestions. 
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1. Classical Mechanics 

We give here a brief description of the structure of classical mechanics in or- 

der to emphasize those features which admit an abstract formulation. Only the 

simplest properties of the simplest types of systems will be considered. We shall 

not pretend to include within these few pages the whole content of this formidable 

subject. 

We shall assume that we have a system of mass-points, finite in number, 

whose behavior is determined by the forces acting upon them according to the laws 

of classical mechanics.  At any instant in time, the state of the system is com- 

pletely determined by a knowledge of the canonical coordinates, and all quantities 

of physical interest may, at least in principle, be expressed in terms of these co- 

ordinates. 

Thus, in order to determine the state of the system at any instant in time, it 

suffices to determine the values of the canonical coordinates. This amounts to 

effecting a measuring process.  If the measuring process is ideal, in the sense 

that no uncertainties, ambiguities, or errors are introduced into the values of the 

coordinates, then the measurement assigns a precise value to each coordinate, 

and in this way determines the state of the system. 

No known measuring process, however, is completely free from uncertainties. 

No known measuring process can guarantee an accuracy beyond a few significant 

figures, even in the classical domain, and it seems likely that none ever will. 

This is perhaps an expression of the limitations of man's capability to know nature. 

In any case it is desirable to include the effects of uncertain measuring processes 

in our description of classical mechanics. 

An uncertain measuring process will assign, not a single value, but a distri- 

bution of values to each of the canonical coordinates of the system. We can inter- 

pret this statement in the sense of probability, saying that the measurement of 

the system in a given state will assign a given value or range of values to each 

coordinate with a prescribed probability;  or in the sense of frequency, saying that 

repeated measurements of the system in the same given state will assign a given 

range of values to each coordinate a prescribed fraction of the time.  An engineer 

might say that the measuring process is corrupted with noise.  In any case we can 

incorporate the effects of the uncertainties of the measuring process by agreeing 

that the measuring process assigns to each canonical coordinate a probability dis- 

tribution taken over all admissible values. 

These considerations lead us to the following arrangement. Let *., • • •, x 

denote the canonical coordinates, even in number, of the system, and £      the 

Euclidean space of admissible 2n-tuples of values for the coordinates. A measur- 

ing process will determine a probability distribution, or measure, ^, on £_  , 
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which determines the state of the system in the sense described above. The 

average, or expected, value of the ith coordinated, as determined by the measuring 

process, is just m. = Jg     x-dy.,  while the variance from this average value is just 

<r? = j"r     (*• — m)^dß .  Moreover, the average value of any quantity of physical in- 

terest, whose expression in terms of the canonical coordinates is given by 

f= fix,, '", x~), is just J~r     fdfi. In this way the knowledge of // determines 

the state of the system. 

The entire framework of classical mechanics can be constructed along these 

lines. But for our purposes it is more convenient to transcribe these results into 

a different form.  VCe first recall that every (suitably restricted) measure on E~    is 

completely determined by the values of its joint moments.  More precisely, if we de- 

define, for each n-tuple (k     k2, ..., £    )  of integers, the joint moment 

m(Aj, k2, •.., k2n) of n via 

(1.1) m{kvk2,.-.,k2n)= J   *f1*22',--'*^n^ 

and if these moments are all finite and not too badly unbounded, then they com- 

pletely determine the measure fi [21]. This means that a knowledge of the joint 

moments determines the state of the system. 

To rephrase it again, we define for every polynomial /(*., • ••, %2 )  m tne 

xi the average value 

(1.2) co(f) = J  fdfi, 
t2n 

and record the following properties: 

(1.3) (1)  <a(D- 1, 

(2) a>(af+ßg)=a*>(f) + ßco(g), 

(3) o)(/7)>0. 
Here a  and ß  are any complex scalars, and f    is the complex conjugate of 

/.  Thus the average value operation o>  is a positive linear functional on the "alge- 

bra of all polynomials with complex coefficients in the x.. If <y  is finite on all 

polynomials and not too badly unbounded, it completely determines ft,  and hence 

the state of the system. 

2.  Quantum Mechanics 

We now turn to the structure of quantum mechanics, again emphasizing those 

features which admit an abstract formulation. 

Again we assume that we have a system of mass-points, finite in number, 

whose behavior in time is determined by the forces acting upon them according 

now to the laws of quantum mechanics.  At any instant in time the state of the sys- 

tem is completely determined by a knowledge of the canonical coordinates, and all 
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quantities of physical interest may, in principle, be expressed in terms of these 

coordinates. In order to determine the state of the system at any time, it suffices 

to determine the values of the canonical coordinates by means of a suitable measur- 

ing process. 

The measuring processes of quantum mechanics, like their classical counter- 

parts, introduce uncertainties in the values which they assign to the canonical co- 

ordinates. But the uncertainties of quantum measurements, unlike those of class- 

ical measurements, are constrained by the uncertainty relations of Heisenberg. 

These relations require, roughly speaking, that the variance in the value of any 

coordinate, multiplied by the variance in the value of its conjugate coordinate, 

must always exceed a prescribed lower bound. 

From our point of view, these relations are best thought of as a property of 

the measuring processes of quantum mechanics. We shall not attempt here to ex- 

plain them in physical terms. Rather we shall accept them as a fundamental prop- 

erty of quantum mechanics, and proceed to show that all the usual results of 

quantum mechanics are consequences. 

The requirements of the Heisenberg uncertainty relations lead us to the follow- 

ing arrangement:  Let at„ • • •, at,    denote the canonical coordinates of the sys- 

tem, now considered as noncommuting variables, and let K be a Hilbert space 

upon which the x. are represented as noncommuting operators. A measuring proc- 

ess will determine a vector z in H,  such that the average, or expected, value of 

the ith coordinate, as determined from the measuring process, is just m. = (x-z, z), 

while the variance from this average value is just aj = ((at. - m^z, z). In this way the 

knowledge of z determines the state of the system. 

The entire framework of quantum mechanics can now be constructed along 

these lines. But for our purposes it is again more convenient to transcribe these 

results into functional form. To do so, we need an analogue of the classical re- 

sult that a probability distribution fi on E      is determined by its joint moments. 

Thus we need to know that a vector v in the Hilbert space K is determined by 

its "joint moments". Under suitable restrictions this is in fact the case, as we 

shall show below. Thus we may now define for each polynomial / in the coordin- 

ates x. with complex coefficients the average value a>{f) 

(2.1) co{f) = {fv,v) 

and record the following properties: 

(2.2) (1)     <u(l)-l. 

(2) (o(af + ßg) = aco(f) + ßco(g), 

(3) <oif*f)>0. 
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Here  a and ß  are any complex scalars, and /    is the operator adjoint to / on H. 

In this way we are lead again to a positive linear functional a> on the algebra of 

all polynomials with complex coefficients in the canonical coordinates x.. More- 

over, if a) is finite on all polynomials and not too badly unbounded, then it com- 

pletely determines K and z, and hence the state of the system (cf. section 7). 

3.  Abstract Mechanics 

The preceding sections have shown that in both classical and quantum me- 

chanics each state of a mechanical system is determined by a distribution of ad- 

missible values assigned to the canonical coordinates of the system, and that 

this distribution is in turn determined by its "joint moments".  We now proceed 

from this observation to construct the framework of an abstract form of mechanics. 

Once again we assume that we have a system of mass-points, finite in number, 

whose behavior in time is determined by the forces acting upon them according to 

an appropriate generalization of the laws of classical and quantum mechanics.  At 

any instant in time the state of the system is completely determined by a knowl- 

edge of the canonical coordinates, and the knowledge of these coordinates is de- 

termined by means of a suitable measuring process.  The measuring process in 

fact assigns to each of the canonical coordinates a distribution of possible values, 

and the properties of this distribution are determined by its "joint moments". 

With this description in mind, we denote by x , •• ., x       the canonical coordi- 

nates of the system, even in number;   and we consider the set A  of all polynomials 

/(*!» • • •, xjn) w"h these coordinates as generators.  We shall not assume that 

the generators commute in these polynomials, so that the order of the factors is an 

essential part of each polynomial. The elements of A may be added and multiplied 

together according to the usual rules for polynomials in noncommutative variables, 

and with these definitions  A forms a noncommutative algebra over the complex 

scalars, with unit element fa 1. 

The structure of any such algebra may be completely described in terms of 

the polynomial relations satisfied by its generators.  Rather than specify these 

relations among the generators directly, however, we shall require instead that the 

algebra satisfy two additional conditions, necessary for our purpose, from which 

the structural relations may then be derived. 

The first of the conditions we shall require is that  A  admit a conjugation 

operation, denoted by *,  which assigns to each polynomial / in  A  a conjugate 

polynomial /     in  A.   Roughly speaking, the conjugation operation reverses the 

order of the multiplication and complex-conjugates, the coefficients. More precisely, 

it must have the following properties: 
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(3.1) {af+ßg)*=äf*+ßg*, 

(3.2) (/«)* = e*r, 

(3.3) (/*)* = /• 

These properties determine the conjugation operation uniquely in terms of its 

action on the canonical generators. For them we stipulate 

x. (3.4) 

With respect to this conjugation operation we shall say that a polynomial / is 

Hermitian it f = f  ,  and positive if /= Sg.g. for suitable polynomials g. in A. 

We denote the set of Hermitian polynomials by H, and the set of positive polyno- 

mials by P. We note that H forms a linear space over the real scalars, and that 

P forms a cone in this space.  Every polynomial f in A is a linear combination of 

polynomials in H; in fact /= (/+ / )/2+ *(/- / )/2i. Moreover, every polynomial 

f in H is a linear combination of polynomials in P;  in fact, f= (/ + 1)2/4- 

(f— 1)2/4. Thus the linear combinations of positive polynomials span the algebra A. 

The second of the conditions we shall require of our algebra A is that it ad- 

mit a bracket operation, denoted by 1 , !,  which assigns to each pair of polynomials 

/, g in A a third polynomial h = \f, g\ in A. This operation is to form the natural 

generalization of both the Poisson bracket of classical mechanics and the commu- 

tator bracket of quantum mechanics. In particular, it must have the following 

properties: 

(3.5) (af+ ßg, h) = a\f, h\ + ß{g, h\, 

(3.6) \fg. h\ = \f, h\g + f\g, h\, 

(3.7) \f, g\ + \g, f\ = 0. 

These properties imply that the bracket operation must be bilinear and skew-sym- 

metric. Moreover, they determine the bracket operation uniquely in terms of its 

action on the canonical generators. For them we require 

(3.8) K-, */l = V 
where the X...  are real scalars. 

We now stipulate that the real skew-symmetric matrix A.--, which completes 

the definition of the bracket operation, be nondegenerate.  It is known [24] that 

this requires that the number of canonical generators be even, and that in this case 

a new set of generators x'   • • •, x'      may be chosen for A  such that 

(3.9) U'j, *';.| = K'tjl 

where 
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{+ 1 if / = i + n, 
- 1 if /=»- n, 

0 otherwise. 

We shall find it convenient to denote this new basis by p , • • •, p , q , • • •, q 

(i = 1, • • • , w), with 

(3.11) Pi = *'i> ai =*» + »• 

As we have already indicated, the imposition of these two conditions upon 

the algebra A forces a particular form upon its structure. Not every polynomial 

algebra in  In generators admits a consistent combination of the conjugation and 

bracket operations. The determination of those algebras which do so is the busi- 

ness of section 6. 

We now turn to the problem of assigning probability distributions to the canon- 

ical coordinates of our system. We have learned from sections 1 and 2 that in both 

classical and quantum mechanics these distributions may be defined in terms of 

their "joint moments", i.e., in terms of certain linear functionals on the polyno- 

mial algebra generated by the canonical coordinates. Hence in order to assign 

probability distributions to the canonical coordinates of our abstract mechanics, 

we shall consider A as the moment algebra generated by these coordinates, and 

consider the positive linear functionals on A as moment sequences. 

A linear functional <f> on A  is a functional which assigns to each polynomial 

/ in A a complex scalar 0(/),  such that 

(3.12) <p(af+ßg) = acß(f) + ß<ß(g). 

We shall say that <j> is Hermitian if 

(3.13) ct>(f) = ${f), 

that iß is positive if 

(3.14) <t>(f*f)>0, 

and that <£ is normalized if 

(3.15) ^(1) " *• 

We denote by A' the set of linear functionals on A, by  H' the Hermitian 

functionals, by P    the positive functionals, and by fl  the normalized positive 

functionals.  The conjugation operation *  on  A   induces a conjugation operation, 

also denoted by *, on A', via the relation 

(3.16) <f>*(f) = W). 
In particular, if <f> is Hermitian, then tf>   = 0.  Every linear functional <£  in A' is 

a linear combination of Hermitian functionals; in fact, <f> = (<f> + d>*)/2 + i{<f> - <f>*)/2i. 

It is apparently not known whether every Hermitian functional is a difference of 

positive functionals, and we shall not assume so in the development presented here. 
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We now have at hand all of the elements of structure necessary for our formu- 

lation of abstract mechanics. We proceed to describe this formulation as an axiom 

system, consisting of the following components: 

(1) 'A set (x     • • ■, x ) of possibly noncommuting variables (the canonical 

coordinates of the system). 

(2) The algebra A of all polynomials in these variables (the moment algebra 

of the system). 

(3) The conjugation * and bracket { , } operations on this algebra. 

(4) The set Q of normalized positive linear functions on this algebra (the 

state space of the system). 

These components are to satisfy the axioms necessary for their various defin- 

itions, and nothing more. 

We have completed our formulation of abstract mechanics. We shall devote the 

rest of this paper to an investigation of its consequences. 

4. Discussion 

In this section we shall examine critically the individual components of our 

formulation of mechanics and attempt to justify their structure on physical grounds. 

We shall also attempt to compare our formulation with those others in the litera- 

ture which are known to us, and to review possible alternatives. Our conclusions 

here are necessarily tenuous, since they are based, on the one hand, on an imper- 

fect understanding of nature, and on the other, on an imperfect understanding of 

man. 

In the first place, we observe that the individual components of our formula- 

tion are few and simple; that each has a well-understood mathematical structure 

which requires no elaborate elucidation, and that each is essential to the whole. 

Yet together they are sufficient to embody the entire framework of both classical 

and quantum mechanics, at least in their statistical aspects, without any further 

hypothesis. The fact that both classical and quantum mechanics do appear as 

special cases follows directly from the discussion of sections 1 and 2 and requires 

no additional argument here. 

Next we assert that these two special cases are essentially the only ones: 

any other mechanical system which admits a description in our formulation is nec- 

essarily a suitable combination of these two. Our assertion follows directly from 

the results of section 6.  It implies that our formulation of mechanics essentially 

characterizes the two universally recognized forms of mechanics and admits no 

others. 

Turning now to the individual components of our formulation, we observe that 

the search for a common description of classical and quantum mechanics led us to 
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the introduction of the canonical variables and their joint moments.  The canonical 

variables, labeling the states of the system, seem to be inherent in any descrip- 

tion of a mechanical system and admit a direct physical interpretation as the coor- 

dinates of the system. 

The polynomial algebra generated by these variables, on the other hand, is 

not so easily interpreted.  What physical meaning is to be attached to an arbitrary 

polynomial in the canonical variables?  We have taken the position that these poly- 

nomials represent linear combinations of the joint moments of the canonical vari- 

ables, and hence that their interpretation is to be primarily a statistical one. 

In order to develop this train of thought a little, let us introduce a new opera- 

tion, v2: A—► A, into A: To each polynomial f in A we assign a new polynomial 

t>2 (/)  defined by 

(4.1) vHf)= f*f. 

Then v2 satisfies the following consistency relations: 

(4.2) v2{\f) = \\\2 v2(f), 

(4.3) v2(f+g)+v2{f-g)=2{v2(f) + v2 (g)), 

(4.4) v2(v2<-m'> f+ v2^f) = t,2(2m)y+ 2t,2(*i + n)y+ v2(2n) f 

where v2^mHf) denotes the m-fold iterate of /, with w2(°)(/) = 1. 

Now v2 readily admits a physical interpretation:  If f is any Hermitian polyno- 

mial in A  and o>  any positive linear functional on A,  then co(f) is the average 

value assigned to / by the measuring process when the system is in the state 

associated with <y,  and oi (t^(/-<y(/)))  is its variance.  For this reason we shall 

speak of v2 as the variance operator on A. 

In order to determine the statistical distributions assigned to the canonical 

variables, we shall certainly need to know variances as well as averages. This 
means that we shall need to know the averages of all polynomials obtainable from 

the canonical variables by repeated application of the operations of addition, sca- 

lar multiplication, and variance. 

But the least subset of A which contains the canonical variables and is 

closed under these operations is A  itself.  In fact, if f and g are in this subset, 

then so is f g,  since 

(4.5) 4f*g =v2{f+g)- v2(f-g) - iv2(f + ig) + iv2(f- ig). 

In particular, if / is in this subset, so is /     (put g = 1) and so is fg (replace 

f by f  ).  It follows that all the polynomials of A   are in this subset, as asserted. 

It is possible to define the algebra A as the least complex linear space con- 

taining the canonical variables and admitting a variance operator satisfying the 
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relations (4.1)—(4.4). It can then be shown that A becomes an associative algebra 

with multiplication and conjugation defined by (4.5). We have chosen a simpler 

course, and shall not pursue this development here. 

A similar objection can be leveled against the conjugation operation, that it 

has no direct physical interpretation. But we can answer in the same way, that 

the conjugation operation is necessary in the consistent determination of variances, 

as shown by the fact that it may be derived from the variance operator via (4.5). 

A similar objection can be leveled against the use of the complex numbers as 

the scalar field. Multiplication by real numbers can be interpreted in terms of 

changes of scale, but non-real numbers present a special problem. What is the sig- 

nificance of a multiplication by v/(- 1'?  Again we can answer in the same way, 

by saying that a consistent determination of variances in general requires the use 

of an algebraically closed scalar field. This is not true in the special case of 

classical mechanics, where real scalars are sufficient, but it is true in the special 

case of quantum mechanics, where the commutation relations of the canonical 

variables involve \/(- 1) directly. 'Attempts to formulate quantum mechanics over 

the field of real numbers alone have not heretofore been completely successful. 

The difficulty seems to be that the conjugation operation, already shown to be 

essential, must act nontrivially on the algebra if the canonical variables do not 

commute, since it reverses the order of multiplication. In particular, if p and q 

are canonical variables with pq - qp = XI,   then the properties of the conjugation 

operation require that A be purely imaginary. This conclusion seems unavoidable. 

We turn now to the bracket operation. The bracket operation is the agency 

through which the development in time of the system is to be expressed. We know 

that in both classical and quantum mechanics the equations of motion of the sys- 

tem can be completely described in terms of the associated bracket operation. 

Moreover, these two bracket operations are closely related through the correspond- 

ence principle. We have set out to develop a framework which contains both of 

these operations as special cases, and have therefore included a bracket opera- 

tion in our formulation. 

The properties we have required of our bracket operation are common to both 

special cases, and are based on the following considerations: We assume that the 

system admits a complete set of infinitesimal motions of the form /—► /+ Sf, 

each of which is determined by the canonical coordinates *. and a prescribed gen- 

erating function h in A, according to a relation of the form 

(4.6) 8f= F(h, f). 

We assume that this relation is linear in A, 

(4.7) F(ah + ßk, f) = af(A, f) + ßF{k, f), 
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and that h is a constant of the motion, 

(4.8) F(h, h) m 0. 

From the properties of infinitesimal motions we conclude that 

(4.9) F (A, af+ßg)=aF{h,f) + ßF (A, g) 

and that 

(4.10) F{h, fg) = F(h, f)g + fF(h, g). 

It follows that F(h, f) is bilinear and skew-symmetric on Ax A, and is com- 

pletely determined in terms of its action on the canonical variables. 

For these values we specify that if A = x., then the resulting motion is an 

infinitesimal translation: 

(4.11) fef-FUpsp-Afyl 

with A... a skew-symmetric matrix of real numbers.  If all translations are to be ad- 

missible as motions, then it follows that the matrix A... must be nondegenerate. 

These properties suffice to identify F with the bracket operation. Thus we 

see that the properties of the bracket operation are necessary if the system is to 

admit a complete set of infinitesimal motions. In section 9 we shall see that 

these properties are also sufficient. 

The same general considerations which gave rise to the moment algebra of all 

polynomials in the canonical variables have led us to introduce the state space of 

all positive linear functionals on this algebra. These functionals are best inter- 

preted as assigning expectation values to the moments of the canonical variables, 

and their properties are all immediate consequences of this role. 

One might ask here whether every positive linear functional on the moment 

algebra can in principle be realized as a state of the system. In order to answer 

this question, let us consider the set S of all functionals which can be so realized, 

and try to determine the structure of 5. We expect that 5 must have at least the 

following properties: 

(i) O,T)es<*=?>• Aw+ (i-A)7/es,   O<A<I, 

(2) at € S=»cr*a> € S for all translations a of A, 

(3) co   € S and co„ —♦ co      > co € S. 

The first of these is simply an expression of the strong superposition principle. 

The second says that S is invariant under all translations o:x-—* x. + A-l of A. 

The third says that 5 is closed under the taking of (weak) sequential limits. 

Now it can be shown that in the two special cases of classical mechanics 

and quantum mechanics these properties suffice to ensure that S contain every 

positive linear functional on  A. In the general case this result is no longer true. 
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If we also require, however, that A be simple, in the sense that it contains no 

two-sided ideals which are stable under the conjugation and bracket operations, 

then it will follow from the results of section 6 that A is isomorphic with the mo- 

ment algebra of either classical or quantum mechanics, and hence that S must con- 

tain all the positive linear functionals on  -I. 

We shall now attempt to compare our formulation of mechanics with some of 

the others which have appeared in the literature in recent years. We are concerned 

here only with those formulations which can be presented entirely in mathematical 

terms, and shall not undertake to examine questions of physics or philosophy. 

The recognition that classical mechanics may be formulated in terms of func- 

tions of the canonical variables seems to be due to B. O. Koopman [12] who ob- 

served that the motion of the classical system is determined by the motion of the 

Hilbert space of all square-integrable functions on the phase space. This formula- 

tion has provided a starting point for much of the subsequent work on classical 

statistical mechanics, and has made it possible to compare classical and quantum 

mechanics on the same footing. As we shall see, this formulation is easily derived 

from ours under the additional assumption that all the canonical variables commute. 

The most widely recognized and generally accepted formulation of quantum 

mechanics is due to von Neumann [16] who observed that the diverse descriptions 

of Heisenberg and Schrddinger of the motion of a quantum system could be recast 

in terms of the motion of the Hilbert space of all square-integrable functions on 

the configuration space. This formulation remains the basis of nearly all subse- 

quent developments, in spite of intensive efforts to find a superior alternative. It, 

too, is easily derived from ours under the additional assumption that the canonical 

variables satisfy the familiar Heisenberg commutation relations. 

Both of these formulations are usually presented in terms of Hilbert spaces. 

From our point of view the concept of a Hilbert space is too complicated and too 

far removed from human experience to serve as a fundamental component of any 

description of nature.  For this reason we have replaced in our formulation the con- 

cept of a Hilbert space by that of a statistical distribution, whose properties seem 

to us more properly fundamental to a statistical theory, and more easily justifiable 

on physical grounds. The Hilbert space is still intrinsic in our formulation, but 

now appears as a mathematical construction derived from the fundamental compo- 

nents, rather than as a fundamental component in itself. 

Another difference in point of view centers around the concept of observables. 

In von Neumann's formulation of quantum mechanics, as well as in its classical 

counterpart, every bounded Hermitian operator on the Hilbert space is taken as an 

observable entity, on the grounds that every such operator is a function of the 

canonical variables.  From our point of view, only the joint moments—the polynomials — 
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in the canonical variables, together with certain preassigned functions —the gener- 

ators of the infinitesimal motions— are necessarily observable, on the grounds 

that only these functions can be assigned a direct interpretation.   All other 

functions are still intrinsic in our formulation, but do not appear as fundamental. 

Several attempts have been made to find a description of quantum mechanics 

that does not involve the concept of Hilbert space from the outset. In particular, 

Jordan, Wigner, and von Neumann [8] have tried to base a description upon the 

Jordan algebra of bounded observable operators. This attempt was vitiated, how- 

ever, by the discovery of the existence of exceptional Jordan algebras, which do 

not admit representations as operators on a Hilbert space. No systematic way of 

excluding the exceptional Jordan algebras from their description has yet been dis- 

covered. 

Irving Segal [20] has restated their description in terms of C    algebras, and 

has developed an extensive and highly ingenious theory which illuminates the 

darker corners o* von Neumann's original description.  But Segal's work is open to 

the objection that the concept of a C    algebra is even more sophisticated and 

less familiar than that of a Hilbert space, and moreover excludes the canonical 

variables themselves from the domain of definition. 

George Mackey [14] has devised an alternative formulation of quantum mechan- 

ics based on the lattice of all projection operators on the underlying Hilbert 

space. He has given persuasive arguments in support of his view that the projec- 

tion lattice is a natural consequence of the physical specifications of quantum 

mechanics. Yet it seems to us here that the projection lattice is also a compli- 

cated structure, and does not characterize the essential features of quantum 

mechanics. Moreover, no way to exclude those lattices which cannot be repre- 

sented by projections on a Hilbert space has yet been found. 

T. F. Jordan and E. C. G. Sudarshan have recently presented a framework for 

both classical and quantum mechanics and discussed its various representations 

[9> 30], This framework takes as its fundamental component the Lie algebra gen- 

erated by functions of the canonical variables under the bracket operation. This 

Lie algebra, however, is infinite dimensional, and its structure has not been 

worked out.  In particular, the authors have not ruled out the possibility of repre- 

sentations which have nothing to do with mechanics. Nevertheless, their formula- 

tion has several points in common with ours. (See also [25. 27].) 

Finally, we mention that A. S. Wightman has given a description of quantum 

field theory in terms of the expectation values of the fields, and shown that the 

theory can be recovered from a knowledge of these expectation values [23].  This 

description can be rewritten for both the classical and quantum mechanics of 

particles, and provides an elegant approach to the statistical aspects of both. 
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Our formulation was first suggested by the work of Wightman, and owes much of 

its character to his ideas. 

In summary, we assert that the formulation of mechanics presented here offers 

the advantages of simplicity, compactness, and relevance over previous formula- 

tions appearing in the literature.  Moreover, it encompasses both classical and 

quantum mechanics, and characterizes them as essentially the only admissible 

systems.  Its greatest strength, however, is at the same time its greatest weak- 

ness:  Our formulation can account only for those features of either system which 

are common to both. 

5.  Preliminary Consequences 

In this section we shall derive from the axiom system of section 3 the first 

consequences.  We shall show first that each positive linear functional on A  as- 

signs to each Hermitian polynomial in  A  a distribution of possible values, which 

may be interpreted as the probability distribution of obtaining those values in a 

single measurement. We shall show next that each positive linear functional on A 

determines a representation of A as operators on a Hilbert space, such that the 

action of the functional on A can be recovered from the structure of the Hilbert 

space.  Finally we shall show that the uncertainty inherent in the joint distribu- 

tion assigned to any pair of Hermitian polynomials by the functional is bounded 

below by the modulus of the expected value of their commutator. These results 

are all an integral part of the statistical aspects of both classical and quantum 

mechanics, and must be obtainable from the fundamental components of any formu- 

lation of mecahnics which encompasses both. 

Theorem 5»1«  For each to € Q and Hermitian f € A,  there exists a probability 

measure ji on the real line E.  such that 

(5.1) <u(f)=   f€ndp(£),      B=0, 1, 2, .... 
El 

Proof.  Let P(£) be any polynomial with complex coefficients in the one vari- 

able £ on  E.,  and assign to P(<f) the element P(f)  in A.  Now observe that 

this assignment defines a homomorphism  t  of the algebra A(£)  of all polynomials 

in £; on E.   onto the subalgebra A(f) of all polynomials in / in A. The adjoint 

i* of this homomorphism maps the adjoint space of all linear functionals on A(f) 

into the adjoint space of all linear functionals on  A (<f)  via the formula 

(5.2) d*<f>) {P) = <p(cP). 

In particular, it assigns to w  a functional (*&> which is positive on all poly- 

nomials of the form Q*Q,   since U*co)(Q*Q)) = a(t(Q*Qi) = o(UQ)* iiQ)) > 0. Now 

it is well known that any polynomial  P(£)  which is positive for all values of f 

can always be expressed in the form Q*Q.  It follows that if  P(f) > 0 for all £, 
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then (t*6>) (P) > 0. 

Thus we are in the situation described by the celebrated Hamburger moment 

problem [21]. According to its solution, there exists a finite measure p on E. 

such that 

(5.3) d*co){P) =   fP(€)W& 

for all polynomials P in A(g). If we take P{£) = £n and use (5.2) we get (5.1). 

In this way co  assigns to each Hermitian f a probability distribution p of 

real numbers. This distribution has a simple interpretation: The probability that 

the value obtained for / in a single measurement will lie in a given interval is 

just the ^-measure of that interval.  In particular, if the ^-measure of that interval 

is zero, then the probability of obtaining   in a single measurement a value for f 

which lies in that interval is zero. Thus, if the measure y. consists entirely of a 

sum of isolated point measures,   then the values obtained for / in a single meas- 

urement must fall at one of the points determined by the point measures. This is a 

restatement of the conventional requirement, valid for both classical and quantum 

mechanics, that the values obtained from a single measurement be eigenvalues of 

the associated operator. In the present context it appears not as an eigenvalue 

problem but as a property of the statistics. 

The measure ^ obtained from co in this way need not be unique, since in gen- 

eral the solution of the moment problem is not unique.  A sufficient condition for 

uniqueness is given in the following corollary: 

Corollary 5-2.   The measure ft associated with co in Theorem 5.1 is unique if 

co satisfies 
oo        t t2n\ 

(5.4) 1^L1<BO. 
n = 0   (2n)! 

Proof.  This follows from the usual sufficiency condition for uniqueness of the 

solution of the moment problem [21]. 

It is tempting to try to extend this result to obtain joint distributions for sev- 

eral commuting variables.  The proof would proceed exactly as in Theorem 5.1 and 

lead to a moment problem in several dimensions. It is known, however, that a poly- 

nomial in several real-valued variables which is positive for all values of the vari- 

ables is not necessarily expressible as a sum of polynomials of the form Q Q [1], 

Thus co is not necessarily positive on such polynomials, and the conditions for 

the solution of the moment problem are not necessarily satisfied.  By requiring a 

little more of co, however, we can establish the desired extension of Theorem 5.1. 

Definition 5. 3. Let A(flt • • •, f^) be a subalgebra of A generated by the 

k commuting Hermitian elements /,,•••, f^ of A.  Let co be a positive linear 
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functional on A. Then <u is strictly positive on /4(/,, •••> fj) if o{P(fv • • •, /^)) > 0 
for all polynomials P of k variables for which P{£., • • ■, £.) > 0. 

Theorem 5.4. Let <y € Q on«/ /,•••, /7 € /4 u»iA /\ Hermitian and {■(■ = 

/•/,- /or o/i i, j = 1, • • •, k. If a is strictly positive on A{f., •• •, fk), then there 
exists a probability measure p. on E.  such that 

(5.5) o>{P(fv ..-, fk))= JP(£V .... ek)dp(€v -.., &) 

for all polynomials P(/p .... fk) in A ifv • " , fk). 

Corollary 5.5.   The measure p is unique if co satisfies the condition 

(5.6) **£?■<- n = 0   (2n)! 

where h*{fv ..., fk) = f\ + ... + f\. 

The proofs of these results are exact analogues of the proofs of Theorem 5.1 
and its corollary, and will be omitted here. 

Not every positive linear functional on A is necessarily strictly positive on 

^(/i» • •*! fi) (see [26], p. 330). It is possible to show, however, that if co satis- 
fies the condition (5.6), then it must be strictly positive on A{f,, • • •, /.) [15], 

This condition, while sufficient, is certainly not necessary, and the exact situa- 
tion remains obscure. 

If the k elements /., •.., /,   of A do not commute, then co can no longer be 
represented in the form (5.5). It is possible, however, to represent it in terms of 
the inner product on a certain Hilbert space. The next theorem makes this state- 
ment precise. 

Theorem 5.6. Let co £ 0, and fv>",fk£A, with fi Hermitian.   Then there 
exists a Hilbert space M with a distinguished vector v and a representation p of 
il(/„ • • •, fk) as an algebra of operators on K with common dense domain, such 
that 

(5.7) *>(P(fv ■ • •, 4» = (pPify, • • •, fk)v, v) 

for all polynomials P(fv " ', fk) in A{fv • • •, fk). 

For the proof of this theorem we need the following lemmas: 

Lemma 5.7.  For all <f> € P' and all f, g £ A, 

(5-8) |^(/*«)|2 <<pif*f)<p(g*g)' 
Proof. This is just an unfamiliar form of the familiar Schwarz inequality. The 

proof runs as follows: For any scalars a and ß we have 

(5.9) ° - ^((a/" ße)*W- ßg» = M W/> - 5/3«M/*g) 
-ß*d>(g*f) + \ß\Wg)- 
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If we choose a = (<p{g* g) <p{f* g)?/2  and ß = (<f>(f* f)<f>(g* f))Vl then, using the 

fact that 0 is Hermitian, we find 

(5.io) o < (<f>{f*n<t>(g*g))1A - WsHig'nfi 
from which (5.8) follows. 

Lemma 5.8.  For all (f> € P', <f>(\) = 0 implies <f> = 0. 

Proof. For all f£A, we have 0 < \cp(f)\2 = |<A(1*/)|2 < <p{l*l)<f>(f*f) = 0, 

which implies <£(/) = 0. 

Lemma 5.9.  For any (p £ P' let ] = \f-<ß(f f) = 0i.  Then J is a left ideal 

in A. 

Proof. We must show that if f, g £ J and A € A, then A/, f+g, and A/ lie in 

/. That \f lies in / is obvious. For /+ g, observe that (/+ g)*(f+ g) + (/- g)*(f- g) = 

2(/7+ «*«). from which " allows that 0 < <£((/+ g)*(/+ g)) < 2(<f>(f*f) + <p(g*g)) = 0 . 

Hence <£((/+ g)   (/+ g)) = 0,  and f+g  lies in /.  For hf,  consider the linear 

functional 6 on A  defined by 0(h) = cf>(f*hf). Then 0(A*A) > 0,  so 6 € /»', and 

ö(l) = </>(/ /) = 0,  since /"€ /,  so 0 = 0 by Lemma 5.8. In particular, 

<f>(khf) (hf)) = 0(A A)= 0, so A/G /,  and the proof is complete. 

Proof of Theorem 5.6.  Let us denote by B the subalgebra A (/., • • •, /,). 

Given co € Q, we put J = \f £ B:co(f f) = Oi and form the space ß = ß// of 

residue classes of B  modulo /.  We define on ß   an inner product (,):ßx B—► C 

via 

(5.11) (Zg-) = co{g*f), 

for all /, g € B,  where f = f+ J, g = g + J. Since <y is a positive linear func- 

tional, this mapping satisfies all the requirements of an inner product save per- 

haps definiteness. But if (/,/") = 0, then a>(f*f) = 0 so f € J, and / = 0. Thus 

ß carries an inner product, and its completion under this inner product forms a 

Hilbert space, which we denote by K. 

We now assign to each element / of B  an operator p(f)  acting on ß via 

(5.12) p(/)g=/g. 

Since / is a left ideal, the definition of p (f) is independent of the choice of 

representative g  of g.   It is easy to verify that p(af + ßg) = ap(f) + ßp(g) 

and p(fg) = p(/)p(g). Moreover, we have (p(f)g, A) = (/g, A) = <u(A*/g) = 

ig> f h) = (g, p(f )A),  so that conjugation is represented by a suitable restriction 

of the adjoint. In particular, the Hermitian elements of ß  are mapped onto sym- 

metric operators on K. 

Thus p represents ß  as an algebra of operators acting on K, with common 

dense domain ß. We now denote by v the distinguished vector T = 1 + J in K, 
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and observe that for any element (= P{f,, • • •, fi) of B,  we have the relation 

(5.7). The proof of Theorem 5.6 is complete. 

This construction is due originally to Gelfand and Neumark [6], who used it 

to obtain representations of normed algebras with conjugations. In that case the 

algebras are represented by algebras of bounded operators on K. The construc- 

tion, however, makes no essential use of the norm, and extends easily to any as- 

sociate algebra with involution. In this case the representing operators need not 

be bounded, and are defined only on a common invariant dense domain in K. 

This construction is sometimes used in the literature of quantum field theory, 

where it is referred to as "the Gelfand construction". No proof of its validity for 

algebras without norms, however, is known to us. 

Our final result in this section gives a form of the Heisenberg uncertainty 

relations for this general setting. 

Definition 5.10. Let f be any element of A and <y any state in 0. The vari- 

ance (A/)2  of / in the state  a> is defined by the formula 

(5.13) (Af)2 = cü(f*f)-co{f)co(f)- 

Theorem 5-11. £<e< /, g be any pair of Hermitian elements of A, and co any 

state of ß.   Then the variances (A/)2 and (Ag)2 of f and g in the state <y must 

satisfy the inequality 

(5.14) (A/)2(Ag)2> |o>(A)|2 

where h = i{fg - gf)/2. 

Proof.  First, suppose a>{f) = &>(g) = 0. Then (A/)2 = cj(f2)  and (Ag)2 = 

<ü(g2). So 

(5.15) (A/)2(Ag)2 = <o(f2)a>{g2)> \co{fg)\2 

by (5.8). Now fg = (fg + gf)/2 + (fg - gf)/2, and so 

\o>(fg)\2=\\<o{fg+gf) + a>{fg-gf)\2 

(5.16) \ 
= 2\o>(fg+gf)\2+i\<o{fg-gf)\2- 

The cross terms here vanish, since o is Hermitian, and co(fg) = coigf). Com- 

bining (5.15) and (5.16), we obtain 

(5.17) (A/)2(Ag)2 > \\co(fg - gf)\2 = \co(h) |2 

as required. 

If 0)(/)  and (o(g) are not zero, then we replace / by f— <o(f)l and g by 

g - cj(g)l,  noting that this replacement cancels the mean and does not affect the 

variance. Thus Theorem 5.11 is proved. 
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This theorem says that the product of the variances of / and g is bounded 

below by the square of the mean of their commutator.  This means that the proba- 

bility distributions assigned by o> to / and g cannot be completely independent 

unless f and g commute. Here, perhaps, is the most direct expression of the 

statistical significance of the non-commutativity of the moment algebra A. 

6. The Structure of the Moment Algebra 

We have already indicated in section 3 that the requirement that the moment 

algebra A carry the conjugation and bracket operations forces certain relations 

upon the canonical variables. In this section we set out to determine these rela- 

tions explicitly. We shall show that the canonical variables generate a certain 

finite dimensional nilpotent Lie algebra.  It follows that A  is then a homomorphic 

image of the universal enveloping algebra of this Lie algebra, and the structure of 

A can be described completely from this fact. 

We begin with a simple lemma. 

Lemma 6.1. Let x be any linear combination of the canonical variables 

*,, • • •, x~    and f any element of A.   Then \x, f\ = 0 implies [x, ß - 0. 

Proof. If x = 0,  the conclusion is trivial. Otherwise, let y by any linear 

combination of the canonical variables such that \x, y\ ^ 0.  By multiplying y by 

a suitable scalar factor, we may assume that \x, y\ = 1. Now consider the combin- 

ation i*2> yf\% \x/e expand it in two different ways, using the properties of the 

bracket operation: 

U2, yf\ = I*, yf\x + x\x, yf\ 

(6.1) = \x, y\fx + y\x, f\x + x\x, y\f+ xy\x, f\ 

= fx + xf, 

\x2,yf\ = \x2,y\f+y\X2,f\ 

(6.2) = '*» yl*f+ *'*> ylf+ yf*> ßx + yx\*> f\ 

= xf + xf. 

Subtracting (6.2) from (6.1) we find 0 = fx - xf,  as required. 

From this lemma we obtain our first structure theorem. 

Theorem 6.2.  Assume the canonical variables p., q- are chosen so that 

ip,> P.! = hi> 9/i = 0 an& ip,» ?,! = 5,-yl.   Then we have 

(6.3) [Pj, qj\ = [qt, qj\ = 0, 

(6.4) [p{-, qA = t5,-z  for some   z in the center Z of A, 

(6.5) [pf, z] = [?,., z] = 0. 
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Proof. For (6.3). put *= p(. and /= p.. Then Lemma 6.1 applies and tells us 

that [p., p;.] = 0.  Similarly, [q., qj\ = 0 and [p,., q}] = 0 if i 4 j- 

Now put * = p. and zi = [p., qi\, and then observe that \x, z{j = ipt-, p,-9,l - 

iP{> ?iPi' = Pj ~ Pi ~ 0* Hence Lemma 6.1 applies again, and yields [p., z.] = 0. 

Similarly, [q., z.] = 0. 

It remains to show that the  z. are all equal.  For this, put x = p ■ + p ■ and 

/= 1i ~ 1j- Then \x, f\ = 0,  so [*, ß = [p., qr.] - [p^, qj\ = z. - z. = 0. The proof 

is complete. 

As an immediate consequence, we have the following corollary. 

Corollary 6.3. // / and g are any two polynomials in A,  then 

(6.6) [f, g] = iz\f, g\. 

Proof. It suffices to prove this for monomials. If / and g are monomials of 

degree 1, then the result is a restatement of the relations (6.3)—(6.4). Suppose by 

induction that it holds for all monomials / of degree d and g of degree 1, and 

consider the case where degree f=d+ 1, degree g = 1. Write /= hk, where de- 

gree h = 1 and degree k = d, and compute: [/, g] = [hk, g\ = [h, g]k + h[k, g] = 

iz([h, g\k + h\k, g\) (by the induction hypothesis) = iz\hk, g\ = »zi/, gl, as re- 

quired.  A similar induction on the degree of g now completes the proof. 

The relations (6.3)—(6.5), taken together, say that the variables p., q.,   and 

z form the basis for an n + 1 dimensional nilpotent Lie algebra [7], It seems 

appropriate to call this Lie algebra the Heisenberg algebra, and the associated 

Lie group the Heisenberg group, since, as we shall see, its irreducible represen- 

tations yield the Heisenberg commutation relations. It now follows from the 

theory of Lie algebras that the algebra A generated by the p., q., and z must be 

a homomorphic image of the complex associative enveloping algebra of the Heisen- 

berg algebra [7],  In particular, if all the relations in A   are consequences of 

(6.3)— (6.5),  then  A  is an isomorphic image of, and hence may be identified with, 

this enveloping algebra. 

We shall verify below that this universal enveloping algebra, generated by 

the pi and qi and subject only to the relations (6.3)-(6.5) and their consequences, 

does indeed admit both a conjugation and a bracket operation, and so satisfies all 

the requirements of our formulation of a moment algebra. Let us anticipate this 

result for a moment, and denote this algebra by A   . Then any other algebra which 

satisfies our requirements must involve the relations (6.3) — (6.5), together with 

others which are not consequences of these, and hence must be a homomorphic 

image of A   .  The problem of determining these other algebras therefore reduces 

to that of determining the homomorphisms of A     which preserve the conjugation 

and bracket operations. This problem reduces in turn to that of determining the 
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two-sided ideals in A     which are stable under the conjugation and bracket opera- 

tions. 

In order to carry out this program, we must first establish a normal form for 

the polynomials in  A     which eliminates the ambiguity in the form of these poly- 

nomials resulting from the relations (6.3)—(6.5). 

Definition 6.4.  A monomial f{p., q-, z) in A is expressed in normal form if 

each p.  stands to the left of each  q-,  A polynomial is in normal form if it is a 

linear combination of monomials all in normal form. 

Thus P?9?z is in normal form, but p^q^p q  z is not. Since the p. commute 

among themselves, as do the q., the relative order of the p's and q's is imma- 

terial. It is convenient to take the form  zrp   * • • • p,    q 1 • • • q,     as the normal 

form for monomials, and we shall do so hereafter. 

Lemma 6.5- Every polynomial in A     has a unique normal form. 

Proof.  We proceed by induction on the degree.  The statement is trivially 

true for all polynomials of total degree 0 or  1. If the total degree is  2, the only 

monomials not already in normal form are the q-p-, which can be reexpressed as 

p •<?,. - iz. 

Suppose the conclusion true for polynomials of total degree d,  and consider 

a monomial / of total degree d + 1.  If it contains no p., it is already in normal 

form.  If it contains p., say, then using the relation q.p. = p.q. - iz,  we may re- 

write it as a polynomial of the form p-g + h,  where g and A are polynomials of 

degree < d.  Now using the induction hypothesis we can rewrite g and h in normal 

form, which also gives us the normal form for /. 

The uniqueness follows from the fact that if two polynomials in normal form 

are equal, then their difference, which is also in normal form, vanishes.  But no 

polynomials in normal form can vanish in A   ,  since all relations in A     ate con- 

sequences of (6.3)—(6.5), which cannot themselves be placed in normal form. 

This result is a special form of the Birkhoff-Witt theorem, valid for all Lie 

algebras [7]. 

In terms of the normal form we may define the partial derivatives 3/dp- and 

d/dq- on A. These operators act according to the usual rules for differentiation 

of polynomials, except that care must be taken with the order of multiplication. 

If / is in normal form, then clearly so are the df/dp-  and df/dq-. Moreover, they 

have the following desirable property. 

Lemma 6.6. Let f be any polynomial in A^, with df/dp; = df/dq; = 0. Then 

the normal form of f is a polynomial in  z alone. 

Proof. Write f in normal form, and use the usual rules of differentiation. The 

derivative df/dp^ can vanish only if the normal form of f contains no p.. 
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Similarly for q ■. The result now follows from the uniqueness of the normal form. 

Next we characterize certain commutators in terms of these derivatives: 

Lemma 6.7. Let f be any polynomial in A   .  Then [p-, ß = iz(<?//d<7 •)»  and 

[?,-,/] = - iz(df/dpt). 

Proof. It suffices to prove this for monomials. If / is a monomial of degree 

1, then we have again the relations (6.3)—(6.4). Assuming the result true if de- 

gree (= d, suppose degree f=d+ 1. Factor / as hk, with degree h = 1 and 

degree k = d. Then 

[P,-, ß = [Pi, hk] = [pp h]k + h[Pi, k] = iz [*L k + A^-j = fr|C , 

as required.  Similarly, [a., /"J - — iz(df/dp),   and this completes the proof. 

Corollary 6.8. Let f be any polynomial in A^, with [pt-, ß = [qif ß = 0. 

Then the normal form of f is a polynomial in z alone. 

Proof. Combine Lemma 6.6 and Lemma 6.7. 

We now turn to the ideal structure of A^. 

Lemma 6.9. Let J be a non-trivial two-sided ideal in A   .   Then J contains 
oo 

a non-zero element whose normal form is a polynomial in  z alone. 

Proof. Let / be any non-zero element in / whose total degree in the p. and 

q{ is minimal. Then [p^ ß = iz(df/dq) and [qit ß =-iz{df/dp)   are also elements 

of /,  whose total degree in the p(.  and qi is less by one than that of f.  It fol- 

lows that [p^ ß = [qit ß = 0, and hence that the normal form of / is a polynomial 

in z  alone. 

Let Z denote the subalgebra of A     consisting of all elements whose normal 

form is a polynomial in z alone. Then Corollary 6.8 tells us that Z is the cen- 

ter of A^; i.e., Z consists precisely of all elements of A     which commute with 

all the canonical variables, and hence with every element of A   . Lemma 6.9 

says that every non-trivial two-sided ideal in A     has a non-trivial intersection 

with Z. 

We shall say that a two-sided ideal / of A     is stable under the conjugation 

operation if / € /  implies f   € /; and stable under the bracket operation if / G / 

implies {/, g\ € / for all g € A   . We now show that those non-trivial ideals of 

A^ which are stable under the conjugation and bracket operations are in fact de- 

termined by their intersection with Z. 

Theorem 6.10. Every non-trivial two-sided ideal J of A     which is stable 

under the conjugation and bracket operations is of the form J = A^g, where g is 

a fixed Hermitian polynomial in z alone. Moreover, every subset of A     of this 

form is a non-trivial two-sided ideal which is stable under these operations. 

Proof. We shall prove the second statement first. Let g be any Hermitian 
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polynomial in z alone, and put / = A^g, Then / is a left ideal in A   ;  and since 

z commutes with every element in A   ,  so does g(z),  and hence /  is also a right 

ideal. If fg € /,  then (fg)   = g f   = / g € / and / is stable under conjugation. 

If fg e J, then \fg, h] = \f, h\g + f\g, Ai = \f, A} € / (since \g, h] = 0) and / is 

stable under the bracket operation.. 

Now let / be any two-sided ideal of A^ which is stable under these opera- 

tions. Then / f] Z is an ideal in Z. But since Z is just the algebra of all poly- 

nomials in one generator, we know that every ideal of Z is principal, i.e., every 

ideal is of the form Zg, for some g G Z. If / is stable under conjugation, then 

so is / p| Z, and it follows that g may be chosen Hermitian. Lemma 6.9 implies 

that g ^ 0 if / is non-trivial. 

Put ]' = A   g. We have already shown that /' is a two-sided stable ideal in 

A   , and it is obviously contained in /.  It remains to show that /' = /. Suppose 

otherwise, and choose an element A,  in normal form and of minimal total degree, 

which lies in / but not in /'. Then {p., Ai = dh/dq: is also of normal form and 

has a total degree less than that of A. Since \p., h\ lies in /,   it must also lie 

in /'. This means that (p., Ai may be expressed in the form f-g, with f, in nor- 

mal form.  Similarly \q.t h] may be expressed in the form - gg,  with g. in normal 

form. 

Now we observe that 

2k =^IA = J^L    d2h     *f>s) _ dfi 
dpi8      dpj      dpjdpi    dpfdPj        dPi      dpi 

e' 

We know that if g = 0, then / = iol = /',  which is contrary to our supposition.  If 

g ^ 0,  then we must have df^dpi = dfJdp^ In exactly the same way, we must 

also have dg/dq: = dg/dqt, and df^dq: = dgJdpy If all the canonical variables 

were commutative, these relations would imply that there exists a single polyno- 

mial / such that df/dp; = g •,  and df/dqf = /.-. This same polynomial /,  however, 

will serve the same purpose if the canonical variables are not all commutative, 

provided only that we write everything in normal form.   Thus we have obtained a 

polynomial /, in normal form, such that jp^, fg] = d{fg)/dqi = ftg,  and \qt, fg] = 

-  difgl/dPi  = - g;g. 
Now consider the difference A - fg.  We see at once that {p., A - fg] = 

dh/dpi - d(fg)/dpi = 0, and similarly, that \qit A - fg] = 0. According to Lemmas 

6.7 and 6.9 these relations imply that A - fg lies in / f] Z,  and so may be written 

in the form A - fg = g'g, with g'€ Z. Thus A = (/+ g^g,  and so A € /'. We have 

supposed that A  is not in /',   and so have arrived at a contradiction. 

Thus every stable two-sided ideal J  in A     is of the form A   e,  for some 

Hermitian polynomial g in the center Z of A   .By rephrasing this result in terms 



"W 

A NEW FORMULATION OF PARTICLE MECHANICS 25 

of the original algebra A which forms the basis of our formulation of mechanics, 
we have our final result: 

Corollary 6.11. Let A be any algebra of polynomials in the canonical vari- 

ables which satisfies the requirements of our formulation of mechanics.   Then the 

canonical variables of A necessarily satisfy the relations (6.3)—(6.5), together 
with one other relation of the form 

(6.7) g(z) = 0 

where g is a Hermitian polynomial in z alone. All other relations among the 
canonical variables which are valid in A  are algebraic consequences of these. 

It remains for us to show that these conditions (6.3)—(6.5) and (6.7) are also 
sufficient. 

Theorem 6.12.  The conditions (6.3)—(6.5) and (6.7) are also sufficient for the 
algebra A to satisfy the requirements of our formulation of mechanics. 

Proof. It follows from Theorem 6.10 that it suffices for us to show that the 
algebra A     admits both a conjugation and a bracket operation.  For the conjuga- 
tion operation, we observe that A     itself is a homomorphic image of the free al- 
gebra of all polynomials in the p., q., and  z,  subject to no relations at all. This 
algebra obviously admits a conjugation relation obtained by reversing the order of 
multiplication and conjugating coefficients. The kernel of the homomorphism of 

this algebra onto A^ is the two-sided ideal generated by the relations (6.3)—(6.5). 
It is easy to verify that this ideal is stable under this conjugation, and hence that 
the homomorphism defines a conjugation on A   . 

For the bracket operation, we observe that it must be related to the commuta- 
tor by (6.6). Hence it suffices to show that, for all f, g in A   , the relations 

(6.3)—(6.5) imply that [/, g] = izh for some h. The proof of this fact proceeds by 
induction on degree, exactly as the proof of (6.6). We now define {/, g\ = h. It is 
easy to verify that this definition satisfies all the requirements of section 3- 

The results of this section tell us that it suffices for most purposes to con- 
sider the algebra Ax as our moment algebra, since every other moment algebra is 
a homomorphic image thereof. For this reason we may restrict our attention here- 
after to the algebra Ax without any loss of generality. 

7. Representations of the Moment Algebra 
In the last section we determined the structure of those algebras which are 

admissible as moment algebras in our formulation of mechanics. We must now 

show that every such algebra does in fact arise from a mechanical system. In this 
section we shall construct a standard representation for each admissible algebra 
as an algebra of unbounded operators with a common invariant dense domain acting 
on a Hilbert space, in such a way that the conjugation and bracket operations, as 
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well as the positive linear functiooals, of the algebra are all realized in terms of 

the structure of the Hilbert space.  In the cases of classical and quantum mechan- 

ics, this representation reduces to the usual familiar form. In all other cases the 

representation can be described as a suitable combination of the representations 

of classical and quantum mechanics. In this sense our formulation of mechanics 

characterizes the two known systems of mechanics: Under our assumptions, no 

essentially different system is possible. 

We proceed now to the construction of a standard representation for admis- 

sible algebras. 

We first construct the Hilbert space £- {Ej ) of all complex-valued measur- 

able functions defined on E2    which are square-integrable with respect to the 

usual Lesbesgue measure.  We shall denote this Hilbert space by Kfl.  At the same 

time we construct the dense subspace of H0  consisting of all the Hermite func- 

tions, and denote it by 2)Q. 

On 2L   we now construct the family of unbounded operators p(0), defined by 

multiplication by the ith coordinate, and <7t(0), defined by multiplication by the 

(n + i)th coordinate, with i = 1, • • •, n.   Then 3L  is a common dense invariant 

domain for these operators, and on 2L  they are all essentially self-adjoint, and 

they all commute.  Hence we may construct on 2)ft  the commutative algebra AQ of 

unbounded operators consisting of all polynomials with complex coefficients in 

the operators p^O)  and <7t(0).  Each element of AQ is defined by multiplication 

by the corresponding polynomial in the 2n coordinates. 

We introduce into A„  the conjugation and bracket operations as follows:  The 

conjugate /    of any polynomial A. is defined by multiplication by the complex 

conjugate polynomial in the coordinates.  The bracket [f, g\ of any two polyno- 

mials / and g in AQ  is defined by multiplication by the derived polynomial 

\f, g}_   in the coordinates, where | , L  denotes the classical Poisson bracket. 

It is easy to verify that with these definitions A~  becomes an algebra which 

satisfies all the requirements of Corollary 6.6, with g(z) = z.  In view of the dis- 

cussion given in section 1, it is natural to identify this algebra with the structure 

of classical mechanics. 

We next construct the Hilbert space ^2^r) °* al* complex-valued functions 

defined on En  which are square-integrable with respect to the usual Lesbesgue 

measure. We form one copy of this Hilbert space for each nonzero real number A, 

and denote it by H>,.  At the same time we construct the dense subspace of H\ 

consisting of all the Hermite functions, and denote it by 2)\. 

On 3)^ we now construct the family of unbounded operators p(A), defined if 

A < 0 by -VA times differentiation by the t'th coordinate, and defined if A > 0 
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by \/A times multiplication by the ith coordinate. We also construct the family 

9((A), defined by the relation ^(A) = pf(- A). Then 3)^ is a common invariant 

dense domain for the p.(A) and q-(A), and on 3K  they are all essentially self- 

adjoint and satisfy the relation [p;(A), gt(A)] = iAl. Hence we may also construct 

on 3)\  the algebra of unbounded operators consisting of all polynomials with com- 

plex coefficients in the Pj-(A)  and g,(A). 

We now introduce into A\  the conjugation and bracket operations as follows: 

The conjugation f    of any polynomial f in A^ is the polynomial obtained from / 

by reversing the order of the operators and conjugating the coefficients. The 

bracket \f, gi of any two polynomials / and g in A\   is the polynomial obtained 

from f and g by forming the combination [/, g] /iX. 

It is easy to verify that with these definitions A^ becomes an algebra which 

satisfies all of the requirements of Corollary 6.6, with g{z) = z - A. In view of 

the discussion given in section 2, it is natural to identify this algebra with the 

structure of quantum mechanics, with the parameter 2ir\ playing the role of 

Plank's constant [19]. 

Now let m be any Borel measure on E . We construct the Hüben space J{_, 

consisting of all measurable functions v defined on E,   with values in the H\, 

such that D(A) lies in K^, and such that /||f (A) ||2<fyi(A)  is finite.  At the same 

time we construct the dense subspace J)   , consisting of those functions v in 

H     such that v(A) lies in 3\. 

On 3)     we construct a family of unbounded operators p., defined by the rela- 

tion 

(7.1) (Pl.t>) (A) = P,.(AMA), 

and fl.(A), defined by the relation 

(7.2) (qiv){X) = qi(X)v{\). 

It is easy to verify that 3)     is an invariant dense domain for these operators, and 

that on 3)m each is essentially self-adjoint, and together they satisfy the relations 

(7.3) [Pi> P/l = £?«' 9/1 = °' 

[p,., qjL = iz8tj 

where z is the operator defined by 

(7.4) {zv) (A) = Av(A). 

It follows that we may construct on 3)     the algebra A   , consisting of all 

polynomials with complex coefficients in the  p.  and  q..   Every polynomial / in 

Am operates on elements in Km according to the formula 

(7.5) (fv) (A) = f(X)v{k), 
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where /(A)  is the corresponding polynomial in A\. We introduce into A     the con- 

jugation and bracket operations in the now obvious way: 

(7.6) (f*v)M=f*{\)v{\), 

(7.7) (If, g\ v) (A) = l/(A), g(A)lAv(k) 

where i , }^ denotes the bracket operation in A\. 

The properties of A     axe summarized in the following theorem: 

Theorem 7.1.  The algebra Am satisfies all the requirements of Corollary 6.9 

with g(z) taken as the Hermitian polynomial of least degree such that 

(7.8) /g2(A)<MA) = 0 
El 

if one exists, and g(z) = 0 otherwise. 

Proof. The fact that the canonical variables p. and a. in A     satisfy the 

relations (6.3)—(6.6) follows immediately from the construction. For the last 

statement it suffices to observe that every polynomial g{z) in Z acts on K 

according to the formula 

(7.9) (gv){\) = g(\)v{\). 

This follows from (7.7). Now g{z) = 0 in Am if and only if gv = 0 for every v in 

H_.  This holds if and only if m J 

IIHI2=   /||(gf)A||2<MA) 
(7.10) £l 

=    /g2U)||v(A)||2rfm(A) = 0 
El 

for every t; in K   .  The usual argument now shows that (7.10) is equivalent with 

(7.8).  We conclude that any polynomial g(z) in  z alone vanishes in A     if and 

only if it satisfies (7.8).  In particular any Hermitian polynomial of least degree 

in  z alone which vanishes in A     must satisfy (7.8), and all others are multiples 

thereof.  If no polynomial in  z alone satisfies (7.8), then no such polynomial can 

vanish in A   ,  and the relation (6.6) holds only for the polynomial g(z) a 0. 

We now see that the precise form of the relation (6.6) which holds in A     de- 

pends on the form of the measure m.  If m  is not purely a point measure, or if m 

is purely a point measure supported on an infinite number of distinct points, then 

clearly (7.8)   can hold for no polynomial other than g(z) = 0. Hence every such 

measure gives us a representation of A   ,  and incidentally provides the verifica- 

tion required in the last section that A     is actually an admissible algebra. 

If m is a point measure supported on a finite number of distinct points, say 

A,, • • •, A.,  then clearly (7.8) holds for every polynomial which vanishes at each 
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of the points K-. The polynomial of least degree with this property is  g(A) - 

n^_, (A - A). Hence every such measure gives us a representation of an admis- 

sible algebra, with the relation (6.6) given by 
k 

(7.11) g(z)= n<z-A.) = o. 

In particular, if m is support at just one point A,, then ~A     reduces to A\, and 

the representation reduces to the one previously constructed for Aw. 

In this way we have found representations for all algebras A  satisfying the 

relations (6.3)—(6.6) as well as for A^. For A^, we may choose m to be any 

measure such that (7.8) holds only for the polynomial g(z) = 0;  and for any other 

A  we may choose m to be any measure such that (7.8) holds for all polynomials 

g(z) which vanish in A. 

If the polynomial g(z) which defines the relation (6.6) in A is of the special form 

(7.11), then m may be chosen so that the representations of A obtained in this 

way are faithful, in the sense that every polynomial which is nonzero in A is 

represented by an operator which is nonzero on K   . This follows from the fact 

that every representation is a homomorphism of A. If this homomorphism annihi- 

lates any polynomial in A, then by the results of the last section it must also 

annihilate a polynomial in z alone in A. Hence (7.8) must hold for this polyno- 

mial, and so this polynomial must vanish on the support of m. If m is chosen to 

have the largest support consistent with (7.8), then it follows that this polynomial 
must vanish wherever g(z) vanishes, and .hence must be a multiple of g(z). This 

means that it vanishes in A, and our conclusion follows.- 

If the polynomial g(z) is not of the form (7.11), however, then the representa- 

tions obtained in this way cannot be faithful. This follows from the fact that (7.8) 

must hold for g(z). If g2(A) never vanishes, then the only measure m consistent 

with (7.8) is the zero measure, m = 0, and the representation maps every element 

of A into zero. If g2 (A) does vanish for some A, then every measure consistent 

with (7.8) is supported on the zeros Aj, • ••, A^ of g2(A), and hence the polyno- 

mial n*_, (z - Afc) also satisfies (7.8). Since g(z) is not of this form, this poly- 

nomial must be a proper factor of g(z) of degree less than that of g{z). It there- 

fore vanishes on H   , but not in A. 

This situation raises the question of whether there exist any faithful repre- 

sentations of admissible algebras  A  satisfying the relations (6.3)—(6.6) but with 

g{z)  not of the form (7.11).  Our next result shows that the answer is negative. 

Theorem 7.2. Let A be any algebra of polynomials in the canonical variables 

which satisfies the relations (6.3)—(6.7) of Corollary 6.9-    Then A  admits a 

faithful representation as an algebra of operators on a Hilbert space if and only if 

the polynomial g(z) has the form (7.11). 
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Proof. In any case g{z)  admits a factorization of the form g{z) = /SU* =i(z-ai> 

where the  a.  are complex scalars, not necessarily distinct. 

Suppose first that for some  a.  we have  a. = A- + i/z •,  with A-  and « . real 

and p. ^ 0. Then, since g(z)  is Hermitian, we must have a. = A-- i/z- for some 

a.-. Then g(z) can be written in the form 

(7.12) «(*)-((*-A,)2+ $«'(*). 

where g'{z)  a polynomial of degree less than that of g{z). Hence 

(7.13) «*(*)«(*) = (U - A/ + 2(z - A,.)2,x? + tf)g'*(z)g'{z). 

Now the right-hand side of (7.13) is a sum of polynomials of the form / /.   Any 

positive linear functional <j) on  A  must vanish on g g,  and so must vanish on 

this sum, and therefoj»; must vanish on each term separately.  In particular, it 

must vanish on lifg'*(z)g' (z),  and hence on g'   (z)g' (z).  If A   admits a full set 

of states, then we must have g'(z) = 0 in A.  But this relation cannot be an alge- 

braic consequence of (6.6), since the degree of g'(z)  is less than that of g(z). 

Thus we see that the a. must all be real. Suppose now that cu = a...  Then 

g(z) can be written in the form 

(7.14) g(z) = (z-a.)Y(z) 

where again g'(z)  is a polynomial of degree less than that of g(z).  Any positive 

linear functional <£ on A must vanish on g g,  and hence must vanish on 

(z - a^g' *g'(z),  since, by Lemma 5.4, 

^(«-ai)2,'V)<^(t-ai)VV)^,V) 
= <f>(g g)<j>(g' g). 

Again, if   A  admits a faithful representation, then we must have that (z— a-)g'(z) = 0. 

But again, this relation cannot be an algebraic consequence of (6.6), since the 

degree of (z - a-)g'(z)  is less than that of g(z). The proof is complete. 

We shall now examine the problem of determining for each admissible algebra 

A  the class of all representations of A  as an algebra of operators on a Hubert 

space. 

Vte first observe that any representation of A  is also a representation of A   , 

since every admissible algebra A  is a homomorphic image of A   .  Conversely, 

every representation of A     is also representation of A provided only that it an- 

nihilates the polynomial g(z) defining A. Hence it suffices to examine the repre- 

sentations of A   . 

We next observe that any attempt to classify the representations of A     must 

hinge on a definition of equivalence which determines when and in what sense two 

representations of A     are equivalent.   For this purpose we shall adopt the 
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following definitions: 

Definition 7.3.  Let p    and p2 be two representations of A^ as algebras of 

operators acting on the same Hilbert space K. Then p    is an (proper) extension 

of p    if the common dense domain of definition 3)2 oi p,^«,) (ProPerty) contains 

the common dense domain of definition 2).   of p. (A^),  and if p9('4<)0), when re- 

stricted to 3)j, equals p. {A^). p2  is a maximal representation if it admits no 

proper extension. 

Lemma 7.4.  Every representation p of A     as an algebra of operators acting 

on a Hilbert space K admits a maximal extension. 

Proof.  This result follows from a straightforward application of Zorn's lemma. 

Hence it suffices to deal with maximal representations. For these we adopt 

the following definition of equivalence: 

Definition 7.5. Let p    and p    be two maximal representations of Ax as al- 

gebras of operators acting on possibly different Hilbert spaces H.   and JL. Then 

p.   and p.  are equivalent if there exists a unitary operator W mapping H,   onto 

K2  such that W maps the common dense domain of definition 3),  of p.(i400) onto 

the common dense domain of definition 2)_ of p7(A^f, and for every element f of 

We recall here that every representation p of A     as an algebra of operators 

acting on a Hilbert space K gives rise to a set of positive linear functionals <f> 

on i4oo via the relation <f>(f) = (p(/)t>, t>), one for each vector v in the common 

dense domain of definition 3) of p(A   ). It follows from the Gelfand construction 

(Theorem 5.6) that every positive linear functional on A     can be realized in this 

way. It is easy to verify that if two maximal representations of Ax ate equivalent 

in the sense of Definition 7.5» then they give rise to precisely the same positive 

linear functionals of A   . 

We now turn to the standard representations of A   , of the type constructed 

at the beginning of this section. We shall need to know whether any pair of 

standard representations are equivalent in the sense of Definition 7.5. To answer 

this question we must first establish an important property of these standard repre- 

sentations. 

Lemma 7.6.  Let p  be any standard representation of A   ,  and let h be the 

polynomial 

(7.16) A (p., q., z) (Xp?+rf + Z2 

in A   .   Then p(h) is essentially self-adjoint. 

Proof. Let m be the measure associated with p. Then if m is the point 

measure supported at the origin, then p is the standard representation of Ax, 
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with z = 0,  and p(h) is the operation of multiplication by the sum of the squares 

of the coordinates on the domain JL, consisting of all Hermite functions in 

L7(E. ). It is well-known that this operator is essentially self-adjoint on JL. 

If m is the point measure supported at A > 0, then p is the standard repre- 

sentation of A\, with 2 = XI, and p(h) is the operator M2"=1 - d /dtj}+ tjf)+>? 

acting on the domain 2k   consisting of all Hermite functions in L~{EJi.  It is 

well-known that this operator is also essentially self-adjoint. 

Now if m is-arbitrary, then p     is a direct integral of the p\  with respect to 

m. In particular, pm(h) = JV   p\ (A)rfm(A). It is known from the theory of direct in- 

tegrals that a direct integral of essentially self-adjoint operators is again essen- 

tially self-adjoint. 

Lemma 7.7. Every representation p of A^ satisfying the conclusion of 

Lemma 7.6 determines a unique representation of the associated Heisenberg group 

G, whose infinitesimal form is a maximal extension of p. 

Proof. This result is an application of a recent result of Nelson [15], accord- 

ing to which the conclusion of Lemma 7.6 implies the conclusion of Lemma 7.7. 

We shall not attempt a proof here, but shall rather refer to his paper [15] for details. 

Corollary 7.8. Every representation p of A^ satisfying the conclusion of 

Lemma 7.6 admits precisely one maximal extension p.   Two such representations 

have equivalent maximal extensions if and only if they induce equivalent unitary 

representations of G. 

In this way we have reduced the problem of classifying the representations of 

A^ satisfying the conditions of Lemma 7.6 to the problem of classifying the uni- 

tary representations of G.  Fortunately this problem has been completely solved. 

Restating the solution in terms of A   ,  we have our principal result: 

Theorem 7.9- Every maximal representation p of A     as an algebra of opera- 

tors on a Hilbert space K, such that p(h) is essentially self-adjoint on H, is 

equivalent to a direct sum of (maximal extensions of) standard representations of 

A   , and nonstandard representations of A*.   The maximal extensions of two 

standard representations of A     are equivalent if and only if the associated meas- 

ures have the same null sets.   The maximal extensions of the nonstandard repre- 

sentations of AQ are given in Corollary 7.10. 

Proof. For a proof of this result for the group G, we refer to [H]. It follows 

from Lemmas 7.6—7.8 that the result for G implies the result for A   . 

Thus we see that every maximal representation of A     is either (the maximal 

extension of) a standard representation of A   , or (the maximal extension of) a 

nonstandard representation of An, or a direct sum of such representations. 

This leaves us with just two points to clear up.  First, we must determine the 
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nonstandard representations p of AQ for which p(h) is essentially self-adjoint. 

The standard representation of AQ  was obtained by forming ^2^2r)  w*tn 

respect to Lebesgue measure, and representing every polynomial in A.  by the 

operation of multiplication by that polynomial in the coordinates of E~ . This 

suggests that other representations of A    might be obtained in the same way. We 

proceed as follows: 

We let fi be any Borel measure on £,  , all of whose moments are finite. We 

form K = ^2^2n^ w"n resPect to /*• We ^et 2) be the dense subspace of K con- 
sisting of all polynomials in the coordinates of E7 . Now we represent AQ on 3), 

by defining p (f) as that operator on 3) obtained by multiplying every polynomial 

in 3) by the polynomial / in the coordinates of E-  . It is easy to verify that this 

prescription does define a representation p of AQ on K, suchthat p{h) is essen- 

tially self-adjoint on 2). Our last result says that these representations suffice. 

Corollary 7.10. Every maximal representation p of AQ for which p(h) is 

essentially self-adjoint is equivalent to the maximal extension of a representation 

of the form described above, or a direct sum of such representations. The maximal 

extensions of two such representations are equivalent if and only if the associated 

measures have the same null sets. The maximal extension of such a representation 

is equivalent to the maximal extension of the standard representation of A. if and 

only if the associated measure has the same null sets as Lebesgue measure. 

Proof. As before, the condition that p(h) be essentially self-adjoint tells us 

the p induces a unitary representation of the Heisenberg group G. Moreover, since 

P^AQJ is a commutative algebra, the image of G must be a commutative group. It 

is known that the commutative representations of G are precisely those of the form 

described in the conclusion [13],  Since p   is the infinitesimal form of this unitary 

representation of G, the same conclusion also holds for p. 

Finally, we turn to the problem of classifying those representations p of A     for 

which p(h) is not essentially self-adjoint. Examples of such representations may 

be found in the paper of Nelson [1?], who showed that they do not always deter- 

mine unitary representations of the Heisenberg group G. Moreover, those that do 

so may not do so uniquely. The detailed classification of such representations 

therefore remains an open problem. 

Even so, one might hope that the positive linear functionals on A     all deter- 

mine positive definite functions on G and hence could be classified in terms of 

the unitary representations of G. But it is possible to construct positive linear 

functions on AQ, and hence on Ax, which do not determine any positive definite 

function on G [26, PP- 232—236].  We have succeeded in showing in [29], however, 

that every positive linear functional on A     which is positive on a cone somewhat 
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larger than P (i.e., which is "strictly positive" in the sense of Definition 5.3) de- 

termines a positive definite function on G,  and hence can be obtained from either 

a standard representation of A^ or a non-standard representation of A~. We do 

not yet know, however, how to specify this larger cone solely in terms of the data 

m   Acc- 

In any case, we obtain directly from Theorem 5.3 and Theorem 7.9 the follow- 

ing Corollary. 

Corollary 7.11. Every positive linear functional o> on the moment algebra A 

which admits an extension to a positive definite function on the Heisenberg group 

G is either of the form 

(7.17) <ö{f) = {pfv,v), 

(where p is a standard representation of A or a non-standard representation of 

A.), or is a countable sum of such functionals. 

If a state &>  is a countable sum of functionals of the form (7.17), where each 

p  is a standard representation, then we shall say that u  is a standard state of A. 

It follows from Corollary 7.10 that the non-standard states of A  all arise from 

singular measures on the phase space of classical mechanics.  From our point of 

view, no singular measure can arise as the result of any practical measuring 

process, because of the nature of the uncertainties introduced by the measure- 

ments. For this reason only the standard states of A  can be of any physical in- 

terest in our formulation of mechanics. 

8.  Extensions of the Moment Algebra 

In most problems of mechanics it is necessary to introduce functions of the 

canonical coordinates which are not polynomials, and probability   distributions 

which are not determined by their joint moments. This is particularly true in dy- 

namical problems involving motions of the system which transform polynomial 

functions into non-polynomial functions and states with finite moments into states 

with infinite moments. Once the structure of the moment algebra has been deter- 

mined, it is then an easy matter to construct a larger algebra of all (reasonably 

defined) functions of the canonical variables, in such a way that the standard 

states of the moment algebra admit natural extensions as states of the function al- 

gebra. In this section we shall provide the details of this extension process. 

We begin by introducing the algebra of exponential polynomials.  Let B     be 

the set of all polynomials with complex coefficients in the variables e    ^ 0^ 

e     *   1, •••, e'^2"*2", where the g. are real scalars, and the x(  are the genera- 

tors of Ax, with *0 = z.  The elements of ß^  can be added and multiplied accord- 

ing to the usual rules for polynomials, and with these definitions B     becomes a 
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non-commutative algebra with a (2n + l)-parameter family of generators. 

The generators are subject to the relations 

(8.1) eifixi ei{lxi = e~iiSi[xi'xi] el^xi ei€i%i, 

(8.2) eH£i + Ht)*t=etfi*ieiVi*it 

where the commutator [x., *.]  is given by (6.3)—(6.5).  In particular, since the x- 
i£'xi span a Lie algebra L,   the  e    l  J  span the Lie group  G  associated with L,   and 

the relations (8.1)—(8.2) are just the exponential forms of the relations (6.3)—(6.5). 

B     admits a conjugation operation, *,  which conjugates coefficients and 

reverses the order of multiplication.  It satisfies the relations (3.1)—(3.3) and thus 

is completely determined by its action on the generators.  For them we have 

(8.3) (e^ixif = e~^xi. 

In terms of the conjugation operation we shall define in B     the space of 

Hermitian polynomials and the cone of positive polynomials just as we did in A   . 

Moreover, we shall also define the dual space B'    of B   ,  consisting of all 

linear functionals on B   ,  as well as the space of Hermitian functionals and the 

cone of positive functionals in B' .  In this way we obtain for  ß     the same ele- 

ments of structure, apart from the bracket operation, that we have developed for 

A   . The role of the bracket operation is now taken over by the commutation rela- 

tions (8.1)-(8.2). 

The correspondence between A     and ß     is best thought of as implemented 

by exponentiation. The generators x. of A     span a Lie algebra L,  and their 

exponentials, the  e ?t  ',   span the associated Lie group G. The theory of Lie 

groups now tells us that A     may be identified with the universal enveloping alge- 

bra of L, while  B^ may be identified with the algebraic group algebra of G. 

From these facts all necessary relations between the two may be obtained. 

Every positive linear functional on B     gives rise to a representation of Bx 

as an algebra of operators acting on a Hilbert space.  The proof of this result is 

exactly the same as for A   . But because the generators of B     satisfy (8.3), they 

must be represented by unitary operators on the Hilbert space, and it follows that 

the elements of ßM  are always represented by bounded operators.  This fact dis- 

tinguishes  ß^  from i4M,  and is a decided advantage in some applications. 

It is known from the general theory of Lie groups that every such representa- 

tion of B     determines an associated representation of A    [15], in which the kin- 

etic energy operator h introduced in section 7 is self-adjoint; and that conversely, 

every such representation of A     in which the kinetic energy operator h is self- 

adjoint is determined in this way by a representation of ß     [15]. Hence the 
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classification of representations of ß     is the same as that of the representations 

of A     in which h  is self-adjoint, as given in Theorem 7.9- 

It follows that every standard state of A     induces a positive linear functional, 

which we shall also call a standard state, on B   , via the correspondence between 

standard states and standard representations. In particular, if co  is a standard 

state of A   , then the induced state co on  ß     satisfies 

(8.4) <»(eiSiXi)=   1   i«?ML 
n = 0 n! 

whenever the series converges. 

There are positive linear function als on ß   , however, which do not arise in 

this way from states on A^. This situation is a result of the fact that the repre- 

sentations of ß^  involve bounded operators, while those of Ax involve unbounded 

operators.  Thus the states of A     are determined by vectors lying in the invariant 

domain 2) of the representation, while the positive functionals of ß     may be de- 

termined by vectors lying outside the domain 3), and if so, are not induced by 

states of A   .  For this reason we may regard these positive functionals of ß     as 

states of the system which are not determined by their "joint moments". 

We can arrive at this same conclusion by another route.  Let us recall that in 

the case of classical mechanics the states of the system are represented by proba- 

bility distributions on the phase space E2n- Heretofore we have considered only 

those probability distributions which are determined by their joint moments.  We 

now want to include in our discussions those probability distributions which are 

not determined by their joint moments, and in particular, those whose joint moments 

are not all finite. 

It is well-known from the theory of probability that every probability distribu- 

tion (i, whether its moments are finite or not, is always completely determined by 

its characteristic function [3] 

or, what is the same thing, by its values on the exponential monomials over £     . 

In our present terminology, fi determines, and is completely determined by, a posi- 

tive linear functional on the algebra ß^ of exponential polynomials in the x..   It 

is easy to see from (8.5) that the joint moments of p are all finite if and only if 

H  is infinitely differentiable at the origin, and that in this case the value of \L on 

the polynomial f is given by 

,8.6,     En^-,'^-f^0f[i^.-.^}^„-.^. 
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These observations carry over to the case of quantum mechanics. There are 

states of the system are represented by vectors in the Hubert space £_(£). 

Heretofore we have considered only those vectors which lie in the domain 3) of 

the operators representing the canonical coordinates. We now want to include in 

our discussions those vectors which lie outside of 3). It is known from the theory 

of quantum mechanics [16] that every vector v in S.AE_),  whether or not it lies 

in 2), is completely determined by its characteristic function 

(8.7) $<£„, fj. ..., £2n) = (.*0«0,<ft»l... .<A»'2-^ V) 

i.e., by the values it assigns to the exponential monomials in the canonical opera- 

tors. Thus v determines, and is determined by, a positive linear functional on 

the algebra SM of exponential polynomials in the Xi. Moreover, the "joint mo- 

ments" of v ate all finite if and only if v is infinitely differentiate at the origin, 

and in this case the value that v assigns to a polynomial / in normal form in the 

x. is given by 

(8.8) W\,-'-,*2n)v,v)=/™0f[T^,---,j^}Z({v'--.{2n)- 

There are other positive linear functions on the algebra fim of exponential 

polynomials which are not of this form. They have the property that their values 

on the monomials e,f 0*0f ... t e1^2n*2n gte oot contlnuous functions of the argu- 

ments £.. It is known that their structure is quite pathological, and that they do 

not give rise to any representation of A   . For this reason we shall restrict our 

attention to positive linear functional s whose values on the generating monomials 

are continuous in the arguments A. 

These observations together suggest that we regard as extended states of the 

system those normalized positive linear function als on the algebra B     which are 

continuous as functions of the arguments £..  We shall denote the space of all ex- 

tended states by Q~. Those extended states on B    which determine states on 

A     we shall continue to call states, and we shall regard the state space Q as 

part of the extended state space Q~.  (See the remark at the end of section 7.) 

Every extended state co may be expressed in terms of its characteristic func- 

tion co,  defined by 

(8.9) Cü(£0, t;v •••, f2n) = co(e        "e        *...e    '    * ). 

Thus o) is a continuous function on the Heisenberg group G, here parametrized 

by the £,. Since co is a positive linear functional, co is a positive definite func- 

tion on G, in the sense that 

(8.10) J^.g"1)^ 
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for all scalars af. and group elements .g{. in G. Thus the theory of positive defi- 

nite functions on Lie groups applies [13].  In particular, it can be shown that, as 

in the two special cases, an extended state is a state if and only if its character- 

istic function is infinitely differentiable at the origin of G,  and that, in this case, 

the value assigned to a polynomial / in normal form is just 

(8.11) w/(V,1(...,,n) = Ä/^,)^,...,^]^0,...,^). 

Finally, we learn from section 7 that the extended states all arise from vec- 

tors in the Hilbert spaces described there just as the states do. Moreover, every 

vector in those spaces defines an extended state, while it defines a state if and 

only if it lies in the maximal dense domain of the operator representatives of the 

polynomials in the canonical variables, we shall say that an extended state is a 

standard extended state if it arises from a standard representation. As we pointed 

out at the end of section 7 we are primarily interested in the standard representa- 

tions, and hence in the standard extended states. 

In this way we obtain a satisfactory extension of the definition of a state of 

the system. It is now an easy matter to extend the definition of a function of the 

canonical variables.  We shall restrict our attention to functions which yield an 

expected value in every extended state of the system, since only these functions 

can be "measured" in every extended state.  We shall further suppose that two 

functions which yield the same expected values in every extended state are the 

same, since no measurement can distinguish them.  Finally, we shall require that 

the function be bounded, in the sense that its expected values are bounded. Un- 

bounded functions may be treated in the same way, but are technically more diffi- 

cult to manage, and the bounded functions will suffice for our purposes. 

These considerations suggest that we define an extended function of the ca- 

nonical variables in terms of its expected values in the extended states. Thus 

an extended function f of the canonical variables assigns to each extended state 

a)  in 11" a scalar f((o)  such that 

(8.12) /(cka + (1 - a)v) = af(a) + (1 - a)f{rj), 

(8.13) sup||/(co)|:a, C0"}<oO. 

We denote by F the set of all extended functions of ß^. Note that every expo- 

nential polynomial g may be regarded as an extended function by putting 

(8.14) g(co) = co(g). 

In this sense ß is included in F , and so F is not empty. A , on the other 

hand is not included in FM, since the polynomials in A^ do not admit expected 

values in every extended state, and the expected values they do admit are not bounded. 
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It is obvious that complex linear combinations of extended functions are 

again extended functions, and so F     is a linear space over the complex scalars. 

It is not obvious that two extended functions can be multiplied together in any 

consistent way to obtain a third, but it is also true. Our next result says that F 

forms a If*  algebra [17], 

Theorem 8.1.  The space F^ of extended functions admits a multiplication 

and a conjugation operation in suck a way that under these operations it becomes 

a W    algebra. 

Proof.  Let us define a norm for the elements e of B     via 

(8.15) ||g||2 = sup{cu(g*g):w in 0-}. 

It is known that this definition does indeed provide a norm, and that the comple- 

tion C    of B     in this norm is a C    algebra. Moreover, the dual space N    of 

this C    algebra contains all the extended states of B   , and is spanned by linear 

combinations of these states. It is also known that the second dual W     of C     is 

a W    algebra which includes B^ in a natural way as a weak-*-dense subalgebra. 

By definition the elements of W^  are determined by their values on N^, and 

hence by their values on ß~. Thus W     consists of extended functions, and is in- 

eluded in F    [17]. 
OO   L J 

It remains to show that W     includes F   . Any extended function f in F     is 
OO OO ' / OO 

defined as a bounded convex functional on Q~,   and since fl~ spans N   , f is de- 

fined as a linear functional on W   . We must show that it is bounded. Let d> be 
OO » 

any Hermitian functional of norm 1 in jV^,   and recall that <f> may be expressed as 

0= act) - l(l- a)^, where <u and rj are in fi~.   Then 

\f{<f>)\ < a\f{oj)\ + (1 - a) \f{r,)\ < sup ||/(«a)| :*> € STi 

which we have supposed finite [17]. Thus f is bounded on N   ,  and therefore 

lies in  W^.  We conclude that F^  may be identified with the W    algebra W^. 

The computation of extended functions is facilitated by the following corollary. 

Corollary 8.2. Every extended function f of F^ may be approximated by ex- 

ponential polynomials g in the sense of 

(8.16) \f((üi)-g(ojl)\<{ 

for any e, and any finite set IG>(.1 of extended states. 

Finally, we need to know what happens to the extended functions under repre- 

sentations. 

Theorem 8.3. Let p be any representation of Bx as an algebra of bounded 

operators on a Hilbert space.  Then p may be lifted to a representation of F^ as 

the W    algebra of operators generated by p(B  ). 
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Proof. See [17], Thus we see that in any representation of the exponential 

polynomials as bounded operators, the extended functions automatically appear as 

bounded operators which can be weakly approximated by the exponential polynomial 

operators.  In this way we obtain a satisfactory extension of the exponential poly- 

nomial functions of the canonical variables. 

We have carried out this development only for the algebra A   . There is no 

difficulty in doing the same for the other possible moment algebras, since they are 

all homomorphic images of this one. Details will be omitted here. 

9. Dynamical Aspects 

The efforts of the previous sections have been devoted entirely to the de- 

scriptive aspects of mechanics, i.e., to the determination of the possible states 

of the system.  In this section we shall consider briefly the dynamical aspects of 

mechanics, i.e., the description of the possible motions of these states of the 

system. 

We shall first define a motion of the system as a transformation of the states 

of the system. We shall require on physical grounds that the transformation be 

one-to-one and invertible, and that it preserve the convex structure of the state 

space and the commutation relations of the moment algebra.  We shall then show 

that every such transformation induces either an automorphism, or an anti-automor- 

phism, or a suitable combination of the two, of the algebra of extended functions, 

and that it can be represented by either a unitary operator, or an anti-unitary oper- 

ator, or a suitable combination of the two in any standard representation. 

It follows that every differentiable one-parameter group of motions of the sys- 

tem can be realized as a differentiable one-parameter group of unitary operators 

in any standard representation. Moreover, if k is the Hermitian generator of this 

group, then the equations of motion of the canonical variables can be written sim- 

ply as 

(9.1) -ji = i[k, xjl. 

Now in the (essentially unique) standard representation of the algebra A\, 

where A ^ 0, these equations of motion may be rewritten, using (6.6), as 

(9.2) % = |A, *•! 

where h is an (unbounded) extended function of the canonical variables, chosen 

so that k = Xh. If A = 0, then the bracket operation is no longer determined by 

(6.6), and need not be preserved by the motion; but if we assume in addition that 

the motion does preserve the bracket operation, then we obtain the same result: 

The equations of motion (9.1) may be rewritten as (9.2), where now h is an 



A NEW FORMULATION OF PARTICLE MECHANICS 41 

extended function of the canonical variables chosen so that 

i f    [dpj dqj     ~5qj dp,    J 

It follows that every differentiate one-parameter group of canonical motions is 

necessarily determined by the Hamiltonian equations of motion in the form (9-2). 

We shall next observe that the class of motions defined in this manner is in 
some ways too restrictive.  A closer investigation reveals that in both classical 

and quantum mechanics there are physically interesting motions which do not pre- 

serve the state space, but transform some of the states into distributions whose 

joint moments are not all finite, i.e., into extended states. 

Thus we are led to define an extended motion of the system as a transforma- 

tion of the extended states of the system.  Again we require that it be one-to-one 

and invertible, and that it preserve the convex structure of the extended state 

space and the commutation relations of the exponential polynomial algebra. Every 

motion determines uniquely an extended motion, but not all extended motions are 

determined in this way. We shall then show that every extended motion induces 

either an automorphism, or an anti-automorphism, or a suitable combination of the 

two, of the algebra of extended functions, and can be represented by either a uni- 

tary operator, or an anti-unitary operator, or a suitable combination of the two in 

any standard representation. Moreover, continuous one-parameter groups of these 

extended motions are also determined by the equations of motion (9.2) whenever 

the right-hand side can be properly defined. 

Finally, we shall show that the equations of motion (9.2) are consequences of 

a suitable generalization of the Hamilton variational principle. In this sense the 

equations of motion in our formulation of mechanics are always determined by a 

Hamiltonian function of the canonical variables via the Hamilton variational prin- 

ciple. 

We begin with a formal definition of a motion of the system.  Intuitively, we 

expect that any motion of the system will transform each state of the system into 

another state of the system. Moreover, it will transform different states into dif- 

ferent states, and superpositions of states into superpositions of states.  It will 

preserve the expected values of the commutation relations.  Finally, it will admit 

an inverse motion, which will restore the system to its original configuration. 

These considerations lead us to 

Definition 9.1. A motion of a mechanical system is a transformation n-rfl—»Q 

of the space of all states of the system onto itself such that, if oj, r\ lie in Q and 

0 < a < 1, then 

(9.3) via) = 77(77)  if and only if w = rj, 
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(9.4) n-(a&» + (l - a)r/) = an(.a>) + (l - (1)77(77), 

(9.5) n(6) = to for some Q in fl, 

(9.6) (TTCJ) (z) = co(z). 

Examples of motions can be constructed as follows:  For A = 0, let  T be any 

one-to-one measure-preserving transformation of £_     onto itself, and  Un  the 

unitary operator induced by  T on KQ. For A £ 0, let £/\  be a unitary operator on 

K\,  chosen in such a way that the operator-valued function U\   is a measurable 

function of A. Then U\   determines a unitary operator U     on every standard 

representation of A^ on K   , given by 

(9.7) UMv = fV\v{X)dm{\) 

and hence determines a transformation on the state space of A   .  It is easy to 

see that this transformation satisfies all the requirements of our definition of a 

motion, and that this motion preserves the subset of standard states, associated 

with the standard representations. 

This is not the only possibility, however.  Other motions of A     arise as fol- 

lows.  Let /^ be the anti-unitary operator defined in K\   by the formula J\v = v, 

i.e., by ordinary conjugation of the functions in K\. Let k(\) be any measurable 

function of A whose only values are 0 and 1.  Put  ^A =/\      •  Then   V\   is a 

measurable operator-valued function of A which is the identity operator where 

MA) = 0 and the conjugation operator where /1(A) = 1. Then  V\   induces an iso- 

metric operator on every standard representation of A   , and hence determines a 

transformation on the state space of A       It is easy to see that this transformation 

is also a motion which preserves the standard states. 

We now want to show that every motion of the system which preserves the 

standard states must be a combination of motions of these two special forms;  no 

other motions are possible. Our first result characterizes motions in terms of ex- 

tended functions of A   . 

Lemma 9.2.  Let 77 be any motion of the state space Q.   Then 77 induces a 

linear isometry 77*  on the space  Fx  of extended functions, such that 

(9.8) (77*/) (<u) = /■(«»). 

Proof.  We recall that 11 is a subset of the extended state space Q~,  which 

spans the space N   . It is known that every Hermitian functional 0 of norm   1  in 

N     has a unique decomposition as a convex difference of positive functionals of 

noim in H~ [ 17]: 

(9.9) 0 = A^-*-- (1 - A)0~ 

where <f>+ and <ß~ have norm  1,  and 0 < A < 1.  If <f>+ and <fr~ lie in fl,  then we 
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may define n<f> by 

(9.10) n<j> = \n<j> * - (1 - A)/70". 

Then n is defined as a linear transformation on a subspace of Nx. The norm of 

n<f> is given by 

(9.11) W\\ <A||^ + ||+(l-A)||770l = 1. 

Hence n decreases the norm in N . Since the same is true for n~l, we conclude 

that 77 preserves the norm in N . Since Q is norm-dense in Q~, it spans a norm- 

dense subspace of /V   .  It follows that n may be uniquely extended to an i some try 

of N^ 

Let 77* be the adjoint mapping defined on the dual  F^ of /V   . Then 77* is 

also an isometry and by definition satisfies (9.4). 

Our next result says that the isometries of F     must have a special form. 

Lemma 9>3. Let 77* be any isometry of F  , with 77* (l) = 1.  Then there exists 

an orthogonal projection e in the center of F   ,  with 77* (e) = e,  such that it* is 

an isomorphism of F  e and an anti-isomorphism of F   (1 - e). 

Proof. This result, valid for isometries of any W    algebra, has been obtained 

by Kadison in [10]. 

So far we have made no use of the requirement that nco(z) = &>(z). Vfe now 

show that under this requirement, we must have 77*/ = / for all functions / of the 

form e'^z, and hence for all functions / in the  W*   subalgebra of F    generated 

by the e'^z. 

Lemma 9-4.   Let 77 be any motion of the system.  Then for all states a in 0, 

we have nco(zn) = a>(zn), n = 1, 2, 3, • • • • 

Proof.  From Theorem 5.1 we know that, for any w  in SI, 

(9.12) co(zn) =   / A"^(A) 

for a suitably chosen probability measure p on E     It follows that, as far as the 

polynomials in z  are concerned, the motion 77 on 0 induces a motion 77 on the 

set of all finite measures on E.   which satisfies the requirements of Definition 9.1. 

Let / denote any half-open interval a < A < ß in £,, and let p be any proba- 

bility measure on £      We assert that {np) (/) = p(I). 

To see this, let p'  be the restriction of p to the interval /,  and p." the re- 

striction of p to E - /. Then p '(/) = p(I), p"U) = 0 and p' + p" = p. 

Now (np ') (/) = p' (/). Otherwise, there is a half-open interval /, disjoint 

from /,  with (77^') (/) > 0.  If so, let v' be the restriction of np' to /  and v" be 

the .restriction of np'   to E - /.  Then u' + v" = np', so n~lv' + n~lv" = 

»7~* iv' + f") = n~^(np') = p'.  It follows that the support of n~^v'   is contained 
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in the support of pt',  and hence in /. Thus n~^v'   and v'  have supports in / and 

/,  respectively. This means that fkd(n~^i/') ^ f Xdv', which contradicts our as- 

sumption on n. We conclude that np.' (/) = p' (/) = p(I). 

It now follows that (np) (/) = {np') (/) + (irp.") (/) > (np') (/) = /x(/). The 

same argument, applies to IT     , shows that p{I) > {np) (/), and we have 

M (/) = ,*(/). 
Now we see that if /"(A) is any step function made up of half-open intervals, 

then we must have (np) (f) = p(f). 

If we approximate A" uniformly by a step function /(A)  so that |A" - /(A)| <S, 

then we see that | (np) (A") - //(A") | < \(np) (An - f) \ + \p(f- A")| < 25, and it 

follows that (np) U") = p(z") for all n. 

In the same way we can show that (w^t) (/) = fi(f) for all bounded continuous 

functions / of A. It follows that, under the assumptions, np \i for all measures 

p on E.. This gives us immediately 

Lemma 9-5. Let n be any motion of the system.  Then for all states co in Q~ 

we have (na>) (e^z) = <o(e^z). 

Proof. The preceding proof has established this result for all to in fl. Since 

ß is dense in Q~, the rest follows from the uniform continuity of n. 

Lemma 9-6. Let n be any motion of the system, and n*  the associated isom- 

etry of the extended functions.   Then for all f which are extended functions of z, 

(i.e., which lie in the  W    subalgebra of F     generated by the exponential polyno- 

mials e'sz in  z) we have n*(f) = f. 

Proof.  Approximate f by exponential polynomials in z and use Lemma 9-5. 

Lemma 9.6 contains the essential consequences of the requirement that 

n(o(z) = co(z),   and can be used to sharpen considerably the results of Lemma 9.3> 

We first observe that the algebra F     of extended functions may be split into two 

parts, one of which is essentially classical, (i.e., commutative) and the other of 

which is essentially quantal (i.e., non-commutative). 

Lemma 9-7.  The algebra F    of extended functions of A^ contains a central 

orthogonal projection e,  suck that Fc - F^e is commutative, and FQ = Fx(l - e) 

has center generated by the exponential polynomials in  z. 

Proof.  From Theorems 7.9 and 8.3 we learn that the irreducible representations 

of F^  are all described in terms of the algebras B\  of all bounded operators on 

the spaces K^, A 4 0, and the algebra BQ of all bounded measurable functions on 

the phase space E-n.  Let Fo be the largest subalgebra of F^ whose irreducible 

representations are all of the form B\, for A 4- 0,  and let F~ be the largest sub- 

algebra of Fx  whose only irreducible representations are of the form ß_. Then 

the theory of operator algebras tells us that F^  is the direct sum of Fr and FQ [17]. 
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Moreover, there exists a projection e in the center of F^, such that FQ = Fe and 

FQ = F(l - e). Finally, FQ obviously commutative; and FQ is non-commutative, 

and has center generated by the exponential polynomials in Z. 

We are now ready to state our principal result. 

Theorem 9-8. Let n be a motion of the system which preserves the standard 

states, and n* the associated isometry of the space F of extended functions. 

Then n*FQ = FQ and n* = FQ = FQ. On FQ, n* is an automorphism induced by 

a Lebesgue measure-preserving transformation of the phase space E~ . FQ is 

the direct sum of two subalgebras, F'Q   and F"Q, such that on F'Q, n* is an auto- 

morphism induced by a unitary transformation u* of F'Q, and on F"Q, IT* is the prod- 

uct of such an automorphism and a conjugation of the form described after Defini- 

tion 9.1. 

Proof. Since n* commutes with the exponential polynomials in z (Lemma 

9.5), we see that n* takes FQ into FQ and FQ into FQ. Since FQ-S.BO{E2TI) 

is commutative, n* acting on FQ is an automorphism of £M(£, ), and we know 

that every such automorphism is induced by a measure-preserving transformation 

of F*2n t28]- Since FQ has center generated by the exponential polynomials in z, 

and since every irreducible representation of FQ is of the type B\, with A ^ 0, 

we know that every isometry of FQ is of the form required by the theorem  [10]. 

Corollary 9.9. // n*  is an automorphism of Fx,  then on FQ it is induced by 

a measure-preserving transformation of E        and on FQ it is induced by a unitary 

function in FQ. 

After this rather lengthy analysis of the individual motions of the system, we 

are now prepared to discuss the one-parameter groups of motions which will deter- 

mine the development of the system in time. 

Definition 9*10. A one-parameter group of motions of the system is a one- 

parameter family \n(t)\ of motions such that for all a in Q, and all f in A, 

(9.13) Tr(0)(o = (o, 

(9.14) Tr(s)n(t)(o = n(s + t)a>, 

(9.15) (n(t)<o) if) is a continuous function of t. 

If n{t) is a one-parameter group of motions of 12, then clearly n* {t) is a one- 

parameter group of isometries of F^. Moreover, condition (9.15) implies that these 

isometries must all be automorphisms, since no anti-automorphism can be obtained 

from the identity be a continuous deformation.  This observation, together with 

Theorem 9.8, enables us to characterize a one-parameter group of motions as follows. 

Theorem 9.11-  Let n{t)  be a one-parameter group of motions on A which pre- 

serve the standard states, and n* (t)  the associated group of isometries of F   . 



46 R. T. PROSSER 

Then on FQ, IT* (t) is induced by a one-parameter group of measure-preserving 

transformations on E~,  and on FQ, n* (t)  is induced by a one-parameter group of 

unitary functions in FQ. 

The weak continuity of n(i) defined by (9.15) forces a weak continuity upon 

n*{t). The weak continuity of n* (t) in turn implies that n* (t) is weakly differen- 

tiable. In particular, we have 

Theorem 9-12. Let f be any extended function in F,  and let f(t) = n*(t)f. 

Then there exists an unbounded Hermitian extended function k, defined on a 

dense subset of the extended states, such that for those extended states co for 

which k is defined, f(t) (co) is differentiable in t,  and 

(9.16) lim X/(t) (*>) = »[*, f](co). 
t-*0 at 

Proof. Suppose / lies in FQ.  Then f(t) = u*(t)fu(t) for some weakly con- 

tinuous one-parameter group of unitary operators in FQ. We know that every such 

group of unitary operators has the form u{t) = e'    , for some unbounded Hermitian 

operator k, defined at least on a dense subset of Q~.  For all states co in this 

subset, then, f(t) (co) = e~l^tfei'ct(co)  is differentiable in t,  and its derivative at 

the origin is given by (9.16). 

Suppose now that / lies in f„. Then again f(t) = u*(t) fu(t), where now 

u{t) is the one-parameter group of unitary operators on S.-(E7 )  induced by the 

group of transformations of the phase space £      which determine n*(t).  Again 

we know that u{t) = eJ   , where k is an unbounded Hermitian operator on £,(£9 ), 

and again this relation leads to (9.16). 

The general case is an obvious combination of these two. 

If we assume, in addition, that the original group of motions n(t)  of the state 

space 0 is differentiable, in the sense that, for all f in A, 

(9.17) rr(t)co(f)  is differentiable in  t 

then it can be shown that the Hermitian generator k of (9.16) is defined on all 

states co in Q,  and (9.16) holds for all states. 

We shall regard (9.16) as the equation of motion for the extended function /. 

It is by now obvious that the behavior of / under the group of motions n(t)  is 

completely determined by equation (9.16), and in particular, this holds true in 

every standard representation. 

Next we notice that the definition of the bracket operation in each of the 

irreducible standard representations ß^ of F given in section 7 can be used to 

define a bracket operation on a suitably chosen dense subalgebra of F,  such that 

the relation (6.6) holds. In FQ, this bracket operation has the form 
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(9.18) !/,«*=-7 [/,«] 

for all extended functions f and g which admit division by z, while in Ff it is 

given by 

(9.19) {/>g! = s|L^ -g-p. 
j  dp, dqj       dqj   dp,- 

for all differentiable functions in ßQ = S.00(E2n)- 

In terms of this bracket operation, the equation of motion (9.16) can be re- 

written in Hamiltonian form. In F Q, (9.16) becomes 

(9.20) %t = {A, f\ 

where h is an unbounded Hermitian extended function chosen so that 

(9.21) k = zh. 

In FQ, (9.16) can be put in Hamiltonian form only if the motion preserves the 

bracket operation. This requirement is automatically satisfied in FQ because of 

(9.18), but is not necessarily satisfied in Fc- It is known, however, that if the 

motion does preserve the bracket operation in F^, then the equation of motion 

has the form 

(9.22) 1 =!*>/! 
where now h is an unbounded function on E7    chosen so that 

(9.23) k = l teMd_dh_    d] 
i   [j   dp,-   dqj       dqj     dpj ) 

and conversely, if the equation of motion has the form (9.22), then the motion 

necessarily preserves the bracket operation in Fr [25]. 

If we call canonical all motions which preserve the bracket operation in F, 

then we can state our final result as follows: 

Theorem 9«13. Every differentiable one-parameter group of canonical motions 

of the state space is completely determined by the Hamiltonian equations of 

motion 

(9.24) $■-!*./I 

where the Hamiltonian h is a suitably chosen (unbounded) Hermitian extended 

function of the canonical variables. 

It must be admitted here that this seemingly fortuitous result is a conse- 

quence of a long series of carefully chosen definitions. Nevertheless, it implies 

that any reasonable motion of the system can always be cast in Hamiltonian form. 

In some problems our definition of motion is too restrictive to allow all 
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motions of physical interest.  In the case of classical mechanics, for example, the 

motion of a single point particle moving along a single axis under a prescribed 

force is a motion in our sense only if the potential function is sufficiently well- 

behaved.  Otherwise the motion may transform states with all joint moments finite 

into states with some joint moments no longer finite. 

A similar situation prevails in the quantum mechanical analogue of this one- 

particle system.  A motion of this system is a motion in our sense only if the po- 

tential operator is sufficiently well-behaved. Otherwise the motion transforms 

some of the vectors in the common dense domain 3) of the canonical variables in- 

to vectors which lie outside this domain. 

We can include motions of this type within our framework by defining an ex- 

tended motion of the system as a transformation of the space of extended standard 

states. Then the whole preceding development can be adjusted to cover extended 

motions as well, with the result that Theorem 9.13 holds whenever the right-hand 

side of the Hamiltonian equations of motion are properly defined.  Thus extended 

motions behave just like motions, apart from questions of domain. 

We shall conclude our investigation of the dynamical aspects of our formula- 

tion of mechanics by showing that the equations of motion may also be obtained 

from a variational principle. For this purpose, we let p be any standard represen- 

tation of A  on K,  and h  any Hermitian polynomial in A   such that p(h)  is self- 

adjoint on H. We define for any f in A  the operators /(()  and f(t) by means of 

(9.25) fit) = exp (- ikt)p{f)exp (ikt), 

(9.26) fit) = exp (- ikt)p(- i[k, /]) exp {ikt). 

We then form the action integral 

(9.27) I = f (Hr)v, v)dr 
0 

where v is an arbitrary vector chosen from the domain 3) in  K,   and L(t) is the 

Lagrange function defined by 

(9.28) L(r)=  2  pAr)qAr)-h(T). 
;=1   »        » 

By a variation of the canonical coordinates, we shall mean simply a transla- 

tion of the form 

p —► p + 8p = p + Sal, 
(9.29) 

q —► q + 8q = q + 8ß 1. 

We now introduce a variation of this form into each of the canonical coordinates 

at each time T in the interval 0 < r < t,  and try to estimate its effect on the action 

integral. 
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(9.30) 8I=8f{L(T)v,v)dT. 
0 

If the variation vanishes at the end points, then (9.30) may be rewritten as 

(9.31) SI = f d(L(r)v, v)dr. 
0 

Using (9.28), we obtain for the integrand 

(9.32) 
8(L(r)t>, t»= [ £ -8p,(r)9,(r)v, t»j + [iptb)8qttov, i»j 

Since the variation of each coordinate is made at each time r, the variation com- 
mutes with the time derivative. Hence the integral of the second term in (9.32) 
may be rewritten as 

/£  pÄr)8qÄr)dr = } 1  Pi(r) 4- 8?,(r)«fr 
(9.33) ° ,= 1 ° , = 1 

= -/ 2 p,(r)89,(r)dr. 
0 '=1 

Here we have used the fact that all variations vanish at the end points. Now 
(9.31) becomes 

(9.34) 
"-.'(i,(*<-&]*H 

Now we observe that the variations 8p. and <fy. are actually scalar multiples of 
the identity in A, and hence may be taken out of the inner product. Hence 

s'-,((li[*<-f-Hs°<* 
(9.35) 

dh 

-.'(&(* ♦SH** 
If we require that the action integral be stable under variations of the form (9-29), 
in the sense that 81 = 0 for all such variations, then the usual arguments of the 
calculus of variations will show that we must have 

for all vectors v in the domain 2).  Thus we must have 

/r> 7-i\ l       dh dh (9.37) g. = ; p. = _ 
dPi       

r' dqt 
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or, in other form 

(9-38) '      !       Al Pi = lp,-, A! 

as the equations of motion of the system. These equations, of course, imply those 

of (9.25). 

In this way we see that the equations of motion (9.25) are, just as in the 

classical case,-consequences of the variational principle 81 = 0 for the action in- 

tegral  / of   (9.27).  With a little care, the same result can be established in the 

same way for a more general class of Hamiltonian operators h(p, q). 

It is now easy to show that the equations of motion (9.16) always admit 

unique solutions of the form (9.25) provided only that the Hamiltonian operator is essen- 

tially self-adjoint in the representation of A  under consideration.  Thus the equa- 

tions of motion determine the development in time of any mechanical system de- 

scribed by our formulation of mechanics. 

The relations here derived for the equations of motion and the development of 

the system in time are equally valid for any one-parameter group of symmetries of 

the system. 

§10. Statistical Aspects 

Since our formulation of mechanics is primarily statistical in origin, it seems 

natural to suppose that it must incorporate the elements of both classical and 

quantum statistical mechanics.  We shall show here that such is indeed the case. 

For this purpose it suffices to show that the standard states of the system in our 

formulation are all determined by an appropriate form of density matrix [16], 

We must first introduce into each standard representation of A     a functional 

which is invariant under all motions. 

For A 4 0,  let T\   denote the functional which assigns to each bounded opera- 

tor on K^ its trace.  For A = 0,  let rQ denote the functional which assigns to 

each bounded function on £.     its Lebesgue integral.  Now for any probability 

measure m on  E^, let r     be the functional defined on the bounded operator on 

H„  be the formula m 

(10.1) rm(i)=    / rX(bk)dm{\). 
El 

It is clear that r     is invariant under any motion;   since if A ^ 0,  r\(u*bu) = 

T\ (6),  for all unitary operators u,  and if A = 0, r_   is invariant under each motion 

of the phase space  E7  . 

Now suppose  r is a positive bounded operator on H     such that r   (rf)  is 

finite for all representatives f of polynomials in A   . (For example, r might be a 
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projection on a one-dimensional subspace of the invariant domain 3)   .) Then it is 

easy to verify that the formula 

(10.2) 0>(/)=,m(r/) 

defines a positive linear functional on A     which is a standard state. If n is any 

motion of the standard states, then 

(10.3) U) (/) = rm(ru*fu) = Tm{uru*f) 

where u is the isometric operator on K     defined by v. 

Our next result says that every standard state on A must be of this form. 

Theorem.  Let <y  be any standard state of A   .   Then there exists a measure 

m on E,   and a bounded positive operator r on K     such that, for all f in A^, 

(10.4) co(f) = rjrf). 

The measure m may be normalized so that 

(10.5) <a(zn)= JXndm(X) 

and in this case both m and r are essentially unique. 

Proof.  First, suppose co has the special form 

(10.6) co(f) = (fv,v) 

for some vector v in a standard representation.  If we choose m so that (10.5) 

holds, then (10.6) may be written as 

(10.7) <o{f) = {fv, v)=    f (fxvx, vx)dm{k) 

where  vx lies in H\,  and ||t>\ || = 1. 

Let rx be the orthogonal projection on vx in K\. Then the inner product 

(f\v\> v\} may ^e wr"ten as r\(r\.fx)> an<^ (10.7) becomes 

(10.8) a>(f)=    f rx(rxfx)dm{\) = rm(rf) 
El 

which is the same as (10,4). 

We know from Corollary 7.11 that every standard state of 4^  must be a 

countable convex combination of standard states of the special form (10.6). Hence, 

the usual techniques of Hubert space theory will now show that (10.4) must also 

hold for all standard states of A    [16].  The uniqueness is a consequence of the 

uniqueness of (10.7). 

Theorem 10.1 says that every standard state on A^ is determined by a den- 

sity operator in a suitably chosen standard representation of A   .  Moreover, we 

see from (10.3) that every motion of this standard state is determined by a motion 

of the associated density operator of the form n* : r —► uru*. 
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Thus we conclude that the usual forms of both classical and quantum statist- 

ical mechanics are derivable from our formulation of mechanics, and that a suitable 

generalization of these two special cases can be established for every mechanical 

system which admits a description in our terms. 

We must point out here that because of the commutation relations (6.3)—(6.5) 

the statistics of the different pairs (p., o.) of conjugate variables are independent. 

This means that the different pairs are distinguishable by a suitable measuring 

process. It follows that the statistics of a many-particle system obtained from the 

formalism described so far distinguishes different particles, and thus is a form of 

Maxwell-Boltzman statistics.   This statement is true for both the classical case 

and the quantum case, as well as the general case. 

It is not hard, however, to incorporate other forms of statistics into the same 

framework. If different particles are not distinguishable, then different pairs 

(p-, a)  of conjugate variables will not be statistically independent, and this fact 

must be reflected in the structure of the moment algebra. 

If we require that the statistics remain invariant under the exchange 

(10.9) (p,-, qt) ~ (P/, qji 

then we must simply restrict the moment algebra to polynomials which remain in- 

variant under this exchange.  The entire development goes through exactly as be- 

fore, but now every state of the system is invariant under the exchange.  This 

means that the statistics obtained from such a formalism is a form of Bose-Einstein 

statistics. 

Similarly, if we require that the statistics reverse polarity under the ex- 

change (10.9) then we must simply restrict the moment algebra to polynomials 

which reverse polarity under this exchange. Again the entire development goes 

through exactly as before, but now every state of the system reverses polarity 

under the exchange.  This means that the statistics obtained from such a formalism 

is a form of Fermi-Dirac statistics.  All these possibilities are available in every 

mechanical system which admits a description in our terms. 

So far we have considered only the mechanics of a system of point particles, 

whose states we assume to be determined completely by the canonical positions 

and momenta. If the particles of the system exhibit other degrees of freedom (e.g., 

spin or charge) so that other coordinates are necessary to determine completely 

the states of the system, then these other coordinates must also appear in the 

moment algebra. 

If, for example, it is necessary to include the spin coordinates <r., •.», a , 

then these variables must also appear in the moment algebra, and their relations 

with the other generators determined. If we assume, for instance, that the spin 
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variables are statistically independent of the position and momenta variables and 

of each other, then we know from Theorem 5.3 that they must commute with the 

position and momenta variables as well as with each other. Furthermore, if only 

a finite set of values is available for each spin variable a-, then each a,- must 

also satisfy a polynomial identity of the form g(a) - 0. If, for example, the spin 

variable ai can assume only the values ±1 (spin up or spin down) then oi must 

satisfy the polynomial identity aj - 1 = 0. In this way the additional variables 

required to describe additional degrees of freedom may be incorporated into the 

framework of our formulation of mechanics. 

We emphasize here that, at least in principle, any combination of commutation 

relations (classical or quantum), statistics (Maxwell-Boltzman, Bose-Ein stein, or 

Fermi-Dirac), and spin (zero, half-integer or integer) can be built into our frame- 

work. There is no difficulty in principle which forbids any combination. In particu- 

lar, the connection between spin and statistics derived in quantum field theory is 

not a consequence of our formulation of particle mechanics, nor of any formulation 

which describes only systems with a fixed finite number of particles. 

11. Constraints 

Up until now we have assumed that the system whose mechanics we are de- 

scribing is free of constraints. This assumption appears operationally in the 

statement that every normalized positive linear functional on the moment algebra 

A determines a state of the system. 

If the system is subject to constraints, then only those functionals on the 

algebra which satisfy the conditions of constraint can determine states of the sys- 

tem. If, for example, the particles of the system are constrained to lie within the 

unit cube (i.e., 0 < q{ < 1), or on the surface of the unit sphere (i.e., 2  9? = 1), 

or below a fixed energy level (i.e., h < 1), then clearly all values assigned to the 

coordinates by any measuring process must satisfy the conditions of these con- 

straints.  It follows that we can account for the presence of constraints in the sys- 

tem by suitably restricting the space of admissible states. 

We shall consider here only those constraints which can be given in terms of 

inequalities on the values assigned to a finite set of prescribed Hermitian func- 

tions of the canonical variables. (Note that every equality can always be described 

by a pair of inequalities!) Such constraints can always be put in the form 

(11-1) /,-(*!, -",x2n)z0. 

We shall then take as the space of admissible states those elements <y of fl 

which assign to each of the /. a probability distribution of possible values, via 

Theorem 5.1, which vanishes on the negative real axis. In terms of moments, this 
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condition says that if g(£) is any polynomial in the single real variable £, such 

that f > 0 implies g(g) > 0,  then 

(11.2) a>(*(/i))>0. 

If there exist no states in Q  satisfying (11.2), then we say that the constraints 

are incompatible with the system.  Otherwise the constraints are compatible with 

the system, and the states which satisfy (11.2) are compatible with the constraints. 

It is a straightforward matter to verify that the space S of states compatible 

with the constraints has the properties 

(1) (o, T/€S= 1  A<u + (1- \)r) £S,    0<A<1, 

(2) \<on\ G S and con —» <o ==> <o € S, 

but not the property 

(3) (o € S =^ a *co G S for all translations er of A. 

Thus S is closed under strong superpositions and weak limits, but not under trans- 

lations (see section 4). Properties (1) and (2), taken together, imply that S is a 

face of £2 [17]. The same statement holds true for their extensions:  S~ is a 

(weakly closed) face of 0~. 

If the moment algebra A  is commutative (the classical case), then so are the 

algebras B of exponential polynomials and F of extended functions.  In this case 

it is known that the set / of extended functions which vanish on the compatible 

states forms an ideal in F, and the quotient algebra F/J can be realized as the 

algebra of extended functions defined only on the compatible states [17].  In this 

way we recover the familiar result that the constraints of the system define a sub- 

set of the phase space from (11.1), and the states and extended functions compat- 

ible with the constraints are all defined relative to this subset. 

If the moment algebra A  is not commutative, however, then neither are the 

algebras  B   and F,  and the preceding argument no longer holds.  In this case there 

exists in F an orthogonal projection e, such that the algebra eFe can be realized 

as the algebra of extended functions defined only on the compatible states. If the 

functions f. defining the constraints lie in the center of F, then so does the 

orthogonal projection e,  and we have an analgoue of the commutative case.  The 

only functions which lie in the center of F, however, are extended functions of z 

alone. In the non-commutative case, then, only constraints involving the commu- 

tation relations (i.e., involving  z  alone) can be realized in terms of an ideal / 

in the algebra of extended functions. 

We note here that the process of specializing A     to A\   (i.e., of specializing 

our abstract framework to classical or quantum mechanics) may be viewed as the 

process of placing a constraint of the form  z = A. on the abstract system which 
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defines the ideal in A^ generated by z - X.  If A = 0, then further compatible 

constraints may be adjoined, defining ideals in A   , but if X ■/■■ 0,  then A\   is 

simple, and no further compatible constraints can be adjoined which will define 

ideals in Ay For this reason the placing of constraints on the system is a more 

natural procedure in classical than in quantum mechanics; classical constraints 

have no quantum mechanical counterparts in terms of the moment algebra, though 

they always do in terms of the state space. 

What about motions? If n is a motion of the system such that the defining 

functions f. are constants of the motion (i.e., n*fi = /•), then it follows that n 

takes states compatible with the constraints into states again compatible with the 

constraints, and hence leaves the space of compatible states invariant. In this 

case we shall say that the motion is compatible with the constraints. Conversely, 

it can be shown, using the machinery of section 9, that if the motion is compatible 

with the constraints, then the constraints may be expressed in the form (11.1), 

where the f. are constants of the motion. 

It follows that, in the presence of constraints on the system, the only motions 

of the system compatible with these constraints are those defined on the space of 

compatible states, and for such motions the constraints may be expressed in terms 

of constants of the motion. 
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