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ABSTRACT 

The free vibrations of a slender bar with charactersitics slightly 

different from those of a uniform one is discussed. A simple approximate 

solution to this problem is presented. Results from experiments conducted 

with a bar of variable cross-section in free-free flexural vibrations in-

dicate that the theory adequately predicts resonant frequencies and nodal 

locations. 
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1. lliTRODUCTION 

The problem of free vibration of a slender, elastic bar has been 

treated by many authors in the past. Bars of variable cross-section and 

of non-homogeneous properties were investigated (See references on page 16). 
However, only in a small number of cases can a closed-form solution be 

obtained. In general, a tedious numerical procedure must be pursued 

to evaluate the natural frequencies and to determine the form of the 

principal modes. Here, it will be shown tbat, for slender bars with 

characteristics slightly deviated from those of a uniform bar, an approximate 

solution in closed-form is possible. The approximate solution is useful 

in evaluating the influence of non-uniformity on the natural frequencies 

and the principal modes. 

2. LONGITUDINAL VIBRATION 

For a slender bar whose cross -sectional area A, Young's modulus E, 

and mass density p, vary with the distance x along its axis, the equation 

of motion can be obtained as 

o2
u + (fl 1 

+ ~') OU = e_ o2
u 

dx2 A E dx E dt 2 
(1) 

where u is the longitudinal displacement of a cross-section and the prime 

denotes a differentiation with respect to x. In the derivation of this 

equation, the state of stress in the bar is taken to be uniaxial in the di-

rection of the bar axis and to be uniform 

This approximation holds if the variation of the cross-sectional area is 

not great and if the wave length of the vibration is long compared to the 

lateral dimensions of the bar. 

The vibratory solution of Equation (1) can be expressed in the form, 

u = Xe:imt (2) 
, /r) 

in which X is a function of x only and i denotes (-1)~1 ~. Thus, the 

frequency of the vibratory motion is equal to m/2n. The function X is 

the solution equation, 
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subjected to a set of boundary conditions at the ends of the bar; 

at x = 0 and at x = l. The boundary conditions are 

X = O, 

at a fixed end and 

x' = o 

at a free end. 

(3) 

i.e., 

(4) 

A general solution for Equation (3) in terms of the functions A, E, p, 

is difficult to obtain. However, an approximate solution can be found if 

the area A, Young 1 s modulus E, and the density p, vary only slightly with 

the position x, such that their second and higher derivatives and the pro­

ducts of their first derivatives may be neglected in comparison to the 

~w~ctiorill themselves. The approximate solution L~ its most gener~l form 

is written as 

y :: f"1fn 
.... U\ J.Jl sin H' + n 

~ .L../2 cos F) (5) 

where G and the first derivative of F are functions weakly dependent on 

x (in the sense described above) and D
1 

and D
2 

are arbitrary constants to 

be determined from the boundary conditions at the ends. This form for 

the approximate solution is suggested by the solution for a uniform bar, 

i.e., 

X ~ B sin ~ + B (.l)X l c 2 cos c (6) 

where c is equal to 1/2 (E/p) and B
1

; B2 are arbitrary constants. 

Using Equations(3) and (5) and neglecting all the higher order terms 

I 2 I I 2 I 1 2 "\ 
1c\ A G tC, E G _.:;] tc\ G +"hr. -R,-..11,-,u;.,-,,.,. relations can be established; 

\ (~) A G , \~} E G anu \z;;J G J u.uc ..tv..L..LVYV..LLlo 

(7) 

and 

F = w J (1/c)dx 



Accordingly, the approximate solution for X is 

( )

l/2 (, . 

X = ~ \Dl sin ill J ~ + D2 cos (8) 

it can be shown that the approximate solution holds closely if the dimen-
c A' 2 1 2 1 2 2 A0 ~ 0 

sionless products (ill- A- ) , (~! ) , (~ £. ) · (~) (~)2 ! (~) 2 E.. are 
wE wp "'w A' roE' w p 

much less than unity. 

The frequencies, m/2rr, are obtained by satisfying the boundary 

conditions. It is interesting to note from Equations (8) and (4) that 

for all the boundary conditions considered here, the natural frequency 

is independent of the variation of cross-section away from the ends, but 

possibly dependent on the size and the taper of the bar at the ends. On 

the other hand, the variations of density and Young's modulus of the 

entire bar contribute to the value of the natural frequency through the 

integral term J a: in Equation (8). 

The form of a normal mode of the vibration can be found by inserting 

into Equation (8) the values of the appropriate natural frequency. As one 

would have anticipated, the normal mode is no longer a simple harmonic in 

form as in the case of a uniform bar. 

3. TORSIONAL VIBRATION 

With a change of notation, the above discussion on longitudinal vi­

bration can be applied to the study of the torsional vibration of a slender 

bar with a circular cross-£ection. For a bar whose cross-section area, 

shear modulus G, and density are functions of the distance x, the equation 

of motion for the torsional vibration is 

(9) 

where J is the polar moment of inertia of the cross-section about the bar 

axis and e is the angle of rotation of a cross-section. This equation is 

identical to Equation (l) if G is replaced by E, J by A and e by u. Con­

sequently, the results obtained in the previous section hold also for the 

torsional vibration provided this change of notation is made. 
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4. FLEXURAL VIBRATION 

On the basis of elementary beam theory, the equation of motion of a 

beam under free flexural vibration can be shown to be 

where W is the deflection of the neutral axis of the beam and I is the 

moment of inertia of the cross-section about the neutral axis. If Young's 

modulus E, the moment of inertia of the cross-section I, and the density p, 

are weakly dependent on the distance x, the same approach used previously 

in the·study of longitudinal vibration can be applied to obtain an approximate 

solution for the flexural vibration. The approximation for the time inde-
:imt 

pendent part X, of the solution, W = Xe , is 

3 -=L2 2 -1/4 . 
X = (Q rn~ I ) (D1 cosh m + D2 s1nh m + n

3 
cos m + n4 sin m) 

where 

Q = (~~) l/2 

m = rnl/2 J Ql/2 dx ' 

(ll) 

and n
1

, n
2

, n
3 

and n
4 

are arbitrary constants. When A, I? E and p are 

constants, Equation (ll) becomes the solution for a uniform bar, i.e., 

X = B
1 

cosh px + B
2 

sinh px + B
3 

cos px + B4 sin px (12) 

where 

and B
1

, B2, B
3 

and B
4 

are arbitrary constants. The approximate solution 

will hold for the cases in which the dimensionless products (A'/Ap)
2

, 

( '! )2 ( 'I )2 "/ 2 _,"/ 2 nn; 4 ,E . Ep. , . p . pp. ; A . Ap , E Ep , . . . ; . . . , . • . , . . . ; A Ap , ..• , 

are much less than unity. 

The frequencies and normal modes are determined from the boundary 

conditions The condition~ are 
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X • o, X" = 0 for a simply supported end, 
vtt :: " f1":1"1""Vtl" - A for a free ~~~ A v, \-Cl.LA } - v cuu., 

and X = o, x' = 0 for a clamped end. 

In contrast to longitudinal vibrations, it can be seen from Equation (ll) 

that the flexural frequency of a bar is not free of the influence of the 

variation in cross-section away from the ends. 

5. EXPERIMENTS 

An experimental test of the analysis bas been made. This v.ras done by 

comparing the predicted and measured natural frequencies and nodal positions 

of a circular, stepped cross-section bar undergoing flexural vibrations 

with free-free end conditions. The specimen was aluminum and had a length 

of 31.42 inches. The diameter at the larger end was 1.387 inches and 

decreased by steps of 0.05 inches in the span to 0.198 inches at the smaller 

end; the stepped profile of the bar approximated that of a bar with contin­

uously varying cross-sectional area determined by 1 + (l/2) cos O.l x, 

where x is the distance from the larger end along the center axis of the bar. 

For this cross-section, the condition given in Section 4 was satisfied; the 

largest value of the dimensionless products (A'/Ap)
2

, ••. etc~ was 0.26 

for the first mode and decreased to 0.05 for the third mode. The bar 

was suspended by two fine wires positioned at nodes and~s excited 

electromagnetically at one end with a coil and magnet system. The coil, 

wound around the cylindrical surface of the bar, was connected to 

a sinusoidal current oscillator. Proximity of a permanent magnet to the 

coil provided the necessary mechanical excitation. Another wire winding 

and magnet system at the other end monitored the response of the bar. 

When the frequency of the sinusoidal excitation coincided with a natural 

frequency, the voltage output from the receiving winding showed a clear 

maximum. Nodes for each mode were detected with a phonograph cartridge. 

Table I presents the measured and predicted values for the nodal po­

sitions and natural frequencies. Directing attention to the nodal positions, 

agreement between theory and experiment is seen to be acceptable and to be 
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best at the higher frequencies tested. This behavior probably stems 

from a lessening influence of the terms neglected in the analysis as the 

The predicted and observed values of natural frequency are found to 

agree quite well. In general, however, the discrepancy between prediction 

and observation increases with frequency. This arises from the well-known 

inadequacies of a one-dimensional theory in describing the vibration of a 

slender bar. To assess this current analysis in the light of a comparable 

accepted theory, a test was conducted on a uniform aluminum bar with length 

equal to that of the stepped bar. The diameter of this second specimen 

was 0.99 inches which provides about the same length to diameter ratio 

found in the tapered bar if the latter's mean diameter is used. 

Results from the test on the uniform bar are presented in Table II. 

~ne discrepancies between predicted and observed frequencies are Seen to 

follow closely both in magnitude and general trend those found in the 

stepped bar. Hence, viewed in the light of a one-dimensional theory, the 

analysis developed here for bars of varying 

provide very good predictions of bar behavior. 

6. CONCLUSION 

The free vibration of a slender bar with characteristics slightly de­

viated from those of a uniform one has been discussed. Approximate but 

simple solutions are obtained for longitudinal, torsional and flexural 

vibrations. The solutions may be used for estimating the effects of small 

variations in the cP~racteristics of a bar on the natural frequencies and 

on the modes of the vibrations. The results show that, in general, varia­

tions of characteristics of a bar produce a change in natural frequencies 

and a distortion in the form of normal modes from those of a uniform bar. 

Among all the characteristics considered here, the variation in cross­

sectional area has only localized effect on the vibrations of a bar except 

in the case of a flexural vibration. For longitudinal and torsional vi-

brations, the natural frequency is free from the influence of the size of 
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cross-sections away from the two ends. In addition, the amplitude of the 

normal mode at any section of the bar depends only on the size of that 

section. 

The experimental results obtained for the free flexural vibration of 

a bar with a stepped profile indicate that this SDuple theor~ is adequate 

in predicting the natural frequencies and the positions of nodes. Neglecting 

higher order terms in the process of satisfying the differential equations 

and the boundary conditions does not seem to induce in the final results 

an error any larger than the order of magnitude of the abandoned terms. 

The accuracy of prediction improves at higher frequencies. Moreover, the 

results seem not to be affected by the presence of steps in the profile 

of the bar; hence, the local curvature in the non-uniformity of the bar 

may be overlooked in considering its free vibrations. 
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'IMLE I 

NATURAL FREQUENCIES AND NODES FOR SPECIMEN WrrH VARIABLE CROSS -SEC~riON 

Top Line Shows Predicted Results, Bottom Line, Meas:ured Resul t:3 

(Bar length = 31.42 inches) 

Frequeney Position of Nodes 
Mode~ ~clcleLsec) Dis ere pane~ Number of Nodes ~~inches from the lar~e end~ 

1 194 
·- 31o 

2 7.89 ~25. 27 

200 2 6.69 ~23. 81 

2 535 3 4.68 17.06 27 .. 83 
·- 1% 

538 3 4.38 16.13 27 .. 44 

f-J 3 1050 4 3.35 12.37 21 .. 47 28.86 
+ 

+ 1% 
1036 4 3.25 :u. 94 21 .. 06 28.69 

4 1735 5 2.60 9.70 17 .. 06 23.77 :29.43 
+3% 

1687 5 2.31 9.44 16 .. 75 23.5 :29.31 

5 2592 6 2.13 7-97 14 .. 14 19.87 :25.21 29 .. 79 

2481 
+ 4% 

6 2.0 7.50 13 .. 81 19.63 :25.06 29 .. 75 

6 3620 7 1.80 6.76 12 .. 05 17.06 :21.76 26.18 30 .o1~ 
+ 6% 

3404 7 1.75 6.69 11 .. 88 16.94 :21.56 26.13 30.06 



TABLE II 

NATURAL FREQUENCIES AND NODES FOR SPECIMEN WITH UNIFORM CROSS -SEC'l~ION 

Top Line Shows Predicted Results, Bottom Line, Measured Results 

(Bar length;: 31.42 inches) 

* Frequency Posltion of Nodes 
Mode ~ c~c1eLsec 'L DiscreEanc~ Number of Nodes ~incheB from one end2 

1 178 2 7.04 24.37 
+C$ 

175 2 7.06 24.38 

2 491 3 4.15 15.71 
+C$ 

481 3 4.13 15.69 

J-l 
3 963 4 2.97 11.18 V1 

+ 3% 
937 4 2.88 11.13 

4 1591 5 2.31 8.70 15.71 
+Jfo 

1538 5 2.25 8.69 15.69 

5 2377 6 1.89 7.11 12.85 
+ 4% 

2276 6 1.81 7.06 13.06 

6 3320 7 1.60 6.02 10.88 15.71 
+ 6% 

3141 7 1.56 5.94 15.69 15.69 

* Only half of the nodEs are shown beeause of s:yrmze1~ry about the center of the bar. 
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