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ABSTRACT 

Static pressure and boundary-layer data were obtained over a rigid 
pressure shell at Mach numbers from 1. 20 to 1. 50 and Reynolds num- 
bers from 1. 04 to 4. 20 x 106/ft in the 16-ft transonic tunnel.    These 
data were obtained with and without addition of air into the boundary 
layer through a circular slot upstream of the test shell.    Flutter char- 
acteristics of thin cylindrical shells were obtained at Mach numbers of 
1. 20 and 1. 50 with and without boundary-layer blowing and shell axial 
loading.    Spirally traveling waves appeared on three of the shells just 
prior to divergent flutter,  which was initiated by reducing shell cavity 
pressure. 

in 
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Mg, Free-stream Mach number 
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SECTION  I 
INTRODUCTION 

An investigation into the aeroelastic stability of thin cylindrical 
shells was conducted in the Propulsion Wind Tunnel,  Transonic (16T). 
The test was divided into a pressure phase and a flutter phase. 

The purpose of the pressure phase was to determine boundary-layer 
profiles and static pressure distributions over a rigid shell with and 
without addition of air into the boundary layer for Mach numbers from 
1. 20 to 1. 50 at two Reynolds number levels. 

The objective of the flutter phase was to determine the flutter char- 
acteristics of five flexible cylindrical shells as influenced by shell 
thickness,  boundary-layer thickness,  shell cavity pressure,   and shell 
axial loading at Mach numbers 1. 20 and 1. 50. 

SECTION   II 
APPARATUS 

2.1 WIND TUNNEL 

Tunnel 16T is a continuous flow,   closed-circuit wind tunnel capable 
of operating from a stagnation pressure level of 60 to 5000 psf.    The 
test section is 16 ft square by 40 ft long with perforated walls to allow 
continuous operation through the Mach number range from 0.5 to 1.6 
with minimum wall interference. 

Details of the perforated walls and the location of the model and sup- 
port strut in the test section are shown in Fig.   1.    A photograph of the 
model installed in Tunnel 16T is presented in Fig.   2. 

2.2 TEST ARTICLE 

A detailed drawing of the ogive-cylinder model is shown in Fig.  3. 
The model has a 3-cal circular arc ogive nose with an 18.9-deg semi- 
vertex angle,   a fineness ratio of approximately 8,   and a maximum diam- 
eter of 16 in.    It is composed of three basic sections:   the nose cone, 
center section,  and the aft or base supporting structure.    The primary 
function of the nose cone is to provide a uniform flow and static pressure 
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field over the test shell and to support the boundary-layer control equip- 
ment.    The center section supports either the pressure shell or thin 
flutter shell and its associated instrumentation,  whereas the base 
section attaches the model to the supporting sting. 

Details of the pressure and flutter shells are presented in Figs.  4a 
and b.    The static pressure shell was constructed from 0. 080-in.  copper 
sheet with four rows of orifices along the shell.    Additional orifices 
were located on the model as shown in Fig.   3.    Two boundary-layer 
rakes,  one fixed and one remotely adjustable,  were located at model 
station 114. 25.    The fixed and adjustable rakes are illustrated in Figs.  5 
and 6,  respectively. 

The flutter shells were thin-walled monocoque circular cylinders 
made by an electroplating process which is outlined in Ref. 1.,    The 
shell thicknesses were 0. 0020,   0. 0032,  and 0. 0040 in.,  as shown in 
Table I.    These shells were soldered to two copper end rings which 
were machined to fit smoothly against radial and axial bladders.   These 
bladders were located inside the fore and aft edges of the center section. 
The internal pressure in the axial bladders could be remotely controlled 
to produce an axial buckling load (longitudinally compressive) in the 
shell.    Figure 7 shows a calibration curve for axial load versus axial 
bladder pressure for one value of shell cavity pressure.    Figure 8 is a 
photograph of the 0. 0032-in.  shell buckled by an axial load of 240 lb 
with zero cavity pressure differential.    The characteristic diamond 
patterns in the shell will be evident in the flutter photographs which are 
discussed in Section IV. 

2.3   INSTRUMENTATION 

2.3.1    Pressure Phase 

Twenty-four static pressure orifices were uniformly distributed 
along four rays on the shell,  and nine orifices were located elsewhere 
on the model as shown in Fig.   3.    Three static pressure orifices were 
located internally in the boundary-layer control duct,  and one orifice 
was installed in the cavity beneath the pressure shell.    All the pressure 
orifices were connected to pressure transducers which were located in 
the tunnel plenum chamber.    All transducer outputs were fed to analog- 
to-digital converters and then to a digital computer. 

Two boundary-layer rakes were used to measure the boundary-layer 
thickness over the shell. The fixed rake had ten total pressure orifices, 
and the remotely adjustable rake had one static and six total pressure 
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orifices connected to transducers with the outputs introduced into the 
computer in the same manner as the pressure orifices in the shell. 

2.3.2   Flutter Phase 

A photograph of the model instrumentation used in the flutter phase 
is presented in Fig.  9.    The model displacement sensors were mutual- 
inductance proximity transducers and were designed to sense both static 
and dynamic displacements of a point on the shell surface without 
mechanical contact (Ref.  1).    Sensor 1 could translate fore and aft 
from 10 to 85 percent of the shell length at a speed of 25 in. /min.   Both 
sensors 1 and 2 could rotate circumferentially under the shell from 0 
through 270 deg.    Sensor 3,  which is covered in the photograph,  was 
fixed in position and used as a reference sensor to assist in mode 
shape identification through phase-angle measurements between this 
sensor and the two moving sensors. 

The signals from these sensors were amplified and fed into two 
magnetic tape recorders and a direct-writing oscillograph as shown in 
Fig.   10.    A dual-beam oscilloscope was used for continuous monitoring 
of shell motion.    The input to this scope could be varied from one 
sensor to another as it became necessary to compare the phasing and 
relative amplitude of the three sensors.    The magnetic tape recorders 
were sometimes run continuously when the shell signals appeared to 
coalesce in frequency and increase in amplitude. 

SECTION  111 
TEST PROCEDURES 

3.1   PRESSURE PHASE 

Boundary-layer profiles and static pressure distributions were ob- 
tained at Mach numbers from 1. 20 to 1. 50 at Reynolds numbers of 
approximately 1. 04 and 4. 20 x 10°/ft (Fig.   11).    Air was blown into the 
boundary layer through a circumferential slot ahead of the test shell at 
Mro = 1. 20 and 1.50 for both Reynolds number levels. 

The Mach numbers were obtained by means of the flexible nozzle 
plates using plenum pressure control to stabilize the flow through the 
test section.    The desired Reynolds numbers were obtained by establish- 
ing the proper stagnation pressure and temperature.    A test section wall 
angle setting of zero was maintained throughout the pressure phase of 
this test. 
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The boundary-Layer control (BLC) system was operated at valve 
positions of 0 and 25 percent open.    A maximum weight flow of 
0. 36 lb/sec was obtained from the 0. 064-in.  circumferential slot for a 
valve setting of 25 percent open.    All BLC data shown are for either 
zero weight flow or for the maximum of 0. 36 lb/sec. 

3.2  FLUTTER PHASE 

For the five flexible shell configurations tested,  the Mach number 
was established at 1. 20 and 1. 50 with a low dynamic pressure.    The 
dynamic pressure was then slowly increased in steps at constant Mach 
number until tunnel maximum or a designated limit was obtained.    After 
desired total pressure level was reached,  model cavity pressure was 
reduced until flutter occurred.    Mass addition of air into the boundary 
layer,  internal pressure,  and shell axial loading were varied only when 
tunnel conditions were constant. 

3.3   PRECISION OF MEASUREMENTS 

The magnitude of the uncertainties involved in the tunnel conditions 
is estimated to be as follows: 

Mach Number ±0. 005 
Total Pressure ±5 psf 
Dynamic Pressure ±0. 5 percent 
Total Temperature ±5°F 

The Mach number error does not include the deviation from the 
mean value in the region of the model.    The maximum variation in Mach 
number on the tunnel centerline between the tunnel stations by the model 
was ±0. 007. 

The magnitude of the uncertainties in shell frequency measurement, 
based on repeatability during the wind-off calibrations,  and the accuracies 
in determining shell flutter frequencies from oscillograph records of the 
variable inductance sensors are estimated to be 2 cps. 

SECTION   IV 
RESULTS AND DISCUSSION 

4.1   PRESSURE PHASE 

The boundary-layer distributions were measured with a fixed and 
an adjustable rake at model station 114. 25.    Only the fixed rake data are 
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presented since vertical positioning difficulties were encountered with 
the remotely adjustable rake.   These boundary-layer profiles are pre- 
sented in Fig.   12a for Mach numbers from 1. 20 to 1.5 0 for two Reynolds 
number levels.    Boundary-layer profiles were also obtained with and 
without mass addition of air into the boundary layer at MB = 1. 20 and 1.5 0 
for both Reynolds number levels as shown in Fig.   12b. 

Boundary-layer displacement and momentum thicknesses were com- 
puted from the profile data.    Both the displacement and momentum thick- 
nesses increased with increasing Mach number and decreased with 
increasing Reynolds number as expected from the theory of turbulent 
flow over flat plates (Ref. 2). 

Insignificant changes in the boundary-layer profiles resulted from 
mass additions of air into the boundary layer.    It is believed that larger 
values of weight flow would be required to produce a significant change 
in the boundary-la3rer characteristics. 

The variation in pressure coefficient <Cp) with x/L at Mach numbers 
from 1. 20 to 1. 50 is presented in Fig.   13.    The maximum variation in 
the pressure coefficient across the shell was from -0. 043 to +0. 032 
along the 180-deg ray at M«, = 1. 20. 

4.2  FLUTTER PHASE 

Five shell configurations were tested, three at M0 = 1. 20 and two 
at M,,, = 1. 50.    A summary of the test results and initial conditions is 
presented in Table I. 

Configuration 1 experienced a divergent flutter mode as the shell 
cavity pressure was being slowly reduced to 0. 236 psi.    The shell buckled 
inward against the center section,  then outward,  and fluttered violently 
to destruction.    The flutter frequency was higher for this failure than for 
any of the other shell failures,   which indicated a different mode of flutter 
caused by the floating end-fixity and low cavity pressure.    The mode of 
flutter appeared to be that of "shell breathing" as viewed on closed- 
circuit television. 

Configuration 2 was loaded axially to 124 lb,  which represented the 
wind-off axial buckling load with a positive cavity pressure differential 
of 1 psi.    After the tunnel conditions were stabilized and no significant 
shell motions were noted, the BLC valve was opened to the 25-percent 
position at which point divergent flutter occurred before high speed 
motion pictures could be obtained. 
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The ends were fixed in configuration 3 in an attempt to prevent com- 
plete loss of the shell.    The internal cavity pressure differential was 
rapidly reduced from 1 psi (positive) to initiate shell flutter as high 
speed motion pictures were being obtained.    When Apc equalled 0.754 psi, 
a longitudinal traveling wave mode of flutter was triggered.    This travel- 
ing wave is shown in Fig.   14a.    The longitudinal traveling wave became 
more of a spirally traveling wave after approximately 0. 27 sec as shown 
in Fig.   14b.   The occurrence of flutter from start to failure required 
approximately 0. 32 sec. 

The oscillograph trace presented in Fig.   15 shows the divergent 
flutter encountered during the testing of configuration 4,  which was 
geometrically identical to configuration 2.    For configuration 4, the 
BLC was zero,   and the shell cavity pressure (Apc) was rapidly reduced 
from 1. 0 to 0. 440 psi before shell flutter began.    High speed motion 
pictures of this shell failure indicated a more spirally traveling wave 
mode of flutter than that of configuration 3. 

Configuration 5 was axially loaded to its wind-off buckling load of 
210 lb for Apc initially equal to 1 psi.    The shell cavity pressure was 
reduced until flutter was initiated.    It appears that the airstream is 
somewhat stabilizing to shell buckling since no local deformation or 
waves were formed until Apc was reduced to 0. 530 psi. 

The average value of the flutter parameter (F) from Table I is 23.6 
for the present investigation.   The average value of F is 7. 0 in Ref. 3, 
which covered Mach numbers from 2. 487 to 3. 527.    The flutter modes 
obtained in Ref.  3 were composed of circumferential waves having many 
nodal lines parallel to the model centerline.   This flutter mode was not 
divergent because no shell failures were encountered. 

The boundary-layer blowing data are not conclusive since only one 
point was obtained,  but intuitive reasoning would indicate that reducing 
the boundary-layer displacement thickness would make the shell less 
stable. 

SECTION  V 
CONCLUSIONS 

The following conclusions were derived from this test: 

5.1   PRESSURE PHASE 

Blowing 0. 36 lb of air per sec into the boundary layer produced no 
significant changes in the boundary-layer profiles at MB = 1. 20 and 
1. 50 for a Reynolds number per foot of 4. 20 x 10*\ 

6 
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5.2  FLUTTER PHASE 

1.     Decreasing shell cavity pressure initiated a destructive flutter 
mode at the Mach numbers of the investigation. 

2«     Destructive shell flutter was more violent when the shells 
were loaded axially.    However,  shell buckling caused by com- 
pressive axial loading appeared to be suppressed by the air- 
stream. 

3.     The flutter modes appeared to be influenced by end-fixity.   A 
"breathing mode11 occurred when the shell was simply supported, 
and traveling wave modes occurred with either forward or both 
ends fixed.    The spirally traveling wave was more evident 
when only the forward end of the shell was fixed. 
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TABLE   I 
SUMMARY OF FLUTTER PHASE RESULTS 

CONFIGURATION 
M«, Pf«. 

psf psf 

Re/ 

ftxIO-6 

BLC 
Valve, 

percent 
open 

psi 

pr 

psi 

Po. 

psi 

U 

cycles/sec in./sec 

R 
h 

F 

No. End-Fixity h,in. 

1 

2 

3 

4 

5 

FLOATING 

FORWARD END 
FIXED 

BOTH ENDS 
FIXED 

FORWARD END 
FIXED 

FORWARD END 
FIXED 

0.0032 

0.0020 

0.0032 

0.0020 

0.0040 

1.200 

1.500 

1.200 

1.500 

1.200 

2600 

2000 

2600 

2000 

2600 

1082 

858 

1081 

857 

1081 

5.39 

4.03 

5.39 

4.02 

5.40 

0 
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0 

0 

0 

0 236 

1.000 

0.754 

0.440 

0.530 

41.3 

33.4 

45.7 

56.4 

16.1 

0 

23.4 

0 

23.4 

30.0 

240 

135 

150 

145 

150 

540 

520 

2500 

4000 

2500 

4000 

2000 

23.28 

29.00 

23.28 

29.00 

18.63 
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