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The Reattachment of Laminar Cavity Flow with Heat Transfer

At Hypersonic Speed

Summary

A study of cavity flow is made based upon the analysis of a physical model

and by referring to the experimental data of a particular test model with the reat-

tachment surface perpendicular to free stream direction at free stream Mach

number of eleven.

The pressure and heat transfer in the reattachment zone may be predicted

approximately by the flow quantities along the dividing stream line employing the

mixing theory and stagnation heat transfer equation for a blunt body. Good agree-

ment with experimental data is obtained.

It is found that the value of the average mixing rate correlation function for

the cavity flow is 15 and is equal to that value determined by Glick for separated

flow caused by shock impingement. Semi-empirically, efficiency factor of com-

pression equal to 0. 67 at the reattachment is evaluated and the reattachment

velocity gradient parameter for the particular test model is similar to this case of

stagnation flow over blunt nose. It appears that the heat transfer at the reattach-

ment surface perpendicular to the free stream dire-tion may be predicted approx-

imately by the stagnation point heat transfer equation for a two-dimensional blunt

surface.
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Nomenclature

A constant, A = 0.44

a velocity of sound

a, constant

C(K )mixing rate correlation function

Z average value of C

C, C 1 , C2  constants

cf skin friction coefficient

c specific heat at constant pressure

D depth of cavity

d diameter, d = ZD

f
F F= 2 . 1

f TI/Tt

f 2 factor

g gravity

H stagnation enthalpy

h heat transfer coefficient h = q

T w  Taw

mass flux in x -direction, I u 2 dy

k = dc -e 0
k k = 6

dx

L length of cavity

LR reattachment zone length

distance from forward stagnation point to the separation
point

M Mach number
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m mass flux in x-direction, m = udy

p static pressure

Pr Prandtl number

R Rankine

gas constant

Re Reynolds number

ro  radius of cross-section of body of revolution

s coordinate along the reattachment surface

St Stanton number

T temperature

u velocity component in x-direction

u u =Ud/ue

u velocity component in s-direction
s

w w = u/at

x, y coordinates along and normal to the dividing stream
line

constant in linear relation of F =( K +

8 angle between dividing stream line and reattachment
wall

constant in linear relation of F =cy +8

Of I 1 vortices inside and outside the stagnating Eream line

y ratio of specific heats, y = Cp/C v

8 physical thickness of viscous layer

8 displacement thickness of viscous layer

momentum thickness of viscous layer

I T= Fo/F
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6 stream line direction relative to wall at y - 8

i Crocco-Lees velocity profile shape parameter

parameter

Is dynamic viscosity

V] kinematic viscosity

efficiency factor of compression relative to that ef an
isentropic process

density

I tC shear stress
I - - 1 W 2

fe ee
Y we

I 1 °I-(TI /Tt) /( I)

stream function
I~ G = F/ K

I w w = Ko/

I condition downstream of reattachment

j Subscripts

av average

aw adiabatic wall

c cor.e

cay cavity

d dividing stream line

I e conditions at y = in the cavity zone

i incompressible

I



o beginning of reattachment zone

t reattachmnent

S separation

s along sdirection

t total teinperature

W wall

I mean value of viscous region

GO free stream



Introduction

The problem of cavity flow which involvc s separation as well as reattac

ment is complicated and, as yet, not completely understood. The solution of

this problem is not only for the interest of basic science but also important fo

many practical applications. For example, for a cut-out in a structure surfa,

such as a bomb bay, open cock pit, escape hatch, etc. ; the heat transfer at th

reattachment zone may become very high at the hypersonic flight speeds.

IThe pronounced features of cavity flow are viscous momentum transfer

along the boundary stream line of the cavity opening and the circulating flow

within the cavity. The momentum is transferred from the external flow to the

internal flow due to viscous mixing and the flow within the cavity circulating t(

balance the mass rate flow.

For subsonic flow the concept of mass balance between the outgoing and

incoming fluid from and into the idealized wake model has been used by Tanne

to predict with a simple aiialysis the drag and base pressure of cones as well

the area of outgoing flow from the wake. However, no consideration is given i

the viscous momentum transfer.

For supersonic laminar separated and reattached flow Chapman [2, 3]

Crocco-Lees [ 4 ] developed the detailed mixing theory for the interaction betw

viscous internal flow and the nearly isentropic external stream. Chapman C 2

troduced the idea of the so-called "dividing stream line" which divides the flov

field within the very deep cavity into two zones, i. e., outside by pass flow zon

of this stream line and inside zone of circulating flow, and obtained an exact

similarity solution for the velocity profile (, the mixing layer. A simplified



calculation showed that the reattachment process is essentially isentropic.

The Crocco-Lees' theory is general and applicable qualitatively for a wide

range of separated flow problems. The separated and reattached flows are

characterized by two governing parameters of r and f defined by boundary

layer thickness. Much of the complex phenomena of the separated and reattached

flow are clarified by this theory. Glick [53 used Chapman's flow model which

incorporates the concept of the "dividing stream line" to apply the Crocco-Lees'

theory. This model has been translated into Crocco-Lees Janguage by the semi-

empirical approach. Glick found that the cause of poor quantitative prediction of

Crocco-Lees' theory was an incorrect mixing rate correlation function C (K),

thus by determining the proper approximate C (K) - F ( 1) relation where F -2

for separated and reattached flow a good agreement with experimental data was

obtained for the pressure distribution in the region of separated flow caused by

shock interaction.

Restricting to a moderately compressible separated flow over the concave

surface, Bloom [6) obtained solutions for velocity gradient, pressure, boundary

layer thickness employing an integral method and emphasizing the reverse flow

profiles.

Fcr the supersonic turbulent reattachment flow behind a step, Chapman-

Korst [7, 8] established a recompression criterion of reattachment and

McDonald [9] improved this criterion. McDonald formulated a transformed shape

parameter for the boundary layer by using Stewartson-Illingworth transformation

to specify the reattachment.

For the solution of slow circulating flow within the cavity, Squire C 10

proposed an analytical approach to divide the cavity zone into two parts; the
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inside part of "core" and the outside part of the boundary layer which surrounds

the core. The motion in the cavity is maintained by the shear stress of the

outer flow acting on the stream line boundary of the cavity. Mills 11 ] obtainec

analytically the velocity profiles along the square cavity wall based upon Squire

idea and his results are in a good agreement with the experimental data.

Batchelor £12 1 proposed a model of a finite laminar separated flow regioi

for a two-dimensional as well as axial symmetric cavity with limiting steady

flow at high Reynolds number. In this model an inviscid rotational core is sep-

arated from the external flow by a recirculating viscous shear layer. Since thi

cavity model does not provide the unique flow field, the recirculating flow is

divided further into a cellular substructure of eddies each satisfying the

Batchelor's conditions.

Burggraf C 13 ] applied this Batchelor's model to analyze the flow and heal

transfer in rectangular cavities of various depths by employing an approximate

linear theory in order to account for the effect of cavity depth by a correlation

factor. For convenience, the problem is broken up into several parts and eacl

is analyzed separately, then by matching these partial solutions the complete

solution is synthesized. Burggraf's [13 ]incompressible flow analysis can be

extended to compressible flow, but his analysis predicts a pressure lower thar

that obtained by experiment at the reattachment.

Most recently Burggraf £14 ] car.:ied out an extensive analysis of incom-

pressible flow for the viscous structure of a separated eddy within a fixed finit

cavity as a function of the Reynolds number. In particular he considered the

square cavity and determined the velocity profile, distributions of skin frictiol

and total power. The thermal condition in a recirculating eddy is considered,
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but no specific information is available for the pressure and heat transfer at the

reattachment.

On the heat transfer of the laminar cavity flow Chapman [3 ] succeeded

only to compute the average heat transfer rate amounting to 0. 56 of that of the

attached flow. For the determination of the local heat transfer rate the flow

solution which considers the effects of the circulating flow and the relation of

flow direction with respfct to surface configuration should be known. C:ung and

Viegas [ 15 ] determined analytically the velocity distribution along the reattach-

ment wall of the cavity, assuming that the reattachmrent flow is laminar, two-

dimensional as well as incompressible but rotational. They further assumed

that the reattachment of the flow along the dividing stream line takes place normal

to the reattachment surface. By using their analytical results and a semi-empirical

formula for heat transfer, an average value of the heat transfer in the reattachment

zone was obtained. Burggraf's E 13] analytical solution at the reattachment results

in the square root singularity.

Carlson [ 16 ]determined the local heat transfer for laminar separated

flow upstream of reattachment behind a step of a body of revolution at hypersonic

speed taking into account a velocity profile of reverse flow. It has been assumed

that no chemical reaction and no mass addition of fluid takes place, the cavity

pressure is constant throughout the region, and the dividing stream line is straight.

Although it was shown that the rate of heat transfer increases approaching reattach-

ment, no detailed information on the reattachment heat transfer is available.

Recently Korst [17] developed the generalized analysis of dynamics and thermo-

dynamics of separated flow.

p. lW-- --- - --- . -
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This review of references shows that up to date no reliable analysis for

the laminar local properties of reattachment flow and the heat transfer for the

cavity has been developed. Therefore, for the first step of the investigation

based on two flow models of Chapman and Squire an attempt is made to find out

whether the existing analysis can be applied for reattachment of the cavity flow.

Various experiments on the flow and heat transfer of cavity have been

carried out in the past. In the region of subsonic speeds, Roshko C 18) measure

pressure and velocity distributions on the wall of rectangular cavity by varying

the ratios of depth to length of cavity. Tani C 19 ]measured longitudinal compon

of mean velocity, turbulent intensity and turbulent shear stress across several

traverse sections of rectangular cavity. Maull and East [20] discovered exper:I

mentally over the bottom of rectangular cavities, the three-dimensional cellula:

flow pattern between certain range of ratio of cavity length to width, but Fox [2.

did not notice it. However, Fox [21) indicates that there exists the distinct flo

regime in the pressure coefficient and velocity profile and used them to identify

the range of ratio of length to width of cavity with different flow regime.

In the range of supersonic speeds, by using rectangular cavities, Charw

[22] evaluated the pressure distribution on the floor and recompression surface

as well as velocity distribution through shear layer. Furthermore, the variatic

of heat transfer distribution on the floor was measured. Larson C 23) determinf

for laminar and turbulent flow the average heat transfer for the cavity formed

on an axially symmetric body at free stream Mach numbers up to 4 and also the

streamwise distribution of heat transfer including the reattachment zone.

Bogdonoff and Vas [24] measured distributions of pressure and heat transfer

over the cone-cavity model at Moo: 11.7. More recently, Nicoll [25] carried
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out extensive measuremencs on streamwise pressure and heat transfer distri-

butions for cut-outs on cones using helium as a fluid medium at free Mach

numbers of 11 and ZO. These results show that Chung-Viega-' results of

average reattachment heat transfer are about twice those obtained in these ex-

periments. The existing experimental dataare useful to evaluate semi- empirically

reattachment flow parameters such as reattachment velocity gradient and efficiency

factor of compression and confirm the applicability of the existing analysis to

cavity flow.
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1. Physical Model of Cavity Flow

For the investigation of flow in the region of the cavity, a physical model

as shown in Figure 1 is proposed. This model divides the whole flow field into

two regions by the dividing stream line, i. e., the external nearly isentropic

flow region and the internal viscous flow region. This represents basically thi

Chapman's model £2. as sketched in Figure 1 except for the shaded area withii

the cavity. This model emphasizes the viscous mixing process of the external

flow with the internal flow.

The velocity profile at the separation point S is similar to that at the rcat-

tachment point R where shear stress is zero. The fluid particle which is adja

cent to the wall at the separation must be adjacent to the wall at the reattachm

and the external flow may be considered as an essentially by-pass flow. Due t

the viscosity of the fluid, mixing of external fluid with internal fluid takes plac

in the mixing layer which extends from the separation point to the beginning of

reattachment zone. But with the presence of heat transfer, at supersonic spet

the process of mass exchange may be considered as quasi-steady, and the cor

responding values at the proper flow properties are taken for the analysis, si

the dividing stream line may fluctuate and periodic mass transfer can take pla

as evidenced by Charwat [22] for the rectangular cavity. The thickness of tht

thin mixing layer grows parabolically with downstream distance from the orig

of mixing but the rate of growth is about three times larger than that of the

attached laminar layer.

The internal flow field is a circulating flow region and this flow field may

be divided again into two regions, i. e., the inner "core" and the outer thin

boundary layer belt surrounding the core as proposed by Squire £10] for subs(
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speed. Figure 2 illustrates the recirculating cavity flow while the shaded area

of Figure 1 indicates the core. Within the core the mass entrained from the so-

called dead air region where the velocity is small but not necessarily zero, (i. e.,

the region below the zero velocity line) and the mass reversed back into the dead

air region to balance each other and are responsible for the maintenance of the

circulatory flow within the cavity. The back flow is caused by the pressure rise

in the reattachrrment zone [Figure 3] and the mass balance causes the pressure

of cavity t , differ from that upstream of separation.

Recent aaalytical investigation of Denison and Baum [26] by solving numer-

ically the governing differential equations on a computer showed that sufficiently

downstream of the separated flow region u - ud/ue, defined as the ratio of

laminar flow velocity along the dividing stream line and the potential stream line

outside the cavity, is u = 0. 587 regardless of whether it is axi-symmetric or

two-dimensional flow. This result is obtained by considering an initial boundary

layer thickness at the separaton. On the other hand for two-dimensional laminar

flow, C.1hapman [2, 7] obtained analytically the same value of u* under the assump-

tion of zero boundary layer thickness at the separation. Hence, it may be con-

cluded that if the reattachment distance is small compared to the whole cavity

length, the reattachment process can be investigated separately apart from the

upstream conditions where the momentum transfer up to the initial pressure rise

for reattachment is known.

In the reattachment zone the pressure rises as shown in Figure 3 because

ot the increased momentum in the shear layer due to viscous mixing, and the

deceleration of the flow. Since at the reattachment the velocity is zero, a

particle moving along the stream line within the mixing layer must be able to
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overcome the pressure rise and therefore in order to pass through the down-

stream direction, its total pressure at the reattachment must be larger than

p', the static pressure downstream of the reattachment. Thus although partic:

(a) (see Figure 3) may pass through reattachment, particle (b) may not, becau:

its velocity is lower than that corresponding to the pressure at the reattachmer
D

equal to p . Therefore, particle (b) is reversed back. Chapman et al [7 ]

observed that the reattachment pressure rise is independent of Reynolds num-

ber. Furthermore, as indicated in Figure 4, Harper [ 27] found that if the in-

compressible flow stagnates on a flat surface then the flow region in the neigh-

borhood of the stagnation point is inviscid, although the stagnation point itself

lies in the viscous layer. Hence, the reattachment process approaching the

reattachment point may be considered as isentropic but in the very close regiol

near the reattachment as well as at the reattachment point itself viscosity effec

should be included. Besides the effect of compressibility, geometrical relatiol

for the reattaching stream line to the reattaching wall, etc. are also to be con-

sidered to evaluate the flow properties at the reattachment correctly.

Similar to the stagnating flow process, the flow velocity reduces to zero al

the reattachment point but its velocity gradient is finite. The flow velocity alol

the reattaching surface may be computed based upon the cavity flow model in

the core and surrounding boundary layer. Since heat transfer in the stagnation

region, can be evaluated by knowing the velocity gradient at the stagnation poin

and the velocity distribution around it, the heat transfer, in the reattachment

zone may also be solved based upon the flow model proposed here.
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2. Pressure Rise in the Reattachment Zone

The pressure rise in the reattachment zone of the cavity is determined

analytically and its numerical values are evaluated semi-empirically.

The reattachment pressure rise is due to momentum transfer upstream

of reattachment and deceleration in the reattachment zone. The mass transfer

is computed by the method of Glick [5] and the deceleration of flow by Harper's

[27] formula.

The coordinate system is indicated in Figure 5. The origin of the coordi-

nate is located at the separation point with the x-axis along the dividing stream

line and the y axis perpendicular to x-axis. If the coordinate alcng the zero

velocity line [Figure 1] is designated by x, which corresponds to imaginary

wall-coordinate then the direction of x is approximately equal to that of x down-

stream of the separation point in the mixing zone. The initial point of the pres-

sure rise for the reattachment is denoted by subscript o.

For the analysis the following assumptions are made:

1. Cavity is open, i.e., the dividing streamline bridges the cavity from

separation to reattachment and does not attach on the cavity floor. L/D

is sufficiently small so that the streamwise pressure gradient from

separation to the initial point of the pressure rise is zero. The location

of the initial point for reattachment pressure rise is considered known.

2. Pressure gradient traverse to the stream direction is zero.

3. Flow is quasi-steady and gas is thermally as well as calorically perfect.

The property values of flow are interpreted properly as such.

4. The gradient of viscious or Reynolds stress in the flow direction are

negligible compared to the static pressure gradient in the flow direction.



5. Theory of Crocco-Lees for two-dimensional flow is applicable for

axially symmetric flow.

6. Heat transfer effect is negligible for the computation of pressure rise

7. The pressure rise prior to the initial point of reattachment is negligil

For a streamline within the mixing layer with angle, dJ 8 between
[, e

streamline and the outer boundary of the dissipative flow, at y =f, [Figure

the governing equations are;

dm dj

dx .e Ue x .- = e (1)

I wherek = d e is mixing coefficient and 0 is streamline direction anjdT

i relative to the wall at y = d

This equation expresses the rate at which mass is transferred from exte

I flow to internal flow due to mixing and

de ( d dp

Idx d x=)J" dx - 1w (2)

where I = u dy -- momentum flux in x-direction
_ d yf

m = j u dy-- mass flux in x-direction

- is the momentum equation in x-direction.

L These definitions are referred to the limit o and cC, i.e., the partially

truncated thickness of the viscous layer measured from the axis to the dividir

L steamline of the outer edge of the viscous layer as shown in Sketch A

IBy referring to the total thickness of the viscous layer cit, as shown in

Sketch B, it may be postulated that the mass flow rates for both (profiles as

L shown in Sketch A and Sketch B) remain the same, although J< Jt.

I Consider two different portions of the flow path. The first consists of a

constant mass rate of circulatory flow along b path below the zero velocity lirL
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(Sketch C), say m c and another consist of the mass rate of the by-pass flow

over the zero velocity line, say mp which ccrresponds to that indicated by

Sketch B.

Now consider the divided flow fields above and below the dividing streamline.

Then due to the viscour mixing effect between the dividing stream line and zero

velocity line and the breathing of cavity, an additional mass Am is entrained and

this Am flows out from the cavity, along path a (Sketch C) in order to maintain

mc inside the cavity. Hence, Am is ejected from the cavity into the viscous mix-

ing layer as observed by Charwat et al [22] for the supersonic (.,ity flow. Tani

[28] observed also the mass ejection from the separated flow region behind a step

across the dividing sti earn line at subsonic free stream velocity. Hence at the

same distance from the top of profile of Sketch A and B in negative y di:ection it

may be assumed that u > :u' and the mass. flow rate over the dividing stream
d

line in the region of shortend viscous layerj f u dy as shown in Sketch A is
(t 0

postulated to be equal to J ?Iu'dy which is based on a hypothetical profile
0

with no entrainment from the inner cavity where is its actual thickness

of the viscous layer.

The definition of momentum flux in x-dirertion I is made by an integration

from dividing stream line to J , similar to the mass flux in x-direction m.

For the external isentropic flow, the Bernoulli's equation is,

p dx V dx (3)

where YJe = fI -(Y 2) /Y We2 we!

= cp /Cv

wt= Ue /at

and at = y Tt stagnation speed of sound.



In order to compute the momentum transfer in a region between separat:

rand the beginning of reattachment and pressure rise in the reattachment zone

these equations are cast into the language of Crocco-Lees [4] using Glick's [

improved method.

A basic non-dimensional shape parameter is defined by

as momentum flux
K -I-- -mass RUX times local external velocity

Ul actual momentum flux
or g =

Ue momentum flux of mass flux moving at u =ue

where subscript 1 refers to average value of viscous region.

jThis parameter K has the ability to correlate the velocity profile in the pi

rsure plateau region of the separated flow which is different from the known Bl;

flow.

The two key correlations of F ( ) and C (') for the solution of the separal

and reattached flow are formulated by K as follows: a 2

F ( f  - where f Ti + 2 We
72 T

and C ) -m = (dm/dx) e ue)
A e g e F

T, , are temperature, density and dynamic viscosity respectively and

the subscript t refers to total temperature.

Then the continuity, momentum and Bernoutlli's equations are reduced to

dr = p k (4)
dx

d (m k e = We W dm dp . pwe Cf (5)
dx dx dxp e

a n d qL = - d w e 
(6)0- (6)

where in = m at

.. ... ~ .. ...
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Since upstream of reattachment, dy and cf are negligible, momentum

equation (5) reduces to

ddx (m k We) = We dm (7)dx

of I dK = dm

I - K dx m Ui-

By integrating from separation point to the initial point of reattachment zone,

K K - I - 8)  M S
mo

where the subscript s and o refer to separation and initial point of reattach-

ment respectively. From this equation it is seen that the levels of momentum

and energy in the viscous region are raised by mass entrainment, because for

mo > ms, K o > I.

Since

dm - p k C(K)
dx em fe Pe at

and
P = P Tt Ue = eueat
Ye Te 1 p Y Te -a

Tt 'Y We
it follows

dm C(c PL ue at 2
dx m oe e Pe

(8)

The increase of mass flow due to entrainment can be evaluated by integrat-

ing this equation, if the relation of C (C) with respect to x is known. Although

it is expected that C (K) starts at zero and rises near separation, for simplicity

an average constant value of Z is used and its numerical value is determined

properly from experimental data.

Then by integrating equation (8),

2 2 2
m o - m s = 2 C fe Ue e at xo
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or mo = +2 Rexo C a.t e (9)

Where x o is streamwise distance from separation to the beginning of reattach.

ment and Rexo = e eXo

Ae

* Taking Rn. at Te Re 6 **

A t Tt I - K (Ref. 30)

and Re6** =A - FRex (Ref. 5)

K 0 1 - K

0 I+ 2(l Z  X0

V A
The value of A may be taken A = 0.44 and I is the distance from the sta

nation point to the separation point.

Since in the reattachment zone the streamwise pressure rise may be com-

puted by flow quantities along the dividing stream line E7], and mixing rate and

viscous term are negligible, the momentum equation (5) is reduced to

d (m w6 dp
dx d dx (10)

where the subscript d refers to dividing stream line

Since m = p6I/fi,

it follows d wd ? dp
d K + K = -

Wd w d p

but 1  =

wd (F+Td
Tt

dwd Tt +dwd
thus d - : _ + K: + w d

Wd Td Wd

Because dwd Tt __d

"dI = M d

d Md

finally d K - K F Md (11)

-~M d ( -l-~ - ______ - -
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In order to integrate this equation, a relation of F with respect to must

be known.

In the reattachment zone, a linear relation of F with respect to K may

be assumed [5],

thus

F = +" (1)

where a and are constants depending on the values of F o and K 0

Hence equation (11) becomes

d__ = d Md

K + Md

Integrating from the beginning point of reattachment to downstream distance.

I
Md o  = Md [ ( ( + 3)

K +  /" /Of (13)

Putting

i= Fo/F

(A = %

it follows;

= , (m- ) / (u- l)

= F (w-n)/(- 1)

and equation (13) is rewritten by
- (.L - 1)

F (n j (14)

Md0 Md

The value of F o is taken as F o = F s = 2.85 [5]

Assuming the isentropic compression, the pressure rise in the reattachment

zone is given by



F- -

2F (rr w) -

+ 2 - Md 
5)Pcav I + Md 2

In order to evaluate the local pressure rise, a trajectory of F - K such

as shown in Figure 7 is drawn. For completion of this trajectory, since the

value of F and K at separation and reattachment points are known, only those

values of F and K at the beginning of reattachment should be (.ornited. Usin,

the completed F - K trajectory local values of (t F(ri - u) are

, evaluated at the proper locations in the reattachment zone.

* The variation of Md in the reattachment zone is determined by using Harp

[ 27] analytical solutions of velocity distribution approaching the stagnation poi

* The velocity of flow approaching the stagnation point depends on vortices F1o

I 1 of inside and outside the stagnating stream lines and angle 0 as indica

in equation (16). Harper's analysis is applicable for incompressible two-dim

sional flow but it is assumed that his solution is also applicable for axi-symm(

reattaching flow.

Harper's solutions are:

for ) ud1(x)=Z (Io+i) (L- x) tan + 0 (L -x)

T7 udjx W -(F0 + (L -x) fL -x +TT)) al 1 (16)

+ 0 (L - x)

and u(x) = C (L -x) l 0 + rF) (L-x)tan

where C and aj are constants. + 0 (L - x)

It is noticed that for 8 = _ , the in-iscid solution of stagnating flow has
2

a logarithmic singularity.

Ma is evaluated by Busemann's integral E30] for a perfect gas, taking the
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cavity gas temperature equal to recovery temperature.

Since Td = + 2  d2e,: ue
Te a

Td =Td Tt =1+ e --u )2

Te 2- 72 Ue

and Td + e 2

e I + Md 2

it follows -
2

Md Me (ud/ue)

I + Me 2  - ( )2

ue

By denoting

ud - *
uie

2 2 *2 ( 2 *2Md = Me 2/ 1 + Me2 (Iu (17)

Then the pressure at the reattachment point is

Pr = )(I+ - _'- Mdo

-I + Y-I Md 2

Pcav = 
do M

I + (I - u 2 )  Me2
(18)

is an empirical efficiency factor of compression relative to that of isentropic

process and < 1. If = , then compression takes place isentrop-

ically.



C
[1 Numerical Evaluation of Pressure Rise in the Reattachment

Zone

The value of , is evaluated based on the experimental data of a partiF -

ular test model of Nicoll C25] as shown in Figure 8. With this model the ini

j "point of rise of pressure and heat transfer is located approximately at the s

distance of I - = 0. 2. By trial and error, the value of C is determinecL L
which yields the pressure rise in the reattachment to be in good agreement N

[experimental data, as seen in Figure 9.

The data of the model and experiment are given:

L = 5/8" D = 1/8" L =

I For helium gas

1 -= 386 ft -, = 5/3Ro

The test conditions are M. = 11, Tt = 535R, and p t = 400 psia.

Reynolds number per inch based upon its conditions at the edge of cone

j. boundary layer

Rec/in = 5 . 9. 105

I. Flow parameters at the edge of cone boundary layer are computed by us

[ Reference [31] as follows:

Mc = 6.46

L Tc = 8 = 88R
I +y-" 2 Mc 2

ac = 71g Tc = 144 Tc = 862 ft/sec

uc Mc ac = 5560 ft/sec

L
L



-20-
Pt lb

.... - 400.144 = 5.24 lb

(i + 11,000

-T"
Ib

Pc = P. Pc Ptc PtW = 5.24 . 7.8 =40.8 lt2

Tt o

TO = - 535 = 12.93 R

I " M2 41.33

_= POO = 0. 326.10- 4  lb sec2

k ,TO ft 4T

?c = S 0.35 = 0.932.10-
4  lb sec 2

Sc =  Uc = 7.85. 10- 4  ft 2

5.9.106. 12 sec.

and

PC = c c = 7.31.10-8 Ib sec
ft'

The parameters of the cavity flow are:

Pcav Pe =0. 85 . pc [R~ef. 25]

taking

PJe= Pct

Pcav Pcav PcaV __Pc t  + Y -1 -2.5 .02.

Pcavt Pct Pc . Me 2 )c
thus

Me = 6.7 Te = 33.8 0R,

pe = 6.85.10 "8 lb sec a ft
-4ft Z2 e 84 sec u e = 5640 ft/sec

f' = 0.826. 10 - lb sec
ft4

and

Assuming that the reattachment begins at x 0.8 L, C25], and at this

position u* = 0. 587, the pressure ratio at the reattachment point is
+ " Me2 ,

1+ e -~2.65

L 1+(1 -u* 2 ) '- Me'j
Pcav e
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p PC = 1. 5 = 1.76

Pcav Pe Pcav 0.85

From Figure 4 of Reference [25], [also Figure 9 of this Report], it is

estimated that

thus 0.665 (19)

This result shows that the isentropic compression occurs upstream of

reattachment.

For the selected model configuration, it is likely that < I thus the

velocity distribution in the reattachment zone is from equation (16).

UdW =1 ( Cro +  l (L L- x) tana

A small term of 0 (L-x) of equations (16) is neglected).

Assuming that I C +.r) tn O=Cl

Then Ud (x) =C (L-x)

This unknown constant C1 is determined by matching with the experimental

data at the beginning of reattachment, i.e., at the position of L - x =0.2 L =

as,
C1 =3.17.105 ft.

sec. ft.

Hence

u d  3. 17. 105 (L - x) (20)

Since
Td , 2T I 1 +,. M 2 -u

Te 2 e
ad = 144 FT = 2750 ft/sec

and Md  = u d / ad

Md 1.15 . 102. (L - x) (21)
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For the trajectory of F - , the following values o" F and A are taken

from Reference [5] at the separation and reattachment points, namely,

F S = 2.85 S= 0.63

FR= .59 R = 0.693

The values of F and N at reattachment point are those of Blasius flow. At

the point of beginning of reattachment.

Ko =F I - orS

/ 1 + 2 (1 -Z) S x

A

By the method of trial and error, the values of C and K 0 are determined.

Taking C = 15,

= 2 ft. arid x = 0.8. L,12

it becomes

Ko= 0.83

Figure 7 shows the completed trajectory, with the local values of F and

along the reattachment distance. Since local values of F and K are known

- 2 w-)1
as shown in Table I the local values of () F ( - w) and pressure in the

reattachment zone are computed.

Table 1
Reattachment Pressure Rise (Computed)

-2(w- 1)

x - F (I - u) p
L F () _LMd2

ri P cav PC

0.2 0.83 2.85 1 0.480 1 0.85
0.16 0.802 2.6 1.0255 0.3072 1.0151 0.8628

0.12 0.775 2.35 1.0544 0.1728 1.0202 0.8671

0.1 0.765 2.23 1.0668 0.120 1.0180 0.8653



As seen in Figure 9, the computed values of pressure are in excellent

agreement close to upstream half distance in the reattachment zone. This re-

sult confirms that C = 15 is an acceptable value in the region of ,ipstream

reattachment zone of a laminar cavity flow which Glick [5] used successfully

for the region of reattachment zone downstream of shock impingement.

From Figure 9 it is also noticed that the measured value of pressure reac'

close to its cone value at point A which is located at three-fourth downstream

distance of the reattachment zone. This value of pressure corresponds approx

imately to that computed by isentropic compression, with the Md at that positic

multiplied by the average value of a = 1 + 0.665 = 0.8325

jay 2

between separation and reattachment.
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3. Heat Transfer in the Reattachment Zone

At present no analysis for the heat transfer at the reattachment point is

available. However, since the process of reattachment is similar to that of

stagnation, for the evaluation of reattachment heat transfer, the known stagna-

tion heat transfer formula may be referred. Therefore, it is of interest to

compare the empirical data of reattachment heat transfer with those predicted

by the stagnation heat transfer equation.

At hypersonic speed, Chung and Viegas [15] employed the following semi-

empirical formula of average heat transfer in a reattachment region of

0 < L - x < 1 based upon the stagnation heat transfer analysis of Lees
L

[33 3 for highly cooled wall, namely

_ 2 -2 u (22)
qP.r 3, (Ht - HW) (0.76 + 1.1 Pe (

Pt

This equation i applicable for two-dimensional flow with 0 450 and
also for 0. 1 < Pe < 0.5 where H is total enthalpy.

Pt

If this equation is assumed to be applicable for the axial symmetric flow,

Pe I- - = 0.57 and for small area of reattachment similar to Nicoll's

PR 1.76

experimental model [Figure 8b. Ref. [25 J) , since

q = h (Tw - Taw)

equation (22) may be written

hR Ht H 0.69 R R d
Tw Taw
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assuming

and at the reattachment where 0. aR Taws it becomes

h 3 .09h~fi. ~(23)

For cone h Ste u C

and at the reattachment point,
RO " 5,9 .lo 5 (1.25 + I ) - 1.108.106

For this Reynolds number, from Figure 2, Reference £25),

St = 510-4
anoi

fc U = 0.932 .0-4 Cp
Therefore

-0 4  ,hc = 2.64. 1 p. (24)

From equation (23) and (24). For ud = 0. 587. 5640 = 330 ft/sec.

hR 0. 505-- ( 2 5 )
hc LR

Thus hR/hc is inversely proportional to '

Chung and Viegas formula yields

(a) For LR = 0.008. L = 0.008 1 0. 00417ft

hR = 7.82

hc

(b) For LR =0.2. L = 0.2. ft. (26)

R 8 96 ft

h RhR = 4.95

hc

LR of Case (a) corresponds to the measured value of LR (Ref. £ 15 ]for

450 and L R of Case (b) is that of the measured LR = 0. 2.L by Nicoll [25].



By comparing these average values of hR/hc of equation (26), with Nicoll's

(Figure 8b, Ref. [25 )) average value of hR/hc a 2.63.

Case (a) (hR/hc) Chung I h 2. 975 ,t 3
Viegas hc  Nicoll

Case (b) (hR/hc) Chung / (" hR ' = 1.88 A 2
Viegas hc Nicoll

Hence, Chung-Viegas' semi-empirical formula for reattachment heat trans-

fer predicts higher heat transfer values than those obtained by experiment.

In order to more accurately establish the prediction of heat transfer in the

reattachment zone, the distribution of velocity u_ along the reattachment surface
I

s and the velocity gradient at the reattachment point must be determined. Because

the flow process at the reattachment point is complex, the reattachment velocity

gradient is determined semi-empirically, but u_ , the potential flow velocity along

s downstream of reattachment point, is computed, using Squire's model of cavity

flow involving a core, and its surrounding boundary layer as shown in Figures 1

and 2.

Although the viscosity is responsible for the development of the motion in

the cavity, within the core the viscosity effect is small. Thus, the flow along the

outside border line whirh is also the border line of the boundary laryer is assumed

to be inviscid. Then, u_ the potential .velocity along the wall, can be computed
s

along this border line of the boundary layer.

Hence, by simplicity assuming the flow motion in the reattachment zone is in-

compressible, the following Bernoulli's equation is applicable in the reattachment

zone.
PR = p + u 2

2

... . + u

2-I- I I



I
i

Then

r - ... PR .P

U'd P d ud/ 2

(27)

where

qd U

The heat transfer in the region of stagnation point of cold blunt nose is give
by Lees [32) . Writing this equation for ud along the dividing stream line whic
may be considered the upstream velocity of reattachment, similar to upstream
free stream velocity approaching stagnation point, one obtains

U

ud

-I (- CP/N) do

1 _2
[ Ud o2d /ud 8 (28)

where r o is radius of cross section of body of revolution. Equation (28) is
a function of ud because the heat transfer process in the reattachment zone,
similar to the case of pressure rise in the reattachment zone can be formulatec

by the flow properties along the dividing stream line.

hud uIhu j;44 ) constant C2

the constant is to be evaluated.

Equation (28) reduces to p -

i_ d
PR - d 2 2 (29)



Hence by knowing pressure distribution along the dividing stream line with-

in the reattachment zone for a given geometry, the heat transfer in the reattach-

ment zone can be computed if C 2 is determined empirically.

Numerical Evaluation of Heat Transfer in the Reattachment Zone

Chung and Viegas [151 found the stream function by solving the reattachment

flow as incompressible two-dimensional inviscid but rotational as

L - x -

I~r ai C L [Sin h X L L )R
Ud LR  A LR

I cosh A.L ( L x,

_=R - exp (-A LR

Nt L R  L LR R

AL 1  [ sini n~ r (-j - -L xx [ , ')% x 1 ,~-2 R Rexp 2 32( .)
-, . [ ( () A L (AL) J

where A is a parameter and its numerical value is = 1 ReL

2.222 L

and R = UeL

Sinc c U
a C) fL - x)

the velocity gradient at the eattachment point is

I L (L-x - 1 2Ud LR 4 ) El- - 0 1 + -2( .2 + A LR)2

--- -*0
LR

du _ Ud_.. ........... ..

or du - = Ud u d

e' xL L 12

X L R



INow with sufficiently large n value, say n1

_+... 2 (.)2 2

hence the series for terms larger than n, become

2 ALR 1 2 A LR E
n 7 r n IT n1

or
du

x-.L

This singularity of velocity gradient at the reattachment is physically imp,

sible. As previously mentioned Burggraf's E 13 J analysis leads to the reattach

, ment heat flux to square root singularity.

At present no other analysis of reattachment velocity gradient is available

therefore its value is evaluated empirically from experimental data of Nicoll

[25 ]with the test model sketched in Figure 8.

Since with this model, the initial point of pressure and heat transfer coinc

approximately at 1 - = 0. 2, it is simple to correlate the pressure and heat
L

transfer in the reattachment zone.

Rewriting equation (29) by cone values of pressure,

pP PP

= 2 PC PC P /

:c ; R qdPc Pc] (30)

The heat transfer coefficient ratio is,

h h -hR q _w (TV- T aw)R hR

C S IR (TW - T) he

(31)
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The local value of h R/h c is estimated by multiplying a factor of 1. 15 Lo

the average value of h/he in the small area at the reattachment point, Figure 8b,

Ref.[25) .

Thus, : 1.5 ( av) 1.15 .2.63 A 3.0

he hc

Since, T T 1 + Y-1 2f1 -U4 JJ=36 5R

and rd a .- = 4L2 * 0.85 = 0,792.10 ls
gWTd 32.2 . 386 . 365

Ud 00 587.564 0 - 3300 ft/ec

and qd = Pd Ud2 = 43

2
it becomes Pc/qd : 1.

The value of C is evaluated by equation (30) at a position of 1 - x 0. 04,2 L

where h 1.34 or qw = 0.446.
hc qwr

The values of denominator and nominator of equation (30) excluding C 2 are

listed in Table 2.

Table 2

Computed Values of Equation 30

P P C p p f 'r
0 'R d P, fc o C Cn- o

0.2 0.3425.102 2.7985.10 - 6

0.16 0.3525.10 - 2 2.5335.10 - 6

0.12 0.365.10 - 2 2.326.10 - 6

0.08 0.406.10-2 1.965.10 - 6

0.04 0.4515.10 -2 1.54.10 -6

0 0 0



Since I x - 0.04,

it follows C2 w (1.5410-)6 = C4515102 101.10-2

0.446
C2 -- 8.15 (32)

or 1, du
"d a 66.5

s0
Denoting d = 2D, the stagnation velocity gradient,

du a N2 1 6- 1.39Ud d3 =0 8 12 2

From Figure 7- 6, Rei. C33 ] it is seen that this value of stagnation veloci

gradient corresponds to that of blunt-nosed body for incompressible flow as we

as to Newtonian flow for supersonic flow.

Finally, the local values of h is determined from equation (31). Since th

ratio of local value of (Tw - Taw)R is not known, it is necessary to evalt

th-.s ratio first. Tw - Taw

At reattachment, 1 -x 0, (TV - = 1 and at the initial point of
L T w

reattachment, i.e., at 1 x 0. - and h 0.35
L " o.251 hc

(Figure 8b, Reference[ 25 ] ), thus fromquation (31) (TV - TaW)R 0.4

fW Taw) Tw - Taw
Assuming a linear variation of (TR in the reattachment

Tw- Taw

distance, thus drawing a straight line which has its initial and end values of

(Tw - Taw)R equal 0.465 and 1, as een in Figure 10, the local values

Tw - Taw

of (Tw - Taw)R are determined as shown in Table 3 or Figure

Tw - Taw

10.

Then from equation (31) local values of h are computed as indicated in
hc

Table 3 and Figure 10.



-32-

Tabllt 3

Computed Values of Equation (31)

(TW-Ta)R(TT% / %R 'x/ ( -Ta) 141-- hii

0.2 0.251 0.465 0.35

0.16 0.271 0.57 0.462

0.12 0.292 0.676 0.59

0.08 0.354 0.782 0.828

0.04 0.446 0.89 1.19

0 1 1 3

The comparison of computed values of h/hc with those measured shows good

agreement among them, as seen in Figure 10. Therefore, it appears that the

assumed condition of incompressible flow prevails in the reattachment zone.

In order to confirm this, M and density ratio of are computed with

the temperature distribution shown in Table 3.

Since U u

; = s ad 1

Ud ad Udand

"d = 1.212, with test condition f = 0.812 - 0.98 < 1

in the reattachment zone.

Then

Yd Pd T 9

T

in the range near 80% of the reattachment zone extending from the initial point

of reattachment to downstrearn distance.

These figures of M_ and S). may justify the assumed condition of in-
s

_Td~
compressible flow in the reattachment zone.
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Assuming that the known stagnation heat transfer equation for blunt body

is applicable for the reattachment, the following formula [34] is used.

d U

a =0

-0.6 
(33)

where f2 = 0. 57. Pr for two-dimensional flow

-0.6
f2 = 0. 763. P" for axially symmetric flow

The equation (33) is written by flow property along the dividing stream line

at the beginning of reattachment, i. e., Yd Md (For stagnation heat transfer

for blunt nose exposed free stream, this term is P. jM .

Since Jd ;'d =se and if one assumes a linear relation of i - T equation

(33) becomes

C du
hR 2  cp V "efe (du

(34)

This equation expresses hR based upon the flow condition at the outer edge

of viscous layer.

Because hc = Stc.pc.uc.cp as before,

h-hR f2 0hc st: u -

For the test condition of the model sketched in Figure 8, (35)

1 

1

( '* Ie)7 = (082610-h. 6,85,108) = 2,37710. (b sec 3) 2 -

ftt

Fc Uc = 0.93 2. 0-  . 5560 .0.52. b. sec.

ft3



Stc = 5. 10 4 referring to the cone value at the reattachment point, and

I dudu 
-

ud . i66. - 22.104

from equation (35)

2 t 2.377.10- f2  4.3hC 2 .O" a 0.52

In helium Pr 0 6 = (0.68)06 = 1. 26

f2 "' 0.72 for two-dimensional flow

f2 110 0.96 for axially symmetric flow

Finally

hR 3. 12 for two-dimensional flow

hc

hR 4.15 for axially symmetric flow

hc

but hR 3.0 from experiment.
hc

From these results, it appears that reattachment heat transfer may be

predicted in a good agreement with experimental data by using stagnation heat

transfer equation for blunt ncsed body assuming reattachment heat transfer is

essentially a two-dimensional process, because the assumption of axially syn-

rnetri .. flow could lead to higher value of reattachment heat transfer.

Actual reattachment process is very complicated involving geometry of

reattachment surface, angle 8 , reverse flow, etc. Hence further study is

needed to clarify the difference between the reattaching and stagnating flow

processes involving the velocity gradient parameter at the reattachment point.
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4. Discussions

The distributions of pressure and heat transfer of cavity flow are affected

by the geometry of cavity; i. e., by L/D, the ratio of length to depth. As shown

in Figure II and 12, the pressure rises immediately after separation and contin-

ues to rise in the whole region of the cavity if L/D is large, say L/D = 10, but the

heat transfer rates remain constant except in the narrow region of reattachment

for L/D = 40/3. On the other hand, as shown also in Figure 11 and 13, if L/D is

smaller, say L/D = 5, the pressure remains constant upstream of reattachment,

only rising sharply in the reattachment zone, but at the same L/D the heat transfer

rate reaches minimum at the center of cavity and rises rapidly approaching the

reattachment point. These behaviors of pressure and heat transfer appear strongly

influenced by the recirculating flow characteristics depending upon the depth of its

cavity. Because the initial points of rise of pressure 4nd heat transfer must be

known for the prediction of reattachment process, the location of the initial point

of reattachment must be determined for a given L/D.

BurggrafIs [ 13 ] paper which considers the various depths of the cavity was ob

tainedat a late stage in the preparation of this report. Thus, no investigation of

these reattachment behaviors has been made using Burggraf's analysis.

It is found that Glick's method C5] for computation of reattachment flow in-

volving shock interaction is applicable for the cavity flow. Also the semi-empirical

average mixing rate :orrelation parameter C is the same for these :wo flows. But

it is still unknown whether Glick's analysis is also applicable to other types of

separated and reattached flows such as caused by forward as well as reward facing

steps, corners and ramps, etc.
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An analytical study is desirable in order to evaluate the reattachment velocity

radient parameter for arbitrary geometry of reattachment surface, angle 4

etween dividing stream line and reattachment wall and reverse flow etc.
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5. Conclusions

An investigation of the cavity flow based on Chapman-Squire type physical

model referring to the experimental data of a particular limited model at free

stream Mach number 11, leads to the following conclusions.

Predictions of pressure rise and heat transfer in the reattachment zone can

be made by flow conditions on the dividing stream line.

Pressure rise can be computed by Glick's procedure of analysis with an

average mixing rate correlation function C = 15 in the mixing zone upstream of re-

attachment employing Crocco-Lees' mixing theory. Up to upstream half zone of

reattachrrent, the pressure rise takes place by isentropic compression, but ap-

proaching reattachment point, due to compressibility, viscosity, geometry of

reattachment surface, reverse flow, etc. the pressure rise is less than that of

isentropic compression.

An estimation of reattachment heat transfer may be made by using the known

stagnation heat transfer equation for blunt nosed body.

However, additional experimental data of pressure and heat transfer distri-

bution in the reattachment zone of various geometrical configurations, as well as

the analytical prediction of reattachment heat transfer are needed to clarify

completely the reattachment heat transfer in the cavity zone.
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