
SAFORL-66-180

7,THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Locille Darley
Daniei. L. Murphy
Cynthia Solomon

Warren Teitelman

Bolt Beranek and Newman Inc.
I' 50 Moulton Street

Cambridge, Massachusetts 02138

3 Contract No. AFI9(628)-5065

- CProjectNo. 8668
3 ~ 'oi~ ?F2 r.."q IFC A" Scientific Report No. .

,rE.C,•TNTl 7 ;....TA ION

i~~ ~sawoo vichilel

_ • February, 1966

(The work reported was supported by the Advanced Research
Projects Agency,, P.R. No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

3 Prepared for:

AIR FORCE CA•BRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE •:ESZARCH

trIT-1ED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

I
I
I

AFCRL-66-180

THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Lucille Darley
Daniel L. Murphy
Cynthia Solomon

1Uarren Teitelman

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138

Contract No. AF19(628)-5065

Project No. 8668

Scientific Report No. 1

February, 1966

(The work reported was supported by the Advanced Research
Projects Agency, P.R. No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAM1BRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distribution of this document is unlimited.

7 7lmpi ii ~ll mm ul n~ l • m • m ia• n•mmm •i n I • •

I
TABLE OF CONTENTSH

Page

I.* INTRODUCTION. .*..... ° . *.. .*...*.*..°.°.. . .* .**. . I-i

[II. THE INTERNAL STRUCTURE OF THE BEN-LISP
SYSTEM...............

[III. DESCRIPTION OF FUNCTIONS IN BBN-LISP..... III-i

IV. LISTINGS OF S-EXPRESSIONS OF EXPRIS[AND) FEXPR' S......* ****.*. .. *..... IV-).

APPENDIX A - OPERA4TING THE BEN-LISP SYSTEM

A- LISP LOADER. A.1.1

A-2 USING LISP FROM THE COMPUTER ROOMSTEETYPE....... A.2-1

A-3 USING LISP FROM A REMOTE DATASET... A.3-1
APPENDIX B - INDEX TO FUNCTIONS B.1-1

li
L
L

L

lb
[.•rl

S... . . .-- ,Iv

FOREWORD

The work reported h3re was performed at Bolt Beranek and

Newman Inc in Cambridge, Massachusetts for the Advanced

Research Projects Agency under Contract No. AF 19(628)-506.5.

-iE -

THE 13BN-LISP SYSTEM

ABSTRACT

SThis report describes in detail the BBN-LISP system. This
LISP system has a number of unique features; most notably,

IL= it has a small core memory, and utilizes a drum for storage
of list structure. The paging techniques described here[allow utilizatIon of this large, but slow, drum memory with
a surprisingly small time penalty. These techniques are
applicable to the design of efficient list processing syutems

embedded in time-sharing systems using paging for memory
I allocation.

I

I
I.

1~

1k

-- I

SECTION I.

INTRODUCTION

LISP is a highly sophisticated list-processing language which
is being used extensively in the artificial intelligence re-
search program at Bolt Beranek and Newman. This report
describes our LISP system, which has a number of unique
features. Ideally, a LISP system would have a very large,
fast, random-access memory. However, magnetic core memory
(the only large scale random-access memory available) Is
very expensive relative to serial memory devices such as

magnetic drums or discs. Since average access time to a
word on a drum or disc is approximately 1000 times slower

than access to a word in a core memory, using a drum as a
simple extension of core memory would reduce the operating
speed of a system by a factor of 1000.

We have developed a special paging technique which allows

utilization of a drum for storage with a much smaller time
penalty. This technique allows us to make effective use of
a LISP system on our PDP-l which has only 8392 18-bit words

of 5 microsecond core memory and 92,312 words on a drum
with an average access time of 1E6,5 milliseconds. In addi-
tion, the techniques reported here would improve the speed
of operation of LISP systems embedded in time-sharing
systems using paging for memory allocation. In these time-
sharing systems the user is allocated only a small portion
of core memory at any time, although his p'.ogram can address
a large virtual memory. The portion of his data structure

and/or program not in core is kept in a slower secondary

I-I

I

Bstczage medium such as a drum or disc. Thus, to the user it
p is very similar to the situation on our PDP-i, excopt that a

hardware mechanism makes the program transparent to the

medium of storage of any page of his program.

Section II of this report describes the i'nternal structure
i: [of the BBN-LISP system, and the mechanisms used to facili-

tate fast use of drum storage. Section III describes the

I LISP functions which are built into the basic system. Sec-
tion IV contains listings of those functions which are

! Idefined in LISP.

Although we have tried to be as clear and complete as poss-
ible, this document is not designed to be an introduction to

LISP. Therefore some parts may be clear only to people who3 have had some experience with other LISP systems.

!
I

*1
3

SECTION II.

THE INTRNIAL STRUCTURE OF
THE BBN-LISP SYSTEM

The BBN-LISP System uses only a small cire memorj, but achieves

a large memory capacity by utilizing a drum. This drum is

used in three ways. First, the working program is divided into

three overlays, the read and print (input-output) program, the

garbage collector, and the interpreter of S-expressions. Only

one of these overlays is in core at any time, although a number
of sub-programs conmnon to all three remain in core at all times.

Secondly, the drum contains a large push-down list for use in
running recursive programs. This push-down list is double-

buffered; that is, the section of' the push-down list used most
recently is In core and the section used iwmediately preceding
this section is also there, so that traveling between buffers

does not necessitate a drum reference.

The third way of utilizing this large secondary store, the drum,
is for storage of list structure. If the entire remaining drum

storage was used simply as an extension of core memory, en

access to the drum would be needed each time a new list element

was referenced; and LISP would be reduced to opei'ting at drum
rotation speed. Instead, the drum storage of list structure is
divided into pages. Each page is currently 258 words (decimal);

and each page contains its o-.n free storage list. The cons

algorithm, for constructing a new* list element, ,:orks as follows.

II- 1

I

To construct z = cons (x~y]:

I 1) If z is not an atom, and there is room on the page
with Z, then place z on this page

I 2) Otherwise, if x is not an atom, and there is room
on the page with x, put z on that page

[3) Otherwise, place z on the page I.n core with maximum
free storage.

This algorithm tends to minimize cross linkages between pages

and to limit any single structure to a very few pages. Thus

"when working with this structure, it is unlikely that one will
make references to more than a few pages for a relatively long

i period of time. Since these pages can reside in core, no drum

references are needed. Fcr example, in entering the definition

i of a function, the entire definition teres to appear on a single

pag'. Thus, during the interpretation of a function, multiple

drum references are usually unnecessary.

Although we have not yet run this LISP system on a large problem
where we can make a reasonable timing comparison, we can give
the following anecdotal evidence for the increase in speed due

j Lo this naging system. The run light on the PDP-i goes off when

a drnum swap is taking place. In an 3lder version of PtP-1 LISP

I the drum was treated as an extension of core memorj. When any

problem was run, the run. _igt seemed to go off completely, in-

dicating thet the mach.lne was spending almost all of its time

doing dr -. m transfers. In this system, however, t~ie run light

seems to burn as brightly ac the rest, Indicat~i. that relatively

ftw drun transfer operationE occur except when going between the

three overlay packages, that is, when going from InMtt and out-

put bach to the interpreter or go1'g into a garlage collection.

1. I1-2

I
I!

On the research computer, because of the drum storage, we

currently have in use an effective free storage list of approx

imately 25,000 LISP words, i.e., double word pairv (pointers).

Each LISP word is, of course, two 18 bit PDP-i worth. In the

extended version of LISP that will be used on the hospital

system we will have 256,000 LISP words for free storage.

There are a number of differences between this system and 7094

LISP aside from the storage conventions. For example, the value

of a variable is stored in a special value cell for that variable,

that is, as car of the atom name, An atom is dist!ngvLshed by

its address, which is located in a fixed region of virtual

memory space. Thus one need not reference a structure, but only

look at its address. in order to tell whether or not it is an

atom. If x is an atom, then cdr[z] is the property list of the

atom, as in 7094 LISP. However, the pr 4nt name of the atom is

not to be found on this property list. The user can only get

at the print name with the instrictions pack and upack. Sl.z-

ilarly, the definition of an atom as a function is hidden away

rrom the user in a special cell associated with the atom name.

Two functions, getd[x] end putd[x;def] are used to get the def-

inition of a Punction, and place the definition in the function

cell of an atom, respectively. The value of getd[x] on an atom

defined &s a machine lanr~uage su.broutine it a numerical constant

which bemrs some relationship to the instruction that must be

executed to obtain access to the subroutine.

When a new function is entered, the old values of its variables

are pushed down on the push-down list, and the current values

are storod in the value cells. Since the current value of any

11-3

I
I

variable is always to be found in its value cell, free variables

U are no problem. Vowever, there is the usual anomalous case of

conflicting free variables in functional arguments. This can

be circumvented by using sufficiently unique variable names.

Because of the way variable values are stored, the main inter-

£ preter, eval, obviously does not use an A-list, and is therefore

a function of only one argument. The function evala defined

[in the BBN-LISP System will simulate the effect of the usual

eval[xIa], a being an A-list.

Different LISP systems employ different methods to achieve the

following two effects in functions labelled FEXPR!s in 7094 LISP.

These two effects are (1) giving a function the ability to have

an indefinite number of arguments, and (2) giving a function the

ability to receive its arguments unevaluated.

£ On the 7094 anFEXPR is defined by putting the function definition

on the property list after the flag, FEXPR, and treating it as

f a special case in the interpreter. In BBN-LISP we call functions

which have abilities (1) and (2) FEXPR:'s, but we define them

differently. The way aniEXPR is defined in BBN-LISP is as

follows: instead of the usual lambda followed by a list of

variables, the defining form is preceded by nlamda followed by

a list c,3ntaining a single variable. When a function with an

nlamda is entered, everything following the function name in the

j. form to be evaluated is placed on a single list and becomes the

value of the single argument of this FEXPR. This is passed to

3 the function unevaluated. In order to evaluate any portion of

this list, an explicit call to eval must be made. See "defineq"

I in the listings for an example of the use of this device. A

Ii II-4

!

third reason FEXPR's and FSUBR's are used on 7094 LISP is to

make the A-list available to a program. However, since

there is no A-list in BBN-LISP this will not concern us here.

Another major difference between BBN-LISP and 7094 LISP is

due to the fact that the 7094 has floating point hardware,

and the PDP-i does not. Any floating point machinery would

have to be interpreted on the research computer. This would

be expensive in both time and space, and, therefore, in this

version of LISP there is only integer arithmetic. A compiler

is being planned for the PDP-i and will be described in a

later document.

11-5

SECTION III.

DESCRIPTION OF FUNCTIONS IN BBN-LISP

F cons[x;y] cons constructs a dotted pair of
SUBR x and y. If y is a list, x beco:nes

the first element of that list.

Scar[x, car gives the first element of a
list x, or the left element of a

[dotted pair x. Nominally undefined

for atoms, it gives the binding

(value) of an atom x.

cdr[x] cdr gives the tail of a list (all
SUBR but the first element). This is

also the right member of a dotted
I pair. If x is an atom, cdr[x]

gives the property list of x.

caar[x] = car[carLx]] All 30 combinations of nested cars
SUBR and cdrs up to 4 deep are included

cadr[x] = car[cdr[x]] i the system.
SUBR

cddddr[x] = cdr[cdr[cdr[cdr[xl] J]]
L .SUBR

eq[x;y] The value of eg is T if x and y are
SUBR identical atoms, including numbers;

j otherwise the value is NIL. (Will
give T for lists if their internal

representations are identical, NIL

otherwise.)

I III-I

I
I

null[x] eq[x;NIL)
SUBR

atom[x] Its value is T if x is an atom;
SUBR NIL otherwise.

oblist[] Gives a list of all atoms in the
SUBR system.

not(x] Its value is true if its argument
EMCR is false, and false otherwise.

quote[x] This is a function that prevents
FSUBR its argument from being evalu-

ated. Its value is x itself.

condrx] The argument for cond is a list.

FSUBR Each element of the list is itself

a list containing n > I items:

the first is an expression whose

value may be false or true (that

is, NIL, or anything which is not

NIL); the rest may be any expres-

sions. This is the conditional

expression in the LISP system.
The meaning of it is: if the

first element of the first list
is true (not NIL), then the f ol-
lowing expressions are evaluated.
The value of the conditional is
the value of the last expression
in this sublist. If there is only
one e;pression, then the value of

111-2

the conditional is the value of

this expression. This value co-

incides with the value in 7090
LISP for pairs of items., but

allows additional flexibility.

If the first element of the first

list is false (- NIL), then the

second sublist is considered, etc.

[Thus, the arguments are searched

until a first element of a list

is found which is not NIL. If

none are found, the value of the

3 conditional expression is NIL.

prog(l] This feature allows the user to
FSUBR write an ALGOL-like program con-

taining LISP statements to be

3 executed. The argument is a list,

the first element of which is a

list of program variables. The

rest of the list is a sequence of

statements, and atomic symbols

used as labels for transfer points.

I go[x] go is the function used to cause a
FSUBR transfer in prog. (GO A) will

cause the program to continue at

the label A.

list[xi;...;xn] The value of list is a list of
FSUBR the values of its arguments.

I
I I11-3

I

return(x] return is the normal end of a
SUBR prL*. Its argument is evaluated

and is the value of the prog in

which it appears.

printIxl Prints x, followed by carriage i
SUBR return, on specified devices

(see punchon, typeout). Value

is x.

prinifx] Prints one atom, x, with no space
SUMBR or carriage return following.

Value is x.

terpri[] Prints a carriage return. Value
SUBR is NIL. I

punchon[x] Turns punch on for print if x = T;
SUBR turns punch off if x = NIL. I

Value is former setting of punchon. g
typeout[x] If x = T, turns typewriter on for

SUBR printing. If x = NIL, turns type-

writer off. Value is former

setting of tyIeout.

read[] Reads on S-expression from
Sspecified device (see typein).

punch[xJ This function sets punchon to t,
EXPR sets t to nil, punches x,

and then restores punchon

and typeout to their original
values.

1
I

I

I

typein[x] If x = T read-in device is set to
SUBR typewriter. If x = NIL read-in

i device is set to reader. Value is
former setting of te.

ratom(] Reads in one atom from read-in de-
SUBR vice. Separation of atoms is as

"defined by the functions setsepr

and setbrk.

setsepr[x] These are both FSUBRS and may have
FSUBR up to 18 arguxn~ts each. Arguments

setbrk~x] should be octal numbers, e.g., 77q
FSUBR

for carriage return. Characters

defined by setbrk will delimit atoms

and be returned as separate atoms

themselves. Characters defined by

setsepr will not be returned and

will serve only to separate atoms.

For example, to make ratom read in

ordinary format, space (Oq), comma

(33q), and carriage return (77q)

are separation characters, and left

paren (57q), right paren (55q), ar4:-

period (73q) are break characters.

Thus setsepr[Oq 33q 77qT
retbrk[57q 55.j 73q]

would set up these characteristics.

The value of setsen and of setbrk

is NIL.

I 111-5

clearbuf[l This SUBR clears the input and output
SUBR

buffers of the sequence break pack-

age, including the sequence break

reader, rato . read, and typei line

buffers, and sets the case to lower

case. This means that if you have

just done a read and the S-expression

did not complete a line, whatever

else is on that line will be lost.

However, it is very useful if you

want to initialize the system, or an

er.-or has beer, made, and you want to

clear out what has been read in on

a line.

readin(x] If x = T,, readin sets the teletype
SUBR input to the paper tape reader.

Specifically, it eliminates the line-

feed echo after a carriage return,

and the delete characters, rubout

and colon, are not recognized. Set-

ting I to NIL restorez the status to

normal. This function returns its

previous value.

feed(n] The value of n must be a number.
SUBR

This function outputs on the teletype

n carriage return-line feeds or n

carriage returns depending on the

setting of readin.

III-0

5 character(n] This function outputs on the tele-
SSUBR type a single character with octal

representation (code) n. n must

be a number.

progi[x;y] This function evaluates !oth its

[SUBR arguments in order, that is, x

first and then y, and then returns

the value of x.

prog2(x;y] The purpose of this function is to
SUBR allow the evaluation of x, before

returning y.

progn.x;y;...;z] _ is an FSUBR which evaluates
SFSUBR each of its arguments in sequence,

and returns the value of its last

argument as its value. It is an

extension of p rog2.

I set[x;y] This function sets the atom which
SUBR is the value of x, to the value of

I y, and returns the value of j.

setq[x;y] This FSUBR is identical to set,
FS31BR except that the first argument is

quoted.

Examle: If the value of x is c,

and the value of 2 is b, then set

[x;yl would result in c having
value b, and b returned. setq[x;yJ

would result in x having value b,

and b returned. The value of ' Ja
I unaffected.

111-7

'I

setn[x;y] setn requires and checks for an atom
SUBR as the value of the first argtument,

and a number as the second. If the

first argument is not already de-

fined as a number, the value of the

second will be moved to a new cell

in FWS (Full Word Space), the loca-

tion of which will be stored in the

value cell of the first argument.

Otherwise, setn replaces the FWS cell

containing the previous numeric

value of the first argument by the

numeric value of the second. If the

second argument was the most recent

number added to FWS, the cell con-

taining its value is returned to the

free list.
Example:

(SETN (QUOTE P) (PLUS P 1))

creates a new cell in FWS containing

the old value of P plus 1. This

value gets moved to the FWS cell con-

taining the old value.

The following will lose:
(PRUG .. (SET (QUOTE A) B)

(SETN (QUOTE A) (PLUS A 1)) ...)

because the cell containing the value

of A is the same as that for B. To

avoid the problem, the first SET

should have been a SETN so that a

unique numeric value cell would have

been assigned for A.

II-8

!a

Jsetqq[x;] Identical to seta except that neither
argument is evaluated.

setnq[x;y] This FEXPR is identical to setn
FEXP except that the first argument is

quoted.

putd[x;y] p places the value of Z into the

SUBR function cell of the atom which is

the value of x. This is the basic

way of defining functions. p, is

mnemonic for ut definition on x.

Value of Rutd is the definition
(value of Z).

putdq[x;y] This function is similar to uutd,3 PEXPR but both arguments are considered

quoted, and its value is x.

I getd[x] This function ge the definition
STBR of the function whose name is the

value of x. If x is not a defined

function, the value of getd[x] is
NIL; if x is a SUBR or FSUBR, the
value is a number.

fntyp[x] This function gives EXPR, FEXPR,
SUBR SUBR, FSUBR or NIL depending on

L
whether x is an EXPR, FEXPR, SUBR,

j FSUBR or not defined, respectively.

eval[x] eval evaluates the expression x andi
SUBR returns this value.

!
1 III-9

errorset(form;arg) This function calls eval with the
SUBR value of form., and returns with a

list of this value if no error is
encountered. If an error is
encountered on the call to eval,
errorset returns with the value

NIL. If aM is T, the message from

error is printed; the message is not

printed if arg - NIL.

eraetq[xj This FEXPR is defined as
FExrR (ERRoRsET (CAR x) T);

that is, it is the same as errorset

with the argument quoted and the

error flag set to T.

nlsetq[xJ This FDCPR is identical to ersetq
FEXPR except that the error flag is set

to NIL and the error comment from

error will not be printed out.

error[x] error induces an error with mes-SUBR --- 'sage x.

quit(qut induces a "strong" error, i.e.,
SUBR will unwind a program through

errorsets to the top level,

equal[x;y] The value of this function is T if
SUBR x and y are equal, that is, identi-

cal S-wxpressions, and NIL otheriise.

It is as fast as in for .oma'.

III-10

and[x] This function is an FSUBR and canF3WUBR take an indefinite number of argu-

ments. Its value is T if none of its

arguments has value NIL, and is Y'IL

otherwise.

or[x] or is also an FSUBR and may have an

FSUBR indefinite number of arguments (in-

cluding 0). o2r has value NIL if all

of its arguments have value NIL,

otherwise, it has value T.

rdflx[lx] If x is NIL this function will try

EXPR to read one S-expression from the

typewriter with read[]; if no error

occurred in reading, it will return
with list of the S-expression that,

was read. If an error occurs in
reading, it returns with NIL. If x

is not NIL, it will attempt to read
an S-expression and keep attempting

to read it until it gets one without
an error; each time it tries to read
an S-expression and gets an error,

it will print out x. In this case
it returns with the %-expression
itself (not list of the S-expression).

append[x;y] This function copies list x and
EXPR appends list y to this copy. The

value is the combined list.

III- 11

I t _: . ." • _ • _

nconc[x;y] This function is similar to
SUBR a , in effect, but it actual- U

ly causes this effect by modify-

ing the list structure x., and

making the last element in the

list x point to the list y. The

value of nconc is a pointer to

the first list x, but since this I
first list has now been modified

it is a pointer to the concate-
nated list. I

nnconc[x;y] This function is the same as
SUBR nconc, nnconc is used by the I

trace programs so that nconc it-

self can be traced.

attach[x;y] This function attaches x to the
EXPR

front of the list y by doing an

rplaca and an rplacd, g
tconc[x;p] This function provides an effi-

EXPR cient way for placing an item x J
at the end of a list R. This

list is the first item on p, that

is, car[p]; cdr[p] is a pointer

to the last element in this list;

x is placed on the end of the

list by modifying this structure,

and x is placed on the list as an

item. The effect of this function

is equivalent to nconc[car[p]; i
list~x]), with cdr[p] updated to

point to the last element of the

modified list.

I
I1I-i2

Jam, -

Iconcx;p] This function is similar to tconc,EXPR except that in this case x is a list.

An entire list will be tacked on the
end of car(p], and cdr[pJ will be
adjusted to be a pointer to the last
element of this new combined list.
Both tconc and lconc work correctly
given null arguments.

last[x] This function has as its value aEXPR pointer to the last cell in the list

x, and returns NIL if x is an atom.

length[x] This function has as a value the
EXPR length of the list x. If x is an

atom, it returns 0.

prettyprint[x] The argument of prettyprint is a

EXPR list of names of functions; it

prints and/or punches (depending on
the settings) the definitions of
the named functions in a pretty
format. It utll•zez the functions
p, endline, and superprint.
This latter function does all the
work.

prettydef[xl This function of one argument (a

EXPR list of function names) prints and/

or Punches "(DEFINEQ", followed by
the prettyprint listing of each of

IIl i•

II

these functions, followed by a right

paren. A tape punched by prettydef

can be loaded by the function load

if a STOP is punched on the end of

the tape. The value of prettydef

is X.

define[x] The argument of define is a list.
EXPR Each element of the list is itself r

a list containing either two or

three items. In a two-item list

the first item of each element of"

the list is the name of a function

to be defined, and the second item

is the defining lambda or nlamda

expression. In a three-item list f
the first item is again the name of

the function to be defined. The i
second is the lambda list of vari-

ables and the third is the form for

the expression. As an example

consider the following two equiva-

lent expressicns for defining the I
Phnction null.

1) (NULL (LAMBDA (X) (EQ X NIL)))
2) (NULL (X) (EQ X NIL))

1
1II-14 1.

I
1,

defineq(x;...;z] This FEXPR is closely related to

FEJWR define. However, it can take an

indefinite number of arguments, and

it will treat them literally, as if

they were quoted. Each of the argu-

ments must be a list of the form

described as an element of the list
which is the argument for define.

Using defineg instead of define

allows one to eliminate two pairs

of parentheses in writing functions

to be defined for loading with the

function load.

load~x] load is a function which reads suc-
EXPR -cessive S-expressions from the paper

tape reader, and evaluates each as
it is read. If x = T, then load

prints the value; otherwise it does

not. load continues reading S-ex-
pressions and evaluating them, until
it reads the single atom STOP fol-

lowed by a carriage return, at which
point it returns the value NIL.

Using load is the standard way of

getting functions In from the paper
tape reader; it saves having to

write sequences of

E(EVAL (READ)).

II1-15

S -, , .- - - - M o w =

unpack[x] The argun nt of unpack should be an
SUBR atom. The value of unpack is a list

which contains, in order, the char-

acters which make up the print name

of that atom.

pack(x] The argument x of pac must be a
3,UBR list of atoms. The value of pac is

a single atom whose print name is a

packed version of the print names of

all the atoms given in the list.

Thus

pack((a bc def g)] = abcdefg.

remob[x] The argument of remob must be an
SUBR atom. The effect of applying remob

to this atom is to remove all trae-'

of this atom from the system. This

is a good way of reclaiming soace

from atoms which are no loger.Jneeded.

but it is very dangerou&) and remob

should be used with crile. A future

mention of the same atom name will

have no connection with the old one

that was f'rrefly there. In addi-

tion, any 1ista which point to this

old atom. will now be incorrect.

member(x;y] This SUBR checks to See if
SUBR x .s a member of the list y. If so,

it returns the value T; if not, it

returns the value NIL.

I11-16I

1
I

rplacd[x;y] This very dangerous SUBR places in
SUBR the decrement of the cell pointedId to by x the pointer T. hus it

changes the internal list structure
physically, as opposed to cons which
creates a new list element. This
is the only way to get a circular

list inside of LISP; that is by

"placing a pointer to the beginning

of a list in a spot at the end of

[the list. Using this function care-

lessly is one of the few ways to

really clobber the system.

rplaca[x;y] This SUBR is similar to rplacd, but

jSUB it replaces che address pointer of

x with y. The same caveats which

appýied to using rplacd apply

to

gensym(] This function of no argument gener-

SUBR ates a unique symbol of the form

Annnn, in which each of the n's is

replaced by a digit. Thus the first

one generated is A 0001, etc. This
is a way of generating new atoms for

various uses within the system.

disp[x~y] This functlon displays one point on

SUBR the cathode ray tube at the point

whose coordinates are (x;y) and re-

turns T if the light pen saw the
displayed point, and NIL otherwise.

L I~i-17

Il-I

, I m ..u -: -
Im "* --, *I•'' • |•| mmi n n ~ n nm w m

I

displis['i] The argument of this function is a
SUBR list of successive x and y coordi-

nates to be displayed. (1
For example:

displis[(i 2 1 3 1 4)]
will successively display the

points at coordinates r
(1,2), (1,3) and (i,4).
This is faster than displaying eettvt-

of these three points individuallyt

by using disp.

iogand(x;...;z] This FSUBR will take the logical
FSUBR AND of all of its argument as I

octal numbers and return this value.

logor[x;...,z] This function, an FSUBR, will take
FSUBR the logical OR, bit-wise, of all of

its arguments, and return this I
number

e(x] This FEXPR is defined as eval; how-
FEXPR ever, it is shorter and it removes

the necessity for the extra pair of

parentheses f'or the list of argu-

ments for eval. Thus, when typing

into evalquote one can simply type

e followed by whatever one would

type into eval and have it evaluated.

111-181

1.

get[x;y] This function gets from the list x
EXPR the item after the atom y on list x.

If y is not on the list x, this
function returns NIL. For example,

get((a b c d);b] wc.

trace[x] This function has as an argument a

EXPR list of names of functions. It

changes the definition of these

functions so that when each function

is entered, the values of the argu-

ments of this function are printed;

when the value of this function is

computed this value is printed. Thus,

trace((plus ratom)]

would cause plus and ratom to be

redefined so that this tracing takes

place. The value of trace is the

value of its argument x. The work

of trace is done by the function

traci.

tracp[x;y] This function tells whether the

EXPR function named x with definition y

has been traced. Its value is T

if the function is being traced, and

NIL otherwise.

untrace(x] This function undoes what trace does,
EXPR and restores the original definition

of the function.

IIT-19

A word of warning: do not trace

the following functions or you

will get in an infinite loop be-

cause these functions are used

within tracl itself:

print; cons; set; fntyp; eval;

return; evalprint; car; cdr;

null; &o.

mapc[x;fn] This function applies the function
EXPR fn to each of the elements of the

list x. It returns the value NIL.

mapcar[x;fnl This function applies the function
EXPR fn to each of the elements of the

list x. It creates a new list

which is a map of the old list in

the sense that each element of

the new list is the value of

applying fn to the corresponding

element of the old list.

mapeonc[x;fnj Identical to mapcar except that

it does an nconc instead of a

cons.

mapcon[x;fn] Identical to maplist except that

it does an nconc instead of a

cons.

2
i

III-I

I

map[x;fn] This function applies the function
EXPR fn to successive tails of the list x.

That is, first it computes fn[xJ, and

then fn[cdr[x]], etc. until x is

NIL. This function returns NIL.

ma 1 st[x;fn] This function computes successivelyr EXPthe same values that MR computes;

it forms a new list consisting of
successive values-of applications of
this function.

assoc[x;a] If a is a list of dotted pairs, then
SEXPR assoc will produce the first pair

whose first item is x. If such an

item is not found, assoc will return

NIL.

sassoc[x;y:u] The function sasso__ searches Z, which
PPR is a list of dotted pairs, for a

pair whose first element is x. If

such a pair Is found, the value of

sassoc is this pair. Otherwise, the

function u of no arguments is taken

as the value of sassoc.

coay~x] This function makes a copy of the
MR list x. The value of coRy Is the

location of the cople list.

111-21

intersection[x;yl This function returns with a list
EXPR whose elements were members of both

lists x and X.

union~x;y] This fu",ction is entered with two
EXPR lists. It returns with a list con-

sisting of all elements included on

either of the two original lists.

If the same item is a member of both

original lists, it is included only

once on the new list.

prop[x;y;u] The function pM searches the listEXPR x for an item that is equal to y.
If such an element is found, the

value of prop is the rest of the list

beginning immediately after that

element. Otherwise, the value is

u[], where u Jaifa function of no

argumerrt!..

reverse[Al] This is a umnction to reverse the

EXPR top level of a list.. 2uej t uig

reverse on

(A B (c D)) - ((c D) B A)

subst(x;y;z] This function gives the result of
FXPR substituting the S-expression x for

all occurrences of the atomic symbol

y in the S-expression z.

III-22

!

sublis[x;yj Here x is a list of pairs:
EXPR ((u,.v,) (u 2 .v 2) ... (un.vn))

Me value of sublis[x;y] is the

results of substituting each v

for the corresponding u in y.

evala~x;a] This is the regular eval in the
SUBR 7094 LISP. Itz first argument is

a form which is evaluated by using

the values obtained from a, a list

of dotted pairs. That is, any

variables appearing in x that also

appear on a will be given the

5 value indicated on a.

apply[fn;args;a] apply applies the function fn to
SUBR the arguments args with the values

obtained from a, i.e. the argu-

ments of fn on args are not evalu-

ated but given to fn direcTly.

a is used to evaluate free vari-

ables in fn as described above.

I remove[x.;l] The function remove removes all
EXPR occurrences of x from list 1.

remprop[x;y] This function removes all occur-

. EXPRPrences of the property with label

4 y from the property list of x.

put[x;y;z] This function puts on the property
EXPR list of x, the label y followed by

£ the property. The c¢rrent value

of z replaces any previous value

of z with label y on this property

list.

I 111-23

add[x;y;z] This function adds the value z to

EXPR the list appearing under the prop-

erty y on the atom x. If x does ,

not have a property p, the effect

is the same as put[x;y;list[z]].

getp[x;y] This function gets the property

EXPR with label y• from the property r
list of x.

NOTE: Both prop and get may also be

used on property lists. However,

since getp searches a list two at j
a time. the latter allows one to

have the aeme object as both a

property :Sad a value. e.g., if I
the property list of x is

(PROPI A PROP2 B A C)

then 96t[x;A] = PROP2,

but getp[x;A] - C.

deflist[x;ind] This function is used to put any
EXPR indicator on a property list. The I

first argument is a list of pairs

(where the first of the pair is a

name and the second party of the

pair is the property to be stored

with the indicator on the property

list of the name) and the second

argument is tne indicator that is

to be used.

select x;yl;y 2 ... ;yn ;z] An example of arguments for this

FSUBR function is:

[q; (ql e,); (q 2 e); ...(qn en); e]

111-24 1
I

A The qj's are evaluated in sequence

until one is found such that qi -

q, and the value of select is the

value of the corresponding eV. If

no such qi is found the value of

select is that of e.

selectq(x;y;z] selectg is identical to select ex-
FSUBR cept that the qi's are not evalu-

ated--only q.

time[x n] This function performs computation
EXPR x n times and indicates average time

in tenths of seconds.

gcgag[x] If x=T garbage collector will
SUBR print message when entered. If

x=NIL, no message is printed.

reclaim(] This function initiates a garbage

SUBR collection and returns with the

number of available LISP words in

free storage.
Sfieldwn This function calls field n from

SUBR the drum. (See description of

system program linking.)

nth(x;n] This EXPR has as inputs a list x
EXPR and a positive integer n. Its -

value is a list whose first element

is the nth element of list x Thus
if n = i, it returns the list x it-
self. If n - 2, it returns cdr(x].

If n - 3, it returns cddr[x), etc.

111-25

I.I . . .• - • -.l m l l l • l • •

editf[x] This EXPR gets the expression
EXPR which is the definition of the

function named x and gives it to

edite.

editv[x] This EXPR gets the value of the
EXPR atom x and gives it to edite for

editing.

editp[x] This EXPR gets the property list of
EXPR the atom x, etc.

edite[x] This function is the executive for
EXPR an editing facility for LISP ex-

pressions. The argument of edite

must be a list to be edited. When

edite has been called, it prints

out EDIT, and then waits for input

from the on-line teletype (or the

reader if typein is set to NIL).

The input that may be typed in may

be a positive integer, a negative

integer, or zero, or one of these

as the first element of a two-

element list, or NIL, or one of

several special lists described

below. Tyfing in NIL terminates

editing.

This editing program allows you to

edit any subexpression within the

current level expression, that is,

you can replace or delete any sub-

expression of this expression, or

insert anything before any subex-

pression of this expression. An

111-26

I

J • input (n e) 'there n is a positive

integer will replace the nth expres-

F sion in the current level expression

by exp; if n is a negative integer

F" it will put ex2 Just before the nth

subexpression in the current level

expression. (n) where n is a posi-

tive integer (with no expression

following this integer) will delete

I the nth expression.

Warning: Typing "(1)", where current

A expression is a singleton, will not
have desired effect.

I An input of 0 will take you up to

the next higher level expression.

I If the input to edit is a positive

integer, the nth-subexpression of
i the current expression will become

the expression that can be edited.

SAn important thing to note is that

all editing is final in the sense

j that any changes that are requested

are put in with rplacas and Klacds.

It is the original expression which
has been modified to give the edited

version; to return to the original

expression you must re-edit. How-

ever, by using the COPY and RESTORE

j feature, the user can protect him-

self against errors in editing. The

I function edite calls editif, edit2f,

edit2af, and uiý do all the work.

S111-27

I

I

Other special commands are:
COPY copies and saves entire

expression being edited

as it currently exists.

RESTORE Restores expression as
of last copy: the
current level expression r
will be the current level

expression at last copy
RESTORING without copying

will have no effect.

p Same as (p 0). [
(p n) Prints the nth subexpres-

sion of the current ex-

pression to a level of 2,

using LEVELN described be-

low. If n is zcro, prints I
current expression to

level 2. 1
(p n m) Prints nth subexpression

to a level m.

All printing may be interupted.

(NeI e 2 ...)

which will tack the expresE!ons

e1 e 2 , ... to the end of the current

expression.

(E exp) will print the value of

eval (exp]. n exp) will compute

v - eval[exp] and then act as if I
edit were given (n v). This allows

you to insert the value of a compu-

tation in the current expression, at

subexpresslon n. (n must be a num-

ber).

111-28

I

(LI n) will insert a left parenthesis
immediately before subexpression n
in the current expression and a match-

ing right paren at the end of this

current expression. For example, if
e= (A B C)
(LI 2) yields (A (B C)).

(LO n) will remove a left paren from

the nth subexpression, and take a

corresponding right paren from the

end of the current expression, e.g.,

for e = (A (B C) D)

(LO 2) yields (A B C)

(RO n) will remove a right paren

from the rth subexpression of the

current expression, and insert one

in at the end of the current top

level expression, e.g.,

for e = (A (B C) DE)

(RO 2) yields (A (B C DE))

(RI m n) will insert a right paren

in the nth subexpression of the mth

subexpression of the current expres-

sion, removing one from the end of

the rauth subexpression, e g.,
for e - (A B (C D E) F)

(RI 3 1) yields

(A B (C) D E F)

levelntx n] Abbreviates lirt x at level n, using
the symbol ampersand, "&," to indi-

cate greater depth. For example,

levein [(A (B C) (n (E F) G)) 2] is

(A (B C) (D & G)).

111-29

I
The following 9 functions form a Break Package which allows the

user to make a break conditional upon the result of some computa-

tion and thus arrest the operation of a function. He may interro-

gate the broken function as to the current values of its arguments (3
or other variables, or perform arbitrary LISP computations; then

he may return with a specified value for it without actually

entering it. Alternatively, the user may just "crack" a function,

i.e., print out the result of some computation before executing I
the function and print out the final value of this function.

break[fn;when;ir.:hat] break is a function of three argu- r
EXPR ments: the function to be broken, I

under what condition to break, and

what to print out when a break occurs

If when = T, the function always

breaks. If when = (NIL) a crack is

made in fn. If what = NIL, no

information is printed out. break

iedefines frn using breaki so that at,

the time the function would have

been entered, breakl is entered

instead with the definition of the

function and infornation regarding

the conditions for breaking. I
unbreak[fl] urnbreak redefines fn as it was before

EJXPR the break and returns the value fn.

If fn Is not broken uhen unbreak is

called, the vaLie of unbreak is

(FN NOT BROKEN).

I
ITI-aC

!
I
!

breaklist([] breaklist is a function of one argu-
FEXPR ment, a list of function names. It

performs (BREAK FN T NIL) for each

function name and returns the list

of values of break. Note that

(BREAK FN T NIL) will cause fn always

to break, and will not print out

any special message.

unbreaklist[l] This function performs (UNBREAK FN)
FEWPR for each function on the list 1.

breakat[fn;where;when;what] This function is similar to break
EXPR except that instead of inserting a

break at the beginning of fn, it

allows the user to insert a break

at any top-level place in fn. The

argument where indicates the label

or statement at which the break is

to occur. The other arguments are

used as in break.

unbreakat(fn~where] This function removes a break in-
EXPR serted by breakat.

breakprog[fn;l] breakprog is entered with the name
EXPR of a function and a list of places

in that function whAere a break is

desired. brcakprog performs

(BREAKAT FN WHERE T NTL) for each

place on the list 1.

II-3T 1

I

unbreakprog[fn] This function performs
EXPR (UNBREAKAT FN WHERE)

for each place where a break

exists in fn.

breaki[form;when;fn;what] Although this function is not
FEXPR entered directly by the user, it is r

the heart of all the break functions

and is entered when a break occurs.

After the specified information is

printed out, breaki listens to the

type;writer or teletype for inputs.

If STOP is input, a normal,

exit is achieved. If RETURN FO0
is input breaki returns (EVAL FOO).

If QUIT is input, it performs

(ERROR FN). If E7AL is input, it I
evaluates fn. If a normal exit Is

subsequently achieved via the STOP

command, breaki does not reevaluate

fn, but uses the value obtained by

the EVAL command. The EVAL

feature is useful for evaluating a J
broken function without "letting go"

of the break, e.g., to examine tMe

effect of executing a broken furmce.

tion. If OK Is input, a normal

return is made without printing the
value of the function. Any other

input to breaki is ev.aluated, and 3
'ts value printed. This function

-,es I to do part of its work.

S~I

I

Arithmetic Functions (all arguments must be numbers)

greaterp[x;y] T if x > y;
SUER NIL otherwise

lessp[x;y] T if x 4 y;
EXPR NIL otherwise

zerop[x] T if x is zero;
EXPR NIL otherwise

minusp[x] T if x is negative;
EXPR NIL otherwise

numberp[x] T if x is a number;
NIL otherwise

addi(x] x + I
EXPR

subi[x] x- i
EXPR

plus(x;y] x + y (This FSUBR may have any
FSUBR number of arguments.)

minus[x] -x
SUER

tlmes[x;y] .-roduct of x ýnd y (This FSUBR
FVJBR may have any number of

ai'1-ments)

111-33

quotient(x;yj greatest integer in quotient x/y

SUBm

difference(x;y] This function has for its value the
EXPR algebraic difference between its

arguments.

remainderfx;y] This function computes t" number
EXPR th3oretlc remainder for fixed-point

numbers.

divide[x;y] This function yields a dotted pair

SUBR whose first member is quotient[x;yj

and whose second member is remainder

[x;y]. Remainder is defined in terms

of divide.

111-34

Following is a list of all atom, with APVAL's (per-

maneri•t.values) in the basic system and their values.

blank space

space space

tab tab

commia

eqsign
xeqs

f n.l

nil nil

period

plus +

Ipar)

I slash

t t
I*t* t

qmark

xdol $
xSqU

xd"

xrbr]
xarr

uparr

colon

xgreater

xles~er

xnum

xper %

xPVp &
xat. 0

III-335

SECTION IV.

LISTINGS OF S-EXPRESSIONS OF EXPRIS AND FEXPRfS

(cond
((rall(fnvn(quote putdq))) (putd (print (quote putdq))

(quote jnlamda ýxj(prof2
(pt tecar j adx)

(return (putdq load (lamibda (X) (prog (xx yy zz)
Sc learbuf
setq zz typein nil))

11. cond
((e ual (setq xx (read)) (quote stop)) (retwurn (prog2

clearbuf)

s etq xx (eval xxB)
cond

(gol!)) xxv) *

IV-I

(putdq define
(lambda (x) (cond

((null x) nil)
t (cons ((lambda (y) (prog2

(putd (car y) (cond
J(null (cddr y)) (cadr y))
t (cons (quote lambda) (cdr y)))))

(car y)))
(car x)) (define (cdr x)))))))

(putdq defineq
(nlamda (x) (define x)))

(add
(lambda (x y z) (prog nil

loop (cond
((null (cdr x)) (rplacd x (list

y
(,.istz)),))

(caddi x) (list((equal (cadr x) y) (rplaca (eddr x) (append

((setq x (cddr x)) 'so loop)))
(return y))))

(addl
(lambda (x) (plus

x1)))

(append
(lambda (x y) (cond

((null x) y)t (cons (car x) (append (cdr x) y))))))

IV-2

I

(assoc
(lambda (xsas ysas) (cond.

(null ysas1 nil)
((equal (caar ysas) xsas) (car ysas))

tassoc xsas (cdr ysas)M))))

(attach
(lambda (x y) (rplaca (rpla-d y (cons (car y) (cdr y)))x)))

(laopy (x) (cond
(null x) nil)

(atom x) X)
t (cons (copy (car x)) (copy (cdr x)))))))

(deflist
(lambda (1 ind) (prog nil

loop (cond I
((null 1) (return nil)))

(put (catr 1) ind (cadar 1))
set-q 1 (cdr 1))

(go loop))))

(difference
(lambda (x y) (plus

x
(minus y))))

(e
(nlamda (xeeee) (eval xeeee)))

(ersetq
(nlamda (ersetx) (errorset (car ersetx) t)))

(get
(lambda (x y) (cond

((null x) nil)
ýequal (car x) y) (cadr x))
(t get (cdr x) y)))))

IV-3

I
I

(getp
(lambda (x y) (prog (z)(setq z (edr x)

loop zcond c
((null z) (return nMl))
(eq car z) y) (return (cadr z))))(setq z ecddr Z))

go loops)))

(intersection
(lambda Cx y) (cond

((null x) nil)
(member (car x) y) (cons (car x) (intersection(cdr x -y)))

It (intersection (odr x) y)))))

(last
(lambda (x) (prog (xx)

1 (cond
((atom x) (return xx)

(setq xx x)

setq x cdr x))go 1)M)

(lconc(lambda (x p) (prog (xx)(return (cond

U null x) p)
(cdir (setq xx (last x))) (error (list

(quote loone)x)))
((null p) (cons x xx))
(tnull (car p)) (rplaca (rplacd p xx) x))
(t (prog2

(rplacd (cdr p) x)
(rplacd p xx))))))))

(le~ngth(lambda (x) (prog ,n)

•setq n 01

1 • cond
((atom x) (return n)))

setq x (cdr x))
setq n addl n))
go 1))))

(lessp
(lambda (x y) (cond

(e equal x y) ntl)
(greaterp x y) nil)
(t t))))

(map
(lambda (mapx rnapr) (cond

((null mapx) nil)
(t (prog2

(rapf mapx)j
(map (cdr rnapx) mapr))))))

(mape
(lambda (mapex mapcr) (cond

S(null mapcx) nil)

mapef(car inapax))
mPC (cdr mapex) mapct))))))

(mapear
(lambda (mpcrx mpcrf) (cond

S(null mpcrx) nil)

))))) R(cons (mperr (car mpcrx)) (rnapcar (cdr mpcrx) mpcrf

(mapcon
(lambda (mpcnx mpcnr)(cn

ý (nullompcnx)
nil cn

t (nconc (i-pcnr mpanx) (mapcon (cdr mpcnx) mpcnr

(mapeone
(lambda (mpcncx mnpcncf) (cond

ý(nllmpcncx) nil)t (nonc(mpcnci' (car mpcncx)) (mapconc (cdi' mpcncx) mpcnci'

(map 11.st
(lambda (rnplatx mplstr) (cond

(nul mpltx)nil)

))))) (cns Implstf mplstx) (rnaplist (cdi' mplstx) mplstf

(minusp
(lambda (x) (greaterp 0 x)))

(nill
(nlaxnda (xnil) nil))

(n s etq
(nlamda (nlsetx) (errorset (car nlsetx) nil)))

IV -5

(not
(lambda (x) (cond

(null x) t)
7" (t nil))))

(lambda (x y u) (cond
((nulix) (u))
((equal (car x) y) (cdr x))
(t(prop (cdr x) y u)))))

(punch
(lambda (x) (prog (y z)

setq y (punchon t))
setq z (typeout nil))
print x)
punchon y)
typeout zjIreturn xM))

(put
(lambda (x y z) (prog nil

loop (cond
((mill (cdr x)) (rplacd x (list

Iy
(equal (cadr x) y) (rplaca (cddr x) z))

S(setq x (cddr x)) (go loop)d)
(return y))))

(rdflx
(lambda (x) (prog (xx yy)

Ssetq yy (typein t))
(cond

(x (go ri)))
(setq xx (ersetq (read)))
(go r2)

ri. (cond
((setq xx (nlsetq (read))) (setq xx (car xx

((print x) (go ri)))

r2 (typein yy)
(return xý)

I I-6

!
!

(remainder
(lambda (x y) (cdr (divide x y))))

(remove
(lambda (a x) (cond

null x nil)
ýeual a)(car x)) (remove a (cdr'x

t ?cons (car x) (remove a (cdr x))))

(remprop
(lambda (x y) (prog nilloop (cond r)l(null (9dr x)) (return y))

(epual (cadr x),Tj))rplacd x (cdddr x)))
ýt kset x(r

(go loop))y (cdr

(reverse
(lambda (x) (prog (u)

loop (cond
((null x) (return u)))

Ssetq u (cons (car x)Uu))
setq x xc'ca
go loop)))

(sas Boc(lambda (xsas ysas usas) (cond

((null ysas) (usas))i(equal (caar ysasj)xsa~s). (car •sasi))
t (sassoc xsas (cdr ysas) usasM))))

(set nq
)))jnqamda (xsetnq) (setn (car xsetnq) (eval (cadr xsetnq)

(setqq
(nlamda (x) (set (car x) (cadr x))))

(soundexin
(nlamda (x) (mapcar x (quote (lambda (ysdx) (put (soundex

ysdx) (quote name) ysdx)))))

(soundexout

(lambda (x) (getp x (quote name))))

(subl(lambda (x) (plus

x

IV-7

(sub2

(lambda (a z) (cond
(null a) z)
(erual (caar a z)(a))
t sub2 (cdr a

(sublis
(lambda (a y) (cond

((atom y) (sub2 a y))
(subst t (cons (sublis a (car y)) (sublis a (cdr y)))))))

(lambda (x y z) (cond
((equal y x)

atom z)z)
t (cons (subst x y (car z)) (subst x y (cdr z)))))))

(-&doda (x p) (prog (xx)
(return (cond

null p) (cons (setq xx (cons x nil)) xx))
Mnull (car p)) (prog2

rplaca p (cons x nil))
."placd p (car p))))

(t rplacd p cdr (rplacd (cdr p)
(rplacd (cons x (c p)) nil(d)r)

(time
(lambda (x n) (prof (y m ccl)

(setq m n)
(setq c (clock))

ti (cond
(zerop m) (setq cl (clock)))
t (progn

(setq y (eval x))
(setq m (subl m))(go tIM)))

(setq m (divide (plus
cI
(minus c)) n))

(prini (car m))
prini period)
prrln (quotient (times

(cdr m
10) n))

IV-

prini blank)
print (quote seconds))
return y))))

(union
(lambda (x y) (cond((null x) y)

((member (car x) y) (union (cdr' x)y))
t (cons (car' x) (union (cdi' x) y))M)))

(zerop
(lambda (x) (equal x 0)))

IV -9

(break
(1-ambda (fn when what) (prog (xx yy zz)

(cond
((null (setq xx (getd fn))) (return (prog2

(putd fn (list
(quote nlamda)
quote (1))
list

(quote breaIki)
nil

when
(setq xx (list

fn
(quote (undefined))))r what)))xx))) n

((eq (setq yy (fntyp fn)) (quote fsubr)) (return

(cons fn (quote (is an fsubr)))))
(null (eq yy (quote subr))) (go b2)))

(setq yy (rdflx (print (cons fn (quote (is a subr

need args)))))nputd (setq zz (gensym)) xx)

tsetq xx (putd fn (list
(quote lambda)
yy
(cons zz yy))))

b2 (cond
((eq (caaddr xx) (quote breaki)) (setq xx (

list
car xx)
cadr xx)
cadr (caddr xx))))))

(putd fn (list
(car xx)(adr xx)

list
(quote breaki)
caddr xx)

when
(list

whatf)
(return fn) b

IV-10

Im

(unbreak
(lambda (fn) (pro4 (xx yy)

(return (cond
((null (setq xx (getd fn))) (cons fn (quote

(not a function))))
((and(•r (eq (setq yy (fntyp fn)) (quote expr)

(eq yy (quote fexpr)))
(eq (caaddr xx) (quote breaki))) (prog2
putd fn (list

car xx)
cadr xx)
f cadr (caddr xx))))fn))

(t (cons fn (quote (not broken)))))))))

(breaklist
(nlamda (x) (maplist x (quote (lambda (x) (break (car x)tnil))))))

(unbreaklist
(nlamda (x) (mapllst x (quote (lambda (x) (unbreak (car

x)))))))

(breakprog
(lambda (bpx bpy) (maplist bpy (quote (lambda (z) (breakat

bpx (car z) t nil)))))

(unbreakcpro ((lambda ix) (prog pj~xx)x
(setq xx bpx))

ul (cond
((eq (caadr xx) (quote breaki)) (rplacd xx
!(setq xx (cdr xx)) tgo ui))
()(return nil)))

(go ul))))

'V-If

(breakat
(lambda (fin where when what) (prog (a)

(setq a (bpi fn))
bi (cond

((equal (car a) where) (return (prog2
(rplacd a (cons (list

(quote break-i)
nil
when
(list

fniF •(quote at)
where)

what) (cdr a)))
where)))((setq a (cdr a)) (go bi))(return (cons where (quote (not found)))))))

[(unbreakat
(lambia (fn where) (prog (a)

(setq a (bpi fni))ul (cond
(al (car a) where) (return (cond

(e((caadr a) (quote breaki)) (prog2
(rplacd a (cddr a))
where))

(t (cors fn (append (quote (not broken at)) (list where)))))))

((setq a (cdr a)) (go ul)))
Sreturn (cons where (quote (not found)))))))

I

L
I
I

Siv -12

!
I

(breaki.
(nlaznda (brkix) (prog (brkixx brkiyy brkizz)

(cond
return(eval ((null (setq, brkixx (eval (cad.c brkix))))(
retun (val(car brkix))))

((null (equal brki.xx (quote (nil)))) (go bo

(print .(append (quote (crack in)) (caddr brkix

((cadddr brkix) (print (eval (cadddr brkix)

(go b3)
bO (setq brkiyy (print (append (quote (break in))

(caddr brklx))))
(cQnd

((caddd.r brkix) (print (eval (cadddr brkix)

bi. (cond
((eq (setq brkixx (rdfblx brkiyy)) (quote quit

))(error (eaddr brkix)))
((eq brkixx quote stop)) (go b3))
S(eq brk:Ixx quote return)) (go b2))
(eq brkixx quote eval)) nil)
(eq brklxx Iq ot k)) (go b3))
(and

Serset (isetq brkix (eval brkixx)))
nletq (print brkixx) (go bi))

((prfnt brkiyy) (go bi)))
(ccnd

((null (setq brkizz (ersetq (eval (car brkIx
)))(print brkiyy))

((print (append (caddr brk~ix) (quote (evaluated
)))(set (caaddr brkix) (car brkIzz))))

(go bi)
b2 (cond

((and
Ssetq brkizz (rdflx nil))

(go b4)) setq brkitzz (ersetq (eval (car brkizz))

))) go bt)) ((print brkiyy) (go bi)))

b3 (cond
((or

brkizz
(setq brkizz (eraetq (eval (car brkix)))

))nil) ((print brkiyy) (go bi)))

1,4 (cond
((eq brkix~x (quote ok)) (print (caddr brkIx

((prog2
(print (append (quote (value of)) (caddr

brkix)))(null (nlsetq (print (car brkIzz))))) (print

(~uoe io))p u (car trkldz&z)))))

IV-13

a (bpi
(lambda (x) (prog (xx)

(return (cond

(r (etq • x (quote expr)1))
(eq seqxx (n) (quote fexpr))2))) (caddz xx)) (eq (caaddr (setq xx (getd x))) (quote prog

(t (error (cons x (quote (not a program))))

L

I
I
K
K

L
L

L
t
I

l.Iv -14,

U

(lamb~da (x) (prog(a

(setq a (paun~chont)
pr.n± (quote Q)
print (quote defineq))
prettypririt xI
print (quote),
punchon a)
Ireturn x1)))

(prettyprint
(lambda (1) map 1 (quote (lambc'A() (prog (i

Sterpri)
prini. lpar)
print (car)
printdei' (cond

(gtd (car j)
t (qoteundefined))))

Sprini rpar)
terprif)))))))

(printdef
(lambda (e) (prog (i. 1unit juniti)

Ssetnq i. i)
setq iunit (quote
setq iunitl 3)
prini junit)
3liperprint ej)

(return nil)))

(superprint
(lambda, (e) (cond

((atom e) (cond
((member e (quote(" '"'")

"" e,))) rini (pack (list
(quote)
e

(t rgem
Ssetq op a)
prini ipar)

IV-] 5

4-4 ý7 ifa (cond
AA, i((member (car ep) (quote (and

X or
select[1 selectq
list
plus
times
cond

A rog2)) (go p1))F: ~q &(car ep) (quote prog)) (go pp))

ý eq (caar ep quote lambda1.eq (caar epi quote nlazndaýý (go p1

ý superprint (car ep))
setq ep (cdx' ep))
kcond

'null ep) freturn (prini rpar)))[(atom ep) ?go pd)))
prini. blank)
go a)

pk setnq i (subi i))[pd priniL blank)
prini. period)
Iprin:I blank)I:prini. ep)
return (prini. rpar))

Tp1 setnq i (add i i)
superpri~nt (car ep))

pm setq ep (cdx' ep))
cond

(ýnull ep~g 90Pi
ktatom epj ýgo pk~j

suendline) (car ep))
go Pm)~

p3 setnq I (subi. i))
return (prini rpar))

pp prini. (car ep))
Isetq ep (cdr ep))
setnq i (addi i))
cond ep(op)

(k~atme:p)(g~o pký))
(prini. blank)I' ~ superprint (car ep))

py setq ep (cdx' ep))

L cond

IV-16

((null ep)(go
pi)

((atcm ep)(ýgo Ld))
cond

((atom (car ep)) (go pz)))

(sy'riniint (a e)

px(setnq 1. (plus
i

pz prini (car' ep))
setnq m (plus
iunitl
-1unitl
(minus (length (unpack (car ep))))))

aa (stqm (subi in))
Orini blank)
cond

((null (or

ýzeoPinupv)) (go aa)))

i setq ep (cdr ep$$
cond

(~null ep) ýgo PJf
ýatom ep) kgo
atom (car ep)ý (go pz))

(go px))))))

(endline
(lambda nil (prog()

(aetnq I i
(terpril

a (con zerop J) (return nil))
ý minusp 9) (error a)

prini. junit
sen (subiJ)

IV-17

(trace
(lambda (x) (prog (a b (g)

(.setq a x)
Sloop cond

((null x) (return a)))
setq b (getd (setq c (car x))))
setq x (cir x))
cond

UI((null b)pon
(print r c on c (quote (undefined))))

oprint (cons (quote (was traced))))S• ~~~go loop)
i(putd(et g (gensi))b)

S(quote nlamda)• [(quote (q~lqq))
list

(quote traci)(list
(,quote quote)

c)
(list

(quote quote)

(quote qlqq))))g (go loop))))
1IV (untrac e

(lambda Wx (prog (a b c(set (quote a) x)

loop (cond
((null x) (return a)))

s xset (quote gX ýcar x))•set (quotex cd)

cond
((tracp g (set (quote b) (getd g))) (prognLset uote b) (cdaddr h))

(putd (cadar b) (getd set (quote c) (cadadr

mob c)))L (t C print (cons g (quote (not traced))))))
(go loop))))

1
I
!b

l Iv-18

I

(rlambda (x y) (and
(eq (rntyp x) (quote fexpr)
(eq (caaddr y) (quote traci)))

(tracili
(lambda (etrac gtrac xtx'ac) (pros (atrac)

(print (cores ctrac 'quote (entered with))))
(set (quote xtrac) (cond

((eq (Cntyp gtrac) (quote fsubr)) (print xtrac

((eq (i'ntyp gtrac) (quote fexpr)) (print xtracr

Sset (quote atrac) (eval (cone gtrac, xtrac)))
print (cons atrac (quote (has value))))£
return (print atrac)))))

(evalprint[

lo'op (cond
((null xvalp) (return avaip)))

(set (quote ava.Lp) (nnconc avalp (list
(list

(quote quote)
(print (eval (car xvalpj)))))

Sset (quote xvalp) cedr xvalp
go0 loop)))

(editf
(lambda (X) (prog2x• (edite (gew: x))

(edify-Of.(labda (x) (pro.2

(set x (edite (oval x)))x)))

(editp
(lambda (x) (prog2

(r~lacd x 1edite (cdr x)))X))

(edite
[(lwa. (x) (prog (1 y c)

(typein t)(set (ll4st
.x• 0

(print (quote edit))C a ceond

((null (ersetq (setq c (read))))(8o a))
"null c) (return (ar (lastr 1)))C (nuberp c) (edibti c))
(eq c quote copy)) (setq y (copy 1)))

c quote restore)) (setq 1 (cond

eq c (quote p)) (edit~f (quote (p 0))))
atom c) {print qmark) ,
number- (car c)) (edit2f c))(t (It•" 0)))

(go a))))

(editif
(lambda (W) (cond

0c o cond•(null (cd-.r.1)) (print qmo.'k))
(t (setq 1 kcdr 11))))
((pe•atap (I h (ca M) (prnt

(fsrratar (nth (car 1(t (pant)cons)
qraa0c))))) -

(edit2f
(lambda (c) (cond

((peaterp (car c) 0)(cond
((greaterp (car c) M(ength 'car 1))) (print qmark

(t (rplaca 1 (edit2af (subi (car c)) (car 1) (cdi
nil)))))

((or (car o
null (cdr A)

qmark)) greaterp (minus (car c)) (length (car 1)))) (print

(t (rlaca, 1 (ed~tWa (subi (minus (car a))) (car 1
(cdr C) t))

(edit2af
(lambda (n x r d) (prog2

(cond
((null (eq n 0)) (rplacd (nth x n) (nconc r (cond

'd (cdr (nth x n)(t (cddr (nth x n))))

d attach (car r) x
r (rplaca x (car r)j 3
(rplaca x (cadr x)) (rplaci x (cddr x))))

(edit3f
(lambda (x) (cond

Q car x) (quote i)) (edit2f (list
cadr x)oeval (caddr x)))

((eq (car x) (quote))l) (ersetq (print (eval (cadr x
f)) (eq (car' x) (quote n) (nconC (car 1.) (cd~r x)))

car x) (quote p)) jbpnt (cd_ x)
~ ~eqcar x) qoen)noc(a (cdr x))

(mmber (car x) (quote (ri ro li lo)) ('rorset (noionc
x (quote ((car 1)))) t))

(t (print kI-)21

IV-21

(bpnt
(lambda (x) (prog (y n)

(cond
zerop (car x)) (setq y (car 1))((greaterp (car x) (length (car 1))) (go bi

![((minusp (car x)) (go bl))

(t (setq y (car (nth (car 1) (car x))))))
(cond

r null (cdr x)) (setq n 2))A ((null (numberp (cadr x)) (go bl))
(minusp (cadr x)) (go bi)

t (setq n (cadr x))))
(return (cond

R(nlsetq (print (leveln)T n))) nil)
t (print (quote edit)g bi (return (print qmark))))

(leveln
(lambda (x n) (cond

(atom x) x)
(zerop n) .(quote A))
t (mapcar x (quote (lambda (x) (leveln x (subi n)))

(nth
(lambda (x n) (cond

(atom x) nil)((greaterp n 1) (nth (cdr x) (subi n)))I. (t x)))

(lastr
1 (lambda () (cond

null x) (error (quote (null list))))
(null (cdr x)) x)

t (lastr (cdr x))))))

L
I
I

IV-22

I
I

(rl

(lambda (m n x) (prog (a b)an t
etqanthx m))

setq b nth (car a) n))
cond

((or
(null a)
(null b)) (return (print qmark))))

rplaod a (nconc (cdr b) (cdr A.))) C
rplacd b nil))))

(ro(lambda (n x) (prog (a)

Ssetq a (nth x n))
ýcond

((or
(null a)
atom (car a))) (return (print qmark))))

rplacd (lastr (car a)) (cdr a))
rplacd P nil)))))

(li
(lambda (n x) (prog (a)f setq a (nth x n))

cond
((null a) (return (rint qmark))))

rplaca a (cons (car a) (cdr a)))

(1
•rplacd a nil))))

(lambda (n x) (prog (a)
Isetq a (nth x n))
ýcond

((or
(null a)
(atom (car a)) (return (print qmark)))))

(rplacd a (cdar a))rplaca a (caar a)))))

1I
!

IV-•3

,IF

I

r

C
S~ APPENDIX A

SOPER~ATING THlE BBN-LI.9P SYSTEM

A

i4

APPENDIX A.i

LISP LOADER

The LIJP loader allows one to load several drum fields from

either paper tape or magnetic tape. In addition, there is

provision for transferring a system from drum to mag tape.

A complete system is treated as a file on tape (each core load

is one block of the file) and all tape commands are in terms

of files rather than blocks. Teletype should be connected

to channel 0 of the 630 scanner.

Instructions for Loading System Progiams onto the Drum

The LISP loader can be used for setting up the drum fields of

the system programs, including itself. To do this:

1. Read into core I the system program to be placed

on a drum field.

2. Read into core I the program at location 0 for

that drum field.

3. Read into core 0 the LISP loader.

4. Type: nd

where n is the octal number cf the drum field onto

which to dump core I.

Instructions for Loading LISP with the Loader

1. Load mag tape of system on tape drive and set it

to automatic on unit i.

AJ.I-!

2. Read into core 0 the paper tape of the LISP loader.

The mag tape will be rewound and the LISP loader will be

1 waiting for typein. (The LISP loader starts at 300.):

3. Tpe: nr

where n is the octal number of the file to be read in.
r 26 drum fields will be read off of the mag tape onto

the drum and the typewriter will type out n < m where n

is the first block number read (starting with 0) and m

is the last +1 block number read.

[4. Type: 1
This will take the user to LISP.

Instructions for Writing LISP onto Mag Tape with the Loader

1. From LISP call the drum field with the LISP loader,

FIEID (25Q), or read into core 0 the paper tape of the

LISP loader.

2. Type: nw

where n is the octal number of the file that you wish

to write.

L

I A.I-2

L
I.

List of Commands Available in the LISP Loader (n is an octal number)

1 calls LISP

e calls the editor on field 26

nr reads onto the drum from mag tape file n

nw writes current drum system on mag tape file n

nd dumps core I onto relative drum field n

nc reads relative drum field n into core I

np preserves core 0 on relative drum field n

ng Eets registers 0-177 on relative drum

field n and transfers to 0

nu selects the mag tape unit to be used.

Starting the program at 300 automatically

selects unit i.

nb sets the base field on the drum to n, i.e.,

drum loading will begin on field n from either

core or mag tape. The base is initially set

to 1. The first relative field n is i, not 0.

Relative field n is absolute field
"n - I + base".

nf sets the number of fields in a file. This

value is initially set to 26 octal.

o rewind (origin)

ns space tape n files forward (or backward if n

is negative). If n is zero the tape will be

moved to the beginning of the current file.

Spacing backwards has been known ta cause

trouble.

A.1-3

Error Printouts

[1 nOf tried to reference file 0 or drum field 0
(either absolute or relative)

fie file error -- while searching for a designated

file, a file longer than 64 blocks was en-

1 countered.

una tape unit not available. If this is the

[first thing that happens it is because the

program has attempted to rewind unit I and

£ cannot for some reason.

pme n bad parity or missed character on reading or

5 checking tape block n

nch saw no characters for 6 inches

I ept saw tape end point

I wcf n write check failure mag tape block n

drf n drum read fail, absolute field n

nem no end mark has been entered

dwe drum write error

A
t.I

5 A.1-4

£
I

APPENDIX A.2

USING LISP FROM THE COMPUTER ROOM TELETPE

To use LISP from the computer room teletype: Connect the
teletype to channel 0 of the scanner and then load the LISP
system as described in Appendix A.l, LISP LOADER. The teletype
Will carriage-return and be waiting for input into evalquote.

Manual restart should never be used as there are no known ways
to cause the system to halt or crash (if either does occur,

record all particulars and deliver to D. Murphy). The following,

however, do exist:

start 202 reinitializes all sequence break

routines and restarts

stait 203 reinitializes entire system, i.e.,

kills everything and redefines only

initial SUBR's and FSUBR's.

A.2-1

U APPENDIX A.3

(1USING LISP FROM A REMOTE DATASET

C• To use LISP from a remote dataset: The LISP system should be

loaded and running as described in Appendix A.l, LISP LOADER.
Then:

Set the channel 0 datanet phone to "auto" (the channel 0
phone is tre one on which the number 491-5120 aripearb).

From the remote dataset, push the "tel" button, and when
the dial tone is heard in the attached receiver, dial5 l491-5120. The phone in the computer room will be answered
automatically, and a tone will be transmitted. When this

tone is heard, the "ORIG" button should be pressed.,
establishing the connection.

SSecal Codes for Control (see standard chart of teletype codes
for complete set)

Octal Code Character Function

jrubout deletes the line being typed in

types out and deletes the last

character typed in

L break key causes an Interrupt followed by an
untrace. A second depression of

I this key halts the untrace.

I

I

Octal Code Character Function

204 control D HANO(P, wnen transmitted by either

computer or user, causes immediate
hangup on both ends

207 control G Bell

211 control I Horizontal tab, on output only,

causes carriage to be moved to

next predefiaed tab stop

221 control Q reader on: starts paper tape

reader if tape is-loaded

223 control S reader off: when appearing on

paper tape only, causes reader to

stop after reading next character

A.3-2

APPENDTX B

INDEX TO FUNCTIONS

name of descriptin 1isting
functon secion III, page section 1V, page

add 24 2
add 1 33 2

F and 11

append 11 2
apply 23
assoc 21 3

Satom 2

attach 12 3
S1 break 30 10

breakI 32 13
breakat 31 12
b.eaklist 31 11
breaicprog 31 11
car,cdr, (etc) 1
character 7

clearbuf 6
cond 2

V cons 1
copy 21 3
define I4 2

deftirq 15 2
deflist 24 3
dirference 34 3
disp 17

Sdisplis 18
divide 34

I e 18 3
edit. 26 20

I

!I

name of description listin

Munction section III, page SectnIV,, pa ge

editf 26 20

editp 26 20

editv 26 20

eq 1

equal 10

error 10

errorset 10

ersetq 10 3

eval 9

evala 23

feed 6

field 25
fntyp 9

gcgag 25
gensym 17

get 19 3

getd 9

getp 24 4

go 3

greaterp 33

intersection 22 4

last 13 4

lconc 13 4

length 13 4

lesap 33 4

leveln 29 22

list 3

load 15 1

lopnd 16
logor

map 21 5

B.l-.

SI!

:•I
name of description listini

±'unction sectIonIpage section Iv- , page

Smapc 20 5
mapcar 20 5

-mapcon 20 5

ma rcinc 20 5

Smaplist 21 5

member 16

r minus 33
minusp 33 5

Snconc 12

nnconc 12

nlsetq 10 5

K not 2 6

nth 25 22

fnull 2

numberp 33

oblist 2

or 11

pack 16

plus 33

prettydef 13 15

prettyprint 13 15

prin.I 4

print 4

prog 3

prog 7

prog2 7

progn 7

prop 22 6

punch 4 6

punchon 4

put 23 6
I

B.I1-3I
!

I

name of description listing
function section III, jpage sectiun IV, Pao

putd 9
putdq 9 1

quit 10

quote 2

quotient 34 V
ratom 5
rdflx 11 6

read 4

readin 6
reclaim 25 1
remainder 34 7

remob 16
ramove 23 7

remprop 23 7
return 4

reverse 22 7
rplaca 17-
rplacd 17

sassoc 21 7

select 24

selectq 25
set 7
setbrk 5

setn 8
setn q 9 7
setq 7

setqq 9 7
setsepr 5
subi 33 7

sublis 23 8 1.
subst 22 8

B.I-4
I

name of description Ii jting
f n section Illl pag B sectcn IVC.t ipae

tconc 12 8

terpri 4

time 25 8

times 33

trace 19 18

tracp 19 19

typein 5

typeout 4

unbreak 30 11

unbreakat 31 12

unbreak]ist 31 11

unbreakprog 32 11

union 22 9

unpack 16

untrace 19 18

zerop 33 9

B. 1 -5

Security Classification

DOCUMENT CONTROL DATA - R&D
(Scurity classification o! title, body of abstract end indexing annotation must be entered wvAn the overall report is classified)

1 ORIGINATING ACTIvITY (Corporate author) a2. REPORT SECURITY C LASSIFICATIONJ

Bolt Beranek and Newman Inc. 1Unclassified
Cambridge, Massachusetts 2b GROUP

3, REPORT TITLE

The BBN-LISP System

4. DESCRIPTIVE NOTES (Type of report and inc!uslve dates)

Scientific Report No. 1
S. AUTHOR(S) (Liot name, first name, initial)

Daniel G. Boorow, D. Lucille Darley, Daniel L. Murphy,
Cynthia Solomon, Warren Teitelman

6. REPORT DATE 78. TOTAL NO OF PAGES f7b. NO. OF REFS

February 1966 82 0
Oa. CONTRACT OR GRANT NO. 9a ORIGINATOR'S REPORT NUMOIER(S)

AF 19(628) -5065 - ARPA Order
b. PROJECT,,No.NO67

No. 627 BBN Report No. 1346
C,8 8b, OTHER R PORT NO(S) (Any othernumbera that may be assigned

this, report)

d. AFCRL-66-180
10 AVA IL ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

ARPA Order No. 627, dated Hq. AFCRL, OAR (CRB)
9 March 1965. United States Air Force

L.G. Hanscom Fieldo Rpdfnrd,
13 ABSTRACT

This reoort describes in detail the BBN-LISP system. This LISP
system has a number of unique features; most notably, it has a
small core memory, and utilizes a drum for storage of list
structure. The paging techniques described here allow utili-
zation of this large, but slow, drum memory with a surprisingly
small time penalty. These techniques are applicable to the
design of effLicient list processing systems embedded in time-
sharing systems using paging for memory allocation.

DD IAN •41473 Urplassified
Security Classification

Security Classification
14. KEY WORDS L'NK A LINK S LINK C

KEY ROLZ WT ROLIE WT RaLE Wr

LISP
List Processing Language
Paging Systems
Drum Systems for List Structure
List Structures
Symbol Manipulation Language

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copies of this
the report, report from DDC."
2s. REPORT SECUETY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether report anno t andhdized."
"Restricted Data" is included. Marking is to be in accord- report by DDC is not authorized."
ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies of

this report directly from DDC, Other qualified DDC
2b. GROUP: Automatic downgrading is specified in DoD Di- users shall request through
reý.Uive 5200. 10 and Armed Forces Industrial Manual. Enter 3e
the group number. Also, when applicable, show that optional ,"
markings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of thisreport directll from DDC. Other qualified users
3. REPORT TITLE: Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis (5) "All distribution of this report is controlled. Qual-
immediately following the title. ified DDC users shall request through

4. DESCRIPTIVE NOTES' If appropriate, enter the type of ."'_
report, e.g., interim, progress, summary, annual, or final. If the report has been furnished to the Office of Technical
Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-
covered. cate this fact and enter the price, if known.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on IL SUPPLEMENTARY NOTES: Use for additional explana-
or in the report. Enter last name, first name, middle initial, tory notes.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Ente, the name of

the departmental project office or laboratory sponsoring (pay-
6. REPORT DATE. Enter the date of the report as day, ing for) the research and development. Include address.
month, year, or month, year. If more than one date appears
or the report, use date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factual

summary of the document indicative of the report, even though7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the body of the technical re-

should follow normal pegination procedures, i.e., enter the pt If adionalpae is tequ od, a tinution s ee
number of pages containin2 information. Port. If additional space is required, a continuation sheet shallDe attached.

7b. NUMBER OF REFERENCES. Enter the total number of It is highly desirable tha' the abstract of classified reports
references cited in the report. be unclassified, Each paragraph of the abstract shall end with
Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (TS), (S), (C). or (U).
the report was written. There is no limitation on the length of the abstract. How-

8b, 6c, & 8d. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from 150 to 225 words.
military department identification, such as project number,
subproject nuwber, system numbers, task number, etc. 14. KEY WORDS: Key words ore technically meaningful terms

or short phrases that characterize a report and may be used as
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be
cial report number by which the document will be Identified selected so that no security classification is required. Identi-
and controlled by the originating activity. This number must fiers, such as equipment model designation, trade name, military
be unique to this report. project code name, geographic location, may be used as key

9b. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-
assigned any other report numbers (either by the originator text. The assignment of links, roles, and weights is optional.
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES. Enter any lim-
itations on further dissemination of the report, other than those

Security Classification

