e

»

=

%
=
4

-« AD632667Y

T™-L10-810/101/00

IGAL
DUM

(TM Series)

TEGR

I
MEMORAN

Distribution of this Doc ment

REPRINT (ininiees

This decament was produced dy 30C ln performance of contract AF 19(628)-1648, System
L6SL--SACCS, for Electronic Systems Division, AFSC (562.02)

M

SYSTEM
MANAGEMENT REPORT: CONTROLLING PRODUCTION
o ST SOETIRRE DEVELOPMENT
CLEARINGHOUSE
FOR FEDERAL SCIBNTIFIC AND CORPGRATION
TECHNICAL I mpoammon By

—Barecopy | Microfiche

’j oqs ,7{

2500 COLORADG AVE.

Development Branch

ME @@)‘]@v) 17 May 1963 CALIFORNIA

‘Cv—c&/

The views **==' Jlons, or recommaendations expressod in this document do not neces
sarlly res . .o ofticiel views or poiicies of egencies of the United States Qovernment.

Best
Available
Copy

17 May 1963 le ™-10-810/101/00
(Pege 2 Blank)

ACKNOWLEDGMENTS

The following persons have been associated in the develomment of the production
Trrocess described {n this paper:

M. I. Bolsky
M. D. Campbell
J. J. Connelly
V. L. Landaeta
M. A. Levine
Y. R. Osajima
J. J. Pavege

Preparstion of this document and the briefing script that preceded this
decument was materially assisted by J. H. Green and D. E. Wolgamuth.

Methed of Presentation of This Paper

The text of this paper was originally presented as a briefing, with accompany-
ing flow disgrams and charts. In order to achieve maximum clarity, we have
pleced each illustration used in the briefing on & left-hand page, with the
accompanying text on the facing right-hand page. While the text is complete
in itself, the illustrations will undoubtedly be of interest and usefulness

1o readers.

17 May 1953 a3 M-10-810/101/00

PREFLCE

In order to de well ir & position, a person musi bring two factors to that
position: native *n.oriire wce, and experience. Combined, the two will equal
thet person's skl 1 fulleliﬁg his responsibilities most effectively.

Hative intelligence ‘c more or less a fixed item, dbut experience is not.
Zxperience can te acquired in two ways, each of which supplements the other.
The first way ic actuel on-the-job work. The cecond way is by reading about
how cthers have done similar tesks.

The persons who nzve been acsociated in the development of the production

process described in (hils paper have accumulated a total of over forty man-years

of experience in the management of large-scale computer program system production.

ivearly half of this nes been with the largest computer program system being

produced - the 4SSL Planning Subsystem.

(The U6SL Planning Subsyswem is one of the two operational ¢omponents that

make up the 405L Syctem. The other component is the 465L Control Subsystem.

As their names imply, these will perform planning and control functions,

respectively, for the Strategic Air Command. Each of these subsystems, alone,

is in itself a large integrated program system. The Planning Subsystem, in
teelf, is comprjsed of approximately 90 programs, 300,000 machine instructio*g,

and a data base of 6,000,000 words. They are called auhszstem only beceuse

they are compo:ciivs of the total LESL System.)

We hope that ou» experience can be of help to the munagers of other current
and future computer programming projects. The record of how we set up and
controlled the production process for the Planning Subsystem provides insights
into the naturc »f the problems involved, and into some of the ways by which
these problems may be overcome.

We recognize tnat this paper 13 not a generalized description of the program
production’ procuss. lowever, we do feel it to be a significant milestone in
thet Lt is a pasitive attempt at defining or analyzing computer programming

in terms of act’'vilies, products, needed resources, and management controls.

This paper, then, {5 dedicated to those who take on the heavy burden of
nanaging the vroduectlon of a large computer program gystem. This task is not
cagy, b.t 1t ‘. a chal’eage that brings a most rewarding feeling when {t is
arcomp! lehed sceecnfully.

(bfny le‘)3 -’.- 'I::-l.t'- * }‘;_\aii‘ g}

LIST OF ILIUSTRATIONS

18\11’6 Production Process Overvieweesoeisseosssssssasscensesse 6
5 Transkation UVRTVIeW: 4 he s os o delhesiasiossslsiosssassse 8 j‘ %
4 Translation Of ODR"8.ececceccesecosssssscsssococsecsane 10 £ _

Step 1 <« Sepmentation Of ODR's Into Functional Areas.. 12
Step 2 - Identification Of ODR Subfunctions (0SF's)... 1
Step 3 «- Performance Of Detailed Analysis Of Each ODR

Subfmctim.......'.............'......'..... 16
Step 4 ~. The Synthesis Of Logical Tasks From ODR
SubfunctionBececsocssccscesesssosesscscsssses 18

- o~ ANV W N

Step 5 ~« The Synthesis Of Logicel Jobs From Logical
Tasks, And The Documentation Of The
Preliminary Program Subsystem Specification..

9 msign OVeTVIIOM: 5 50 20 lora Tlo.a isch/a oo Sheib.s 56108 arsls iefa s bres [Blskini

10 MEthOdOIOg of Deaign..................................

11 Step 1l -« Job msi@.o.cooooooocooooo'ooooooooooooooocoo

12 Step 2 «~ Preliminary Task Designececscessccesesscsncce

13 Step 3 -.00; ktul@d Ta‘k m.i@ooo00700000000000000000000

1k Step b e Preliminary Program Desi@Neccsccocoscoscssens

15 Step 5 ~= Quality Review And Design Specification

Productioneeceececrecsssesosssescssnncsceccnce

16 Step 6 «= Detailed Data Mm‘iﬂooooooooooooooooooocooo

1T Step 7 == Detailed Program Desighecsccescecccccscsscccse

18 Coding OVvervievW.coccosososecssccrscssssssosssccccccccsne

19 Methodology Of Coding..................nu............

Verification Overview.eesessoeecscocsecosscsessccsoscoes

21 Methodology Of VerificatioNeecesccsccssccsccscsccssoses
22 Progrm Verificationecesosssssssssossososssecssscsssscnss
: 23 The Decision Point MatriX..eseesceeccssecescccscsscsses
i 2k Test LiBtBesscocscsscsacnssrssnnscccearasesssssessssssne
25 Program Verificationisecseceeccosscocssscanscoccsoccrcens
26 Task Verificationesecceeccssesccessssscscocsosccsoscoes
27 Sequence Parameter MatriX.ooecoceosesocessccocsssossnes
28 Task Verification.seccsecosssssccsscscsccssosscsccssssce
29 Actual Verification On The Machin€.ccccoccoccccscccscne
30 Internal Release ove”i“ooocooocoooo.ooooo_o“ooooooooooc
31 Internal ReleABeissecscsesssscssscsccssssesessccsessnsss
32 Tinme Phasing_.....................o..nn.......n......

RERY

i A B s S
N
(o]

g neblls b 00

3
BREVBLLELEVEEEELFERRE ®Y

F)

17 Mey 1963 25

b 7
1.

III.

Iv.

V.

VII.

VIII.

TASLE OF CONTENTS

Inmctim....l....’..l............C‘.......0................

- Translation Phase

Purpose Of The Translation Phase.............................
Problems In Translation And Their Solution.cecesssccccssccnss
Methodology Of Translation..... S b mpis| bioksrsso §761 58 313 546 £/ =) ane foe] PMOeE
Step 1 -~ Segmentation Of The ODR's Into Functional Areas..
Step 2 -- ldentification Of ODR Subfunctions (OSF'S).c.....
Step 3 -« Performance Of Detalled Analysis Of Each ODR
Subfunction..ccieece 0ot r0rttstcssrsnsessrnrnee
Step 4 «- The Synthesis Of Logical Taske From ODR Sub-
© SRt OB sr et i 0907 100 5156 sadersieaRPTE BT 0p Shass GO & e
Step 5 «- The Synthesis Of Logical Jobs From Logical Tasks,
And The Documentation Of The Preliminary Program
Subsystem Specification.iceccccccecssocsccsscnsenne
Design Phase ,
Purpose Of The Design Phase....cceoseecroscsssvsssscsnsss o
Problems In Design And Thelr Solution..c.iececceccececscssnas
Methodology Of Design.e.ccceecscsscsesasosscssosscossssnsssnses
Step 1 == JOb Deslg@N.creceersecosesvensocsssscccsnsnsssenes
Step 2 «- Preliminary Task Desigheccceccscsesccsssecssesnes
Step 3 -- Detailed Task Designeccccccceccecceccccscssccsncs
Step 4 << Preliminary Program Desi@..ccceesveccecocssasnss
Step 5 -« Quality Review And Design Specification
Production...-0l..l.00..'0.................l.l...
Step 6 -~ Detailed Data AnBlySiS..eeecececcscsssscccccnsans
Step 7 «= Detaliled Program Deslgne.ccesscecocosensosacscscns
Coding Phase :
Purpose OF Tie CoLNE PRARE o ove aorn s o sisw vomvan convs® gswnas
Problems In Coding And Their SoOlutiONecececsccsssssoscosccans
Methodology Of Coding......... tesecesctecnssasetretas s an s
Verification Phase
Purpose Of The Verification PhaB€..ccevveescvensoscssacssanns
Problems In Verification And Thelr SolutiONeeccsceccsccccecne
Methodology Of Verification...eeeveecesccccscacascscnscannacs
Program Yerd MEGEeLon: oo i ss-enle 85 ¢ o sainm o sle steioxarols o603 8
Task Verification...............................-.......-.-
Internal Release Phase
Purpose Of The Internal Releas® PhasC..ceoccrscssssscscsccaes
Problems In Internal Release And Their scl“tionooo'ooooooocno
MethOdOlogy 0f Internal Relelse........................o.....
Time ﬂi‘sinsc...o.loo.'OOQOi....l....ll..l...l....l...l..l.....
Concluaion....................................-..........o..-..

Glossaryoooocoto.o.oo.oocoocooococcc0.000000000'000...'0'000000

™-L0-810/101/00

Page
T

9
9
1
13
15

17
19

f<‘u.u.r\

M-L0-6H10/101/00

17 May 1967

IASYIATIY TwNHEHILNI

NOILYDI4IH3AA

NOIS3a

NOILY ISNod L

MITAHIAD SSZ2I0Hd

1
-~

Figure

- e

G

«Te - T™-L0-310/101/0¢

I. INTRODUCTIOﬁ

In~g@§ir to effective¢y nanage the prcduction process of a large-scale
_ctaputer program subsystem, cne must firsi have a clear definition of the
Process. . This puper defines the process used in produciig the LGSL Planning

Bubsystem. The tsta. prcduc,ion process, ncedless to say, requires a manager's

attention to & great many fuactions, e.g., Droocrsing and controlling system
shanges, effective utilizaticn of manpower resources, ~ffective EAM/EDPM
utilization, etc. Although these are all *nuegra, oar*s of the total process,
in this puper we ur2 restricting ourselves to a definition of the basic funce
tions of the production pro:ess. Furthermore, the praduction ‘process, as it
is defined in *his paper, assumes certain functions -hat precede the process
and thus produce inputs 1o it, and certaln funeiloas -nat follow the production
process and thus utilize lis outputs.

Inputs Tc Productiion Process - This process suarts or ~eceipt of (1) a System
Integration Documea:, specifying theeformals of irc usz>r input messages and
output dispiays; and (2) Operational Decign Requf remenvs (ODR's) containing

the following caciions: general statemen: and descrip.ion of the requirements;

logleal designs, including assumptions, ir both prose and diagram form; specific
requirements indizaving the areas of humar interaction with the program; specific
operaticnal Trogran requirements.

The Phases Of The Production Process - The prcduction process, as defined in
this paper, is divided intc five basic phases--Trans!a<ion, .Design, Coding,
Verification u1d Internnl Release. Each of these phases is egsentially a
oullding tlock: .hc ocutputs of cne phase arc tae ntuis to the next. Interim
document:s ser~ve a: vencremarks to signal tke compl~iinan of each phase. Thrse
documents serve four thneions: :

1. Zc¢ incur -ned programmers perferm cach ¢ oD ‘noa rigorous fashion;
2. Yo nnunoo coopnticel supervisnrs w6 inspec iniermediate steps sn as
t

1IR3 8 B sufh qQUERLLSY produerts;

O

. ad

To enub e Tanuﬁcro to more accural ely usoss where the develop.-
meat of une oubsysiem stands in relatlorn o «ticre 4t sheuld be, and
ronsequerntsyr to better assess Tulure manpown: nceds and delivery
dates;

k., Minimize ‘ne inmpact of manpower Lurnover, siicc most of Lhe develop-
ment 13 rerorded in documentation.

Jutputs From hie Proivetion Process - This definitior assumes that the
production process i completed after the Internal .c!cagse Phase. It is
assumed that there wi.l be some other agency which w!l! <hen take the product
.1 perform subsystem tesiing; install the gubsystem in a camputer at a
given location; formally relcase the product €0 the cuziomer.

v

May 1963 -84 T4-10-8°0/101/00

L4
FUNCTIONAL

TRANSLATION

o S s

L3

k-
~ ?
iz
&
%
5
e
2
"

Figure 2

T = e PP S T g e ’

e

17 May 1K | 9 ©L0-810/1G1 /00

11, TUANSLATION PHACKE

U

Purpose Of The Translation Frase
The Translation Puasc nes three purposes:

1. 7o give p"dgrammﬁrs a c;eaf unaerstending of the coutent of the Operational
Design Req;i*emeuu (oo 8);

2. To identify and rcsolve itconsistencies in the ODR's;

2. To reegroup vhe tunciiins staved in the ODR's sd that they are logically
grouvped from a programming voint of view.

Problems In Trggslation'And ke Soluiion

Transiation of the ODR's is ©y no mcans casy, when thousands of pages of
requirencnts and seveniy ¢r nore programmers are involved. Experience has
shown that there {5 a diverzivty in ithe unders=anding of the ODR's Lecause
peopie emprac’ce differcons irings in their reading, wnd since there is
requent’y B varying gegics ot aetall $in differenty OLN's.

Eut in this phasc, wniforaivy i Lmpurieat Thie cen be erhieved vy:

1. The proceaurizing i whe vxnglatior Phase irve gieps with deflnite
@b o vivte gt the efg 0 &Lk :,‘._“ and

2. The estaplisimert of wwo documentation points (o sfen Ty the midepoint
and tne ond of the Tranc'es' v Phase.

-10- ™ 10-810/101/00

2

¢

1
>
-
%7

WAL EiNS
WM T
ASVYRINITS L

igure 3

F

-

17 May 1963 -11- M. L0-810/101/00

i & I‘r&nsbtb,m

'Ihe ’!nnslatien Piase is comprised of both analysis (i.e. , the breaking up of
a mle into {ts component parts to ascertain their nature) and synthesis
(1.e., the combining of parts to forn a whole.) Analysis consists of three
steps (which satisfy tue first two purposes of the Translation Phase--to.

obtain a clear unders-anding of the ODR's, and to identify and resolve incon-
sistencies in the CiE'a.)

1. Semema:i.on'of-_ CDR's into functional areas;
2. Identification of ODR subfunctions (OGF's);

8s Ferfcrmnce of detailed analysis of each ODR subfunction.

Synthesis consists of two steps (which satisfy the third purpose of the
Translation Fhase==t10 re-group the functions stated in the ODR's so that they
are logicully related from s programming point of view.)

4. The syrthesis of .oxical tasks from ODR subfunctions;

4

5. The synthesin of 1ogical Jobs f'rem logical tasks,and the documentation of
the Preliminary Program Subeystiem Specification.

adht o

R st st s,

™-10-810/101/00

-12&

17 May 1963

viav
TYNG L AN

NOTL1D3s

v3iav
TYNOTLONN Y

+ xS
Lo
X%
e
] bt. .
i :
@y
=
s
w5
o -
7 .
-l &
SR
y
s 4
i E
4 4
X -
n :
g e
-

A R S I o5 P

17 May 1963 13- ™.10-810/101/00

n on Of OIR's Into Functional Areas

A: mm abm the ioputs to the Translation Phase for the Planning Subsystem
are OIR's and the Bystem Integration Document.

The first ttep, then, involves the snalysis of the ODR's, in order to define
logical subdivisions of the subsystem. Each subdivision ccnnltu of all, or :
parts of, one or more ODR's, and is called a "functional ares.” The besic
critcrim employed in deﬁning these logical subdivisions is functional inter-
dependency. For exsaple, in the Planning Subsystem, the Flight Plan Analysis 1
functional area consists of all or parts of the om'- for Flight Simulation,
Airbore Alert, Mating and Routing. The functions defined in these ODR's are
all irvolved m the development of flight plans. " The intent of this sube :
J division of the subsystem into functional areas is to logically distribute

the work loed emong the organizational sections comprising the group of

programmers who are to produce the subsystem.

)

Lot

A gross estimate of the scope (L.e., the number of programming instructions)
of each functional area is made, and then one or more of these areas is
assigned to each section in the group.

/

™-10-810/:01/00

.
i [T
&
. m
oy
Fxq
1w iy
TR 1
o
>
mv “ Beald™ " v R O % 7
U-L
t~—
Rt e
H I E MG e ey -y . gt 55 =
L i R ' iy iﬁﬁﬁrﬁ_ﬂﬁig AR 6 SO A e R LT R R AR g
=4 " TR

17 May 1963 =15- ™-10-810/101/00

Step 2--Identification Of ODR Subfunctions ‘08!’)

The programmers - vho are to later analyze portions of an ODR in detail -

read all ODR's in their particular functional area, in order to obtain a

total overview. They then participate in meetings to further sub-divide

each of the ODR's., Each division of an ODR is identified as an ODR sub-
function (OSF). The purpose of this step is to break down each functional
area into manageable parts (OSF's) so that they can be distributed to program-
mers for subsequent detailed analysis. Questions and/or inconsistencies
identified during the preliminary readings are coordinated with the ODR author,

The ODR subfunctions are then assigned to programmers for detailed analysis.
The assignments are made as o function of programmer capability, and the
complexity and size of the OSP. Generally, each programmer is assigned one

or two OSF's. :

lﬁq

£

10/101/00

-8

v

T
e

JHMYHO 338

"

-16a
igure 6

-
"
.

N3AIL Jaive .w:s._ 5

i
9.—
“aW3i 13A37

= — P . : ‘ : i AoNvw s
: SI3A ! b AV 3 d YU ONY AT TN
£ - LHOA 31 L RN S3A S
.f-“. ' . A " \ \.(. ! Illl\ Lot =4
... ., _. ‘ M.u . o .Il......l. . . . ; & . .

NOILINGS -g1S M) HIVI 40 SISATYNY
03INVYLI0 10 IINVYNYOIYId -IIYHL d31S

q
.I

T May o

.ivzwmr.ﬂr_.«}......Eu.ﬂ..,um.ﬁ.wj 1945 S A TP 8 TR L Ty TR Mg e nrd g i e B DI SRt ey 5 B 4
e s s S~ . | . . R

e .

17 May 1963 .17; ™-10-810/101/00

S_teu--fl’e_z'fomance Of Detailed Analysis of Each ODR Subfunction

The programmers then begin detailed analysis of their assigned OSF's. Each
such enalysis consists of a careful reading of the pertineni operatioral
program reguirements portion of the ODR, to obtain a clearer understanding of
the processing therein described and to identify the data required for the
performance of the OSF. Each piece of data is defined in terms of its nature
(1.e., fixed or varisble), form, range, and functional grouping. For example,
aircraft total fuel capacity might be defined as fixed, integer, 50,000 to
300,000, and a function of aircraft type and model.

In performing this detailed analysis, each programmer is respousible for co-
ordinating with the ODR author to validate the analysis. New OSF's are some-
times created by consolidating, redefining or splitting up old ones. New
assignments of OSF's are made when necessary.

A form of documentation helps insure that the analysis is performed correctly.
It signifies completion of analysis, the first part of the Translation Phase.
This form of documentation i; the functional flow chart and is essentially a
graphic presentation of the prose statement of requirements. Programmers are
required to produce functional flow charts for each OSF. These charts portray
the OSF processing without explicitly relating it to machine processing.

(This explicit relationship is made in the Design Phase.) Each chart is
reviewved by the technical supervisor for accuracy and uniformity. The (core
rected) chart is then reproduced and copies are given to each programmer
working on the functional area to enable him to review it as it relates to his
own subfunction(s).

.
=
<
S
-l 0
. i, -
|
I “ oy
i
-4 *
- 3 ”
Ly . &
' " '
) ‘ i
[-
[l : .
TR

[AR

W
/
-
:

ASVL

ASVL WSyl o
T V21901

TvI1907 IVII90T

-18-

450 450 450 450 . 450 450 450

Figure 7

. L et -Jnlﬁ_lwﬂlﬂﬂ‘uiﬂ X
+ LS . s %
SR -

4 basy

o

muﬂ!ﬂ"'ﬂlﬂ.‘..!ﬂ"“ﬂg@"“””

17 May 1963 -19- ™-10-810/101/00

Step feaThe Synthesis Of Logical Tasks From ODR Subfunctions

Synthesis begins with a grouping together and identification of OSF‘s as
logical tasks. A logical task consists of one or more OSF's which collectively
accaiiiiaﬁ a specific SAC function. An example of a logical task is the Flight
Simulation Task. OSP's comprising a given logical task might very well have
originally beer. parts of different ODR's. For example, the cruise mode of -
flight (a Flight Simulation ODR subfunction) and the segmentation of sortie
routes (a Routing ODR subfunction) both comprise part of the same logical task -
Flight Simulation. In this step, calculations common throughout the OSF's,

such as sine and cosine calculations, are identified for subsequent handling

as subsystem routines.

A concurrent activity is the identification of logical groupings of the data
required for performance of a given logical task. The data defined during the
previous step for each OSF are collected into sets by their functional groupings,
(e.g., all data which are a function of aircraft type and model are collected
into a single set.)

a

ELIADS

= 10

.

5

: N ,....‘W : ; ; / i] : ¢ 4 l » .e.‘ e
AR 3 i T SR 1voldid3ds)
s gt A Rl , PELSASENS i
- WYEOON d
h AMVYNINWM 3N d
r e :
m _ gor aor > S 4 gor

_ 191967 W2 1901 A 4 wdi907

R

lgure

¢ i

R, m NGV AU | H v
i] \ — iy 1190 vl 9.0 1 e S LT i
L. I S R R

17 May 1963 s2l- ™-L0-810/101/00

Step 5--The Synthesis Of cal Jobs From cal Tasks, And The Documentation
of iﬁe Freliminary Progrem Subsystem Specification

All logical tasks developed within the subsystem are then analyzed and grouped

into logical jobs. A logical job is composed of one or more logical tasks
vhich must operate together to fulfill a class of related user input messages.

The basic criterion for establishing logical jobs, then, is man.machine inter-
action.l An example of a logical job is the Input Processor Logical Task and
the Flight Simulation Logical Task mentioned above. (For example, the Ianput
Processor Logicel Task would be identified at this step in the development
since analysis of all previously developed logical tasks would indicate that
each is performing an input processing function and that it would be reason-
able to centralize and generalize this function.)

A parallel effort, one closely related to the development of Jobs, is the
further development of the data base. The data sets previously identified

for the logical tasks are now merged to form larger data sets for the entire
snbsystem. To illustrate, let us assume that two functional aresas “equire

data associated with aircraft units. The first requires the units' locations
and configurations; the second requires the units' locations and vulnerabilities.
At this time, the common data requirement would be recognirzed and one data set
for units would be established, consisting of units' locations, configurations,
and vulnerabilities.

The results of the Translation Phase are documented in the "Preliminary Program
Subsystem Specification.” This document identifies the logical tasis and jobs,
the data sets, and the input and output requirements of the subsystem. It also
contains prose and graphic descriptions of the manner in which the various
logical tasks and jobs relate. Publication of this document signsls the
completion of the Translation Phase. '

T The human action requirements portion of the ODR's, and the System
Integration Document, assist in defining this man-machine intersction.

————— -

T May

-

e 3%

-~
-l

MmL0-816/101/00

SYSTEM ’

FUNCTIONAL
FLOWS

)
1T ASK

GESI GN
SPEC’

PROGR AM
DESIGN
SPEC'S

s

INTEGRAT|ON i
DOCUMENTS LI Mi NARY
PROGR AM
suBstsTEM ALLED
TRANSLATION SPEC'S TASK
LowS
DETAILED
PROGRAM
FLOWS
'Aau:
?TEM
DESIGN i
Figure 9
C———— =z 35 anralina

o~
A+

17 May 19C3 -23- T™=10-310/101/00

III. DESIGN PHASE

Pu{ppae Of The Design Phase

The Design Phase, though simple in definition, is perhaps the mosi complex
and significant prase of programming. Its purpose is to structure the actual
Jobs, tasks, and programs that comprise the subsystem, in order to produce the
most efficient and least costly subsystem possible.

Problems ITn Design And Their Solution

The orderly and gencrally accepted approach to program system design is to
work from the general to the specific. In our subsystem, this means first
designing jobs, then tasks, then programs. The problem, however, is that in
actuel practice, programmers tend to concentrate effort on the design of the
most specific components (i.e., programs) since these are the easiest to grasp
and also seem to most directly affect the progress of subsystem development.
This means, then, tha: the design of jobs and tasks may be left for last, and
thus be hurried and, consequently, inefficient. Experience has demonstrated
that inefficient job and task design results in redundant efforts in design,
coding and verification, extensive rework in coding and verification, and
attendant low programmer morale,

A solution to this problem is to procedurize the Design Phase and to establish
interim bench-marks insuring that each step of the process is performed
adequately.

T™-10-810/101 /00

17 May 1963

NOIS3a 40 AD0TOdOHAINW

WV s
AR IA &)

SRNMAVILAID Fas
g (R £

Ed

_* RRPIE, T o I
- i T T ..m_.__uumm WILEAS
s i HNE WY HOO M
L A\MENIW N3N

-y

B o e i e FEPORERPS R -

ERE BT 1 T Lol o . TR, HE, G e
S M [| i NSl ML
W MivNidD

A A
e .C.\N!.-..#M...r..’.\. =i

gure 10

:
<
rs

F

17 May 1963 | . .25,. - 1M-10-810/101/00

Me thodo, Of Desi

Inputs to the Design Phase, in addition to the outputs from the Translation

" Phase (i.e., Preliminary Progm Subsystem Specification, and Functional Flow
Charts) include the System Integration Document and Operational Design Require-
ments (ODR‘s) that were also input to the Trenslation Phase.

The following steps comprise the Design Phase:

1. Jobt Design _ s

2. Preliminary Task Design

3. Detailed Task Design

k., Preliminery Program Design

5. Quality Review and Production of Preliminary Tesk and Program Design
Specifications :

6. Detailed Data Analysis

T. Detailed Program Design

- 4

[
%
2
]
2
"3
3
iig

E e
L St

R TR

i

™-10-810/101/00

26-

GRAPHIC NOT REPRODUCIBLE

L]
A

<

e

- anaw

TR ey e e

ivall]

W

aor

it

s ..I..{ah...é:o\vumnr'(PRI Y

Zm:mmﬁ dor NZO &mn.vm

1

i ALY T

m.ﬁa.l...};xi

7 May 1963 -27- ™.L0-810/101/00

e
| %
4
e

sﬁgp.One-debzbegiﬁB

Given the légical Jobs produced in the Translation Phase and documented in the
Preliminary Program Subsystem Specification, the function of Job Design is to
determine whether the logical jobs can be actual jobs. (In the Translation
Phase, machine constraints were not explicitly considered. This would have
been an additional factor of complexity at that initial phase. It was decided
that for the sake of maximum efficiency, the consideration of these factors
should be left to the Design Phase.)

The primary machine constraint considered in Job Design is the amount and type
of auxillary storage (i.e., tapes, disc, drums) available to the subsystem.
Since, by definition, no human intervention is permitted during the operation
of a job, the required aux!liary storage configuration cannot exceed that which
is available. For cxample, if a meximum of ten Lape drives is available to the
subsyciem, no desired auxiliary storage configuration can exceed ten tapes.

e e T T VT R S IO

[F

The first thing, then, that must be done for each logical job is to determine
the required auxiliary storage ccnfiguration. The data sets defined in the
Preliminary Program Subeystem Specification are re-asnalyzed for pertinency to
the given job. The maximum size of each pertinent date set (e.g., the maximum
number of missile units) is used to determine the amount of auX1liary storage
required for that data set. The data sets are organized into tape files, drum 4
files, and disc data units. The tape files are grouped so as to form logical !

tapes.

=3

_—
e 3
~ Af-'rmW‘m?‘-nc o

If the desired auxiliary storage does not exceed that which is available, the
logical job cap be an actual Job. If it does exceed, an attempt is made to

change the desired auxiliary storage - by ree-allocating files - and thereby

forcing a fit. If thic attempt fails, the logical job is either redefined or
cplit into two or more logical jobs and the process of Job Design starts over
again. OSince the criterion for cstablishing jobs was human interaction, i
whenever new jobs are created, they must be coordinated with the ODR authorf he
Lo insure feasibility from the point of view of the user. i

i

The completion of Job Design is marked by the production of job flows which
identify the gross auxiliary storage configuration required for each job.

o - i . £ =
ey -“&imu;«.;— T .

@ ;.‘
5
it
-
5
3
]

0/101/00

]
£
&
@

o "
- .
‘f‘
£ 4
| 11Tds N0
e INIA3a38 § hae o
b W
| m £l
m s
x N ’ N , | .
ﬁ M - . Pt e
t C # : T-l-, T hama 4 T mv
m . Base v iw] 4™ 2 vy -
PP . ¢ U e L K -t oW ANy R . siq
mmw— - ——— - et et Mo 1 Cof .
L}
NOISIA WSVL AYVN
b d-OM1 d31sS
L B e e S
. ‘t & |
(10} " . ; |
% ; . ol S ar et 7y .
5 . P . Ya k. ¥ A BE ISR,
V.u ik e o 5 v » #nﬂnh.hﬂ\ w..«v. o a3
&
7.-
[
SRR R B e RS 2 R R MR s T T g -
; . s iy e i R s g ¥ | Ayt A Al U R N

17 Moy 1963 -29- M.10-810/101/00

's_t_eg‘ MoPmlw' Tagk Desim

The.functiou of Preliminary Task Design is to design actual tasks from the
logical tasks developed in the Translation Phase. The primary programming
constreint is available core memory space (to be distinguished from available
Inxiliany storage . 1 e., tapes, disc, drums space, which was the constraint
in the preceding 5.ep.)

A nreliminary analysis of the. Jdb flow ror ‘the actual Jdb and of the associated
logical task definitions is performed to determine which of the data now de-
Iined on tape, disc and drum are reqpired for a given task's operation.

The maximum size_ of the required data in core is then determined This naximun
size can differ from the size of files since.not all the data contained in the

files are necessarily required at the same time in core for calculations. For

example, a file might contain data .defining all missile units, but the logical

task would require, at any given time, only'?ﬁg data defining one unit.

The total required amount of core is then computed. This is done by adding
the amount of core required for the data, to an estimated amount required for
the instruect.ons which will accomplis on the data functions. If this total
required amount dces not cxceed the amount of core availdble then the logical
task can become an actual task. Otherwise, re-analysis must be made to reduce
the emount of da‘a and/or the number of 1nstructlons required in core for the
task. Fectors-considered include the relationship (i.e., is the task linear,

iterative, or.-a combinatll on) the complexity, and the size of each function of
the t{ask.

If this reeanalysic indicates that the task or data can be redesigned to fit
into core, then the logical task can become an actual task. Otherwise, the

loglcal task,mus. e *pli‘ into two or more logical tasks and the process of
Task Desipgn starts ajiain.

Next, task designers assess all changes that have been made to the data file:s
This leads to intepration of data and/dr redefinition of tasks.

The compiction of Preliminary Task Design is marked by the producticn of the

;ress task data requirements, both in terms of gross core configurations and
data trensfers.

. o I e e e PR s (KT A il G S s b e, i S
R s e SRR o e i st s S el “MMM&% ! R g

,LU.,

Sl b i %&iﬁi@&&i&méﬁﬂé o T

S~ L
i
o
~
S~
(@
prer]
m
W..m
SNOILINIZ IO
NVEIOH >u_m.n_wwwwuu FONIANIJION
MO4 vLVD N9I1S30
1HVHD MG ININE3L130 WSV 4O
O Msvl 1d32N0D
WININL PG INIWE 3L 30
- = o™
—
. [Y]
& &
A
) Ll
- 5 i X b
! 5] : R T I
I, S ! mEOIL SR SNCILONM 3 ok viwvg |00 - &
. g . O 140 3 : = [RISy R
g . ; '\ : Ot ASVLE hiim 55040 | - - TS
. S As!ﬁ Sl t T,, Laviil MG SNQILONMTS — e -yt o ¥
Ly - iy,) . Twiling H34N3WOD . | WSV ==y ¥
o B L3N LSNOD IIVIDOSSY .) IvT LY

i

Given ec

17 May 1963 ds 3. TH-L0-810/101/00

soecsDotalled Task Dogigr

ren actusl tasks and groes data requirements, the functions of this step
are to sssociate the computer functions necessary to accomplish the given task
functions mé;te '_!mtio’n the task into programs.

3

C@}uter m&tidns such as reading, writing, sorting and searching are associ-
ated (wherever necessary) with the operational functions identified in the
Translation Phase. This complete set of functions is illustrated in an initial
task flow. -

Thie initial task flov is analyzed to determine vhether a single prugram would

be sufficient to perform the processing required to satisfy ail functions. (A

single program would be sufficient if the amount of processing is small, or is
not remdily split into logical entities.) If a single program sufficies, design
proceeds with a determination of the data flow and the preparation of a more
specific form of the task flow (the preliminary task I/0 flow chart.)

If a single program does not suffice, the initial task flow is then further
analyzed to determine the concept of task design to be employed. There are

two such concepts. One (the "control program” concept) is to have one program
control the operation of all other programs. The other (the "independence"
concept) is to have each program operate relatively independently of the others.
Factors which argue for the adoption of the "control program" concept are a
non-linear order of task function operation and a significant amount of common
processing. ’

Once the concept has been determined, the design proceeds with a more detailed
analysic of the data flow and a concurrent identification of programs. This
process considers various constraints imposed by the physical configuration of
the machine and by the System Control Program (the "Executive" in the 465L
System.) The programs will consist of subsets of the functions performed by
the task.

Task designers in each functional area identify common functions - and, there-
fore, programs - and insure that there is a consistent data base. Throughout
the Design Phase, programmers whose sole responsibility is to insure a consistent
and efficient data base are working with representatives of each functional area
toward that end.

The completion of Detailed Task Design is signaled by the production of the
preliminary task I/0 flow charts and identification of each program.

e

™-10-810/101/00

-32a

17 May 1963

E@.ﬁﬁ@ﬁw:_ i Bz

S3HNIONYLS 3TEVL |
AUVNINITIIND ONY
MO1J WVNOONY
AMVNININRNG |

SNOILINLE30
Y NVMOOEd

AHVHO MO4
o/t wsva

AHVNINII 3N

Figure 14

- AT May 1963 _' - =33- - TM-L0-810/101/00

Step_?our--?reliminaq Prgg;'m Desi g

The ﬁmctions of this step ere to produce preliminary program design flows

(from the functional flow cherts and added computer functions) and to structure
the tables containing the data to be processed. The more important constraints
are imposed by types of table structures and tagging conventions which must be

‘adhered to,’ Close coordination is mandatory since many programs process the
‘same data.

~ Completion of this step is indicated by the production of preliminary program
-design flows and preliminary table structures.

01/0C

i
-

f=10-810/.

A

g
=
%

U™
-

S . .. L H340ud .
. etders MOS0 i 3 ; B T
Pl A QIHSIIAWe DTy SAHCL T Yy
‘.w Vv eO0N o NY My g EIININY S0 s
i T g . ; s SNOLLOMITY y = st
ANNIT s B i ; . : ANVENRTD ~ 8 "L I TR

y 963

<A

LY 2

T

e s o

i

17 tay 1963 -35- | 4.10-820/201/00

_bmmammmm,mmaﬁmamxmd

mfuh,,m revieved at & series of quality reviev meetings which are
sttended Dy representatives from all Mctioul areas. The purpose of these
meetings is three.fold:

1. ‘Ib olizdmtc tum. rcdundmt programming efforts;

2. To determine u mr f\muws are dbeing acoomplished at the most

opportuns points;
3. To insure that the quality of the product is high.

Upon campletion of these meetings, the m, tasks, and jobs are revised
as necessary and are documented in accordance with dctuled document format
guidance. The preliminary Program Design Specifications include, for each
program, a statement of the program's responsidbility, a description of its
environment, and a program design flow. The preliminary Task Design Specifi-
cation includes a description of the task's responsibility, s description of
its environment, its outputs, core configurations, auxiliary storage coufige
urations, I/0 flov and & detailed description of the I/0 Llow. The detailed

Job flows are prepared for later inclusion in the Final Program Bubsystem
Specification.

el R e i e i A s it I AR
TR R S e T I i

i
=
2
-
E:

A sinae

e R

P

&
i
-
!
4

~
1
O
~dq
S
@]
it
I
[]
&

vaiva

3N TEATICO WO 0

"

o W
<

T

- e

1
3

SWNClU S 40
dhwea!
FLF3 Va0

- FTFh -

$-
|u.

TR R A S e

Figure 16

17 May 1963 | -317- 14-10-810/101/00

Step Sixe-Detailed Data Anslysis

The functions of this step are to fix data definitions and to record the data
in the data dictionary (known as the "Compool" in the UESL System.) Each item

~ in esch teble is coordinated and fully defined. Data Specification Request

(DSR) forms are filled out for each item, table and file. Data are legality
checked and modifications mede where necessary. The data are then placed onto
the Compool tape and listings are produced.

From this point in the production process, the data base is fairly static, and
changes are made on a more formal basis (1.e., by coordinating and submitting

written change requests or DSR's.)

PIEs ST L T SRR Sl S S

Analiseditln ot AR e e e ﬁwmmww«x&wmwwmb 3

. g . 35 TR T FOL o
i (4 il N T R e o Aty Vv 42 . e
B v L 1 A L AP S IS A8 T i

AR 1 Uk

e - L -

R i O

™-L0 810/101/00

e

: AT D07
...quiuaﬂ._.._m_

17 May 1963

ldvHI Mo 4
WVYHDOd o
g3Tiviia

Figure 17

¥ 4O 3A30 _.»nﬂ

i e b e s Rl e

NOIS30 WYHDONA
AHVHIWITI 3N G

o P 2 " g e i,

17 May 1963 =39 ™.10-810/101/00

Steg Seven--Detajiled Progran Desim

The last step in the Design Phase is the development of detailed program flows.
This process involves a further definition of each box of the preliminary
program design flows. Logical statements are produced which are at such a

is the higher order Programming language used at the System Develomment Corp-
oration.) while developing his flows, the programmer uses the data specifica=
tions produced in Step Six above. When the Tlow is completed, the technical
supervisor reviews it for accuracy and consistency, and changes are made asg
necessary. :

¥

o

™-1C-8:6/.01/00

-ko-

T May 1963

s e, TRl 0 ‘.AWW,,.As;.%ﬂx.‘...m?.t.wv..‘ Crel L

ONIAOD

NDIS30O

NOILVYISNYH.L

SANIWND00

$ 800
NOLLVEOIILNI
. MALEAS

Figure 18

i

17 May 1963 lila ™. 10-810, 101/00

IV. CODING PHASE

Pu.zpae_. 0f The Coding Phase

The purpose of this phase is to translate programs heretofore defined in
tems of design specifications and detailed program flows, into sets of

~ higher order language statements, and to compile sets of machine language

instructions from these higher order language statements.

Problems In Coding And Their Solution

Experience has shown that many problems arise because of the size and complex-
ity of the program subsystem, and because of inexperienced programmers. Same
of these problems are production of inefficient code (and consequent lengthening
of the Verification Phase), and improper utilization of EAM and EDPM facilities.
A wvay of minimizing these problems is to procedurize the Coding Phage.

i MR e ALTLEREL G L G i :ﬁﬁﬂi’ﬁiﬁg% - k&;r-%‘aﬁ ¥

)

b

e
-

b2

L L

ol

NOILwYShy 44

¥

AT AE B e .

iR o

1iNld3Q

IEvL i -
aNv W3Ll .

259

g

T T T T 20 S P

. A g

-3 W

C g

=02 %A

“ i
PR
. .rhw!

TRk

A TR IR AP e v O g, . e
PR R e N

D

17 Nay 1963 <43- T%10-810/101/00

Methodology Of Coding
In general, the inputs to this phase are the detailed progrem flov charts,
the Prograa Design Specifications, and the complete datea definitions.

Coding starts with the transiation of the logical statements, contained on
the detaiied program flow diagrams, into cquivalent JOVIAL higher order
language statements. These higher order language statements are punched onto
cards. The decks of cards are then submitted for compilation, and errors are
corrected until an error-free binary deck is obtained.

Adhere:ce to coding conventions and proéedures, frequent review of the product
by the technical supervisor, ani the fact that much of the work usually done

in ihe Coding Phase has already been done as the last part of the Design Fhase,
are sufficient to insure optimum progress.

gl

TH-10-810/151/00

NOWLYD LA W IA
HEVY.L

NOLLWYOIJIH3A

NOIS30

SMOT 4
TNCILLONN A

NOILVISNVYHL

SANIWNI0g

S .

woC

NOIvEDIAN]
WNWALSAS

e s SRR ST R TR

A S PR e S TR TR S S S A S R T AR

Figure 20

"f?,'

17 May 1963 “h5e TM-L0-810/101/00

¢

V. VERIFICATION PHASE

Purpose Of The Verifidation Phase

The purpose of this phase is to purge the program subsystem of errors. The
goal of verification is to produce an error-free subsystem. It should be
noted, however, that this is a goal which is never totally realized. In
striving towards this goal, the producer of a large computer program subsystem
corrects all the errors he detects as a result of running a set of preplanned
test cases. The realities of life prevent him from verifying the literally
millions of possible paths through the subsystem.

2;,

Problems In Verification And Their Solution

Historically, in this phase, production efforts bog down and schedules slip.
Many reasons are presented to rationalize this problem. Examples are the
complexity and size of the program subsystem and the inexperience of the
programmers involved. But perhaps more basic causes of this problem are the
absence of a defined verification methodology and the consequent inability of
management to accurately assess progress and thereby to control production.
If there is no organized approach, programmers tend to over-verify some areas
and neglect others.

A solution is a system approach to verification, one in which levels of veri-
fication are introduced and for which, within each level, a well-defined
procedure is esiablished. The keys to establishing the procedures are the
designation of a specific goal for each level of verification and the identie.
fication of interim products in the verification process. The interim products
provide for managerial inspection and allow the progrumer to direct his work
toward the stated goal.,

O

) by el ;
=, O, 101/

-

-1

M

1

midiviv
Ais 34 v B0

alitay
TATH I A s |

&4
et ied

L
.:1-

213 ’

A ANED e it T

[V -

- 27 May 2963 o | M- | - BeL0-810/101/00

SEERS R Sode it o b e sk SRS 'v*‘%“mﬂwﬁw g%gi .-) :S-':'hw'?'»}?

mlm or Venﬁcttion

The system w to verification relates directly t~» the manner in which
the program stbsystem has thus far been developed and documented. First,

the system designers generated and published ODR's. Given these ODR's, the
programeecrs designed tasks, then programs. They documented these in Task and
Progrem Design Specifications. The "functions vhich are to be tested” are

also documented at each level; i.e. , 8ystem performance requirements, task
verification matrices, and program verification matrices.

-

The approach, then, 1a to verify against each of the three levels of specifi-
cations. At the three levels, essentially the same set of iastructions is
being verified against three different sets of criteria.

Starting with the level of greatest detail, and utilizing the program verifis
cation matrices, programs are verified against Progrem Design Specifications.
The manipulation of data in core is verilied.

Utilizing the task verificatton-matrices, tacks are then verified against Task

Design Specifications. Core-to-I/0 device and I/0 device-to-core data treansfers,

and program intercammnication are verified.

Finally, utilizing the system performance requirements, the program subsystem
is verified sgainst the Operational Design Requirements. This level of testing
is performed following the Intemal Release Phue, and is therefore not covered

in this paper.

L

L))

WE
5
>
B
A2
%

-
4
13
%
3
z
LX
¥ g
" g
3
"3
i
&
1
1
)
#
a2
%
&
4
£
E
¥
b
g
%
ek
¥

i

i

H
2
%
EA
i
kid
za
3
£
g
:

"
i

5

3

e T A R O i s i st o

o va e
..

SWYY¥O0Nd 0
NOLLYDId IN3A

y
| !_,
| [‘ ;

.\-..l . - ‘l. . .
WY H90Nd ‘ . .
L wviaor ko :

“300m bg 2
NoluwoldmaA F° 3 -

walisisens

L E D
A IO
Kl .

1

| ,
| |
P

y

!

I

|

1

\N/ J*mzo_._ku_u.uusm

Si1NdINO 03103dX3
% SLNdNI

_ asm]
InoILYDISIN3A |

7 -
.

vivQ

[iS34

RN | "
H mzquu...._uu..n—n _.._

B S A

m\

XINLYW : h
1NIOd NOISID3A " _ NIHEIQ frowes

WY HODud

fon ow cxn wum ous suw wmo 2ne md

{ nvoe Nouvoisman |

13

o b e SwemE W wmter e Mwr-

aFliviia

| NOILYOIAIHIA INTYHO0Ud |

O B 1 B G R A SR T A 1 G SR TR el g ?&s:%unixz;%«.mmg;v%% b

isER WW“W:{:%‘K e ed b TR el
17 May 1963 9. ™-10-810/101/00

Prggm Verification

The specific goal of program verification 1s to verify each branch of each
program decision point. Satisfaction of this goa! insures the code's
compatibility with the detailed program flow and verifies that the logic
specified in the Design Phase is actually coded into the program. The

inputs to program verification include the detailed program flow, Program
Design Specifications, data specifications, subsystem verification model
(discussed below), and, of course, the JOVIAL program deck. There are two
basic steps in program verification, the preparation of a plan and the actual
verification on the computer.

The first step of the procedure is the preparation of a verification plan.
The verification plan consists of three elements:

1. a decision point matrix
2. test lists
3. 1inputs and expected ocutputs

'
:
&
2
.
EX
;
#
=
E
W
3
&
=
k1
=
3
W
z
¥
=
z

S G R

e TR o Bt

5 - -t
ST O S LA - MR S g

SRR, i gl 3 - g

-50-

\

N

ANHLAYW L7174 NOEISIDIO FHL

06 = 0o > || Sov*

wiri?e r i rey . -’
: M

] W«

4 S :
£ L T
ova
i
aterO o
30 uwo F—Ku IR L *

a3is3l 8l WOV3 w04 BNO

ANIOd NOI81030 = = .>
I-.lv(l.‘?ﬂll 40 BRWM
L notLv D113 ik

1&). = .._. -
4 H & - -..
: o . 2
Inavy - oNj _
Ny ld LHO IS \nll._l.ll,,.

IHL OLNI v Iy - SILERG
eesmewy S3 AN GV

Wi o

" -

f.

#! 378Vl Ny Id
LHOIMANI -, ¢
HOLVYDIONI ;

....x.x...

09-3 3480438
HONIVT) 31,408

1837y Sl 5300 10 ONIM3INA3Y g4 © ML G
e ’ . P oMY SNIMNVL
et r i i ! AHL TIHO1S
;g . - L t
i i .. 5 et
N 4 A : .
Ey . ’ L advy
e TN ’ 0 = ”

LR W R A SRS S SO QI A0 IO 4 s SRR T e . . =1L - .

gure 23

Fi

TR Y- & T Y A e

f

ol e s -
"iﬁ Ty

17 May 1963 -31- T™-L0-810/101/00

The decision point matrix is a device for presenting the program decision
points in tabular form. Every decision point on the detailed program flow

is labeled. If there is a corresponding symbolic region label in the code,
then the same label will appear on the flow (e.g., AAf5), otherwise a unique
lebel will appear (e.g., ABi.) The decision point labels are listed vertically

on the matrix. Then, for each decision vroint, each branch is listed horizon-
telly.

I

g s Fran g .5.:..!,_3.

- 0=13100707 100

R

N ¥l

\ .lhu-ﬁ.' e ...--

Sne AT : S :
'Ll

7941

-52-

e e R S e tem
L

B E A T S et e S

30 By
4 BN

3

o LIaNa2

R

Figure 2U

¥

BE Lo At k. RO = - T A

sk oy g "
o S s

17 May 1963 -53- ™.L0-810/101/00

liext, the determination is made as to which brenches of which decision points
are to be activated in the first test. These decisions and these branches
are indicated on a test list. The same form and method of presentation is
used both for the decision point matrix and the test list. The header
information on the form allows one to specify the "type" of use along with
associated information (e.g., Test Number and Test Weight.) Next, the numter
of branches not yet activated is determined and additional tests (and test
licts) are prepared. The fact that "paths" or combinations of branches have
cumulative effects is recognized and as many paths as time permits are
incorporated into the test lists.

In order 1o effectively preparc these test lists, a great deal of desk checking

is performed or the program's logic. Errors found here can greatly minimize
the time required for the eactual verification on the computer.

L4

W1

Rithhusn it oma e i

3
!
i

S i AR e el

;
Sz

TR R L R ;&WW“ ,‘

et

TOTETTER TR YRR Wy o

Lt e g e

10/101/06

T™-10-8

-5h-

T R

L T

XIMLYW
ANIOd NOISID30

SiNd1lNO G3.103dX3
¥ S1NdNI

T oM X
FLvTH riM
Me_odi= oot -
i .) - .___
AU
L
SNOILYOI4IDIds! ¢
vivae | =
¥ 1
2 2is
R
SRy
o
NOIS3IO _
WYH90Hd :

MOd
WYHO0Md
asnwisa

25

Figure

:::. jm’:’wi o | s s - o EI i
Bl *%m*w* S PEE Y
17 May 1963 - =55- 1M-10-810/101/00

Upon completion of the test lists the inputs necessary to activate the
branches specified in the test lists are generated and recorded. VWherever
poseible, these inputs are taken from the subsystem verification model. The
subsystem verification model is a collection of representative date which
describes the subsystem in miniature. In the Planning Subsystem it contains
a sample attack force, a sample target system and the characteristics and
capabilities of each. The usage of the verification model data insures a
common basis for verification as will be explained in the discussion of Task
Verification.

The expected outputs are then manually computed and recorded. The verificea-
tion plan is reviewed for completeness and accuracy by the technical supere
visor and revisions are made as needed.

Test weights are attached to each of the tests as a function of their size
and complexity. The application of test weights facilitates a detailed
schedule for verification. For example, if three tests were planned, the
first weighted at 50, the second at 30, and the third at 20, and if the
program is to be tested in ten weeks, then, in order for the schedule to be
maintained, the first test should be completed after five weeks, the second
after eight, the third after ten. This detailed schedule permits. the manager
to more closely assess program verification progress.

The second step in Program Verification is the actual verification of the
program. Eﬁ test is run on the computer and expected ocutputs are comparsed
with actual ocutputs. Variances are noted and then causes are searched out and
corrected. The program is considered to de verified when all expected outputs
and actual outputs agree.

T

e

chca e

g ¢

™-10-810/101/00

m
&
~
g
&

SNIHOWYWN

3H1 NO
NOLLYDILA183A
aAvNLOV

R O AR 20 R 0 R s

L |
i

o .

XiiviN
AN1Od NOISID30

rag
e

. Il.l.-lll..l-.ll-.lll'..llll-J
L
b
!

NYd
NOILVYDIdIM3A

NOILVYIIAIM3IA
W3ils)sens

-~

ﬂ.\Ww.. ..., PR
: Elts WL +
b T 0 !
..w —.o \ T

R

Figure 26

s S T T T e U e i st SN PSSP |

17 My 1963 -57- TM-10-810/101/00

Task Verification

The specific goal of Task Verification is to insure that each program inter-
saction and each I/0 operation functions properly. The inputs to Task Verifi-
cation include the verified JOVIAL program decks, Task Design Specifications,
data specifications, and the subsystem verification model.

In Task Verification, as in Program Verification, there are two basic steps,
i.e., preparation of a plan and the actual verification on the machine.

The first step is the creation of a verification plan. As stated above, a

specific goal of task verification is to insure that each I/0 operation

functions properiy. This is accomplished by insuring that each sequence
(‘ parameter {discussed below) is activated.

N
~

- T Sl 8T

&58=

"ONI L

MS1 ON3

Ix3 NOILVH 3dO

»

-

Figure 27

1T May 1963 " =59 ' m-LO-SIO/lbl/OO

. n
. R e N

2

e

e

- 3:quence pavameters are higher order language statements vhich cause programs
t 1o be operated and 1/0 op¢rations to be performed. They are the medium in
A which tasks are coded. These statements are prepared from a sequence para-.

- meter matrix which graphically rortrays cach operation and the order in which
it is to be accomplished. This sequence perameter matrix is used as the task
verification wmatrix, B :

I
i
|
|
‘ﬂ:}

}

]

! ;

Nrereere: ez

“

foo

%
FS

10/10

-10-8

-

- ANROYIN

i L FS e

NOILLY D LA 3A
MeNidv

NOILVD

AM3A

I300m
NOILYDIA3A
W3ILSASENS

S, 3

17 Mey 1963 -61. T¥.10-810/101/00

Test liste indfcating vhich ceque'xce parameters are to be activated for each
feﬂt are cmstn.cted from the task verificatio" matrix.

uhe Plunni'xg Subsystm a new concept of task verification evolved because
many tasks contained a large number of programs and simultaneous verification
of all programs al onc time was found to be not feasible. This concept is
called camponernt verification, and is the verification of a portiocn of a task
at a time. For cxample, assume that a task consists of programs A, B, C, D

-and E# One component, then, mighi{ consict of programs A and B, another of

pmgrm C and D, yet anothc*' of C, Dand E, and finally, the largest component
of A, B, C, D tmd E. When tasks are verified in this fashion, the task veri-
fication matrix' developed for verifying components smaller than the total task
is ‘based on subsets of the se@xence po.ran;eters vhich make up the total task.

Upon campletion of the test lists, the inputs (needed to activate the specified
sequence paramcters and operate the tests) are devised and recorded. The
subsystem verification model data previously employed in program verification
are again used. Their usage in both program and task verification minimizes the
need for manually calculating expected outputs during task verification, since
the cutputs calculated during program verification can be used.

Any expected outputs which have not been computed during program verification

are now computed. All expected outputs are recorded.

The task verification plan is now complete. It is reviewed for accuracy and
complcteness by the technical supervisor and changes are made as nceded. As
in program verification, test weights are applied to enable the manager to

more closely assess progress.

TR N

6L b IR b

e R A

Wond ot i P2, L

AN oy

CRE T

w.m-slo/lol/od

62+

17 May 1963

ANZWNOMIANS
IVILINI 20
NOILVYODII I 3A

T M i

RN S

ANIWNONIANT £
viva M
TIVILING 4O §

—Vidvd NSVL
FIBNESSY
® 3000

17 nhar 1963 -63- T™.LO-010/101/C0

| Wi

The gecond step in task verification is the sctual verification on the computer.
This key step in the production process requires many functions to e performed.

First - utilizing the JOVIAL program decks, every progrem is recompiled with
the same version of the Compool (i.e., data dictionary.) This step is very
important since the Compool changes fairly often and all programs must reflect
the ssme data definitions. The results of the compilations are binary progrem
decks. . :

Se¢ond - is the completion of the coding of task parameters. (There are two
kinds of task parameters, the sequence parameters previousiy mentioned, and
I/0 parameters. I/0 paremeters completely define the I/O operations the tack
peri'om;) The task perameters are coded and symbolic decks and listings are
produced. These are then submitted for assembly, which results in a task
parameter binary deck and listing. :

At tﬁis t;ilﬁe"'the 1/0 Assignment cards are prepared. The System Control Program
(the Executive), vhen initiating a task, first checks the mounted tapes against
the assignments specified on these cards.

Third - is the generation or updating of the System Msster Tape with the binary
task parsmeter and program decks.

Fourth - is the generation of data environment. In devising the verification
plan, the inputs were simply recorded on paper. The function of this step is
to generate this same data on tape or disec.

Fifth « {5 the actual operation of the task for the purpose of determining
whether the initial environment was correctly established by the Executive.
The iritial environment consists of all programs and data which are to be in
core wvhen the task begins to operate.

The last step is the complete operation of each test of the task on the
machine. As in program verification, the expected outputs are compared with
the actual computer outputs. Causes of variances are determined, changes are
made and the task is rerun until the actual outputs.match the expected outputs.
When all actual. and expected outputs agree, the task is considered to be
verified.

- B »33 « b TP MRS A e SR

T™-L0-810/101/00

Figure 30

-5la

i o T e oty e - . o
. . T T —— TR S AR AR e T, il s Banm.u_..u.wzwﬁ_eﬁm;%%w@ﬁmg%@%aﬁﬁ%ﬁi TRTPIIPRE AR WIS, Guntne s e e e e
B L s T GO e el W T g L g e T gt S L T b T I L Tt 4 ¥ :
e B e S e o i . : . N

-65- ~ T%-1,0-810/101/00

VI. INIERNAL RELFASE PHASE

mm‘ The Internal Release Phase

Thu p&usa congists cf the "packaging* of decke, listings, tapes, and docurenis
that comprise the subsystem, and delivery of all these components to the group
that vill perform cubsystem testing and installation on the user's computer(s).

This phase is of great importance. All of the previous pheses may have been
done extremely well, resulting in a high quality subsystem. But if little
attention is given to the manner in vhich decks, etc. are assembled, sequenced,
and turned over, this may create a poor first impression that can persist in
causing the subsystem to be regarded as being of lesser quality than is really
the case.

, Eqmlly important is the documentation. Documents perform several functions «-

1) they give a genersl overview of the subsysten;

2) they present the specific methods (to operators and programmers) for actually
running the system on the computer;

35) they present the specific methods by which the users will actually use the
system; LR

4) they specify {via flow diagrams, coding specifications, etc.) how the sysiem
was produced and thus indicate how the system can be corrected, maintained,
and modified for future needs. Without documents that are complete, accurate

pnd clear, users would not know what to do with the decks, listings, and

”~
v

mg,,w,

(cuviewt In inicrnal Release And Their Solution

Perhaps the main problem 1is that, all too often, the Internal Release Phase
is not regarded in its true light . . . that is, the technicel persons who
produced the subsystem feel that they have done their Job by producing a good
program subsystem, and that it ien't too important to i{nsure that the compon~
ents are released in an orderly, organized manner.

Our soluticn has been to procedurize this phase, thus insuring that all neces-
sary steps are followed without exception. ~

©

SWNNY R
SHOLYHIGO B3I EW00
SNMLYNAHIBSE ONIGOD
GNY HDIS30 WYEDOEd
-— TR - -

HOLLY INIWNO0O
NOE LW NSO

NOLLYh A1D3d48
NILEASENS
"IN

TR A SRR Y g

I T -

b 3
: a
| TR, Mﬂ
3
M
'
3
o
2 r Q
. .
N
v

3

gure

i

17 May 1963 | | -67- M-10-810/101/00

i

Kethodsl@ ‘Of Internal Release

This phase consists of producing card decks and tapes, and writing the ncccscary
documentation. Some of the documents will already have been written in Dprevious
phases of ;the production process, and would only need to be updated at the
Release phase. Other documents, the contents of which depend on the results of
‘the final phases of verification, are considered part of the release packagc;
however they wiil not be ccnpleted uxxtil several wveeks after the Internal
Release Phase.

'Ihe Belem Package consists of card decks tapes, and documentation. /1) cecke
are sccurately identified. They are assigned version numbers which will Te
(} ‘updated each time a deck modification is made. THe decks included in the Release

. gl

Symbolic JOVIAL Program Decks
N © Binary Program Decks

Symbolic Task Parameter Decks

Binary Task Parameter Decks

Only one tape is a part of the Reléase Package. It is the System Master Tepe
and contains the Executive programs, tne necessary surport programs and tacks,
and all of the 465L Planning Subsystem programs and ‘.usks.

Documentation is the last part of the Release Package. It consists of ithc more
significant documents produced in the various phases. More precisely, it cone
sists of: ,

An Over-all Index And Guide To Final Documentation
Final Program Subsystem Specification

Data Organization Documentation

Task Design Specifications

Progrem Design And Coding Specifications

Computer Opemtor Manuals

It should be noted, of course, that the group which has produced the subaystem

does not divest uwr of responaibility after Intemal Release is completed.

This group continues with one-going maintenance responsibilities for a :
@ gpecified period.

-68"

™-10-810/101/00

o7 vy 1963

£

Figure 32

NOLLYISNYY L

S S A R S

17 May 1963 69- M-L0-810/101/00

In tyis pnpex; we h:we documented ths actual auuagulnnt unthnd: and controls
used. to produce the 465L Planning Subsystem. A question thet will inn¥ itably
arise 18 = Mow much time should this production process take, and, g.van an
estimite of the'size of the progran ayzten to be produced, how many txwgral-cra
are naeégd!

rThe anihcre ot this paper have built up an extensive body of expcrie'ce concerning

these questions. We plan to document the results of this experience in e future
pPaper, to be devoted to time phasing, scheduling, snd budgeting. However, we
vauld‘nat want to conclude the present paper without touching on these topics.

ﬂOur experience indicates that the total production process for the initial

development of a large-scale computer program system should tek= a minimm of
twelve monthe. (By initial 1s meant the first time that the system is produced.
If the sswe sys'sm is 18" cr updated, expanded, or othervise revised, the time
phasing would most likely be less than twelve months.) This assumes adequate
manpower, computer time, and so forth. We believe that the relative weight to
be placed on each phase is as follows (of courss, there vill necessarily be some
overlapping of the phases):

Translation Phase 1 month
Design Phase 3 months
Coding Phase 1 month
Verification Phase 6 nmonths
Internal Release Phase 1 month

Furthermore, our experience indicates that a useful vorking figure is to assume
that produ»t on will be at the rate of 12 machine instructions per man per day
(assuming average level of prcgramming experience); or 2i0 machine instructions
per month assuming 20 working days per month(this takes into sccount vacations,
holidays, etc., during the year.) It should be made clear that this production
rate covers the entire period from the start of Translation to the conclusion
of Internal Releaase.

Of couree, the figure of 12 machine instructions per man per day is cne that
will inevitably be increased as the production process becomes better defined,
and as the programming state-ofetheeart advances. Also, the minimum twelve
month time span may te able to be reduced. :

Assume that a manager is to produce a computer program system, vhich it

estimated will contain 72,00C instructions (this estimmte must be the rasu.t o?
externsive data processing experiance.) Using the rate of 12 machine instructione
per man per day, we arrive at & needed manpower figure of 25 programmers for 12

rmontha. Using the Time Prasing chart above, the manager can develop deteiled
work plans and thus keep close check on whe%her the schedule ie being adhered tc.

e - Py 4 - 2 SR b £ s babticn bt b itk o ot e M R i b o o . & ;e s R T e < AL by i e S it b L
. 2 el it 3 5 gyl SR S e o A D el o et S b TOE A8 L U B B SR T e] o i B R g A i 4 a5
i 55 g o e o i o S T St L0l i S S R e P ! Rl 4 B
i
).

P

S
e

Sl

ARY Y

G o A s T

17 May 1963 «Tl= m-m-&b/ml/oo

VIII. CORCLUSION

"Good order is the foundation of all good things."”
| - Edmund urke

The rrison d'eire for the existence of computer program systans is that they
verform intricate calculations far more rapidly and accurately than human
beings. A computer program system operates in an orderly fashion, at lighten-

ing speed

But in order to produce & good progran? system, managers must themselves
u‘,llize a system of productian or vhat we have termed in this peper a
"production process." We might say that managers need a "system for the
systen” which will help them to produce the best computer progrm systen

possible, at optimal time and manpower costs.:

In this paper, we have delineated such a system, consisting of five primary
prases: Translation, Design, Coding, Verification, and Release. Of course,
we make no claims that these five phases constitute the perfec nanagement
system for producing & large-scale computer program system. KNo doubt, vith .
the passage of time and the achievement of further experience, better "systems
for the system" will be evolved. -Indeed, the suthors of this paper are seeking
to refine and improve the system documented in this paper. '

As we visualize it, the role of this paper is two-fold:

1. To emphasize that as computer program systems become larger and
more complex, it is imperative that managers have a carefully
conceived, workable plan for the production process.

2. To make available our experiences in managing the production of
a 300,000 instruction computer program system.

It is our hope that this description of how the 465L Planning Subsystem is
being produced will stimulate other managers to publish the systems they use
for producing their large-scale program systems. With this cross-fertilization
of ideas, techniques, and actual experiences, the state-of-the-art can be
significantly advanced.

i T T R
e

[

Sl

. LA)

17 May 1963 o eT2. ™-10-610/101/00

- GLOSSARY

!assx.. W ﬁw ESSL s;um is the Strategic Air Conmand Control System. It

‘is a ltm-amg computer-based progrem cystem , that is being designed and
programued by the Bystem Development Corporation, in cooperation with other
orpniufams, for use by the Strategic Air Cormend.

m’--- entione Teg Pool. This is a collection of information re-
lating a1l m, ‘teble m; constants, and paremeters to absolute
storege lmtions in core memory, or auxiuary storege. A compool may take
the form of a magnetic tape, & deck of punched cards, or a printout.

EXECUTIVE -~ This is.a set of support programs which was especially designed to
control the operation of the Planning and Control programs vhich comprise the
L65L System. Specifically, the Executive controls input/output operations,

ssquencing of programs, and so forth.

FUNCTIQNAL AREA - Each major subdivision of the Planning Subsystem, as derived
from the ODR's. The basic criterion employed in defining logical subdivisions
is the functional interdependency of individual functions. (Refer to Trans-
lation Phase, Step 1.)

FURCTIONAL FLOW C&\R‘I’ Thie is & form of documentation which helps 1nsure
that the analysis (Translation Phase, Steps 1, 2 and 3) is performed correctly.
It signifies completion of analysie, and is ensentially a graphic presentation
of the prose statement of requirements. Programmers are required to produce
functional flow charts for each OSF. (Refer to Translation Fhase, Step 3.)

JOVIAL -« Tais is the higher-level progreamming language that has been developed
‘at the System Development Corporation, and is being used in the 46SL System.

LOGICAL TASK, LOGICAL JCB - Logical task is the came as the (actual) task
defined beiow. It is the task in & preliminary stage of development. The
primery distinctidn is that machine constraints have not yet been considered.
Similerly, a logical job 15 an (actual) Job. It is the job in & preliminary

stage of development, for which machine cons*raintes have not yet been considered.

ODR SUBFUNCTION (OSF) - An OSF fr - .urther breakdown of a FUNCTIONAL AREA.
The purpose of breaking down fw. ~.onsl areas into OSF's is to distribute the
work-lo;d to programmers on an equitable basis. (Refer to Trenslation Phase,
Step 2.

L S
B ane T

LA s RN LS

. - iy it e, e Lk R
A e ot A B iR R D R BN

17 May 1963 =73- ™™-L0-810/101/00
(Last page) ‘

OPERATIONAL DESIGN REQUIREMENTS (ODR's) « These documents constitute the
information base for the production process. They are the primsry inputs
(along vith the System Integration Document) to the Translation Prase.
ODR's contain the following sections: general statement and description
of the requirements; logical designs, including assumptions, in both prose
anc¢ diagram form; specific requirements indicating the areas of human
interaction with tne machine; specific operational progren reqnirements.
(Refer to Introdu:tion.)

PRELIMINARY PROGRAM SUBSYSTEM SPECIFICATION - This document incorporates

the results of the Translation Phase. It identifies the logicel tesks and
Jobs, the data sets, and the input and output requirements of the cubsystem.
It also contains prose and graphic descriptions of the manner in which the
various logical tasks and jobs relate. Publication of this document signals
the com};le‘clon of the Translation Phase. (Refer to Translation Phese,

v*eP 5

PROGRAM, TASK, JOB - The definition of a 2”% am is that which is standard-
hroughout the programming profession. A is a set of computer prograzs
and associated data environment, designed to To fulfill specific requirerments
stated in & part of, or one or more ODR's. Each set (i.e., each task) is
discrete in that it has a unique identification, a definite beginning end
end, and operates relatively independently of other sets. A job (for the
lanning Subsystem) is defined as a set of tasks (this "set" mey be come
prised of one or more tasks) that will perform the functions called for by
a "communication request” (a "communication request" is the means by which
the 465L Planning Subsystem is utilized by SAC personnel. They input to

the computer, via card inputs or a keyboard, requests for specilic functions
that are to be performed by the Planning Subsystem. These are called
"comminication requests”, and it is the Job that fulfills these requests.)

CYSTEM INTEGRATION DOCUMENT - This document is produced before the start
of the production procecs as defined in this paper, and is thus one of the
inputs to the Translation Phase. It specifies the formats of the user
input messages and of output displays. (Refer to Introduction.)

ABLE, ITEM - A table is a definite allocation of core memory or auxiliary
,torage registers for the storage of specified information. An item core

sists of cne or more bits in a table, set aside for the storage of specified
information.

(s

b

Un6lassified
Secutity Clessification

DOCUMENT CONTROL DATA - R&D

(Becurity cleseilication of title. body ol abetract and indeuing anreiatian swst be entared hion the svere!l report ie alsssitied)
1. QRICINATING ACTIVITY {Cerporals suthor 2. REPORY BECURITY C LASSIFICATION

System Development Corporation Unclasgified

Santa Monica, California 1o snour

3. REPORT TITLE

Management Report: Controlling Production of Complex Software

&
8. DESCRIPTYIVE NOTES rType of reper! and inslueive dates)

8. AUTHON(S) (Lest name. first name, nitiel)

Connelly, J. J., Osajima, Y. R.

s. REPORT DATE 79. TOTAL NO. OF Paiaks 76 NO. OF REPS
17 May 1963 73
So. CONTRACT OR GRANT NO.AD 19(628)-16’48 Sa. ORIGINATOR'S AEPOAT NUMBENS)
System U65L--SACCS, for Electronic ’
& SROJECT WO- gystems Division, AFSC T™-L0-810/101/00
.’(562- 02) Ty a‘tncq REPOAY NO(S) (Any ather numberc hat mey be aseigned
s popecl)
d.

10. AVAILADILITY/LIMITATION NOTICES

Distribution of this document is unlimited

1t SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

Describes the development and production processes of the Planning Subsystem of
the Strategic Air Command L65L Systems. Each of the Subsystems which compose the
LESL System, alone, is in itself a large integrated progrem system. The"Planning
Subsystem" is comprised of approximately 90 programs, 300,000 machine instructions
and a data base of 6,000,000 words. This paper which was originally presented as
a briefing is restricted to a definition of the basic functions of the production
process. It includes 32 illustrations to clarify the text.

DD 2. 1473 Unclassified
Security Classification

N SN

i O L e

Unclassified

Security Classification

KEY WORDS

LNk A LINK 8 LiNK C

aoLg wv noLg wr noLE wr

L4

L6SL

Software

SACCS

Planning Subsystems

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and addresa
of the contractor, aubcontractor, grentee, Department of De-
fense ectivity or other organization (corporate author) lasuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security clesasification of the report. lndicste whether
‘’Reatricted Data® is included Marking is 10 be in accord
snce with sppropriste security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Induatrial Manusl. Enter
the group number. Also, when appliceble, show that optional
markings have been used for Group 3 and Group 4 as suthor-
ized.

3. REPORT TITLE: Enter the complete report title in all

cepitel letters. Titles in all casea shoulid be unclassified.

if a meaningful title cannot be selected without clsssifice

tion, show title clasaification in all capitela in parentheals
immediately following the titie.

4. DFSCRIPTIVE NOTES: If eppropriate, enter the type of
report, e.g., irnterim, progress, summary, sannual, or final.
Give the incluaive dates when s apecific reporting period ia
covered.

S. AUTHOR(S): Enter the name{a) of suthcr(a) s shown on
or in the report. Enter last name, first name, middie initial
I xilitery, show rank ond branch of service. The name of
the principal «i'thor is an abaolute minimum requirement.

3. REPORT DAT:. Enter the date of the report aa day,
month, year, or mbnth, year. if more then one date appears
on the report, uae dste of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pegination procedures, L o., enter the
number of pages containing information

76. NUMBER OF REFERENCES Enter the total number of
referencea cited in the report.

8s. CONTRACT OR GRANT NUMBER: If sppropriste, enter
the spplicable number of the contract or grant under which
the report was written

8b, 8¢, & 84. PROJECT NUMBER: Enter the appropriats
military department identification, such aa project number,
subproject number, aystem numbers, task number, etc

9e. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
clsl report number by which the document will be identified
and controiled by the originstirg activity, Thia number muat
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been

asaigned sny other report numbera (efther by the originetor
or by tha sponsor), aleso enter this number{s).

10. AVAILABILITY/LIMITATION NOTICES Enter any lim-
Itationa on (urther disseminstion of the report, other then thoss|

imposed by security clasalfication, using standard statements
auch as

(1) **Qualified requeaters may obtain copies of this
teport from DDC.*’

(2) ‘Foreign ennouncement and disaemination of this
report by DDC is not authorized ”’

(3) *“U. S. Government agencies may obtain copiea of
thia report directly from DDC. Other qualified DDC
users ahall request through

{4) ‘*U. S militery agencies may obtain copies of this
report directly from DDC. Other qualified usera
shail request through

(S) **All distribution of this tepoﬁ ia controlled Qual-
ified DDC uasers shail request through

1f the -eport has been furniahed to the Office of Technical
Services, Department of Commerce, {or asie to the public, indi.
cate this fact end enter the price, if known

1L SUPPLEMENTARY NOTES: Use for sdditional explens-
lpty notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the depertmental project office or 1aboratory sponsoring (pay-
ing for) the reszarch and development. Include addrcas.

13 ABSTRACT: Enter an abatrect giving & brisf and factuai
summary of the document indicative of the report, even though
it may sian appesr elaewhere in the body of the techaicel re-
port. if additional space ia required, a continustion aheet ahall
be attached.

it 18 highly deairabie that the abstract of classified reports
be unclaesified. Each paregraph cf the abatrect ahall end with
an indication of the military aecurity ciaaalfication of the in-
forration in the paragraph, repreasented aa (T3), ($). (C), or (U)

There ia no limitation on the iength of the abstrgct. How-
ever, the suggeated length is from 150 to 225 worda.

14. KEY WORDS: Key words ara technically mesaingful terms
or short phreaes that charecterizs a report and may be used at
index entriea for ca’'sloging the report. Key words mpat be
aelected so that no aecurity claaslification is required. ldenti-
fiers, auch as equipment model designation, trade name, military
project code name, geographic locsticn, may be used as key
words but will be followed by an indication of techaicsl comn-
text. Tho sssignmesnt of links, rules, and weights is opticaal.

Unclassified

Security Classification

