
TM-LO-8)j/lOl/00

*

<^

CO
CO
Q

El ppfltft
TEGHN1GA U=!

(TM Series)

REPRINT Distribution of thir» Doc iment
is unlimited

TWi tftciMMt «u »nH«t< •» SDC I« ptrfirwMci if MttrMl AF 19(628)-l6U8, System.
U65L--SACCS, for Electronic System» Division, AFSC (562.02)

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND

TECHNICAL INFORMATION

MANAGEMENT REPORT: CONTROLLING PRODUCTION

OP COMPLEX SOFTWARE

Microfiche

% ,7^_ 7V PH.

By

j. J. Connelly and Y. R. Osajima

Development Branch

17 May 1963

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

Cv-cbt, j
Thi vitwi *""' «Son«, of rtcomminditloni uprmsd In this documwt do not nocil-
Mrliy rr # official vliwt or pollcln of i|inclii of thi Unit«! SUtu ftovtmrntnl

Best
Available

Copy

; MaEMBfea*saa«ae mm*.

IT May 1963 -1-

(Page 2 Blank)

•M-LO-8IO/IOI/0O

ACKN0WLEDGMBTC5

The following persons have been associated in the development of the production
process described ID. this paper:

M. I. Bolsky
M. D. Campbell
J. J. Connelly
W. L, Landaeta
M. A. Levlne
T. B. Osajima
J. J. Pavese

Preparation of this document and the briefing script that preceded this
document vas materially assisted by J. H. Green and D. E. Wolgamuth.

Method of Presentation of Shja Paper

The text of this paper was originally presented as a briefing, with accompany-
ing flow diagrams and charts. In order to achieve maximum clarity, ve have
placed each illustration used in the briefing on a left-hand page, with the
accompanying text on the facing right-hand page. While the text is complete
in itself, the illustrations will undoubtedly be of interest and usefulness
to readers.

17 May 19^3 -3- 154-L0-810/I0l/O0

PREFACE

In-order to dc well ir. a position, a person rauet bring two factors to that
position: native intelligence, and experience. Combined, the two will equal
that person's ski] 1 lr. fulfilling his responsibilities most effectively.

K&tive Intelligence it »ore or less a fixed Item, but experience is not.
Experience can be acquired In two ways, each of which supplements the other.
The first way is actual on-the-job work. The second way is by reading about
how ethers have done Similar tasks.

The persons who have been associated in the development of the production
process described in t.hls paper have accumulated a total of over forty man-years
of experience in the management of large-scale computer program system production.
nearly half of Ais has been with the largest computer program system being
produced - the h6% Planning Subsystem.

(The h6% Planning Subsystem is one of the two operational components that
make up the ^o5L System. The other component is the 465L Control Subsystem.
As their names Imply, these will perform planning and control functions,
respectively, for the Strategic Air Conoand. Each of these subsystems, alone,
is in itself a large integrated program system. The Planning Subsystem, In
itself, is comprised of approximately 90 programs, 300,000 machine Ins true t lor. s,
and a data base of 6,000,000 words. They are called subsystems only because
they are components of the total h6% System.) "~*'"""

We hope that our experience can be of help to the managers of other current
and future computer programming projects. The record of how we set up and
controlled the production process for the Planning Subsystem provides insights
into the nature of the problems involved, and into some of the ways by which
these problems may be overcome.

We recognize that this paper is not a generalized description of the program
production' process. However, we do feel it to be a significant milestone in
that it is a positive attempt at defining or analyzing computer programming
in terms of act*.vities, products, needed resources, and management controls.

This paper, then, Is dedicated to those who take on the heavy burden of
managing the production 'of a large computer program eystem. This task is not
easy, bv~ it f„ a ehai'enge that brings a most rewarding feeling when It is
ace&Bp! i shed flv.*cejri.fui iy.

.18

U Kay 1903 -»i. .<"/'

LIST OF ILLUSTRATIONS

tare

m

■g

'i

m

figure 1
2
3
k
5
6

T

9

9
10
11
12
13
Ik
15

16
17
18
19
20
21
22
23
2k
25.
26
27
28
29
30
31
32

Production Process Overview 6
Translation Overview..................... •*......**.... 3
Translation Of ODH"s. \0
Step 1 — Segmentation Of ODR's Into Functional Areas.. 12
Step 2 •• Identification Of 01® Subtractions (OOP's)... l't
Step 3 — Performance Of Detailed Analysis Of Each 01%

Cubfunction.................................. lo
Step k — The Synthesis Of Logical Tasks Pros OCR

uuofunctions......................*.......... lo
Step 5 — The Synthesis Of Logical Jobs Fro» Logical

Tasks, And The Documentation Of The
Preliminary Program Subsystem Specification.. 20

Design Overview 22
Methodology Of Design ••• 2U
Step 1 — Job Design 26
Step 2 — Preliminary Task Design • 28
Step 3 — Detailed Task Design..*.. 30
Step k — Preliminary Program Design * 32
Step 5 — Quality Review And Design Specification

JTOQUCtion......................*•«••..*•.•.. 3"
Step 6 — Detailed Data Analysis. 3*>
Step 7 — Detailed Program Design,.... 38
Coding Overview kO
Methodology Of Coding...*..*••.•*••.•.•.•••••.••.••*.*. «*2
Verification Overview kh
Methodology Of Verification. k6
Program Verification kB
The Decision Point Matrix 50
Test Lists..... • 52
Program Verification » 5U
Task Verification 56
Sequence Parameter Matrix 58
Task Verification 60
Actual Verification On The Machine...........• 62
Internal Release Overview 6*»
Internal Release ••• 66
Time Phasing. • 68

IT Nay 1963 .5- »I-LO-810/IOI/00

TABLE gg COHTESTS

Page

XX« Translation Ifcase
Purpose Of The Translation Phase Q
Problems In Translation And Their Solution ^
Methodology Of Translation n

Step 1 — Segmentation Of The OKI's Into Functional Areas.. 33
Step 2 — Identification Of ODR Subfunctions (OSP's) 15
Step 3 — Performance Of Detailed Analysis Of Each ODR

QUDXXUIC%%on #»»*#»••#*•«•*•#•*»••••••••••»•#••*••• x1
Step k — The Synthesis Of Logical Tasks From ODR Sub-

Step 5 — The Synthesis Of Logical Jobi From Logical Tasks,
And The Documentation Of The Preliminary Progrsm
Subsystem Specification 21

III. Design Phase
Purpose Of The Design Phase 23
Problems In Design And Their Solution 23
Methodology Of Design 25

Step 1 — Job Design 27
Step 2 — Preliminary Task Design 29
Step 3 — Detailed Task Design...... 31
Step h — Preliminary Program Design. 33
Step 5 — Quality Review And Design Specification

Production. 35
Step 6 — Detailed Data Analysis 37
Step 7 — Detailed Program Design 39

IV. Coding Phase
Purpose Of The Coding Phase bl
Problems In Coding And Their Solution. **1
Methodology Of Coding ^3

V. Verification Phase
Purpose Of The Verification Phase ^5
Problems In Verification And Their Solution **5
Methodology Of Verification U7

Program Verification ^9
Task Verification 57

VI. Internal Release Phase
Purpose Of The Internal Release Phase 65
Problems In Internal Release And Their Solution 65
Methodology Of Internal Release. 67

vi 1. Time xT» as 1 ng •»*«>.«. • •. • ««««.•«««.•«««.«•.............. >*.•>«». o y
VIII. Conclusion 71

Glossary 72

i

^E7

IT May L(// 'IW-LO-BlO/lOl/OO

U4

>

fit

**"

Q

If*
in

u
tx

a

Figure 1.

~-w<UUiMMPP "*«r i»«V«f

6

C

IT May 1963 „7. OWÄ.aiO/101/oc

Xn order to effectively manage the production process ef a large-scale
er program subsystem, one mist firri- have a clear definition of the

ppeess» This paper defines the process used in producing the U65L Planning
bsytste». The total production process, needless to say, requires a manager's

attention to a great many functions, e.g., processing and controlling system
changes, effective utilization of manpower resources, effective EAM/EDFM
utilization, etc. Although these are all integral parts of the total, process,
in this paper we are restricting ourselves to a definition of the basic func-
tions of the production process. Furthenso.-e, th* production process, as it
I» defined in this paper, assumes certain functions .hat precede the process
and thus produce inputs to it, and certain functions *hat follow the production
process and thus.utilize Its outputs.

the following sections: general statement and description of the requirements;
logical designs, Including assumptions, in both prose and diagram form; specific
requirements indicating the areas of human interaction with the program; specific
operational program requirements.

%J The Phases Of The Production Process - The production process, as defined in
this paper, io divided into five basic phases—Translation, -Design, Coding,
Verification and Internal Release, Each of these phases is essentially a
building block» the outputs of one phase are the inruts to the next. Interim
documents; sere a,j bench-marks to signal the completion of earh phase. These
documents serve rov.r functor::;:

1, ^c tns.. rr '.net programmers perform "ach c cp *n a rigorous fashion;

2. Tc Tiu :.:.*• ■-..'.: nni~al supervisors ~.c in spec :r. termed! ate steps so as
re in.--,re h r.I.r;i. quality product;

1. '~o enat? e ,-:e managers to more accurate.'y as^'-ss where the develop-
ment of -.r.- -Übsystem stands ir. relation to *ncre it should be, and
eoriseq.jfr.t;y to tetter assess future manpew' needs and delivery
dates;

h. Minimize '.he impact of manpower turnover, st ire most of the develop-
ment is rr.?orded in documentation.

J-tputs From Tne Pr^uction Process - Tills definition assumes that the
production process is completed after the Internal Release Phase. It is
assumed that there wi.,1 be some other agency which will then take the product
%>n; perform subsystem testing; install the subsystem in a computer at a
given location; formally release the product to the customer.

 '■—■> iir^i^pwwifwpir"

May 1963 -8- TM-LO-8-' 0/101/00

Figure 2

mmm

1? May 19C* -9- i:4-LO-8lO/lGi/üO

o

t^

" - H' ^MKSLATIOK PHAZK

Psflpoi«, Of Th<? Translation Pnaje

The translation Pi*asc has three purposes:

1. To give programmers a clear understanding of the content of the Operational
-Design Beqriiremer.ts {C?>;'s)j

2. To identify and resolve inconsistencies in the QD'Vs;

3. To re-group the functions öiated in the ODK's so that they are logically
grouped from a programing point of view.

IVoblejr.s In Translation And Xh^ir Solution

Translation of the ODH»s is py no means easy, vhen thousands of pages of
requirements and seventy ce more progrwaaers are involved. Experience has
shown tnat there? is a diversity in the understanding of the ODR's because
people empna^JiS different tr.:n£S in their reading, and since there is
frequent;y s varying oepvo^- et" .»e*nil In different Olir.'s.

But in this pnasc. urnifo:\aity i:> important This Jan be achieved by:

i. The proeeaurint.nj •1" the •.vr.njiacior Phase ir\<: steps with definite
object !.ves at tne er.a of <.&yr stay-, mid

2. 7he e^tablis.Jiiert of '.wo dec ■jnentation points to r.'f^n fy the mid»po1nt
and the end of the Trans't-t,,:r Phase.

mm MKB!ff3€3M<MmRlMw««

17 May 196? -10- TH-LO-8iO/lOl/00

;

\

•»iiir..jiniiL[.l|M|i]l

!

\

—u
m

stM>

&:• >->-; I

^ A

fe*

f'/, -##*" t?

Figure 3

-mma^jgTW"1"^" m-- «"■"i"

©
IT May1963 -11- «DHULO-8lO/lQl/öO

o

the translation Ptioae Is comprised of both analysis '(i.e., the breaking up of
& «bole Into Its component parts to ascertain their nature) and synthesis
(i.e., the ca»ining of parts to form a whole,) Analysis consists of three
stefs (which satisfy trie first two purposes of the Translation Phase—to.
obtain a ciear understanding of'the ODS's, and to Identify and resolve ineon«
sistead« In tht Ctt's.)

1. Segmentation of CflK's Into functional areasj

2. Identification of ODR subfunctions (OOF's);

3. Perferaance of detailed analysis of each ODR subfunction.

Synthesis consists of two steps (which satisfy the third purpose of the
Translation Phase—to re-group the functions stated in the OKI's so that they
are logically related from e programing point of view.)

k. Rie synthesis ol logical tasks from ODP subfunctions;

5. The synthfsirs of logical jobs frnn logical tasks,and the documentation of
the Preliminary Program Subsystem. Specification.

f»

17 May 1963 -12- TM- w-Bio/i 01/00

I

Figure 4

rVVtf

*p

1? Hay 1963 -H- m-to-aio/ioi/oo

tatlon Of OCR's Into Functional Areas

A* stated above, the input« to the Translation Burnt for the
«I CMt't and the System integration Document,

Banning Subsystem

3

Ite first step, then, involves the analysis of the OCR's, In order to define
logical subdivisions of the subsystem* Sich subdivision consists of all, or
parts of, one or mere OCR's, end is called a "functional area*" She basic
criterion employed in defining these logical subdivisions is functional inter-

ior exaaple, in the Planning Subsystem, the Flight Han Analysis
consists of all or parts of the OCR' s for Flight Simulation,

Airborne Alert, Mating and Boating, The functions defined in these OCR's are
all Involved in the development of flight plans. The intent of this sub*
division of the subsystem into functional areas is to logically distribute
the mosk load among the organizational sections comprising tin group of

who are to produce the subsystem.

A gross estimate of the scope (i.e., the number of programming instructions)
of each functional area is made, and then one or more of these areas is
assigned to each section In the group.

1
■■'J

i
ill May ;963 -14-

1M-L0-810/;01/O0

1
.»

Figure 5

17 Hay 1963 •»15-
a*-ia-8io/ioi/oo I

Step 2—Identification Of OCR Sübfunctlons (03F)

G

- who are to later analyse portions of an OQR in detail -
read all 088*8 in their particular functional area, in order to obtain a
total overview. They then participate in meeting! to further tub-divide
each of the ODR's. Each division of an OCR is identified as an 00E sub-
function (OSF). The purpose of this step is to break down each functional
area into manageable parts (OSF'a) so that they can be distributed to program-
mers for subsequent detailed analysis. Questions and/or inconsistencies
identified during the preliminary readings are coordinated vith the OEB author.

The OSB subfunctions are then assigned to programmers for detailed analysis.
The assignments are made as a function of programmer capability, and the
complexity and size of the OSF. Generally, each programmer is assigned one
or two OSF's.

9

1

I

t
I 17 May *>%'$.10-

I74-LO-8lO/!Ol/00

)

5* h
2 2
uu C£
Q u.
u.
O

1

^
IM *J> u z fit
< a
5 o
Qt X

s <

cC UJ

Ui u
OL o

1 r*>

til
fig 1
X

<

a <

yj
K

■,-"m-*■*,.,

*

'«r*

* c
^ S

<b

Figure 6

17 May 1963 -17« $t-LO-8lO/lOl/00

O

Step 3».Ferforma-nce Of Detailed Analysis of Bach OKI Subfunctlon

the prograsmers then begin detailed analysis of their assigned OSF's. lach
such analysis consists of a careful reading of the pertinent operational
program requirements portion of the ODR, to obtain a clearer understanding of
the processing therein described and to Identify the data required for the
performance of the OSF. Each piece of data is defined in tenaa of its nature
(i.e., fixed or variable), form, range, and functional grouping. For example,
aircraft total fuel capacity might be defined as fixed, Integer, 50,000 to
300,000, and a function of aircraft type and model.

In performing this detailed analysis, each progransaer is responsible for co-
ordinating with the ODR author to validate the analysis. New QSF's are some-
times created by consolidating, redefining or splitting up old ones. New
assignments of OSF's are made when necessary.

A form of documentation helps insure that the analysis is performed correctly.
It signifies completion of analysis, the first part of the Translation Phase.
This form of documentation 1J the functional flow chart and is essentially a
graphic presentation of the prose statement of requirements. Programmers are
required to produce functional flow charts for each OSF. These charts portray
the OSF processing without explicitly relating it to machine processing.
(This explicit relationship is made in the Design Phase.) Each chart is
reviewed by the technical supervisor for accuracy and uniformity. The (cor-
rected) chart is then reproduced and copies are given to each programmer
working on the functional area to enable him to review it as it relates to his
own subfunction(s).

•9-

-18- • . <J~ ; : /Q.1

u.
in

u.
wo
O

o <

Figure 7

mpmm -*mm i tm>m P *"^.U'"HP'<PW ■' J. «■>;

17 May 1963 -19- TM-LO-810/IOI/OO

Step k—The Synthesis Of Logical Tasks From 01» Subfunctlons

Synthesis begins,with a grouping together and identification of OSF's as
logical tasks. A logical task consists of one or more OSF's which collectively
accomplish a specific SAC function. An example of a logical task is the Flight
Simulation Task. OSF's comprising a given logical task might very well have
originally been parts of different ODR's. For example, the cruise mode of
flight (a Flight Simulation ODR subfunction) and the segmentation of sortie
routes (a Routing ODR subfunction) both comprise part of the same logical task -
Flight Simulation. In this step, calculations caramon throughout the OSF's,
such as sine and cosine calculations, are identified for subsequent handling
as subsystem routines.

A concurrent activity is the identification of logical groupings of the data
required for performance of a given logical task. The data defined during the
previous step for each OSF are collected into sets by their functional groupings,
(e.g., all data which are a function of aircraft type and model are collected
into a single set.)

4

'i-LC-oi'

^7

ft'

£^* A .

f JE ^
te#<- .Sly

-VM;<.

.0/-';

h*
_J
<
v' 95 •- O
O ~?
O
.J

Fiprore n

istf*10

««»(rtiSKP-wwuJ n*pili W^HQßOQßl l"l|1ll"»l*l

17 May 1963 r21- TH-LO-81O/IOI/OO

Step 5»-3he Synthesis Of Logical Jobs From Logical Tasks, And The Documentation
Of The Preliminary Program Subsystem Specification

AU logical tasks developed within the subsystem are then analyzed and grouped
int0 logic*! Jobs. A logical job is composed of one or store logical tasks
which mast operate together to fulfill a class of related user input messages.

The basic criterion for establishing logical jobs, then, is man-machine inter-
action.1 An example of a logical job is the Input Processor Logical Task and
the Flight Simulation Logical Task mentioned above. (For example, the Input
Processor Logical Task would be identified at this step in the development
since analysis of all previously developed logical tasks would indicate that
each is performing an input processing function and that it would be reason-
able to centralize and generalize this function.)

A parallel effort, one closely related to the development of Jobs, is the
further development of the data base. The data sets previously identified
for the logical tasks are now merged to form larger data sets for the entire
subsystem. To illustrate, let us assume that two functional areas -equire
data associated with aircraft units. The first requires the units' locations
and configurations; the second requires the units' locations and vulnerabilities.
At this time, the common data requirement would be recognised and one data set
for units would be established, consisting of units1 locations, configurations,
and vulnerabilities.

The results of the Translation Phase are documented in the "Preliminary Program
Subsystem Specification." This document identifies the logical taaXs and Jobs,
the data sets, and the input and output requirements of the subsystem. It also
contains prose and graphic descriptions of the manner in which the various
logical tasks and jobs relate. Publication of this document signals the
completion of the Translation Phase.

I The human action requirements portion of the ODP^s, and the System
Integration Document, assist in defining this man-machine interaction.

"3TTW Wm>j'.«

:Y Vsrj : 9e^3
.00.

rM-Lö~&o/io;/oc:

)

*&•

^)

Figure 9

•-.«in. ' '"""

1? May 1963 "23* TM*LO-3lO/lOl/00

III. DESIO» PHASE

Purpose Of The Design Phase

The Design Phase, though simple in definition, Is perhaps the most complex
and significant phase of programming. Its purpose is to structure the actual
Jobs, tasks, and programs that comprise the subsystem, in order to produce the
most efficient and least costly subsystem possible.

Problems In Design And Their Solution

—. The orderly and generally accepted approach to program system design is to
t, work from the general to the specific. In our subsystem, this means first

designing Jobs, then tasks, then programs. The problem, however, is that in
actual practice, programmers tend to concentrate effort on the design of the
most specific components (i.e., programs) since these are the easiest to grasp
and also seem to most directly affect the progress of subsystem development.
This means, then, that the design of jobs and tasks may be left for last, and
thus be hurried and, consequently, inefficient. Experience has demonstrated
that inefficient Job and task design results in redundant efforts in design,
coding and verification, extensive rework in coding and verification, and
attendant low programmer morale.

A solution to this problem is to proeedurize the Design Phase and to establish
interim bench-marks insuring that each step of the process is performed
adequately.

€T ' 3

IfelMÜt FIBMIililMliiTT'il"' Müsüi UftfiatajsaM

IT May 1963 • 24- M-M-8IO/101/00

GRAPHIC NOT BEPBOWi

Figure 10

IT May i$63 .25- ili-LO-8iö/ioi/oo

Inputs to the Design Phase, In addition to the outputs from the Translation
Phase (i.e., Preliminary Program Subsystem Specification, and Functional Flow
Charts) Include the System Integration Document and Operational Design Require-
ments (OHt's) that vere also input to the Translation Phase.

The following steps comprise the Design Phase:

1. Job Design •
2. Preliminary Task Design
3. Detailed Task Design
h. Preliminary Program Design
5. Quality Beview and Production of Preliminary Task and Program Design

Specifications
6. Detailed Data Analysis
7» Detailed Program Design

,

%

iias «iiim imm iiiiiiii Bin •riMn'ii n' HI i -~J .„■:_;;. -^- ---- ffirniffiffliif»fra^

17 ;-fey .1903 •26» TM-LO-8IO/IOI/OO

GRAPHIC NOT REPRODUCIBLE

*•-.

f

0
1»H»

m
m i
Q I

3T% - ,£ i
?r, -* et 5

0!
•r, *>i

^ ,_

-■■.4 ' -'i: i \ l
&M m 1

«§ ?■-

O !
Ip*^,*.' £k !'

Ui i
»C -, '■; hl
Ä^ ® \

^p:^

#W1

17 May 1963 -27- TM-LO-810/IOI/00

Stay One»«Job Design

Given the logical jobs produced in the Translation Phase and documented in the
Preliminary Program Sub system Specif i cation, the function of Job Design is to
determine whether the logical jobs can be actual jobs. (In the Translation
Phase, machine constraints were not explicitly considered. This would have
been an additional factor of complexity at that initial phase. It was decided
that for the sake of maximum efficiency, the consideration of these factors
should be left to the Design Phase.)

O

The primary machine constraint considered in Job Design is the amount and type
of auxiliary storage (i.e., tapes, disc, drums) available to the subsystem.
Since, by definition, no human intervention is permitted during the operation
of a job, the required auxiliary storage configuration cannot exceed that which
is available. For example, if a maximum of ten tape drives is available to the
subsystem, no desired auxiliary storage configuration can exceed ten tapes.

The first thing, then, that must be done for each logical job is to determine
the required auxiliary storage configuration. The data sets defined in the
Preliminary Program Subsystem Specification are re-analyzed for pertinency to
the given job. The maximum size of each pertinent data set (e.g., the maximum
number of mi seile units) is used to determine the amount of auxiliary storage
required for that data set. The data sets are organized into tape files, drum
files, and disc data units. The tape files are grouped so as to form logical
tapes.

If the desired auxiliary storage does not exceed that which is available, the
logical job can be an actual job. If it does exceed, an attempt is made to
change the desired auxiliary storage - by re-allocating files - and thereby
forcing a fit. If this attempt fails, the logical job is either redefined or
split into two or more logical jobs and the process of Job Design starts over
again. Since the criterion for establishing jobs was human interaction,
whenever new jobs are created, they must be coordinated with the ODR authors
to insure feasibility from the point of view of the user.

The completion of Job Design is marked by the production of job flows which
identify the gross auxiliary storage configuration required for each job.

11 !fey :963 -3<i.
34-L0-3l0/lOl/00

GRAPHIC NOT REPRODUCIBLE

I

"i
i

1

z
0
55
U)

, Q

*
*ft

S
{; . >
'■ ''" ' ! *

<
3 :x"- - 2

> «■»

,3» " '"■■' 5
- * .■

» ^^^
*£. j -i

Ul
Of
Q.

1
f * ■ ; ■**'■' 0

V' '' * *

* 1 f h
fci*. ' - a

tu
^;v"- h

•■-.:

«ß

figure ".2

©
17 my 1063 -29. LO-810/101/00

O

St^p f^»frellmiisary Task -Design

The function of Arelialmury Ask Design Is to design actual tasks from the
logical tasks developed In the Translation Phase» The primary programming
constraint'is available core memory space (to be distinguished from available
«niliary storage. 1 e., tapes, disc, drums- space, vhich was the constraint
In the preceding s„ep.)

A preliminary analysts of the .Job flow for the actual job and of the associated
logical task definitions is performed to determine which of the data now de-
fined on tape, disc and drum are required for a given task's operation.

The maximum size, of the required data in core is then determined. This maximum
size can differ from the size of files since not all the data contained in the
files are necessarily required at the same time in core for calculations. For
example, a file might contain data defining all missile units, but the logical
task would require, at any given time, only the data defining one unit.

The total required amount of core is then computed. This is done by adding
the amount of core required for the data, to an estimated amount required for
the instructions vhich will accomplish"the data functions. If this total
required amount does not exceed the amount of core available, then the logical
task can become an actual task, otherwise, re-analysis must be made to reduce
the amount of data and/or the number of instructions required in core for the
task. Fectorc-considered include the relationship (i.e., is the task linear,
iterative, or a combination), the complexity, and the size of each function of
the task.

"$

If this re-analyci.'; indicates that the task or data can be redesigned to fit
into core, then the logical tack can became an actual task. Otherwise, the
logical task,must be split into two or more logical tasks and the process of
Task Design starts again.

Next, task designers assess all changes that have been made to the data files.
This leads to integration of data and/dr redefinition of tasks.

The completion of Preliminary Task Design is marked by the production of the
cross task data requirements, both in terms of gross core configurations and
data transfers.

^7 .'4- 963 •30- IM-L0-8l0/]0l/00

9

I:
&■*.

42

• ?^.;£,rfif ^g|.i..."

T I
*

f
c *

« 1 s
O 7 J i*. -
U £ u. 0 u.

Ill t ITi x ^
*: iii 5 Vi 5
« j_ o < o
■ - 3 P t- ■

Jn „ 1 ü t y
tf* O 3 - ■=
<uu.Su.

J
«

u <

Ul "'
!£■ < _
ß U C
ft •* u
V5 C &

• * si*-" a"*

,-$<
:-5» ' 5»"

K f ** tf> S Q

it,T**?

Figure 13

GRAPHIC NOT
REPBODUCIBI»

■3WI BMP

•

I? m 1963 -31* TM-Lo-810/101/00

0

LedTitsk Design

Gifte «etui! tasks anä grots data requtiraaents, toe functions of this step
are to asaoei v-üt the eoipiter functions necessary to accomplish the given task
functions mS. to fraction the task Into programs.

Ccspytter functions such as reading, writing, sorting and searching are associ-
ate! (wherever necessary) with the operational functions identified in the
Translation Phase. This complete set of functions is illustrated in an initial
task flow.

Ais initial task flew is analyzed to determine whether a single program would
he sufficient to perform the processing required to satisfy all functions. (A
single program would be sufficient if the amount of processing is small, or is
not readily split into logical entities.) If a single program suffieies, design
proceeds with a determination of the data flow and the preparation of a more
specific form of the task flow (the preliminary task i/o flow chart.)

If a single program does not suffice, the initial task flow is then further
analyzed to determine the concept of task design to he employed. There are
two such concepts. One (the "control program* concept) is to have one program
control the operation of all other programs. The other (the "independence"
concept) is to have each program operate relatively independently of the others.
Factors which argue for the adoption of the "control program* concept are a
non-linear order of task function operation and a significant amount of common
processing.

Once the concept has been determined, the design proceeds with a more detailed
analysis of the data flow and a concurrent identification of programs. This
process considers various constraints imposed by the physical configuration of
the machine and by the System Control Program (the "Executive" in the k6%
System.) The programs will consist of subsets of the functions performed by
the task.

Task designers in each functional area identify common functions - and, there-
fore, programs - and insure that there is a consistent data base. Throughout
the Design Phase, programmers whose sole responsibility is to insure a consistent
and efficient data base sure working with representatives of each functional area
toward that end.

The completion of Detailed Task Design is signaled by the production of the
preliminary task I/O flow charts and identification of each program.

17 May 1963 -32- BS-LO-8lO/lOl/00

s

Figurt 14

17 Mar 1963 -33- «W-L0-8IO/1O1/OO

Step Four-»gr^imiRary Program Dasiga

the functions of this step ere to produce preliminary program design flows
(from the functional flow charts and added computer functions) and to structure
the tables containing the data to be processed. The more important constraints
are imposed by types of table structures and tagging conventions which mist be
adhered to.' Close coordination is laandatory since many programs process the

data.

O
Completion of this step is indicated by the production of preliminary program
design flows and preliminary table structures.

? >-y '963
TM-10-8:0/103/00

?ttj

Figure 15

SRI*050
tftfl ss?» fiöO cff**

© «

G

C

■as ̂ illflff^^^

i? Mr 1963 -35- m>m*m/iQi/o®

■f^lü'^',T<<l^*yliK
>iT*tf>ri.i a 0e**ff> SB£s£s»5SgSB fSSISHSB

ft« preliminary design of «31 programs tad table», «aft the detailed design of
«21 tasks, are reviewed at * series of quality review meeting» which «re

% representatives from «11 function*! «rose, 9» purpose of these
is three-folds

1. 9B eHMaate future redundant pi nq rwilng efforts;

2. 9B determine if computer functions «re being accomplished «t the aost
foists;

3. To insure that the quality of the product is high.

upon completion of these meetings, the programs, tasks, and jobs are revised
as necessary and are documented in accordance with detailed document fomat
guidance. The preliminary Program Design Specifications include, for each
program, a statement of the program's responsibility, a description of its
environment, and a program design flow. The preliminary Task Design Specifi-
cation includes a description of the tesk*8 responsibility, a description of
its environment, its outputs, core configurations, auxiliary storage config-
urations, I/O flow and a detailed description of the l/PSXmt, She detailed
job flows are prepared for later inclusion in the. Final Program Subsystem
Specification.

MMtotf» MfcimMWflirTi—rf'^-'-"'

rr

!7 May ".963
TM-L0-3:o/lOl/00

■3
I

I

Figure 16

" «Ä^»««*^^™»»^^^ ° '^

17 Äy 1963 "37" m.LO-810/101/00

Step 31x--Detai3.ed Data Analysis

fhe functions of tills stet are to fix data definitions and to record the data
in the data dictionary (known as the "Cempool" in the k65l> System.) Each item
in each table is coordinated and fully defined. Data Specification Request
(SSEt) forms are filled out for each item, table and file. Beta are legality
cheeked and modifications made where necessary. The data are then placed onto
Him Coopool tape and listings are produced.

from this point in the production process, the data base is fairly static, and
changes are made on a more formal basis (i.e., by coordinating and submitting
written change requests or D6R*s.}

1

«*M* frWM li,.] luHWLiillViiMiTlWr

I 17 May 1963

1
TH-LO 810/101/00

V*.

?
.■:g

1

Figure IT

17 Ifay 1963 „30.
J J^ m.Lo-810/101/00

C:

Step Seven-Detailed Program Design

The last step in the Design Phase is the development of detailed program flows.
This process involves a further definition of each box of the preliminary
program design flows. Logical statements are produced which are at such a
level that they can he translated one-for-one into JOVIAL statements (JOVIAL
is the higher order programming language used at the System Development Corp-
oration.) While developing his flows, the programmer uses the data specifica-
tions produced in Step Six above. When the flow is completed, the technical
supervisor reviews it for accuracy and consistency, and changes are made as
necessary.

n

Irf""1"! "ft"1 ■ -*-"*-■ ~~—>- -*rr*«**m~«,n~ ■»M» ■^.Wfa ,~»lSrir»M MUM r.lllllTflAl

7 May 19^3 -UO-
IV-LC-8:O/".0!/OO

*,

Figure 18

A» räf-..^^^.—^r—.^k.- ._-;_■. - — ^a^gfffa^ irrniirmnMTWiWiii.-1-jj ■»-■r ,-■■" -^"v--- ■ ■■-.«■*■ _r£g „ , ,,_ ^MaaiMartS^^''" fa*-:;-- •*--. -si

o

6

IT Jtajr 1963 -■»!■- BHO-810/iOl/OO

IV. CODING PHASE

Purpose Of The Coding Phase

Hie purpose of this phase Is to translate programs heretofore defined in
terns of design specifications and detailed program flows, into sets of
higher order language statements, and to compile sets of machine language
instructions fro» these higher order language statements.

Problems In Coding And Their Solution

Experience has shown that many problems arise because of the size and complex-
ity of the program subsystem, and because of inexperienced programmers. Some
of these problems are production of inefficient code (and consequent lengthening
of the Verification Phase), and improper utilization of EAM and EDRf facilities.
A vay of minimizing these problems is to procedurize the Coding Phase.

mm mum ,__^_.™___„, — , mmamum

^3 .UP. 7'~:£-d •.; .0 -JO

i

"*

&

Q
U
u
O

t

«K f*m .

f

■« •. *

I I

1 I

1

I GlttfS*
tf(tf

KBS-BO00
CSBt*

wai

- :-:■*-* .^-sr-^^-t-t, :.-Ä,^S«,aa

IT Hay 1963 -l*3- rn.lO.8lO/lOl/00

01- Coding

o

la general, the inputs to tbis phase are the detailed program flaw chart»,
the ttagrm Design Specifications, mud the complete data definitions.

Coding starts with the-translation of the logical statements, contained on
the detailed program, flow diagrams; Into equivalent JOVIAL higher order
language statements. These higher order language statements are punched onto
cards. The decks of cards are then submitted for compilation, and errors are
corrected until an error-free binary deck is obtained.

Mhere.nce to coding conventions and procedures, frequent review of the product
by the technical supervisor, and the fact that much of the work usually done
in the Coding Phase has already been done as the last part of the Design Phase,
are sufficient to insure optimum progress.

**■-

Ti„. r,„3 „y^^s^, ■ ixi^a, ;isMPfB mff- ^'■-'■■-^^nimmmrmmmmm

1:7 .Hay 1963 -44. TM-LO8IO/J 01/00

i

Figure 20

V f **Jt

6
IT !fey 1963 -U5. TM-LO-81O/IOI/OO

c

V. VERIFICATION PHASE

c

Purpose Of The Verification Phase

The purpose of this phase is to purge the program subsystem of errors. The
goal of verification is to produce an error-free subsystem. It should be
noted, however, that this is a goal which is never totally realized. In
striving towards this goal, the producer of a large computer program subsystem
corrects all the errors he detects as a result of running a set of preplanned
test cases. The realities of life prevent him from verifying the literally
millions of possible paths through the subsystem.

Problems In Verification And Their Solution

Historically, in this phase, production efforts bog down and schedules slip.
Many reasons are presented to rationalize this problem. Examples are the
complexity and size of the program subsystem and the inexperience of the
progreuHuers involved. But perhaps more basic causes of this problem are the
absence of a defined verification methodology and the consequent inability of
management to accurately assess progress and thereby to control production.
If there Is no organized approach, programmers tend to over-verify some areas
and neglect others.

A solution is a system approach to verification, one in which levels of veri-
fication arc introduced and for which, within each level, a well-defined
procedure to established. The keys to- establishing the procedures are the
designation of a specific goal for each level of verification and the identi-
fication of interim products in the verification process. The interim products
provide for managerial inspection and allow the programmer to direct his work
toward the stated goal.

#1 ■>, <+0-
'IM- I/O- "'jD/'i 01/00

r%^"Ä^^^5%2

i fröre r

"*#• - -^H «■BMV

Mtt«. - _* SS^^^I^^P^ä.-;'": ^^ ^"' ■* """^'F-' W&iWSHSm i .-

IT Kay 19ft -*T- OMIO-810/1C1/QQ

Methodology Of Verification

fhe system ajpEoach to verification relates directly t*» the manner in which
täte program subsystem has thus fax been developed and documented. First,
the system desigaers generated and published OCR's. Given these ODR's, the
programmers desired tasks, then programs. Ihey documented these in Hash and
Program Design Specifications. The "functions vhich are to he tested" are
also documented at each level; i.e., system performance requirement a, task
verification matrices, and program verification matrices.

the approach, then, is to verify against each of the three levels of specifi-
cations. At the three levels, essentially the same set of instructions is
being verified against three different sets of criteria.

Starting with the level of greatest detail, and' utilizing the program verifi-
cation matrices, programs are verified against Program Design Specifications.
The manipulation of data in core is verified.

Utilizing the task verification-matrices, tasks are then verified against Task
Design Specifications. Core-to-l/O device and I/O device-to-core data transfers,
and program Intercommunication are verified.

Finally, utilizing the system performance requirements, the program subsystem
is verified against the Operational Design Requirements. This level of testing
is performed following the Internal Release Phase, and Is therefore not covered
la this paper.

- . _ _ ^ ^^äaiäämmämmi^mmüuuaKMtia

17 *fay 19^3
•ito»

■ro-fco-Bio/ioi/oo

i
in.^n.mi >IIWPW*J>W«', uwnL.w..-'J.M.mi' ..'-"V" •' ■ ' V- '/'■'■""*"'* ■ »■-V'-yW? ." "-<<,|WWHy

1

2
Q

>

o
o
a.

p3
»8
if
K

7X

;

1;
11

L

J
6.
Z
O

<
u

E
2

T
I
I
I
I
I
I

II
I

2S
u w
o

7K

2*

m K E
W 1(1 —
H 5 J

i>

t
3
A.

a w
5 U w a. x w
7fv

1
I
I
I

JL

I
I
I

(A

§
P

< <

0 — u
K «

z

0 1

«A >

It)

mn»

*.'ä > ^*i*Mwffflm

üfaliliüliM

«*•

•; ...*•

.,■'?

.1
•VJ

.'i

-.

iflif lliililf««-| ifiVl ittiit l*tttt»

Figure 22

f

^^ftwssai^^fll!

•--«^SMB». -^suito»«4»««SEi&iäS'-. . ftikM&yma -

1? Nay 19S3 ^9- TM-LO-810/101/00

o fr

Program Verification
—WH—»—■■! II - I I ■ I I I I I —II

The specific goal of program verification is to verify each branch of each
program decision point. Satisfaction of this goal Insures the code's
compatibility -with the detailed program flow and verifies that the logic
specified In the Design Phase Is actually coded into the program. The
inputs to program verification include the detailed program flow, Program
Design Specifications, data specifications, subsystem verification model
(discussed below), and, of course, the JOVIAL program deck. There are two
basic steps in program verification, the preparation of a plan and the actual
verification on the computer.

The first step of the procedure is the preparation of a verification plan.
The verification plan consists of three elements:

1. a decision point matrix
2. test lists
3. inputs and expected outputs

f
i
S
If

f

^teaanat »ikmAu^^mM^mm^iämmmmm *#mmmmiäaatiftiilKtm*^

May -963
-50-

^_li)-K .0- . j /Oi)

"\
a.

, w
■' X Ul
T' «'
-t- ff

►* u. i»

'/•

J

Q

u
Q

X

Figure S3"

■w-ü- ^W^-10-
■^f^ir1 ^"s~^3'5 --«Säf

'

IT May 1963 -51- TK.LO.8lo/lQl/00
=1

I
1
1

.■**•••

The decision point matrix is a device for presenting the program decision
points in tabular form. Every decision point on the detailed program flow
is labeled. If there is a corresponding symbolic region label in the code,
then the same label will appear on the flow (e.g., AA05), otherwise a unique
label will appear (e.g., Aj&.) The decision point labels are listed vertically
on the matrix. Then, for each decision point, each branch is listed horizon-
tally.

>

I

"^fllr* ."~%CS- -■v"» ft'

«■ a*—^ nrrr ■ -MM. i li n I .MM ifniii —JMWJMMM «warfr » «rt

7 :•!-:;/ '063 -52- TM-l/VuM/'G* -'00

Figure 2U

fW

&£&&&*:

©
17 May 1963 -53- TM.LO-810/lOl/OO

1

o

Next, the determination is made as to which branches of which decision points
are to he activated in .the first test. These decisions and these branches
are indicated on a test list. The same form and method of presentation is
used both for the decision point matrix and the test list. The header
information on the form allows one to specify the "type" of use along with
associated information (e.g., Test Number and Test Weight.) Next, the number
of branches not yet activated is determined and additional tests (and test
lists) are prepared. The fact that "paths" or combinations of branches have
cumulative effects is recognized and as many paths as time permits are
incorporated into the test lists.

In order to effectively prepare these test lists, a great deal of desk checking
is performed on the program's logic. Errors found here can greatly minimize
the time required for the actual verification on the computer.

*

"ssKjp ,itss- *^itfs aSS^' j fjprpBP«n?r.3p. «■

■Biitt .^ÜüTlpti

IT May 1963 .5*- TH-LO-810/lOl/OG

t Figure 25

I-
i

fiälfe^gfei&SteJsü

0

f.

fr

■aB^Jms^mm^iL -".r -

17 May 1963 "55* W-LO-810/101/00

Upon completion of the test lists tiie inputs necessary to activate the
branches specified in the test lists «re generated «ad recorded. Wherever
possible, these inputs ere taken from the subsystem verification model, übe
subsystem verification model is a collection of representative data vhich
describes the subsystem in miniature. In the'Planning Subsystem it contains
a sample attack force, a sample target system and the characteristics and
capabilities of each. Hie.usage of the verification model data insures a
common basis for verification as vill be explained in the discussion of Task
Verification.

The expected outputs are then manually computed and recorded. The verifica-
tion plan is reviewed for completeness and accuracy by the technical super-
visor and revisions are made as needed.

Test weights are attached to each of the tests as a function of their sise
and complexity. The application of test weights facilitates a detailed
schedule for verification. For example, if three tests were planned, the
first weighted at 50, the second at 30, and the third at 20, and if the
program is to be tested in ten weeks, then, in order for the schedule to be
maintained, the first test should be completed after five weeks, the second
after eight, the third after ten. This detailed schedule permits, the manager
to more closely assess program verification progress.

The second step in Program Verification is the actual verification of the
program. Each test is run on the computer and expected outputs are compared
with actual outputs. Variances are noted and then causes are starched out and
corrected. The program is considered to be verified when all expected outputs
and actual outputs agree.

S« «uto^^. iifa, ..^^rift^v-lfaiiiiwT^rrt^i^MWiliBiäiitiia^-..' '

17 May 1963 •5«» »-LD-810/101/00

>tt -.ay.

 ''-***.- . y,, : ,,.

1
Figure 26

i

iäa^Mü

17 May 1963 -57- m.LO-610/lOl/öO

C

Task Verification

The specific goal of Task Verification is to insure that each program inter-
üt&tion and each I/O operation functions properly. The inputs to Task Verifi-
cation include the verified JOVIAL program decks, Task Design Specifications,
data specifications, and the subsystem verification model.

In Task Verification, as In Program Verification, there are two basic steps,
i.e., preparation of a plan and the actual verification on the machine.

The first step is the creation of a verification plan. As stated above, a
specific goal of task verification is to insure that each I/O operation
functions properly. This is accomplished by insuring that each sequence
parameter (discussed below) is activated.

■**A, ■ata

.7 May 196 3 -58- TM-110-8; 0/IT

Figure 27

iä

IT my 19&3 -59- m-LO-810/lOi/oo

,

Sequence parameters are higher order language statements which cause programs
to be operated and I/O operations to be performed. They «re the medium in
Which tasks are coded, IXtese statements are prepared fro« a sequence para-
meter matrix i#fcich graphically portrays each operation and the order in vhi ch
it is to be accomplished. This sequence parameter matrix is used as the task
verification matrix.

^to*

IT May 1963 •60« 'TM-Ü)-8J0/10I/00

Figure 28

c i? mv 1963 -61- TM»UV8IO/IOI/OO

Test lists indicating which sequence parameters are .to fee activated for each
te?&'are'constructed from the task verification matrix.

In the Hireling Subsystem a new concept of task verification evolved because
many tasks contained a large nuafoer of programs and simultaneous verification
of all programs at one tine was found to be not feasible. IMs concept is
called .component verification, and is the verification of a portion of a task
at a time. For example, assume'that a task consists of programs A, B, C, D

• and tp- 'One component, then, might consist of programs A and B, another of
programs C and D, yet another of C, D and E, and finally, the largest component
of A, B, C, D and E. When tasks are verified in this fashion, the task veri-
fication matrix developed for verifying components smaller than the total task
Is based on subsets of the sequence parameters which make up the total task.

IJponcompletion of the test lists, the inputs (needed to activate the specified
sequence parameters and operate the tests) are devised and recorded. The
subsystem verification model data previously employed in program verification
are again used. Their usage in both program and task verification minimizes the
need for manually calculating expected outputs during task verification, since
the outputs calculated during program verification can be used.

Any expected outputs which have not. been computed during program verification
are now computed. All expected outputs are recorded.

The task verification plan is now complete. It is reviewed for accuracy and
completeness by the technical supervisor and changes are made as needed. As
in program verification, test weights are applied to enable the manager to
more closely assess progress.

M
n

17 May 1963 -62- TM-LO-810/lOl/oO

->

Figure 29

© i? my 1963 -63- TM-LC 810/IOI/OO

The
on»

tecoaft step :
-""iwjr 'step in

in task verification is the actual verification on the computer.
the production process requires many functions to Ve performed.

First - utilizing the JOVIAL program decks, every program is recompiled with
the same version of the Compool (i.e., data dictionary.) This step Is very
important since the Compool changes fairly often and all progress oust reflect
the same data definitions. The results of the compilations are binary program
decks.

is the completion of the coding of task parameters, (There are two
kiads of task parameters, the sequence parameters previously mentioned, and
I/O parameters. I/O parameters completely define the I/O operations the tas??
performs.) The teak parameters are coded and systoolic decks and listings are
produced. These are then submitted for assembly, which results in a task
parameter binary deck and listing.

At this time the i/o Assignment cards are prepared. The System Control Program
(the Executive), when initiating a task, first checks the mounted tapes against
the assignments specified on these cards.

1

Third - is the generation or updating of the System Master Tape with the binary
task parameter and program decks.

In devi sing the verification
The function of this step is

Fourth - is the generation of data environment,
plan, the inputs were simply recorded on paper.
to generate this same data on tape or disc.

Fifth - is the actual operation of the task for the purpose of determining
whether the initial environment was correctly established by the Executive.
The initial environment consists of all programs and data which are to be in
core when the task begins to operate.

The last step is the complete operation pf each test of the task on the
machine. As in program verification, the expected outputs are compared with
the actual computer outputs. Causes of variances are determined, changes are
made and the task is rerun until the actual outputs match the expected outputs.
When all actual and expected outputs agree, the task is considered to be
verified.

■v?

1%

17 May 1963 -ok- m-Lo-810/101/00

Figure 30

m IT ttey 1963 -65*
«ns-LO-810/101/00

vi. img^AL RHLE&SB PHASE

%eJ

Purjpose Of 1foe Internal Bel ease Phase

This phase consists cf the "packaging* of decke, listings, tapes, and documents
that comprise the subsystem, and delivery of all these components to the group
that iiill perform subsystem testing and installation on the user's computer(s).

This phase is of great isportance. All of the previous phases nay have been
done extremely well, resulting in a high quality subsystem. But if little
attention is given to the manner in which decks, etc. are assembled, sequenced,
and turned over, this may create a poor first impression that can persist in
causing the subsystem to be regarded as being of lesser quality than is really

the case.

Equally important is the documentation. Documents perform several functions —

1) they give a genenl overview of the subsystem;
2) they present the specific methods (to operators and programmers) for actually

running the system on the computer;
3) they present the specific methods by which the users will actually use the

system;
h) they specify (via flow diagrams, coding specifications, etc.) how the system

was produced and thus indicate how the system can be corrected, maintained,
and modified for future needs. Without documents that axe complete, accurate
and clear, users would not know what to do with the decks, listings, and

£ A JWiw» ,ü In xn we mal Belease And Their Solution

Perhaps the main problem is that, all too often, the Internal Release Phase
is not regarded In its true light . . . that is, the technical persons who
produced the subsystem feel that they have done their 3ob by producing a good
program subsystem, and that it isn't too Important to insure that the compon-
ents are released in an orderly, organized manner.

Our solution has been to procedural sre this phase, thus insuring that all neces«
sary steps are followed without exception.

= 7 ,"«-y 963 66- >.-LO-8!0/;0!/'X

;
Fi^or« 3-

I

IT May 1963 »67- TM-LO-8IO/101/00

Methodology Of Internal Belease

This phase consists of producing card decks and tapes, and writing the necessary
documentation. Stone of the documents will already have been written in previous
phases of ^e production process, and would only need to he updated at the
Release phase. Other documents, the contents of which depend on the results of
the final phases of verification, are considered part of the release package;
however they «ill not he completed until several weeks after the Internal
Belease Phase.

o
The- Belease Package consists of card decks, tapes, and documentation. . All decks
are accurately identified. They are assigned version numbers which will be
updated each tin« a deck modification is »de, TUB decks Included in the Release
Package are.: ■

Symbolic JOVIAL Program Becks
* Binary Program Decks

Symbolic Task Parameter Decks
Binary Task Parameter Decks

Only one tape is a part of the Release -Package. It is the System Master ?epe
and contains the Executive programs, tae necessary support prograas and tasks,
and all of the k6% Planning Subsystem programs and w.sks.

Documentation is the last part of the Release Package. It consists of the »ore
significant documents produced in the various phases. More precisely, it con-
sists of:

©

An Over-all Index And Guide To Final Documentation
Final, Program Subsystem Specification
Data Organization Documentation
Task Design Specifications
Program Design And Coding Specifications
Computer Operator Manuals

It should he noted, of course, that the group which ha« produced the subsystem
does not divest itself of responsibility after Internal Release is completed.
This group continues with on-going maintenance responsibilities for a
specified period.

May 1963 •68»' m-LO-810/lOl/OO

a.

1

Figure 32

-■fei : *j.JE. .*Ws;.- *?■»
'^:*v.^/

©

o

IT Äf 1163 -*9- W.10.81C/101/00
(f*ge 7© »**)

VII ~

In t$&* pager» we have documented the actual management methods and controls
used to produce the i*6§L Planning Subsystem. 4 question tfcmt will i&evitably
arise la - Hov «ich time should this production process take, and, mJ vm an
estimate of the size of the program system to fee produced, how many -programmers
are needed?

Wie authors of this paper have built up an extensive body of experience concerning
these gaastions. We plan to document the results of this experience in a future
paper, to he devoted to tine phasing, scheduling, and budgeting. However, ve
would not want to conclude the present paper without touching on these topics.

our experience indicates that the total production process for the initial
development of a large-scale computer program system should take a minimum of
twelve months. (By initial is meant the first time that the system is produced.
If tae'sajm system -is le*'e£;upda£»d-.. expanded, or otherwise revised, the time
phasing would most likely he less than twelve months.) lhls assumes adequate
manpower, computer time, and so forth. We believe that the relative weight to
be placed on each phase is ©s follows (of coursa, there will necessarily be some
overlapping of the phases):

Translation Phase 1 month
Design Phase 3 months
Coding Phase 1 month
Verification Phase 6 months
Internal Release Phase 1 month

Furthermore, our experience indicates that a useful working figure is to assume
that production will be at the rate of 12 machine instructions per man per day
(assuming average level of programming experience); or 2U0 machine instructions
per month assuming 20 working days per month(this takes into account vacations,
holidays, etc., during the year.) It should be made clear that this production
rate covers the entire period from, the start of Translation to the conclusion
of Internal Release.

Of course, the figure of 12 machine instructions per man ptr day is one that
will inevitably be increased as the production process becomes better defined,
and as the programming state-of-the-art advance!. Also, the minimum twelve
month time span may be able to be reduced.

Assume that a manager is to produce a computer program system, which it is
estimated will contain 72,000 instructions (this estimate must be the result of
extensive data processing experience.) Using the rate of 12 machine instructione
per man per day, ve arrive at a needed manpower figure of 25 programmers for 12
months. Using the Time Phasing chert above, the manager can develop detailed
work plans and thus keep close check on whether the schedule is being adhered to.

€

1

1

1
1

IT Hay 1963 -71- m-LO-810/lOl/OO

*

VIII. COWCLÜSIC«

"Good order is the foundation of all good things.N

- Idmuad l-urke
i

' ' '^' ■ {
^e rrlson d'etre for the existence of computer program systems is that they |
perform intricate calculations far more rapidly and accurately than
beings. A computer program system operates in an orderly fashion, at lighten-
ing speed.

But in order to produce a good program system, managers must themselves'
utilize a system of production, or what we have termed in this paper a
"production process. ° We might say that managers need a "system for toe
system" which will help them to produce the hest computer program system
possible, at optimal time and manpower costs.

In this paper, we have delineated such a system, consisting of five primary
phases: Translation, Design, Coding, Verification, and Release. Of course,
we make no claims that these five phases constitute the "perfect" management
system for producing a large-scale computer program system. lo doubt, with
the passage of time and the achievement of further experience, better "systems
for the system" will be evolved. Indeed, the authors of this paper are seeking
to refine and improve the system documented in this paper.

As we visualize it, the role of this paper is two-fold:

1. To emphasize that as computer program systems become larger and
more complex, it is imperative that managers have a carefully
conceived, workable plan for the production process.

2. To make available our experiences in managing the production of
a 300,OCX) instruction computer program system.

It is our hope that this description of how the k6% Planning Subsystem is
being produced will stimulate other managers to publish the systems they use
for producing their large-scale program Systems. With this cross-fertilisation
of ideas, techniques, and actual experiences, the state-of-the-art can be
significantly advanced.

•" - ' .™™«-««H»*jir.l„ *?-i

1? Mqr 1963 -72- TM-LO-6IO/IOI/QO

• GLOSSARY
1 #"Y.. .VIWMMMwillilMHi

%65L SXSTQf*» the ^6% System is the Strategic Mr Cowsaad Control System. It
1» « large-scale, computer-based program systemTthat is being desisted and
programed by the System Itevelopment Corporation, la cooperation with other
organisations, for. use by the Strategic Mr Comma.

CCWPOOL ■ Cocmunlcaticrifc Tag Pool, This is a collection of Information re-
lating allTten tags, 'table tags, constants, and parameters to absolute
atorag« locations ia core memory, or auxiliary storage. A coapool «ay take
the form of a magnetic tape, a deck of punched cards, or a printout.

BGKSJTOT • Ibis is a set of support programs which was especially designed to
control the operation of the Planning and Control programs which comprise the
fc6§L System, Specifically, the-Executive controls input/output operations,

of programs, and so forth*

WWCTKMMt AREA - lach major subdivision of the Planning Subsystem, as derived
from thm QDR* a* The basic criterion employed in defining logical subdivisions
is the functional interdependency of individual functions. {.Refer to Trans-
lation that». Step 1.)

raCTXCMAL HiCW CHÄBT - This is a form of documentation which helps insure
that the analysis (Translation Phase, Steps 1, 2 and 3) is performed correctly.
It signifies completion of analysis, and is essentially a graphic presentation
of the prose statement of requirements. PrograsiBers are required to produce
functional flow charts for each ÖSF. (Refer to Translation Phase, Step 3»)

JOVIAL - This is the higher-level programming language that has been developed
at the System Development Corporation, and is being used in the ^651» System.

LOGICAL TASK, LOGICAL JCB - Logical task is the same as the (actual) task
defined below. It is the task in a preliminary stage of development. The
primary distinction is that machine constraints have not yet been considered.
Similarly, a logical job is an (actual) Job. It is the Job in a preliminary
stage of development, for which machine constraints have not yet been considered.

*

ODR SÜBFÜNCTION (OSF) - An OSF l.r - further breakdown of a yUNCTIOHAL AREA.
The purpose of breaking down fui -ional areas into OSF's is to distribute the
work-load to programmers on an equitable basis. (Refer to Translation Phase,
Step 2.)

aJtoaagafcjT l-i-n'i inÜlT I i

1? May 1963 -73-
(Last page)

m.LO-810/lOl/OO

f

;

OPSRATIOKAL DESIGN RBQEHREffiuTS (ODR's) - These documents constitute the
information base for the production process, They are t&e primary inputs
(along with the System Integration Document) to the Translation Phase.
OCR's contain the following sections: general statement and description
of the requirements; logical designs, including assumptions, in both prose
and diagram form; specific requirements indicating the areas of huraan .
interaction vith the machine; specific operational progma requirements.
(Refer to Introduction.)

PRELIMINARY PROGRAM SUBSYSTEM SPECIFICATIOM - This document incorporates
the results of the Translation Phase. It. identifies the logical tasks and
jobs, the data sets, and the input and output requirements of the subsystem.
It also contains prose and graphic descriptions of the manner- in which the.
various logical tasks and jobs relate. Publication of this document signals
the completion of the Translation Phase. (Refer to Translation Phase,
Step 5.) "

PROGRAM, TASK, JOB - The definition of a program is that which is standard
throughout the programming profession. A task!'' is a set of computer programs
and associated data environment, designed to fulfill specific requireBents
stated in a part of, or one or more ODR's. Each set (i.e., each task) is
discrete in that it has a unique identification, a definite beginning and
end, and operates relatively independently of other sets. A job (for the
Planning Subsystem) is defined as a set of tasks (this "set" may be com-
prised of one or more tasks) that will perform the functions called for by
a "communication request" (a "communication request" is the means by which
the 46% Planning Subsystem is utilized by SAC personnel. They input to
the computer, via card inputs or a keyboard, requests for specific functions
that are to be performed by the Planning Subsystem. These are called
"communication requests", and it is the job that fulfills these requests.)

TOST»! INTEGRATION DOCUMMT - This document is produced before the start
of the production process as defined in this paper, and is thus one of the
inputs to the Translation Phase. It specifies the formats of the user
input messages and of output displays. (Refer to Introduction.)

'„'ABLE, ITEM - A table is a definite allocation of core memory or auxiliary
storage registers for the storage of specified inforraatioa. An item con-
sists of one or more bits in a table, set aside for the storage o^ specified
information.

/ i

rH

4r

i i .

fl

I #

Unclassified
Security Ca—«iflcAtton

DOCUMENT CONTIOL DATA. R&D
(Stvrttr «I—<Wfrtan «# Mil», tad» W «fc«lwt» UK Ht4»utnt «whW» wM *> «rt—rf «*jw jfj» wwll npnrt I« tteaaffi«*)

1. OniGIMATIKC ACTIWITV fC*<pw«M «!*•*>

System Development Corporation
Santa Monica, California

■ • RtrOMT MCUPITV CLASSIFICATION
Unclassified

I» «MOUP

I- NC^OWr TITLC

Management Report: Controlling Production of Complex Software

« OtSCftlPttVt HOT« rl>p» •* H*M* —* *w*Ml*» «MMJ

I AUTMOUfSJ ft«** MM «ml MM. tmltlml)

Connelly, J. J., Osajima, Y. R.

• REPORT OATE

17 May 1963
I. CONTRACT Oft ...NT NOAp 19(628)-16^Ö

System U65L—SACCS, for Electronic
* »«oj.c* NO. systems Division, AFSC

(562.02)

7«. TOTAL NO. or »*•■•

73
7k. NO. or M«ra

NUMocwfS;

TM-LO-8IO/IOI/OO

9». OTHIR RfRORT MOfSj (Anr*m*t *•< *«r *• •••it>i«tf

10 AVAILASILITV/UMITATION NOTICM

Distribution of this document is unlimited

11 «UrrHMINTAHY NOTCt I? «r-OMORIHC MIUTAPY ACTIVITY

11 ABSTRACT
Describes the development and production processes of the Planning Subsystem of
the Strategic Air Command 46% Systems. Each of the Subsystems which compose the
465L System, alone, is in itself a large integrated program system» The"Planning
Subsystem" is comprised of approximately 90 programs, 300,000 machine instructions
and a data base of 6,000,000 words. This paper which was originally presented as
a briefing is restricted to a definition of the basic functions of the production
process. It Includes 32 illustrations to clarify the text.

DD ■KB. 1473 Unclassified
Security CUyiflcgtioa

Unclassified
Security Classification

u
KtV WORDS

LINK A

NOLK •T

LINKS
wety WT

UMXC

Mil.«

Software
SACCS
Planning Subsystems

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the ntnt and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organisation fcorporate author) issuing
the report.

2a. REPORT SECUWTY CLASSIFICATION: Enter the over*
all security classification of the report. Indicate whether
"Restricted Data" ia included. Marking ia to-be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, whan applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all caaea should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a apeciflc reporting period ia
covered.

5. AUTHOR(S): Enter the name(s) of authoKa) aa shown on
or in the report. Ente» last name, first name, middle initial.
If T.ilttary, show rank and branch of service. The name of
the principal *;<thor in an abaolute minimum requirement.

). REPORT DATI. Enter the date of the report at day,
month, year; or month, year. If more than one date appear«
on the report, uae date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pagea containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
reference« cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report waa written.

8b, Be, fc 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such aa project number,
subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offl-,
ciai report number by which the document will be Identified
and controlled by the originating activity. This number atuat
be unique to this report.
9b. OTHER REPORT NUMBERS): If the report has been
assigned sny other report numbers (either by In* otiginitor
or bv ill« aponaor), alee enter this number^«).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of UM report, other than thoaa

Imposed by security classification, using standard statements
•och as:

(1) "Qualified requester« may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC Is not authorised."

(3) "U. S. Government agencies may obtain coplea of
thia report directly from DDC Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of thin
report directly from DDC. Other qualified users
shall request through

M

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the -eport has been furnished to the Office of Technical
Services. Department of Commerce, for aale to the public, indi-
cate this fact and enter the price, if known.

IL SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the depart mental project office or laboratory sponsoring (pay
ing (or) the research and development Include address.

13 ABSTRACT: Enter an abstract giving a brief and factual
summary of the document Indicative of the report, even though
it mny also appear elaewhere in the body of the technical re-
port If additional apace is required, a continuation sheet shall
be attached.

It ia highly desirable that the abstract of claaaified reports
be unclassified. Each paragraph cf the abstract ahall end with
an indication of the military security classification of the la-
formation in the paragraph, represented as (T$). (S). (C). or (V)

There is no limitation on the length of the abstract. How-
ever, 1he suggested length is from ISO to 225 words.

14. KEY WORDS: Key words are technically meaningful term«
or short phrases that characterise a report and may be used at
indei entries for cataloging the report. Key words must be
selected so that no security claeaificstlon ia required. Identi-
fy»«, such aa equipment modal designation, trad* name. military
project code name, geographic location, may ha used aa k*y
words but will be followed by an indication of technical con-
test. Th« aesignmeat of links, rules, and welghta ia optional.

Unclassified
Security Classification

