
ESD-TR-65-542 

ESD RECORD COPY 
RETURN TO 

SCIENTIFIC & TECHNICAL INFORMATION DIVISION 
(ESTI), BUILDING 1211 

% DIRECT VS INDIRECT ASSESSMENT OF 
SIMPLE KNOWLEDGE STRUCTURES 

H. Edward Massengill 
Emir H. Shuford, Jr. 

March 1966 

DECISION SCIENCES LABORATORY 
ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 
UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

Distribution of this document 
i s unlimited. 

ESD ACCESSION LIST 
ESTl Call No. fr[        SU682     k 

Copy No. 1        of I cjfv 

£*<IH /C*Ofc*>3-to D6 



When US Government drawings, specifications or other data are used for any purpose other than 
a definitely related government procurement operation, the government thereby incurs no respon- 
sibility nor any obligation whatsoever; and the fact that the government may have formulated, fur- 
nished, or in any way supplied the said drawings, specifications, or other data is not to be re- 
garded by implication or otherwise,  as in any manner licensing the holder or any other person 
or conveying any rights or permission to manufacture, use, or sell any patented invention that 
may in any way be related thereto. 

Do not return this copy. Retain or destroy. 



ESD-TR-65-542 

DIRECT VS INDIRECT ASSESSMENT OF 
SIMPLE KNOWLEDGE STRUCTURES 

H. Edward Massengill 
Emir H. Shuford, Jr. 

March 1966 

DECISION SCIENCES LABORATORY 
ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 
UNITED STATES AIR FORCE 
L. G.  Hanscom Field, Bedford, Massachusetts 

Distribution of this document 
is  un I imi ted. 



FOREWORD 
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of uncertainty over choices. 
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ABSTRACT 

This report compares two types of classroom testing in terms of 
efficacy in guiding instruction.    One type of testing is the 
traditional indirect method based on the observation of choices. 
The other type is the direct method based on admissible probability 
measurement.    The general finding is that the direct methods 
always perform as well as and in most cases better than the in- 
direct methods.    This deficiency in the indirect method can be 
alleviated in theory by introducing redundancy into the test and 
asking the same question over and over again.    The performance 
of indirect methods depends in a very critical manner upon the 
information available to the instructor from other sources about 
the current state of knowledge of each student.    The performance 
of the direct methods is unaffected by this.    The gain in effective- 
ness achieved by using direct methods must be balanced off against 
the cost of using these new methods.   A direct method may require 
more student time per item than does an indirect method.    This, 
however, may be more than compensated for by the requirement 
for redundancy when using the indirect method.    In addition, since 
a direct method does not require additional information from the 
instructor as to the current state of knowledge of each student, 
the possibility exists that much larger classes may be taught 
with no loss in effectiveness thus implying even further economic 
benefits from the use of direct methods to guide classroom in- 
struction. 

in 
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DIRECT VS.   INDIRECT ASSESSMENT  OF SIMPLE 
KNOWLEDGE  STRUCTURES 

II.  Edward Massengill and Emir H.   Shuford,   Jr. 

1.       Statement  of  the  Problem. 

In  this   report we  compare,  mathematically,   two testing methods  in 

a well-defined situation.     Our purpose  is   to determine how  the  two methods 

perform in the matter of classifying students  in this  situation and to 

ascertain  some  of  the  distinguishing characteristics   of each  method. 

Since  our results  are  logically derived from explicitly stated assumptions, 

we have no doubt as   to their validity  for the specific situation we  are 

examining.     Further,  if there  are  real-life situations which are equivalent 

to the  one we  define,  we  can be  certain  that our results will  apply  to 

these situations.    But we will not be concerned here in seeking to 

determine the extent  of the generality of the situation we have chosen. 

This  is not crucial  for our purpose.     This  should not be  taken to mean 

that we  are not concerned with how these results may relate  to more 

complex situations.    On the  contrary, we hope that the findings   for 

this  situation will give us  a better idea of what  to  look  for in more 

complex situations.    And we  are  confident  that  the  approach we have  used, 

namely the application of purposive mathematics   (Massengill,   1964),  can 

be extended to aid us  in the  analysis  of these more complex situations. 

The two methods which we will compare are  the traditional indirect 

method,   IM*,   and the direct method,  DM.     In  the  indirect method,   the 

* 
We intend  to deal with  the  indirect method in  terms  of decision  theory 

so that  all  of the  information  available   to  the person using this  method 
may be explicitly taken into account. 



student  is  given a question with  two or more alternatives  and asked  to 

choose  the  correct   alternative.     In  the  direct method,   the  student  is 

also given  a question with  two or more  alternatives.     But instead  of being 

asked  to give  the  correct  answer,  he  interacts with  a measurement  procedure 

which  outputs   an  inferred subjective probability  distribution  over  the 

alternatives .* 

In order  for the  results   of  our comparison  to be  meaningful,  we must 

know exactly what  assumptions   are  involved both  in  the  student's   response 

process  and  in  the  two  testing methods.     To keep  the  assumptions  simple, 

and  thereby make  the  arguments  easier to   follow,  we will use  a very simple, 

but not unrealistic,   testing situation.     The  test will consist  of one  two- 

alternative  question,   or the  same  two-alternative  question  repeated several 

times.     The  purpose  of  the   test will be  to help  determine  if  a student 

knows  a particular concept. 

The  concept which we will  test deals with   the  classification  of  two 

objects,  B  and  C3   according  to whether A-B  or A=C.   A  given  student has  been 

through  a  lesson  in which  the  instructor has   taught  that A=B  and  that  it  is 

not  the  case  that A=C.     If  the  student has   learned A=B, we  shall  say  that he 

is   trained,   T.     If he has   learned  that A=C, we  shall say  that he  is  mis- 

trained,  tnT.     If he has   learned nothing,  we  shall  say  that he  is  untrained, 

uT. 

At  the  close  of the   lesson,  we want to classify  the  student  as  belonging 

to one  of  the  three  categories:     T,   uT3   or mT.     The  student's  next  lesson 

See Shuford  (1965),   Shuford,  Albert,  & Massengill  (1965),   and Shuford 
& Massengill   (1965)   for more  information  about   these measurement procedures 



will depend on how ne is classified at toe end of this lesson.  Thus, if 

he is classified as trained, he will go on to the next lesson.  If he is 

classified as untrained, the same lesson will be repeated.  And if he is 

classified as mistrained, he will be given the same lesson in a different 

form,  because of the effect of the classification on the next step of the 

student's training, we will use a payoff scheme for which a correct class- 

ification is more valuable than an incorrect one and for which the values 

of correct classifications are equal and the values of incorrect classifications 

are equal.  For the derivations of this report, a correct classification will 

have a value of 1.0  and an incorrect one a value of 0.     Table 1 shows the 

payoff matrix for this decision problem. 

TABLE  1 

Payoff Matrix  for  tnc   Instructor who  is   Classifying 
Students  According  to Three  Categories 

ACTS 
CATEGORY 

iW(CL^) 
T uT mT 

o-y   T 1.0 0 U P(T) 

V uT 0 1.0 0 V(uT) 

a   •  mT 0 0 1.0 P(rrfT) 

It should be noted that  the  particular utility  structure we   are  using 

makes  the  expected utility  of  an  act equivalent  to the expected proportion 

of  correct  classifications.     Thus,   each  statement which we make  about 

expected utility  can  also be  interpreted in  terms   of expected proDortion 

of correct  classifications.     For  the most  part,  we will use  the  term 

expected utility since  it  is  more  general. 



2.     Classification Without Testing. 

It  is  possible   for  the  instructor  to  classify  students with  some 

accuracy even without  giving them a  formal  test.     After  all,  he may have 

observed  the  students  during the  lesson  and may have  some  rather strong 

feelings,   at   least  for some  of  the  students,   about which  category  a 

student  is  in.     Suppose,   for example,   that  a student spent   the whole 

period  of  the  lesson working on  some  other assignment.     Then  the  instructor 

might have  reason  to believe  that  the  student  is  untrained.     Suppose  that 

another student  dozed during the   lesson  and  only  came  to  life  during the 

time  the  instructor was  discussing A=C.     But  suppose  that he  did not 

remain  awake   long enough   to hear the  instructor make   the point   that A=C 

is not the  case.     If  the  instructor noticed  this,   then he might be 

pretty  sure   that   the  student  should be   classified  as mistrained.     Finally, 

suppose that a third student had  listened intently  to the  instructor's 

words  during the   lesson.     Then the  instructor might be  fairly  sure  that 

this  student was   trained,  since  this   concept  should be  easy   to  learn if 

one hears  it explained.     Thus,  by  observing  the  students  during the   lesson, 

the  instructor might be  able  to do a fairly  good job  of  classification 

without  testing the  students. 

If an instructor can evaluate his subjective probabilities concerning 

which category a student is in and express them, then his expected utility 

can be  determined  for each  combination  of prior probability values. 

Figure   1 shows  the surface of all the possible combinations  of the 

instructor's prior probability values  for the  three categories.    The 

surface is  divided into three sections each of which is  characterized by 
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Surface showing all of the possible triplets [PCD, P(uT) , P{mT)}.     The 
value of any member of a triplet is >_ 0  and P(T)   + P(uT)   + P(mT)  =  1.0. 
The surface is divided into three areas.  In each area a different one of 
the probabilities is a m.«vimum for all points within that area. P(>v?}     is 
constant along a giver slant line. 



tiie   fact  that  one  of  the   three  categories  has   the maximum probability 

for each point  in   that  section.     From Table   1,  we  see  that   the  expected 

utility  of  a given  act  is  equal  to  one  of  these   three probabilities.     The 

act which  specifies   the  choice  of the post probable  category  is   the  one 

which maximizes  expected  utility  and  the probability  of  the  most probable 

category  is  equivalent  to the  maximum expected  utility.     Using  this   inform- 

ation,  we  can  determine  the  expected  utility  associated with  each  possible 

prior probability   combination. 

Figure  2  represents   this   information  in  two dimensions.     It  is 

helpful  to  conceptualize  the  information  contained  in  Figure  2  in   terms 

of  three   dimensions.     The base  of  the   three-dimensional   figure would be 

identical  to Figure   1.     The   third  axis   of the  figure would  contain EV(a*), 

which  is  shown by  the  dashed   lines   in  Figure  2. 

iNote   that  the minimum expected utility  is   1/2  and  that   this   occurs 

only  for the  probability  combination  (1/3,1/3,1/2),   i.e.,  P(T)=P(uT)=P(mT)=l/3. 

The maximum expected utility,  r,U(a*)  = 1.0,     occurs   at   three  points,   the 

three  corners   of  the base  of  the   figure.     The  values   for  the  other points 

on  the  surface  grow  larger as  they  increase  in distance  from the point 

(1/3,1/3,1/3). 

If  the  instructor wants   to  decide whether or not  to  test  and which 

kind   of  test  to use,   obviously,  he will need  to know how  the  expected 

utility  of  testing  for each  of  the  two methods   compares with  the expected 

utility   of   classifying without   testing.     Thus,  we will need   to  obtain,   for 

the  two test methods,   the  information  analogous   to that which we  obtained 

and summarized in  Figure  2   for  the  decision  to classify without  testing. 
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Figure 2. The dashed lines show the expected utility for all the points through 
which the lines pass.  For example, EU(a*)   for the point (.5,.4,.1)   is .5. 



3«       The  Response Model  for  the Two Methods   of  Testing. 

To begin v/ith we will examine   the  model which  generates  the  responses 

for  the  situation we  are  considering.     In  order  to make  our assumptions 

concerning the model explicit,  we will describe  it in terms  of a task 

being performed by  a machine.     In  applying our results   to  any  real-life 

situation,   the main  concern will be  to determine  if  the model  is   a  good 

description  of  the behavior  of  the  students   in question.     It might be 

helpful  to point  out  once more   that our main purpose  is  not  to determine 

which,   if  any,   actual  situations  the model  describes but  rather  to study 

the performance  of  the  two test methods   for  the model  in  an  attempt  to 

make statements  about the value  of each method and  to get some  idea of the 

important  characteristics  of each method. 

Figure  3 shows  the  response model  in the  form of a  computer  flow 

chart.     We will examine  the   logic  of  the  flow  chart  step-by-step  in order 

to make  the  assumptions  in  our response model  as   clear  as  possible.     First, 

let  us  examine  the   location  FACT.     During the   training period,   one of three 

things  happens   to FACT.     It takes  the  value A=E,   corresponding  to the 

category,   T;   it  takes   the value A=C3   corresponding to the  category,  mT; 

or it  remains  empty,   corresponding to the  category,  uT. 

When  the  test  is   given,   there  are  two pieces  of information  given  as 

input  to the machine:     the  type  of testing method,   indirect  or direct,   and 

the  two-alternative question  on  the  concept.     The  first step  for  the machine 

is   to  compare  the   first  alternative,  A  ,  with  FACT.     If A     and  FACT  are 

identical,   then  alternative   1  is   given  a probability  of  one,   i.e.  P(A  )=1.0, 

and  alternative  2  is   given  a probability  of  zero.     If A    is  the  opposite  of 



1. Type  of Test : CM or PM 

2. Two-alternative  question 

Compare 
Aj  identical / 
with FACT  X 

Alternative 
v  with y 
>sTACT»/^ 

"V Ai  opposite 
'        of FACT 

FACT is empty 
> f v \f 

P(A2)  = 1 P(A2)  - .5 P(A2)  = 0 

P(AP) 

- 

- 0 P(A2)  = .5 P(A2) = 1 

Indirect 
Method 

Direct 
Method 

PUT •c 

P(A1)   m   .5 

Choose: 

A1 with Prob 1/2 
A2 with Prob 1/2 

Answer: 
*1 

A. 
Answer: 
alternative 
chosen in 
proceeding step 

P(A2)=1 

,P(A2)=0 

LJ(A2)  = .5 

P(A2)=.S        \IP(AJ).-0 
P(ApJ=.S )\P(Ap)=l 

*FACT contains: 
A-B  if trained 
A"C  if inistrained 
Empty if untrained. 

figure 3.  Flow chart of the model producing the responses for the two test methods, 



FACT,   then the  probabilities   of  the  two  alternatives   are   the  reverse  of 

the  case  above.     If FACT  is  empty,   then each  alternative  is  given  a 

probability  of  .5. 

Table  2  shows   the  two possible  forms   of our question,   i.e.,   one with A=3 

TABLE  2 

P(A^)  Associated with Alternative i3  where i=l  or 2,   for  a Given 
State  of Knowledge  and  a Given  Form of the Question 

FORMS 
CATEGORIES 

TRAINED UNTRAINED MS TRAINED 

F 
1 

A2:     A=B 1.0 .5 0 

A2:     A=C 0 .5 1.0 

F 
2 

A2:     A=C 0 .5 1.0 

/io: A=B 1.0 .5 0 

as   the   first  alternative  and  the  other with A=C as   the  first  alternative. 

Of  course,   the  question could also be  asked in  true-false  form.     The 

table  also shows   the  three  possible  states   and  the  results   that  our model 

would yield  for P(A-)   for  a given   form of  the  question. 

It  is  immediately  evident  from Table  2  that  if we  could  obtain P(A-) 

from a given student, we  could  correctly  classify him with  one  question, 

for this  situation.     For example,   if we  gave  a student  the  first  form of 

question,   F1     and  found  that P(A-.)=1.03  we would know  that he was  trained. 

10 



If we   found  that  V(A  )-.Si  
we would know  that he was  untrained.     And  if 

we   found  tnat P(A-,)=0t  we would know  that he was  mistrained.     Getting 

P(A-)   is  exactly  the purpose  of DM.     Thus,   for  this  situation,  DM would 

give  us  perfecL  classification with  a  one-item test. 

After  comparing flj with  FACT,   the machine  then determines which 

testing method  is being used  and  acts   accordingly.     If  the  DM is  being 

used,   the machine  goes   to  a probability measurement procedure  and it is 

this  measurement  procedure which   actually   outputs   the  probabilities   for 

the  two  alternatives,   after having inferred  them from the  results  of  an 

interrogation  of  the machine. 

If  IM  is   being used,   then  the machine   chooses   one   of  the   alternatives 

as  being  correct.     The  machine  makes   its   choice   in   terms   of P(A-t).     This   is 

not  an  arbitrary procedure  but  is based  on  the machine's  payoff matrix. 

The payoff matrix is  shown  in Table   3.     The  utility structure  of  the 

payoff matrix is   "all-or-none",   i.e.,   a  correct  outcome  is  more  valuable 

than  an  incorrect  one,   the   correct  outcomes   all have  equal values,   and 

the  incorrect  outcomes   all have  equal values.     If we   represent  the  value 

of  a correct  outcome with 1.0  and the value of  an incorrect  outcome with 0, 

TABLE  3 

The  Subject's  Payoff Matrix  for  the  Indirect Method  of Testing 

ACTS 

CATEGORIES 

EU(a.) Al A2 

a2:    A1 1.0 0 P(A2) 

a.,:    A 0 1.0 P(AJ 

11 



then  the expected utility  for  a given question  is  equivalent   to the 

probability  of the most probable  alternative.     Thus  the  optimal strategy 

is   to  choose   the  most probable  alternative  as   the  correct  alternative. 

If both  are  equally probable,   then  an  answer  can be  obtained  by  choosing 

each  alternative with  a probability  of   .5.     Thus,   the branching procedure 

in Figure  3  for  the  choice method is  firmly based  on  decision  theory 

(Shuford & Massengill,   1965). 

Table  4 shows   the  alternative which will be   chosen  as   the   correct 

alternative  for  a given  form of  the question  and  a given  category  of 

TABLE  4 

The Alternative which will be  Chosen  as  the  Correct Alternative 
for  a Given Form of  the  Question  and  a Given Category  of Knowledge. 

FORMS CATEGORY 

TRAINED UNTRAINED MI STRAINED 

Fl 
Ay     A-B X .5 

A :    A=C .5 X 

F2 
A2:    A=C ..5 X 

A p.'     A=B X .5 

knowledge.     If we  compare Tables  2  and  4, we will see  that whereas  DM 

gives  us  unambiguous   information  about  a subject's  state  of knowledge 

with  one  question,   IM does  not.     For instance,   if  Form  1  of  the  question 

is   asked  and  the  student  responds with A-,  as  the  correct  answer,   then we 

know  that he  is not mistrained but we  do not know,   for certain, whether 

he  is  trained  or untrained.     If he  responds with An,  we know  that he  is 

12 



not trained,  but we  do not know,   for certain, whether he  is  untrained 

or mistrained. 

On  the basis   of  this  informal analysis, we  can draw some  conclusions 

about  the  two types  of  testing and the question  of whether or not  to test 

in  this  situation.     At  this  point, we  can say  that DM guarantees   correct 

classification  of all students  on  the basis  of  one  question,   for  our 

situation.     If no test  is   used,   correct  classification  of  all  students   is 

only  guaranteed  at  three points,   i.e., where  a given  one  of  the   categories 

has   a probability of  1.0  of  occurring.     The  use  of 1M improves   on  this 

somewhat by  always   giving correct  classification not  only when  a given 

category has   a probability  of  1.0,  but  also when T and mT together have 

a probability of one.     Thus,  DM is better than either IM or  classifying 

without  testing  (CWT),   for most  conditions, whereas   the   latter two  are 

never better than DM.     Also,   the  goodness   of IM and COT  depends   on  the 

values  of instructor's prior probabilities, whereas DM only depends  on 

the data observed.    This  gives  us  a start  toward our purpose of evaluating 

the  two testing methods   for the  situation we have  specified.     But now we 

would  like   to know how much better,   if  any,   DM is   than  IM  for each  possible 

condition.     This will enable  us  to be more  specific in  our  comparison  of 

the  two methods.     In  order to  answer  the  question  of how much better, we 

will need  to get  information  for IM and DM which  is   analogous   to the 

information  for CWT summarized  in Figure  2.     This will  require   a formal 

analysis  of  the  two methods  in  terms  of  the  situation we  defined. 

13 



4.       Formal Analysis   of  the Two Testing Methods. 

In  this   formal  analysis,  we will  only show  the  results   of  our 

derivations with  comments  on  these  results.     To enable  the  reader who 

is  interested  to get some  idea of the  steps  involved  in  the  derivations, 

we  include  in Table  5  a summary  of the basic decision-theoretic  relation- 

ships  used here.* 

TABLE  5 

Summary  of  the Basic Decision-Theoretic Relationships  to be used 
in the Derivations   of  this  Report 

Payoff matrix: 

CATEGORIES 
ACTS 

Sl 
S 

2 
S 

m 
al Ull U12 

• • •  u   . u 
lm 

a2 U21 Ct(J '''       U2j       • 
u 

2m 

• » 
• • • 

• 

• :   i • 

H Hi 
• • 

...  u • „•  • %m 

an "ni "n2 "nj "nm 

Prior probabilities:     probability of the  category S •, 
J 

P(S.);    where IP(S J=1.0 

Conditional probabilities:     probability  of  data a.-*   given  category 5., K J 

P(dh\SJ;    where IP((L IS.)=1.0 K    J k     k    j 

Unconditional probabilities:     probability of data dy, 

P(dv) =    %P(SJP(d  \SJ;    where }P(d)=1.0 
 K 0     J        k    j k      k  

* See Raiffa and Schlaifer (1961) for the mathematical background leading 

to these relationships. 
lu 



TABLE  5   (Cont.) 

Posterior probabilities:     probability  of  category S.  given  data d, t 

P(Sj)P(dk\S.) 
P(S.\d.)    where  W(S . | d )=1.0. 

11     K P(d-,,) 3      3     k 

Expected  utility  of  act  a-   given  data dp: 

EU(aAdh)  =    Y&(S .\d )u ^    k 3      3k     i-J 

=      P(S .\d );   for the  utility  structure  of Table  E.l. 
t>      K 

Maximum expected utility  given  data dh: 

ciKa^ld, ) - max EU(a.\d, ) 1   k i1  /: 

Average expected utility of responding with the optimal act for each data result: 

EU(a*)  » iP(d )EU(a*\d ) 
k      k ' k 

=    ZP(S )P(d  \S )y   for the utility structure of Table E.l, 
3d k    3 

=    Expected proportion  of  correct  classifications. 

4.1    Direct  Method. 

At  this  point, \ie want  to show  formally  that  the  average  expected 

utility yielded by  DM is  equal  to  1.0   for  all  conditions   in  the  situation 

we  are  using.     In  other words, we want  to show  that DM will  always   lead to 

the  correct  classification  of students  in  this  situation.     And in  the 

process we will show  that  the  instructor's  prior probabilities   are 

irrelevant. 

Prior probabilities.     There   arc  three prior probabilities:  P(T)3 

P(tiT)y   and P(mT)=1.0-P(T)-P(uT),   i.e.,   the probability  that  a student 

is   trained,   the probability  that he  is  untrained,   and the probability  that 

he  is  mistrained.     The  three probabilities  sum to 1.0. 
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Data.     For a given question, we  can  get  one  of three  data  results 

from  the  student.     These  are  the  probabilities  1.0,   .5t   and  0.     As   is 

evident  from Table  2,   the meaning of  the data will  depend  on  the   form 

of the  question used.     Our derivations will be  in  terms  of  the  first 

form.     The.  results will be  analogous   for  the second.     Thus,   the possible 

data results   are: 

d. 

d. 

P(A J-.5, 

P(A )*>0. 

Conditional probabilities.    We will now state  formally  the  relevant 

conditional probabilities. 

P(d2\T)    = 1.0. 

P(d2\uT)    =1.0. 

P(dJmT)    - 1.0. 
o 

Actually, we  can  talk  about the probability  of each  data result  given 

each  category,  but  there  is no need to    do so in  this   case,   since  for 

a given category,   one  data result has  all  of the probability.     Thus, 

if  the  student  is  trained,  only d    can  occur;   if he  is  untrained,   only 

c?9  can occur;    and if   he  is mistrained,   only d    can  occur. 

Unconditional probability  of  the  data.     In  this  case,   the probability 

of a given data result  occuring is  equal to  the prior probability  of the 

category which  can yield  that  result.     Thus, 

P(dj)  - P(T)P(d2\T)  + P(uT)P(d  \uT)  + P(mT)P(d  \mT) 

= P(T)3 

P(dJ  = P(uT)3 

P(d3) = P(mT). 
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Thus,   for example,   the probability  that d~ will  occur is  equal  to  the 

probability  that  the  student  is  trained,  P(T). 

Posterior probabilities.    Now  let us  see how  a particular data 

result  affects  the prior probabilities. 

P(T\d2)    m P(T)P(d2\T)/P(d)    = 1.0 

P(uT\d2)    =1.0. 

P(mT\d3)    =1.0. 

It  is   clear that  a particular category  is  certain  to  occur once  a  given 

data result has been  observed  and that  a different  category  is  certain 

to  occur  for each  data result.     Thus,   a data result  implies,  unambiguously, 

the  state  of knowledge  of  the  student.     As we  can see   from the  equations, 

the prior probabilities have  absolutely no effect  on  the posterior prob- 

abilities.     One  implication  of  this  is  that  an instructor need have no 

prior knowledge  of  the  student  taking the   test  in order  to  classify him 

correctly in this situation. 

Expected utility.     Since  for this  situation  the maximum expected 

utility  for a given data result  is  equivalent  to the posterior probability 

of  the most probable  category,   only one expected utility is different  from 

0  for a given data result  and that  one  is  equal  to 1.0.     Thus,   the maximum 

expected utilities  are: 

EU(a*\d2)    =1.0, 

EU(a*2\d2)    =1.0, 

EV(a\\dz)    = 1.0. 
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Tnis means  that the  optimal acts  are:   aj,     if cZ,  is  observed;  dp,   if dp 

is  observed;   and a^3   if <ij is  observed.     And from the equations we  see 

that  the expected utility  of  the  optimal  act  for each possible  data 

result  is   1.0. 

Average expected utility.     Since  an expected utility of 1.0 is 

guaranteed regardless  of the data result  obtained,   the  instructor is 

guaranteed  an  average expected utility of 1.0,   i.e., 

EU(a*)    =1.0. 

This  is  true  regardless  of the values  of the prior probabilities.    Thus, 

over the whole  surface  shown in Figure  2,   the expected utility  for a 

one-item test is  1.0.     This  is  an improvement  over the  approach of class- 

ifying without testing except at  the three corners  of the triangle.     Of 

course,  whether  or not  one  should  test with DM or  classify without   testing 

depends   on  the  values   of the prior probabilities   and  the  cost  of  testing. 

4.2     Indirect Method. 

We have  seen  that  only  one question is   required for DM in  order that 

each  student be  correctly  classified,   for  the  situation under  discussion. 

We have  also seen,   informally,   that there  are situations  in which IM does 

not  allow  for perfect  classification,   at  least with one question.     Thus, 

in  the very beginning, we will  include  the  idea of  repeating the  same 

question  a number of times  to see  if this might  improve  the performance 

of one who uses  IM.     In deriving the  results  for IM, we have  assumed that 

the student's  answer to a question does not influence his  answer to the 

same question when it is  asked again.     In other words,  the machine always 
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behaves   as   if  a question has  not been previously  encountered.     (We will 

exanine   the  implications   of this   assumption  for IM in Section  5.1.     For 

DM,   of  course,  we  do not have  to worry  about  repeating items,   at   least 

in  this  situation,   since  one  item is  sufficient  for perfect  classification.) 

Prior probabilities.     These  are  the  sane   as   for DM. 

Data.     If  a question is   asked  once,   there  are  two possible pieces  of 

information:     the  student  is   correct,   C,   or he  is not   correct,   ~C.     From 

Table  4,  we  can see  that  if a student  is   trained,   the  data result will 

always be  C.   If he  is  mistrained,   it will  always be   ~c.     But  if he  is 

untrained,   it may be either.     (It  is   this   last possibility which brings 

ambiguity  into  the  situation.) 

If we  ask  the  question n  times,  we will  get r C*s   and n-v -C's.     For 

the  trained student, we  can  only  get  the  result  r^=n3   i.e.,  n  correct 

answers   out   of the n  times   the  question  is   asked.     We will denote  this 

result  as   Cn.     For the mistrained  student, we  can  only  get  the  data result 

r*=0s   i.e.,  no  correct  responses   out  of n questions.     We will denote  this 

result  as   CQ.     For the  untrained student,  we  can  get either of  these  two 

results   and  also the  result  Cr*}  where  r may equal  any  integer between 

1  and n-1.     Thus, we  are  interested in  three  data results   for CM:  C . 

CQi   and C-p*. 

Conditional probabilities   of  the  data.     The  following are  the  relevant 

conditional probabilities   for any  one   trial: 

P(C\T) =      1.0 y 

P(C\uT)    - .5,  P(~C\uT)    = .5, 

P(~C\mlT)    = 1.0. 
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Since the  trials  are independent, we  can obtain the  conditional probabilities 

for a given  category  of knowledge,  S3   by use  of  the binomial probability 

equation.     Thus, 

P(Cr\S)     =  (*)     [P(C\S)]  v     [P(~C\S)]  n~v . 

As we have  seen,   only  one  data result,   Cn has  any probability  for  the 

trained student: 

P(Cn\T)    =    1.0. 

Likewise,   only  one data result,   Co has   any probability  for  the mistrained 

student? 

P(C0\wT)     m 1.0. 

For the  untrained student,  however,  each  of the  three  data results  has 

some probability  for a finite n? 

P(Cn\uT)     - _    1 
2n 

P(CQ\uT)    = _JL 
2n 

P(Cp4\uT)    = 1 -   [P(Cn\uT)  + P(CQ\uT)] 

_ 2^-1-1 

2n~1 

We  can see  immediately  that  as  n  approaches  infinity,   the   last probability 

approaches   1.0  and  the  total situation  tends   to the  one v/e had  for DM,   i.e., 

a particular data result  implies   a particular classification. 

Unconditional probabilities.     Now we want  to  look  at  the probability 

that  a given data result will  occur. 

P(CJ    = P(T)  + A-   P(uT) 
n 2n 

•*• P(T)     as    n •* °°    . 
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P(cr*) =    2n-2-l        P(uT) 
2n-l 

-*• P(uT)     as    n -*> °° . 

P(C0) =    i-2n         PfuT)     +     7 

2n 

-*• P(mT)     as    n -*• °° . 

Here,   again,   as  n  approaches   infinity,   the values  of  these  probabilities 

approach   the  same  values   they had  for DM. 

It should be noted that  for n=l> 

P(Cp*)    = 0, 

since  for n=l r must equal 0 or 1.     In  other words  only  two of  the  data 

results   are possible when n=l. 

Posterior probabilities.    Now we want  to see how  a particular data 

result  affects  the probabilities  of the  categories.     First,   let us  see 

what happens when Cn is  observed. 

p(T\cn)   = __EH1  
P(T)  + J_   P(uT) 

-». 1.0    as    n •*• °° 

jk P(uT) 
P(uT\Cn)      m   __^  

P(T) + — PUT) 
2n   - 

0    as    n 

P(mT\C )    =    0. n 

Thus,   as we have  already  observed,   only  T and uT have  any probability when 

C    is  observed.     And as n approaches  infinity,   only T has  any. 

When Cn is  observed, 
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P(T\ C )    =    03 

P(uT\c0)    = JH  
l-2n 

P(uT)    +    1.0 - P(T) 2n 

-*• 0 as    B •» » j 

pr^|c0;   =   I-P(T)   -  PUT)  
—??;-   P(uT)  -h 1.0 - P(T) 

•*• 1.0    as    n •*• oo 

Only uT and nrT have any probability when C0 is  observed and,   as n 

approaches  infinity,   only rrd! has  any. 

When Cr*  is  observed, 

P(uT\Cr*)    =1.0. 

Thus,   as n  approaches  infinity,the posterior probabilities  take  on the 

same values   as  they  did for DM. 

Optimal  acts.     For  the  utility  structure  of Table   1,   the  optimal 

act  for a given  data result  depends  on which  of the posterior probabilities 

is  largest.     For the outcome Cn>   the  optimal strategy is  to choose aj when 

P(T\cn)     > P(uT\Cn)3 

i.e.,  when 

P(uT)     < 2nP(T)   = 7, 

and  to  choose £<> when  the  inequality is   reversed. 

For the  outcome  CQ)   the  optimal strategy  is   to choose  <Zg when 

P(uT\C0)   >    P(mT\C0), 

i.e., when 

P(uT)   >    —^—   ~    —?H-   P(T)   =    Z, 
2n+ j 2n+l 

and to choose a» when the inequality is  reversed. 

For the outcome C *    the ..optimal strategy is  always  to choose a^. 
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Thus we  see  that the  optimal  act  given  Cn or  C    depends  not  only 

on the  data observed but  also on  the  relationship between P(vT)   and 

P(T).   There  are  four different possible  relationships between P(uT)     and 

P(T).   These  are  shown  as  the  row headings  of Table  6.     For a given  one of 

these  relationships,   a given data result  determines  the  optimal  act.     For 

example,  when  Z<P(uT) <Y,   ctj is   the  optimal  act when  Cn occurs.    We  can use 

these  relationships  to divide  the  area shown in Figure  1 into four sections: 

Sj3   Spi   S^j       and 5^.     Each  of the  four sections  is  characterized by  one  of 

the  rows   in Table  6,   i.e.,  by  a  certain pattern  for the  optimal  acts   given 

the   data. 

Figure  4 shows  the  surface   of possible  prior probabilities  divided 

into four sections   as  a function  of  the  relationship between P(uT)     and 

P(T),   for n=l.   Each  of  the  sections   corresponds   to one  of  the  rows  in 

Table  6.     For example,   the  area  labelled Sg  corresponds  to the  second  row 

in  the  table.     The   line  in  the  figure  labelled  Cn represents   the  dividing 

line   through  the  surface  for the  two possible  optimal  acts whenCn is 

TABLE  6 

SECTION DATA 

Cn Cr* Co 

S2:Z<P(uT)   < Y al a? a2 

S2:     P(uT)   < ltZ a2 a2 aZ 

S3:    P(ut)   > x,z a2 a2 O.C, 

S4:Z>P(uT)   > Y a2 a2 a3 

p/i 
Y = 2nP(T);     Z = -$- 

2n+l 

Sn 
9n + 1 

P(T) 
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\ 

1.0 

P(uT) 

P(uT)  = 2nP(T)   £ Y 

P(uT)  m 2" 2n 

P(T) +WTT =  Z 

3     1.0    P(T) 

,<> 
'* 5*. 

Figure  4. The division, for n=lt   of the surface of possihle prior probability 
combinations according to the pattern of optimal acts for the 
possible sample results. For any section, the acts listed are 
optimal given Cni   Cj,*, and C0,   respectively. 
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observed.     For the points   above   that  line 

P(uT)     >  P,n P(T)} 

i.e., 

P(T\Cn)   <    P(uT\Cn), 

and,   thus,   a.2 should he  chosen.     The  inequality  is   reversed  for the points 

below  that  line  and so cij should be  chosen.     Similarly,   the   line   labelled 

CQ represents   the  dividing  line   for the   case when  C0 is   observed.     As we 

have  seen,  when  Cr* is   observed,   ag  is   always   chosen  regardless   of   the 

relationship between P(T)   and P(uT).     Remember  that these  results  are  for 

n=l.     We  can divide  the  surface  in  analogous   fashion  for each possible 

value  of n.     Figure 5  shows   the  divisions   ranging  from n=l   to n=4.     Notice 

that as n  gets   larger,  £<>.,   tne  section  of  the  surface  for which  it  is 

optimal to take a.-,*  a^3   a.~ respectively,   for the data results  Cn>   C^,   CQ3 

gets   larger.     And notice  that  as n  approaches  infinity,   the  dashed  line 

approaches   the P(uT)   axis   and  the  solid  line  approaches  the  right hand 

boundary of the surface,  i.e.,   there is  only one  optimal strategy  for 

each  data result  regardless   of the prior probabilities.    Thus   as n-**>3   CM 

gives   results  for all  conditions which  are equivalent  to  those  given by 

PM for one item. 

Average expected utility.    We  can  find the  average expected utility  for 

any point  in  any  of  the  sections.     To do this, we  simply weight  the expected 

utility  of  the  optimal  act  given  the  data by  the probability  of the data, 

for each  data result,   and then sum over these weighted  results.     This  gives 

us  the  average expected utility,   given P(T)   and PfuDj   of  choosing the 

optimal act  for each  data result.     Thus,   for  the  four sections   of our surface, 

25 



<%». 

\ P(uT) 
n->°° 

- P(uT)  = 2n P(T) 

pn pn 

-P(uT) = - hipm +?*n 

<— [P(T)  = „ P(uT)  = 

Co-ordinates of the point of 
intersection of the two lines 
in terms of n. 

?,n+2 

Figure 5.  The changes in the four divisions of the probability combination 
surface as a function of n. 
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EU(a*\S-,)  =    P'n-J      P(uT)  + P(T) 1 2" 

•*•    P(uT)  + P(T)   as n * °°     . 

EU(a*\SP)   =   -   JL,   PCKT; M.O 

> 2.P as n ->• »     • 

ma*|s4; • -  -i- PCUT; + 1.0- P(TJ 

•*•   1.0 - P(T)  as n •+ «  » 

Figure 6  shows  the  average expected utility,   for n=2j   for selected points 

on  the  prior probability surface.     The   lowest EU in  the  figure  is   .5.     This 

lowest value  only  occurs  for one point   (.25,   ,503   .25).     As we  go out   from 

this  point,  EU gets  larger.     Compare   these  results with  Figure  2,   i.e., 

the  case  in which  no test  is  given.    There   the worst possible EU is     1/3. 

This   occurs   only for the point  (1/3,   1/3,   1/3).    Mien no test  is  given, 

there  are  only  three  points,   the  three  corners,   for which EU(a*)  = 1.0. 

These  are  the  three possible  cases  for which  two  of the  states have  a 

probability of 0 while the  remaining state has  a probability of 1.0.     But 

notice  that when  a one-item IM test is   given,   that besides  these  three 

points,   there  is   a whole  line,   the P(T)   axis, which  gives  an  average 

expected utility  of  1.0.     These  are  the  cases   for which P(uT)=Os   i.e.,   the 

student is either trained or mistrained.    The  reason the  average expected 

utility  is   1.0 for these  cases  is  that  the  data discriminates  perfectly 

when only  f and mT are possible.     In other words,   a correct  answer implies 

that  the student is  trained, while  an incorrect  answer implies  that he  is 

mistrained.     Consult  Table  4  to confirm this  point. 
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(i> 

^ 

EU(a*)  = P(uT) 
EU[a*\P(T),  PfuT)) 

El)(a*) 
\p(uT)-P(T) + 1.0 

EU(a*)  =  | P(uT)  + P(T) 

FU(a*)=- PfuT)  *   1.0 

1.0 P(T) 

%>. 
Figure 6. The average expected utility for selected points on the probability 

combination surface for n=l. 
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If we were  to draw a figure analogous  to Figure 6  for each value of 

ttj we would see  that the minimum average expected utility for a given n 

would be  at  the point where the  two dividing lines  cross.    The coordinates 

of  this point  are 

P(T) = ^Jrzr-   >  P(uT) = 
2n+2 2*+2 

and  the  average expected utility  for  this  point  is 

2n 

2n+2 
Table  7 shows  the  value of  the minimum average expected utility  for 

selected n's.    Note that as n approaches  infinity,  the minimum average 

expected utility  approaches  1.0.     Also note that even for eight questions, 

the minimum value  is  getting very  large. 

TABLE   7 

The Minimum Average Expected Utility for the IM Test for Selected Values of n. 

n 
Minimum Average 
Expected Utility =  2" 

2n+ 2 

0 •ooo••• 

1 .500 

2 .666... 

3 .800 

4 .888... 

5 .941 

6 -.970 

7 -.985 

8 -.992 

• i 

-»" oo 1.000 
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5.     The Effectiveness   of  the Two Methods . 

Before we  discuss   the effectiveness  of the  two methods,   it  should 

be  reiterated that  the  conclusions which we  draw  are  in  terms   of  the 

specific  response model we have  assumed.     Some  or  all  of  our conclusions 

may be  valid  in more  complex situations,  but  that is   a matter for  further 

investigation. 

To put  our discussion  of effectiveness  into perspective,  we will 

restate  the main  assumptions   that have been made.     It  is   assumed in  the 

response model we  are  using that  a student has  probabilities   for the 

alternatives   of  a question  and that  the  values  of  these  probabilities 

depend in  a specific way  on the state  of his   training.     For  the  direct 

method  of  testing,   it  is   assumed that  these probabilities   can be  inferred 

by  a measurement procedure.     For the  indirect method,   it is   assumed 

that  the  student uses   them with  an all-or-none payoff  function  to choose 

the  alternative which will maximize his expected utility. 

An  all-or-none payoff  function has  also been  assumed for the 

instructor who  is  making the  classifications.     This  means   that the 

expected utility  of  the  instructor can  also be  interpreted as   the 

expected proportion of correct  classifications,and,  of course,   that 

maximization of expected utility can be interpreted as maximization 

of expected proportion of correct  classifications. 

The question of  the effectiveness  of  the  two methods  can be  looked 

at  from two points  of view.     One  is   from the point  of view of  the 

instructor who  is,   at  a given moment,   classifying a student.     The  other 
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is   from the  point  of view of some  outside  agent who knows  the  true 

state  of each  student  and who  can  thus  evaluate  the  instructor's 

performance  in  terms  of the  actual state  of each  student's knowledge. 

For both points  of view,   average  expected utility  is  used  as  the measure 

of effectiveness. 

5.1    Effectiveness   from the  Instructor's  Point  of View, 

First,  we will  look  at effectiveness  from the  point  of view of  the 

instructor.     Once  the  instructor has   assigned prior probabilities*  to 

the  three  states   for a particular student,   and given  that he  accepts   the 

response model   and  the  payoff structtire we have  specified,   the  results  of 

our derivations   furnish him with  an expected  utility  for each  act given each 

possible   data  result   as  well  as   average  expected utilities   for  responding 

with  the  optimal   act  for each  data result.     Thus he  can  evaluate  the 

effectiveness   of each method in  terms  of  its   average  expected  utility, 

EU(a*). 

Having    related     the  results  of  our derivations with  effectiveness, 

from the   instructor's  point   of  view,   let  us  briefly  review COT,   IM,   and 

DM in  terms   of EU.     For classification without  testing,  CWT,  EU ranges 

from  .33...   to  1.0.     For IM,   the  range  of EU depends  on n.     Table  7 

shows   the  lower bound  of  the  range  for various  values  of n.     The  upper 

bound  for IM is   1.0  regardless  of n.     For DM, EU is  a constant,   1.0. 

Thus,  DM has   the narrowest  range  of EU.     And  aside  from the  cost  of using 

the methods,  DM is better  than  or equal  to either CUT  or IM for  all 

These probabilities  are prior to the  results   of  the  testing but may 
include  various  types   of non-test  information  about  the  student. 
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conditions.     Of  course,   a person  choosing between  the methods would 

take  cost  into account.     We  do not  do it here because  it  is  not  relevant 

to our arguments  but  our results   are  in  a form which will enable  anyone 

who is   interested to  do so. 

Classifying without  testing gives   an EU of  1.0  at  three points;   the 

points   for which  a particular state  is  given  a probability  of  1.0.     IM 

gives   an EU of  1.0 at  these points   as well  as   at  all  of  the  points where 

F(uT)=0.     And,   of  course,   DM gives   an EU of 1.0  at  all points,     "ote  that 

the points   for which CWT and IM give  1.0 all  require  some   form of  certainty, 

either that  a particular  category  is   the  case  or that  a particular category 

is not  the   case. 

Influence  of instructor's  prior on effectiveness.     For C-TT,   the  closer 

a prior is   to  one  of the  three  corners,   the   larger EU is   (See  Figure  2). 

For IM,  the  closer a prior is  toward  the  corner for which P(uT)=1.0 or 

toward the   line   for which VivD^O,   the  larger EU is.     This  means   that   for 

CWT  and IM,   the  instructor may be  able  to use background  information  on  a 

particular student  in  conjunction with his  observations  on  that  student 

during the   lesson  to  increase, his EU for the  student. 

By observing students during a lesson and by connecting his observations 

with background information on the students, the instructor may get some 

idea of what percentage of the group will fall in each category. lie could 

use this information to obtain a single prior which would be used for each 

student. His effectiveness in classification might be very good but there 

is room for objection to his use of a single prior since it is, in effect, 

using  a group   average  to  classify  individual  students.     He   could  remedy 
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this  situation by  recalling what he had observed  about particular 

students  and  attempting to  assign a prior to each student  reflecting 

his   feelings   about  the  state  of knowledge  of that particular student. 

And  further,  he  could use his   feelings  concerning the  group  as   a whole 

to  check  the  coherence   (de  Finetti,   1937)   of his  priors   for individuals. 

Thus  the  instructor may be able to improve the effectiveness  of CWT 

and IM by obtaining relevant background  information  on his  students   and 

by  observing them during  the   lesson.     Certainly,   this   is   an  improvement 

over  approaches which  use  only part  of  the  available  information  to 

classify students   and which  use  that  information  to classify  a student 

not in  terms  of his   absolute performance but  in terms  of  the performance 

of some  group  of which he  is   a member. 

Since  relevant information  about  individual students  is  essential 

to CWT  and IM,  but not   to DM,   it is  easy  to see  the  contribution  that 

DM can make  in situations,   conforming to our assumptions,   in which  the 

person making the  classifications may not be on hand to observe  the 

student,  e.g.,   self-instruction,   instruction by  television;  or in which 

there  are  large numbers  of students  in  a class  thereby handicapping  the 

instructor in obtaining  information about  individual students.     But 

regardless  of how much  information the  instructor is  able  to obtain 

about his  students,  his  performance with CWT  and IM will never be better than 

with DM,   for the  situation we  are  considering. 

Our comments  on the  instructor's  prior point up  the  fact  that  there 

is   information  other  than  answers  to  test items which  can be  taken  into 
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account in  classifying students.     To  the  extent  that  this   information 

can  increase  the  instructor's   certainty  about  the  state  of  a student, 

CNT  and IM increase  in effectiveness.     '2ut  for  the  situation we have 

defined,   C'JT  and IM  are  never more  effective   than DM.     Thus,   if  cost, 

in  conjunction with effectiveness,   justifies   the  use  of DM,  we  can skirt 

the whole  issue  of  the  instructor's  probabilities,   since  the  information 

incorporated  in  them  is  superfluous.   * 

The   reader should be   clear  on  the   reason  that  IM is   less   effective 

for most  conditions   than DM.     The  reason does  not   lie  in the  area of the 

instructor's  subjective  probabilities.     The  derivation  of both  IM and 

DM involved  the  instructor's  subjective probabilities.     The  difference  is 

in  the   conditional probabilities  yielded by  IM as  opposed  to  those  yielded 

by DM.     The  conditional probabi]ities  of DM simply supply more  information 

than   those   of  IM.     Thus,   the   fact   that   IM is   less   effective   than  DM 

cannot be   taken   as   a deprecation  of subjective probabilities.     And,   of 

course,   the  adoption  of DM would not eliminate  subjective  probabilities 

from our consideration since  the  student's  subjective probabilities   are 

basic  to the direct method. 

As  n  gets   larger,  the  prior probabilities  of  the  instructor become 

less  important  in  the  case  of most  priors  and the  effectiveness  of IM 

approaches   that  of DM.     And,   as we have  seen,   the  approach of  IM to DM in 

terms  of. performance  is  quite  rapid so  that n does  not have  to be  very 

large   for IM to  approximate DM     (See Table   7).     This brings  us   to  the 

question  of  independence  of  trials. 

*    It should be noted  that by eliminating the need  for the  instructor's 
prior probabilities   and  thus   allowing  a  larger class   to be  taught with 
no  loss   in effectiveness  this  economic benefit  of DM should  certainly 
affect  the  slight  additional cost  of testing with DM. 
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Independence  of  trials.     TJe have  assumed  for IM that   the  test   items 

for a given   concept  are   regarded by  the  student   as  being  independent. 

This   assumption would seen tn put   an  extreme   restriction on  the  possible 

applications   of our results   for IM.     It  is   difficult  to picture  real-life 

situations   in which we  can be  sure  that  the  answer  to  a question will not 

affect  a subsequent  answer to  the  same  question especially  if  it   is   asked 

again   immediately. 

Since,   in  our model,   students who  are eitber trained  or mistrained 

would  always   give  the  same  answer to  repetitions  of  the  question  as   they 

gave  the   first  time  it was   asked while  students who  are  untrained would 

not,   it  is  the  untrained student   for whom the  independence  assumption 

is   critical.     Suppose,   for example,   that  an untrained  student   followed 

the  strategy,  which  could be  optimal  in terms   of his   formulation  of  the 

task,   of  giving the  same  answer to a particular question each  time  it  is 

repeated that he  gave   the  first  time  it was   asked.     This  means   that  only 

the   first   trial would have   any  value   in  classifying  the   student  and   that 

the  results   for the n  corresponding to the number of  times   the  question 

was   asked would be  misleading.     Thus,   the  results we have  derived  for I*', 

for n>l3   apply  only  if the  trials   are  independent. 

Tliis  means   that  IM is   restricted to situations   for which  the   trials 

are  independent  or that  additional  assumptions  must be made  in  order to 

handle  the  case  for n>l.     But DM is   applicable without  further assumptions 

regardless   of whether the  trials   are  independent. 

Summary.     Now  let  us   summarize  our conclusions  regarding the effective- 

ness  of the   two methods   from the  standpoint  of  the  instructor.     We will  do 
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so in  terms  of three values  of n:     n=0s   n=l3   and wr*".     Remember  that 

we  are not  taking into  account   the  cost  of  using the methods. 

For n=0j   DM is   at  least  as   good  as  classifying without  testing.     The 

two procedures  are equivalent  only when  the  instructor is   certain  that  a 

student  is  in  a particular one  of  the  three  categories.     In  cases where 

certainty  is   lacking and  the  instructor has   little  relevant non-test 

information on  the  student,  DM does much better than CVT. 

For 71=1,   DM is   at  least  as   good  as  IM for all  conditions.     IM is 

equivalent  to DM only when there  is   certainty  that  the  student  is  untrained 

or when  there  is   certainty  that he  is  not  untrained.     And here  again,  since 

the prior probabilities  are  important  for IM,  DM will do much better than 

IM when  certainty  is   lacking  and  the  instructor has   little  relevant non-test 

information on the  student. 

As n gets   large,   the  role  of  the  prior probabilities   lessens   and  the 

effectiveness  of IM increases.     As n-*»,   IM approaches  DM in  effectiveness. 

Rut  if more  than one question is  used for IM,   the   trials  must be  independent 

or more  assumptions  must be made  in  order for the  results  of  IM tc be 

meaningful.     Of course,   this  necessity  for independence  does  not   apply  to 

DM,   since  only one question  is  necessary  in  order to give  perfect   class- 

ification.     Thus,   if the  instructor does not know whether the.  independence- 

assumption  applies  in  a situation  and he  does  not have enough non-test 

information  to tell him for certain which  state  a given student  is  in,   then 

DM will  outperform IM.     Ue  should  also note  that  for TM test  situations   in 

which  a very  large number of questions   are  asked,   the  cost  of using IM 

will  finally   come   into play  even   if  it   is  negligible   for small n  s. 
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5.2     Effectiveness   from an Outside Agent's  Foint  of View. 

Ue have discussed  the  effectiveness  of  the  two test methods   from 

the point  of view of  the  instructor who  is   classifying students.    Now we 

want  to  look  at  the same  question  from the  point  of view  of  an  outside 

agent who knows   the  actual  state  of each  student  at  the  time  the student 

is   classified.     The.  outside  agent   is   in  a position  to evaluate  an instructor, 

and thus   to evaluate  IM    given the  instructor,   in terms   of  information  in 

addition  to  that which   the   instructor has?    V?e night  point  out  that  for 

Our purpose  it  does  not matter whether there  is   an  agent who  actually 

possesses   a knowledge  of  the  category  of each  student,   since  the  conclusions 

we  draw will be  the  same whether or not  anyone  actually has   this knowledge. 

The   first step  in  the  agent's  procedure  is  to  classify students who 

have  already been  classified by  the  instructor.     Whereas   the  instructor 

classified on  the basis   of T,   uT,   and mT3   the  agent  classifies  on  the 

basis  of  the  particular prior distribution  the  instructor used  for a 

given student.     We will  represent  an  instructor's  prior distribution 

by P3   where P is  the vector  [F(T)3   P(uT)3   P(mT)].   -As we have  seen,  Figure 

1 shows   all  of  the possible priors.     Once  the  agent has   classified  students 

in  terms  of P,  hi  can  find the  relative  frequency with which  the  students, 

for whom a particular P was  used,   actually  fell in T3   uT3   and rrfF.     We will 

designate this  relative  frequency distribution by F, where F is  the vector 

[F(T)t  F(ul),  F(mT)]  and where F(T),  F(uT),  F(mT)   designate  the proportion 

Note  that the  agent need only be  concerned with IM not DM since DM is 
independent  of the  instructor and  guarantees   an EU of  1.0  for all  conditions, 
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of students, classified by the instructor, who are actually trained, 

untrained, and mistrained, respectively. 

Now the agent is in a position to ask the following question:  "What 

would the instructor's average expected utility be if the students for 

whom he uses P are actually distributed according to F?" We will designate 

this average expected utility as EU(P\F).     NOW let us see how we can obtain 

this average expected utility. 

We have seen, in the case of IM, that the optimal pattern of acts 

for the possible data results depends on the prior distribution used by 

the instructor.  (See Table 6).  According to the results given in this 

table, one of four distinct patterns of action is optimal for each 

possible prior, i.e., for each P.  Thus, for a particular F3   an instructor 

can use the results of Tab]e 6 to determine the pattern of acts, given 

the data, which will maximize his average expected utility.  If the 

instructor gives the pattern of acts associated with P, when F  is the 

relative frequency distribution of the actual states of the students for 

whom P is used, then the instructor would be expected to obtain EU(P\F) 

per student rather than EU(a*).     Thus, at any point, the agent has an 

index, EUF = EU(P\F), of the instructor's performance, so far. 

It may be helpful at this point to distinguish between EUF  and the 

actual proportion of correct classifications that the instructor has 

made for a given P at the time the agent is evaluating his performance. 

The actual proportion of correct classifications depends, at any point, 

on the distribution of data results generated by the students who are 

actually untrained.  We have seen that in the long run this distribution 
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will be a function of a binomial distribution.  T,ut the data results 

will not, in general, be generated systematically.  In other words, they 

will not have the form of our theoretical distribution at every point. 

For example, there may be a run of Cr's so that at a given point many 

more ^n's have been given by untrained students than our equations would 

indicate.  Of course, in the long run, the data results generated by 

untrained students should approach the values given by our equations. 

Thus the actual number of correct classifications an instructor has 

made, up to a given point, may not reflect how well he is using the informa- 

tion available to bin.  In other words, chance fluctuations in the data 

results nay make it appear that he is using the available information 

better or worse than he actually is.  To get rid of this effect, we use 

the theoretical values of P(d\S)   rather than the actual percentages of 

d  given S  when computing EUF.     Thus, EUF  gives the amount the instructor 

would have made per student, by using P  when F  is the case, if the data 

results had been generated according to our equations up to this point. 

And so, arbitrary fluctuations of the data results do not affect the agent's 

evaluation of an instructor at a given point. 

V.'e have said that each prior can ^e associated with one of four 

distinct patterns of action.  Since there are only four possible patterns 

of action, the agent needs only four graphs, for a particular value of n, 

in order to be able to obtain EUF  for any P  and F.     This is because the 

equation for EU(PeS.\F)   is identical to the EU  equation we have already 

derived for PcS.  when F  is substituted for P.     And further, the equation 
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for EU applies   over  the whole P surface   for any PcS-.     The   four 
is 

relevant equations   are: 
c,n-l 

EU(Pc3   \F)    =   —    F(uT) + F(T)  , 
1 2n 

EU(PtS„\F)    =     ~-    F(uT)  + 1.0    , 21 2n-l 

EUfPcSJF)     -    F(uT)     , 

EU(PeSjF)    =    - —   F(uT) + 1.0 - F(T)   . 4 2n 

Using these   four equations,  we  can  construct  the   four  graphs   for 

any n.     Figure  7 shows   the  graphs   for >i=l.      "'otice that?    determines 

which  of  the   four graphs   is  relevant  for a particular situation.     For 

example,   if FeS?,   the  agent would  refer to the  upper left hand  graph. 

Once  the  graph  is   chosen,   the   relevant point  on  the  graph   is   found ly 

taking the point  corresponding to F.     Also notice that  the  range of EUF 

is   from 0 to  1.0  for each  of  the  graphs.     In  other words, when  the 

instructor gives   P for X students   and  the   frequency  distribution  of 

the actual states  of  the X students  is F,   the average  expected utility, 

EUF, which he  could  have been expected  to make  in this  situation,   could 

be anything between 0 and  1.0 depending on P and F. 

To  clarify  the   agent's   procedure   of  evaluation,   let   us   look   at   an 

example.     Table   ?   shows  eight   classifications  by  an   instructor  and   the 

trial-by-trial evaluation,  by  the   agent,   of   the  instructor  and   thus   of 

IM given the  instructor.     For the   first  subject P =  (1.0,0,0).   (This 

prior  falls   on  the border  line between  two sections.     It will be 

sufficient  for the  comparisons we  are  going to make   to  regard  it  as 

being in Sp.)     Thus   the  instructor would use  the  pattern  nj,   a©,   a 3 

for the  data results  Cn»   Cr* and  C-,   respectively.     The  average  expected 
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EU(PeS  \F) 

» -| F(uT)  + F(T) 

F(T) 

\ 
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^ 

F(T) 

\ 

Figure 7. The outside agent's graphs for a one-item CM test. The dashed lines 
show the average expected utility of using a PzS^ given that t^*? act 
states  of  the  students   for whom P is  used are  distributed  as   F . 
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TABLE   8 

Example of trial-by-trial evaluation of instructor by the outside agent 
where a trial is the classification of one student by the instructor in 
terms  of a one-item  (n=l)   CM test. 

Trial 

Instructor'; 3 Prior Section 
in which 
Prior 
located 
for n-1 

Actual 
Category 

of 
Student 

Current  relative 
distribution for 
prior 

frequency 
instructor's 

El) EUF P(T) P(uT) P(rrfT) F(T) F(uT) F(mT) 

1. 1.0 .0 .0 S2 T 1.00 .00 .00 1.00 1.00 

2. .9 .1 .0 Sl T 1.00 .00 .00 .95 1.00 

3. 1.0 .0 .0 S2 VLT .50 .50 .00 1.00 .50 

4. .3 .4 .3 S2 uf .00 1.00 .00 .60 1.00 

5. .9 .1 .0 c ul uT .5(9 .50 .00 .95 . 75 

6. 1.0 .0 .0 S2 T -. 86 ~. 33 .00 1.00 .66 

7. .8 .1 .1 S2 T 1.00 .00 .00 .90 1.00 

8. 1.0 .0 .0 S2 mT .50 .25 .25 1.00 

• 

.75 
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utility,^,  for the instructor is 1.0.     This is given in the next to 

last column.  The actual state of the student is T.     Thus, the current 

relative frequency distribution for P = (1.0,0,0)   is F  = (1.0,0,0). 

And the average expected utility, EUF, of using the pattern given by P 

when F  is the case is 1.0. 

For the second student, the instructor uses a different prior.  Note 

that EU  is less than Ell'  here.  In other words, if all of the students 

for whom the instructor used this prior were trained, the instructor 

would classify them all correctly in the long run in spite of the fact 

that his EU  is merely .95.  This is because if all of the students were 

trained, only the data result Cn  would be generated and, with this prior, 

the optimal strategy is to call the student trained when C is observed. 

On trial three, the instructor uses P= (1.0,0,0)   again.  But this 

time the student is actually untrained.  For n=l     an untrained student 

can be either Cn  or CQ.     This means that there is a possibility of 

conflict between the instructor's prior and the data result, since the 

instructor has expressed certainty that the student is trained.  If Cn 

is obtained from, the untrained student, then the instructor will not be 

aware of the conflict.  His EU will be 1.0.     But since this student is 

untrained, the instructor will be unable to correctly classify all students 

for this prior.  If C0  is obtained the instructor will either have to 

re-evaluate his prior or ignore the data.  If the instructor in Table 8 

obtained a C    for trial 3, or if he obtained a C    and ignored it, his 

would be .5. 

* Our comments on the first three trials can be used as an aid in examining 
the remaining trials in the table. 
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Table 9  shows  the summary measures   for Table  8.     The  instructor has 

used P =  (1.0,0,0)   four tines  and the  actual states   of  the  students  have 

TABLE  9 

Summary measures   of Table  8 showing  instructor's  performance 
to date  from viewpoint of  outside  apent. 

Instructor's Prior Section 
Current  relative   frequency 
distribution  for 
instructor's  orior 

30 EUF 

P(T) P(uT) P(rrff) F(T) F(nT) F(mT) 

1.0 .0 .0 sp, .50 .25 .0,5 1.00 .75 

o . 1 .0 a 
•-'1 . 50 .50 .00 . 05 . 75 

. 0 m /I .3 s?. .00 1.00 .00 .on 1.00 

n . o .1 .1 "'1 1.00 .00 .00 .00 
 1 

1.00 

been distributed as F =  (.50t   .25,   .25).     Thus,  as  far as   the  instructor 

is   concerned,  his   average T'U for the  four trials   is   1.0.     But  from the 

standpoint  of the  agent,   it  is   .75.     This  points  up  a difference between 

PM and CM.     If the  instructor had  used DTI,  he would have been  guaranteed 

the   correct   classification  of  all  four students,     "hit with   IM,  he  is  not_ 

guaranteed the  correct   classification  of each  student,  even  though 

P =(1. 0,0,0)     and EU =  1.0. 

Thus,  wc.  see  that  IM involves  more  uncertainty  than DM.     And  the 

additional  uncertainty  in  IM comes   From  the   fact  that  IM i;;   dependent 

on  the  prior probabilities   of  the  instructor whereas  DM is  not.     If  it 

were known  for  certain  that   an  instructor's  ?' was  equivalent   to P',   then 
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then there would be no more uncertainty concerning IT', for that instructor, 

than there is for DM.  And, El)  could he interpreted as both the instructor's 

average expected utility for that trial ap_d the earnings per trial or the 

proportion of correct classifications per trial which could be expected in 

the long run.  In other words, EU  and EUF would be equivalent.  Under these 

circumstances, we could say that there are certain conditions for which IM 

and DM are equivalent, namely, the conditions for which the instructor is 

certain that the student is untrained or certain that he is not untrained. 

And, of course, CUT would be equivalent to DM for the cases in which the 

instructor gives a prior probability of 1.0 to a particular category. Of 

course, these equivalences are from the agent's point of view. 

But if P and F  are not equivalent for an instructor, then EU  and 

EUF  will not, in general, be equivalent. Thus, we cannot, without making 

further assumptions, say what level of effectiveness we can expect from IM 

for a given instructor.  But we do know that it can be no greater than 1.0 

* 
regardless of the relation of P  to F. 

5.3 Summary 

It seems   clear,   after having  compared  the  effectiveness  of  the  two 

methods both   from the  instructor's  point of view  and   from an  outside   agent's 

point  of view,   that  the  direct method  is  more effective  tban  the  indirect 

method  for all  conditions,   aside  from the question of the  cost  of use. 

From the  instructor's  point  of view,   there  are  conditions   for which  the 

two methods  give  equivalent  results.     Eut  from the  agent's  point of view 

* 
The  questions   raised  in this  section  concerning the  subjective probabilities 

of  the  instructor are  analogous  to questions which will become  relevant  in 
terms  of  the  student's  subjective probabilities when we begin  to  look  at 
situations   in which  the  student's  subjective probabilities   can be values 
anywhere  in  the  interval   [0,1.0]. 
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we  see  that  there  is  uncertainty  involved  in  IM wHc';   is  not  involvec1 

in DM,  viz., we  are never  certain  that  the instructor's P and F are 

related  in such a way  that EU and EUF are both 1.0. 

vie have  seen  also that  the  effectiveness  of  If can be   improved  up 

to  a  limit  of EU=1  if  the  instructor has   relevant non-test information 

on  the  student   and/or if  a question  is   repeated.     But   regardless   of the 

amount  of  additional  information,   the  effectiveness   of  IM can  never he 

greater  than  that  of DM,   since EU for DM is  1.0  for all   conditions.     Ue 

also noted  that  repeated questions   are  valid  for  IM,   in  our situation, 

only if the  questions   are  treated by  the  student  as being independent. 

hC 



REFERENCES 

Finetti, Bruno de (1937)  La prevision: ses lois logiques, ses sources 
subjectives.  Annales de l'Institut Henri Poincare, 7.  [Translated 
and reprinted as "Foresight: its logical laws, its subjective sources." 
in Kyburg, Henry E., Jr. & Smokier, Howard E. (Eds.)  Studies in 
subjective probabilities.  New York: V/iley, 1964.] 

Massengill, H. Edward (1964)  Purposive systems: theory and application. 
ESn~TDR-64-531, Decision Sciences Laboratory, L. G. Hanscom Field, 
Bedford, Mass. 

Raiffa, Howard & Schlaifer, Robert (1961)  Applied statistical decision 
theory.  Boston: Division of Research, Harvard Business School. 

Shuford, Emir H., Jr. (1965)  Cybernetic testing.  ESD-TR-65-467, Decision 
Sciences Laboratory, L. G. Hanscom Field, Bedford, Mass. 

Shuford, Emir H., Jr., Albert, Arthur, & Massengill, II. Edward (1965) 
Admissible probability measurement procedures.  ESD-TR-65-567, 
Decision Sciences Laboratory, L. G. Hanscom Field, Bedford, Mass. 

Shuford, Emir H., Jr. & Massengill, H. Edward (1965)  On communication 
and control in the educational process.  ESD-TR-65-568, Decision 
Sciences Laboratory, L. G. Hanscom Field, Bedford, Mass. 

kl 



Security Classification 

DOCUMENT CONTROL DATA • R&D 
(Security classification of title,  body ot abstract and indexing annotation muat be entered when the overall report ia cleaailied) 

1    ORIGINATIN G  ACTIVITY  (Corporate author) 

Decision Sciences Laboratory 
Electronic Systems Division 
L. G. Hanscom Field, Bedford, Mass. 

2«    REPORT  SECURITY   CLASSIFICATION 

Unclassified 
26     CROUP 

IS/A 
3   REPORT TITLE 

DIRECT VS INDIRECT ASSESSMENT OF SIMPLE KNOWLEDGE STRUCTURES 

4    DESCRIPTIVE NOTES (Type ol report and incluaive datee) 

-None 
5   AUTHOR'S; (Lamt name, tint name. Initial) 

Massengill,  H. Edward 
Shuford, Emir H., Jr. 

6    REPO RT DATE 

March 1966 
7*     TOTAL NO.   OP   PAGES 

-50- 

7fc    NO.  OF  REFS 

8a     CONTRACT   OR   GRANT   NO. 

b.    PROJECT  NO. 

2806 
e  TASK  280609 

la.   ORIGINATOR'S  REPORT NUMBER(SJ 

ESD-TR-65-542 

$b.   OTHER REPORT  NOfS; (Any othernunbon that may be aeelaned 
thia report) 

None 
10   A VA IL ABILITY/LIMITATION NOTICES 

Distribution of this document is unlimited. 

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

Decision Sciences Laboratory, Electronic 
Systems Division, Air Force Systems Command, 
USAF, L. G. Hanscom Field, Bedford, Mass. 

13   ABSTRACT 

This report compares two types of classroom testing in terms of efficacy in guiding 
instruction.    One type of testing is the traditional indirect method based on the observation 
of choices.   The other type is the direct method based on admissible probability measurement. 
The general finding is that the direct methods always perform as well as and in most cases 
better than the indirect methods.   This deficiency in the indirect method can be alleviated in 
theory by introducing redundancy into the test and asking the same question over and over 
again.   The performance of indirect methods depends in a very critical manner upon the 
information available to the instructor from other sources about the current state of knowledge 
of each student.   The performance of the direct methods is unaffected by this.   The gain in 
effectiveness achieved by using direct methods must be balanced off against the cost of using 
these new methods.   A direct method may require more student time per item than does an 
indirect method.   This, however, may be more than compensated for by the requirement for 
redundancy when using the indirect method.    In addition, since a direct method does not 
require additional information from the instructor as to the current state of knowledge of each 
student, the possibility exists that much larger classes may be taught with no loss in 
effectiveness thus implying even further economic benefits from the use of direct methods to 

guide classroom instruction. 

DD FORM 
1   JAN   64 1473 

Security Classification 



Security Classifj- ation 
14 

KEY WORDS 
. "OLf 

LINK C 

Classroom Testing Methods 
Cost Effectiveness of Testing Methods 
Guided Instructions 

INSTRUCTIONS 

1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fense activity or other organization (corporate author) issuing 
the report. 

2a.   REPORT SECURITY CLASSIFICATION:   Enter the over- 
all security classification of the report.    Indicate whether 
"Restricted Data" is included.    Marking is to be in accord- 
ance with appropriate security regulations. 

26.   GROUP:    Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual.   Enter 
the group number.    Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized. 

3. REPORT TITLE:    Enter the complete report title in all 
capital letters.   Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 

4. DESCRIPTIVE NOTES:    If appropriate, enter the type of 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 
5. AUTHOR(S):    Enter the name(s) of authors) as shown on 
or in the report.   Entei last name, first name, middle initial. 
If military, show rank and branch of service.    The name of 
the principal author is an absolute minimum requirement. 

6. REPORT DATE:    Enter the date of the report as day, 
month, year; or month, year.    If more than one date appears 
on the report, use date of publication. 

7a.    TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 
76.    NUMBER OF REFERENCES:    Enter the total number of 
references cited in the report. 
8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 

86, 8c, & 8a". PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number,  system numbers, task number, etc. 

9a.   ORIGINATORS REPORT NUMBER(S):    Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating activity.    This number must 
be unique to thi-  report. 
96. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 

10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

imposed by security classification, using standard statements 
such as: 

(1) "Qualified requesters may obtain copies of this 
report from DDC " 

(2) "Foreign announcement and dissemination of this 
report by DDC is not authorized." 

(3) "U.  S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)     "U. S.  military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(5)     "All distribution of this report is controlled.   Qual- 
ified DDC users shall request through 

If the report has been furnished ti the Office of Technical 
Services, Department of Commerce, for sale to the public, indi- 
cate this fact and enter the price, if known. 

11. SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office or laboratory sponsoring (pay- 
ing for) the research and development.    Include address. 
13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the document indicative of the report, even though 
it may also appear elsewhere in the body of the technical re- 
port.    If additional space is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclassified.    Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented as (TS), (S), (C), or (U) 

There is no limitation en the length of the abstract.    How- 
ever, the suggested length is from 150 to 225 words. 

14. KEY WORDS:    Key words are technically meaningful terms 
or short phrases that characterize a report and may be used as 
index entries for cataloging the report.    Key words must be 
selected so that no security classification is required.    Identi- 
fiers, such as equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.    The assignment of linjes, rules, and weights is optional 

Security Classification 


