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ABSTRACT

This report compares two types of classroom testing in terms of
efficacy in guiding instruction. One type of testing is the
traditional indirect method based on the observation of choices.
The other type is the direct method based on admissible probability
measurement. The general finding is that the direct methods
always perform as well as and in most cases better than the in-
direct methods. This deficiency in the indirect method can be
alleviated in theory by introducing redundancy into the test and
asking the same question over and over again. The performance
of indirect methods depends in a very critical manner upon the
information available to the instructor from other sources about

the current state of knowledge of each student. The performance
of the direct methods is unaffected by this. The gain in effective-
ness achieved by using direct methods must be balanced off against
the cost of using these new methods. A direct method may require
more student time per item than does an indirect method. This,
however, may be more than compensated for by the requirement

for redundancy when using the indirect method. In addition, since
a direct method does not require additional information from the
instructor as to the current state of knowledge of each student,
the possibility exists that much larger classes may be taught

with no loss in effectiveness thus implying even further economic
benefits from the use of direct methods to guide classroom in-
struction.



TABLE OF CONTENTS

Statement of the Problem

Classification Without Testing

The Respcnse Yodel for the Two Methods of Testing
Formal Analysis of the Two Testing Methods

4.1 Direct Method

L, 2 1Indirect Method

The Effectiveness of the Two Methods

5.1 HEffectiveness from the Instructor's Point
of View

5.2 Effectiveness from the Outside Agent's
Point of View

5.3 Summary

References

PAGE

8

1h

18

30

31

B

b7



DIRECT VS. INDIRECT ASSESSMENT OF SIMPLE
KWWOWLEDGE STRUCTURES

[i. Edward Massengill and Emir H. Shuford, Jr.

1. Statement of the Problem,

In this report we compare, mathematically, two testing methods in
a well-defined situation. Our purpose 1s to determine how the two methods
perform in the matter of classifying students in this situation and to
ascertain some of the distinguishing characteristics of each method.
Since our results are logically derived from explicitly stated assumptions,
we have no doubt as to thelr validity for the specific situation we are
examining, Further, if there are real-life situations which are equivalent
to the one we define, we can be certain that our results will apply to
these situations. But we will not be concerned here in seeking to
determine the extent of the generality of the situation we have chosen.
This 1s not crucial for our purpose. This should not be taken to mean
that we are not concerned with how these results may relate to more
complex situations. On the contrary, we hope that the findings for
this situation will give us a better idea of what to look for in more
complex situations. And we are confident that the approach we have used,
namely the application of purposive mathematics (Massengill, 1964), can
be extended to aid us in the analysis of these more complex situations.

The two methods which we will compare are the traditional indirect

method, IM*, and the direct method, DM. In the indirect method, the

*

We intend to deal with the indirect method in terms of decision theory
so that all of the information available to the person using this method
may be explicitly taken into account.



student is given a question with two or more alternatives and asked to
cioose the correct alternative. In the direct method, the student is

also given a question with two or more alternatives. But instead of being
asked to give the correct answer, he interacts with a measurement procedure
wnich outputs an inferred subjective probability distribution over the
alternatives.*

In order for the results of our comparison to be meaningful, we must
know exactly what assumptions are involved both in the student's response
process and in the two testing methods. To keep the assumptions simple,
and thereby make the arguments easier to follow, we will use a very simple,
but not unrealistic, testing situation., The test will consist of one two-
alternative question, or the same two-alternative question repeated several
times. The purpose of the test will be to help determine if a student
knows a particular concept.

The concept which we will test deals with the classification of two
objects, & and C, according to whether A=B or A=C. A given student has been
through a lesson in which the instructor has taught that A=58 and that it is
not the case that A=C. If the student has learned A=B, we shall say that he
is trained, T. If he has learned that A=(C, we sihall say that he is mis-
trained, mT. 1f he has learned nothing, we shall say that ne is untrained,
uT.

At the close of the lesson, we want to classify the student as belonging

to one of the three categories: T, uT, or mI. The student's next lesson

*

See Shuford (1965), Shuford, Albert, & Massengill (1965), and Shuford
& Massengill (1965) for more information about these measurement procedures.



will depend on now ne is classified at tne end of this lesson. Thus, if

he is classified as trained, he will go on to the next lesson. If he is
classified as untrained, the same lesson will be repeated. And if he is
classified as wistrained, ae will be given the same lesson in a different

form. Because of the effect of the classification on the next step of the
student's training, we will use a payoff scheme for which a correct class-
ification is more valuabtle than an incorrect one and for wiiich the values

of correct classifications are equal and the values of incorrect classifications
are equal. For the derivations of this report, a correct classification will
have a value of 1.0 and an incorrect one a value of 0. Table 1 shows the

payoff matrix for this decision problem.

TABLE 1

Payoff Matrix for thne Instructor who is Classifying
Students According to Three Catepories

A CATECORY EU(ay)
7L uT mT

a,: T sntl 0 0 2(T1)

ay: wud g 286 0 Bl wT)

ag: ml 0 g i 1.0 Pl

It snould be ncted that the particular utility structure we are using
makes the expected utility of an act equivalent to the expected proportion
of correct classifications. Thus, each statement which we make about
expected utility can also be interpreted in terms of expected proportion
of correct classifications. For the rost part, we will use the term

expected utility since it is more general.

3



2. Classification Without Testing.

It is possible for the instructor to classify students with some
accuracy even without giving them a formal test. After all, he may have
observed the students during the lesson and may have some rather strong
feelings, at least for some of the students, about which category a
student is in. Suppose, for example, that a student spent the whole
period of the lesson working on some other assignment. Then the instructor
might have reason to believe that the student is untrained. Suppcse that
another student dozed during the lesson and only came to life during the
time the instructor was discussing A=C. DBut suppose that he did not
remain awake long enough to hear the instructor make the point that A=C
is not the case. If the instructor noticed this, then he might be
pretty sure that the student should be classified as mistrained. Finally,
suppose that a third student had listened intently to the instructor's
words during the lesson. Then the instructor might be fairly sure that
this student was trained, since this concept should be easy to learn if
one hears it explained. Thus, by observing the students during the lesson,
the instructor might be able to do a fairly good job of classification
without testing the students.

If an instructor can evaluate his subjective probabilities concerning
which category a student is in and express them, then his expected utility
can be determined for each combination of prior probability values.

Figure 1 shows the surface of all the possible combinations of the
instructor's prior probability values for the three categories. The

surface is divided into three sections each of which is characterized by
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the fact that one of the tihree categories nas the maximum provability

for each point in that section. From Table 1, we see that the expected
utility of a given act is equal to one of these threec probabilities. The
act whicn specifies the choice of tine most probable category is the one
which maximizes expected utility and the propbability of the most probable
category is equivalent to the maximum expected utility. Using this inform-
ation, ve can determine the expected utility associated with each possible
prior probability combination,

Figure 2 represents this information in twe dimensions. It is
helpful to conceptualize tiwe information contained in Figure 2 in terms
of three dimensions. The base of the three-dimensional figure would be
identical to Figure 1. The third axis of the figure would contain ZU(a?%),
wiich is shown by the dashed lines in Figure 2.

Note that the minimum expected utility is 1/3 and that this occurs
only for the probability combination (1/3,1/3,1/3), i.e., P(T)=P(uT)=F(mT)=1/3.
‘he maximum expected utility, ZU(a*) = 1.0, occurs at tiaree points, the
three corners of the base of the figure. The values for the other points
on tie surface grow larper as theyv increase in distance from the point
(178 - U Bl L/

1f tne instructor wants to decide whether or not to test and which
kind of test to use, obviously, he will need to know how the expected
utility of testing for each of the two methods compares with the expected
utility of classifying without testing. Thus, we will need to obtain, for
the two test nethods, the information analogous to that wuich we obtained

and summarized in Tigure 2 for the decision to classify without testing.
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3k The Response Model for the Two Methods of Testing.

To begin with we will examine the model which generates the responses
for the situation we are considering. In order to make our assumptions
concerning the model explicit, we will describe it in terms of a task
being performed by a machine. In applying our results to any real-1life
situation, the main concern will be to determine if the model is a good
description of the behavior of the students in question. It might be
helpful to point out once more that our main purpose is not to determine
which, if any, actual situations the model describes but rather to study
the performance of the two test methods for the model in an attempt to
make statements about the value of each method and to get some idea of the
important characteristics of each method.

Tigure 3 shows the response model in the form of a computer flow
chart. We will examine the logic of the flow chart step-by-step in order
to make the assumptions in our response model as clear as possible. First,
let us examine the location FACT. During the training period, one of three
things happens to FACT. It takes the value A=b, corresponding to the
category, 7; it takes the value A=C, corresponding to the category, mT;
or it remains empty, corresponding to the category, uT.

When the test is given, there are two pieces of information given as
input to the machine: the type of testing method, indirect or direct, and
the two-alternative question on the concept. The first step for the machine
is to compare the first alternative, 4

1

identical, then alternmative 1 is given a probability of one, i.e. P(A1)=1.0,

, with FACT. If Al and FACT are

and alternative 2 is given a probability of zero. If A1 is the opposite of



1. Type of Test : CM or PM
2. Two-alternative question

Compare

AJ identical Alternative

A1 opposite

with FACT with of FACT
FACT#*
FACT is empt
P(A;) =1 P(Al) = ,5 P(Al) =0
P(Ag) = P(AZ) = ,5 P(AZ) =]
Indirect Type Direct
Method of Method
es
P(A;)=1 robability\ P(4;)=0
measurement ’
rocedure
Choose: B ) = 5
A7 with Prob 1/2 1
AZ with Prob 1/2
. W

- Answer: Answer: Answer: P(Ap)=1 P(Aq)=.5 P(A7)=0
‘PUT: Aj alternative A3 P(A5)=0 P(A3)=.5 P(A3)=1
chosen in

preceeding step

*FACT contains:
A=B if trained
A=C {f mistrained
Empty 1if untrained.

Figure 3. Flow chart of the model producing the responses for the two test methods.
O
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FACT, then the probabilities of the two alternatives are the reverse of
the case above. If FACT is empty, then each alternative is given a
probability of .&5.

Table 2 shows the two possible forms of our question, i.e., one with A=B

TABLE 2

P(A;) Associated with Alternative ¢, where =1 or 2, for a Given
State of Knowledge and a Given Form of the Question

CATEGORIES
FORIS
TRAINED UNTRAINED MISTRATKED
P |Ag: 4=B 20 .5 0
g
Ag:  A=C 0 58 1.0
Fo| A A=C 0 o8 Tkl
2
An: A=B 1.0 .5 0

as the first alternative and the other with A=(C as the first alternative.
Of course, the question could also be asked in true-false form. The
table also shows the three possible states and the results that our model
would yield for P(Ai) for a given form of the question.

It is immediately evident from Table 2 that if we could obtain P(Ai)
from a given student, we could correctly classify him with one question,

for this situation. Tor example, if we gave a student the first form of

question, F1 and found that P(A1)=1.0, we would know that he was trained.

10



, we would know that he was untrained. And if

If we found that P(A1)=,5
we found tnat P(ﬂ1)=n, we would know that he was mistrained. Getting

P(Ai) is exactly the purpose of DM. nuc, for this situation, DM would
give us perfect classification with a one-item test.

After comparing A1 with FACT, the macnine then determines which
testing method is being used and acts accordingly. If the DM is being
used, the macnine goes to a propability measurement procedure and it is
this measurement procedure which actually cutputs the probabilities for
the two alternatives, after having inferred them from the results of an
interrogation of the machine.

If IM is being used, then the machine chooses one of the alternatives
as being correct. The machine makes its choice in terms cf P(AJ), This is
not an arbitrary procedure but is bLased on the machine's pavoff matrix.

The payoff matrix is shown in Table 3. The utility structure of the
payoff matrix is "all-or-none", i.e., a correct outcome is more valuable
than an incorrect one, the correct outcomes all have equal values, and

the incorrect outcomes all have equal values. If we represent the value

of a correct outcome with 1.0 and the value of an incorrect outcome with 0,

TALLE 3

The Subject's Payoff Matrix for the Indirect Method of Testing

CATLGORTI:S
ACTS A, 4, Luta,)
az: A, Tl 0| P(4g)
ag: A, 0| 1.0 | P(A,)

11



then the expected utility for a given question is equivalent to the
probability of the most probable alternative. Thus the optimal strategy
is to choose the most probable alternative as the correct alternative.
If both are equally probable, then an answer can be obtained by choosing
each alternative with a probability of .5. Thus, the branching procedure
in Figure 3 for the choice method is firmly based on decision tneory
(Shuford & Massengill, 1965).

Table 4 shows the alternative which will be chosen as the correct
alternative for a given form of the question and a given category of

TABLE 4

e Altemative which will be Chosen as the Correct Alternative
for a Given Form of the Question and a Given Category of Knowledge.

FORMS CATEGCRY
TRAINED UNTRAINED MISTRAINED

F] AZ: A=B X 8]

AZ: A=C .5 X

A, =C 5 X
F 1 PR’
2

AZ: A=E X i

knowledge. If we compare Tables 2 and 4, we will see that whereas DM
gives us unambiguous information about a subject's state of knowledge
with one question, IM does not. For instance, if Form 1 of the question
is asked and the student responds with A1 as the correct answer, then we
know that he is not mistrained but we do not know, for certain, whether

he is trained or untrained. If he responds with A,, we know that he is

12



not trained, but we do not know, for certain, whether he is untrained
or mistrained.

On the basis of this informal analysis, we can draw some conclusions
about the two types of testing and the question of whether or not to test
in this situation. At this point, we can say that DM guarantees correct
classification of all students on the basis of one question, for our
situation. If no test is used, correct classification of all students is
only guaranteed at three points, i.c., where a given one of the categories
has a probability of 1.0 of occurring. The use of IM improves on this
somewhat by always giving correct classification not only when a given
category has a probability of 1.0, but also when 7 and mT together have
a probability of one. Thus, DM is better than either IM or classifying
without testing (CWT), for most conditions, whereas the latter two are
never better than DM. Also, the goodness of IM and CWT depends on the
values of instructor's prior probabilities, whereas DM only depends on
the data observed. This gives us a start toward our purpose of evaluating
the two testing methods for the situation we have specified. Dut now we
would like to know how much better, if any, DM is than IM for each possible
condition. This will enable us to be more specific in our comparison of
the two methods. In order to answer tnhe question of how much better, we
will need to get information for IM and DM which is analogous to the
information for CWT summarized in Figure 2. This will require . formal

analysis of the two methods in terms of the situation we defined.

13



4.  Formal Analysis of the Two Testing Methods.

In this formal analysis, we will only show the results of our
derivations with comments on these results. To enable the reader who
is interested to get some idea of the steps invelved in the derivations,
we include in Table 5 a summary cof the basic decision-theoretic relation-
ships used here.*
TABLE 5

Surmary of the Basic Decision-Theoretic Relationships to be used
in the Derivations of this Report

Payoff matrix:

CATEGORILS
el S S sa o e S
) 2 dJd m
a1 u]] u12 e o 0 ulj e e @ u]m
(l2 u21 u28 s u2j S u2m
a Ui ‘G Urg &0 Hin
9, Ynd Sip  cwe g aee g

Prior probabilities: probability of the category Sj’
P(S.); where LP(S.)=1.0
J J d

)
Le

Conditional probabilities: probability of data g, given category Sj’
P(dk|Sj); where iP(dk|Sj)=1.0
Unconditional probabilities: probability of data dk’

P = P(S.)P(d |S ); P(d )=1.0
(dk) § ( J) ( kl ; where £ 2

* See Raiffa and Schlaifer (1961) for the mathematical background leading

to these relationships. i



TABLE 5 (Cont.)

Posterior probabilities: probability of category 5. given data<%,
J &
P(S;)F(dﬁls,)
4 3R ‘
P(S;la.) = where Ef(éjld )=1.0.
v £ ?( J"’ ) J Jd k

cxpected utility of act a; given data dﬁ:

BUCa,|d,) 5205 |d Ju,
T k J J 1. E

= P(S;ldp); for the utility structure of Table i.l.
o 4

Maximum expected utility given data dk:

EU(a*|d,) = max LU(a,|d,)
K Tk
Average expected utility of responding with the optimal act for each data result:

LUl(a*)

]

)

pP(d, JEular|d )

X

p

= LP(5 )P(d |5,
F kg

= Lxpected proportion of correct classifications.

» for the utility structure of Table L.1,

4,1 Direct “Metinod.

At this point, we want to show formally that the average expected
utility yielded by DM is equal to 1.0 for all conditions in the situation
we are using. In other words, we want to show that DM will always lead to
the correct classification of students in this situation. And in the
process we will show that the instructor's prior probabilities are
irrelevant,

Prior probabilities. There are three prior probabilities: P(T),

P(uT), and P(mT)=1.0-P(T)~F(u?), i.e., the probability that a student
is trained, the probability that he is untrained, and the probability that

he is mistrained. The three probabilities sum to 1.0.

15



Data. For a given question, we can get one of tiiree data results
from the student. These are the probabilities 1.0, .5, and 0. As is
evident from Table 2, the meaning of the data will depend on the form
of the question used. Our derivations will be in terms of the first
form. The results will be analogous for the second. Thus, the possible
data results are:

@2 P(A1)=1.0,

1
d2: P(A1)=.5,
d3: P(A1)=0.
Conditional probabilities. We will now state formally the relevant

conditional probabilities.
P(d1|T) = 1.0

P(dg|uT) B

P(d3|mT) 1.0,
Actually, we can talk about the probability of each data result given
each category, but there is no need to do so in this case, since for
a given category, one data result has all of the probability., Thus,
if the student is trained, only dl can occur; if he is untrained, only

dé can occur; and if he is mistrained, only d3 can occur.,

Unconditional probability of the data. In this case, the probability

of a given data result occuring is equzl to the prior probability of the

category which can yield that result. Thus,

P(d;) = P(T)P(d4|T) + P(uT)P(d1|uT) + P(mIVP(d1|mT)
= P(T),

P(dg) = PilawT);s

P(ds) = P(mT).

16



Thus, for example, the probability that d1 will occur is equal to the
probability that the student is trained, P(T).

Posterior probabilities. Now let us see how a particular data

result affects the prior probabilities.
P(T|dy) = P(TUP(dllT)/P(dl) = 2.0

P(uT|d2) aetOse

P(mT|d3) y

It is clear that a particular category is certain to occur once a given
data result has been observed and that a different category is certain

to occur for each data result. Thus, a data result implies, unambiguously,
the state of knowledge of the student. As we can see from the equations,
the prior probabilities have absolutely no effect on the posterior prob-
abilities. One implication of this is that an instructor need have no
prior knowledge of the student taking the test in order to classify him
correctly in this situation.

Expected utility. Since for this situation the maximum expected

utility for a given data result is equivalent to the posterior probability
of the most probable category, only one expected utility is different from
0 for a given data result and that one is equal to 1.0. Thus, the maximum

expected utilities are:

* -
EU(alldl) = 10,
EU(azld,) = 1.0,
EU(az|ds) = 1.0.

17



Tnis means that the optimal acts are: a;, 1if dl is observed; agy, if d2
is observed; and agzs if d3 is observed. And from the equations we see
that the expected utility of the optimal act for each possible data
result is 1.0.

Average expected utility. Since an expected utility of 1.7 is

guaranteed regardless of the data result obtained, the instructor is
guaranteed an average expected utility of 1.0, i.e.,

glta®) = 1.0
This is true regardless of the values of the prior probabilities. Thus,
over the whole surface shown in Figure 2, the expected utility for a
one-item test is 7.0. This is an improvement over the approach of class-
ifying without testing except at the three corners of the triangle. Of
course, whether or not one should test with DM or classify without testing
depends on the values of the prior probabilities and the cost of testing.

4.2 Indirect Method.

We have seen that only one question is required for DM in order that
each student be correctly classified, for the situation under discussion.
We have also seen, informally, that there are situations in which IM does
not allow for perfect classification, at least with one question. Thus,
in the very beginning, we will include the idea of repeating the same
question a number of times to see if this might improve the performance
of one who uses IM., In deriving the results for IM, we have assumed that
the student's answer to a question does not influence his answer to the

same question when it is asked again. In other words, the machine always

18



pehaves as if a question has not been previously encountered. (We will
examine tihe implications of this assumption for IM in Section 5.1. For

DM, of course, we do not have to worry about repeating items, at least

in this situation, since one item is sufficient for perfect classification.)

Prior probabilities. 7These are the same as for D'.

Data. If a question is asked once, there are two possible pieces of
information: the student is correct, C, or he is not correct, ~¢, From
Table 4, we can see that if a student is trained, the data result will
always be (¢, If he is mistrained, it will always be ~¢. But if he is
untrained, it may be either. (It is this last possibility which brings
ambiguity into the situation.)

If we ask the question n times, we will get r ('s and n-r -C's. For
the trained student, we can only get the result r=n, i.e., n correct
answers out of the » times the question is asked. We will denote this
result as (C,. For the mistrained student, we can only get the data result
r=(0, i.e., no correct responses out of »n questions. We will denote this
result as C,. For the untrained student, we can get either of these two

results and also the result (¢ where r may equal any integer between

s
1 and n-1, Thus, we are interested in three data results for CM: Cn’
Cos and Cp#.

Conditional probabilities of the data. The following are the relevant

conditional probabilities for any one trial:
BIC|TY = 7.05
Peclu) = .5, PL-Clul) = .5

P(.c|mT) = 1.0.

19



Since the trials are independent, we can obtain the conditional probabilities
for a given category of knowledge, S, by use of the binomial probability
equation. Thus,
Ple,l8) =) [Btcls)) * [rr-ci8)] * 7%,

As we have seen, only one data result, C,, has any probability for the
trained student:!

PICT) = Zull
Likewise, only one data result, Cpo has any probability for the mistrained
student?

P(CylmT) = 1.0.
For the untrained student, however, each of the three data results has

some probability for a finite n?

Pic, |ur) =_L1_
‘ nl on
BlC |ug) = L
on
P(C4luT) =1 - [P(C, |uT) + P(C,|uT)]
= on-1.3
on-1

We can see immediately that as n approaches infinity, the last probability
approaches 1.0 and the total situation tends to the one we had for LM, i.e.,
a particular data result implies a particular classification.

Unconditional probabilities. Now we want to look at the probability

that a given data result will occur.

Pe,) =P(g + L. Plug)
m

+ P(T) as n =+ o |,

20



_ gm=T_g

P(C,,.) . P(uT)
+ P(uT) as n =»> = ,
P(c,) =_1-2"  pur) + 1.0 - P(T)

P
+ P(mT) as n + =,
llere, again, as n approaches infinity, the values of these probabilities
approach the same values they had for DM.
It should be noted that for n=1,
P(Cr*) =0,
since for n=1 r must equal 0 or 1. In other words only two of the data
results are possible when n=1.
Pos bilities. Now we want to see how a particular data
result affects the probabilities of the categories. First, let us see

what happens when (,, is observed.

P(T|C,) = P(T)
P(T) + 1 P(ur)
o

+> 1.0 a n >«

?—iP(uT)
P(ur|C,) = __°
P(T) + 2 P(uT)
.
-+ 0 as n >
P(mT|Cn) = 0.

Thus, as we have already observed, only 7 and uT have any probability when
Cn is observed. And as n approaches infinity, only T has any.

When Co is observed,
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P(rjc ) = o0,
(]

1
P(uT)
Plul|ley = 2
1-2n
= P(uT) + 1.0 - P(T)

>0 as N > o,

——<n~ PGuI) + 1.0 - P(T)

+ 1.0 as 7N+
Only uT and ml' have any probability when C, is observed and, as n
approaches infinity, only pm7 has any.
When Cr* is observed,
P(uT|Cr*) = 1.0.
Thus, as 7 approaches infinity,the posterior probabilities take on the
same values as they did for DM.

Optimal acts. For the utility structure of Table 1, the optimal

act for a given data result depends on which of the posterior probabilities

is largest. For the outcome (,, the optimal strategy is to choose a; when
P(rlc,) > P(ur|c,),

i.e., when
P(uT) < 2"P(T) = Y,

and to choose ay when the inequality is reversed.

For the outcome C,, the optimal strategy is to choose ap when

P(uT|Co) > P(mT|Col,

i.e., when

2 = o
an+ 1 n+1
and to choose as when the inequality is reversed.

P(url) > P(T} & 4,

For the outcome Cr* the optimal strategy is always to choose as.

22



Thus we see that the optimal act given ¢, or Cb depends not only
on the data observed but also on the relationship between P(uT) and
P(T). There are four different possible relationships between P(ul) and
P(T]). These are shown as the row headings of Table 6. For a given one of
these relationships, a given data result determines the optimal act. For
example, when Z<P(uT)<Y, a; is the optimal act when C, occurs. We can use
these relationships to divide the area shown in Figure 1 into four sections:
SZ’ 52, 33’ and S4. Lach of the four sections is characterized by one of
the rows in Table 6, i.e., by a certain pattern for the optimal acts given
tae data.

Figure 4 shows tne surface of possible prior probabilities divided
into four sections as a function of the relationship between P{uT) and
P(T), for n=1. Yach of the sections corresponds to one of the rows in
Table 6. For example, the area labelled So corresponds to the second row

in the table. The line in the figure labelled (,, represents tne dividing

line tnrough the surface for the two possible optimal acts when(, is

TALLE 6
SECTION DATA

Cn Cr* Co
Sz:zd’(uT) < Y a1 a2 0,2
Sg: P(uT) < Y,2 a; as az
Sz Plut) » X,7 ao as as
34:Z>P(uT) > Y a, ag ag

Y= 2p(r); 2z =22 - 2% pr)
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1.0

P(uT) = 2"pP(T) = ¥

n
P(T) 4y = 2

52: @y,Q9,Q3

Figure 4.

]
N
S o

The division, for n=J], of the surface of possible prior probability
combinations according to the pattern of optimal acts for the
possible sample results. For any section, the acts listed are

optimal given (,, Cpa, and C,, respectively.



observed. For the points above that line

Pyl > 28 P(T),
i.e.,

PTG ) % Blut|e ),
and, thus, g2 should be chosen. The inequality is reversed for the points
below that line and so aj should be chosen. Similarly, the line labelled
Co represents the dividing line for the case when (, is observed. As we
have seen, when Cpx is observed, gy is always chosen regardless of the
relationship between P(T) and P(uT). Remember that these results are for
n=1. We can divide the surface in analogous fashion for each possible
value of n. Figure 5 shows the divisions ranging from n=1 to n=4. Notice
that as n gets larger, Sy, the section of the surface for which it is
optimal to take Qg5 Aoy Qg respectively, for the data results Ch, Cr*’ Cos
gets larger. And notice that as n approaches infinity, the dashed line
approaches the P(uT) axis and the solid line approaches the right hand
boundary of the surface, i.e., there is only one optimal strategy for
each data result regardless of the prior probabilities. Thus as n+x, CM
gives results for all conditions which are equivalent to those given by
PM for one item.

Average expected utility. We can find the average expected utility for

any point in any of the sections. To do this, we simply weight the expected
utility of the optimal act given the data by the probability of the data,
for each data result, and then sum over these weighted results. This gives
us the average expected utility, given P(T) and P(uT), of choosing the

optimal act for each data result. Thus, for the four sections of our surface,
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id - - - P(uT) = 2" P(T)
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= o P(uT)—-WP(T) +
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in terms of n=n.

<
—

£
Figure 5. The changes in the four divisions of the probability combination

surface as a function of n.
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Co-ordinates of the point of
intersection of the two lines



71_1

EU(a*|Sq) = "_271__ P(uT) + P(T)

+ P(uf) + P(T) as n > >
EU(a*|Sg) = - L. P(uT) + 1.0
on~1

+> 1.0 as n > ©

LU(a*|Sz) = P(ul),
1
EU(a*|Sy) = - 2= P(ul) + 1.0 - P(T)

=+ 1.0 - P(T) as n » « ,

z

Figure 6 shows the average expected utility, for n=17, for selected points

s
on the prior probability surface. The lowest EU in the figure is .5. This
lowest value only occurs for one point (.25, .50, .25). As we go out from
this point, FU gets larger. Compare these results with Figure 2, i.e.,

the case in which no test is given. There the worst possible EU is 1/3.
This occurs only for the point (1/3, 1/3, 1/3). When no test is given,
there are only three points, the three commers, for which EU(aq*) = 1.0.
These are the three possible cases for which two of the states have a
probability of 0 while the remaining state has a probability of 1.0. But
notice that when a one-item IM test is given, that besides these three
points, there is a whole line, the P(T) axis, which gives an average
expected utility of I.0. These are the cases for which P(uT)=0, i.e., the
student is either trained or mistrained. The reason the average expected
utility is 7.0 for these cases is that the data discriminates perfectly
when only 7 and m7T are possible. In other words, a correct answer implies

that the student is trained, while an incorrect answer implies that he is

mistrained. Consult Table 4 to confirm this point.
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0 \
P(uT)
1.0
EUfa*) = P(uT)
.9 - -~ = EUla*|P(T), P(uT))
.5
EUfa*) = £ P(ul) + P(T)
EU(a*) :

éP(uT)—P(T)H.O

Lo\ R T O N S PU(at)== Bi(al) # 1.0

1.0 P(T)

N N\

A

1.0 8 0 <%
%2,

Figure 6. The average expected utility for selected points on the probability
combination surface for n=1J1.
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If we were to draw a figure analogous to Figure 6 for each value of
n, we would see that the minimum average expected utility for a given n
would be at the point where the two dividing lines cross. The coordinates

of this point are

.
248

g

P(T) - W

s P(uT) =

and the average expected utility for this point is
271
Tz
Table 7 shows the value of the minimum average expected utility for
selected n's. Note that as n approaches infinity, the minimum average
expected utility approaches 1.0. Also note that even for eight questions,
the minimum value is getting very large.

TABLE 7

The Minimum Average Expected Utility for the IM Test for Selected Values of n.

Minimum Average -
n Expected Utility = Z”i 5
0 .333...
1 .500
2 .666...
3 . 800
4 .888. ..
5 .941
6 ~.970
7 ~.985
8 ~.992
5 :
+ 1.000
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5. The Effectiveness of the Two Methods,

BDefore we discuss the effectiveness of the two methods, it should
be reiterated that the conclusions which we draw are in terms of the
specific response model we have assumed. Some or all of our conclusions
may be valid in more complex situations, but that is a matter for further
investigation.

To put our discussion of effectiveness into perspective, we will
restate the main assumptions that have been made. It is assumed in the
response model we are using that a student has probabilities for the
alternatives of a question and that the values of these probabilities
depend in a specific way on the state of his training. For the direct
method of testing, it is assumed that these probabilities can be inferred
by a measurement procedure. For the indirect method, it is assumed
that the student uses them with an all-or-none payoff function to choose
the alternative which will maximize his expected utility.

An all-or-none payoff function has also been assumed for the
instructor who is making the classifications. This means that the
expected utility of the instructor can also be interpreted as the
expected proportion of correct classifications,and, of course, that
maximization of expected utility can be interpreted as maximization
of expected proportion of correct classifications.

The question of the effectiveness of the two methods can be looked
at from two points of view. One is from the point of view of the

instructor who is, at a given moment, classifying a student. The other
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is from the point of view of some outside agent who knows the true

state of each student and who can thus evaluate the instructor's
performance in terms of the actual state of each student's knowledge.
For both points of view, average expected utility is used as the measure
of effectiveness.

5.1 Tffectiveness from the Instructor's Point of View,

First, we will look at effectiveness from the point of view of the
instructor. Once the instructor has assigned prior probabilities* to
the three states for a particular student, and given that he accepts the
response model and the payoff structure we have specified, the results of
our derivations furnish him with an expected utility for each act given ecach
possible data result as well as average expected utilities for responding
with the optimal act for cach data result. Thus he can evaluate the
effectiveness of each method in terms of its average expected utility,
Blia*).

liaving related the results of our derivations with effectiveness,
from the instructor's point of view, let us briefly review CWT, IM, and
DM in terms of ZU. TFor classification without testing, CWT, FU ranges
from ,33... to 1.0. TFor IM, the range of FlU/ depends on », Table 7
shows the lower bound of the range for various values of n. The upper
bound for IM is 7.0 regardless of n. For DM, FUU is a constant, 1.0.
Thus, DM has the narrowest range of FlU/. And aside from the cost of using

the methods, DM is better than or equal to either CHT or IM for all

*

These probabilities are prior to the results of the testing bhut may
include various types of non-test information about the student.
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conditions. Of course, a person choosing between the methods would
take cost into account. %e do not do it here because it is not relevant
to our arguments but our results are in a form which will enable anyone
who is interested to do so.

Classifying without testing gives an E{ of 7.0 at three points; the
points for which a particular state is given a probability of 1.0, IM
gives an FU of 1.0 at these points as well as at all of the points where
P(uT)=0. And, of course, DM gives an U of 1.0 at all points. llote that
the points for which CWT and IM give 1.0 all require some form of certainty,
either that a particular category is the case or that a particular category
is not the case.

Influence of instructor's prior on effectiveness. For CUT, the closer

a prior is to one of the three corners, the larger ZU is (See Tigure 2).
For IM, the closer a prior is toward the corner for which P(uT)=1.0 or
toward the line for which P(uT)=0, the larger FU is. This means that for
CWT and IM, the instructor may be able to use background information on a
particular student in conjunction with his cbservations on that student
during the lesson to increase his LU for the student.

By observing students during a lesson and by connecting his observations
with background information on the students, the instructor may get sore
idea of what percentage of the group will fall in each categery. Le could
use this information to obtain a single prier which would be used for each
student. UHis effectiveness in classification might be very good but thcre
is room for objection to his use of a single prior since it is, in effect,

using a group average to classify individual students. te could remedy
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this situation by recalling what he had observed about particular
students and attempting to assign a prior to each student reflecting
his feelings about the state of knowledge of that particular student.
And further, he could use his feelings concerning the group as a whole
to check the coherence (de Finetti, 1937) of his priors for individuals.

Thus the instructor may be able to improve the effectiveness of CWT
and IM by obtaining relevant background information on his students and
by observing them during the lesson. Certainly, this is an improvement
over approaches which use only part of the available information to
classify students and which use that information to classify a student
not in terms of his absolute performance but in terms of the performance
of some group of which he is a member.

Since relevant information about individual students is essential
to CWT and IM, but not to DM, it is easy to see the contribution that
DM can make in situations, conforming to our assumptions, in which the
person making the classifications may not be on hand to observe the
student, e.g., self-instruction, instruction by television; or in which
there are large numbers of students in a class thereby handicapping the
instructor in obtaining information about individual students. But
regardless of how much information the instructor is able to obtain
about his students, his performance with CWT and IM will never be better than
with DM, for the situation we are considering.

Our comments on the instructor's prior point up the fact that there

is information other than answers to test items which can be taken into
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account in classifying students. To the extent that this information
can increase the instructor's certaintv zbout the state of a student,
CVT and IM increase in effectiveness. 7“ut for the situation we have
defined, CIT and IM are never more effective then DM. Thus, 1if cost,

in conjunction with effectiveness, justifies the use of DM, we can skirt
the whole issue of the instructecr's probabilities, since the information
incorporated in them is superfluous. *

The reacder should be clear on the reason that IM is less effective
for most conditions than DM. The reason does not lie in the area of the
instructor's subjective probabilities. The derivation of both IM and
DM involved the instructor's subjective probabilities. The difference is
in the conditional probabilities yielded by IM as opposed to those yielded
by DM. The conditional probabilities of DM simply supply more information
than those of IM. Thus, the fact that IM is less effective than DM
cannot be taken as a deprecation of subjective probabilities. And, of
course, the adoption of DM would not eliminate subjective probabilities
from our consideration since the student's subjective probabilities are
basic to the direct method,

As n gets larger, the prior probabilities of the instructor become
less important in the case of most priors and the effectiveness of IM
approaches that of DM. And, as we have seen, the approach of IM to DM in
terms of. performance is quite rapid so that n does not have to be very
large for IM to approximate DM (See Table 7). This brings us to the

question of independence of trials.

* It should be noted that by eliminating the need for the instructor's
prior probabilities and thus allowing a larger class to be taught with
no loss in effectiveness this economic benefit of DM should certainly
affect the slight additional cost of testing with DM.
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Independence of trials. ‘e have assumed for IM that the test iters

for a given concept are regarded by the student as being independent.
This assumption would seem to put an extreme restriction on the possible
applications of our results for IM. It is difficult to pieture real-life
situations in whieh we can be sure that the answer to a question will not
affeet a subsequent answer to the same question especially if it is asked
again immediately.

Since, in our model, students who are either trained or ristrained
would always g¢ive the same answer to repetitions of the question as they
gave the first time it was asked while students who are untrained would
not, it is the untrained student for whom the independenece assumption
is eritical. Suppose, for example, that an untrainecd student followed
the strategy, which could be optimal in terms of his formulation of the
task, of giving the same answer to a particular question each time it is
repeated that he gave the first time it was asked. This means that only
the first trial would have any value in classifying tlie student and that
the results for the n corresponding to the number of times the question
was asked would be misleading. Thus, the results we have derived for I*,
for n>1, apply only if the trials are independent.

This means that IM is restrieted to situations for which the trials
are independent or that additional assumptions must be made in order to
handle the case for n>I1. But DM is applicable without further assumptions
regardless of whether the trials are independent.

Summary. Now let us summarize our coneclusions regarding the effective-

ness of the two methods from the standpoint of the instruetor. We will do
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so in terms of three values of n: n=0, n=1, and m>=. Rerember that
we are not taking into account the cost of using the methods.

For n=0, DM is at least as good as classifying without testing. The
two procedures are equivalent only when the irstructor is certain that a
student is in a particular cne of the three categories. In cases where
certainty is lacking and the instructor has little relevant non~test
information on the student, DM does much bctter than CVT.

For n=1, DM is at least as good as IM for all conditions. 1IM is
equivalent to DM only when there is certainty that the student is untrained

or when there is certainty that he is not untrained. And here again, since

the prior probabilities are important for IM, DM will do much better than
IM vhen certainty is lacking and the instructor has little relevant non-test
information on the student.

As n gets large, the role of the prior probabilities lessens and the
effectiveness of IM increases. As n-swo, IM approaches D! in effectiveness.
But if more than one question is used feor IM, the trials must be indepmendent
or more assumptions must be made in order for the results of IM tc be
meaningful. Of course, this necessity for independence does nct apply to
DM, since only one question is necessary in order to give perfect class-
ification. Thus, if the instructor does not know whether the independence
assumption applies in a situation and he does not have enouph non-test
information to tell him for certain which state a ¢iven student is in, then
DM will outperform IM. Ve should also note that for I} test situations in
which a very large number of questions are asked, the cost of using IM

will finally come into play even if it is negligible for small »n's.
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5.2 Lffectiveness from an Outside Agent's Point of View,

We have discussed the effectiveness of the two test methods from
the point of view of the instructor who is classifying students. Yow we
want to lcok at the same question from the point of view of an outside
agent who knows the actual state of each student at the time the student
is classified. The outside agent 1s in a position to evaluate an instructor,
and thus to evaluate IM given the instructor, in terms of information in
addition to that which the instructor has* ¥e micht point out that for
our purpose it does not matter whether there is an agent wvho actually
possesses a knowledge of the category of each studert, since the conclusions
we draw will be the same whether or not anyone actually has this knowledge.

The first step in the agent's procedure is to classify students who
have already been classified by the instructcr. Vhereas the instructor
classified on the basis of 7, u7, and m7, the agent classifies on the
basis of the particular prior distribution the instructor used for a
piven student. We will represent an instructor's prior distribution
bv P, where P is the vector [F{T), F(uT), P(mT)]). -As we have seen, Figure
1 shows all of the possible priors. Once the agent has classified students
In terms of P, h» can find the relative frequency with which the students,
for whom a particular P was used, actually fell in 7, uT7, and mT. VWe will
designate this relative frequency distribution by F, where F is the vector

[F(T), F(uT), F(mT)) and where F(T), F(uT), F(mT) designate the proportion

*

Note that the agent need only be concerned with IM not DM since DM is
independent of the instructor and guarantees an EU of 1.0 for all conditionms.
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of students, classificd by the instructor, who arc actually trained,
untrained, and mistrained, rcspectivcly.

ow the agent is in a position to ask the following question: 'hat
would the instructor's average expccted utility be if the students for
whom he uses P are actually distributed according to F?" We will designate
this average expected utility as EU(P|F). Now let us see how we can obtain
this averagec expccted utility.

e have scen, in the case of IM, that thc optimal pattern of acts
for the possible data results depcnds on the prior distribution used by
the instructor. (Sce Table 6). According to the results given in this
table, onc of four distinct pattcrns of action is optimal for each
possible prior, i.e., for each P, Thus, for a particular I, an instructor
can use the results of Tablc 6 to determinc thc pattern of acts, given
the data, which will maximize his average expected utility. TIf the
instructor gives the pattern of acts associated with P, when F is the
relative frequency distribution of the actual states of the students for
whom P is used, then the instructor would be expected to obtain EU(P|F)
per student rather than EU(a*). Thus, at any point, the agent has an
index, EUF = EU(P|F), of the instructor's performance, so far.

It may be helpful at this point to distinguish between EUF and the
actual proportion of correct classifications that thc instructor has
rmade for a given I at thc time the agent is evaluating his performancc.
The actual proportion of correct classifications depends, at any point,
on the distribution of data results generatcd by the students who are

actually untrained. ‘¢ have scen that in the long run this distribution
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will bc a function of a binomial distribution. Tut the data results
will not, in general, be generated systcratically. In other words, thcy
will not have the form of cur theorctical distribution at every point.
For cvample, there may be a run of QQ'S so that at a given point many
more Ch's have been given by untrained students than our cquations would
indicate. Of coursc, in the long run, the data results generatcd by
untrained students should apnroach thie values given by our equations.

Thus the actual nurber of correct classifications an instructor has
madc, up to a given point, mav nct reflect how well he is using Lhe informa-
tion available to hir. In other words, chance fluctvations in the data
results may make it appcar that he is using the available informaticn
better or worse than hc actually is. To get rid of this effect, we usc
the theoretical values of P(d|5) rather than the actual percentages of
d given S when computing EUF. Thus, EUF gives the amount the instructor
would have made per student, by using P when F 1s the case, if the data
rcsults had been gcnerated according to our equations up to this point.
And so, arbitrary fluctuations of the data rcsults do not affect the agent's
evaluation of an instructor at a given point.

e have said that each prior can bc associated with one of four
distinct patterns of action. Sincc there are only four possible patterns
of action, thec agent needs only four graphs, for a particular value of 7,
in order to be able to obtain EUF for any P and F. This is because the
equation for EU(PeSiIF) is identical to the EU equation we have already

derived for PeSi when F is substituted for P. And further, the equation

30




for I'U 2pplies over the whole P surface for any PcS The four

7:-

relevant equations are:

2n-1
EU(Pe5 |F) = F(uT) + F(T) ,
2
EU(PeS,|F) = —2i— F(uT) + 1.0 ,
2 2n-1
Eu(Pes3|F) = F(ul) ,
gu(pes,|F) = - <L Feur) + 1.0 - F(T) .
27’1

Using these four equations, we can construct tue four grants for
any n. TFigure 7 shows the graphs for n=7. Totice thatP cdeterrines
which of the four graphs is relevant for a particular situation. For
example, 1if FeSS, the agent would refer tc the upper left hand graph.
Once the graph is chosen, the relevant point on the ~raph is found Ly
taking the point corresponding to F, Also notice that the range of EUF
is from 0 to 1.0 for each of the graphs. 1Ir other words, when the
instructor gives P for X students and the frequency distribution of

the actual states of the X students is F, the average expected utility,

EUF, which he could have been expected to make in this situation, could
be anything between 0 and 1.0 depending on P and 7,

To clarify the agent's procedure of evaluatien, let us look at an
example. Table 2 shows eight classifications byv an instructer and the
trial-by-trial evaluation, by the agent, of the instructor and thus of
IM given the instructor. TFor the first subject P = (1.0,0,0). (This
prior falls on the border line between two sections. 1t will be
sufficient for the comparisons we are going to make to regard it as
being in S9.) Thus the instructor would use the pattern aj, as, agz

for the data results Cps Cps and Co’ respectively. The average expected
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EU(PESZ

= % Plur) + P(T)

%)

B(5y
N
6 -
2

EU(PESle) 1.0 EU(PeS,|F)

- % F(uT) - F(T) + 1.0 i = - P(ul) + 1.0

Figure 7. The outside agent's graphs for a one-item CM test. The dashed lines
show the average expected utility of using a PeS; given that the actual
states of the students for whom P is used are distributed as [ .
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TAGLE 8

Example of trial-by-trial evaluation of instructor by the outside agent
where a trial is the classification of one student by the instructor in
terms of a one-item (n=1) CM test.

Instructor's Prior | Section |Actual Current relative frequency
in which|Category| distribution for instructor's
Trial Prior of prior
P(T) {P(ul)| P(mT) | located |Student | p(p) F(uT) F(mT) EU | EUF
for n=1
1. 1.0 .0 o So T 1.00 .00 .00 1.00{1.00
2. wid St .0 51 T 1.00 .00 .00 L9511.00
3. 1.0 10 S(0) Sg uTl .50 .50 .00 1.00( .50
4. .3 .4 3 SZ ul .00 1.00 .00 .6011.00
S w3 sl .0 Sq utl w00 .50 .00 LA54 .75
B (§ 2l .0 1 & i -. 66 =uPd .00 1.00| .66
7. .8 ol il So T 100 .00 .00 .9011.00
8. 1.0 .0 0 S? mT .50 .85 .85 1.00( .75
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utility,”U, for the instructor is 1.0. This is given in the next to
last column. The actual state of the student is 7", Thus, the current
relative frequency distribution for P = (1.0,0,0) is F = (1.0,0,0).
And the average expected utility, EUF, of using the pattern given by P
when F is the case is 1.0.

For the second student, the instructor uses a different prior. Note
that EFU is less than EU' here. In other words, if all of the students
for whom the instructor used this prior were trained, the instructor
would classify them all correctly in the long run in spite of the fact
that his FU is merely .95. This is because if all of the students were
trained, only the data result ( would be generated and, with this prior,
the optimal strategy is to call the student trained when G is observed.

On trial three, the instructor uses P = (1.0,0,0) again. But this
time the student is actually untrained. TFor »=] an untrained student
can be either G, or C,. This means that there is a possibility of
conflict between the instructor's prior and the data result, since the
instructor has expressed certainty that the student is trained. If (¢
is obtained from the untrained student, then the instructor will not be
avare of the conflict. His ZU will be 1.0. Dut since this student is
untrained, the instructor will be unable to correctly classify all students
for this prior. If Cp is obtained the instructor will either have to
re~-evaluate his prior or ignore the data. If the instructor in Table 8

obtained a Cn for trial 3, or if he obtained a CO and ignored it, his

*
would be .S,

* Qur comments on the first three trials can be used as an aid in examining
the remaining trials in the table,
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Table @ slhows the surmary measures for Table 2. The instructor has

used P = (1.0,0,9) four times and the actual states of the students have

TABLE 2

Surmary measurcs of Table 2 showing instructor's performance
to date from viewpoint cof outside agpent.

Current relative frequency
Instructor's Prior Section distribution for U EUF
instructor's nrior
P(T) _P(uT) | P(nT) L O O
Tranld o) 0 Sa 50 28 ) 1.00 A4S
.3 ) .0 SJ .57 A0 .00 .05 T
o) A Sl So N0 1.00 .00 AN 1.00
.8 Sl .1 SJ 1.09 20 .00 .00 7.00

been distributed as F = (.80, .25, .25)., Thus, as far as the instructor
is concerned, his average U for the four trials is 1.2. Fut from the
standpoint of the acent, it is .75. This peints up a difference between
P and CM. If the instructor had used DM, he would have been cuaranteed
the correct classification of all four students. Zut with T, he is not
suaranteed the correct classification of each student, even thouch
Pr={(1 250508 and FU = 1.0.

Thus, we see that IM involves more uncertainty than M. And the
additional uncertainty in I} comes from the fact that M is Jependent
on the prior provabilities of the instructor whereas UM iz not. TIf it

were known for certain that an instructor's P was ecuivalert to ', then

Ly




then there would be nc mere uncertainty concerning I!Y, for that instructor,
than there is for D¥M. And, XU could be interpreted as both the instructor's
average expected utility for that trial and tiie earnings per trial or the
proportion of correct classifications per trial which could be expected in
the long run. In other words, EU and XUF would be equivalent. Under these
circumstances, we could say that there are certain conditions for which I™
and DM are equivalent, namely, the conditions for which the instructor is
certain that the student is untrained or certain that he is not untrained.
And, of course, CUT would be equivalent to DM for the cases in vhich the
instructor gives a prior probability of 1.0 to a particular category. Of
course, these equivalences are from the agent's point of view.

But if P and F are not equivalent for an instructor, then EU and
EUF will not, in general, be equivalent. Thus, we cannot, without making
further assumptions, say what level of effectiveness we can expect from IM
for a given instructor. But we do know that it can be no greater than 1.0
regardless of the relation of P to F.*
5.3 Summary

It seems clear, after having compared the effectiveness of the two
methods both from the instructor's point of view and from an outside agent's
point of view, that the direct method is more effective than the indirect
method for all conditions, aside from the question of the cost of use.
From the instructor's point of view, there are conditions for which the

two methods give equivalent results. Eut from the agent's point of view

*

The questions raised in this section concerning the subjective probabilities
of the instructor are analogous to questions which will become relevant in
terms of the student's subjective probabilities when we begin to look at
situations in which the student's subjective probabilities can be values

anywhere in the interval [7,1.7].
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we see that thcre is wuncertainty involved in IM which is not involved

in DM, viz., we are never certain that the instructor's P and F are
related in such a way that EU and EUF are both 1.0.

Ve have seen also that the effectiveness of IM can be impreved up
to a limit of LU=7 if the instructor has relevant non-test information
on the stucdent and/or if a question is repeated. But repardless of the
amount of additienal information, the effectiveness of IM car never he
greater than that cof DM, since I/ for DM is 1.0 for all conditions. Tlie
also noted that repeated questions are valid for IM, in our situation,

only if the questions are treated by the student as being independent.
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